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Avalanching strain dynamics during the hydriding
phase transformation in individual palladium
nanoparticles
A. Ulvestad1,2, M.J. Welland2, S.S.E Collins3, R. Harder4, E. Maxey4, J. Wingert1, A. Singer1, S. Hy5, P. Mulvaney3,

P. Zapol2 & O.G. Shpyrko1

Phase transitions in reactive environments are crucially important in energy and information

storage, catalysis and sensors. Nanostructuring active particles can yield faster charging/

discharging kinetics, increased lifespan and record catalytic activities. However, establishing

the causal link between structure and function is challenging for nanoparticles, as ensemble

measurements convolve intrinsic single-particle properties with sample diversity. Here we

study the hydriding phase transformation in individual palladium nanocubes in situ using

coherent X-ray diffractive imaging. The phase transformation dynamics, which involve the

nucleation and propagation of a hydrogen-rich region, are dependent on absolute time

(aging) and involve intermittent dynamics (avalanching). A hydrogen-rich surface layer

dominates the crystal strain in the hydrogen-poor phase, while strain inversion occurs at the

cube corners in the hydrogen-rich phase. A three-dimensional phase-field model is used to

interpret the experimental results. Our experimental and theoretical approach provides a

general framework for designing and optimizing phase transformations for single nanocrys-

tals in reactive environments.
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T
he palladium hydride system is a prototypical model useful
for studying the fundamentals of solute intercalation,
interaction and phase transformations, relevant to a broad

class of systems1–3. The system is also technologically important in
many energy-based applications, including hydrogen purification
and storage, memory switching and hydrogen embrittlement4,5.
Consequently, the system has been intensely studied6. Palladium
initially forms a dilute interstitial solid solution with H, known as
the a phase, whose lattice constant expands slightly as the H
concentration increases. As the H concentration increases further,
a phase transformation to the lattice-expanded b phase occurs1.
The b phase lattice then expands further as more hydrogen is
incorporated5. The Pd sublattice maintains the face-centered cubic
structure in both phases. Despite intense investigation7–9, there
are many conflicting results and open questions surrounding both
the new phase nucleation (that is, coherent versus incoherent a–b
interface) and growth (that is, sharp transition or two-phase
coexistence) in addition to the role of surface effects. Ensemble
measurements suggest that the phase transformation from the
a to b phase is continuous10 and exhibits two-phase
coexistence11,12, consistent with the observed isotherm plateau
and the Gibbs phase rule13. However, a recent single-particle
study discovered sharp a–b transitions in 20 nm nanocubes14.
Although recent single-particle measurements eliminated size
diversity14,15, strain information, which is crucially important in
understanding the catalytic and solubility properties of Pd
nanocrystals16–19, was unresolved. An understanding of three-
dimensional (3D) strain fields during the hydriding phase
transformation, resolved via coherent X-ray diffractive imaging
(CXDI), could thus aid in developing improved catalysts, storage
media and sensors in the future.

CXDI is an X-ray imaging technique capable of resolving 3D
strain distributions in reactive environments under both in situ
and operando conditions20–23. In Bragg geometry, scattered
coherent X-rays are recorded in the far-field using X-ray sensitive
area detectors. Phase-retrieval algorithms24 are then used to
reconstruct the 3D electron density and lattice displacement fields
in single nanocrystals23,25–27. The penetrating power of high-
energy X-rays makes CXDI an ideal probe for studying operating
devices28, while the ability to resolve the full 3D displacement
field is essential for understanding the complex role of
crystallographic facets29, defects30,31 and surface effects29 in
nanoscale dynamics.

In this article, we use CXDI to reveal strain evolution during
the hydriding phase transformation in individual palladium
nanocubes. By comparing experimental results with a 3D phase-
field model of the process, we corroborate strain distributions
with concentration distributions. The hydrogen-poor phase strain
is dominated by a residual hydrogen-rich surface layer while the
hydrogen-rich phase strain is dominated by elastic effects. Finally,
the time–time displacement field correlations exhibit signs of
aging and avalanching. We begin with the discussion of the
hydrogen-rich b phase followed by the discussion of the
hydrogen-poor a phase (which has undergone one cycle of
hydrogen exposure) before concluding with the phase transfor-
mation dynamics.

Results
Experimental description. The experimental set-up is shown
schematically in Fig. 1. Focused coherent X-rays are incident on a
gas environmental X-ray cell (Supplementary Fig. 1) that contains
palladium nanocubes32 on a silicon substrate (Fig. 1b and
Supplementary Fig. 2). Figure 1a shows an isosurface rendering
of a (111) diffraction pattern from an individual palladium
nanocube. The diffraction intensity is proportional to the Fourier

transform of the electron density33,34 and thus is similar
to the Fourier transform of a cube. Well-defined fringes
indicate adequate oversampling of the diffraction intensity.
Two-dimensional slices of the raw experimental data for both
an a and b phase nanocube are shown in Supplementary Fig. 3.

From the 3D coherent diffraction data, we reconstruct both the
3D distribution of Bragg electron density, r(r), and the 3D lattice
displacement field along [111], u111(r) with 16 nm resolution
defined by the phase-retrieval transfer function (Supplementary
Fig. 4). In Bragg geometry, the reconstructed electron density is
due to atomic planes that satisfy the Bragg condition and is called
the Bragg electron density. Thus, portions of the crystal that do
not satisfy the Bragg condition appear missing (such as twin
domains35), although the physical electron density is present.
Figure 1c shows a representative example of both the shape and
u111 displacement field for a phase nanocubes. We observe no
evidence of dislocations, which manifest themselves as
singularities in the displacement field30,31.

The black arrow indicates the [111] direction is through a cube
corner, which is consistent with {100} cube faces. The displace-
ment field before and after 4 h of X-ray exposure shows negligible
changes (Supplementary Fig. 5). Figure 1d shows the evolution of
the single-particle’s average lattice constant, determined from the
scattering angle of the maximum intensity location in the 3D
diffraction data, as a function of time. At 10 min, a flow of H2(g)
is initiated that causes the particle to transform fully to the b
phase B110 min later. We further investigated the displacement
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Figure 1 | Imaging the hydriding phase transformation in Pd nanocubes

with coherent X-rays. (a) Isosurface rendering of the diffraction data

obtained from an a phase Pd nanocube. (b) Scanning electron microscopy

image of a Pd nanocube on a silicon substrate. (c) Reconstructed [111]

displacement field projected onto an isosurface drawn at constant electron

density. The [111] direction is shown by a black arrow. (d) The single-

particle lattice constant as a function of time, with the dashed black line

indicating when the partial pressure of H2(g) is increased from 0 to p0. The

shaded region indicates that two diffraction peaks were observed on the

detector. The yellow highlighted points correspond to the reconstructions

discussed in Figs 2–4.
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field structure by calculating a component of the strain field, the
compressive/tensile component along [111], in both the a and b
phase. Figure 2 shows the b phase strain distributions for a single
nanocube obtained by averaging over the yellow highlighted
states in Fig. 1d from 128 to 166 min.

Palladium nanocube strain is expected to be due to elastic
effects arising from surface stress and, potentially, compositional
inhomogeneity. Elastic strain is induced by the cube attempting
to minimize its surface energy by contracting its corners inward,
evolving towards a spherical geometry36. As Fig. 2 shows, the
corners along the projection direction, in this case [111], will be
compressed. Interstitial hydrogen also induces strain by
expanding the palladium lattice constant, which can be
modelled through Vegard’s law37.

Construction of the phase-field model. To understand the
contributions of these two effects, we constructed a phase-field
model based on the original Cahn–Hilliard work38–40. The free
energy of the particle is described by the free-energy functional:

F ¼
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where f is the free-energy density containing both the enthalpy
and the entropy, 1

2 sijEel
ij is the elastic energy density, p is the local

fraction of the b phase and 1
2k rpj j2 is the gradient energy

density41. The surface contribution includes the surface energy
(in the Lagrangian system), which is the product of an undilated
surface energy and a surface dilation term, and also includes an
additional stress accounting for the change in surface energy with
strain. Phase-field models have recently found use in describing
the properties of nanoscale insertion materials for Li-ion
batteries42,43. In particular, dynamics in phase-separating
cathodes, such as LiFePO4 and LiNi0.5Mn1.5O4, during charge

and discharge can be well described by appropriately accounting
for a variety of effects, including surface wetting44, elastic
energy45 and chemical kinetics46. For more details, please refer
to the Phase-Field Model section in the Methods section.

Strain in the hydrogen-rich phase. Figure 2a shows the strain
distributions measured in a b phase nanocube at four cross-sec-
tions at the spatial positions in the cube indicated in
Supplementary Fig. 6. The strain map shown is computed from
an average of the reconstructions corresponding to the high-
lighted points from 128 to 166 min in Fig. 1d. The b phase strain
distribution agrees well with the strain distribution computed by
the phase-field model shown in Fig. 2b. The primary differences
occur in slices z1 and z4, which are near the cube boundary along
the beam direction. This could indicate deviations of the
particle geometry from an ideal cube shape near these surfaces.
Figure 2c shows the corresponding relative hydrogen concentra-
tion map. Although a uniform hydrogen concentration field was
chosen as the initial condition for the simulation, the minimum
energy configuration is an inhomogeneous concentration field.
The compositional inhomogeneity manifests itself at the cube
corners, which have relatively less hydrogen compared to the
cube faces. The average composition for the particle in the
simulation is PdH0.6.

The other b phase particles that were measured exhibited
similar strain distributions (for an additional particle, see
Supplementary Fig. 7) and thus the b phase is primarily
dominated by elastic effects with small compositional inhomo-
geneity. We now discuss the strain distribution observed in the
a phase.

Strain in the hydrogen-poor phase. Figure 3a shows the strain
distribution measured in the a phase for the same nanocube as in
Fig. 2 at the same four cross-sections (Supplementary Fig. 6).
The strain map shown is computed from an average of the
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Figure 2 | Strain field cross-sections in the b phase compared with phase-field calculations. (a) The measured compressive/tensile strain distribution,

q111u111, at four cross-sections taken at spatial locations throughout the cube as indicated in Supplementary Fig. 6. The black vector shows the projection of

the [111] vector in the chosen slice. (b) The expected q111u111 computed by the phase-field model. (c) The corresponding compositional inhomogeneity

within the nanocube.
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reconstructions corresponding to the highlighted points from 2 to
10 min in Fig. 1d. This particle was previously exposed to
hydrogen and dehydrided at room temperature for 3 h before the
measurements were made. The strain distribution is inverted
(opposite in sign) from the elastically dominated distribution
shown in Fig. 2b, implying the corners are stretching outwards
along the body diagonals, forming a star-like shape. This shape
evolution increases the surface area of the particle in contrast to
the behaviour in the b phase. We used the phase-field model to
investigate strain and hydrogen distributions at low average
hydrogen concentrations in the presence of a hydrogen-rich
surface layer.

Figure 3b,c shows the phase-field results most consistent with
the observed strain distribution. We explored two possible models
(surface wetting and surface monolayer) for the observed a phase
strains. In both models, the qualitative effect is to cause expansion
along the body diagonal corners defined by the scattering vector,
as shown in Fig. 3a,b. Given the additional parameters required
by the surface wetting effect (including assumptions about the
surface energy dependence on concentration and the interface
width), we chose to present results from the simpler model, which
is similar to the model discussed in ref. 14. In this case, owing to
the imposed constant hydrogen concentration at the surface,
which is physically motivated11,18,47,48, the variation of surface
energy with composition44 is neglected. However, the variation of
surface stress with composition is included.

In this model, the average concentration is PdH0.046 while the
net surface stress is tensile owing to a hydrogen-rich surface layer
represented as a surface term and thus of zero width. A high
hydrogen concentration surface layer is reasonable as enhanced
hydrogen binding of the Pd surface and subsurface compared
with the bulk was previously observed experimentally and in
simulations7,14,49,50. A surface term can be used because the layer
thickness is estimated to be on the order of 1 nm (ref. 14), which
is below the spatial resolution of the experiment. The strain

induced by this layer, however, extends throughout the particle.
Figure 3b shows this causes expansion at the cube corners and,
via stress-driven diffusion, relative hydrogen excess as well
(Fig. 3c). This model matches well with the observed strain
distribution. The measured strain distribution in pure Pd
nanocubes (for example, with no prior hydrogen exposure)
agrees with simulation results for nanocubes without any
hydrogen (for a comparison see Supplementary Fig. 8). The
experimentally measured a phase strain distributions are all
different (Supplementary Fig. 9), which is consistent with
differing distributions and concentrations of residual hydrogen
and with the observation of residual strain after dehydriding in
thin film strain studies50.

The hydrogen-rich surface layer in the a phase dominates the
nanocube strain distribution and could be due to sluggish H2

desorption kinetics at room temperature and pressure51 as bulk
hydrogen diffusion in this system is exceptionally fast (o1 ms for
a 100 nm particle)50. A slow room temperature process is
corroborated by the strain distribution in a particle that was
held at 50 �C for 2 h (Supplementary Fig. 10). Although the Pd
particle in Supplementary Fig. 10 was previously hydrogen cycled,
its strains are consistent with an absence of hydrogen, implying
loss of the hydrogen layer given enough time at elevated
temperature. This is an important observation for a practical
room temperature hydrogen storage system. Finally, we studied
the strain field evolution during the a to b phase transformation.

Dynamics during the hydriding phase transformation.
Figure 4a shows the location of the (111) diffraction peak on the
detector. The experimental geometry is such that a ring of fixed
scattering angle traces an arc from the upper left to the lower
right of the detector, as shown by a white arc. At t¼ 0, the
a phase is characterized by a single peak at a 2y angle corre-
sponding to a lattice constant of 3.89 Å. At t¼ 10 min, a gas
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mixture containing hydrogen is turned on and the Pd nanocube
uptakes hydrogen. At t¼ 90 min, two Bragg peaks are seen. The
peak at approximately the same angle as at t¼ 0 corresponds to
the a phase, while the second peak at smaller 2y (corresponding
to a larger lattice constant) corresponds to a lattice-expanded
phase. The fact that both peaks appear simultaneously on the
detector indicates that two phases are simultaneously present in
the single nanocube. We measured two-phase coexistence in
single-particle diffraction data for six additional particles (for an
additional example, see Supplementary Fig. 11). Intensity at
intermediate 2y values between the two peaks corresponds to
crystalline regions of the crystal that have a lattice constant
between the a and b phase. Only the b phase peak remains when
the phase transformation is complete.

To quantify the changes in u111(r,t), we computed the Pearson
r correlation coefficient

r ¼
Pn

i¼1ðxi� �xÞðyi��yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 xi� �xð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 yi��yð Þ2

q ð2Þ

where xi are the displacement field values for a particular pixel at
time t, yi are the displacement field values at the same spatial
location at a different time t0, �x is the mean value of the
displacement field at time t, and �y is the mean value of the
displacement field at time t0. The sum is evaluated over the 3D
displacement field and r is computed for all possible combina-
tions of displacement fields. Figure 4b shows the correlation
matrix, rmn, in which each entry is the correlation coefficient
between u111(r,t¼m) and u111(r,t¼ n). The matrix is symmetric
and by definition has a value of unity along the diagonal.

Interestingly, the correlation time between a phase displace-
ment field maps is a function of absolute time. For example, the
first state is well-correlated to the subsequent 10 states while the
twenty-fifth state is well-correlated only to the subsequent 5
states. This decay in correlation as a function of absolute
time implies that the hydrogen adsorption dynamics
are becoming faster, despite the constant hydrogen partial
pressure, that the system shows aging52, and that hydrogen
uptake may be described as autocatalytic. In addition to the slow
decay in correlation, there are blocks of well-correlated
measurements separated by uncorrelated periods. This signature
is consistent with avalanches, or large intermittent changes
during the dynamics53. Interestingly, the correlation time once
the particle fully enters the b phase is relatively independent of
absolute time.

Figure 4c shows the evolution of q111u111, computed from the
average of the reconstructions corresponding to the five sets of
highlighted points in Fig. 1d, as a function of time. Two cross-
sections are shown for simplicity (for additional cross-sections see
Supplementary Fig. 12). The strain distribution at t¼ 2–10 min
was previously shown and discussed (Fig. 3). At t¼ 52–62 min,
the strain map has changed in magnitude, although not in
distribution. A higher average hydrogen concentration of PdH0.12

in the phase-field model explains the increase in strain magnitude.
The particle appears to undergo morphological changes,

marked by the disappearance of Bragg electron density, during
the onset of two-phase coexistence around t¼ 76–80 min. The
missing Bragg electron density in the reconstructed strain fields
can occur in several ways. If a portion of the crystal rotates out of
the Bragg condition, becomes amorphous, or undergoes restruc-
turing to a different unit cell symmetry, this appears as missing
Bragg electron density31,35,54. The most plausible explanation is
that the b phase region nucleates at the corner of the cube and
propagates inward, which is consistent with the location of
the b phase region observed in the phase-field model
(Supplementary Fig. 13). Interestingly, this demonstrates that

phase propagation is preferred over phase nucleation as there is
only one region of new phase observed that subsequently grows.

At t¼ 104–108 min, the particle has gone through a phase
transition and may be considered to be in the b phase but with a
slight H deficiency. The average particle composition is now close
to the b phase, and as such the net surface effect is compressive
owing to positive surface energy. In this case, H is driven away
from the corners towards the faces, and the same coupling of
compositional inhomogeneity and strain occurs.

Discussion
We have studied in situ 3D strain dynamics in single Pd
nanocubes during the hydriding phase transformation using
CXDI. We have used a full 3D phase-field model to aid in
interpreting the experimentally measured strain distributions.
The dilute hydrogen a phase strains are found to be particle
dependent, consistent with trapped residual hydrogen and a
tensile surface stress due to hydrogen adsorption. In the
hydrogen-rich b phase, the strains are particle independent and
consistent with elastic effects that tend to minimize surface area.
During the phase transformation, structural two-phase coex-
istence is directly observed in the diffraction data. The structural
correlations indicate that the phase transformation shows both
‘aging’ and ‘avalanching’. The observed strain fields are consistent
with hydrogen enrichment in the cube corners followed by the
nucleation of a hydrogen-rich region at a single cube corner.
Hydrogen excess in the a phase and deficiency in the b phase are
seen to enhance the magnitude of the strain field via stress-driven
diffusion. More generally, our results offer a new avenue to study
phase transformations in single nanocrystals in reactive environ-
ments under operating conditions as a function of size, crystal-
linity and morphology.

Methods
Palladium nanocrystal synthesis. Palladium nanocubes were prepared according
to Niu et al.32, with modifications. To make the initial Pd seed crystals, A 10 mM
H2PdCl4 solution was prepared by dissolving 89 mg of PdCl2 (Aldrich, Z99.9%) in
5 ml of 0.2 M HCl solution (Ajax Chemicals, AR grade) and further diluting to
100 ml with water (MilliQ, 18.2 MO cm� 1). A measure of 1 ml of 10 mM H2PdCl4
solution was added to 20 ml of 12.5 mM cetyltrimethylammonium bromide
(Unilab, 98%) solution heated at 95 �C under stirring (700 r.p.m.) in a 20 ml round
bottom flask. After 5 min, 160 ml of freshly prepared 100 mM L-ascorbic acid (BDH
Chemicals, 98.7%) solution was added. Twenty minutes after the ascorbic acid
solution was added, a 160 ml aliquot of this as-synthesized nanocube seed solution
and 500 ml portion of 10 mM H2PdCl4 solution and were added to 20 ml of 100 mM
cetyltrimethylammonium bromide in a separate 50 ml round bottom flask. Freshly
prepared 100 mM ascorbic acid solution (200 ml) was added following this, and the
solution was mixed thoroughly. The resulting solution was placed in a water bath at
60 �C for 1 h. Then, a further 500ml of 10 mM H2PdCl4 solution was added, followed
by 200ml of freshly prepared 100 mM ascorbic acid solution and the solution was
well mixed. The flask was returned to the water bath at 60 �C and the reaction was
stopped 1 h later by centrifugation (6,000 r.p.m., 10 min). Two more centrifugations
(6,000 r.p.m., 10 min) were applied to the samples for transmission electron
microscope (TEM) characterization and CXDI experiment sample preparation.

TEM characterization. TEM images were acquired on a FEI Tecnai TF20
microscope operating at 200 kV. TEM samples were prepared by drop casting 20 ml
of the Pd nanocube solution onto a copper TEM grid (300 carbon mesh) and
drying in ambient conditions.

Experiment sample preparation. CXDI samples were prepared by spin casting
200 ml of the Pd nanocube solution onto 15� 15 mm silicon substrate at
2,000 r.p.m. for 60 s. This was then kept at 100 �C for 2 h.

Coherent diffraction experiment details. A double crystal monochromator
was used to select E¼ 8.919 keV X-rays with 1 eV bandwidth and longitudinal
coherence length of 0.7 mm. A set of Kirkpatrick Baez mirrors was used to focus the
beam to B1.5� 1.5 mm2. The rocking curve around the (111) Bragg reflection
was collected by recording two-dimensional coherent diffraction patterns with a
charge-coupled device camera (Medipix 3, 55 mm pixel size) placed at 0.26 m away
from the sample around an angle of 2y¼ 36� (Dy¼±0.5�). 2–3 full 3D data sets
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were taken for each palladium nanocrystal in a helium environment. The 3.6%
mole fraction H2 gas in He was then mixed with the pure He gas to increase the
partial pressure of H2 above zero. The pressure was left constant while 3D data sets
were continuously collected at B2 min intervals for approximately 2.5 hours.

Phase retrieval. The phase-retrieval code is adapted from published work28,55.
The measured data with a random phase is used as the starting point for five
independent reconstructions. Each reconstruction uses 90 iterations of the
difference map and 10 iterations of error reduction repeated until 2,200 total
iterations are reached24,56. The best reconstruction is chosen according to the
lowest error metric. This reconstruction is used as the seed for the next generation
in which five more independent reconstructions are run with the previously
mentioned parameters. Five total generations, each with five members, are used57.
The final resolution of 16 nm was computed via the phase-retrieval transfer
function (Supplementary Fig. 4).

Phase-field modelling. We model cubic PdHx particles using coupled Cahn–Hilliard
and elastic equations as established in Welland et al.41 The thermodynamic
model assumes that PdHx maintains the host Pd lattice structure while interstitial
hydrogen is diffusing at an atomic fraction x. In the region of two-phase
coexistence, x varies between equilibrium concentrations in the a and b phases,
xa¼ 0.017 and xb¼ 0.60, respectively1. The local ratio of the b phase is modelled
according to p ¼ x� xa

xb � xa , which varies between 0 and 1 corresponding to the a and b
phases, respectively. The system’s free energy is described by

F¼
Z
V

f þ 1
2
sijEel

ij þ
1
2
k rpj j2

� �
dV þ

Z
A

f S 1þ ES
ii

� �
þ 1

2
sS

ijE
el;S
ij

� �
dA ð3Þ

where f is the free-energy density containing both the enthalpy and the entropy,
1
2 sijEel

ij is the elastic energy density, p is the local fraction of the b phase, and 1
2 k rpj j2

is the gradient energy density. The surface contribution to the free-energy functional
includes the surface energy contribution (in the Lagrangian system), which is a
product of undilated surface energy and surface dilation term, and an additional stress
contribution accounting for the change in surface energy with strain.

The first approximation to the free-energy density is as a double well potential,
f¼rORT p2(1� p)2 where r, O, R and T represent the concentration of Pd,
potential barrier height, ideal gas constant and temperature, respectively. This
approximation for the free energy is reasonable as long as p is close to 0 or 1. The
parameter O is fit to the measured hydrogen partial pressure above PdHx using the
relation between volumetric chemical potential of interstitial hydrogen and the

partial pressure of H2 vapour by 1
r
@f
@x ¼ 1

2 m0
H2
þRTln pH2

1 atm

h i
(ref. 58). Using the

free-energy potential above, 1
r
@f
@x ¼ ORT

xb � xa 2p 2p2 � 3pþ 1½ �, is derived. Then, O is fit
to the data of (ref. 59) above the b phase to 2.07 as shown in Supplementary Fig. 14.

The gradient energy coefficient k is calculated from the potential barrier height
and the desired interface thickness, l, as k¼ 2� 4 l2O (ref. 38). The interface
thickness is chosen to be 10 nm for computational considerations. Auxiliary
simulations were performed for PdH0.046 and PdH0.60 with smaller values and did
not change the results. The total strain is obtained from the small deformation
approximation of the displacement field ui as Eij ¼ 1

2
@ui
@xj
þ @uj

@xi

h i
. The local elastic

strain is Eel
ij ¼ Eij� pDadij according to Vegard’s law where Da is the change in

lattice constant between phases and dij is the Kronecker delta. The elastic stress is
given in the linear form, with the stiffness tensor linearly interpolated between

phases, sij ¼ 1� p½ �Ca
ijkl þ pCb

ijkl

h i
Eel

ij . The structural and elastic properties are

summarized in Supplementary Table 1 (ref. 60).
Both surface terms implicitly include changes in hydrogen concentration near

the surface. The model is derived under assumption that there is a surface tensile
strain component with a maximum in the a phase, which decreases to zero in the b
phase. This component is expressed through the strain difference with the b phase
and can be ascribed to the effects of hydrogen enrichment of the surface layer with
respect to the bulk concentration. This correlates well with both hydrogen
monolayer adsorption, which was shown by previous calculations to be
energetically favourable and with the models based on the hydrogen enriched layer
that fit well with experimental observations. While hydrogen concentration is not
explicit in determining the surface stress contribution, expansion of lattice
parameter with increase in bulk hydrogen concentration is consistent with decrease
of the tensile lattice stress. The surface energy f S is taken to be that of (100) Pd,
0.866 J m� 2 (ref. 61) and is scaled by the surface dilation 1þ ES

ii

� �
. Here, ES

ij is the
total surface strain given by Es

ij ¼ PikEklPlj and the surface projection operator is
defined using the facet normal ni as Pij¼ dij� ninj.

It is well known that PdHx surface can have higher H concentration than bulk.
We have considered several models of an adsorbed hydrogen layer and describe
here only the model that best matches experimental observations. In our model, we
do not define the width of the layer (zero width). A physical interpretation of the
model is either a surface hydrogen monolayer, which is found to be favourable in
density functional theory calculations49 or a thin surface/subsurface hydrogen layer
as observed in ref. 14. In both cases, the effect of the H layer on the bulk strain
distribution is similar and is captured in the current model. The width of the layer
is well below resolution of our X-ray experiments.

In the b phase, a surface layer of hydrogen is assumed to be at composition
p¼ 1. The surface elastic strain is then calculated as ES;el

ij ¼ ES
ij � Da

aa
dij , and the

surface stress sS
ij ¼ CSES;el

ij . The surface stress modulus, CS is fit to produce the
magnitude of the strain fields in PdH0.046. The fit value is 40 J m� 2, which
corresponds to a surface stress in the a phase of B1.3 J m� 2, comparable to those
listed in ref. 58. We define the surface stress as the derivative of the surface energy
with respect to surface elastic strain (unitless). This follows the same form as
ref. 58. In the b phase, the surface stress is zero and the observed strain field is
attributed purely to surface area minimization from surface energy considerations.

Phase-field governing equations. Assuming instantaneous elastic relaxation
relative to diffusion, the displacement vector ui is solved for quasi-statically within
a virtual work formulation:

0 ¼
Z
V

sijdEij dV þ
Z
A

f SdES
iiþ sS

ijdE
S
ij

n o
dA ð4Þ

where the virtual strain dEij has been projected onto the surface as described before.
The chemical potential of interstitial hydrogen defined as

m ¼ 1
r
dF
dx
¼ 1

r xb � xa½ �
dF
dp

gives the governing equations for the volume and surface:

m ¼ 1
r xb� xa½ �

@f þ 1
2sijEel

ij

@p
� kr2p

" #
on V;

1
r xb� xa½ �

@ 1
2 s

S
ijE

el;S
ij

@p
þ ni � krp

" #
on A

ð5Þ
Currently, only the steady state, equilibrium situation is considered to describe
strain distributions for different average x. However, the time-dependent case is
solved for the sake of numerical robustness. The concentration of H evolves
according to the Theory of Irreversible Processes as:

r
@x
@t
¼ r � r x 1� x½ �D

RT
rm ð6Þ

where the diffusion coefficient, D, is set to unity as it does not affect the equilibrium
distribution. Equations 4–6 are solved for variables ui, m and x using the finite
element method implemented in the FEniCS package62–65. Simulations were run
on a high-performance Linux cluster at Argonne National Laboratory using up to
256 cores.
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