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Abstract
BST-2 (tetherin, CD317, HM1.24) restricts virus growth by tethering enveloped viruses to

the cell surface. The role of BST-2 during influenza A virus infection (IAV) is controversial.

Here, we assessed the capacity of endogenous BST-2 to restrict IAV in primary murine

cells. IAV infection increased BST-2 surface expression by primary macrophages, but not

alveolar epithelial cells (AEC). BST-2-deficient AEC and macrophages displayed no differ-

ence in susceptibility to IAV infection relative to wild type cells. Furthermore, BST-2 played

little role in infectious IAV release from either AEC or macrophages. To examine BST-2 dur-

ing IAV infection in vivo, we infected BST-2-deficient mice. No difference in weight loss or in

viral loads in the lungs and/or nasal tissues were detected between BST-2-deficient and

wild type animals. This study rules out a major role for endogenous BST-2 in modulating

IAV in the mouse model of infection.

Introduction
BST-2 (tetherin; CD317, HM1.24) is a host cell protein of importance to viral immunity. BST-
2 prevents newly generated viral particles from being released from the infected cell by forming
a "tether" that retains virions at the cell surface. Viral tethering by BST-2 was first identified for
human immunodeficiency virus [1, 2] with subsequent studies showing activity against many
enveloped viruses [3–6]. In addition to viral tethering, BST-2 can exert other immunomodula-
tory functions during viral infection [7, 8]. Specifically, BST-2 has been shown to modulate
type 1 interferon (IFN) production [9, 10] and trigger NFκB activation [11–13]. Consequently,
BST-2 is a molecule of significant interest in host viral defense.
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Influenza viruses belong to the Orthomyxoviridae family of enveloped viruses and are an
important cause of respiratory disease worldwide. Type A influenza virus (IAV) is the major
etiological agent capable of causing epidemics and pandemics in humans. Host anti-viral
restriction factors have been described that can limit intracellular replication of IAV. Examples
include interferon (IFN)-inducible transmembrane-3 [14, 15], viperin [16] and myxovirus
resistance gene A [17, 18]. Currently, whether BST-2 acts to restrict the release of infectious
IAV is controversial. Initial reports indicated that BST-2 limited release of IAV virus-like parti-
cles (VLP) [19, 20], as well as release of infectious IAV [21–23]. In contrast, several studies
reported that BST-2 did not restrict IAV release from infected cells [19, 24, 25]. Overall, studies
investigating the role of BST-2 during IAV infection have utilized cell lines engineered to over-
express or suppress BST-2. Differences in BST-2 expression levels, the contribution of trans-
formed cell lines and/or expression of BST-2 in heterologous cell lines may be important
factors contributing to the conflicting data published to date. Hence, further studies are
required to clarify the impact of BST-2 during IAV infection, using primary cells susceptible to
IAV infection where physiologically relevant levels of endogenous BST-2 are expressed. To
date, one study has examined the role of BST-2 during influenza virus infection in vivo. Sur-
prisingly, BST-2-deficient mice infected with influenza B virus (IBV) displayed a modest, but
significant, reduction in lung viral titers at day 3 post-infection, although no significant differ-
ences were detected at day 6 [7]. This finding is paradoxical to the proposed role of BST-2 in
limiting viral release, and so far remains largely unexplained.

In the airways, primary alveolar epithelial cells (AEC) and macrophages represent two of
the major cell types susceptible to IAV infection [26]. Herein, we have compared AEC and
macrophages isolated from wild-type and BST-2-deficient mice [7], for their susceptibility to
IAV infection and their ability to support productive IAV replication in vitro. In addition, we
have compared weight loss and viral replication following intranasal infection of wild type or
BST-2-deficient mice with IAV. Together, our data indicate that endogenous BST-2 does not
play a major role in host restriction of IAV in the mouse model of infection.

Materials and Methods

Mice
C57BL/6 and BST-2-deficient mice (kindly provided by M. Colonna, Washington University
[7]) were bred and housed in specific pathogen-free conditions at the Bio21 Animal House
Facility, The University of Melbourne. Mice (female and male) 6–10 weeks of age were used in
experiments conducted in accordance with guidelines provided by National Health and Medi-
cal Research Council of Australia. Experimental procedures were approved by the Animal Eth-
ics Committees at the University of Melbourne (Application 1112261). Studies comply with
Animal Research: Reporting In Vivo Experiment guidelines (S1 Checklist).

Cell lines, primary macrophages and primary alveolar epithelial cells
Cell lines used in this study included Madin-Darby canine kidney (MDCK) cells (American
Type Culture Collection, ATCC), LA-4 mouse lung epithelial cells and the RAW264.7 macro-
phage cell line (ATCC). Resident peritoneal exudate macrophages were obtained from mice as
previously described [27]. Macrophages were seeded into 8-well glass chamber-slides (Lab-
Tek), incubated for 2 hours at 37°C and cell monolayers were washed to remove non-adherent
cells. The next day, any remaining non-adherent cells were removed and the adherent macro-
phages used in virus infection assays. Mouse primary lung epithelial cells were prepared as pre-
viously described [28]. Briefly, lungs from mice were digested in 1.5 mg/ml Pronase (Roche,
USA), 0.1 mg/ml DNase I (Sigma-Aldrich, USA) for 1 hour at 37°C in 5% CO2. Single cell
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suspensions were incubated with purified rat anti-mouse CD45 antibody (BD Biosciences,
USA) and epithelial cells negatively enriched with BioMag goat anti-rat immunoglobulin-cou-
pled magnetic beads (Qiagen, USA). Cells were cultured on collagen-coated (MP Biomedicals,
USA) plates. To confirm alveolar epithelial cell purity, monolayers were detached with 3 mM
EDTA and cells stained with mouse anti-EpCAM, anti-podoplanin (AEC type I) and anti-
CD74 (AEC type II) antibodies and examined by flow cytometry.

Viruses
The representative IAV laboratory strain used in this study was HKx31, a reassortant of A/
PR8/34 (PR8, H1N1) with A/Aichi/2/68 (H3N2) bearing the H3N2 surface glycoproteins. In
some experiments A/Brazil/11/78 (Brazil/78; H1N1) and A/Solomon Islands/3/2006 (Sol Is/06;
H1N1) were used as representative seasonal strains. Sol Is/06 was obtained from the World
Heath Organization Collaborating Centre for Reference and Research on Influenza, Mel-
bourne, Australia. Virus was amplified in the allantoic cavity of 10-day-old embryonated hen’s
eggs and titrated on MDCK cells by standard plaque assay [29].

Virus infection of mice
Groups of 5 mice were lightly anaesthetized (methoxyflurane) and infected with either 102 or 104

PFU of HKx31 via the intranasal route. Mice were weighed daily and assessed for signs of clinical
disease. Animals that had lost� 20% of their original body weight were euthanized by CO2 inha-
lation followed by cervical dislocation. No adverse events occurred during these experiments.
Lungs and nasal tissues were removed, homogenized and clarified by centrifugation. Titers of
infectious virus in tissue homogenates were determined by standard plaque assays [29].

Virus infection assays
Mouse peritoneal macrophages and primary lung epithelial cells were infected with IAV and
the percentage of IAV-infected cells determined as described previously for epithelial cells [30]
and macrophages [31]. Briefly, cells were incubated with IAV in serum-free media for 1 hour
at 37°C. Virus inoculum was removed and cells incubated at 37°C in serum-free media. IAV-
infected cells were fixed with 80% vol/vol acetone at the indicated time points post-infection
and stained using monoclonal antibody (mAb) MP3.10g2.1C7 (WHO Collaborating Centre
for Reference and Research on Influenza, Melbourne, Australia) specific for IAV nucleopro-
tein. Virus-infected cells were co-stained with 4',6-diamidino-2-phenylindole (DAPI) or propi-
dium iodide (PI). A minimum of 200 cells were scored for each sample.

Virus growth assays
Cells were infected with IAV as described above. As trypsin counteracts BST-2 anti-viral activ-
ity [32], this was omitted in the infection media, thereby limiting IAV replication to a single
round. Cell supernatants were collected at the indicated time-points post-infection, and incu-
bated with 4 μg/ml L-(tosylamido-2-phenyl) ethyl chloromethyl ketone (TPCK)-treated tryp-
sin (Sigma Aldrich) for 30 minutes at 37°C to facilitate cleavage of the viral hemagglutinin [33]
before the titers of infectious virus were determined by standard plaque assay on MDCK cells
[29].

BST-2 expression assays
BST-2 expression was determined by staining with anti-BST-2 (clone 120G8) mAb in conjunc-
tion with flow cytometric analysis. Briefly, cells were pre-incubated with 2.4G2 mAb to block
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non-specific staining via Fc receptors, then stained with rat anti-BST-2 mAb conjugated to
FITC (generated in house) or rat IgG1k-FITC isotype control antibody (Biolegend). In some
experiments, BST-2 expression was monitored post-infection with IAV (as described above) at
the indicated virus doses and time-points. Cells were treated with 1000 international units
(IU)/ml recombinant murine IFNα (R&D Systems) as a control to upregulate BST-2 surface
expression.

Results

BST-2 expression is upregulated on murine macrophages but not
alveolar epithelial cells in response to IAV infection
First, flow cytometry was used to examine BST-2 expression by murine AEC and macrophages
that were uninfected, or had been infected 4 and 24 hours previously with IAV strain HKx31
(H3N2). BST-2 expression was analysed using the LA-4 AEC line and primary AEC, as well as
using the RAW264.7 macrophage cell line and primary macrophages. Peritoneal exudate mac-
rophages were used given the difficulty in obtaining sufficient numbers of alveolar macro-
phages via bronchoalveolar lavage (BAL). Note that peritoneal and alveolar macrophages
exhibit similar susceptibility and ability to support IAV infection [34, 35]. For epithelial cells,
uninfected LA-4 cells and primary AEC expressed cell-surface BST-2, however levels did not
increase further following IAV infection. Of interest, culture of AEC in the presence of IFNα
did result in upregulation of cell-surface BST-2 (Fig 1A). In contrast to epithelial cells, macro-
phages upregulated cell-surface BST-2 in response to IAV and levels were similar (RAW264.7),
or higher (primary cells), than those elicited in response to IFNα (Fig 1B).

BST-2 does not modulate susceptibility to IAV infection or release of
newly synthesized virions from murine AEC and macrophages
Next, we examined the impact of BST-2 on the susceptibility of primary AEC and macrophages
to IAV infection using cells from wild type (WT) and BST-2-deficient animals. We confirmed
expression patterns of BST-2 by flow cytometry for primary macrophages isolated from BST-
2+/+, BST-2+/- and BST-2-/- mice (S1 Fig). Next, cells isolated fromWT or BST-2-deficient
mice were inoculated with IAV at different multiplicities of infection (MOI) and the percentage
of IAV-infected cells was determined 6–8 hours later by detection of newly synthesized viral
nucleoprotein (NP) [35]. Viral NP was not detected at 2 hours post infection, indicating its
presence at later time points was due to newly synthesized viral protein and not input virus (S2
Fig). Overall, the percentage of IAV-infected AEC did not differ in the presence or absence of
BST-2 at any MOI tested for the IAV laboratory strain HKx31, or the representative seasonal
strains Brazil/78 and Sol Is/06 (Fig 2A). Similar to AEC, macrophages exhibited equivalent sus-
ceptibility to IAV infection regardless of the presence or absence of BST-2 for both the HKx31
and Brazil/78 strains (Fig 2B). The Sol Is/06 IAV strain did not efficiently infect primary
murine macrophages, and therefore was not assessed (data not shown).

It is well established that IAV infection of AEC results in productive viral replication, how-
ever infection of macrophages with seasonal IAV is abortive, such that viral replication is
blocked and infectious viral particles are not released [27, 35]. However, the mechanisms that
restrict productive IAV replication macrophages are currently unknown. Whether BST-2 can
restrict release of IAV from AEC is contentious, and the role of BST-2 in modulating IAV
release from macrophages has not been reported. Therefore, primary AEC and macrophages
were inoculated with IAV, washed and cultured for a total of 2 hours (representative of residual
inoculum) or 8, 24 or 48 hours, before titres of infectious virus were determined in cell-free
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Fig 1. BST-2 expression is upregulated onmurine macrophages but not alveolar epithelial cells in
response to influenza A virus.Monolayers of (A) the LA-4 AEC line and primary AEC, or (B) RAW264.7
macrophages and primary macrophages were incubated (i) with a MOI of 5 (HKx31) for 1 hour at 37°C and
washed to remove excess virus (IAV infection, solid black line), (ii) in 1000 IU/ml recombinant mouse IFNα
(dashed line) or (iii) in media alone (no infection, grey histogram). Cells were then incubated at 37°C for a
total of 4 or 24 hours and levels of cell-surface BST-2 determined by flow cytometry. For each cell type, the
isotype control (solid black histograms) is shown for ‘no infection’ cells only but is representative of profiles
obtained using IAV-infected and IFNα-treated cells. Data are representative of 3 independent experiments.

doi:10.1371/journal.pone.0142925.g001
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Fig 2. BST-2 expression does not modulate IAV susceptibility of murine epithelial cells and
macrophages to IAV infection. (A) Primary AEC or (B) macrophages isolated from BST-2 wild type (WT)
and BST-2-deficient (BST-2-/-) mice were incubated with the indicated MOI and strain of IAV for 1 hour at
37°C, washed to remove excess virus and cultured as indicated. Monolayers were fixed at 8 hours post-
infection before staining by immunofluorescence to detect newly synthesized viral NP. Data show the mean
(± 1 SD) pooled from 3 independent experiments. n.s. = no significant difference, p = > 0.05, two-way ANOVA
followed by Bonferroni analysis.

doi:10.1371/journal.pone.0142925.g002
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supernatants by standard plaque assays. For HKx31, at 24 and 48 hours post-infection, titres of
infectious virus released from BST-2-deficient AEC were significantly reduced compared to
WT AEC, although this was not the case for the Brazil/78 or Sol Is/06 IAV strains, where viral
release of these strains from AEC occurred independently of BST-2 (Fig 3A). For macrophages,
IAV titres did not increase between 2 and 24 hours following infection with either HKx31 or
Brazil/78, and this was unaffected by the presence or absence of BST-2 (Fig 3B). In these exper-
iments, MDCK cells were included as a control to confirm that the virus inoculum could give
rise to productive IAV replication and release from cells (data not shown).

Lack of BST-2 does not alter the susceptibility of mice to IAV infection or
the ability of IAV to replicate in the airways
To assess the impact of BST-2 in vivo we compared the susceptibility of WT BST-2 (bst-2+/+ or
bst-2+/-) or BST-2-deficient (bst-2-/-) mice to IAV infection in vivo. First, we assessed the status
of BST-2-deficient mice under resting conditions. Proportions of lymphocytes, monocytes,
neutrophils and eosinophils in the peripheral blood did not differ significantly between BST-
2-deficient and wild type mice (Fig 4A) indicating that the absence of BST-2 did not elicit overt
alterations in immune homeostasis. BST-2-deficient mice were inoculated with IAV strain
HKx31 via the intranasal route. Infection of mice with this strain elicits a mild respiratory ill-
ness and weight loss is a reliable indicator of disease severity [36, 37]. Infection with HKx31
provokes a significant increase in IFNα in the respiratory tract [38] (S3 Fig) and consequently
elicits conditions under which BST-2 expression is likely to be elevated. Elevated BST-2 expres-
sion has also been detected on immune cells isolated from the respiratory tract on IAV-infected
mice [39]. Mice infected with 102 PFU of HKx31 lost little weight by day 3 post-infection
whereas infection with 104 PFU resulted in progressive weight loss, however no significant dif-
ferences were recorded between WT or BST-2-deficient mice (Fig 4B). IAV replication in the
airways was assessed in the lung and nasal tissues at day 3 and day 7 post-infection and no sig-
nificant differences were recorded between WT and BST-2-deficient mice at either time point,
irrespective of inoculum dose (Fig 4C). Therefore, endogenous BST-2 does not play a major
role in restricting IAV infection in vivo.

Discussion
Here we have undertaken a comprehensive analysis of the role of endogenous BST-2 in restrict-
ing IAV infection by performing, to our knowledge, the first analysis of infection of BST-
2-deficient primary murine cells with IAV and importantly, IAV infection of BST-2-deficient
mice. Our analyses rule out a major role for BST-2 as a host molecule that restricts IAV in the
mouse model of infection.

The ability of BST-2 to restrict viral infection relies on its expression by cell types permissive
to infection. Analysis of surface BST-2 expression demonstrated its expression at low levels by
uninfected macrophages and AEC, two cell types that are susceptible to IAV infection. In addi-
tion to inflammatory cytokines, IAV infection results in secretion of type I IFN [40], with BST-
2 a type I IFN responsive gene [9]. In accordance with this, macrophages and AEC expressed
increased levels of surface BST-2 in the presence of IFNα. In contrast, incubation (and infec-
tion) with IAV, increased surface BST-2 expression by macrophages, but not AEC. It is well
established that IAV can induce distinct profiles of inflammatory mediators from macrophages
and AEC and that macrophages induce more potent type I IFN responses than epithelial cells
following IAV exposure [40]. AEC constitutively express BST-2 at high levels, but do not upre-
gulate expression in response to IAV. We observed no major impact of BST-2 deletion on the
release of IAV from AEC in single cycle replication assays. IAV may antagonize BST-2
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Fig 3. BST-2 expression does not modulate IAV release frommurine epithelial cells andmacrophages
following IAV infection. (A) Primary AEC or (B) macrophages isolated from BST-2 wild type (WT) and BST-
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expression in AEC [21], however the ability of IAV to antagonize BST-2 has been disputed
[25] and we detect no evidence for impaired BST-2 expression following IAV infection. In
summary, we observe that BST-2 is expressed by cell types of importance to IAV infection and
consequently has the potential to modulate IAV infection.

Analysis of IAV infection of primary cells in vitro failed to support a major role for BST-2 in
restricting productive virus replication and release. In AEC, the role for BST-2 varied depending
on the IAV strain tested. For HKx31, BST-2 promotes, rather than inhibits, the release of newly
synthesized virions from IAV-infected cells. This was not the case following infection with IAV
Brazil/78 or Sol Is/06, and therefore the significance of a role for BST-2 in promoting IAV release
is unclear, Regardless, we detect no evidence for a major role for BST-2 in restricting IAV release
in AEC under the experimental conditions tested. It is well established that macrophages do not
support productive replication of seasonal IAV [27, 35] and herein we demonstrate that the
absence of BST-2 did not reverse this phenotype, despite increased expression of BST-2 following
IAV infection of macrophages fromWTmice. In summary, BST-2 is not acting as a dominant
restriction factor for IAV in either murine AEC or macrophages.

Numerous studies have addressed the ability of BST-2 to restrict release of different viruses
in vitro, however less is known regarding its ability to modulate viral infections in vivo. The
availability of BST-2-deficient mice [7, 41] has allowed the impact of viral infection to be
assessed in the absence of endogenous BST-2. Infection of BST-2-deficient mice with Chikun-
gunya virus (CHIKV) results in increased viremia, in accordance with its capacity to tether
CHIKV in vitro [42]. Similarly, infection of BST-2 deficient mice with Moloney murine leuke-
mia virus elicits enhanced viral titers [41]. In contrast, BST-2 does not act according to its pre-
dicted role as a viral tetherin in several infection models. Infection of BST-2-deficient mice
with vesicular stomatitis virus, a target of BST-2 tethering in vitro [6], results in reduced, rather
than increased, viral titers [7]. This was also the case following infection with IBV, where BST-
2-deficient mice display reduced viral titers in the lung [7]. Herein, we also report reduced lev-
els of infectious IAV in cell supernatants from BST-2-deficient AEC, although this was only
under specific experimental conditions and in vivo viral titers in the respiratory tract were not
significantly different to those in WT animals. Increased viral titers in the presence of BST-2 is
perplexing as it excludes a major role for BST-2 in restricting viral release and instead, impli-
cates a pro-viral role for BST-2. One explanation for this is the potential role for BST-2 in
enhancing, rather than inhibiting, viral entry. This is reported for cytomegalovirus, where
BST-2 exerts a reverse-tethering mechanism to promote entry [43]. Note, however, that we
find no evidence of BST-2 promoting infectious entry of IAV, given that BST-2-deficient AEC
and/or macrophages are equally susceptible to infection compared to WT cells. How BST-2
acts to promote, rather than inhibit, IAV release remains to be determined. Regardless, our
infection studies revealed similar kinetics of weight loss and viral replication in BST-2-deficient
and WT mice. Therefore, in the mouse, BST-does not have a major impact on IAV infection
outcomes in vivo.

Together, our data do not support a role for endogenous BST-2 as a major factor restricting
infectious entry of primary murine IAV into target cells or in limiting the release of newly

2-deficient (BST-2-/-) mice were incubated with the indicated strain of IAV for 1 hour at 37°C, washed to
remove excess virus and cultured. AEC were infected at a MOI of 1 of HKx31, Brazil/78 and Sol Is/06 and
macrophages infected at a MOI 5 for HKx31 and a MOI of 50 for Brazil/78. Culture supernatants were
removed at 2 hours, or at 8, 24 or 48 hours as indicated, clarified by centrifugation and titres of infectious virus
were determined by plaque assay on MDCK cells. Data is displayed as viral titer (log10PFU/ml) and represent
the mean (± 1 SD) from triplicate samples. Data is representative of 2 independent experiments. n.s. = no
significant difference, *** p < 0.001, two-way ANOVA followed by Bonferroni analysis.

doi:10.1371/journal.pone.0142925.g003
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Fig 4. Lack of BST-2 does not alter the susceptibility of mice to IAV infection or the ability of IAV to
replicate in the airways. (A) Peripheral blood from wild type and BST-2-/- mice was screened by the
Advia2120 automated hematology analyzer. Each symbol represents an individual mouse and the bar
indicates the mean. n.s. = no significant difference, p = > 0.05, two way ANOVA followed by Bonferroni
analysis. (B) Wild type and BST-2-/- mice were infected with either 102 PFU or 104 PFU of HKx31 via the
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synthesized virions from infected cells. In conclusion, based on our studies in the moue model
of infection, it is likely that murine IAV infection and replication can be inhibited by the (com-
bined) action of a number of host molecules, of which BST-2 may contribute only a minor role.
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