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ABSTRACT
A recipe is presented to construct an analytic, self-consistent model of a non-barotropic neutron
star with a poloidal–toroidal field of arbitrary multipole order, whose toroidal component is
confined in a torus around the neutral curve inside the star, as in numerical simulations
of twisted tori. The recipe takes advantage of magnetic field aligned coordinates to ensure
continuity of the mass density at the surface of the torus. The density perturbation and ellipticity
of such a star are calculated in general and for the special case of a mixed dipole–quadrupole
field as a worked example. The calculation generalizes previous work restricted to dipolar,
poloidal–toroidal and multipolar, poloidal-only configurations. The results are applied, as
an example, to magnetars whose observations (e.g. spectral features and pulse modulation)
indicate that the internal magnetic fields may be at least one order of magnitude stronger than
the external fields, as inferred from their spin-downs, and are not purely dipolar.

Key words: gravitational waves – MHD – stars: interiors – stars: magnetars – stars: magnetic
field – stars: neutron.

1 IN T RO D U C T I O N

Neutron stars, particularly the subset known as magnetars, possess
some of the strongest known, naturally occurring magnetic fields.
The external field strength of a neutron star is inferred from its
spin-down. The internal field cannot be measured directly. Obser-
vations of bursts and giant flares (Ioka 2001; Corsi & Owen 2011)
and precession (Makishima et al. 2014) in magnetars have been in-
terpreted to indicate that the internal field exceeds the external field
by at least one order of magnitude. Numerical simulations favour
a ‘twisted torus’ magnetic configuration (Braithwaite & Nordlund
2006; Braithwaite & Spruit 2006).

Magnetic stresses deform a neutron star (Chandrasekhar & Fermi
1953; Ferraro 1954; Goosens 1972; Katz 1989; Cutler 2002; Payne
& Melatos 2004; Haskell et al. 2008; Mastrano et al. 2011), leading
to detectable levels of gravitational radiation under certain condi-
tions (Bonazzola & Gourgoulhon 1996; Melatos & Payne 2005;
Stella et al. 2005; Haskell et al. 2008; Dall’Osso, Shore & Stella
2009). Upper limits from gravitational wave non-detections to date
can be used to set upper limits on the star’s ellipticity, and hence to
constrain the strength and topology of the internal field in principle
(Cutler 2002; Dall’Osso et al. 2009; Mastrano et al. 2011; Mastrano
& Melatos 2012).

� E-mail: alpham@unimelb.edu.au

Neutron star magnetic fields are approximately dipolar at radio
emission altitudes (Lyne & Manchester 1988; Chung & Melatos
2011; Burnett & Melatos 2014) and in the outer magnetosphere,
where high-energy emissions originate (Romani & Yadigaroglu
1995; Lyutikov, Otte & McCann 2012). However, some observa-
tions can be interpreted as signatures of higher order multipoles
close to the surface. Examples include intermittent radio emission
from pulsars beyond the pair-cascade ‘death line’ (Young, Manch-
ester & Johnston 1999; Camilo et al. 2000; Gil & Mitra 2001;
McLaughlin et al. 2003; Medin & Lai 2010), the pulse profile of
SGR 1900+14 following its 1998 August 27 giant flare (Feroci
et al. 2001; Thompson & Duncan 2001; Thompson, Lyutikov &
Kulkarni 2002), cyclotron resonant scattering line energies of
some accretion-powered X-ray pulsars (Nishimura 2005; Priymak,
Melatos & Lasky 2014), the anomalous braking index of some ra-
dio pulsars (Barsukov & Tsygan 2010), and X-ray spectral features
of SGR 0418+5729 (Güver, Özel & Göğüş 2008; Güver, Göğüş
& Özel 2011; Tiengo et al. 2013) and PSR J0821−4300 (Gotthelf,
Halpern & Alford 2013). While the dipole component of the mag-
netic field is readily inferred from its spin-down, the putative higher
order multipoles do not contribute much to the spin-down rate.

In analytically studying higher order multipoles through (say)
their gravitational wave emission, one confronts a key technical
challenge, namely ensuring that the magnetically induced pres-
sure and density perturbations are continuous everywhere. If the
field has both poloidal and toroidal components, and the form of
the toroidal component is not chosen wisely, one ends up with
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discontinuous pressure and density profiles. The ‘correct’ form of
the toroidal field (i.e. one that is analytically tractable and does
not lead to discontinuities) is not immediately obvious. In pre-
vious papers, we investigated the relation between field config-
uration and stellar ellipticity in a stratified, non-barotropic star
with an axisymmetric, purely dipolar, poloidal and toroidal field
(Mastrano et al. 2011) and an axisymmetric, multipolar, purely
poloidal field (Mastrano, Lasky & Melatos 2013). Realistic neu-
tron stars are non-barotropic; they are stably stratified by a com-
position gradient (Pethick 1992; Reisenegger & Goldreich 1992;
Reisenegger 2009). Because a non-barotropic star allows arbitrary
relative poloidal and toroidal field strengths, it can easily accom-
modate the strong internal toroidal fields suggested by observations
(Ioka 2001; Corsi & Owen 2011; Makishima et al. 2014) and simu-
lations (Braithwaite & Nordlund 2006). However, like other authors,
we were unable to construct a physically and mathematically con-
sistent poloidal–toroidal multipolar field. We found that the simple
forms of an axisymmetric field used by Mastrano et al. (2011) and
others lead to unphysical density discontinuities at the boundary of
the toroidal field region. There appears to be no record in the lit-
erature of an analytic poloidal–toroidal construction for multipoles
of higher order than dipole. This is unfortunate, because once this
issue is dealt with, linear combinations of multipoles can generate
realistic analytic models which complement numerical simulations
helpfully.

In this short methods paper, we present a new method for con-
structing such a consistent axisymmetric poloidal–toroidal field an-
alytically for any multipole. In Section 2, we recap the results of
Mastrano et al. (2011) and Mastrano et al. (2013), and we describe
the method for calculating ε for a generalized multipolar field. In the
appendix, we show why the new method presented here is necessary,
by way of an explicit example, where the old methods fail. In Sec-
tion 3, we present a worked example of a mixed dipole–quadrupole,
poloidal–toroidal field, constructed with the new method. We give
explicit expressions for the field and calculate the deformation due
to this field. In Section 4, we apply the results briefly to the mag-
netars SGR 0418+5729 and 4U 0142+61 to give a flavour of the
sort of astrophysical questions that the method can help to study.
Lastly, in Section 5, we summarize our findings. We emphasize that
our analytic field models should complement, rather than supplant,
large-scale numerical simulations. They are not meant to be true
representations of neutron star fields but rather to provide help-
ful toy models, which are easy to manipulate and whose general
properties are easy to parametrize and understand.

2 MASS ELLIPTICITY

In this section, we describe a general method for constructing an
analytic model of a non-barotropic star in hydromagnetic equilib-
rium, where the poloidal component of the magnetic field is a linear
combination of multipolar fields, and the toroidal component is lo-
cated around the neutral curve (the circumstellar curve inside the
star where the poloidal component vanishes). This method is needed
to ensure continuity of the density field at the boundary of the mag-
netic torus; an example of what can go wrong without it is given
in the appendix. The new feature of the method is a field-aligned
coordinate transformation which allows one to solve the force bal-
ance equation exactly in closed form for the density perturbations,
generated by a poloidal magnetic stream function of arbitrary mul-
tipole order. Previous calculations (Mastrano et al. 2011; Mastrano
& Melatos 2012; Yoshida 2013; Dall’Osso et al. 2015) are restricted
to dipolar poloidal fields.

2.1 Hydromagnetic force balance

We decompose the magnetic field into its poloidal and toroidal com-
ponents and express it in dimensionless spherical polar coordinates
(r, θ , φ) in the usual way (Chandrasekhar 1956; Mastrano et al.
2011, 2013; Mastrano & Melatos 2012), viz.

B = B0[ηp∇α(r, θ ) × ∇φ + ηtβ(α)∇φ], (1)

where B0 parametrizes the overall strength of the field, ηp and
ηt set the relative strengths of the poloidal and toroidal compo-
nents, respectively (ηp = 1 without loss of generality), α(r, θ ) is the
poloidal magnetic stream function, and the function β(α) defines
the toroidal field component. In general, the stream function α(r, θ )
can be expanded as a linear combination of multipolar stream func-
tions αl(r, θ ) up to any desired order n, viz.

α(r, θ ) =
n∑

l=1

alαl(r, θ ), (2)

where the subscripts denote the multipole orders and al is a dimen-
sionless weight. We consider separable stream functions of the form
αl(r, θ ) = fl(r)gl(θ ) in this paper. The function β must be a function
of α to ensure that the magnetic force has no azimuthal component,
which cannot be balanced in magnetohydrostatic equilibrium given
a field of the form (1) (Mastrano et al. 2011, 2013).

The magnetic energy density is �10−6 of the gravitational energy
density, even in magnetars. Therefore, we can treat the magnetic
force as a perturbation on a background hydrostatic equilibrium
and write the hydromagnetic force balance equation as

1

μ0
(∇ × B) × B = ∇δp + δρ∇�, (3)

to first order in B2/(μ0p) in the Cowling approximation (δ� = 0),
where p is the zeroth-order pressure, ρ is the zeroth-order density,
� is the gravitational potential, and δp, δρ, δ� are perturbations of
the latter three quantities. Because we do not assume a barotropic
star, the density perturbation δρ does not have to be a function
solely of the pressure perturbation δp, and therefore the equation
of state imposes no restrictions on the field structure. Physically,
this means that the imposed magnetic field sets the density and
pressure perturbations, but the resulting perturbations do not restrict
the magnetic field in turn. Therefore, unlike some previous works
(e.g. Haskell et al. 2008; Lander & Jones 2009; Ciolfi, Ferrari &
Gualtieri 2010), we do not specify a barotropic equation of state
and then solve the Grad–Shafranov equation for the magnetic field
configuration. Instead, we specify the magnetic field whose effects
we wish to investigate (to be determined from observations, e.g.
neutron star spin-down, gravitational wave upper limits, and radio
polarization; Chung & Melatos 2011; Burnett & Melatos 2014) then
calculate the density perturbations that the field causes.

We characterize the magnetic deformation of the star by its ellip-
ticity ε,

ε = Izz − Ixx

I0
, (4)

where I0 is the moment of inertia of the unperturbed spherical star,
the moment-of-inertia tensor is given by

Ijk = R5
∗

∫
V

d3x[ρ(r) + δρ(r, θ )](r2δjk − xjxk), (5)

R∗ is the stellar radius, and the integral is taken over the volume of
the star (r ≤ 1). The density perturbation δρ appearing in equation
(5) is calculated by taking the curl of both sides of equation (3) and
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matching the φ components

∂δρ

∂θ
= − r

μ0R∗

dr

d�
{∇ × [(∇ × B × B)]}φ. (6)

Equations (5) and (6) are then solved to obtain ε.
We require the field to obey the following conditions:

(i) the field is symmetric about the z-axis;
(ii) the external field is current-free and is purely poloidal;
(iii) the poloidal component of the field is continuous every-

where;
(iv) the toroidal component of the field is confined to a toroidal

region inside the star around the neutral curve;
(v) the current is finite and continuous everywhere inside the star

and vanishes at the surface of the star.

These conditions are to be fulfilled by judicious choices of α and
β.

Formally, the function β(α) is arbitrary. In previous work
(Reisenegger 2009; Mastrano et al. 2011; Akgün et al. 2013;
Mastrano et al. 2013), we take

β(α) =
{

(|α| − αc)2 for |α| � αc,

0 for |α| < αc,
(7)

where αc is the value of α that defines the last poloidal field line
that closes inside the star. This relatively simple form of β ensures
that the toroidal field is confined to the equatorial torus bounded
by the last closed poloidal field line. However, if the field line
α(r, θ ) =αc is not symmetric around some θ , this simple polynomial
form for β leads to a discontinuity in δρ at the α = αc boundary
(Mastrano et al. 2013). A worked example showing this explicitly
for a quadrupolar field is presented in the appendix. For this reason,
previous papers failed to construct multipolar fields with poloidal
and toroidal components analytically (Mastrano et al. 2011, 2013).

2.2 Non-barotropicity

As noted above, we consider the star to be non-barotropic in this
paper, i.e. we do not require a one-to-one relation between pres-
sure and density, p = p(ρ). Neutron star matter consists of multiple
species (at least neutrons, protons, and electrons) which reach a sta-
bly stratified, hydromagnetic equilibrium within a few Alfvén time-
scales (Pethick 1992; Reisenegger & Goldreich 1992; Reisenegger
2001; Riles 2013). This system is not in full chemical equilib-
rium: the relative abundances of the constituent particles change by
weak nuclear interactions and diffusive processes. These processes
have much longer time-scales than the Alfvén time-scale (Hoyos,
Reisenegger & Valdivia 2008), with

τweak = 4.3 × 105

(
T

108K

)−6

yr, (8)

τdiff = 1.7 × 109

(
B

1011T

)−2 (
T

108K

)−6

yr, (9)

respectively, where T is the temperature of the star. Between the
Alfvén and the weak nuclear time-scales, the star is in a hydromag-
netic equilibrium state, in which the composition is not determined
solely by the density or pressure, and density and pressure do not
correspond one to one (Mastrano et al. 2011). Since most magnetars
are ∼1–10 kyr old (as inferred from spin and spin-down), the cal-
culations presented in this paper are readily applicable to them. In
addition, note the strong inverse dependence on T; neutron stars cool

down rapidly over ∼102 kyr (Yakovlev, Levenfish & Shibanov 1999;
Petrovich & Reisenegger 2010, 2011; González-Jiménez, Petrovich
& Reisenegger 2014), so that, in practice, chemical equilibrium may
never be reached.

2.3 Field-aligned coordinates

In this section, we describe a method of generating α that does not
lead to discontinuities in δρ while keeping equation (7) for β(α).
There are no cross-terms between the poloidal and toroidal field
components in the Lorentz force, so we can calculate the density
perturbations δρ t and δρp caused by the toroidal and poloidal field
components separately and add them to arrive at the total density
perturbation δρ. Substituting equation (1) into equation (6), we find

− μ0R∗
B2

0

d�

dr

∂δρt

∂θ
= ∂

∂θ

(
Fββ ′ ∂α

∂r

)
− ∂

∂r

(
Fββ ′ ∂α

∂θ

)
(10)

and

−μ0R∗
B2

0

d�

dr

∂δρp

∂θ

= ∂

∂θ

{
1

r2 sin θ

∂α

∂r

[
1

sin θ

∂2α

∂r2
+ 1

r2

∂

∂θ

(
1

sin θ

∂α

∂θ

)]}

− ∂

∂r

{
1

r2 sin θ

∂α

∂θ

[
1

sin θ

∂2α

∂r2
+ 1

r2

∂

∂θ

(
1

sin θ

∂α

∂θ

)]}
, (11)

for the two components, with F = (rsin θ )−2 and β ′ = dβ/dα.
There are many valid ways to choose β(α). However, numeri-

cal simulations (Braithwaite & Nordlund 2006; Braithwaite 2009)
favour configurations where the toroidal field is confined fully inside
the star in a closed region around the neutral curve. We therefore
seek a function α that, when substituted into β(α), ensures continu-
ity of δρ t at α = αc. (Note that δρp is continuous everywhere, since
α is continuous everywhere). This task is made more tractable by
first performing a coordinate transformation from spherical polar
coordinates to those defined by the stream function α and some
coordinate γ (which indicates angular position on the meridional
field line defined by the coordinate α), i.e. (r, θ , φ) �→ (α, γ , φ).
The coordinates α and γ must be chosen such that the Jacobian
of this transformation is non-zero in the regions of interest and the
transformation is invertible (do Carmo 2011). Furthermore, if γ

is chosen to satisfy ∂γ /∂r = 0 everywhere, equation (10) can be
rewritten as

− ∂α

∂θ

∂δρ t(α, γ )

∂α
− ∂γ

∂θ

∂δρ t(α, γ )

∂γ

= ∂F (α, γ )

∂γ
β(α)β ′(α)

∂α

∂r

∂γ

∂θ
, (12)

with δρ t = μ0R∗δρtd�/dr . If α and γ are chosen such that ∂α/∂θ ,
∂γ /∂θ , and the entire right-hand side of equation (12) are all func-
tions of α and γ only, then equation (12) is a well-defined, first-order,
linear, inhomogeneous partial differential equation that permits a
unique solution in closed form. We illustrate how to perform this
construction through a specific example in Section 3.

The mapping (r, θ , φ) �→(α, γ , φ) is not unique. It depends not
only on the particular magnetic field being investigated but also on
one’s choice of γ and is often cumbersome to write down. While the
choice of α is obviously dictated by the poloidal magnetic field, the
actual form of α can be complicated when one deals with a linear
combination of many multipoles. For the relatively simple case of
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a dipole or dipole-plus-quadrupole field, we can choose (as we do
in Section 3) a simple form for γ , namely γ = cos θ , and equation
(12) simplifies. However, when g(θ ) [the angular part of α(r, θ )]
is a combination of many powers of sin θ and cos θ , it becomes
difficult to choose γ such that equation (12) is both well defined and
simple.

3 WO R K E D E X A M P L E :
D I P O L E – QUA D RU P O L E A N D
P O L O I DA L – TO RO I DA L FI E L D S

In this section, we calculate δρ due to a mixed dipole and quadrupole
magnetic field, with a toroidal component confined to the region
bounded by the last poloidal field line that closes inside the star.
The external field, to which the internal field is matched at r = 1, is
given by (Mastrano et al. 2013)

Bext = B0

{[
2 cos θ

r3
+ κ(3 cos2 θ − 1)

r4

]
êr

−
(

sin θ

r3
+ 2κ sin θ cos θ

r4

)
êθ

}
, (13)

where B0 sets the strength of the field overall and κ is the dimen-
sionless weight of the quadrupole component.

The deformation caused by a field without an internal toroidal
component matched to equation (13) has been calculated previ-
ously (Mastrano et al. 2013). Therefore, in this section, we fo-
cus on the deformation caused by the toroidal component. We
begin by discussing the conditions that α must obey, then we de-
rive a suitable (but not unique) form of α, i.e. one which gen-
erates an internal poloidal–toroidal magnetic field that matches
Bext at r = 1, for which the Lorentz force is continuous ev-
erywhere inside the star. Lastly, we calculate δρ t and hence δρ

overall.
Throughout the rest of this paper, to simplify analysis and to

facilitate comparison with previous work, we use the gravitational
potential, density, and pressure profiles used by Mastrano et al.
(2011), namely

ρ = ρc(1 − r2), (14)

p = pc

(
1 − 5r2

2
+ 2r4 − r6

2

)
, (15)

d�

dr
= GM∗

2R2∗
r(5 − 3r2), (16)

where ρc = 15M∗/(8πR3
∗) and pc = 15GM2

∗/(16πR4
∗) are the den-

sity and pressure at the origin, respectively. This simple, ‘parabolic’
density profile has been shown to result in values of ε that are
∼5 per cent of those found using the more realistic polytropic equa-
tion of state (Mastrano et al. 2011).

3.1 Field-aligned coordinates

The main problem with a magnetic field that is not symmetric
around some θ is making sure that δρ t is continuous across α = αc

(Mastrano et al. 2013). An example showing why this does not
occur automatically is worked out in the appendix. As explained
in Section 2.2, the issue can be circumvented by working in the

field-aligned coordinates (α, γ , φ), where it is easier to choose α

judiciously by inspection.
Consider a stream function α that is a linear combination of dipole

and quadrupole components, viz.

α(r, θ ) = f1(r) sin2 θ + κf2(r) sin2 θ cos θ. (17)

Field and current continuity at the surface of the star require that
the radially dependent factors satisfy (Mastrano et al. 2011, 2013)

f1(1) = 1 = f2(1), (18)

2f ′
1(1) = −2 = f ′

2(1), (19)

f ′′
1 (1) − 2f1(1) = 0 = f ′′

2 (1) − 6f2(1), (20)

where the prime indicates differentiation with respect to r. The
first and second conditions ensure the continuity of Br and Bθ ,
respectively. The third condition ensures current continuity (i.e. the
current vanishes at the surface). Implicitly, the current is also well
behaved at the origin.

The last closed internal poloidal field line is defined by α = αc,
where αc is the maximum of f1(1)sin 2θ + κf2(1)sin 2θcos θ for
0 � θ � π/2. In the case of a pure dipole, there is only one neutral
curve at θ = π/2. In the case of a pure quadrupole, there are two
neutral curves at θ = cos−1(±√

1/3). Mixed dipole–quadrupole
cases may have one or two neutral curves, depending on the
relative weights of the multipoles; see Fig. 2 of this paper and
fig. 3 of Mastrano et al. (2013) for some examples. For consis-
tency and simplicity, we assume in this paper that the toroidal
component only exists around the upper hemisphere’s neutral
curve.

Now, suppose we take γ = cos θ . This choice is not unique, but it
has the advantages that it is single valued in the domain 0 � θ � π

and that, trivially, we have ∂γ /∂r = 0. Next, we need to find suit-
able radial functions f1(r) and f2(r) that satisfy the above conditions
(18)–(20), while bearing in mind that equation (12) is a well-defined
linear partial differential equation in α and γ , i.e. there are no ‘stray’
factors of r, sin θ , or cos θ left. We choose f1(r) and f2(r) to be poly-
nomials in r, which are simple and analytically tractable. We need
at least three terms in each polynomial, so as to satisfy the three
boundary conditions above. The implicit condition on the current at
the origin is easily satisfied by choosing the starting powers of r high
enough.

In fact, even after applying these constraints, there are still an
infinite number of polynomials that meet our needs. We make the
final choice through trial and error, to ensure that r(α, γ ) is real,
with 0 ≤ r(α, γ ) ≤ 1 in the (α, γ ) domain of interest, and that it
is expressible in closed form (for ease of calculation). We note that
a1rn + a2r2n + a3r3n is a cubic in rn and is guaranteed to have at
least one real root. We note also that the lowest power of r for which
the quadrupole’s current vanishes at the origin is n = 3, but f1(r)
cannot have an r3 term, if the dipole’s current is to vanish at the
origin, so one needs n ≥ 4. In addition, we add an arbitrary, extra
term to the f1(r) polynomial, whose coefficient σ is not fixed by any
of the boundary conditions; it is left as a free parameter. Adjusting
σ changes the volume of the toroidal field region, a quantity of key
physical importance, in a convenient fashion (Mastrano et al. 2013;
Dall’Osso et al. 2015). Having chosen a value of σ , one can then
check for the existence of real roots in the domain 0 ≤ r ≤ 1; the
existence is guaranteed for σ = 0 and for the values of σ discussed
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Figure 1. Contour plots of field-aligned coordinates α(r, θ ) (solid curves) and γ (r, θ ) (dashed curves) on the r–θ plane [from equations (17), (21), and (22)]
for a pure dipole (κ = 0; left-hand panel) and a mixed dipole–quadrupole (κ = 2; right-hand panel) with σ = −2 fixed.

in this paper. Now, choosing the lowest power of r in both f1(r) and
f2(r) to be r4, we finally arrive at

f1(r) =
(

117

32
− σ

)
r4 −

(
65

16
− 3σ

)
r8 +

(
45

32
− 3σ

)
r12

+ σr16, (21)

f2(r) = 1

8

(
35r4 − 42r8 + 15r12

)
. (22)

The choices leading to equations (21)– (22) are not unique, but
they do guarantee a well-defined inverse coordinate transform re-
lation r(α, γ ) for all κ by inverting α = f1(r)(1 − γ 2) + κf2(r)γ
(1 − γ 2). We plot two examples of α(r, θ ) and γ (θ ) on the r–θ plane
in Fig. 1 for κ = 0 (i.e. a pure dipole, left-hand panel) and κ = 2
(right-hand panel) with σ = −2 fixed. Contours of α follow the
poloidal field lines. The pure dipole case is symmetric around the
equator, but the mixed case is not. As the right-hand panel shows, a
mixed dipole–quadrupole case can have two neutral curves, one in
each hemisphere.

Eight example field-line plots with constant σ and varying κ

(top four panels), and constant κ and varying σ (bottom four pan-
els) are shown in Fig. 2. The top leftmost panel shows the κ = 0
configuration (i.e. a pure dipole). The other top panels show config-
urations with κ = 0.2, 0.6, and 1.1. The three κ �= 0 plots show that
a quadrupole component breaks the north–south symmetry of the
field lines. Odd multipoles are north–south antisymmetric, while
even multipoles are north–south symmetric; when odd and even
multipoles are added together, the result is generally asymmetric
(Mastrano et al. 2013). The bottom panels show a configuration
with κ = 0.6 and different sizes of the toroidal region. As σ in-
creases, the toroidal field volume decreases. A pure dipole has one
neutral curve at θ = π/2, but the addition of a quadrupole shifts
this original neutral curve northwards and introduces a new neu-
tral curve into the Southern hemisphere. As the bottom-right panel
of Fig. 2 shows, the new neutral curve also grows as the original
toroidal region shrinks, even when κ is kept constant. The general
asymmetry of these composite fields, both internal and external, can
potentially be linked to observables such as asymmetry in neutron
star emission and burst signals (see Section 4).

The fields in Fig. 2, generated by equations (17), (21), and (22),
have smaller magnitudes at the origin than those analysed previously

(Mastrano et al. 2011; Akgün et al. 2013; Mastrano et al. 2013;
Dall’Osso et al. 2015), as indicated by the sparseness of field lines
around the origin. Indeed, some field lines seem to bend away from
the origin, as in Fig. 2. This is a consequence of the higher powers
of r in f1(r) and f2(r) used in this paper compared to previous works.
The detailed field behaviour at r = 0 is not a major concern here,
as our primary focus is on stellar ellipticity, and the region near the
origin contributes little to the moment of inertia.

3.2 Deformation

The density perturbations due to the toroidal and poloidal magnetic
components, δρ t and δρp, are readily calculated from equations (10)
and (11), respectively. The total density perturbation, δρp + δρ t, is
then substituted into equations (4) and (5) to calculate ε.

In Fig. 3, we plot ε as a function of the parameter � (the ratio
of internal poloidal field energy to total internal field energy; 0 ≤
� ≤ 1) for a canonical magnetar (M = 1.4 M, R∗ = 104 m,
B0 = 5 × 1010 T) for fixed σ and four different values of κ . In
Fig. 4, we plot ε versus � for fixed κ and four different values of
σ . In both figures, we also plot ε(�) for a purely dipolar field with
the same M, R∗, and B0 as the thick dashed curve (Mastrano et al.
2011). The plots show that prolateness increases as � decreases
(i.e. as the toroidal magnetic field energy increases), similar to
the results of Mastrano et al. (2011) and Dall’Osso et al. (2015).
Fig. 3 shows that, for a given σ , the curve shifts rightward and
downward as the quadrupole field component strengthens, i.e. the
star tends to be more prolate for the same � as κ increases. In
contrast, a star with a purely poloidal magnetic field becomes more
oblate, as the quadrupole component strengthens (Mastrano et al.
2013). The curves intersect at some points. For example, we find
ε(σ = −5, κ = 0) = ε(σ = −5, κ = 0.2) at � ≈ 0.6. If one
were to detect a magnetar near these particular values of ε and
�, the analysis in this paper cannot distinguish between the two
models.

The curves in Fig. 4 show the same general trend: prolateness
increases as � decreases. The curves for σ = −10 (dashed) and
σ = −15 (solid) indicate that the star becomes more prolate, as the
region occupied by the toroidal field grows. However, the curves
for σ = 10 (dash–dotted) and σ = 15 (dotted) indicate that the star
becomes more prolate, as the toroidal field region shrinks below
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3480 A. Mastrano, A. G. Suvorov and A. Melatos

Figure 2. Magnetic field lines of a mixed dipole–quadrupole configuration, as a function of toroidal volume (related to σ ) and quadrupole coefficient κ . The
internal field is described by equations (1), (2), and (17)–(22). The external field is described by equation (13). Each panel is labelled by (σ , κ). Top panels:
σ = 0.5; κ = 0, 0.2, 0.6, and 1.1 (left to right). Bottom panels: κ = 0.6; σ = −20, −10, 0, and 4 (left to right). In each panel, the shading defines the volume
to which the toroidal magnetic field component is confined. The dashed semicircle represents the stellar surface.

some volume (for this particular example, the star becomes more
prolate again for σ � 2). This counterintuitive trend occurs, because
a second neutral curve (and the corresponding region with low
poloidal field strength) emerges inside the star in configurations
with high and positive σ . The weak poloidal field around the second
neutral curve makes it easier to deform the star into a prolate shape.
The curves intersect at some points, like in Fig. 3. For example, we
find ε(σ = −15, κ = 0.2) = ε(σ = −10, κ = 0.2) at � = 0.58,
ε(σ = 10, κ = 0.2) = ε(σ = 15, κ = 0.2) at � = 0.78, and
ε(σ = −10, κ = 0.2) = ε(σ = 15, κ = 0.2) at � = 0.86.

Yoshida (2013) calculated ε for a pure dipole without taking the
Cowling approximation. His values of |ε| are ∼2 times those found
by Mastrano et al. (2011). Furthermore, Yoshida (2013) found
that, if the zeroth-order density profile ρ(r) features an off-centred
maximum (a somewhat artificial situation), taking the Cowling ap-
proximation results in the opposite shape from that predicted by the
full perturbation analysis (i.e. a prolate star where the full perturba-
tion analysis predicts an oblate star and vice versa). A thorough, full

perturbation calculation without the Cowling approximation is
beyond the scope of this paper but is certainly worth undertaking
in future.

3.3 Magnetic moment of inertia

In Section 3.2, we neglect the direct contribution to ε from the
magnetic energy density in the T00 component of the stress-energy
tensor.1 Most recent works on this subject (e.g. Haskell et al. 2008;
Dall’Osso et al. 2015) neglect this contribution as well. It is given
by (Thorne 1980)

εB = πR5
∗

I0

∫ π

0

∫ 1

0
dr dθ r4 sin θ (1 − 3 cos2 θ )

B2

2μ0c2
, (23)

which is essentially the same as equation 13 of Mastrano
et al. (2011), with δρ replaced by B2/2μ0c2. The external field

1 We thank the reviewer for bringing this issue to our attention.
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Stellar deformation due to multipolar magnetic fields 3481

Figure 3. Mass ellipticity ε (in units of 10−6) versus � (the ratio of internal poloidal magnetic field energy to total internal magnetic field energy), for σ = −5
fixed and κ = 0 (thin solid curve), 0.2 (thin dashed curve), 0.6 (thin dash–dotted curve), 1.1 (thin dotted curve), for a canonical magnetar (M = 1.4 M,
R∗ = 104 m, B0 = 5 × 1010 T). The result for a pure dipole (Mastrano et al. 2011) is included for comparison (thick dashed curve).

Figure 4. Mass ellipticity ε (in units of 10−6) versus � (the ratio of internal poloidal magnetic field energy to total internal magnetic field energy), for κ = 0.2
fixed and σ = −15 (thin solid curve), −10 (thin dashed curve), 10 (thin dash–dotted curve), 15 (thin dotted curve, for a canonical magnetar (M = 1.4 M,
R∗ = 104 m, B0 = 5 × 1010 T). The result for a pure dipole (Mastrano et al. 2011) is included for comparison (thick dashed curve).

contribution to εB is comparable to equation (23), because externally
we have B2

ext ∝ r−6 [equation (13)] and
∫ ∞

R∗ dr r4B2 is dominated
by the lower terminal. For the dipole-plus-quadrupole example in
Section 3.2 with σ = −5 and κ = 1.1 (corresponding to the top
rightmost panel of Fig. 2 and the thin dotted curve in Fig. 3), we
find

εB = −1.4 × 10−7

(
B0

5 × 1010T

)2 (
M∗

1.4 M

)−1

×
(

R∗
104m

)3 (
1 − 0.847

�

)
. (24)

Note that εB scales differently with R∗ and M∗ (compared to the
δρ contribution to ε, e.g. given by equation (25) of this paper or
equation 17 of Mastrano et al. 2011), because εB is not coupled to
∇� [given by equation (16) in this paper for the parabolic density
profile].

We plot ε versus � for a canonical magnetar (M = 1.4 M,
R∗ = 104 m, B0 = 5 × 1010 T), with σ = −5 and κ = 1.1 in
Fig. 5. The figure shows two nearly overlapping curves. The dashed
(solid) curve corresponds to excluding (including) the magnetic field
contribution. Our calculation confirms that, at worst, the effect shifts
ε by a factor of ∼2 per cent. This is because one has δρ/(B2/μ0c2)
∼ c2(dr/d�) � 1.
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Figure 5. Mass ellipticity ε (in units of 10−6) versus � (the ratio of internal poloidal magnetic field energy to total internal magnetic field energy), for a
dipole-plus-quadrupole field configuration, with σ = −5 and κ = 1.1, where we take into account (solid curve) and neglect (dashed curve) the moment-of-inertia
tensor contribution of the magnetic field, for a canonical magnetar (M = 1.4 M, R∗ = 104 m, B0 = 5 × 1010 T). The two curves nearly overlap.

The focus of this methods paper is on the star-deforming effect
of the magnetic field. The uncertainty introduced by neglecting εB

is smaller than that potentially introduced by the commonly taken
Cowling approximation (Yoshida 2013), nor does it change the
general qualitative behaviour of the results.

4 A STRO PHYSICAL EXAMPLES

While this paper is mainly a ‘methods’ paper, we discuss briefly,
by way of illustration, two examples of how one can apply the
method to model astrophysical phenomena in the magnetars SGR
0418+5729 (Güver et al. 2008, 2011; Tiengo et al. 2013) and 4U
0142+61 (Makishima et al. 2014).

4.1 SGR 0418+5729

SGR 0418+5729 has an inferred dipole field strength of � 7.6 ×
108 T (Rea et al. 2010), but an analysis of the X-ray spectrum by
Güver et al. (2011) concluded that a surface field strength of 1010 T
fits the data best. Güver et al. (2011) suggested that the surface field
contains higher order multipole(s) (which fall away with r faster
than the dipole) to account for the discrepancy. If we take B0 = 3.8
× 108 T, corresponding to a dipole field strength of 7.6 × 108 T at
the polar surface, and take κ = 13, corresponding to total (dipole
plus quadrupole) field strength of 1010 T at the polar surface, then
we find

ε = 1.7 × 10−1

(
B0

5 × 1010T

)2 (
M∗

1.4 M

)−2 (
R∗

10km

)4

×
(

� − 1 + 7 × 10−4

�

)
, (25)

for σ = 0. We choose to write ε in terms of B0 (which can, in
principle, be inferred from spin and spin-down) rather than (say)
the internal magnetic field strength (maximum or volume averaged)
in order to relate ε to an observable quantity, which does not itself
depend on �. Furthermore, this facilitates comparison with other
works (Mastrano et al. 2011; Dall’Osso et al. 2015).

The above model does not need much toroidal component to de-
form into a prolate shape; we obtain ε ≤ 0 for 1 − � ≥ 7 × 10−4.
If SGR 0418+5729 has no toroidal field component, we obtain
ε = 6.8 × 10−9(M∗/1.4 M)−2(R∗/10 km)4, which is too small to
generate gravitational waves detectable by current-generation inter-
ferometers (Mastrano et al. 2011; Riles 2013). However, � = 0.9
is enough to result in ε = −10−6(M∗/1.4 M)−2(R∗/10 km)4, in
contrast with a purely dipolar neutron star, which only becomes
significantly prolate for � � 0.4 (Mastrano et al. 2011). Thus,
in objects like SGR 0418+5729, ε depends strongly on field con-
figuration, characterized by �, as well as field magnitude. Future
gravitational wave upper limits from next-generation detectors will
constrain � better in the context of this model. Because of the low
spin frequencies of magnetars, e.g. 0.11 Hz for SGR 0418+5729
(Göğüş, Woods & Kouveliotou 2009), the best limits will come
from the Einstein Telescope, where Newtonian noise suppression
will extend observations down to the sub-Hertz regime (Bennett,
van Eysden & Melatos 2010). Present-day limits on ε complement
historical limits based on fast-spinning birth scenarios (Thompson,
Chang & Quataert 2004; Dall’Osso & Stella 2007; Dall’Osso et al.
2009; Melatos & Priymak 2014).

4.2 4U 0142+61

The magnetar 4U 0142+61 has an inferred dipole field strength of
1.3 × 1010 T (Gavriil & Kaspi 2002; Güver et al. 2008). Phase mod-
ulations of its hard X-ray pulses, observed by the Suzaku satellite
(Enoto et al. 2011; Makishima et al. 2014), have been interpreted by
Makishima et al. (2014) as evidence of free precession, indicating a
prolate star with |ε| ≈ 1.6 × 10−4 and, hence, a maximum internal
toroidal field Bt ∼ 1012 T.

As in the previous subsection, we assume that the inferred dipole
field is not the whole story: the actual field contains a quadrupole
element, which cannot be inferred from spin-down, and an internal
toroidal field, whose presence can only be detected indirectly via its
effect on ε. From equation (13), the polar surface field strengths
of the dipole and quadrupole components are Bdip = 2B0 and
Bquad = 2κB0, respectively. If we infer that Bdip = 1.3 × 1010 T
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Table 1. Sample models of 4U 0142+61 for
ε = −1.6 × 10−4, the ellipticity required by inter-
preting X-ray pulse modulation as precession (Mak-
ishima et al. 2014), for some different values of κ ,
with σ = −0.1 fixed. We show κ (first column),
total polar surface field strength Bpole (second col-
umn), the required poloidal-to-total field energy ratio
�ε (third column), and the maximum toroidal field
strength Bt (fourth column).

κ Bpole (1012 T) �ε Bt (1012 T)

0.78 4.7 × 10−2 2.8 × 10−4 16
1 5.2 × 10−2 9.2 × 10−4 9.5
2 7.8 × 10−2 2.7 × 10−3 7.1
5 1.6 × 10−1 6.2 × 10−3 9.3
10 2.9 × 10−1 3.8 × 10−2 6.9

from spin-down, we can calculate the values of � required to ob-
tain ε = −1.6 × 10−4, as required by the precession interpretation,
for different values of κ (with σ = −0.1 in all cases). We present
the cases of κ = 0.78, 1, 2, 5, and 10 in Table 1. Each row shows
κ , Bpole, which is the total polar surface field strength, �ε , which is
the value of � required to impart ε = −1.6 × 10−4 to the star, and
Bt, which is the maximum strength of the toroidal field. Note that
κ = 0.78 is chosen because this corresponds to Bpole = 4.7 × 1010

T, the value obtained by Güver et al. (2008) when they analysed the
X-ray pulses from 4U 0142+61.

For the cases investigated, we find values of Bt that are ∼10 times
stronger than calculated by Makishima et al. (2014). This, however,
can be counteracted by reducing σ and, hence, enlarging the volume
occupied by the toroidal field. Table 1 shows that, as the quadrupole
component strengthens, �ε increases, i.e. a more quadrupolar field
needs less toroidal field energy to deform the star. However, it is
harder to say with confidence what trend Bt follows, e.g. Bt decreases
between κ = 0.78 and 2, then increases between κ = 2 and 5, then
decreases again between κ = 5 and 10. This is because κ affects
the toroidal field’s volume as well, although to a lesser degree than
σ . Thus, for example, we find �ε(κ = 2) < �ε(κ = 5), i.e. the
κ = 5 case requires less toroidal field energy to deform the star to
the desired ε. However, we also find Bt(κ = 2) < Bt(κ = 5), because
the toroidal field’s volume for κ = 5 is smaller than that for κ = 2.

Note that we do not claim the magnetar 4U 0142+61 to be in
any of the magnetic configurations explored in this subsection. We
present these examples simply to demonstrate what our analytical
approach can accommodate and analyse.

5 C O N C L U S I O N

In this short methods paper, we generalize previous calculations
(Mastrano et al. 2011, 2013) to show how any multipolar stellar
magnetic field containing both poloidal and toroidal axisymmetric
components can be constructed analytically to satisfy boundary
conditions (zero surface currents and zero toroidal field outside the
equatorial torus) motivated physically and by numerical simulations
in the literature. We also present a worked example of a dipole-
plus-quadrupole, poloidal-plus-toroidal field and calculate ε versus
� for some representative combinations of the parameters σ (which
controls the volume occupied by the toroidal field) and κ (which
controls the weight of the quadrupole component). The star tends
to be more prolate as κ increases (Fig. 3). In the fixed κ = 0.2
example shown in Fig. 4, for σ � 2, the star deforms into a more

prolate shape as σ decreases. For σ � 2, increasing σ makes the
star more prolate, as the internal poloidal field component weakens.
For a given �, i.e. for a given toroidal field energy, smaller σ means
greater toroidal field strength.

In Section 4, we briefly discuss two possible astrophysical appli-
cations of our analysis to magnetars. SGR 0418+5729 is interesting
because there is a mismatch between the surface field strengths in-
ferred from spin-down (Rea et al. 2010) and from X-ray analysis
(Güver et al. 2011). We show how, if the star’s magnetic field is
mostly quadrupolar (as suggested by Güver et al. 2011), the star
is likely to be prolate. For κ = 13, we find 1 − � ≥ 7 × 10−4

for ε ≤ 0 (i.e. the toroidal field only needs to contribute at least
0.07 per cent to the total field energy to deform the star into a pro-
late shape). Present-day and historical (at birth) upper limits on
gravitational wave emissions can thus be used to infer the inter-
nal field configuration and toroidal field strength. 4U 0142+61 is
interesting, because Suzaku observations suggest that it undergoes
free precession, from which an upper limit for ε can be calculated
(Makishima et al. 2014). We present several possible configurations
of this magnetar’s field and calculate the lower limit on � implied
by the upper limit on ε. We find that, to obtain |ε| ∼ 10−4, we need
toroidal fields with maximum strength Bt ∼ 1013 T, 10 times greater
than inferred by Makishima et al. (2014). The two applications are
by no means exhaustive; they simply illustrate the potential of the
method.

Throughout this paper, we do not discuss the stability of these
dipole-plus-quadrupole, poloidal-plus-toroidal field configurations.
Such calculations are reserved for future work. The results of Akgün
et al. (2013) are not directly applicable to the composite multipo-
lar fields discussed here. To repeat their analysis, one must first
identify the regions of greatest instability in the star. This is more
difficult than for the pure dipole field, because the field is no longer
north–south symmetric, because the toroidal field is offset from the
equator, and because there are new regions of low field strength
inside the star (that is, other than the neutral curve). It may be eas-
ier to test the stability of these composite fields numerically rather
than analytically, by evolving the field in a time-dependent mag-
netohydrodynamic simulation. We defer this calculation to a future
paper.
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APPENDI X A : A N EXAMPLE O F A
D I S C O N T I N U O U S δρ t A R I S I N G F RO M A PO O R
C H O I C E O F f( r)

In this short appendix, we present an example of what happens
when one uses the simple form of β(α) given in equation (7) with-
out choosing the polynomial f(r) judiciously. We start with a pure
quadrupole field

α = f2(r) sin2 θ cos θ, (A1)

β(α) =
{

(|α| − αc)2 for |α| � αc,

0 for |α| < αc,
(A2)

with αc = 2
√

3/9. In this appendix, we choose the radial function
f2(r) = 21(r3 − 5

3 r4 + 5
7 r5), as chosen by Mastrano et al. (2013).

This f(r) is a natural choice, because it fulfils the boundary con-
ditions (i)–(v) listed in Section 2.1, because it has the minimum
number of terms, and because its first power, r3, is the lowest power
of r that guarantees the current vanishes at the origin. However, this
choice of f(r) does not allow us to perform an invertible coordinate
transformation (r, θ , φ) �→(α, γ , φ), and therefore does not permit
a unique solution in closed form for equation (12).

Substitution of equations (A1)– (A2) into equation (10) leads to

− μ0R∗
B2

0

d�

dr

∂δρt

∂θ
= ∂

∂θ

[
2(α − αc)3

r2 sin2 θ

∂α

∂r

]

− ∂

∂r

[
2(α − αc)3

r2 sin2 θ

∂α

∂θ

]
. (A3)

Figure A1. Density perturbation due to the toroidal field component, δρt, versus colatitude θ for r = 0.7, for a quadrupole where the field is described by
equations (A1) and (A2) (left-hand panel) and for a pure dipole (right-hand panel).
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Integrating equation (A3) with respect to θ should give δρ t, plus
some integrating constant g(r), to be calculated by matching δρ t = 0
at α = αc. We plot δρ t versus θ for r = 0.7 for the quadrupole in the
left-hand panel of Fig. A1 as an example. We obtain δρ t(r = 0.7,
θ = θ1) �= δρ t(r = 0.7, θ = θ2), with θ1 and θ2 being the coordinates
where α(r = 0.7, θ ) = αc. For comparison, the right-hand panel of
Fig. A1 shows δρ t(r = 0.7) for a pure dipole, showing δρ t(r = 0.7,
θ = θ1) = δρ t(r = 0.7, θ = θ2) (Mastrano et al. 2011). It is therefore

impossible to ensure the continuity of δρ t at α = αc for a quadrupole
(unlike for the dipole) using only an arbitrary function of r. This
problem vanishes when the method described in Sections 2.2 and 3
is applied.
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