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Abstract 
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On GMM Estimation of Distributions from Grouped Data 

William Griffiths and Gholamreza Hajargasht  

1. Introduction 

 Consider a sample of T observations  1 2, , , Ty y y , randomly drawn from a parametric 

distribution ( ; )f y  , ( 0)y  , and grouped into N classes defined by exogenously chosen 

class limits 0 1 1 2( , ), ( , ),z z z z 1,( , )N Nz z , with 0 0z   and Nz  . Let  ig y  be an indicator 

function such that   11 if i i ig y z y z   , and 0 otherwise. Assume that the data available 

to the researcher are (a) the sample mean y , (b) the proportion of observations in each class 
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and (c) the proportion of the total value of all observations in each class 
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Our problem is to estimate  , and, if they are unknown, the class limits 1 2 1, , , Nz z z  . 

 The motivation for this problem is the availability and use of grouped data on income 

or expenditure, typically provided in this form on the websites of the World Bank and the 

World Institute for Development Economics Research (WIDER). Data on population shares 

ic , income shares is , and mean income y  are available for estimating income distributions 

( ; )f y  . Examples of where such data are used for estimation and measuring poverty and 

inequality are Chotikapanich et al. (2007, 2012) and Hajargasht et al. (2012). A method of 

moments estimator that utilises ic , is , and y  to estimate beta-2 distributions was proposed 

by Chotikapanich et al. (2007), and later used in a large scale study of changes in global and 

regional inequality by Chotikapanich et al. (2012). Hajargasht et al. (2012) refined this earlier 

work by deriving an optimal GMM estimator, and showing how it can be used to estimate 

parametric income distributions of any form. 
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 These studies set up moment conditions for the proportions ic , and for either mean 

income in each group 
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or for that part of total mean income in the i-th group 
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Chotikapanich et al (2007, 2012) used moment conditions for iy , whereas, for deriving an 

optimal GMM estimator, Hajargasht et al (2012) found it easier to work with iy . In this paper 

we derive an expression for the optimal GMM estimator when using the moment conditions 

for the group mean incomes iy . Although both approaches are asymptotically equivalent, 

specification of the moment conditions in terms of the group means iy  is more natural. More 

importantly, the resulting GMM objective function is more convenient computationally than 

its counterpart for iy ; the minimization problem is simpler and convergence is easier to 

achieve. A small Monte Carlo experiment is used to demonstrate the validity and practicality 

of the proposed estimator. 

 Throughout, we treat the class limits  1 2 1, , , Nz z z   as unknown since doing so is 

more general than treating them as known, and they are not provided in the data source that 

motivated this study.1 However, our results also hold for the case where  1 2 1, , , Nz z z   are 

known; there is simply a reduction in the number of parameters to be estimated. Also, since 

our GMM estimator makes a distributional assumption about the data generating process, it 

differs from the traditional GMM estimator which is based on a less restrictive set of 

                                                            
1 The World Bank and WIDER are primarily interested in Lorenz curve estimation where class limits are not 
required. 
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assumptions. We utilize GMM in spite of the distributional assumption because derivation of 

the likelihood function that uses information on both the ic  and the iy  is not straightforward. 

 In Section 2 we review the moment conditions, optimal weight matrix and GMM 

objective function set up and derived by Hajargasht et al. (2012) for using data on  ,i ic y . In 

Section 3 we use these results to derive the optimal weight matrix and GMM objective 

function for the case where  ,i ic y  are used to set up the moment conditions. Results from a 

Monte Carlo experiment are presented in Section 4. 

2. Previous Results 

 Let the complete set of unknown parameters be given by  1 2 1, , , ,Nz z z 
θ   . 

Defining the population moments corresponding to ic  and iy  as  ik θ  and  i θ , 

respectively, we have, from equations (1) and (4), 
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Setting up corresponding moment conditions in matrix notation, we define 
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In (7), the moment condition for Nc  is omitted because the result  1 1
1

N N

i ii i
k c   θ  

makes one of the N  conditions for the ic  redundant. The notation c, k, y , and   is used to 
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denote N-dimensional vectors containing the elements , ,i i ic k y , and i , respectively, and the 

subscript “ N ” denotes a corresponding ( 1)N  -dimensional vector with the last element 

excluded; the dependence on   has been dropped from these vectors for notational ease. The 

GMM objective function is given by    '  H θ W H θ , and the GMM estimator by 

   ˆ arg min ' θθ H θ W H θ       (8) 

where W  is a weight matrix. The optimal weight matrix is given by the inverse of the 

covariance matrix of the limiting distribution of  1 2T H θ  (see e.g., Cameron and Trivedi 

2005, pp 174). It can be obtained by taking the probability limit 

     1 2

1

1
var plim , ,

T

t t
t

T y y
T 

    H θ h θ h θ .     (9) 

Hajargasht et al. (2012) showed that  
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where 1N0  is an ( 1)N   dimensional vector of zeroes, ( )D x  denotes a diagonal matrix with 

elements of a vector x  on the diagonal, and  (2) (2) (2) (2)
1 2, , , N

   μ    , with  
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They then go on to show that inverting (10), and simplifying      H θ W H θ , leads to the 

GMM objective function 

2 2
1 2 3

1 1 1

( ) ( ) 2 ( )( )
N N N

i i i i i i i i i i i
i i i

w c k w y w c k y
  

                (12) 

where (2)
1i i iw v  , 2i i iw k v , and 3i i iw v  , with (2) 2

i i i iv k    . What is important to 

note is that minimising this function involves minimising weighted sums of squares of 
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( )i ic k  and ( )i iy   , as well as a weighted sum of the cross product terms ( )( )i i i ic k y   . 

In the formulation that we consider in the next section, the weight matrix W  turns out to be 

such that the need for cross product terms can be avoided. 

3. Optimal Weight Matrix and Objective Function for  ,i ic y  

Considering now the moment conditions for  ,i ic y , we have   0i iE c k   θ  (as 

before) and  plim 0i iy    θ , where      i i ik  θ θ θ .2 Collecting these terms into a 

vector, we define 
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This time the GMM problem is to minimize ( ) ( )   L W L   where for an optimal weight 

matrix W , we require the inverse of the covariance matrix of the limiting distribution of 

 1 2T L θ . Working towards this covariance matrix, we define the stochastic components of 

 L θ , and a 2N-dimensional version of  H θ , as Nη  and η , respectively, where 
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                                  (14) 

                                                            
2 In this case we use probability limits instead of expectations because          i i i i iE y E y E c k   θ θ  . 

Using probability limits may mean it is better to call the estimator a "minimum distance estimator". The 
asymptotic distribution is the same, however. See, for example, Greene (2012, Ch.13). 
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Then, using the delta method, the covariance matrix of the limiting distribution can be written 

as 

   1 2 1 2var plim var plimN NT T                 

η η
L θ η

η η


 
                                  (15) 

Differentiating and taking probability limits, yields 

   
1 ( 1) 1 ( 1)
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N N N N
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I 0 0η
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                                        (16) 

where, with a slight abuse of matrix algebra notation, we are using  2D μ k  to denote a 

diagonal matrix with elements  2
i ik  on the diagonal. Similar definitions apply to 

 D 1 k  and other diagonal matrices that follow. Using a 2N-dimensional version of equation 

(10), we can show that 
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From (15), (16) and (17), tedious matrix manipulation yields  
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where (2) 2 2
i i i i ik k     . Then, using    1

N N N N Nk


        D k k k D 1 k 11 , where 1  

is a vector of ones, we have 
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Now, 
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Then the GMM objective function can be written simply as 
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Thus, in this formulation the objective function can be written as a weighted sum of squares 

of the deviations  i ic k  and  i iy  . In contrast to the earlier formulation written in terms 

of the deviations ( )i ic k  and ( )i iy   , there is no cross product term, making the 

minimization problem simpler and convergence easier to obtain. Also of interest is the large 

sample covariance matrix of the estimator ˆ arg min ( ) ( )  θθ L W L   which turns out to be 

 
1

( )1ˆvar
( )T




                            

D 1 k 0 k θk μ
θ

θ θ 0 D k υ μ θ
.                           (22) 

In the next section we carry out a Monte Carlo experiment to assess whether the estimator 

works well in practice, including whether equation (22) is an accurate reflection of the 

variance of the estimator in repeated samples. 

4. A Monte Carlo Analysis 

The design of the Monte Carlo experiment is as follows: We generate data from a 

generalized beta distribution of the second kind (GB2). This distribution is a flexible and 
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popular candidate for estimating income distributions (see e.g., McDonald 1984, McDonald 

and Ransom 2008, or Kleiber and Kotz 2003). Its density function is defined as 

 1( ; ) [1 ( ) ]ap ap a p qf y ay b y b   , with parameters , , , )b p q a    . The settings in the 

experiment were 100b  , 1p  , 1.5q   and 1.5a  , implying a relatively heavy-tailed 

Singh-Maddala distribution with a Gini coefficient of 0.53. The Singh-Maddala is a special 

case of the GB2 with 1p  . Although the data were generated from the Singh-Maddala 

distribution, the more general GB2 distribution was estimated. We considered a heavy-tailed 

case because inference in such cases can be more challenging. In each of 1000 samples, we 

generated 10000 observations and created ten groups where the group bounds were the 

theoretical deciles ( 's)iz  of the distribution. The shares of observations for each group and 

the means for each group were computed and formed the data used in estimation. 

Computable expressions for k, μ  and (2)μ  in terms of the GB2 parameters are given in 

Hajargasht et al. (2012). To minimize  , we used an iterated two-stage GMM estimator 

which begins with a non-optimal weight matrix in the first stage; in the second stage we 

minimize   with the optimal weight matrix computed using the estimates from the first 

stage, and the process continues until convergence. Other details of GMM estimation in this 

context, but with different moment conditions and a different weight matrix, can be found in 

Hajargasht et al. (2012).  

The results of the experiment are summarized in Table 1. The first column gives the 

true values of the group bounds ( iz ), the parameters ( , , , )b p q a , and the Gini index computed 

from the values of the parameters using numerical integration. Column two contains the 

averages of the estimated parameters from the Monte Carlo samples. The third column 

provides the estimator variances predicted from GMM theory, obtained by inserting the true 

values of the parameters in the GMM variance formula in (22). Column four contains the 
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variances of the estimated parameters from the Monte Carlo samples. For all the parameters, 

the Monte Carlo means and variances compare favourably with their theoretical counterparts. 

In Figure 1 we go further for a selection of the parameters, comparing the complete Monte 

Carlo distributions with the normal distributions prescribed by theory. The full lines represent 

the kernel densities of the estimated parameters from the Monte Carlo experiment; the dashed 

lines show the asymptotic distributions predicted by GMM theory. They are relatively close.  

5. Conclusion 

With the estimation of income distributions as our motivation, we have derived the 

moment conditions and optimal weight matrix for GMM estimation of distributions with 

grouped data when the moment conditions are based on data in the form of group population 

shares and group means. Importantly, we showed that in this case the optimal weight matrix 

is considerably simpler than that used in a previous formulation, leading to a computationally 

simpler objective function for GMM estimation. A limited Monte Carlo analysis showed that 

the resulting estimator works well.  
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Table 1 Monte Carlo Results 

Par True 
Average 

Monte Carlo 
Variance 
Theory 

Variance 
Monte Carlo 

1z  17.430  17.440  0.0238  0.0260 

2z  29.521  29.519  0.0207  0.0207 

3z  41.613  41.607  0.0227  0.0223 

4z  54.805  54.804  0.0288  0.0300 

5z  70.139  70.144  0.0413  0.0427 

6z  89.169  89.160  0.0686  0.0633 

7z  114.890  114.889  0.1399  0.1360 

8z  154.690  154.655  0.4157  0.4247 

9z  236.700  236.703  3.3236  3.3389 

b  100.000  100.402  38.1090  36.9999 
p  1.000  1.007  0.0142  0.0140 
q  1.500  1.516  0.0487  0.0459 

a  1.500  1.506  0.0163  0.0156 

Gini 0.533  0.533  0.000064  0.000063 
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Figure 1: Distributions of the Estimates: Theoretical (dashed line) vs Monte Carlo 
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