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Abstract
Estimating and projecting population trends using population viability analysis (PVA) are

central to identifying species at risk of extinction and for informing conservation manage-

ment strategies. Models for PVA generally fall within two categories, scalar (count-based)

or matrix (demographic). Model structure, process error, measurement error, and time

series length all have known impacts in population risk assessments, but their combined

impact has not been thoroughly investigated. We tested the ability of scalar and matrix PVA

models to predict percent decline over a ten-year interval, selected to coincide with the

IUCN Red List criterion A.3, using data simulated for a hypothetical, short-lived organism

with a simple life-history and for a threatened snail, Tasmaphena lamproides. PVA perfor-

mance was assessed across different time series lengths, population growth rates, and

levels of process and measurement error. We found that the magnitude of effects of mea-

surement error, process error, and time series length, and interactions between these,

depended on context. We found that high process and measurement error reduced the reli-

ability of both models in predicted percent decline. Both sources of error contributed

strongly to biased predictions, with process error tending to contribute to the spread of

predictions more than measurement error. Increasing time series length improved precision

and reduced bias of predicted population trends, but gains substantially diminished for

time series lengths greater than 10–15 years. The simple parameterization scheme we

employed contributed strongly to bias in matrix model predictions when both process and

measurement error were high, causing scalar models to exhibit similar or greater precision

and lower bias than matrix models. Our study provides evidence that, for short-lived species

with structured but simple life histories, short time series and simple models can be suffi-

cient for reasonably reliable conservation decision-making, and may be preferable for popu-

lation projections when unbiased estimates of vital rates cannot be obtained.
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Introduction
Estimating and projecting population trends is essential to ascertaining threat status and devel-
oping conservation strategies. For example, the IUCN Red List Categories and Criteria, the
Convention on the International Trade in Endangered Species, the NatureServe Conservation
Ranks, Partners in Flight, and the Committee on the Status of Endangered Wildlife in Canada
all use protocols that rely on population trends as extinction risk surrogates [1]. A widely used
tool to assess and project population trends is population viability analysis (PVA). This tech-
nique is founded on the principles of risk assessment, using population models to estimate risk
of decline or extinction within a specified time frame [2,3].

PVA has enjoyed broad use for conservation decision-making. The IUCN Red List Catego-
ries and Criteria, for example, include criteria that rely on quantitative analyses of the probabil-
ity of extinction and recommend PVA to estimate percent declines and extinction probabilities
[4]. PVA has also been used to inform decisions to list species under the United States Endan-
gered Species Act including the northern spotted owl (Strix occidentalis caurina), and is com-
monly used to identify conservation management strategies, for recovery planning, and for
habitat conservation plans for threatened species [5,6,7]. Despite their long-standing use, the
question of how to construct and apply PVAs is still an area of active research and debate, espe-
cially under the high environmental variability and data uncertainty that characterize most
conservation applications [5,8].

Several types of population models have been implemented in PVA with the choice typically
based on the available data and species life history [9,10]. The most common types of data used
to parameterize population models are time series data, i.e. population counts taken on a regu-
lar or semi-regular basis. Estimated viability depends critically on both the quality and quantity
of these data [9,11]. The length of the time series, environmental variability, and measurement
error, in conjunction with the type of population model used, can all influence the bias and pre-
cision of projections generated by PVA [10,12,13]. While time series length should be com-
mensurate with the degree of variability in population counts, it is unknown what the time
series length should be for different levels of variability and how this is affected by measure-
ment error and model choice.

Theoretical and empirical studies have established that extinction risk estimates can be
strongly influenced by environmental stochasticity (i.e. process error; [14,15]). In general, high
levels of environmental stochasticity increase the risk of extinction [16,17]. Variability in popu-
lation estimates is exacerbated by measurement error, i.e. uncertainty in population counts due
to inexact observations. This error can result in overly pessimistic risk estimates if subsumed
into vital rate variability. While state-space models can disentangle measurement error from
process error (e.g. [18]), high technical and data demands present significant barriers to their
widespread use.

Time series length can potentially have a greater effect on risk estimates than measurement
error [13]. For instance, Hovestadt and Nowicki [19] found population declines derived from
short time series to be overestimated with scalar models that included density dependence.
Additionally, Humbert et al. [20] showed that state space models produced larger confidence
intervals around population trend estimates for shorter time series and recommended a mini-
mum of 10 years of data for reliable extinction risk estimates. However, these conclusions will
depend on the type of population model used to generate risk estimates, how these models are
parameterized, and how much measurement error and variability are present in the data.

While there are many types of PVA model structures, they generally fall within two main
categories [21]: scalar (count-based) or matrix (demographic) models. The choice of model
structure often depends on the level of aggregation across life history stages evident in
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empirical data. Scalar PVAs are based on counts of individuals that are assumed to be identical
which may not reflect the real structure of the population. Matrix PVAs, on the other hand,
assume individuals differ in their contributions to population growth, categorizing them
according to size, age or stage. This makes matrix models potentially more applicable to man-
agement because they allow for evaluation of management options for specific life stages or
traits (e.g. [22]), which can have significant consequences. For example, Dunham et al. [23]
found that population projections generated with scalar models tended to overestimate the risk
of decline observed in a simulated age-structured population. The bias, caused by a misattribu-
tion of fluctuations due to age structure to environmental variability, was found to be exacer-
bated by increased generation length. However, matrix model structure also subjects them to
greater uncertainty, as more parameters (and therefore more data) are required [24]. Parame-
terization of matrix models from limited or error-laden census data can present many chal-
lenges relative to scalar models. Thus, scalar models are often preferred—despite the greater
perceived realism of matrix models—because their data requirements are not as onerous. This
leaves open the question about the circumstances under which scalar models could perform as
well as matrix models.

Choice of model structure, environmental variability, data uncertainty and time series
length have independent known impacts in populations risk assessments, but their combined
impact has not been thoroughly investigated. Dunham et al. [23] compare matrix and scalar
models, yet the study constructs a scalar model using error-free output from a matrix model
and then compares the scalar model to this underlying model rather than a comparably con-
structed matrix model. Here, we expand on Dunham et al. [23] using age-structured popula-
tion models to simulate population trajectories subject to different controlled levels of
variability and uncertainty and then evaluate the predictive capabilities of both scalar and
matrix models parameterized with these simulated time series. Thus, we examine the effect of
parameterization using error-laden data; a scenario that ecologists are typically confronted
with. Since the matrix and scalar models are constructed from the same error-prone data, the
output from the two types of models can be comparably assessed. Modeled life-histories in our
study are based on a formalism in Dunham et al. [23] as well as that of a rare, threatened snail
species. These relatively simple life-histories were constructed to mimic short-lived organisms
such as invertebrates, birds and small mammals that are commonly included in conservation
threat assessments. We compare the performance of scalar and matrix PVAs constructed from
the “observed” data using percent decline, a commonly applied metric in decision-making con-
texts. We found that scalar models tend to be as reliable as matrix models, and sometimes
more so, under environmental variability and data uncertainty when projection horizons are
short and life histories are relatively simple, which has implications for population projection
studies and conservation decision-making.

Methods
Using age-structured matrix models, we simulated time series population data intended to rep-
resent the “true” dynamics of a hypothetical short-lived species and of a rare, threatened snail
species, Tasmaphena lamproides. The hypothetical life history was a simple one typical of a
small mammal or passerine and was constructed to mirror those used in previous modeling
efforts [23], while T. lamproides was included to test whether results hold for an actual species
with a different life history from the hypothetical cases. From each of these “true” data sets, we
constructed matrix and scalar models and compared population trajectories generated by these
to the output of the underlying “true” population given a range of process and measurement
error levels, underlying growth rates, and time series lengths (Fig 1). The methods in our study
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specifically included three steps: 1) simulating sets of “true” and “observed” population time
series data for both the hypothetical life history and for T. lamproides with age-structured
matrix models under a range of growth rates, levels of process error and measurement error, 2)
constructing scalar and age-structured models from a range of time series lengths in the
“observed” data; and 3) comparing projections from the PVA models with population trends
in the underlying “true” data over the same time period.

Simulation of “true” and “observed” time series
We based our methods and hypothetical life history structure on the study presented in Dun-
ham et al. [23], modified and expanded to include a range of growth rates (λ), process error,
and measurement error. For both the hypothetical life history and T. lamproides we simulated
sets of “true” population time series data using age-structured, density-independent stochastic
matrix models, nt+1 = Atnt, where nt is the age-specific population vector and At is the popula-
tion projection (or Leslie) matrix. We focused on density-independent models throughout for
two important reasons: 1) we wished to investigate the effects of process error, measurement
error, and data length on modeling declining populations that are less likely to be driven by
density dependence, and 2) we wished to compare and contrast our results with those in key
papers which also do not include density dependence [23, 25]. As in Dunham et al. [23], our
simulated “true” population for the hypothetical life history had ten age classes, while for T.
lamproides the simulated “true” population had 5 age classes as in Regan et al. [26]. Unlike
Dunham et al. [23], who investigated the effect of generation length on quasi-extinction risk
estimates, we always set the age of first reproduction at one—only one of the generation length
scenarios tested in Dunham et al. [23].

We chose four population growth rates (0.9, 0.95, 1.0, 1.025) and four levels of process error
(0, 0.1, 0.3, 0.5; however for T. lamproides the highest value was 0.45 instead of 0.5, see below)
modeled as a co-efficient of variation in the vital rates (Table 1). For both life histories, a popu-
lation projection matrix was assembled for each combination of λ and level of process error
(Table 2). To ascertain the effects of process error, measurement error, and data length on pop-
ulations for which a PVA could be illuminating, we chose growth rates 0.9� λ� 1.025.
Because we were interested in investigating the effects of variability and uncertainty on rates of
population decline, and not on rates of increase, we narrowed our focus to these growth rates
because they could exhibit declines under environmental stochasticity without projecting

Fig 1. An illustration of the methodology used in this study. a) “True” time series (gray) are generated with underlying process error. b) Measurement
error is then added, yielding the “observed” time series (dashed). The “observed” series is then sampled over a specific time period, and these data are used
to parameterize matrix and scalar population models, called “estimated”models. c) The “true” series and “estimated”models (black) are projected into the
future. The dashed vertical line divides between “past” and projection time frames. d) This process was repeated such that each parameter combination
yielded 1000 “true” time series, and each “true” time series led to 1000 replicate projections from both “estimated”matrix and scalar models.

doi:10.1371/journal.pone.0132255.g001

Table 1. Parameter values used in simulations.

Parameter Value

Growth rate 0.9, 0.95, 1.0, 1.025

Vital rate (CV) 0, 0.1, 0.3, 0.45a,0.5

Measurement error (CV) 0, 0.1, 0.3

Data length sampled (M) 5, 10, 15, 20, 30, 40, 50

A total of 336 parameter combinations (referred to as scenarios) were considered.
aA coefficient of variation of 0.45 instead of 0.5 was used to generate “true” sets of data for T. lamproides.

doi:10.1371/journal.pone.0132255.t001
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populations that always declined to zero. Levels of process error were chosen to correspond to
ranges of variability documented in natural populations [15, 26].

In the case of the hypothetical life history, mean survival rates were held constant at 0.5
across all age classes and for all combinations of growth rate and process error, as in Dunham
et al. [23]; this was considered realistic because an average survival rate of around 0.5 is com-
monly observed in passerines [27] and small mammals [28], organisms that also exhibit rela-
tively simple life histories. The expected probability of an individual surviving to age 10 in this
model is approximately 0.001, however the range of process error implemented across the sce-
narios in Table 1 can give much higher actual probabilities. In the case of T. lamproides, sur-
vival rates followed Regan et al. [26] and were as follows: 0.4 for age class 1, 0.5 for age class 2,
0.8 for age class 3, 0.75 for age class 4, 0.7 for age class 5 (Table 3). Here, survival rates were dif-
ferent across age classes, with some of them being higher than the value used in the simulation
of the hypothetical organism (0.5). Since these average survival rates were generally higher
than those implemented in the hypothetical model described above, the coefficients of

Table 2. Projectionmatrix for the hypothetical life history.

Age Class 1 2 3 4 5 6 7 8 9 10+

1 f f f f f f f f f f

2 0.5 0 0 0 0 0 0 0 0 0

3 0 0.5 0 0 0 0 0 0 0 0

4 0 0 0.5 0 0 0 0 0 0 0

5 0 0 0 0.5 0 0 0 0 0 0

6 0 0 0 0 0.5 0 0 0 0 0

7 0 0 0 0 0 0.5 0 0 0 0

8 0 0 0 0 0 0 0.5 0 0 0

9 0 0 0 0 0 0 0 0.5 0 0

10+ 0 0 0 0 0 0 0 0 0.5 0.5

Values in the first row represent fecundities (f). Fecundities were back calculated so that the dominant eigenvalue of the resulting matrix was equal to the

a priori specified growth rate (λ). Therefore, fecundities vary per growth rate (λ). A given fecundity value was assumed to be the same across ages.

Fecundity when λ = 0.9 was 0.4, fecundity when λ = 0.95 was 0.45, fecundity when λ = 1.0 was 0.5 and fecundity when, λ = 1.0250 was 0.5250. The off-

diagonal values represent the survival rates.

doi:10.1371/journal.pone.0132255.t002

Table 3. Projectionmatrix for T. lamproides.

Age Class 1 2 3 4 5+

1 f f f f f

2 0.4 0 0 0 0

3 0 0.50 0 0 0

4 0 0 0.8 0 0

5+ 0 0 0 0.75 0.7

Values in the first row represent fecundities (f). Fecundities were back calculated so that the dominant

eigenvalue of the resulting matrix was equal to the a priori specified growth rate (λ). Therefore, fecundities

vary per growth rate (λ). A given fecundity value was assumed to be the same across ages. Fecundity

when λ = 0.9 was 0.3292, fecundity when λ = 0.95 was 0.3976, fecundity when λ = 1.0 was 0.4630 and

fecundity when, λ = 1.0250 was 0.4947. The off-diagonal values represent the survival rates.

doi:10.1371/journal.pone.0132255.t003
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variation for process error in vital rates in the T. lamproidesmodel were restricted in order to
ensure stochastic survival rates generally fell between 0 and 1.0 (Table 1).

For both life histories simulated, and as in Dunham et al. [23], average fecundities were
assumed to be the same across breeding age classes, and were inversely calculated so that the
dominant eigenvalue of the resulting matrix was equal to the a priori specified growth rate in
each scenario (Tables 2 and 3). Average vital rates, together with specified levels of process
error, were used to parameterize distributions from which realized year-to-year vital rates were
drawn. Stretched beta distributions, bounded at 0 and 1000, represented process error in fecun-
dities, while beta distributions on the interval [0,1] represented process error in survival rates
[10]. Vital rates were sampled randomly and independently from these distributions to provide
a population projection matrix of uncorrelated vital rates in each time step. While the use of
correlated vital rates is advised to provide a conservative estimate of risk [29], we opted to keep
vital rates uncorrelated for methodological simplicity and interpretability of results.

The initial population size was set to 1 × 109 to avoid excessive extinctions, and assumed to
be at a stable age distribution. The assumption of an initially stable age distribution was
adopted to avoid falsely attributing population fluctuations resulting from age transitions to
process error, as our aim is to determine the effect of process and measurement error on mod-
eled population dynamics and not the effect of deterministic fluctuations due to population age
structure. A stable age distribution is also a common assumption in PVA applications where
initial abundance is uncertain or unknown [29]. In line with Dunham et al. [23] andWilson
et al. [25] we did not include demographic stochasticity, which is negligible in large
populations.

Code was constructed in MATLAB 7.5.0 [30]. We ran each simulation for 60 years: the first 50
years provided the “true” time series data from which “observed” time series of different
lengths were sampled, whereas the last 10 years served as the projection of the “true” popula-
tion dynamics for comparison with the models based on “observed” data. To capture the effect
of process error, we simulated 1000 “true” population time series for each combination of
parameter values in Table 1. Populations never fell below 1000 individuals in the first 50 years
of a simulation, regardless of the life history, vital rate C.V., or growth rate considered, meaning
that our omission of demographic stochasticity did not introduce any bias into our results.

For each of the 1000 trajectories generated from each combination of growth rate and pro-
cess error, we created a related “observed” time series by adding measurement error to each
age-specific abundance in the “true” time series. Measurement error was assigned indepen-
dently by sampling from a Normal distribution with the “true” abundance as the mean and the
respective coefficient of variation for measurement error providing the standard deviation
(Table 1), bounded below by zero. We assigned three different levels of measurement error
using coefficients of variation 0.0, 0.1 and 0.3 (Table 1). This range of measurement error is
somewhat smaller than in other studies [25,31], yet likely reflects the upper range in real popu-
lation census data [13]. Seven different lengths of annual “observed” time series data were then
taken from the lastM years of the 50 year simulated population sizes (either age-based or
aggregate), whereM is a time series length in Table 1. This resulted in 336 unique combina-
tions of growth rate, process error, measurement error, and time series length, henceforth
referred to as scenarios. Each scenario was replicated 1000 times.

Construction and projection of estimated PVA models
We parameterized stochastic scalar and matrix models from the “observed” time series data
from each scenario, henceforth called “estimated”models. Scalar and matrix PVAs were con-
structed from the 336 time series scenarios. For the scalar models,M– 1 stochastic growth rates
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were calculated as ntþ1

nt
¼ lt , where nt is the total observed population size at time t. The matrix

models were constructed with nine age classes for the hypothetical life history and with four
age classes for T. lamproides; the final stage in each life history was a composite class that
included all individuals 9 or 4 years (respectively) and older [32]. For each age class except the
composite class, survival rates were calculated as niþ1;tþ1

ni;t
, where ni,t is the observed population

size in age class i = 1. . .8 and time t. The survival rate for the composite age class was calculated
as

n10;tþ1

n9;tþn10;t
. Fecundities were assumed to be equal across the age classes and calculated as

n1;tþ1

X9

i¼1

ni;t

.

To avoid introducing a potential bias associated with specifying a particular distribution,
process error in vital rates (growth rates in the scalar model and fecundities and survivorships
in the matrix model) was introduced by sampling vital rate values calculated from the
“observed” series directly, with replacement, for each time step in the projection of the “esti-
mated”models. Thus, there wereM– 1 vital rates that could be sampled from for a given
“observed” series, leading to a distribution of actualized rates in the “estimated” projection. In
some cases, large measurement error caused “observed” populations in an age class to be higher
than that of the prior age class in the prior year, making the calculated survival rate larger than
one; these estimated survival rates were not included in the projected sampling.

We next projected 1000 population trajectories for ten years for each of the 1000 “esti-
mated” scalar and matrix models per scenario. The projection length was selected to coincide
with the IUCN Red List criterion A.3 for declining populations, which evaluates population
declines “projected to be met in the future over a time frame of either 10 years or 3 generations,
whichever is longer (up to a maximum of 100 years)” [4]. Three generations in our models was
always less than ten years. In each future projection, the initial population size was set as the
final age-based or total population size in the “observed” time series on which the model was
based. While this time horizon is relatively short, it represents the appropriate scale for projec-
tions of short-lived species who are often the most appropriate candidates for PVAs.

Comparison of “true” and “estimated” projections
The median percent population decline was calculated for each scenario and compared to the
“true” population’s decline projected over the same period. The median percent decline was
chosen to represent a moderate (precautionary but realistic) attitude to variability and uncer-
tainty in calculating declines from stochastic population models, as recommended in the guide-
lines for using the IUCN Red List criteria [4]. This resulted in 1000 comparisons of medians
from “estimated”model output with a corresponding “true” decline for each parameter combi-
nation scenario, depicted as the difference between the “true” and “estimated” decline. When
comparing “true” and “estimated”model output, we focused on both precision and bias. Preci-
sion was measured by the inverse of the width of the interquartile ranges of percent decline dif-
ferences, with small ranges indicating a high degree of reproducibility—and therefore precision
—in the “estimated”models. Bias was examined as the tendency of differences in “true” and
“estimated” percent declines to be centered at zero, with differences closer to zero providing
more unbiased predictions.

Results
Realized stochastic growth rates for the true models behaved as expected over the ten year pro-
jection period, with the stochastic growth rate decreasing and the standard deviation increasing
as process error increased (S1 Table). There were no observable differences in stochastic
growth rates between the hypothetical and snail life histories. When the true series were
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compared to simulated time series via percent declines, more complex patterns emerged. Inde-
pendently, increasing measurement and process error and decreasing the length of time series
used to parameterize “simulated”models generally reduced the precision and increased the
bias of predicted percent declines. These effects were apparent across hypothetical and snail life
histories, models, and scenarios considered. Across scenarios, process error tended to increase
the spread of predictions more than measurement error (Figs 2 and 3; S1 and S2 Figs), while

Fig 2. Box and whisker plots showing the difference in percent decline between the “true” andmedian “estimated”model projections for the
hypothetical life history. Boxes are centered about the median difference while the box extension covers the interquartile range. a-c) Matrix model, λ = 0.9.
d-f) Scalar model, λ = 0.9. g-i) Matrix model, λ = 1.025. j-l) Scalar model, λ = 1.025.

doi:10.1371/journal.pone.0132255.g002
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both contributed strongly to bias. However, the magnitude of effects of measurement error,
process error, and time series length, and interactions between these, depended on context. We
highlight the most notable of these results below.

Precision of projections of decline for the hypothetical life history
The effect of time series length on the precision of percent decline estimates for the hypotheti-
cal life history was similar across scalar and matrix models but differed across growth rates,
with time series length having a greater impact on precision when growth rates were high (i.e.,
1.025 and 1.0; Fig 2G–2L, S1G–S2L Fig). Increasing time series length discernibly decreased
the width of the interquartile ranges of percent decline differences under the full suite of pro-
cess error C.V.s. However, marked increases in precision only occurred up to a time series
length of around 10 to 15 years, beyond which the precision of simulated percent declines did
not notably improve in the short projection span we considered (Fig 2, S1 Fig). The greatest
improvement in precision due to time series length consistently occurred in the increase from
5 to 10 years. For example, when λ = 1.025, MECV = 0.3 and PECV = 0.3, the interquartile range
of the difference in percent decline for matrix and scalar models decreased by ~36% and ~33%,
respectively, as data length increased from 5 to 10 years. In contrast, the relative reduction in
the interquartile range for matrix and scalar models decreased only by ~16% and ~12% respec-
tively when data length went from 10 to 15 years for the same parameter combination.
Although present, further changes in data length after 15 years were even much smaller in
magnitude (Fig 2I).

While measurement error generally reduced the precision of percent declines across scenar-
ios considered, having longer time series consistently improved the precision of predictions
when measurement error was present. The strongest beneficial effects of increasing time series
length in the face of measurement error appeared with higher levels of process error and again
with an increase from 5 to 10 years of data (Fig 2C, 2F, 2I and 2L, S1C, S1F, S1I and S1L Fig).
For instance, when the growth rate was λ = 0.9, the interquartile range of decline differences
forM = 10 and MECV = 0.1 was narrower than that forM = 5 and a MECV = 0 when PECV > 0;
this was true for both scalar and matrix models (Fig 2A, 2B, 2D and 2E). Likewise, when the
growth rate was 1.025, the interquartile range forM = 15 and MECV = 0.3 was narrower than
that forM = 10 and MECV = 0.1 for large PECV (Fig 2H, 2I, 2K and 2L). This effect was similar
regardless of the model used, but had a greater magnitude for larger growth rates 1.0 and 1.025.

Biases in projections of decline for the hypothetical life history
The bias in estimated percent declines depended on the model chosen, the growth rate, and the
levels of process and measurement error in the data. Bias in estimated declines did not appear
to depend appreciably on time series length (Fig 2, S1 Fig). Declines estimated with scalar mod-
els did not exhibit noticeable bias, irrespective of the growth rate, PECV or MECV (Fig 2D–2F
and 2J–2L, S1D–S1F and S1J–S1L Fig). However, percent decline differences estimated with
matrix models exhibited a bias, the direction and extent of which was dependent on the combi-
nation of growth rate, PECV and MECV (Fig 2A–2C and 2G–2I, S1A–S1C and S1G–S1I Fig). In
general, as the overall variability in vital rate parameter estimates increased due to a confluence
of PECV and MECV, predictions progressed from reasonably unbiased, to under-estimation,
and then to over-estimation. This pattern became more pronounced as growth rates increased
from 0.90 to 1.025. Overestimation was generally observed in scenarios with both high process
and high measurement error (Fig 2C and 2I). Underestimation tended to occur at lower mea-
surement error and low to moderate process error (Fig 2A, 2B, 2G and 2H). In general, overes-
timation biases were greater in magnitude than underestimation biases.
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Precision and bias of projected declines for T. lamproides
Generally, the overall performance of the two models across the different scenarios evaluated
exhibited the same pattern for both of the life histories studied. However, results for T.

Fig 3. Box and whisker plots showing the difference in percent decline between the “true” andmedian “estimated”model projections for T.
lamproides. Boxes are centered about the median difference while the box extension covers the interquartile range. a-c) Matrix model, λ = 0.9. d-f) Scalar
model, λ = 0.9. g-i) Matrix model, λ = 1.025. j-l) Scalar model, λ = 1.025.

doi:10.1371/journal.pone.0132255.g003
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lamproides departed from the hypothetical life history in a few key ways. We focus below on
highlighting these important departures from the overall patterns seen in the hypothetical life
history below.

Precision was slightly higher in T. lamproides than in the hypothetical life history across sce-
narios with high levels of measurement error for both matrix and scalar models. However, pre-
cision in scalar models exhibited smaller differences between the life histories relative to matrix
models. For example, the interquartile range of decline difference for T. lamproides was ~40%
smaller than that of the hypothetical life history for matrix models, yet only 20% smaller for
scalar models, when the growth rate was λ = 1.025, M = 5, MECV = 0.3 and PECV = 0.3 (Figs 2I
and 3I).

The bias observed in projected percent decline in the matrix model for T. lamproides was
much more unidirectional towards overestimation. The magnitude of this bias intensified
when measurement error increased, and was observable even in scenarios not exhibiting bias
under the hypothetical life history (compare, e.g., Figs 2 and 3. c, i, S1 and S2 Figs c,i). However,
as was the case with the hypothetical life history, higher growth rates intensified the overesti-
mation bias.

Discussion
Our results suggest that the least biased estimates of projected declines are obtained when mea-
surement error is minimized irrespective of time series length. In contrast, longer time series
did improve the precision of projections, although it had diminishing benefits beyond 10–15
years. We also found that scalar models can project percent declines quite well relative to
matrix models for short-lived organisms with simple life histories, like the ones studied here,
given their comparable precision and less biased predicted declines. This is an encouraging
result given the ease with which scalar models can be parameterized and implemented.

Measurement error, process error, time series length, and model choice all affected the abil-
ity of PVAs to reliably project viability, although at times in unanticipated ways. As expected,
high levels of process and measurement error reduced the reliability of the two models’ projec-
tions, with process error tending to contribute to an increase in the spread of predictions more
than measurement error in percent decline projections (see also [13,19]). Bias tended to be low
for both models except in some cases when measurement and process error became large,
where matrix models tended to over-estimate percent declines. This over-estimation was
amplified as growth rate increased. For these instances, high bias was not ameliorated by longer
time series, as it was largely a consequence of the parameterization scheme. In contrast, both
lower measurement error and longer time series tended to generate more precise projections
for both models, but lowering measurement error had more consistently observable effects
across all scenarios.

The percent population decline calculated here uses a central tendency measure (the median
of population trajectories, as recommended in [4]) to characterize “estimated” trajectories.
This metric is a valuable indicator of population trajectories under risk and uncertainty; for
instance, it can be interpreted as a “best estimate” in the IUCN Red List criteria for classifying
extinction risk status of taxa. Given the disparity in model performance assessed by percent
decline, we recommend looking at the effects of model type, process error, and measurement
error on extinction risk classification using a decision rule framework. Matrix models may
have additional benefits in such a framework because they allow the sensitivity of projections
and subsequent classification to changes in age/stage-specific vital rates to be examined. Still, a
key unresolved question from our and other studies is to what extent percent decline differ-
ences translate into over-protection or under-protection errors, and whether these tend to be
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substantial for particular combinations of measurement error, process error, or model type.
Reducing errors in prioritization and decision making is paramount in conservation biology
where resources are extremely limited: over-protection errors can lead to placing high conser-
vation priority on a taxon when it is not warranted whereas under-protection errors can lead
to taxa not receiving the conservation intervention they require for persistence. Studies have
evaluated the effects of variability and uncertainty on classification accuracy using different
decision rule systems [25, 33], although none to our knowledge have compared scalar and
matrix model types in such an analysis.

Surprisingly, time series length did not appear to be particularly influential on model perfor-
mance when process error and measurement error were present after 10–15 years of data were
included. As observed elsewhere, we found that the precision of the projections increased as
data length increased [12,19]. However, biases remained as time series length increased, and
the benefits of increasing data length disappeared after 20 years of data. This falls within the
range of data used by Meir & Fagan [13] and are consistent with McCarthy et al. [34] and
Humbert et al. [20] who suggest that a 10-year time series is sufficient to inform management
decisions (but see [19]). However, our projection period was short, reflecting the rapid genera-
tion times of our modeled life-histories; declines projected over longer periods may require
longer time series to exhibit similarly high level of precision and low bias we observed here
([35]). In particular, it is likely that the benefits of longer time series may not diminish over
similar time scales, and may not decline at all over realistic lengths for very long-lived species
requiring multi-decadal projection lengths.

Regardless, the reduced benefits we observed with longer time series indicates the effects of
measurement and process error cannot be eliminated with longer time series length, especially
with regards to model bias. Rather, our results suggest that it is better to invest in more sophis-
ticated sampling techniques (e.g. [36]) or parameterization methods (e.g. state-space models;
see below) that can reduce or quantify measurement error than to rely on longer census peri-
ods. Additionally, analyses of marked individuals can provide more robust estimates of survival
[36,37] that can be used in lieu of, or in addition to, estimates derived from time series. This is
an added benefit of the fact that marking individuals is likely necessary in most systems to
obtain ages of individuals with a reasonable level of certainty.

Matrix models mostly exhibited a precautionary tendency (i.e. over-estimation) when esti-
mating percent decline. While our observed over-estimation tendency is similar to that pre-
sented for scalar models in Dunham et al. [23], we also observed the same patterns in under-
and over-estimation for “estimated”matrix models. A similar construction of matrix models
from “observed” data was absent from Dunham et al. [23] and hence they concluded matrix
models are less conservative than scalar models. Dunham et al. [23] focused on quasi-extinc-
tion risk rather than percent decline; these two metrics may not exhibit exact similarities in
their sensitivities to measurement and process error. However, our results do concur with oth-
ers that have found an over-estimation tendency of extreme decline among PVA methods [25]
as well as those that suggest that simple models can perform very well relative to matrix models
for population projections, especially when uncertainty is high [38].

The strong over-estimation bias observed in percent declines generated by matrix models is
due to the way in which the models were parameterized. With elevated levels of process and
measurement error, there were instances in which the measurement error increased the
“observed” abundance of a cohort from one year to the next, generating age-based survival
rates greater than one. Since survival rates greater than unity are not biologically possible, any
calculated as such were discarded and not used in the “estimated” projections. Although this
constrained the age-based survival rates to realistic values, it also biased the predictions by
increasing the sampling of lower survival rates. The overrepresentation of lower survival rates
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in turn resulted in model projections with lower realized population growth rates. This bias
became more pronounced as the input growth rate of the “true” population increased. As a
result, populations in decline, such as threatened populations, were projected with greater pre-
cision and less bias using matrix models than growing or stable populations, (see also [25]).
Not censoring unrealistic survival rates in the simulated matrix models would have potentially
generated an underestimation bias (this result was confirmed in preliminary simulations;
results not shown). This effect is similar to that seen for matrix models under lower levels of
process error; here, survival rates inflated by measurement errors lead to realized growth rates
in “estimated” projections that exceed those for the true population, especially when the “true”
growth rate was already high. For scalar models, our parameterization technique appears more
robust. The only vital rate estimated in scalar models is the geometric growth rate, which was
not truncated and—unlike survival rates—could increase without constraint. Thus, the fact
that these biases weren’t observed in scalar model projections is attributable to the simplicity of
the model structure.

The role of measurement error in biasing matrix model predictions—an effect that
remained when long time series were used—highlights the importance of dealing with this
source of uncertainty when parameterizing PVAs. Our parameterization method was inspired
by examples given in widely used conservation biology textbooks (although without using their
precise formulations), combining calculations for survival and fecundity from Akçakaya et al.
[32] and sampling from these observed rates to parameterize projections as implemented in
Morris and Doak [10], although the latter does not address parameterization from time-series
nor do either source address the conundrum of unrealistic survival estimates. Although ad-
hoc, our choices were partially based on a desire to avoid biases introduced by specifying par-
ticular distributions—opting again for simplicity and transparency—as well as mimic what a
“first pass” parameterization effort might look like in a basic PVA implementation. Neither
these simple methods nor related techniques account for measurement error and, in our case,
still introduced substantial biases at high levels of measurement and process error. There are,
of course, other methods available for parameterizing PVAs. State space models in particular
are an effective way to take into account measurement error when assessing population viabil-
ity [18,25]. While state space methods are technically challenging, data hungry (i.e. require
long time-series), and difficult to apply to non-linear problems, they do appear desirable to
avoid biases when both variability and uncertainty are high. When not employing methods
that explicitly account for measurement error, using simpler scalar models, or at least compar-
ing outcomes generated by alternative parameterizations of matrix and scalar models, may be a
wise alternative because of lower data requirements.

We assumed simple life histories possessing short generation times with additional
simplifications that vital rates were not correlated, were independently sampled from identical
distributions, and that population dynamics lacked density dependence. Relaxation of these
simplifications could alter the way in which variability and uncertainty interact. For instance,
density dependent models such as the Ricker model are highly susceptible to the negative
effects of measurement error [13,19]. Other types of variability such as demographic stochasti-
city and heterogeneity may differentially affect certain life stages and interact with density-
dependence (e.g. [39]). Correlations in vital rates among life stages are likely in species with rel-
atively simple life histories; including these could also alter our results, as correlations can
increase the variability, and thus extinction risk, of a population [10,29]. Not including correla-
tions in the “estimated”matrix models if they were included in the “true”model would there-
fore probably exacerbate the bias and reduced precision we observed. Scalar models, in
contrast, may be relatively immune to this effect since they are parameterized using observed
variability across the entire population. While the effect of environmental correlation of vital
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rates has been shown to be influential on model results in some studies (e.g. [40]), in others it
has shown to have negligible effects (e.g. [41]), and requires additional data and choices in
model construction to implement. Comparing how different forms and strengths of correlated
variability interact with the factors we examine in the present study holds exciting potential for
future research.

In addition, different life history traits could have dramatically different impacts on the reli-
ability of the models evaluated here. We observed such differences in our study between the
hypothetical and T. lamproides life histories. For T. lamproides, precision of matrix models
increased but bias also increased relative to the hypothetical life history, whereas the precision
and bias for scalar models between these remained roughly the same. Because T. lamproides
possessed fewer life stages than the hypothetical life history, uncertainty was compounded to a
lesser extent and precision increased. In contrast, higher survival rates in most T. lamproides
life stages led to increased bias, as the biasing effects generated by the matrix model parameteri-
zation described earlier in the discussion was intensified.

Despite their differences, both life histories we examined had short generation times (<10
years across all scenarios) with breeding possible in the first life stage. The assumptions we
have made are reasonable for many organisms including longer-lived invertebrates, birds, and
small mammals. However, Dunham et al. [23] observed that over-estimation bias in extinction
risks estimated with scalar models increased as generation time increased due to misattribution
of deterministic fluctuations to stochastic variability, highlighting the sensitivity of modeling
methods to life history features. While some simple statistical models of extinction risk may be
robust to commonly included model complexities such as density dependence [38], a more
extensive evaluation of a broad range of life history traits is needed in order to determine when
scalar or matrix models will perform better for a particular life history under process and mea-
surement error. Our results do suggest however that in those cases where matrix models may
be clearly desirable, such as when organisms have very complex life histories, care still needs to
be used in their application for projecting population abundances when variability and uncer-
tainty are high.

Supporting Information
S1 Code. Model code used to generate simulation results.Model files are �.m files that
require MATLAB to run. The “main” file is runMe.m; all other files are called by this main file.
(ZIP)

S1 Dataset. Model simulation output. Files are organized by model type and by the input
lambda value.
(ZIP)

S1 Fig. Box and whisker plots showing the difference in percent decline between the “true”
and median “estimated”model projections for the hypothetical life history. Boxes are cen-
tered about the median difference while the box extension covers the interquartile range. a-c)
Matrix model, λ = 0.95. d-f) Scalar model, λ = 0.95. g-i) Matrix model, λ = 1.0. j-l) Scalar
model, λ = 1.0.
(TIF)

S2 Fig. Box and whisker plots showing the difference in percent decline between the “true”
and median “estimated”model projections for T. lamproides. Boxes are centered about the
median difference while the box extension covers the interquartile range. a-c) Matrix model, λ
= 0.95. d-f) Scalar model, λ = 0.95. g-i) Matrix model, λ = 1.0. j-l) Scalar model, λ = 1.0.
(TIF)
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S1 Table. Average stochastic growth rates for the “true”models across scenarios. Stochastic
growth rates are calculated as geometric means from each time series over the ten year projec-
tion period. Averages of the stochastic growth rates reflect arithmetic means.
(DOCX)
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