
FROM JACK POLYNOMIALS TO MINIMAL MODEL SPECTRA

DAVID RIDOUT AND SIMON WOOD

ABSTRACT. In this note, a deep connection between free field realisations of conformal field theories and symmetric
polynomials is presented. We give a brief introduction into the necessary prerequisites of both free field realisations and
symmetric polynomials, in particular Jack symmetric polynomials. Then we combine these two fields to classify the
irreducible representations of the minimal model vertex operator algebras as an illuminating example of the power of
these methods. While these results on the representation theory of the minimal models are all known, this note exploits
the full power of Jack polynomials to present significant simplifications of the original proofs in the literature.

1. INTRODUCTION

Free field theories have long been of great interest to conformal field theory. Not only are they elegant tractable
conformal field theories in their own right, but they are also a versatile tool for realising more complicated con-
formal field theories and making them tractable. The purpose of this note is to present, in a simple and familiar
setting, a deep connection between free field theories and Jack symmetric polynomials. The symmetric polynomial
methods will then be applied to the well known free field realisations of the Virasoro minimal models. However, it
is important to stress that these methods work far more generally. We have simply chosen to discuss applications
to the minimal models for pedagogical purposes.

A different example, where Jack symmetric polynomials have recently garnered a lot of attention, is the much
celebrated AGT conjecture [1], which relates conformal field theories to the instanton calculus of Yang-Mills theo-
ries. The appearance of symmetric polynomials is due to the conformal field theories in question being resolved by
Coulomb gas free field theories, just as the conformal field theories in this note are. Contrary to what was initially
believed, it does not seem that Jack symmetric polynomials form the most natural basis for understanding the AGT
conjecture. Rather, a generalisation of Jack symmetric polynomials seems to be needed [2].

The two main results discussed in this note are Theorems 5 and 6. Theorem 5, which is originally due to
Mimachi and Yamada [3], gives elegant formulae for Virasoro singular vectors in Fock modules, while Theorem
6, which is originally due to Wang [4], determines the conformal highest weights of the irreducible representations
of the minimal model vertex operator algebras (also called chiral algebras). The original proofs, impressive though
they are, are rather complicated and this note gives novel, drastically shortened and streamlined proofs by using
symmetric polynomials, their inner products and the specialisation map. These methods also have the advantage
of being applicable in far greater generality, as is evidenced by the fact that they were developed in [5] while
classifying the irreducible representations of certain logarithmic extensions of the minimal models. This formalism
also generalises to the more involved case of admissible level ŝl(2) theories [6].

We equate the minimal models with the simple vertex operator algebras obtained by taking the quotient of the
universal Virasoro vertex operator algebras by their maximal ideals at special values of the central charge.1 The
representation theory of the minimal models can thus be obtained from that of the universal Virasoro vertex opera-
tor algebras. Minimal model representations are just the universal Virasoro vertex operator algebra representations
that are annihilated by the maximal ideal. This elegant approach to classifying the representation theory of the
minimal models seems to have first been considered by Feigin, Nakanishi and Ooguri [7] who applied it to a subset
of the minimal models, because, in general, having full computational control over the maximal ideal is a very
hard problem. However, free field realisations and symmetric polynomials are exactly the tools one needs to solve
this problem and Theorem 6 extends the methods of annihilating ideals [7] to all minimal models.

1Universal means that we assume no relations on the defining field T (z) other than those required by the axioms of vertex operator algebras.
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This note is organised as follows. Section 2 gives an overview of the free boson, the simplest example of a
free field theory, as well as vertex operators and screening operators. Section 3 introduces symmetric polynomials
and, in particular, gives an overview of a one-parameter family of bases called the Jack symmetric polynomials.
The properties of these Jack polynomials are what yield such explicit computational control that the representation
theory of the minimal model representations can be classified. Section 3 ends with explicit formulae for singular
vectors in terms of Jack polynomials. These formulae are originally due to Mimachi and Yamada [3], though we
give the new, much simpler proof of [5]. In Section 4, the material of Sections 2 and 3 is combined to classify the
highest weights of the irreducible minimal model representations, in a similar manner to the methods of Feigin,
Nakanishi and Ooguri [7]. This is then used to prove the complete reducibility of the representation theory without
recourse to the (perhaps less familiar) methods of Zhu [8].
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2. THE FREE BOSON

The free boson chiral algebra or Heisenberg vertex algebra is generated by a single field a(z) which satisfies the
operator product expansion

a(z)a(w)∼ 1
(z−w)2 . (2.1)

The Fourier expansion of the field a(z) is

a(z) = ∑
n∈Z

anz−n−1, (2.2)

thus the operator product expansion implies the following commutations relations:

[am,an] = mδm,−n1. (2.3)

The Heisenberg Lie algebra H is the infinite dimensional Lie algebra generated by the an and the central element
1. We identify the element 1 with the unit of the universal enveloping algebra U(H) of H and assume that 1 acts as
the identity on any H representation.2 The Heisenberg Lie algebra admits a triangular decomposition

H= H−⊕H0⊕H+,

H0 = Ca0⊕C1,

H± =
⊕
n≥1

Ca±n,

H≥ = H0⊕H+.

(2.4)

The Verma modules Fλ , λ ∈ C, with respect to this decomposition are called Fock modules. They are generated
by a highest weight vector

∣∣λ〉 on which H≥ acts by

an
∣∣λ〉 = λδn,0

∣∣λ〉, n≥ 0. (2.5)

[Throughout this note, “kets”
∣∣λ〉 will be reserved for the highest weight vectors of Fock modules and λ will

denote the highest weight.] The Fλ are then induced from
∣∣λ〉 by

Fλ =U(H)⊗U(H≥)C
∣∣λ〉. (2.6)

2This is only a minor restriction, since a simple rescaling of the generators an allows one to have the central element act as multiplication by
any non-zero number.
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The parameter λ is called the Heisenberg weight. As is well known, the Fλ are all irreducible. As a vector space,

Fλ
∼=U(H−) = C[a−1,a−2, . . . ]. (2.7)

As a representation over itself, the Heisenberg vertex algebra is identified with F0 and the operator state correspon-
dence is given by∣∣0〉←→ 1, a−1

∣∣0〉←→ a(z), a−n1−1 · · ·a−ni−1
∣∣0〉←→ :

∂ n1

n1!
a(z) · · · ∂

ni

ni!
a(z) : . (2.8)

The Heisenberg vertex algebra can be endowed with the structure of a vertex operator algebra by choosing an
energy-momentum tensor. This choice is not unique; there is a one parameter family of choices:

T (z) =
1
2

: α(z)2 : +
α0

2
∂a(z), α0 ∈ C. (2.9)

The parameter α0 determines the central charge of the energy momentum tensor:

c = 1−3α
2
0 . (2.10)

The coefficients of the Fourier expansion of the energy momentum tensor are, by definition, the generators Ln

of the Virasoro algebra. Formula (2.9) identifies the Virasoro generators with infinite sums of elements of the
universal enveloping algebra U(H) of the Heisenberg Lie algebra:

T (z) = ∑
n∈Z

Lnz−n−2 =
1
2 ∑

n,m∈Z
: aman−m : z−n−2−∑

n∈Z

α0

2
(n+1)anz−n−2,

Ln =
1
2 ∑

m∈Z
: aman−m :−α0

2
(n+1)an.

(2.11)

This identification gives an action of the Virasoro algebra on the Fock modules Fλ . The Fock modules thus become
Virasoro highest weight representations, that is,

Ln
∣∣λ〉 = hλ δn,0

∣∣λ〉, n≥ 0, hλ =
1
2

λ (λ −α0). (2.12)

Though the Fock modules are irreducible as Heisenberg representations, they need not be so as Virasoro represen-
tations.

The Heisenberg weights λ for which the conformal weight hλ is 1 play a special role as we shall see below.
These weights are roots of the degree 2 polynomial hλ − 1 and we denote them by α+,α−. They satisfy the
relations

α± =
α0±

√
α2

0 +8

2
, α++α− = α0, α+α− =−2. (2.13)

Theorem 1 (Feigin-Fuchs [9]). Let

αr,s =
1− r

2
α++

1− s
2

α−, r,s ∈ Z. (2.14)

(1) For α2
+ ∈ C∗ (or equivalently for α2

− ∈ C∗), the Fock module Fλ is reducible as a Virasoro representation

if λ = αr,s for some r,s ∈ Z, rs > 0.

(2) If α2
+ is non-rational (or equivalently if α2

− is non-rational), then the Fock module Fλ is reducible as a

Virasoro representation if and only if λ = αr,s for some r,s ∈ Z, rs > 0.

(3) If α2
+ is positive rational (or equivalently if α2

− is positive rational), then the Fock module Fλ is reducible

as a Virasoro representation if and only if λ = αr,s for some r,s ∈ Z.

We omit the corresponding result for negative rational α2
± as the application to the minimal models does not

require it. We remark that Feigin and Fuchs also determined the precise structure of Fock modules as Virasoro
representations in [9]. For a comprehensive account of Virasoro representation theory, we recommend the book by
Iohara and Koga [10].
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The work of Feigin and Fuchs shows that one can realise the universal Virasoro vertex operator algebra at
arbitrary central charge c as a vertex operator subalgebra of the Heisenberg vertex operator algebra. This free field
realisation is called the Coulomb gas in the physics literature.

The Fock modules Fλ with λ 6= 0 can be given a “generalised” vertex algebra structure, that is, an operator state
correspondence can also be defined for the states of Fλ , though the operator product expansions of these fields
are generally not local. The operators corresponding to the generating states

∣∣λ〉 ∈ Fλ are called vertex operators
in the physics literature. These should not be confused with the fields (called chiral fields) of the vertex operator
algebra.

Before we can define vertex operators, we need to introduce an operator â whose commutation relations with
the Heisenberg algebra are

[an, â] = δn,01, [1, â] = 0. (2.15)

The exponential of â shifts weights, that is, for λ ,µ ∈ C,

a0eµ â∣∣λ〉 = µeµ â∣∣λ〉+ eµ âa0
∣∣λ〉 = (µ +λ )eµ â∣∣λ〉. (2.16)

We identify eµ â
∣∣λ〉= ∣∣µ +λ

〉
. Note that eµ â does not define a homomorphism of H representations, since it does

not commute with H.
The vertex operator Vλ (z) corresponding to the state

∣∣λ〉 is

Vλ (z) = eλ âzλa0 ∏
m≥1

exp
(

λ
a−m

m
zm
)

∏
m≥1

exp
(
−λ

am

m
z−m
)
. (2.17)

The vertex operators are therefore linear maps

Vλ (z) : Fµ → Fµ+λ [[z,z
−1]]zλ µ . (2.18)

The Vλ (z) are often defined as the “normally ordered exponentials” of a field

φ(z) = â+ao logz−∑
n6=0

an

n
z−n, Vλ (z) =: eλφ(z) : . (2.19)

Clearly ∂φ(z) = a(z), which in turn implies that the operator product expansions of φ with itself and with a are

a(z)φ(w)∼ 1
z−w

, φ(z)φ(w)∼ log(z−w). (2.20)

Using these operator product expansions, one can verify that the vertex operators Vλ are conformal primaries of
conformal weight hλ , that is, that

T (z)Vλ (w)∼
hλ

(z−w)2 Vλ (w)+
1

z−w
∂Vλ (w). (2.21)

In particular, for hα± = 1,

T (z)Vα±(w)∼
1

(z−w)2 Vα±(w)+
1

z−w
∂Vα±(w) = ∂w

Vα±(w)
z−w

, (2.22)

that is, the singular terms of these operator product expansions constitute total derivatives. Vertex operators with
conformal weight 1 are called screening operators and were introduced by Dotsenko and Fateev [11]. The confor-
mal weight being 1 implies that the residue

Q± =
1

2πi

∮
Vα±(w)dw (2.23)

is a Virasoro homomorphism, because of (2.22). In other words,

[T (z),Q±] =
1

2πi

∮
T (z)Vα±(w)dw = 0. (2.24)



FROM JACK POLYNOMIALS TO MINIMAL MODEL SPECTRA 5

This residue is, of course, only well defined when the exponent of zα±a0 is an integer. Thus, for α±µ ∈ Z, the
residue of the vertex operator Vα±(z) defines a Virasoro homomorphism

Q± : Fµ → Fµ+α± . (2.25)

A natural question that one can ask in this context is whether these residues can be generalised to obtain more
Virasoro homomorphisms. The answer is “yes”, at least for suitable Heisenberg weights µ . The solution to
generalising these Virasoro homomorphisms lies in composing screening operators. The composition of n vertex
operators Vµi , i = 1, . . . ,n, is given by

Vµ1(z1) · · ·Vµn(zn)

= eâ∑n
i=1 µi ∏

1≤i< j≤n
(zi− z j)

µiµ j
n

∏
i=1

zµia0
i ∏

m≥1
exp

(
a−m

m

n

∑
i=1

µizm
i

)
∏
m≥1

exp

(
−am

m

n

∑
i=1

µiz−m
i

)
. (2.26)

This formula is derived by using the operator product expansions above or by using the commutation relations of
the Heisenberg Lie algebra. If we set µi = α±, i = 1, . . . ,n, then the above formula simplifies to

Vα±(z1) · · ·Vα±(zn)

= enα±â ∏
1≤i< j≤n

(zi− z j)
α2
±

n

∏
i=1

zα±a0
i ∏

m≥1
exp

(
α±

a−m

m

n

∑
i=1

zm
i

)
∏
m≥1

exp

(
−α±

am

m

n

∑
i=1

z−m
i

)
. (2.27)

We take the opportunity to introduce a family of symmetric polynomials, called power sums, to simplify notation:

pm
(
z
)
=

n

∑
i=1

zm
i , pm

(
z
)
=

n

∑
i=1

z−m
i . (2.28)

Up to a phase factor, which we suppress, the second factor of (2.26) can be rewritten as

∏
1≤i 6= j≤n

(zi− z j)
κ± , κ± =

α2
±

2
. (2.29)

If we evaluate the product of these n screening operators on a Fock module Fµ , then the a0 generator acts by
multiplication with µ and therefore

Vα±(z1) · · ·Vα±(zn)
∣∣∣
Fµ

= enα±â ∏
1≤i 6= j≤n

(zi− z j)
κ±

n

∏
i=1

zα±µ

i ∏
m≥1

exp
(

α±
a−m

m
pm
(
z
))

∏
m≥1

exp
(
−α±

am

m
pm
(
z
))

. (2.30)

Let

cn(κ±) =
2πi

(n−1)!

n−1

∏
j=1

Γ(1+( j+1)κ±)Γ(− jκ±)
Γ(κ±+1)

. (2.31)

Theorem 2 (Tsuchiya-Kanie [12]). If d(d +1)κ+ /∈ Z and d(n−d)κ+ /∈ Z, for all integers d satisfying 1 ≤ d ≤
n−1, then for each Heisenberg weight αn,k, k ∈ Z, there exists a cycle ∆n such that

Q
[n]
+ =

1
cn(κ+)

∫
∆n

Vα+(z1) · · ·Vα+(zn)dz1 · · ·dzn (2.32)

is a non-trivial Virasoro homomorphism

Q
[n]
+ : Fαn,k → Fα−n,k . (2.33)

Likewise, if d(d+1)κ− /∈ Z and d(n−d)κ− /∈ Z, for all integers d satisfying 1≤ d ≤ n−1, then for each Heisen-

berg weight αk,n,k ∈ Z, there exists a cycle ∆n such that

Q
[n]
− =

1
cn(κ−)

∫
∆n

Vα−(z1) · · ·Vα−(zn)dz1 · · ·dzn (2.34)
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is a non-trivial Virasoro homomorphism

Q
[n]
− : Fαk,n → Fαk,−n . (2.35)

In particular,

(1) if k ≥ 1, then there exist vectors v ∈ Fαn,k and w ∈ Fαk,n such that

Q
[n]
+ v =

∣∣α−n,k
〉
∈ Fα−n,k , Q

[n]
− w =

∣∣αk,−n
〉
∈ Fαk,−n , (2.36)

while
∣∣αn,k

〉
and

∣∣αk,n
〉

are annihilated by Q
[n]
+ and Q

[n]
− , respectively,

(2) if k ≤ 0, then

Q
[n]
+

∣∣αn,k
〉
6= 0 ∈ Fα−n,k , Q

[n]
−
∣∣αk,n

〉
6= 0 ∈ Fαk,−n . (2.37)

The explicit construction of the cycles ∆n is rather subtle and we refer to [12] for the details. Intuitively, ∆n can be
thought of as n concentric circles about 0 that are pinched together at 1.

Let us try and understand the implications of Theorem 2 a little better. Since
∣∣αn,k

〉
is a Virasoro highest weight

vector, then so is Q[n]
+

∣∣αn,k
〉

by virtue of Q[n]
+ being a Virasoro homomorphism. Thus, whenever k ≤ 0, the vectors

Q
[n]
+

∣∣αn,k
〉

and Q
[n]
−
∣∣αk,n

〉
generate Virasoro subrepresentations in Fα−n,k and Fαk,−n . Such Virasoro highest weight

vectors are called singular vectors.
For µ+ = αn,k, µ− = αk,n,

∏
1≤i 6= j≤n

(zi− z j)
κ±

n

∏
i=1

zα±µ±
i = ∏

1≤i 6= j≤n

(
1− zi

z j

)κ± n

∏
i=1

zk−1
i , (2.38)

where we have used the defining formulae (2.14) for αn,k,αk,n and (2.29) for κ±. For later use we define

Gn(z;κ
−1
± ) = ∏

1≤i6= j≤n

(
1− zi

z j

)κ±

. (2.39)

This seemingly odd choice of κ
−1
± in the definition of Gn is to make our notation in Section 3 conform with the

standard conventions in the symmetric polynomials literature [13]. The constant cn(κ±) in (2.31) normalises the
cycles ∆n in (2.32) and (2.34) such that

1
cn(κ±)

∫
∆n

Gn(z : κ
−1
± )

dz1 · · ·dz j

z1 · · ·z j
= 1. (2.40)

Henceforth, we will therefore denote by [∆n] the homology class of the cycle ∆n that has been rescaled by cn(κ±)
−1,

the κ±-dependence being left implicit, that is, ∫
[∆n]

=
1

cn(κ±)

∫
∆n

. (2.41)

The conditions on κ± at the beginning of Theorem 2 ensure that cn(κ±) 6= 0. These conditions are met for the
applications to the minimal models in this note. For a systematic discussion of how to regularise [∆n] when these
conditions are not met, see [5, Sections 3.2–3.4].

By expanding the formulae for the Virasoro homomorphisms Q[n]
± on Fαn,k and Fαk,n , one sees that

Q
[n]
± = enα±â

∫
[∆n]

Gn(z;κ
−1
± )

n

∏
i=1

zk
i ∏

m≥1
exp
(

α±
a−m

m
pm
(
z
))

∏
m≥1

exp
(
−α±

am

m
pm
(
z
)) dz1 · · ·dzn

z1 · · ·zn
. (2.42)

Apart from the multivalued function Gn, the integrand consists of an infinite sum of monomials in U(H−)⊗U(H+)

where the coefficients are products of polynomials in either positive or negative powers of the zi. It turns out that
for symmetric polynomials f ,g, the pairing

〈 f ,g〉κ
−1
±

n =

∫
[∆n]

Gn(z;κ
−1
± ) f (z1, . . . ,zn)g(z1, . . . ,zn)

dz1 · · ·dzn

z1 · · ·zn
, (2.43)
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where g(z1, . . . ,zn) = g(z−1
1 , . . . ,z−1

n ), defines a non-degenerate symmetric bilinear form on the ring of symmetric
polynomials in n variables. Evaluating the Virasoro homomorphism Q

[n]
± in (2.42) therefore reduces to evaluating

inner products of symmetric polynomials. As we shall see, this is a well known problem with an elegant solution.

3. SYMMETRIC POLYNOMIALS

For a comprehensive study of symmetric polynomials, we recommend the book by Macdonald [13]. Let Λn be
the ring of symmetric polynomials with complex coefficients. As a commutative ring, Λn is generated by a number
of interesting sets of polynomials including the elementary symmetric polynomials

ei
(
z
)
= ∑

1≤ j1<···< ji≤n
z j1 · · ·z ji , i = 1, . . . ,n (3.1)

and the power sums

pi
(
z
)
=

n

∑
j=1

zi
j, i = 1, . . . ,n. (3.2)

These polynomials are algebraically independent and generate Λn freely, that is,

Λn = C[e1, . . . ,en] = C[p1, . . . ,pn]. (3.3)

The ring Λn is clearly also a complex vector space and it is natural to look for convenient bases. One such basis is
constructed from the power sums. Let λ = (λ1, . . . ,λk), k ≥ 0, be a partition of an integer with largest part λ1 ≤ n

(we follow the convention of listing the parts in weakly descending order). Then, for all such λ , the

pλ

(
z
)
= pλ1

(
z
)
· · ·pλk

(
z
)

(3.4)

are linearly independent and form a basis of Λn. Another convenient basis of Λn is given by the monomial sym-
metric polynomials. Let µ = (µ1, . . . ,µn) be a partition of length `(µ) at most n (if the partition is shorter than n

pad it with 0s at the end until it is length n). Then, the monomial symmetric polynomials are defined as

mµ

(
z
)
= ∑

τ

zτ1
1 · · ·z

τn
n , τ ∈ {all distinct permutations of µ}. (3.5)

We shall refer to these polynomials as the symmetric monomials for brevity.
As we can see from the power sums and the symmetric monomials, the set of partitions that label basis elements

must be truncated once the weight |λ | = ∑i λi is greater than the number of variables. Specifically, there exist
partitions with λ1 > n, which are not allowed for the power sums, or `(λ ) > n, which are not allowed for the
symmetric monomials. This is why it is convenient to work in the limit of infinitely many variables:

Λ = lim←−
n

Λn. (3.6)

One can then easily recover the finite variable case by the projection

γn : Λ→ Λn (3.7)

z j 7→

z j 1≤ j ≤ n

0 j > n

that sets to 0 all but the first n variables. The power sums in infinitely many variables now generate Λ as their
finite-variable versions did Λn. We continue to use (3.4) to define pλ in the infinite-variable case.

Λ = C[p1,p2,p3, . . . ]. (3.8)
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The power sum and symmetric monomial bases of Λ are now labelled by all partitions of integers without restric-
tions on parts or lengths:

Λ =
⊕

λ

Cpλ =
⊕

λ

Cmλ . (3.9)

The projection to the finite variable case is particularly easy in the symmetric monomial basis:

γn : Λ→ Λn (3.10)

mµ 7→

mµ

(
z1, . . . ,zn

)
`(µ)≤ n

0 else
.

Recall that, by (2.7), the universal enveloping algebra U(H−) is also a polynomial algebra in infinitely many
generators. Identifying these two algebras will be important below.

Proposition 3. For f ,g ∈ Λn and κ ∈C∗ such that d/κ /∈ Z for all integers satisfying 1≤ d ≤ n, the bilinear form

〈 f ,g〉κn =

∫
[∆n]

Gn(z;κ) f (z1, . . . ,zn)g(z1, . . . ,zn)
dz1 · · ·dzn

z1 · · ·zn
(3.11)

is

(1) symmetric,

(2) non-degenerate,

(3) graded: 〈 f ,g〉κn = 0 if deg f 6= degg.

Proposition 3 leads us to the basis of Λn that is most important for our purposes, the Jack polynomials Pκ

λ

(
z
)
.

These polynomials are characterised by two properties [13]:

(1) The Jack polynomials have upper triangular expansions in the basis of symmetric monomials with respect
to the dominance ordering of partitions3, that is,

Pκ

λ

(
z
)
= ∑

λ≥µ

uλ ,µ(κ)mµ

(
z
)
, (3.12)

where the uλ ,µ(κ) ∈ C and uλ ,λ (κ) = 1.
(2) The Jack polynomials are mutually orthogonal:〈

Pκ

λ

(
z
)
,Pκ

µ

(
z
)〉κ

n
= 0, if λ 6= µ. (3.13)

Since the dominance ordering of partitions is only a partial ordering, trying to determine the Jack polynomials
by means of Gram-Schmidt orthogonalisation is an overdetermined problem. Showing that they exist is therefore
non-trivial, see [13].

We prepare some notation regarding partitions. For a partition λ , let s = (i, j)∈ λ be a box in the Young tableau
of λ , so that i = 1, . . . , `(λ ) and j = 1, . . . ,λi. Then, the arm length, coarm length, leg length and coleg length are
defined to be

a(s) = λi− j, a′(s) = j−1, l(s) = λ
′
j− i, l′(s) = i−1, (3.14)

respectively, where λ ′ is the conjugate partition of λ , that is, the partition for which the columns and rows of the
Young tableau have been exchanged.

Proposition 4.

(1) Jack polynomials exist (for all n and in the infinite variable limit).

3The dominance ordering is a partial ordering of partitions of equal weight defined by

λ ≥ µ ⇐⇒
k

∑
i=1

λi ≥
k

∑
i=1

µi, ∀k ≥ 1.
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(2) The Jack polynomials satisfy the same projection formulae as the symmetric monomials:

γn(P
κ

λ

(
z
)
) =

Pκ

λ

(
z1, . . . ,zn

)
`(λ )≤ n

0 else
. (3.15)

(3) For either a finite or infinite number of variables zi,y j,

∏
i, j≥1

(1− ziy j)
−1/κ = ∏

m≥1
exp

(
1
κ

pm
(
z
)
pm
(
y
)

m

)
= ∑

λ

bλ (κ)P
κ

λ

(
z
)
Pκ

λ

(
y
)
,

bλ (κ) = ∏
s∈λ

a(s)κ + l(s)+1
(a(s)+1)κ + l(s)

.

(3.16)

(4) The norm of the mutually orthogonal Jack polynomials is〈
Pκ

λ

(
z
)
,Pκ

λ

(
z
)〉κ

n = ∏
s∈λ

(a(s)+1)κ + l(s)
a(s)κ + l(s)+1

n+a′(s)κ− l′(s)
n+(a′(s)+1)κ− l′(s)−1

. (3.17)

(5) For X ∈ C, let ΞX : Λ→ C be the algebra homomorphism defined, in the power sum basis, by

ΞX (pλ (y)) = X `(λ ). (3.18)

The map ΞX is called the specialisation map. Then,

ΞX
(
Pκ

λ

(
y
))

= ∏
s∈λ

X +a′(s)κ− l′(s)
a(s)κ + l(s)+1

(3.19)

and

∏
i≥1

(1− zi)
−X/κ = ∏

m≥1
exp

(
X
κ

pm
(
z
)

m

)
= ∑

λ

bλ (κ)P
κ

λ

(
z
)
ΞX (P

κ

λ

(
y
)
). (3.20)

We stress that while this homomorphism applies to symmetric polynomials in any variables, we will only

be applying it to those in the y variables.

(6) Let (mn) = (m, . . . ,m) be the partition consisting of n copies of m. Then,

γn(P
κ

(mn)

(
z
)
) = Pκ

(mn)

(
z1, . . . ,zn

)
=m(mn)

(
z1, . . . ,zn

)
=

n

∏
i=1

zm
i . (3.21)

See [13] for proofs.
Armed with this knowledge of Jack polynomials, we can now explicitly evaluate the action of screening opera-

tors on Fock modules. Recall from equations (2.7) and (3.8) that both U(H−) and Λ are polynomial algebras in an
infinite number of variables,

C[a−1,a−2, . . . ] =U(H−)∼= Λ = C[p1,p2, . . . ], (3.22)

and are therefore isomorphic. For δ ∈ C, we define the algebra isomorphism

ρδ : Λ→U(H−), (3.23)

pn
(
y
)
7→ δa−n.

As with the specialisation map, we will only be applying δ to polynomials in the y variables.

Theorem 5. For k ≥ 0, let (kn) = (k, . . . ,k) be the partition consisting of n copies of k. Then, the Virasoro

homomorphisms

Q
[n]
+ : Fαn,−k → Fα−n,−k , Q

[n]
− : Fα−k,n → Fα−k,−n (3.24)



10 D RIDOUT AND S WOOD

map the vectors
∣∣αn,−k

〉
and

∣∣α−k,n
〉

to the non-zero singular vectors

Q
[n]
+

∣∣αn,−k
〉
= b(kn)(κ

−1
+ )ρ 2

α+

(
P

κ
−1
+

(kn)

(
y
))∣∣α−n,−k

〉
,

Q
[n]
−
∣∣α−k,n

〉
= b(kn)(κ

−1
− )ρ 2

α−

(
P

κ
−1
−

(kn)

(
y
))∣∣α−k,−n

〉
.

(3.25)

Proof. We prove the formula for Q+. The one for Q− follows similarly. The proof follows by direct evaluation
using the theory of Jack polynomials:

Q
[n]
+

∣∣αn,−k
〉
=

∫
[∆n]

Gn(z;κ
−1
+ )

n

∏
i=1

z−k
i ∏

m≥1
exp

(
α+

pm
(
z
)

m
a−m

)∣∣α−n,−k
〉dz1 · · ·dzn

z1 · · ·zn

1
=

〈
P

κ
−1
+

(kn)

(
z
)
, ∏

m≥1
exp

(
α+

pm
(
z
)

m
a−m

)〉κ
−1
+

n

∣∣α−n,−k
〉

=

〈
P

κ
−1
+

(kn)

(
z
)
,ρ 2

α+

(
∏
m≥1

exp

(
κ+

pm
(
z
)
pm
(
y
)

m

))〉κ
−1
+

n

∣∣α−n,−k
〉

2
= ∑

µ

bµ(κ
−1
+ )

〈
P

κ
−1
+

(kn)

(
z
)
,P

κ
−1
+

µ

(
z
)〉κ

−1
+

n
ρ 2

α+

(
P

κ
−1
+

λ

(
y
))∣∣α−n,−k

〉
3
= b(kn)(κ

−1
+ )

〈
P

κ
−1
+

(kn)

(
z
)
,P

κ
−1
+

(kn)

(
z
)〉κ

−1
+

n
ρ 2

α+

(
P

κ
−1
+

(kn)

(
y
))∣∣α−n,−k

〉
4
= b(kn)(κ

−1
+ )ρ 2

α+

(
P

κ
−1
+

(kn)

(
y
))∣∣α−n,−k

〉
. (3.26)

Here we have used item (6) of Proposition 4 for 1
= to identify

P
κ
−1
+

(kn)

(
z
)
=

n

∏
i=1

z−k
i ; (3.27)

item (3) of Proposition 4 for 2
= (remembering that the integration in the inner product is over the z variables); the

orthogonality of Jack polynomials for 3
=; and item (6) of Proposition 4 to see that

P
κ
−1
+

(kn)

(
z
)
P

κ
−1
+

(kn)

(
z
)
= 1 ⇒

〈
P

κ
−1
+

(kn)

(
z
)
,P

κ
−1
+

(kn)

(
z
)〉κ

−1
+

n
= 1, (3.28)

which justifies 4
=. By direct evaluation of formula for b(kn)(κ

−1
+ ) in item (3) of Proposition 4, one sees that

b(kn)(κ
−1
+ ) is a product of quotients of positive rational numbers and is therefore non-zero.

This theorem is originally due to Mimachi and Yamada [3], though the much simpler and streamlined proof that
we have presented here first appeared in [5, Proposition 3.24].

4. THE MINIMAL MODELS AND THEIR REPRESENTATIONS

In Section 2, we constructed the universal Virasoro vertex operator algebra at central charge

c = 1−3α
2
0 , α0 ∈ C, (4.1)

as a vertex operator subalgebra of the Heisenberg vertex operator algebra. At generic values of the central charge c

(or equivalently, at generic values of α0), the universal Virasoro vertex operator algebra is simple and contains no
non-trivial ideals. However, there is a discrete set of central charges at which the universal Virasoro vertex operator
algebra is not simple. The minimal model vertex operator algebras are the simple vertex operator algebras obtained,
for these central charges, by taking the quotients of the universal vertex operator algebras by their maximal ideals.
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Thus, the minimal model vertex operator algebras can be realised as subquotients of Heisenberg vertex operator
algebras.

The minimal model central charges, that is, the central charges at which the universal Virasoro vertex operator
algebras are non-simple, are precisely

cp+,p− = cp−,p+ = 1−6
(p+− p−)2

p+p−
, (4.2)

where p+, p− ≥ 2 are coprime integers [9]. We denote the minimal model vertex operator algebra of central charge
cp+,p− by M

(
p+, p−

)
. To obtain these minimal model central charges for the Heisenberg algebra, we set

α0 = α++α−, α+ =

√
2p−
p+

, α− =−

√
2p+
p−

. (4.3)

The parameters α± are precisely the Heisenberg weights which, by formula (2.12), correspond to conformal weight
1. The κ± parameters introduced in Section 2 are thus,

κ+ =
α2
+

2
=

p−
p+

, κ− =
α2
−

2
=

p+
p−

. (4.4)

The ideal I
(

p+, p−
)

of the universal Virasoro vertex operator algebra of central charge cp+,p− is generated by a
singular vector of conformal weight (p+−1)(p−−1) [9]. By using the screening operator formalism of Section
2, in particular Theorem 5, we can realise this singular vector using the screening operator Q+(z) = Vα+(z) or
Q−(z) =Vα−(z). Writing

Q
[n]
± =

∫
[∆n]

Vα±(z1) · · ·Vα±(zn)dz1 · · ·dzn, (4.5)

we deduce that the singular vector in F0 which generates the ideal of the universal Virasoro vertex operator algebra,
sitting inside the Heisenberg vertex operator algebra, is given by

Q
[p+−1]
+

∣∣(1− p+)α+

〉
= b((p−−1)p+−1)(κ

−1
+ )ρ 2

α+

(
P

κ
−1
+

((p−−1)p+−1)

(
y
))∣∣0〉,

Q
[p−−1]
−

∣∣(1− p−)α−
〉
= b((p+−1)p−−1)(κ

−1
− )ρ 2

α−

(
P

κ
−1
−

((p+−1)p−−1)

(
y
))∣∣0〉. (4.6)

The above equations are obtained directly from Theorem 5, the first by choosing n = p+−1, k = 1− p− and the
second by choosing n = p−−1, k = 1− p+. For a given conformal weight, the Virasoro singular vectors of a Fock
module are unique up to rescaling [14], if they exist, so the two vectors in (4.6) are proportional to each other.

As a final demonstration of the power of combining the screening operator and symmetric polynomial for-
malisms, we will classify the representations of the minimal model vertex operator algebras. Since the universal
Virasoro vertex operator algebras are subalgebras of the Heisenberg vertex operator algebras, the Fock modules
Fµ are representations of the universal Virasoro vertex operator algebras for any µ ∈ C. However, the Virasoro
representation generated from

∣∣µ〉 can only be a representation of M
(

p+, p−
)

if each field corresponding to a
vector in the ideal I

(
p+, p−

)
acts trivially. Moreover, any irreducible highest weight representation of M

(
p+, p−

)
must be realisable as a subquotient of a Fock module as, for any conformal weight, there exists a Fock module
whose generating vector has that conformal weight, by (2.12).

Theorem 6. Let

hr,s =
(rp−− sp+)2− (p+− p−)2

4p+p−
. (4.7)

Up to isomorphism, there are exactly 1
2 (p+ − 1)(p− − 1) inequivalent irreducible M

(
p+, p−

)
representations.

They are given by the irreducible representations of the Virasoro algebra generated by highest weight vectors of
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conformal weight

hr,s, 1≤ r ≤ p+−1, 1≤ s≤ p−−1, rp−+ sp+ ≤ p+p−. (4.8)

Proof. We only prove that the above list of irreducible representations of the Virasoro algebra is an upper bound
on the set of inequivalent irreducible M

(
p+, p−

)
representations. In order to show that the list is saturated, one

can then either construct all these representations by, for example, the coset construction [15, 16], by quantum
hamiltonian reduction [17], or use Zhu’s algebra [4, 8], this being the associative algebra of zero modes of the
fields of the vertex operator algebra acting on highest weight vectors.

Consider the singular vector ∣∣χ〉 = Q
[p+−1]
+

∣∣(1− p+)α+

〉
∈ F0 (4.9)

of equation (4.6). The corresponding field is obtained by integrating p+− 1 vertex operators Vα+ over [∆p+−1]

about the vertex operator V(1−p+)α+
, with [∆p+−1] centred about the argument of V(1−p+)α+

:

χ(w) =
∫
[∆p+−1]

Q+(z1 +w) · · ·Q+(zp+−1 +w)V(1−p+)α+
(w)dz1 · · ·dzp+−1. (4.10)

The vector
∣∣χ〉 is an element of the ideal I

(
p+, p−

)
, so the field χ(w) must therefore act trivially on any M

(
p+, p−

)
representation. Consequently, 〈

µ
∣∣χ(w)∣∣µ〉 = 0, (4.11)

where
∣∣µ〉 is the highest weight vector of Fµ and

〈
µ
∣∣ its dual which satisfies〈

µ
∣∣µ〉 = 1,

〈
µ
∣∣an =

〈
µ
∣∣δn,0µ, n≤ 0. (4.12)

We can evaluate
〈

µ
∣∣χ(w)∣∣µ〉 using the theory of Jack polynomials. Applying formula (2.26) to simplify the

composition of vertex operators in the definition of χ(w), we see that

Q+(z1 +w) · · ·Q+(zp+−1 +w)V(1−p+)α+
(w)

= Gp+−1(z;κ
−1
+ )

p+−1

∏
i=1

(zi +w)α+a0 ·w(1−p+)α+a0

×∏
m≥1

exp
(

α+
a−m

m

(
pm
(
z1 +w, . . . ,zp+−1 +w

)
+(1− p+)wm))

×∏
m≥1

exp
(
−α+

am

m

(
pm
(
z1 +w, . . . ,zp+−1 +w

)
+(1− p+)w−m

))
. (4.13)

The exponentials of Heisenberg generators am, m 6= 0, in (4.13) annihilate
〈

µ
∣∣ and

∣∣µ〉. Thus,〈
µ
∣∣χ(w)∣∣µ〉 = ∫

[∆p+−1]

〈
µ
∣∣Q+(z1 +w) · · ·Q+(zp+−1 +w)V(1−p+)α+

(w)
∣∣µ〉dz1 · · ·dzp+−1

=

∫
[∆p+−1]

Gp+−1(z;κ
−1
+ )

p+−1

∏
i=1

z1−p−
i ·

p+−1

∏
i=1

(zi +w)α+µ ·w(1−p+)α+µ
dz1 · · ·zp+−1

z1 · · ·zp+−1

=

∫
[∆p+−1]

Gp+−1(z;κ
−1
+ )

p+−1

∏
i=1

z−(p−−1)
i ·

p+−1

∏
i=1

(
1+

zi

w

)α+µ dz1 · · ·dzp+−1

z1 · · ·zp+−1

=

〈
P

κ
−1
+

((p−−1)p+−1)

(
z
)
,

p+−1

∏
i=1

(
1+

zi

w

)α+µ

〉κ
−1
+

p+−1

= (−w)−(p+−1)(p−−1) b((p−−1)p+−1)(κ
−1
+ ) Ξα−µ

(
P

κ
−1
+

((p−−1)p+−1)

(
y
))

= (−w)−(p+−1)(p−−1) ∏
s∈(p−−1)p+−1

α−µ +a′(s)/κ+− l′(s)
(a(s)+1)/κ++ l(s)
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= (−w)−(p+−1)(p−−1)
p+−1

∏
i=1

p−−1

∏
j=1

α−µ +( j−1)/κ++1− i
(p−− j)/κ++ p+−1− i

, (4.14)

where we have evaluated the inner product using item (5) of Proposition 4. Clearly, the denominator of the above
product is non-singular, since κ+ = p−/p+ is a positive rational number. Therefore,

〈
µ
∣∣χ(w)∣∣µ〉 = 0 whenever

0 =
p+−1

∏
i=1

p−−1

∏
j=1

(α−µ +( j−1)/κ++1− i) =C
p+−1

∏
i=1

p−−1

∏
j=1

(µ−αi, j) , (4.15)

where C is a non-zero constant. We group the (i, j)-factor with the (p+− i, p−− j)-factor:

(µ−αi, j) ·
(
µ−αp+−i,p−− j

)
= 2hµ −2hi, j. (4.16)

Thus, 〈
µ
∣∣χ(w)∣∣µ〉 = 0 ⇐⇒ ∏

(r,s)
(hµ −hr,s) = 0, (4.17)

where the index (r,s) runs over all 1≤ r ≤ p+−1 and 1≤ s≤ p−−1, with rp−+ sp− < p+p−. The above con-
straints imply that the conformal highest weight of an M

(
p+, p−

)
representation must be a root of the polynomial

f (h) = ∏
(r,s)

(h−hr,s), (4.18)

that is, it must be equal to hr,s for some 1≤ r ≤ p+−1 and 1≤ s≤ p−−1, with rp−+ sp− < p+p−.

Showing that the representation theory of M
(

p+, p−
)

is completely reducible and that it can be used to construct
rational conformal field theories requires only a little more work. The Virasoro Verma module of conformal weight
hr,s, where 1≤ r≤ p+−1 and 1≤ s≤ p−−1, contains a maximal subrepresentation generated by two independent
singular vectors of conformal weights h′ = hr,s+rs and h′′ = hr,s+(p+−r)(p−−s) [9]. However, neither h′ nor h′′

are roots of (4.18). So the M
(

p+, p−
)

representation of conformal weight hr,s must be isomorphic to the irreducible
quotient of theVirasoro Verma module of conformal weight hr,s. This also implies that there exists no non-trivial
extensions between irreducible representations with distinct conformal weights. In [18, Prop. 7.5], it was shown
that the irreducible Virasoro representation of conformal weight hr,s admits no self extensions (as representations
of the Virasoro algebra). Thus, neither do the irreducible M

(
p+, p−

)
representations. This proves that irreducible

M
(

p+, p−
)

representations do not admit any non-trivial extensions and that therefore the representation theory of
M
(

p+, p−
)

is completely reducible.

Corollary 7. The Virasoro minimal model vertex operator algebras are rational, that is, they admit only a finite

number of inequivalent irreducible representations and all representations are completely reducible.
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