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The minimal Type I seesaw model cannot explain the observed neutrino masses and the baryon
asymmetry of the Universe via hierarchical thermal leptogenesis without ceding naturalness. We show that
this conclusion can be avoided by adding a second Higgs doublet with tan β ≳ 4. The models considered
naturally accommodate a standard model-like Higgs boson and predict TeV-scale scalar states and low- to
intermediate-scale hierarchical leptogenesis with 103 GeV ≲MN1

≲ 108 GeV.
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I. INTRODUCTION

The discovery of a neutral Higgs boson at the LHC [1,2]
has strengthened the case for the standard model (SM)
paradigm of spontaneous electroweak symmetry breaking:
a scalar doublet Φ gains a vacuum expectation value (vev)
hΦi ¼ v=

ffiffiffi
2

p
≈ 174 GeV by virtue of the potential

VSM ¼ μ2Φ†Φþ λðΦ†ΦÞ2; ð1Þ
with μ2 < 0. As well, the measurement of neutrino oscil-
lations [3–8] suggests that the SM should be extended to
incorporate neutrino masses. A straightforward way to
achieve this is to include three right-handed neutrinos. Then
gauge invariance allows two extra renormalizable terms to
be added to the Yukawa Lagrangian,

−ΔLY ¼ ðyνÞijl̄iL ~Φ νjR þ 1

2
MiðνiRÞcνiR þ H:c:; ð2Þ

where lL ¼ ðνL; eLÞT , ~Φ ¼ iτ2Φ�, and Mi are the right-
handed neutrino masses. The SM extended in this way is
what we refer to as theminimal Type I seesawmodel [9–12].
If yνv ≪ Mi then the minimal Type I seesaw provides an

elegant explanation for the smallness of the neutrino
masses. After electroweak symmetry breaking, the neutrino
mass matrix is given by the seesaw formula

mν ¼
v2

2
yνD−1

M yTν ; ð3Þ
where DM ≡ diagðM1;M2;M3Þ, suppressed by the pre-
sumably large right-handed neutrino mass scale.
The minimal Type I seesaw also provides a mechanism

to reproduce the baryon asymmetry of the Universe (BAU).
Fukugita–Yanagida hierarchical thermal leptogenesis [13]
proceeds via the CP-violating out-of-equilibrium decays of
the lightest right-handed neutrino N1, creating a lepton
asymmetry which is reprocessed into the baryon sector by
the electroweak sphalerons. Successful hierarchical thermal
leptogenesis is possible when the Davidson–Ibarra bound
(ensuring enough CP asymmetry in the decays) is satisfied
[14,15],

MN1
≳ 5 × 108 GeV

�
v

246 GeV

�
2

; ð4Þ

where v is the vev that enters the seesaw of Eq. (3).
The ability of the minimal Type I seesaw model to

simultaneously explain neutrino masses and the BAU is
certainly intriguing. However, Vissani observed [16] that
the model is incapable of doing so without generating a
naturalness problem.1 Equation (4) is simply incompatible
with the conservative naturalness requirement that correc-
tions to the electroweak μ2 parameter of Eq. (1) not exceed
1 TeV2. With three flavors of hierarchical right-handed
neutrinos, this requires [17]

MN1
≲ 3 × 107 GeV

�
v

246 GeV

�2
3

: ð5Þ

The incompatibility is exemplified in Fig. 1; nowhere at
v ¼ 246 GeV is it possible to simultaneously fulfill the
Davidson–Ibarra and Vissani bounds.
A sensible question is then: in what minimal ways

can this incompatibility be overcome? Figure 1 suggests
three conspicuous (but not mutually exclusive) options:
(1) Modify the correction to μ2, e.g., by restoring super-
symmetry or by partly cancelling the correction from the
heavy fermion loop [18,19]; (2) lower the Davidson–Ibarra
bound, e.g., by considering resonant leptogenesis [20], an
alternative mechanism [21], or by introducing new fields
which allow an increased CP asymmetry in the right-
handed neutrino decay; (3) seek an extension of the
canonical seesaw for neutrino mass, i.e., reduce the
(possibly effective) v entering the seesaw Eq. (3).
In this paper we will consider the third option.

Specifically we will examine alternative seesaw possibil-
ities when the minimal Type I see-saw model is extended

1Naturalness is admittedly an aesthetic requirement of a model,
and the possibility remains that nature is just fine-tuned.
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by a second Higgs doublet Φ2. We are motivated by the
following observation: if the seesaw neutrino mass of
Eq. (3) is evaluated at v ≲ 30 GeV, then Eqs. (4) and (5)
become compatible, as is clear from Fig. 1. Thus, we
expect that two-Higgs-doublet models with right-handed
neutrinos (ν2HDMs) and tan β ¼ v1=v2 ≳ 8, where Φ2 is
responsible for a tree-level seesaw, can naturally accom-
modate leptogenesis and neutrino masses. In fact, we find
that tan β ≳ 4 is possible, since the extra scalar states can
be naturally TeV scale and the Vissani bound can be
relaxed.
Upon examining the ν2HDM scenarios which will

succeed, we rediscover the radiative Ma model [22] as
the only possibility when v2 ¼ 0. Otherwise, in models
without a significant radiative neutrino mass component,
we require 0.3≲ v2=GeV≲ 60. The potentially small vev
is made natural by softly breaking a Uð1Þ or Z2 symmetry,
which also automatically results in one SM-like CP-even
state. One advantage of this scenario is that it can work in
all ν2HDM types, greatly increasing the opportunity for
model building.
The paper is organized as follows. In Sec. II we build

the ν2HDM models of interest, describe the scalar states,
and briefly review the relevant experimental constraints.
In Sec. III we pay particular attention to naturalness limits
on the extra scalars; we verify that a natural ν2HDM of
any type is still allowed by experiment. We discuss
neutrino masses in Sec. IV and leptogenesis in Sec. V.
The region of parameter space which naturally achieves
hierarchical leptogenesis is identified. We conclude
in Sec. VI.

II. ν2HDM MODEL

A. Lagrangian

The scalar content of the model contains two doublets
Φ1;2 each with hypercharge þ1. For simplicity we consider

the softly broken, CP-conserving, Z2-symmetric potential
(see, e.g., Ref. [23])

V2HDM ¼ m2
11Φ

†
1Φ1 þm2

22Φ
†
2Φ2 −m2

12ðΦ†
1Φ2 þ Φ†

2Φ1Þ

þ λ1
2
ðΦ†

1Φ1Þ2 þ
λ2
2
ðΦ†

2Φ2Þ2

þ λ3ðΦ†
1Φ1ÞðΦ†

2Φ2Þ þ λ4ðΦ†
1Φ2ÞðΦ†

2Φ1Þ

þ λ5
2
½ðΦ†

1Φ2Þ2 þ ðΦ†
2Φ1Þ2�; ð6Þ

where all the parameters are real. To explain observations,
at least one of these doublets must obtain a nonzero vev. We
consider m2

11 < 0 and a CP-conserving vacuum,

hΦ1i0 ¼
1ffiffiffi
2

p
�

0

v1

�
; hΦ2i0 ¼

1ffiffiffi
2

p
�

0

v2

�
; ð7Þ

where v1 > 0, v2 ≥ 0, and v21 þ v22 ¼ v2 ≈ ð246 GeVÞ2.
A general 2HDM will have flavor-changing neutral

currents at tree level. These can be avoided if right-handed
fermions of a given type ðuiR; diR; eiRÞ couple to only one of
the doublets [24,25]. Although not strictly necessary, we
will assume that this is realized and adopt the convention
that only Φ1 couples to the uiR. In a ν2HDM, if we assume
this also applies for the νiR, then there are eight possibilities.
As mentioned in the Introduction, the seesaw constraint
Eq. (3) can be made consistent with naturalness and
leptogenesis if the vev contributing to the seesaw is
sufficiently small. Since we would like our model to remain
perturbative, and already yt ≈ 1 for v ≈ 246 GeV, we
anticipate that Φ2 obtains the small vev, and thus we
couple it to the νiR. Remaining are four possible ν2HDMs
which we refer to by their conventional types as listed in
Table I.2 The Yukawa Lagrangian is then given by

−LY ¼þ yuqL ~Φ1uR þ ydqLΦIdR

þ yelLΦJeR þ yνlL ~Φ2νR

þ 1

2
MNðνRÞcνR þ H:c:; ð8Þ

TABLE I. The four models with no tree-level flavor-changing
neutral currents and allowing for a GeV-scale vev to provide the
seesaw while preserving perturbativity of yt.

Model uiR diR eiR νiR

Type I Φ1 Φ1 Φ1 Φ2

Type II Φ1 Φ2 Φ2 Φ2

LS Φ1 Φ1 Φ2 Φ2

Flipped Φ1 Φ2 Φ1 Φ2

Unnatural (Vissani)

Not enough CP asymmetry

(Davidson-Ib
arra
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FIG. 1 (color online). Bounds on hierarchical thermal lepto-
genesis as a function of v. Shown is the Davidson–Ibarra bound
(purple) and the Vissani bound (blue). The dashed lines indicate
v ¼ 246; 30 GeV.

2Type I ν2HDMs with v2 ∼ eV were considered in Refs. [26–
29]. We will end up considering v2 of Oð0.1 − 10Þ GeV.
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where I; J depend on the model type, and family indices are
implied.

B. Scalar masses and mixings

Consistency with experiments requires the extra scalar
states to have masses at least ≳80 GeV. To construct
models with potentially TeV-scale scalars with a naturally
small v2, we will considerm2

22 > 0 and m2
12=m

2
22 ≪ 1 [26].

This is technically natural, since in the limit m2
12=m

2
22 → 0

a Uð1Þ or Z2 symmetry is restored if λ5 ¼ 0 or λ5 ≠ 0,
respectively.
For m2

11 < 0, the vevs are given by

v1 ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m2

11

λ1

s
; ð9Þ

v2 ≈
1

1þ v2
1

2m2
22

λ345

m2
12

m2
22

v1; ð10Þ

where λ345 ¼ λ3 þ λ4 þ λ5. These relations become exact
when m2

12 ¼ 0 and when λ2 ¼ 0, respectively. For
m2

22 ≫ λ345v21, tan β≡ v1=v2 ≈m2
22=m

2
12.

There is a useful constraint on m2
22 which is derived as

follows. The minimization conditions give

m2
22 þ

1

2
λ2v22 ¼ tan2β

�
m2

11 þ
1

2
λ1v21

�
; ð11Þ

where λ1v21 ≈m2
h ≈ ð125 GeVÞ2 (see below). In the limit

m2
22 ≫ λ2v22=2, it can be seen thatm

2
22 is bounded above by

m2
22 ≲ 1

2
m2

htan
2β ð12Þ

if m2
11 is to remain negative. Figure 2 illustrates how m2

11

deviates from its standard value of −ð88 GeVÞ2 as m2
22

approaches this bound. Form2
22 above this bound,m

2
11 very

quickly grows to values >v2, and v ≈ 246 GeV is only

explained by a miraculous balance of m2
11 against

m2
22= tan

2 β, which constitutes a fine-tuning. Thus, we
adopt Eq. (12) as a consistency condition.
The charged scalar and pseudoscalar (neutral scalar)

mass-squared matrices are diagonalized by a mixing angle
β (α). The neutral mass eigenstates are

h ¼ ρ1 cos αþ ρ2 sin α;

H ¼ ρ2 cos α − ρ1 sin α;

A ¼ η2 sin β − η1 cos β; ð13Þ

where ρi ¼
ffiffiffi
2

p
ReðΦ0

i Þ − vi and ηi ¼
ffiffiffi
2

p
ImðΦ0

i Þ. The
masses are given by

m2
h ¼ λ1v21 þO

�
m4

12

m4
22

v21

�
;

m2
H ¼ m2

22 þ
1

2
λ345v21 þO

�
m4

12

m4
22

m2
22

�
;

m2
A ¼ m2

22 þ
1

2
ðλ345 − 2λ5Þv21 þO

�
m4

12

m4
22

m2
22

�
;

m2
H� ¼ m2

22 þ
1

2
λ3v21 þO

�
m4

12

m4
22

m2
22

�
; ð14Þ

i.e., the same as in the inert doublet model [23] up to
corrections proportional to m4

12=m
4
22, which we provide in

Appendix A. Clearly, if m2
22 ≫ v2, the mass scale of extra

scalar states is ≈m22.
In the alignment limit cosðα − βÞ → 0, the couplings of

h to SM particles become SM-like. We calculate

cos2ðα−βÞ

≈
m4

12

m4
22

v41
m4

22

ðλ1−λ345Þ2
ð1− v2

1

2m2
22

ð2λ1−λ345ÞÞ2ð1þ v2
1

2m2
22

λ345Þ2
; ð15Þ

suppressed by the approximate Uð1Þ or Z2 symmetry
(m2

12=m
2
22 ≪ 1) as well as the usual decoupling limit

suppression (v21=m
2
22 ≪ 1) [30]. Thus, the model naturally

accommodates a SM-like neutral scalar state.

C. Constraints

With MN > m22 the constraints (and search strategies)
for a ν2HDM of a given type are largely identical to those
for a 2HDM of the same type, for which there is extensive
literature (see references henceforth). The 2HDM potential
Eq. (6) is subject to a few standard theoretical constraints
[23]. The necessary and sufficient conditions for positivity
of the potential in all directions are [31–33]

λ1;2 ≥ 0;

λ3 ≥ −
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
;

λ3 þ λ4 − jλ5j ≥ −
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
: ð16Þ

m11
2 >0
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2
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FIG. 2 (color online). Contours of m2
11=GeV

2 ¼ −802;−702,
and so on. The shaded region has no solution for m2

11 < 0.
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Vacuum stability of the potential minimum is more difficult
to evaluate. An inequality which ensures a global minimum,
missing possible metastable vacua, is presented in Ref. [34].
Tree-level perturbative unitarity of scalar-scalar scattering is
ensured by bounding the eigenvalues of the scatteringmatrix
[23,35–37]. Perturbativity of the λi can also be demanded
[38]. At the very least, these bounds should be implemented
at the mass scale of the scalar states. In addition theymay be
demanded up to some high scale under the renormalization
group evolution, which results in nontrivial constraints on
the parameter space (see, e.g., Refs. [39–41]3). Type II,
lepton-specific (LS), and flipped 2HDMs are particularly
susceptible to exclusion by such a demand at large tan β; at
one loop, their Yukawa couplings hit a Landau pole before
MPl ∼ 1018 GeV when v2 ≲ 3.6; 2.3; 3.3 GeV (tan β ≳ 68;
107; 75) respectively [42]. These Landau poles merely
indicate the breakdown of perturbativy.
The scalar boson discovered at the LHC is to be identified

with the mass eigenstate h. Its couplings have been mea-
sured to be SM-like, which constrains the ν2HDM to lie in
the alignment limit cosðα − βÞ ≈ 0, particularly at large
tan β, and for Type II and flipped 2HDMs.4 As is evident
from Eq. (15), the alignment limit is automatically preferred
in our model due to the approximate Z2 or Uð1Þ symmetry.
Thus, we limit the following discussion on additional
experimental limits to those that constrain moderate to large
tan β models very close to the alignment limit.
In Type II and flipped 2HDMs, the Φ2 coupling to

down-type quarks is tan β enhanced. The H� state then
contributes significantly to radiative B → Xsγ decay; the
experimental measurement [49] combined with a recent
next-to-next-to-leading-order SM calculation [50] bounds
mH� ≳ 480 GeV at 95% C.L. for tan β ≳ 2. This bound
along with the consistency condition Eq. (12) implies v2 ≲
45 GeV (tan β ≳ 5.4) for these ν2HDMs. In the Type II
2HDM, the Φ2 coupling to eiR is also tan β enhanced, and
the bound on mH� from B → τν decays exceeds the
radiative bound when tan β ≳ 60 [23].
Direct searches at Large Electron–Positron Collider con-

strain mH� ≳ 80 GeV assuming decay to SM particles [51].
At the LHC, searches for H=A → ττ [52,53] are particularly
constraining in the Type II 2HDM. The 95% C.L. limit rises
approximately linearly frommA ≳ 300 GeV at tan β ¼ 10 to
mA ≳ 1000 GeV at tan β ¼ 60. Such searches can also be
mildly constraining for the LS 2HDM at moderate tan β.
Searches forH� → τν [54,55] cannot competewithB → Xsγ
for Type II/flipped 2HDMs or with H=A → ττ for the LS
2HDM. However, for mH� < 160 GeV, significant param-
eter space is ruled out in Type I 2HDMswith moderate tan β.

The ðyνÞijliL ~Φ2ν
j
R Yukawa term related to the

neutrino masses can induce lepton flavor violating
decays; these are suppressed by the small yν and the
right-handed neutrino mass scale MN > m22. The proc-
esses of interest are lα → lβγ, lα → 3lβ, and μ → e con-
version in nuclei (see Ref. [56] for expressions). As well,
b → slαl̄β decays are induced in Type II and flipped
ν2HDMs. In practice, lepton flavor violating measurements
constrain linear combinations of ðyνÞij bi- and trilinears as
well as the MNi

.
In summary, for moderate to large tan β and

cosðα − βÞ ≈ 0, experiments are most constraining for
the Type II and flipped 2HDMs, with m22 ≳ 480 GeV
necessary (implying v2 ≲ 45 GeV). For Type I and LS
2HDMs, even additional scalars with masses down to
80 GeV may still have evaded detection.

III. NATURALNESS

In the SM, the renormalization group equation (RGE) for
the electroweak μ parameter [as in Eq. (1)] is dominated by
the top quark Yukawa,

dμ2

d ln μR
≈

1

ð4πÞ2 6y
2
t μ

2; ð17Þ

where μR is the renormalization scale. At low energy we
measure μ2 ≈ −ð88 GeVÞ2, and under SM running it is
apparent that jμj remains ∼100 GeV even up to the Planck
scale MPl ∼ 1018 GeV. Thus, there is no measurable
naturalness problem in the SM alone; there is no fine-
tuning of any measurable parameter at a high scale, only the
cancellation of an unmeasurable bare parameter against an
unphysical cutoff scale, which should be assigned no
physical significance. With this understood, it is clear that
a measurable naturalness problem can only arise when
dμ2=d ln μR ≳ μ2. Indeed, this is exactly how the Vissani
bound in the Type I seesaw model can be interpreted
[16,17]. Let us now examine when the ν2HDM encounters
such a problem.
In practice, the naturalness considerations can be divided

into two distinct calculations: the influence of m22 on m11

and the influence of MN on m22. These influences will be
considered in turn.5

A. Corrections to m2
11

If m2
22 ≪ m2

htan
2β=2, then m2

11 sets the mass of the
observed SM-like Higgs via Eqs. (9) and (14). The one-
loop RGE for the m2

11 parameter is [23] (see Ref. [41] for a
recent two-loop calculation)

3Note that some of the bounds derived in these papers do not
apply to the softly broken Z2-symmetric case and also do not
apply to the Z2-symmetric case when one of the vevs vanishes.

4We refer the reader to Refs. [41,43–48] for allowed parameter
space as a function of cosðα − βÞ and tan β in all 2HDM types.

5In the following we ignore the influence of the small yν
Yukawas on m2

11, and hence those results also hold in a general
2HDM.
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dm2
11

d ln μR
¼ 1

ð4πÞ2 ½ð4λ3 þ 2λ4Þm2
22 þOðm2

11Þ�: ð18Þ

The Oðm2
11Þ term contains gauge, λ1, and Yukawa con-

tributions, which, as in the SM case, do not induce a
naturalness problem. However, if λ3;4 are nonzero, then a
naturalness problem is induced for sufficiently large m2

22;
we are interested in when this generically occurs. Even if
λ3;4 ¼ 0 at some scale, they will quickly be reintroduced by
gauge interactions at one loop. Their one-loop RGEs are
given by

dλ3
d ln μR

¼ 1

ð4πÞ2
�
3

4
ðg4Y − 2g2Yg

2
2 þ 3g42Þ þ � � �

�
;

dλ4
d ln μR

¼ 1

ð4πÞ2 ½3g
2
Yg

2
2 þ � � ��; ð19Þ

where g22ðmZÞ ≈ 0.43 and g2YðmZÞ ≈ 0.13 are the gauge
couplings and the ellipses contain terms multiplicative in
λ3;4, terms proportional to λ25, and terms related to the
Yukawas. Let us ignore those effects for now and return to
them later. Note that ignoring the contribution from λ25 is
equivalent to assuming λ5 ≲ 0.2, so that its contribution is
subdominant to the gauge couplings. Typically, one would
expect

jλ3ðμRÞj≳ 1

ð4πÞ2
3

4
ðg4Y − 2g2Yg

2
2 þ 3g42Þ;

jλ4ðμRÞj≳ 1

ð4πÞ2 3g
2
Yg

2
2; ð20Þ

and thus

���� dm2
11

d ln μR

����≳ 1

ð4πÞ4 ð3g
4
Y þ 9g42Þm2

22: ð21Þ

This lower bound is of the same order as the two-loop pure
gauge contribution [41].
Equation (21) represents a conservative bound on the

running of the m2
11 parameter above the scale ∼m22.

Naturalness demands that this running not be significantly
larger than the value measured at a low scale,
jm11j ≈ 88 GeV. A very conservative naturalness bound
is therefore

1

ð4πÞ4 ð3g
4
Y þ 9g42Þm2

22 < 1 TeV2; ð22Þ

⇒ m22 ≲ 1 × 105 GeV: ð23Þ

Alternatively, we can try to bound a quantity which
measures the fine-tuning in m2

11 at some high scale Λh.
A typical quantity is [57,58]

ΔðΛhÞ ¼
����m2

11ðΛhÞ
m2

11ð0Þ
∂m2

11ð0Þ
∂m2

11ðΛhÞ
����; ð24Þ

which compares percentage variations of two (in principle)
measurable parameters. Let us now estimate how such a
bound might constrain m22.
For simplicity, and anticipating that the m22 scale is not

far above the electroweak scale, we will evolve the
dimensionless parameters using the ðνÞ2HDM RGEs from
the mZ scale. First, the one-loop gauge coupling RGEs
[23,59] can be solved analytically. Upon substitution into
the λ3;4 RGEs [Eqs. (19)], and considering only the pure
gauge contribution, the λ3;4 running can be solved for given
initial conditions. For simplicity we take λ3ðm22Þ ¼
λ4ðm22Þ≡ λ3;4ðm22Þ and consider it a free parameter.
Next we solve Eq. (18) for m2

11ðμRÞ with the initial
condition m2

11ðm22Þ ¼ −ð88 GeVÞ2 (neglecting any RGE
evolution of m2

22). With these simplifications
∂m2

11ð0Þ=∂m2
11ðΛhÞ ¼ 1, and the fine-tuning measure is

given simply by ΔðΛhÞ ¼ jm2
11ðΛhÞ=ð88 GeVÞ2j.

Note that in setting the initial condition m2
11ðm22Þ ¼

−ð88 GeVÞ2 we have implicitly assumed that m2
22 ≪

m2
htan

2β=2 [see Eq. (12) and Fig. 2]. This is conservative
for negative m2

11, since jm2
11ðm22Þj shrinks as m2

22=tan
2β →

m2
h=2 and the naturalness constraint would become more

stringent. In some circumstances we will obtain naturalness
bounds on m2

22 which exceed m2
htan

2β=2, which just
indicates that the naturalness constraint is weaker than
the consistency condition Eq. (12).
In Fig. 3 we show Δ ¼ 10 and Δ ¼ 100 contours as a

function of Λh and λ3;4ðm22Þ. These represent naturalness
upper bounds onm22. The cusplike structures of apparently
low fine-tuning inm2

11 occur whenm
2
11 runs negative before

turning and passing through m2
11 ¼ 0, which just corre-

sponds to a fine-tuning in ðλ3;4;ΛhÞ. A stringent naturalness
constraint is obtained by demanding Δ < 10 at Λh ¼ MPl;
from Fig. 3 it is clear that this implies

m22 ≲ few × 103 GeV: ð25Þ
If any new physics comes in belowMPl, then the running of
m2

11 could change, and these bounds do not apply. If that is
the case, then it is more appropriate to consider Λh at the
scale of the new physics, which weakens the bound, as is
clear from Fig. 3. In the ν2HDM this new physics scale is
the right-handed neutrino scale MN , after which the right-
handed neutrinos can contribute to the running of m2

11

through m2
22 at one loop.

We have so far ignored the RGE contributions from
possibly large Yukawas. There are two situations in which
the Yukawas play a significant role. The first is in Type II,
LS, and flipped ν2HDMs with tan β large enough such
that an early Landau pole is induced (see Sec. II C), and
the second is in Type II and flipped ν2HDMs with
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moderate to large tan β when the pure Yukawa term
� 1

ð4πÞ2 12y
2
by

2
t induced by a quark box diagram contributes

significantly to the λ3;4 RGEs [Eqs. (19)]. In Fig. 4 we
show how the Δ ¼ 10 contours change as a function of v2
in an example Type II ν2HDM. For this figure we have
numerically solved the full set of one-loop RGEs [41]
including the top/bottom/tau Yukawas, taking the follow-
ing values at the scale MZ: g2s ¼ 1.48, λ1 ¼ λ2 ¼ 0.26, and
yt ¼ 0.96= sin β, yb ¼ 0.017= cos β, yτ ¼ 0.010= cos β.
Comparing to Fig. 3 it can be seen that the pure
Yukawa term has a noticeable effect when
v2 ≲ 20 GeV. It is also apparent from Fig. 4 that nearing
v2 ≈ 3.6 GeV (below which a Landau pole is induced
before MPl) can act to degrade or improve the naturalness
bound. The v2 ¼ 3 GeV bound in Fig. 4 shows the effect
of hitting the Landau pole at ∼109 GeV. We note that this
only signals the breakdown of perturbation theory, and of
our one-loop RGEs; we cannot calculate m22ðμRÞ above
this scale, though it is perfectly possible that the theory
remains natural.
In a repeated full one-loop RGE analysis, we found that

the flipped ν2HDM gave essentially the same results as the
Type II ν2HDM in Fig. 4, and there was no noticeable
Yukawa effect in the LS ν2HDM until the Landau pole was

reached. Thus, we found that the stringent naturalness
bounds of Eq. (25) and Fig. 3 are applicable at all times in
the Type I ν2HDM, for v2 ≳ 2 GeV in the LS ν2HDM, and
for v2 ≳ 20 GeV in the Type II and flipped ν2HDMs.
Otherwise, Yukawa effects must be taken into account.
Either way, the important point is now clear: a TeV-scale
m22 can be both completely natural and, as was discussed in
the previous subsection, is experimentally allowed in all
ν2HDM types.

B. Corrections to m2
22

Let us now consider the influence of the right-handed
neutrinos. The one-loop RGE for m2

22 is [17,60]

dm2
22

d ln μR
¼ 1

ð4πÞ2 ½−4Tr½yνD
2
My

†
ν� þOðm2

22Þ�: ð26Þ

A conservative naturalness bound is obtained by bounding
the running as we did in Eq. (23),

1

4π2
Tr½yνD2

My
†
ν� < Λ2

bound; ð27Þ

where taking Λbound ¼ 1 TeV gives the Vissani bound on
MN1

of Eq. (5) [17]. However, now we are bounding
corrections to m2

22 rather than m2
11, which may be TeV

FIG. 4. Contours of the fine-tuning measure ΔðΛhÞ ¼ 10 in an
illustrative Type II ν2HDM (see the text) for different values of
v2. The solid lines for v2 ¼ 20 GeV match approximately onto
the solid lines in Fig. 3.

FIG. 3. Contours of the fine-tuning measure ΔðΛhÞ ¼ 10ð100Þ
in black (gray) as a function of (top) Λh for λ3;4ðm22Þ ¼
0.0; 0.1;−0.01 (solid, dashed, dotted) and (bottom) λ3;4ðm22Þ
for Λh ¼ 1018; 1012; 107 GeV (solid, dashed, dotted). See the text
for the assumptions that accompany this plot.
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scale. Thus, depending on the mass of the extra scalars, it is
possible that we can sensibly take Λbound > 1 TeV, in
which case the the naturalness bound is somewhat relaxed;
in Fig. 5 we show a relaxed Vissani bound for
Λbound ¼ minð10 TeV; 10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

htan
2β=2

p
Þ, where we have

kept in mind the consistency condition Eq. (12). The
Vissani bound still represents the unnatural area of param-
eter space if m22 is closer to 100 GeV.
As before, we could instead bound a quantity which

measures the fine-tuning in m2
22 at some high scale Λh. In

this case, the fine-tuning measure of Eq. (24) is

ΔðΛhÞ ¼ 1þ 1

4π2

P
i;jðyνÞijM2

jðy†νÞji lnðMj=ΛhÞ
m2

22ðMjÞ
: ð28Þ

Taking m22ðMjÞ ∼ 1 TeV and demanding ΔðMPlÞ < 10

gives a similar bound to Vissani [Eq. (27) with
Λbound ¼ 1 TeV]. Note that there is no naturalness bound
on MN in the yν → 0 limit. This is the technically natural
limit corresponding to an enhanced Poincaré symmetry in
which νR decouples from the theory [61].
In summary, there are up to three scales in the ν2HDM:

v, m22, and MN . We have described the conditions under
which v2 (orm2

11) is protected fromm2
22, andm

2
22 fromM2

N .
Under such conditions it follows that m2

11 is also protected
from M2

N1
and the model is entirely natural.

IV. NEUTRINO MASSES

If m2
12 ¼ 0 and λ5 ¼ 0, then a Uð1Þ lepton number

symmetry can be defined, and neutrinos remain massless.
Let us now consider turning each nonzero in turn.

A. m2
12 > 0, λ5 ¼ 0

If m2
12 > 0 then the Uð1Þ lepton number symmetry is

softly broken; i.e., the breaking does not force us to insert a
nonzero λ5 term in order to introduce a divergent counter-
term, and it is consistent to consider m2

12 > 0, λ5 ¼ 0.
In this situation the neutrino mass matrix is given by the

seesaw formula,

mν ¼
v22
2
yνD−1

M yTν ≈
1

tan2β
v2

2
yνD−1

M yTν ; ð29Þ

where tan β ≈m2
22=m

2
12 for m2

22 ≫ λ345v21 [see Eq. (10)].
The analogous Davidson–Ibarra and Vissani bounds are

given by the standard Eqs. (4) and (5) with the replacement
v → v2. These bounds are depicted in Fig. 5. If v2 ≲
30 GeV (tan β ≳ 8), then both bounds are satisfied. As
well, as discussed in Sec. III, if m22 is TeV scale, the
Vissani bound can be relaxed, and the required CP
asymmetry needed to reproduce the BAU via leptogenesis
may be naturally achieved for v2 ≲ 60 GeV (tan β ≳ 4). In
the Type I ν2HDM, v2 can be naturally ≪ GeV.
Otherwise, requiring a perturbative theory up to MN1

restricts v2 ≳ 1 GeV (v2 ≳ 2 GeV) for the LS (Type II/
flipped) ν2HDM in the parameter space region of interest,
as depicted in Fig. 5.

B. m2
12 ¼ 0, λ5 ≠ 0

In this situation v2 ¼ 0, and a Z2 symmetry remains
unbroken; this is the scenario of Ma [22]. The model yields
a radiative neutrino mass and a dark matter candidate. This
is only possible in the Type I ν2HDM, since in any other
type the unbroken Z2 forbids a Dirac mass term for any
charged fermion coupling to Φ2. Note that the limit λ5 → 0
is technically natural, since in that limit the Uð1Þ lepton
number symmetry is reinstated.
If M2

N ≫ m2
22; v

2 the radiatively induced neutrino mass
matrix is

ðmνÞij ≈
v2

2

ðyνÞikðyTν Þkj
Mk

λ5
8π2

�
ln

�
2M2

k

ðm2
H þm2

AÞ
�
− 1

�
: ð30Þ

The analogous Davidson–Ibarra and Vissani bounds are
given by the standard Eqs. (4) and (5) with the intuitive
replacement v2 → v2 λ5

8π2
ðln ½2M2

N1
=ðm2

H þm2
AÞ� − 1Þ. This

assumes that there is no fine-tuning in the complex yν
parameters to reproduce the observed neutrino masses (see
Appendix B for details). These bounds are depicted in
Fig. 6, where the Davidson–Ibarra bound has been
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FIG. 5 (color online). Bounds on the ν2HDM as a function of
v2. Shown (as labelled) are the Davidson–Ibarra bound, the
Vissani and relaxed Vissani naturalness bounds, and the areas of
parameter space with strong ΔL ¼ 2 scattering washout. The
Type II and flipped ν2HDMs are excluded by B → Xsγ for values
of v2 greater than indicated by the gray dashed line (see Sec. II C).
The gray dotted lines indicate the v2 below which the Yukawas
hit a Landau pole before MN1

in the Type II, flipped, and LS
ν2HDMs right to left.
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evaluated at m22 ¼ 500 GeV as an illustrative example
(the bound is only mildly sensitive tom22). We find that the
Ma model with λ5 ≲ 0.5 can naturally achieve the required
CP asymmetry to reproduce the BAU via hierarchical
leptogenesis.6

C. m2
12 > 0, λ5 ≠ 0

In this case both the tree-level seesaw and the radiative
mechanism will contribute to the neutrino mass. Both
contributions are calculable, and either might dominate.
Note that it is still technically natural to take λ5 → 0 in
this case, since it restores a softly broken Uð1Þ symmetry.
In other words, the λ5 RGEs to all orders will be
multiplicative in λ5, indicative of the fact that the soft-
breaking term can only generate finite Uð1Þ-breaking
corrections.

V. LEPTOGENESIS

The observed BAU is achieved analogously to standard
hierarchical thermal leptogenesis [13]; the out-of-
equilibrium CP-violating decays of the lightest right-
handed neutrino N1 → lΦ2 create a lepton asymmetry
which is transferred to the baryons by the electroweak
sphalerons above T ∼ 100 GeV.
The details of the leptogenesis are largely defined by the

decay parameter

K ¼ ΓD

HjT¼M1

¼ ~m1

m�
; ð31Þ

comparing the rate for decays and inverse decays to the
expansion rate at the time of departure from thermal
equilibrium. Here, the rates

ΓD ¼ 1

8π
ðy†νyνÞ11M1; ð32Þ

H ≈
17T2

MPl
; ð33Þ

are typically rescaled and expressed in terms of an
effective neutrino mass ~m1 and an equilibrium neutrino
mass m�,

~m1¼
ðy†νyνÞ11v2

2M1

;

m�≈1.1×10−3 eV

�
v

246GeV

�
2

; ð34Þ

where v is the vev that enters the seesaw Eq. (2). In
the ν2HDM with λ5 ¼ 0 (with m2

12 ¼ 0, λ5 ≠ 0), the
analogous definitions make the replacement v2 → v22
(v2 → v2 λ5

8π2
ðln ½2M2

N1
=ðm2

H þm2
AÞ� − 1Þ). Note that for

the scenarios we are interested in (e.g., v2 ≪ v) m� is
smaller than its usual value in standard leptogenesis.
When only decays and inverse decays are considered,

leptogenesis for given K proceeds exactly as in standard
hierarchical thermal leptogenesis (see, e.g., Ref. [63] for a
review). In the weak washout regime K ≪ 1, the baryon
asymmetry strongly depends on the initial asymmetry and
the initial N1 abundance, with N1 decays occurring at
T ≪ M1. The strong washout regimeK ≫ 1 is independent
of the initial conditions, and the asymmetry is generated as
the N1 fall out of thermal equilibrium.
The 2 ↔ 2 scatterings with ΔL ¼ 1 (see, e.g., Ref. [64])

provide a correction to the simple decays plus inverse
decays picture; they act to increase N1 production at
T > M1 and contribute to washout at T < M1. In standard
hierarchical thermal leptogenesis, the scattering contribu-
tions involving the top quark and the gauge bosons are
roughly equal. In the present model, the gauge boson
contribution is the same as in the standard scenario.
However, by construction, the Φ2 involved here in
leptogenesis does not couple directly to the top quark,
and thus the usual s-channel (Nl ↔ tq) and t-channel
(Nt ↔ lq, Nq ↔ lt) scattering contributions do not occur.
Instead, at large tan β they can be replaced by the analogous
contribution from other charged fermions, i.e., the bottom
quark in Type II and flipped ν2HDMs and/or the tau lepton
in Type II and LS ν2HDMs. A large tau lepton Yukawa will
also introduce new s-channel (NΦ2 ↔ τΦ2) and t-channel
(NΦ2 ↔ τΦ2, τN ↔ Φ2Φ̄2) scattering contributions. All of
these processes are proportional to ðy†νyνÞ11 and hence
M1 ~m1=v2, with the appropriate ν2HDM replacement for
v2. Therefore, they scale with the decays and inverse
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FIG. 6 (color online). As in Fig. 1 but for the Ma model. The
Vissani and relaxed Vissani bounds are evaluated at m22 ¼
100; 1000 GeV respectively. The Davidson–Ibarra bound and
strong ΔL ¼ 2 washout region are shown for m22 ¼ 500 GeV,
though they are only mildly sensitive to m22.

6A similar observation was made in a recent paper [62].
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decays so that they represent only a minor (but obviously
important) departure from the standard leptogenesis
scenario.
The 2 ↔ 2 scatterings with ΔL ¼ 2 mediated by the

right-handed neutrinos (Φ2l ↔ Φ̄2 l̄, Φ2Φ2 ↔ ll) occur as
they do in the standard scenario. These processes are
proportional to Tr½ðyνyTν ÞðyνyTν Þ†� and hence M2

1m̄
2=v4

where m̄2 ¼ P
m2

i is the neutrino mass scale ≳0.05 eV.
Comparing this rate to the decay/scattering rates
∝ M1 ~m1=v2, it is easy to see that after making the
appropriate ν2HDM replacement for v2, e.g.,
v2 → v22 ≪ v2, these scatterings will become compara-
tively more important than in the standard case. For T ≲
M1=3 the thermally averagedΔL ¼ 2 scattering rate is well
approximated by [63]

ΓΔL¼2

H
≈

T
2.2 × 1013 GeV

�
246 GeV

v

�
4

×

�
m̄

0.05 eV

�
2

; ð35Þ

where the previously described ν2HDM replacements for
v2 hold (see Appendix B). In Fig. 5 (Fig. 6), we show the
region in the λ5 ¼ 0 (m2

12 ¼ 0, λ5 ≠ 0) ν2HDMwhere these
scatterings are still in equilibrium at T ≲M1=3.

7 This is the
region where strong ΔL ¼ 2 scatterings can potentially
wash out the generated asymmetry, depending on the
details of the leptogenesis (e.g., in a weak washout scenario
with N1 decays at T ≪ M1, this washout may be avoided).
Demanding that the scatterings fall out of equilibrium
before sphaleron freeze-out at T ∼ 100 GeV provides a
lower bound v2 ≳ 0.3 or λ5 ≳ 10−5; this is represented by
the strong ΔL ¼ 2 scattering washout regions in Figs. 5
and 6, respectively. We note that this calculation has been
performed in the context of a perturbative theory. This is
reliable for the Type I ν2HDM but not for Type II, LS, or
flipped ν2HDMs with sufficiently small v2, when pertur-
bativity breaks down.
Putting this all together, we can now read off from Figs. 5

and 6 the regions of parameter space which can achieve
natural hierarchical thermal leptogenesis. For ν2HDMs
with m2

12 > 0 and λ5 ¼ 0, we find 103 GeV≲MN1
≲

few × 107 GeV is viable for Type I ν2HDMs, and
104 GeV≲MN1

≲ few × 107 GeV for all other types if
they are to remain perturbative. For the Ma model with

m2
12 ¼ 0 and λ5 ≠ 0, we find viable parameter space for

103 GeV≲MN1
≲ 108 GeV and 10−5 ≲ λ5 ≲ 0.5.

Lastly we note that the lightest scalar state in the Ma
model is stable.8 It is therefore possible that this state, if it is
neutral, constitutes some or all of the observed dark
matter. During the leptogenesis epoch, Φ2 is produced in
abundance in N1 decays. Overproduction of dark matter is
of no concern as long as Φ2 efficiently thermalizes at or
below the temperatures when N1 decays occur, which
suggests m22 ≪ MN1

. In this case the lightest state is a
thermal relic dark matter candidate.

VI. CONCLUSION

The minimal Type I seesaw model is unable to explain
neutrino masses and the BAU via hierarchical thermal
leptogenesis without ceding naturalness. The main con-
clusion of this paper is the observation that a second Higgs
doublet can avoid this problem. These ν2HDM models
provide a natural solution by reducing the (possibly
effective) vev entering the seesaw formula. This can be
done radiatively, or by having the second Higgs doublet
provide a tree-level seesaw with a small vev v2, kept natural
by softly breaking a Uð1Þ or Z2 symmetry.
The models naturally accommodate a SM-like Higgs and

predict the existence of approximately TeV-scale extra
scalar states in order to remain natural. We rediscovered
the radiative Ma model as the only possibility when
v2 ¼ 0; in that case we found 103GeV≲MN1

≲ 108GeV
and 10−5 ≲ λ5 ≲ 0.5 could simultaneously explain neutrino
masses and the BAU via leptogenesis while remaining
natural. The v2 > 0 models require tan β ≳ 4; we found
103 GeV≲MN1

≲ few × 107 GeV was viable for Type I
ν2HDMs, and 104 GeV≲MN1

≲ few × 107 GeV for all
other types if they are to remain perturbative. The interest-
ing areas of parameter space are well summarized in Figs. 5
and 6.
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APPENDIX A: SQUARED SCALAR MASSES
AT Oðm4

12=m
4
22Þ

To order m4
12=m

4
22, the scalar masses Eqs. (14) are

given by

7A similar plot to Fig. 5 appears in Ref. [65] in the context of
the Type I ν2HDM with v2 > 0. We are not aware of any plot
similar to Fig. 6 in the literature, though see Refs. [66–70]
for leptogenesis studies at points in the Ma model parameter
space.

8The lifetimes of the heavier scalar states are governed by mass
splittings Δ via Γ ∼ G2

FΔ5=ð102π3Þ. In the parameter space of
interest, one can check that Δ is typically already large enough at
tree level so that lifetimes remain well below Oð1 sÞ and
therefore do not disturb big bang nucleosynthesis.
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m2
h ≈ v21

�
λ1 þ

m4
12

m4
22

2λ345 − λ1 −
v2
1

2m2
22

λ1λ345

ð1þ v2
1

2m2
22

ðλ345 − 2λ1ÞÞð1þ v2
1

2m2
22

λ345Þ2
�
;

m2
H ≈ m2

22

�
1þ λ345

v21
2m2

22

þm4
12

m4
22

1 − v2
1

2m2
22

ð2λ345 − 3λ2Þ þ v4
1

4m4
22

ðλ2345 þ 3λ2λ345 − 6λ1λ2Þ
ð1þ v2

1

2m2
22

ðλ345 − 2λ1ÞÞð1þ v2
1

2m2
22

λ345Þ2
�
;

m2
A ≈ m2

22

�
1þ ðλ345 − 2λ5Þ

v21
2m2

22

þm4
12

m4
22

1þ v2
1

2m2
22

ðλ345 þ λ2 − 2λ5Þ
ð1þ v2

1

2m2
22

λ345Þ2
�
;

m2
H� ≈ m2

22

�
1þ λ3

v21
2m2

22

þm4
12

m4
22

1þ v2
1

2m2
22

ðλ2 þ λ3Þ
ð1þ v2

1

2m2
22

λ345Þ2
�
: ðA1Þ

APPENDIX B: BOUNDS FOR MORE
GENERAL mν

We consider the seesaw Lagrangian as in Eq. (2) and a
neutrino mass matrix of the form

mν ¼
v2

2
yνD−1

M DfðMÞyTν ; ðB1Þ

where Dx ≡ diagðx1; x2; x3Þ. Note that in the ν2HDM with
λ5 ¼ 0 we have fðMjÞ ¼ v22=v

2, and in the Ma model with
MN ≫ m22, we have

fðMjÞ ¼
λ5
8π2

�
ln

�
M2

j

ðm2
H þm2

AÞ=2
�
− 1

�
: ðB2Þ

Following Casas–Ibarra [71], it is possible to write

yν ¼
ffiffiffi
2

p

v
U†D

1
2
mRD

1
2

MD
−1
2

fðMÞ; ðB3Þ

where R is a (possibly complex) orthogonal
(RRT ¼ RTR ¼ I) matrix. The Vissani bound on each
right-handed neutrino mass becomes [17]

1

4π2
2

v2
M3

j

fðMjÞ
X
i

mijRijj2 < 1 TeV2

⇒ MN1
≲ 3 × 107 GeV × fðMN1

Þ13: ðB4Þ

The CP asymmetry for hierarchical neutrinos [14]
becomes

jϵ1j ¼
6

8π

M1

v2
Im½ðR†DmðRD−1

fðMÞR
TÞDmR�Þ11�

ðR†DmRÞ11
≲ 6

8π

m3MN1

v2
1

min½fðMjÞ�
; ðB5Þ

where the approximate inequality holds for max ðjRijjÞ ≤ 1.
For larger maxðjRijjÞ the inequality can be exceeded, but
this corresponds to a fine-tuning (see Ref. [17]). With this
caveat the Davidson–Ibarra bound for min½fðMiÞ� ¼
fðMN1

Þ therefore becomes

MN1
≳ 5 × 108 GeV × fðMN1

Þ: ðB6Þ

The ΔL ¼ 2 scatterings are proportional to [63,72]

X
i;j

Re½ðy†νyνÞijðy†νyνÞij�
1

MiMj

¼ Tr½ðyνD−1
M yTν ÞðyνD−1

M yTν Þ†�

¼ 4

v4
Tr½DmðRD−1

fðMÞR
TÞDmðRD−1

fðMÞR
TÞ†�

≲ 4

v4
m̄2

min½fðMjÞ�2
; ðB7Þ

where the last line is an exact equality for
fðM1Þ ¼ fðM2Þ ¼ fðM3Þ, an exact inequality when R is
real, and an approximate inequality (as indicated) if R is
complex with maxðjRijjÞ ≤ 1. Again, for larger maxðjRijjÞ
the inequality can be exceeded. Then for min½fðMiÞ� ¼
fðMN1

Þ the ΔL ¼ 2 scattering Eq. (35) becomes

ΓΔL¼2

H
≲ T
2.2 × 1013 GeV

1

fðMN1
Þ2
�

m̄
0.05 eV

�
2

: ðB8Þ
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