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Association between serotonin transporter genotype, brain
structure and adolescent-onset major depressive disorder:
a longitudinal prospective study
K Little1,2,3, CA Olsson3,4, S Whittle5,6, GJ Youssef1,7, ML Byrne1, JG Simmons1, M Yücel7, DL Foley5 and NB Allen1,3,5,8

The extent to which brain structural abnormalities might serve as neurobiological endophenotypes that mediate the link between
the variation in the promoter of the serotonin transporter gene (5-HTTLPR) and depression is currently unknown. We therefore
investigated whether variation in hippocampus, amygdala, orbitofrontal cortex (OFC) and anterior cingulate cortex volumes at age
12 years mediated a putative association between 5-HTTLPR genotype and first onset of major depressive disorder (MDD) between
age 13–19 years, in a longitudinal study of 174 adolescents (48% males). Increasing copies of S-alleles were found to predict smaller
left hippocampal volume, which in turn was associated with increased risk of experiencing a first onset of MDD. Increasing copies of
S-alleles also predicted both smaller left and right medial OFC volumes, although neither left nor right medial OFC volumes were
prospectively associated with a first episode of MDD during adolescence. The findings therefore suggest that structural
abnormalities in the left hippocampus may be present prior to the onset of depression during adolescence and may be partly
responsible for an indirect association between 5-HTTLPR genotype and depressive illness. 5-HTTLPR genotype may also impact
upon other regions of the brain, such as the OFC, but structural differences in these regions in early adolescence may not
necessarily alter the risk for onset of depression during later adolescence.
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INTRODUCTION
Depressive disorders are common and debilitating, have a
multifaceted etiology and often emerge during adolescence.1,2

Recent efforts to understand the underlying biological basis of
susceptibility to depression have focused on genetic risk factors.3,4

However, comprehensive genome-wide association studies have
had little success in identifying risk loci, with no replicated findings
to date.5 Increasingly, researchers are returning to more theore-
tically guided approaches based on biological systems implicated
in depression. Such an approach can extend from candidate gene
to whole-pathway analyses.6,7 It is widely accepted that abnormal
serotonergic function is implicated in the onset and course of
depressive disorders.8 The serotonin transporter gene (SLC6A4,
synonyms: 5-HTT, SERT) controls transporter enzyme production
and is a key regulator of serotonergic neurotransmission.
Furthermore, the effects of genetic variation at this loci have
been shown to interact with environmental stressors, such as child
maltreatment,9,10 however, this has not been consistently
demonstrated,11 suggesting a need for further refinement of
research methodologies.
Detection of genetic risk could be enhanced by consideration of

endophenotypes that occur at an intermediate stage in the causal
pathway from a distal gene to the overt expression of disease.12,13

Brain structure and brain function have been identified as
particularly promising endophenotypes for depression, given the

findings suggesting they are highly heritable14,15 and the reported
associations between the volume and activity of specific brain
regions and the disorder.16,17 In particular, variation in the volume
of brain structures involved in emotional processing and stress
responses, including the hippocampus, anterior cingulate cortex
(ACC), orbitofrontal cortex (OFC) and amygdala, have been
theorized to have a role in mood disorders.18,19 Specifically,
volume reductions in the hippocampi,20–23 the ACC24 and the
OFC23,25 have been consistently documented in patients with
major depressive disorder (MDD). Smaller hippocampal and ACC
volumes have also been linked to poorer clinical outcomes
longitudinally.26–28 Studies of the association between amygdala
volume and depression have been somewhat more conflicting,
with a recent meta-analysis indicating volume deficits in MDD
patients compared to healthy controls,29 although some earlier
meta-analyses have indicated no structural difference between
these groups.23,30 These brain regions are also densely innervated
by serotonergic neurons originating primarily in the dorsal and
median raphe nuclei.31 Emerging evidence from imaging genetics
studies of mood disorders suggests that variations in serotonergic
neurotransmission, due in part to 5-HTTLPR genotype, may be
associated with variations in these brain structures, although
current findings present a somewhat inconsistent picture.18

Findings on the hippocampus have been equivocal, with the
majority of studies failing to identify differences in hippocampal
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volumes associated with the 5-HTTLPR genotype in healthy
individuals (for example, Eker et al.,32 Taylor et al.,33 Frodl
et al.34,35). However, one study with a large sample has reported
that individuals homozygous for the S-allele had significantly
smaller left hippocampal volumes than those homozygous for the
L-allele.36 With regard to MDD, there have been reports of
smaller,32 larger34–36 and equivalent volumes33 in S-allele carriers
compared to their L-allele homozygous counterparts.
There have been more consistent reports of smaller ACC

structures in psychiatrically healthy S-allele carriers compared to
L-homozygous individuals.36–38 No apparent genotypic effects
have been observed in individuals currently experiencing MDD;
however, MDD patients homozygous for the L allele have been
found to have reduced ACC volumes compared to psychiatrically
healthy controls with the same genotype.36

Furthermore, there is some evidence suggesting decreased
amygdala volumes (as well as reduced functional connectivity
between the amydgala and the perigenual ACC) in S-allele
carriers.37,39 However, opposite40 and null38 findings have also
been documented, albeit in smaller samples. Evidence of an
impact of 5-HTTLPR on OFC volumes in humans is currently
limited, with only one study to date showing S-allele-associated
volume deficits in the left OFC, in psychiatrically healthy
individuals.38

A key unresolved issue is the extent to which these brain
structural abnormalities might serve as endophenotypes that
mediate the putative link between 5-HTTLPR and depression. In
general, a given variable may be regarded as a mediator to the
extent that it accounts for the relationship between the predictor
and the outcome. Because endophenotypes occur at an
intermediate stage in the causal pathway from a distal gene to
overt expression of disease, a mediation model is often assumed
(for example, Waldman,41 Munafò,42 and Hyde et al.43) but has
rarely been tested explicitly within the field of imaging genetics
(see Nikolova et al.44 for a notable exception). To our knowledge,
there are no imaging genetic studies of this nature that have
examined depression as an outcome. Studies so far have rather
remained siloed, investigating either gene–brain structure or brain
structure–depression relationships, and have not systematically
tested mediation relationships within the same sample. There are
also a limited number of longitudinal studies that have been able
to examine whether neuroanatomic abnormalities are prospec-
tively associated with later occurrence of the disorder (for
example, Rao et al.45).
Thus, the purpose of the current study was to examine whether

5-HTTLPR genotypes predict variations in brain volumes in early
adolescence, and whether these variations in turn prospectively
predicted an onset of MDD in a 6-year follow-up period. We
directly tested the hypotheses that (i) S-allele carriers would
demonstrate reduced volumes of the hippocampus, ACC,
amygdala and OFC, (ii) that smaller volumes of each of these
structures would be prospectively associated with MDD onset,
and, critically, (iii) that variation in brain structure would
statistically mediate the association between 5-HTTLPR genotype
and MDD onset.

MATERIALS AND METHODS
Participants and procedures
The current analyses are based on a subsample of 174 participants (71% of
the total sample, 83 male) from the longitudinal Orygen Adolescent
Development Study (ADS), conducted in Melbourne, Australia, who had
provided a genetic sample during the course of their participation. The
recruitment and screening of ADS participants has been reported
previously.46 These analyses draw on all four waves of ADS data collection:
wave 1 (W1; M age 12.7 years, range 11.4–13.7 years) included a structural
magnetic resonance scan and a diagnostic interview that assessed for
current and lifetime mood disorders to exclude participants with a history

of an episode of major depression. The diagnostic interview was repeated
at waves 2, 3 and 4 (W2–W4), which were conducted ~ 2.5, 4 and 6 years
after W1, respectively. The W2–W4 diagnostic interviews assessed for
current MDD and any new episodes since the date of the last assessment.

Measures
MDD onset. MDD was measured at each of the four study waves by the
Kiddie-Schedule for Affective Disorders and Schizophrenia for School-Age
Children, Present and Lifetime version (K-SADS-PL), 47 a semistructured
diagnostic interview that assesses current and lifetime symptoms and
diagnoses of Axis I disorders in youths aged 6–18 years. Diagnostic
interview data from each of the time points were used to construct a
variable indicating whether participants had experienced their first
occurrence of an episode of MDD between the W1 and W4 time points.
Owing to attrition, this variable was able to be calculated for 138 of the 174
participants in the current study, and there were no differences between
these participants and the 37 participants with missing data according to
gender, χ2(1) = 0.25, P40.05, socio-economic status, t[172] =− 0.99,
P40.05, and W1 depression symptoms (as measured by the Centre for
Epidemiological Symptoms−Depression scale), t[160] = 0.77, P40.05. A
total of 36 participants had experienced their first onset of MDD between
W1 and W4. Of these participants, 30 met criteria for one (or more) other
lifetime psychiatric disorders compared to 34 of the 101 participants who
did not experience an onset of MDD during adolescence (Supplementary
Table 1).

Neuroimaging
One-hundred and twenty-five participants of the current sample
completed a structural magnetic resonance imaging (MRI) scan at W1,
using a 3-Tesla GE scanner. Details regarding image acquisition, image pre-
processing and tracing protocols for morphometric analysis can be found
in Supplementary Information. Briefly, the guidelines for tracing the
amygdala and hippocampus were adapted from those described by
Velakoulis et al.48,49 Watson et al.’s protocol50 was used to separate the
amygdala from the hippocampus (see Supplementary Figure 1). The
boundaries of the OFC were based on a previously published method by
Riffkin et al.51 In accordance with Bartholomeusz et al.,52 medial and lateral
OFC regions were separated with the medial orbital sulcus53 (see
Supplementary Figure 2). The boundaries of the ACC were based on a
previously published method,54 which defines separate limbic and
paralimbic regions according to individual differences in the morphology
of the cingulate, paracingulate and superior rostral sulci (see
Supplementary Figure 3).
Interrater and intrarater reliabilities were assessed by means of the

intraclass correlation coefficient (absolute agreement) using 10 brain
images from a separate MRI database established for this purpose.
Intraclass correlation coefficient values were deemed acceptable for all
ROIs (29 of the 36 ROIs were o0.90 and none o0.75), as shown in
Supplementary Table 1. All brain structural measures were corrected for
whole-brain size separately by gender by means of a covariance
adjustment method55 and converted from mm3 to cm3.

Genotyping
Saliva was collected from participants for genetic analysis using an
ORAGENE saliva pot (www.dnagenotek.com). The methods used for PCR
amplification and visualization by gel electrophoresis were as described by
Edenberg and Reynolds.56 The genotype distribution for 5-HTTLPR (LL:
n= 54, SL: n= 83, SS: n=37) was in Hardy–Weinberg equilibrium (χ2(1,
N=174) = 0.24, NS).

Statistical analysis
We used path analysis to test a multiple mediator model, with serotonin
transporter genotype as an ordinal independent variable (IV), the left and
right structures of a specific brain region of interest (corrected for whole
brain volume) as continuous mediators, and MDD onset as the binary
dependent variable (DV). Alterations in the normal asymmetry of brain
regions, particularly limbic structures such as the hippocampus, have been
implicated in depression, generally evidenced by greater reductions in the
left, compared to the right, structure (for example, Mervaala et al.57 and
Bremner et al.58). Research, however, has tended to examine left and right
structures separately, making it difficult to know whether asymmetrical
changes have occurred, or whether there are bilateral changes that
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happened to be significant for only one side. While an investigation of the
presence of asymmetry was not a focus of the current study, we included
left and right structures of a specific region of interest in the same path
model to better understand the relative contribution of each structure to
the risk for depression. Acceptable tolerance (40.2) and variation inflation
factor (o5) values indicated no significant multicolinearity between the
left and right structures for any of the regions of interest. Separate
mediation analyses were conducted for the hippocampus, the amygdala,
the medial OFC, the lateral OFC, and the limbic and paralimbic ACC. Path
models were estimated in Mplus59 using weighted least squares with a
mean- and variance-adjusted chi-square test statistic (WLSMV). Fit statistics
are not reported as the models of interest were just identified.
A hypothesized model outlining the tests for mediational effects is

presented in Figure 1. When both the relationship between the IV and the
mediator (the a path) and the relationship between the mediator and the
DV controlling for the IV (the b path) were significant, mediation was tested
by assessing the significance of the cross product of the coefficients for
these two paths (that is, the ab cross product). The product of coefficients
method has been shown to yield more accurate results compared to other
methods when the DV is binary,60 and also allowed us to test for significant
mediation in the absence of a direct effect of the IV on the DV.
The current analyses were based on 5000 bootstrapped samples and

bias-corrected bootstrapped parameter estimates were used to test the
significance level of the indirect effects, according to current recommen-
dations for determining mediation.61–64 If the 95% and 90% confidence
intervals for these estimates of an indirect effect do not contain 0, it can be
concluded that the indirect effect is statistically significant at the 0.05 and
0.10 level, respectively.65 As both the left and riight structures of a specific
brain region were included in the model, two specific indirect effects (aLbL
and aRbR) were investigated. Given that the left and right volumes of a

particular brain region would be expected to be related, their residuals
were covaried in the model. Additional mediational analyses that included
the covariates of adolescent gender, ethnicity, full-scale IQ and age at time
of the MRI scan were conducted, but did not alter the pattern of results
and hence are not reported.
Listwise deletion because of missing data would have resulted in only 98

cases remaining in the analysis due to non-participation in either the MRI
at wave 1 or the psychiatric interview at waves 2, 3 or 4. Little’s MCAR
test66 was non-significant, χ2(163) = 179.54, P= 0.178. We therefore used
pairwise deletion (the default when using the WLSMV estimator in Mplus)
to account for missing data. Pairwise deletion has been shown to be
unbiased when data are missing completely at random.67

RESULTS
Table 1 presents mean brain volumes for each brain region
considered in the current analyses before correction for whole
brain volume.
For all analyses, the total effect of 5-HTTLPR on MDD onset

(path c, that is, not controlling for ROI volumes) was non-
significant (95% CI: − 0.49 to 0.14, β=− 0.18, s.e. = 0.16, P40.05).
Each of the direct associations between 5-HTTLPR and MDD onset
(path c′, that is, controlling for the relevant ROI volumes), 5-
HTTLPR and the ROI volumes (path a), as well as between the ROI
volumes and MDD onset (path b), can be seen in Table 2. In all
path models, the direct effect of 5-HTTLPR on MDD onset (path c′)
was non-significant.

Figure 1. Hypothesized model outlining the tests for meditational effects. Path a (L or R) is the effect of 5-HTTLPR on the volume of a particular
(left or right) brain region of interest (ROI), path b (L or R) is the effect of the volume of a particular (left or right) ROI on major depressive
disorder (MDD) onset, path c is the total effect of 5-HTTLPR on MDD onset (that is, not controlling for left and right region of interest (ROI)
volume), and path c is the direct effect of 5-HTTLPR on MDD onset (that is, controlling for left and right ROI volume).

Table 1. Means and standard deviations (s.d.) of regional brain volumes (before correction for whole brain volume) in cm3

Full sample
(N= 125)

MDD onset status Serotonin transporter genotype

M s.d. MDD onset
(n=26)

No MDD onset
(n= 73)

SS (n=29) SL (n= 59) LL (n= 37)

M s.d. M s.d. M s.d. M s.d. M s.d.

Left hippocampus 2.77 0.33 2.70 0.35 2.77 0.33 2.65 0.25 2.80 0.35 2.81 0.35
Right hippocampus 2.95 0.34 2.94 0.35 2.91 0.33 2.88 0.28 2.96 0.36 2.99 0.35
Left amygdala 1.89 0.26 1.86 0.25 1.89 0.25 1.89 0.23 1.89 0.28 1.88 0.26
Right amygdala 1.83 0.28 1.75 0.24 1.85 0.29 1.85 0.27 1.85 0.26 1.80 0.31
Left medial OFC 7.55 1.80 7.13 1.47 7.62 2.00 6.96 1.78 7.58 1.60 7.94 2.05
Right medial OFC 7.19 1.71 6.80 1.27 7.27 1.87 6.62 1.92 7.16 1.54 7.66 1.70
Left lateral OFC 12.41 3.04 11.81 3.31 12.63 3.06 12.00 3.83 12.70 2.46 12.26 3.25
Right lateral OFC 13.33 2.75 13.00 2.63 13.50 2.92 13.11 3.07 13.57 2.33 13.11 3.16
Left limbic ACC 4.98 1.68 5.44 1.38 4.77 1.68 4.55 1.55 5.02 1.67 5.27 1.79
Right limbic ACC 5.77 1.91 5.51 1.99 5.99 1.87 5.98 1.79 5.60 2.01 5.88 1.88
Left paralimbic ACC 5.33 1.99 4.73 1.72 5.47 2.14 5.57 2.23 5.22 2.01 5.33 1.77
Right paralimbic ACC 4.79 1.80 4.79 1.55 4.67 1.89 4.67 2.02 4.91 1.82 4.67 1.63

Abbreviations: ACC, anterior cingulate cortex; MDD, major depressive disorder; OFC, orbitofrontal cortex.
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Increasing copies of the S-allele predicted smaller left hippo-
campal volume (path aL). Smaller left hippocampal volumes also
predicted increased risk for MDD onset (path bL). Bias-corrected
95% confidence intervals showed that smaller left hippocampal
volume significantly mediated the relationship between S-allele
copies and risk for MDD onset (indirect effect = 0.14, 95%
CI = 0.009–0.42, s.e. = 0.10).
The association between S-allele copies and right hippocampal

volume (path aR) was not significant; however, larger right
hippocampal volumes were predictive of increased risk for
depression (path bR).
Increasing copies of the S-allele of 5-HTTLPR predicted both

smaller left and right medial OFC volumes (paths aL and aR);
however, the associations between left medial OFC volume and
MDD onset (path bL) and between right medial OFC volume and
MDD onset (path bL) were non-significant; therefore mediation
analyses were not conducted.
There was a trend (Po0.10) towards increasing copies of the

S-allele predicting smaller left limbic ACC volume, and a significant
relationship (Po0.05) between smaller left limbic ACC volume
and decreased risk for MDD onset. Bias-corrected 90% confidence
intervals indicated that left limbic ACC volume mediated the
relationship between serotonin transporter genotype and risk for

MDD onset (indirect effect =− 0.06, 90% CI: − 0.17 to − 0.01, s.
e. = 0.05), which is statistically significant at the 0.10 level. There
were no significant findings relating to the right limbic ACC.
Given these results, further analyses were conducted on rostral,

dorsal and ventral regions of the limbic ACC, which indicated that
the finding obtained for the left limbic ACC was localized to the
rostral region, such that a greater number of S-alleles was
associated with smaller volumes of the left rostral limbic ACC, and
that, in turn, smaller rostral limbic ACC volumes were associated
with decreased risk for depression onset at trend level. The
indirect pathway was also significant at trend level according to
bias-corrected confidence intervals (indirect effect =− 0.06, 90%
CI: − 0.17 to − 0.003, s.e. = 0.05), suggesting possible mediation of
the relationship between serotonin transporter genotype and risk
for MDD onset by rostral limbic ACC volume. There were no
significant findings relating to the right rostral limbic ACC. 5-
HTTLPR did not predict left or right dorsal or ventral limbic ACC
volumes, nor were these volumes related to risk for MDD onset.
Mediation analyses for these regions were therefore not
conducted.
5-HTTLPR did not predict left or right amygdala volume, left or

right lateral OFC volumes, and left or right paralimbic ACC volume,

Table 2. Path model of the effects of 5-HTTLPR genotype and brain ROIs on MDD onset

b s.e. β P

Hippocampus
5-HTTLPR → MDD onset (path c′) − 0.21 0.17 − 0.15 0.22
5-HTTLPR → left hippocampus (path a) − 0.08 0.03 − 0.18 0.03
Left hippocampus → MDD onset (path b) − 1.79 0.79 − 0.53 0.02
5-HTTLPR → right hippocampus (path a) − 0.05 0.04 − 0.12 0.16
Right hippocampus → MDD onset (path b) 2.10 0.72 0.63 0.004

Amygdala
5-HTTLPR → MDD onset (path c′) − 0.17 0.16 − 0.12 0.30
5-HTTLPR → left amygdala (path a) 0.01 0.02 0.04 0.66
Left amygdala → MDD onset (path b) 1.44 1.08 0.31 0.18
5-HTTLPR → right amygdala (path a) 0.02 0.03 0.07 0.42
Right amygdala → MDD onset (path b) − 1.23 0.88 − 0.29 0.16

Medial OFC
5-HTTLPR → MDD onset (path c′) − 0.21 0.17 − 0.15 0.23
5-HTTLPR → left medial OFC (path a) − 0.46 0.21 − 0.21 0.03
Left medial OFC → MDD onset (path b) − 0.02 0.15 − 0.04 0.88
5-HTTLPR → right medial OFC (path a) − 0.51 0.19 − 0.25 0.006
Right medial OFC → MDD onset (path b) − 0.04 0.16 − 0.05 0.83

Lateral OFC
5-HTTLPR → MDD onset (path c′) − 0.19 0.16 − 0.13 0.25
5-HTTLPR → left lateral OFC (path a) − 0.10 0.37 − 0.03 0.79
Left lateral OFC → MDD onset (path b) − 0.06 0.11 − 0.15 0.59
5-HTTLPR → right lateral OFC (path a) − 0.01 0.32 − 0.003 0.98
Right lateral OFC → MDD onset (path b) 0.06 0.12 0.14 0.61

Limbic ACC
5-HTTLPR → MDD onset (path c′) − 0.12 0.17 − 0.08 0.49
5-HTTLPR → left limbic ACC (path a) − 0.39 0.20 − 0.17 0.06
Left limbic ACC → MDD onset (path b) 0.16 0.08 0.27 0.04
5-HTTLPR → right limbic ACC (path a) − 0.33 0.22 0.01 0.87
Right limbic ACC → MDD onset (path b) − 0.02 0.08 − 0.04 0.79

Paralimbic ACC
5-HTTLPR → MDD onset (path c′) − 0.17 0.16 − 0.12 0.29
5-HTTLPR → left paralimbic ACC (path a) 0.13 0.23 0.05 0.58
Left paralimbic ACC → MDD onset (path b) − 0.09 0.08 − 0.16 0.25
5-HTTLPR → right paralimbic ACC (path a) 0.05 0.22 0.02 0.82
Right paralimbic ACC → MDD onset (path b) 0.09 0.08 0.15 0.28

Abbreviations: ACC, anterior cingulate cortex; MDD, major depressive disorder; ROI, region of interest.
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nor were these volumes related to risk for MDD onset. Mediation
analyses were therefore not conducted for these ROIs.
Scatter plots of significant gene–ROI and ROI–MDD onset

associations are provided in Supplementary Figures 4.

DISCUSSION
The aim of the current study was to investigate whether the
volume of the hippocampus, ACC, amygdala and OFC mediated
an association between variation in the serotonin transporter
gene and a first onset of MDD in a large sample of adolescents
using a longitudinal, prospective design. The findings are
summarized in Figure 2. Our results support the role of left
hippocampal volume deficits in early adolescence as salient
mediators of the link between serotonin transporter genotype and
increased risk for MDD onset in later adolescence. Specifically, we
found that an increasing number of S-allele copies were
associated with smaller left hippocampal volume, and smaller left
hippocampal volume was in turn associated with increased risk of
experiencing a first onset of MDD. Right hippocampal volume did
not significantly mediate the pathway from 5-HTTLPR genotype to
MDD onset, although larger right hippocampal volume did predict
an increased risk of a depressive episode.
These results provide evidence that neurobiological factors may

partly underlie the link between serotonin transporter genotype
and depression. Furthermore, our finding that the S-allele
predicted smaller left hippocampal volumes in early adolescence
prior to illness onset is consistent with previous findings of a
volume deficit in these structures in S-allele carriers.32,33,36 Our
finding that volume reductions in the hippocampus are associated
with depression onset, but also predate its occurrence, also
concords with suggestions that hippocampal volume deficits are
one of the most consistently observed structural aberrations in
depression,19–23 and that this anomaly may represent a vulner-
ability factor that is present prior to emergence of mood
disorder.45,68

The hippocampal region has been found to have moderate
concentrations of the serotonin transporter.69 An in vivo positron
emission tomography study has revealed a strong leftward
asymmetry in serotonin transporter distribution in the
hippocampus,70 suggesting greater expression of the serotonin
transporter gene in the left hippocampal structure. Higher
concentrations of serotonin transporters in the left compared to
the right hemisphere may explain why serotonin transporter
genotype was predictive of left hippocampal volume only in the
current study. The hippocampus is known to be involved in the
regulation of the stress response, specifically in the inhibition of
the hypothalamic–pituitary–adrenal (HPA) axis.71–73 Smaller

hippocampal volumes associated with S-carrier status may affect
negative feedback inhibition of the HPA axis, which could result in
HPA hyperactivity. Alternatively, the S-allele may be associated
with greater stress responsivity in the form of higher basal cortisol
or a greater cortisol response,74 which may have neurotoxic,
atrophying effects on the hippocampus,75 in turn increasing the
risk for depression.
The finding that left and right volumes have opposite effects on

the onset of MDD may initially seem inconsistent with previous
studies that have found bilateral reductions in hippocampal
volume that were predictive of depression. As far as we are aware,
however, our study is unique in having considered the relative
contribution of the left and right hippocampi to depression (that
is, controlling for hippocampal volume in one hemisphere while
assessing the effect of the volume in the other hemisphere). This
renders it difficult to directly compare our findings with those of
previous studies, which have focused on absolute volume in each
hemisphere. It may still be worth noting that a number of these
studies documented substantially greater left hippocampal
volume reductions compared to the right in depression,57,58

including child- or adolescent-onset depression,76,77 raising the
possibility that the presence of asymmetry in this region may have
a role in the disorder. The implication of the finding of a difference
in the directionality of the relationship between the left and right
hippocampal volume with depression onset is unclear but is
intriguing given suggestions that asymmetries in the limbic
system, including the hippocampus, are associated with hemi-
sphere asymmetries,78 and there are suggestions that the right
hemisphere may be more dominant in processing of negative
emotions while the left hemisphere may be more dominant in
processing of positive emotions.79,80 It is not implausible that
changes to asymmetry may have consequences for emotional
processing that alters the risk for depression.
Possession of a greater number of S-allele copies also predicted

both smaller left and right medial OFC volumes, although neither
medial nor lateral OFC volumes (whether on the left or on the
right) were prospectively associated with a MDD during adoles-
cence. The finding that serotonin transporter genotype was
associated with variation in medial but not lateral OFC volumes is
consistent with the fact that the medial region of the OFC shows
strong connections to limbic structures involved in emotion
processing and reward, such as the amygdala, dorsolateral
prefrontal cortex and ACC.81,82 One factor that may be relevant
to the lack of a prospective relationship between OFC volume and
onset of depression is the time at which OFC volumes were
measured. The OFC, which is thought to have an important role in
inhibitory control and reward-based decision-making,83 under-
goes significant remodelling throughout adolescence and early

Figure 2. Summary of significant findings. A greater S-allele load was found to predict smaller left hippocampal volume, smaller left rostral
limbic anterior cingulate cortex (ACC) volume, and smaller left and right medial orbitofrontal cortex (OFC) volumes. Smaller left but larger
right hippocampal volumes predicted an increased probability of major depressive disorder (MDD) onset. There was a trend for smaller left
rostral ACC volume to be associated with a decreased probability of MDD onset.
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adulthood,84 and it has been suggested that abnormalities in the
maturation in this region may contribute to the etiology of
depression.85 Given that the OFC has not yet fully developed at
11–13 years old, it is possible that differences in OFC volume
across adolescence may be more predictive of depression at a
later age.
There was also evidence that an increasing number of S-allele

copies predicted smaller left (but not right) rostral limbic ACC
volume, a finding that accords with the results of previous
investigations of this particular gene–brain linkage.37,38 Somewhat
surprisingly, there was a trend for smaller left (but not right) rostral
limbic ACC volume to be associated with decreased risk of
depression onset during adolescence (or, alternatively, that larger
left rostral limbic ACC volumes were associated with increased risk
for depression onset), and the mediating pathway from the 5-
HTTLPR genotype to the left rostral limbic ACC volume to
depression onset was also significant at the trend level. The
presence of an association between larger rostral limbic ACC
volume and depression onset in the current study is somewhat
inconsistent with past research, which has generally suggested
that volume deficits are associated with depression.24 It is
important to note, however, that evidence supporting the
presence of smaller ACC volumes prior to illness onset comes
exclusively from a few studies that have examined brain structure
in high-risk samples, which are defined by the presence of a family
history of depressive disorder (for example, Boes et al.).86

The lack of evidence supporting amygdala volume as an
intermediate phenotype between serotonin transporter gene and
depression onset is perhaps somewhat unsurprising, given the
heterogeneous findings regarding the association between 5-
HTTLPR and amygdala structure,37–40 and between amygdala
structure and depression.23,30 These null findings may reflect a
need to take additional mediating or moderating factors, such as
psychosocial risks (for example, stressful life events, trauma, family
environment and peer relationships), into account. Our research
group has previously found that amygdala volume and parenting
interact to predict depressive symptoms.87 The structure of the
amygdala is thought to be highly plastic to environmental
changes and behavioral manipulations,88–90 and there is also
indication that alterations in amygdala volume may occur during
the course of depression,19,30,91 raising the possibility that
structural differences in this region could represent the epiphe-
nomena of, or consequential change associated with, the disorder
rather than a premorbid vulnerability factor.
A number of study limitations must be acknowledged. First,

examining brain structure in an adolescent sample at only one
time point renders it impossible to determine whether these
findings reflect stable differences present prior to illness onset or
abnormal developmental changes that emerge during early
adolescence. Second, the current investigation also did not take
into account the contribution of environmental factors, such as
stressful life events, trauma, parenting and peer relationships to
these associations. Hippocampal volume has been found to be
affected by environments that are regarded as often having an
etiological role in the development of depression, including early
life adversity, such as abuse or neglect,92,93 as well as more
normative caregiving experiences.94 Both increased depression
risk 95 and hippocampus diminishments 96,97 have been docu-
mented in S-carriers who have experienced severe childhood
adversity. Future studies may wish to consider how potential
mediating paths such as those documented here might be
moderated by these relevant developmental risk or protective
factors. A third point for consideration is the higher rates of other
lifetime psychiatric conditions in the group of participants who
experienced an onset of MDD compared with participants who
did not. Although comorbidity with depression is extremely
common (for example, Merikangas et al.,2 and Rohde et al.98) it
limits our ability to attribute the observed relationships to

depression specifically as opposed to the presence of psycho-
pathology more generally. Finally, it should be noted that,
although these results would not survive Bonferroni adjustment,
the magnitude of the difference in left hippocampus volume
between individuals who experienced an onset of depression and
those who did not is comparable to that found by a meta-analysis
examining hippocampal atrophy in first episode depression
patients.22 Given the large effect sizes required to survive the
loss of power associated with such a conservative test as the
Bonferroni adjusted significance test99,100 and that the effects of
individual genes on the risk for psychiatric disorder tend to be
small,101 we would contend that uncorrected results retain
valuable information that would otherwise potentially be lost to
Type 2 error.
In summary, despite much supposition about the extent to

which brain structures involved in the stress response and
emotion regulation might serve as intermediate phenotypes in
the pathway from the serotonin transporter gene to depression,
for example, Savitz and Drevets,17 and Scharinger et al.18), these
indirect relationships had not been formally assessed prior to the
present study. Our results provide evidence that during early
adolescence structural abnormalities in the left hippocampus and,
potentially, the left rostral limbic ACC may exist prior to onset of
depression and may be partly responsible for the link between 5-
HTTLPR genotype and depressive illness.
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