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An Information-based Learning
Approach to Dual Control
Tansu Alpcan, Senior Member, IEEE, and Iman Shames

Abstract—Dual control aims to concurrently learn and control
an unknown system. However, actively learning the system
conflicts directly with any given control objective for it will
disturb the system during exploration. This paper presents a re-
ceding horizon approach to dual control, where a multi-objective
optimization problem is solved repeatedly subject to constraints
representing system dynamics. Balancing a standard finite hori-
zon control objective, a knowledge gain objective is defined
to explicitly quantify the information acquired when learning
the system dynamics. Measures from information theory such
as entropy-based uncertainty, Fisher information, and relative
entropy are studied and used to quantify knowledge gained as a
result of the control actions. The resulting iterative framework is
applied to Markov Decision Processes and discrete-time nonlinear
systems. Thus, the broad applicability and usefulness of the
presented approach is demonstrated in diverse problem settings.
The framework is illustrated with multiple numerical examples.

Index Terms—Dual control, information theory, nonlinear
systems, active learning, black-box systems.

I. INTRODUCTION

MANY real world systems are controlled with only lim-
ited amount of information. In some cases, acquiring

extensive information on system characteristics may be simply
infeasible due to prohibitive costs or observation limitations.
In others, the observed system may be so non-stationary
that by the time the information is obtained, it is already
outdated due to system’s fast-changing nature. Therefore, the
only option left to the controller is to develop a strategy
for collecting information efficiently and estimate the system
within a chosen modeling framework in order to achieve a
given control objective [1].

When a controller aims to concurrently learn and control
an unknown system, the objective of actively learning the
system by disturbing it for exploration conflicts directly with
the given control objective. Therefore, active learning plays
a crucial role in this problem setting. This paper focuses on
quantifying knowledge obtained during active learning using
concepts from information theory such as mutual informa-
tion, Fisher information and relative entropy which is also
known as Kullback-Leibler divergence. Thus, knowledge as
a measurable quantity is explicitly integrated to the decision
process. Since this knowledge can be quantified only within
a model, Gaussian process regression (GPR) [2] are used as
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learning frameworks in this paper for modeling and estimat-
ing unknown dynamical systems. Note that knowledge and
knowledge gain are used in this paper instead of information
in order to avoid any confusion with the specific meaning of
“information” in information and communications theories.

This paper presents a receding horizon approach to dual
control, where a multi-objective optimization problem subject
to constraints representing at-the-time-known system dynamics
is solved repeatedly. Specifically, an iterative algorithm is
proposed where at each step the control action is chosen to
maximize not only a given finite horizon control objective but
also a knowledge objective which helps learning the system
dynamics (constraints of the optimization problem) through
exploration. One of the main contributions of the paper is
the explicit and quantitative representation of this knowledge
acquisition using measures from information theory. Thus,
dual control is formulated as a multi-objective problem which
directly incorporates a knowledge objective. The framework
developed is applied to dual control of Markov Decision
Processes (MDPs) under a Dirichlet prior as well as dual
control of nonlinear systems using GPR to illustrate its broad
applicability to diverse problems and settings.

Literature Overview

The dual control problem has a long history in the control
literature [3], [4]. Conventional (non-dual) adaptive controllers
do not actively learn a system by varying the control input for
exploration. Although some dual adaptive controllers introduce
a (small) perturbation signal to their control for learning, there
is often limited guidelines on how to choose the perturbation
signal and especially when to use probing [5]. Decision
making with limited information is also related to search
theory. Information (theory) has been used in this context for
decades [6], [7] and the topic has been more recently revisited
in [8].

Learning plays an important role in the presented frame-
work, especially regression, which is a classical pattern recog-
nition (statistical/machine learning) method [9], [10]. The
book [11] provides important and valuable insights into the
relationship between information theory, inference, and learn-
ing. Another relevant topic is Bayesian inference [11], [12],
which is in the foundation of the presented framework. The
book [2] presents a comprehensive treatment of GPs.

The area of active learning or experiment design focuses on
data scarcity in machine learning and makes use of Shannon
information theory among other criteria [13]. The paper [14]
discusses objective functions which measure the expected
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informativeness of candidate measurements within a Bayesian
learning framework. The subsequent study [15] investigates
active learning for GP regression using variance as a (heuristic)
confidence measure for test point rejection.

Iterative learning control is concerned with tracking a
reference trajectory defined over a finite time duration, and
is applied to systems which perform this action repeatedly.
Therefore, it differs significantly from the problem setup
considered in this paper [16]. Extremum seeking (ES) is an
optimal control approach that deals with situations when the
system model is not available to the designer but the input
and output signals are measured similar to the case here.
An extremum seeking controller dynamically searches for the
optimizing inputs in real time. Unlike the framework proposed
here, ES does not try to model the system explicitly and relies
on a gradient descent approach [17] or alternatives such as
sampling optimization (Shubert algorithm) [18]. Therefore, it
cannot be applied to the problem studied in this paper.

Model predictive control (MPC) is an approach widely used
to control dynamical systems with input and output constraints
while ensuring the optimality of the system performance with
respect to a given cost function [19]. The control input in MPC
is typically calculated at each time-step by applying the first
control in a sequence obtained from solving an optimal control
problem over a finite or infinite horizon. The optimal problem
is reformulated at each time step based on the available
measurements. Traditionally, a full model of the system is
required to solve the MPC problem and all of the control inputs
are calculated centrally. However, in large-scale interconnected
systems, such as power systems [20], [21], water distribution
systems [21], [22], transport systems, manufacturing systems,
biological systems, and irrigation systems [23], the assumption
of knowing the whole model precisely is not realistic. The
scenario where the models are learned during control is an
active research area [24], [25]. This paper is another step in
the direction where concepts from information and statistical
learning theories are combined with those from control theory.

Contributions

The main contributions of this paper include:
• Formulation of dual control as a multi-objective problem,

which quantifies the knowledge gain objective explicitly.
• Adaptation of concepts such as mutual information and

relative entropy from information theory to quantify
knowledge gain within a given active learning framework.

• Application of the framework to dual control of Markov
Decision Processes as well as dual control of nonlinear
systems.

• Deriving specific lower bounds on knowledge gain within
the context of Gaussian process-based learning.

The next section presents the system model and problem
formulation, which is independent of the learning framework.
Section III provides definitions of and discusses relevant
information and knowledge measures. Section IV presents
an application of the approach to dual control of Markov
Decision Processes where Dirichlet prior. The subsequent
Section V applies the framework to dual control of nonlinear

systems using GP Regression based on mutual information and
relative entropy. Section VI illustrates the results with multiple
numerical examples. The paper ends with the concluding
remarks in Section VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In dual control, the controller aims to concurrently learn
and control an unknown system. The first objective of the
controller is to learn the unknown system in an efficient way.
The second and concurrent objective is to control the system
(optimally) based on the best available estimation. These two
objectives are clearly in conflict. The control action that gives
more information on system dynamics may not necessarily
be the one optimally controlling the system and vice versa.
It is the duality of these objectives, that motivates the “dual
control” name of the problem.

Consider the discrete-time dynamical system

xi(n+ 1) = fi(x(n), u(n)), i = 1, 2, . . . , d, (1)

where n = 1, 2, . . . , denotes the time step. The state vector
x ∈ X denotes that x belongs to the set X ⊆ Rd, the vector
u ∈ U denotes the control action chosen from the finite set
of available actions U , and fi : X × U → X is the mapping
from the cross-product of state and control spaces to the the
state space.

For notational convenience, define z := [x, u]T ∈ Z :=
X × U , where [·]T denotes the transpose operator. Then, the
dynamical system is given by

xi(n+ 1) = fi(z(n)), i = 1, 2, . . . , d.

It is assumed here that the dynamical system f is not known
except from past observations. Therefore, it is estimated from
available past data within a learning framework. Furthermore,
the controller does not have the time or resources for collecting
extensive information to identify the system. Therefore, meth-
ods such as extremum seeking or iterative learning cannot be
applied to the problem.

Let the set

D(n) = {(z(0), x(1)), (z(1), x(2)), . . . , (z(n− 1), x(n))}
(2)

denote the D data points obtained from past observations
of the dynamical system.1 For notational convenience, both
(z(n), x(n + 1)) and z(n) will represent an observation for
the rest of the paper. Using this data set a consistent estimate
f̂ of the original system f is obtained.

A finite-horizon control problem based on the estimated
system f̂ and initial state x(0) is defined as follows:

min
u(0:N−1)

J(x(0), u(0 : N − 1), x̂(1 : N)) (3)

= min
u(0:N−1)

N∑
k=1

βkJk(x̂(k − 1), u(k − 1), x̂(k)),

such that x̂(n+ 1) = f̂(x̂(n), u(n)), n = 0, . . . , N − 1,

1In some cases the observations, y(n+1) = f(z(n))+N (0, σ), may be
distorted by a Gaussian noise N (0, σ) with fixed variance σ.
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where x̂(0) = x(0), Jk ≥ 0 is the finite stage cost at time
k, and 0 < β ≤ 1 is the future discount factor introduced to
account for modeling uncertainty. Notice that this formulates a
receding-horizon control problem where the system dynamics
constituting the constraints are to be learned iteratively by
choosing appropriate control actions.

In order to make this learning process more precise, an
explicit knowledge objective is introduced

max
u(n)
In(x̂(n+ 1);x(n), u(n),D(n)), (4)

where the scalar In ≥ 0 denotes the amount of expected
knowledge gain at time n for a given state x(n), data set
D(n), and chosen control action u(n).

The presented approach to dual control repeatedly solves a
finite horizon multi-objective optimization problem combining
the objectives (3) and (4) subject to system dynamics as
constraints. Since the system dynamics are not known, the
control actions have to be chosen to satisfy not only (3) but
also the knowledge acquisition goal (4) which is explicitly
calculated using information theoretic metrics. Hence, the
control and learning objectives are concurrently addressed in
a principled way. The resulting framework is applied to dual
control of MDPs using Dirichlet Processes is presented in
Section IV and of nonlinear systems using GPR in Section V,
respectively. Algorithms 1 and 2 in those sections illustrate
two specific instances of this approach.

III. INFORMATION MEASURES FOR DUAL CONTROL

Concepts from the field of information theory provide a
natural foundation for explicitly quantifying the knowledge
objective I in the dual control problem defined (4). Multiple
measures that are closely related to each other such as entropy,
mutual information, relative entropy, and Fisher information
can be used for this purpose. However, their application to the
dual control problem still requires careful evaluation as it will
be illustrated in the subsequent chapters.

Knowledge Gain as Uncertainty Reduction

One possible way of quantifying the (estimated) knowledge
gain I is defining it as a reduction in (estimated) uncertainty.

Definition III.1 (Knowledge Gain as Uncertainty Reduction).
Given the set of observations D (2) of the dynamical system
(1), the knowledge gain I at the point z̄ := [x̄, ū]T is defined
as

I(z̄;D) := Hbefore(D)−Hafter(D ∪ (z̄)), (5)

where Hbefore is the entropy before the observation, (z̄, f(z̄)),
and Hafter is the one after it.

Thus, entropy is used here as a measure of uncertainty.
Note that, this is related to the well-known mutual information
between two random variables X and Y , I(X;Y ) = H(X)−
H(X|Y ), which quantifies reduction in the uncertainty of X
due to knowledge of Y [26].
Remark III.2. In this paper, a consistent learning framework
is assumed where the estimates improve with each new piece
of knowledge acquired similar to a consistent estimator where

estimates converge to the true value as number of data points
increase to infinity.

Depending on the type of entropy measure used the knowl-
edge gain I in (5) can be calculated in different ways. In order
to simplify the discussion, consider the single variable case
without any loss of generality. Let H(X) denote the entropy
of a discrete random variable X , and h(X) the differential
entropy of its continuous counterpart [26] (see Appendix for
the definitions).

Differential entropy is closely related to entropy, yet there
are important differences between the two. While the range
of entropy H(X) is [0,∞), differential entropy is a mapping
to (−∞,∞). This may lead to subtraction of two quantities
potentially diverging to −∞ when differential entropy is
used to calculate I in (5) even under the consistent learner
assumption in Remark III.2. Therefore, differential entropy
is not a good measure to use in computing knowledge gain
as reduction in uncertainty. Fortunately, the problem can be
remedied simply by using entropy power [27] or alternatively
exponential entropy [28] which are closely related to each
other.

Definition III.3 (Entropy power). The entropy power [27] of
a random vector X with differential entropy h(X) is

he(X) :=
1

2πe
e

2
dh(X),

where d is the dimension of the random vector.

Since the range of exponential entropy [0,∞) is the same
as of entropy, it can be used as a measure of uncertainty of a
continuous variable, and hence to define knowledge gain based
on entropy power:

Ie := he,before − he,after =
1

2πe

[
e

2
dhbefore − e 2

dhafter

]
.

(6)

Relative Entropy

An alternative method for quantifying knowledge gain is
to use relative entropy or Kullback-Leibler (K-L) divergence,
which measures the difference between two probability distri-
butions [26].

Definition III.4 (Relative Entropy). The K-L divergence be-
tween distributions p and q on Y is defined as

D(p ‖ q) :=
∑
y∈Y

p(y) ln

(
p(y)

q(y)

)
. (7)

The K − L divergence is not a symmetric quantity, D(p ‖
q) 6= D(q ‖ p), and hence, is not a true distance metric.

Fisher Information

Let f(X; θ) be the parameterized pdf of the random variable
X . The score is a random variable

score :=
∂

∂θ
ln(f(X; θ). (8)
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Definition III.5 (Fisher information). Fisher information [26]
is the variance of the score defined in (8),

F (θ) := Eθ

[
∂

∂θ
ln(f(x; θ)

]2

,

where Eθ denotes the conditional expectation given θ.

Relationships between Information Measures

Mutual information and relative entropy are related to
each other through the equation I(X;Y ) = D(pX,Y ||pXpY ),
where pX and pY are the pmfs of the random variables X and
Y .

The well-known Cramer-Rao inequality [26] relates the
variance var(T) of any unbiased estimator T (X) of the
parameter θ to Fisher information:

F (θ) ≥ 1

var(T)
. (9)

The de Bruijn’s identity connects differential entropy and
Fisher information as follows:

∂

∂t
h(X +

√
tZ)

∣∣∣∣
t=0

= 0.5F (X),

where Z is a zero mean unit variance Gaussian random
variable and

F (X) =

∫ +∞

−∞
f(x)

[
∂

∂x
ln f(x)

]2

dx.

While the (differential) entropy is related to the volume V
of its typical (or “support”) set A, Fisher information is related
to the surface area of the typical set [29]

S(X) =
∂

∂t
he(X +

√
tZ)

∣∣∣∣
t=0

= 0.5F (X)he(X),

or
∂

∂t
log
(
he(X +

√
tZ)
)∣∣∣∣
t=0

= 0.5F (X).

Remark III.6. Fisher information can be seen as a direc-
tional derivative of entropy and the knowledge gain I
in Definition III.1 can be interpreted as a subgradient
of entropy. Therefore, the two are closely related as they
both provide a direction for entropy, and hence uncertainty,
reduction. Furthermore, minimizing variance (of the estimator)
maximizes knowledge gain which follows from the Cramer-
Rao bound (9) as well as the analysis in Section V-B.

The information metrics studied in this section are used for
dual control of MDPs in Section IV and of nonlinear systems
in Section V under different learning schemes. The choice of
which specific information measure to use is heavily problem-
dependent and constrained by computational limits. However,
the analysis in this section provides insights to facilitate such
decisions in various problems.

IV. DUAL CONTROL OF MARKOV DECISION PROCESSES

Markov decision processes provide a mathematical machin-
ery to describe systems whose evolution is partly due to the
actions taken by a decision maker and partly random. There are
many problems that can be formulated with this language and
there is a rich history of applying MDPs to different problem
areas. For example, in [30] a scenario is studied where at each
time step a decision should be made on how much water to
be used for electricity generation when alternative methods of
generation exist. In [31] the problem of commodity acquisition
in face of changing prices and expected demand pattern is
studied. The problem of how much investment should be made
by an insurance company in the presence of random claims,
expenses, and stockbrokers cut-offs is considered in [32]. For
more examples on practical applications of MDPs the reader
may refer to [33].

To be able to use MDP to model a system a few assumptions
should be made. First, the number of states that the system
operates in should be finite. Second, the number of actions
that the decision maker can take at each state are finite. Third,
the Markov property should hold, i.e. the effects of an action
taken in a state depend only on that state and not on the prior
history. Moreover, it is assumed that a reward (penalty) is
associated with each transition to a new state after applying
an action and the goal would be to maximize (minimize) the
sum of all rewards (penalties) over time.

Under the aforementioned assumptions the required vari-
ables are defined. Let S = {s1, . . . , sn} be a finite set of
states and A = {a1, . . . , am} be a finite set of actions. Let
Πi be the transition matrix when action ai is applied where
Πi(j, l), the jl-th entry of Πi, is the probability of transition
from state sj to sl under action ai. Moreover, let R(s, a) be
the (expected) reward gained by applying action a at state s.
Consider the following finite-horizon cost function

J(k0, π(k0)) =

k0+N−1∑
k=k0

R(s(k), a(k)). (10)

where π(k0) = {a(k0), . . . , a(k0 + N − 1)}. The decision
problem would be to find the sequence of actions π(k0) such
that J(k0, π(k0)) is minimized. This problem is well-known
and a vast body of research work has addressed this and other
similar problems, see [34], [35] for a thorough treatment of
such problems. However, the majority of those works make
assumptions on a having perfect knowledge of the the problem,
e.g. knowing Π1, . . . ,Πm precisely. Note that Πi is the true
and unknown transition matrix when action ai is applied.

In this section, the problem is addressed when the transition
matrices Π1, . . . ,Πm are unknown and need to be estimated
while the expected reward based on the known estimates is to
be maximized at each step. Hence, it is a special case of the
general formulation in Section II.

A. Learning the Transition Matrices

Classical maximum likelihood (ML) or Maximum A Pos-
teriori (MAP) schemes can be used to estimate the transition
matrices of an MDP [36], [37]. To take advantage of the con-
jugacy property of Dirichlet distribution with the multinomial
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distribution [38], a prior Dirichlet distribution is assumed on
each row of the transition matrices. This facilitates recursively
estimating the transition matrices via counting the transitions
between each pair of states under an action to obtain ML or
MAP estimates of the transition matrices, the reader may refer
to [39], [40] for more information.

First, denote the estimate of Πi as Pi. The mean-variance
estimator of [41] is used to estimate the transition matri-
ces Π1, . . . ,Πm. While other methods can be also used in
this context, the same principles introduced here to max-
imize the knowledge gain will be applicable. To this end
assume each row j of each estimate Pi denoted by Pi(j, :)
is a Dirichlet random variable with hyper-parameters αi =
[αi(j, 1), . . . , αi(j, n)] where αi(j, 1), . . . , αi(j, n) are ini-
tially set to be positive real numbers. Additionally, assume that
at time k an action a(k) = ai is applied and let s(k) = sj .
After the application of action ai the estimate of the true
transition matrix Πi, Pi, will be updated as follows

Pi(j, l) := αi(j, l)/ᾱi(j)

Σll :=
αi(j, l)(ᾱi(j)− αi(j, l))

ᾱi(j)2(ᾱi(j) + 1)

(11)

where

αi(j, l) :=

{
αi(j, l) + 1 T = 1

αi(j, l) T = 0
(12)

with

T = (s(k0) = sj & s(k0 + 1) = sl & a(k0) = ai) ,

and

ᾱi(j) :=

n∑
l=1

αi(j, l). (13)

We note that ᾱi(j) > 0 due to the fact that each αi(j, l),
l = 1, . . . , n remains positive before and after applying (12).
Specifically, the Boolean variable T is true when under action
ai at time k a transition from state sj to state sl occurs.

The main problem is how to choose a(k) in order to improve
the performance of the estimator described above. Different
strategies based on the information measures introduced in
Section III are investigated next.

B. Quantifying Information

Knowledge gain as uncertainty reduction and Fisher in-
formation defined in Section III are used next to quantify
knowledge acquired in the MDP setting for learning under
a Dirichlet prior. As the first step, the entropy of a Dirichlet
variable is given. If x is a Dirichlet random variable with
hyper-parameters α = [α1, . . . , αn], then the information
entropy of x is

h(x) = logB(α) + (ᾱ− n)ψ(ᾱ)−
n∑
`=1

(α` − 1)ψ(α`) (14)

where ᾱ =
∑n
`=1 α`, ψ(·) is the digamma function of its

argument, and

B(α) =

∏n
`=1 Γ(α`)

Γ(ᾱ)
(15)

with Γ(·) being the gamma function of its argument.
The expected knowledge gain in terms of entropy power of

applying an action ai at state s(k) is defined as

Ie(s(k), ai) =

n∑
`=1

Pi(j, `)
[
he

(
Pi(j, :)

)
− he

(
P̂ `i (j, :)

)]
(16)

where sj = s(k),

P̂ `i (j, l) = α̂`i(j, l)/ᾱ
`
i(j)

Σ̂`ll =
α̂`i(j, l)(ᾱ

`
i(j)− α̂`i(j, l))

ᾱ`i(j)
2(ᾱ`i(j) + 1)

(17)

α̂`i(j, l) =

{
αi(j, l) + 1 l = `

αi(j, l) l 6= `
, (18)

and ᾱ`i(j) = ᾱi(j) + 1 for ` = 1, . . . , n.
Thus, at each time k, the best action a(k) with respect to

entropy power is given by

a(k) = argmax
a∈A

Ie(s(k), a).

Next, consider the Fisher Information measure as an alter-
native. As above consider x to be a Dirichlet random variable
with hyper-parameters α = [α1, . . . , αn]. The ij-th entry
of the Fisher information matrix F (x), Fij(x), in light of
Definition III.5 is

Fij(x) =

{
ψ′(αj)− ψ′(α0), i = j

−ψ′(α0) i 6= j
(19)

where ψ′(·) is the trigamma function, i.e. it is the first
derivative of the digamma function.

The expected knowledge gain in terms of Fisher information
of applying an action ai at state s(k) is defined as

IF (s(k), ai) =

n∑
`=1

Pi(j, `)
[
tr
(
F (Pi(j, :))

)
− tr

(
F (P̂ `i (j, :))

)]
(20)

where tr(·) is the trace of its argument, sj = s(k), P̂ `i (j, l)
is given by (17), α̂`i(j, l) is described by (18), and ᾱ`i(j) =
ᾱi(j) + 1 for ` = 1, . . . , n.

C. Dual Control of MDP

Consider now a Markov decision problem where the transi-
tion matrices are unknown, which corresponds to dual control
of a MDP. Taking inspiration from model predictive control
strategies, define at time k0

J(k0, π(k), Pi) =wDJ(k0, π(k)) + wII(s(k0), a(k0)).
(21)

where wD and wI are some nonnegative weighting scalars,
I(s(k0), a(k0)) is the expected knowledge gain after applying
action a(k0) at time k0 and state s(k0) and can be either
defined by (16) or (20). We rewrite (21) as

J(k0, π(k0), Pi) =

k0+N∑
k=k0

R(s(k), a(k)) (22)



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. XX, 20XX 6

with

R(s(k0), a(k0)) =wDRa(k0)(s(k0), a(k0)) + wII(s(k0), a(k0)),

R(s(k), a(k)) =wDR(s(k), a(k)), k = k0 + 1 : k0 +N − 1.

Now the control strategy is to first apply the first action in the
sequence π?(k0) = {a?(k0), . . . , a?(k0 +N − 1)}, a?(k0), at
time k0 where

π?(k0) = argmax
π(k0)

J(k0, π(k0), Pi). (23)

Secondly, update the estimates P1, . . . , Pm by observing the
outcome of the action via (11)-(13), form J(k0 + 1, π(k0 +
1), Pi) using the new estimates and repeat the procedure.
This dual control strategy for Markov Decision processes with
unknown transition matrices is outlined in Algorithm 1.

Algorithm 1 Dual Control of Markov Decision Processes with
Unknown Transition Matrices.
Input: S, A, wD, wI , R(s, a), I(s, a)

initialize P1, . . . , Pm
s := s(0)
π?(0) := argmax

π(0)

J(0, π(0), Pi)

{π?(k) = {a?(k), . . . , a?(k +N − 1)}}
apply a := a?(0)
for k0 ∈ {1, 2, . . . } do
s := s(k0)
update P1, . . . , Pm via (11)-(13)
π?(k0) := argmax

π(k0)

J(k0, π(k0), Pi)

apply a := a?(k0)
end for

V. DUAL CONTROL OF NONLINEAR SYSTEMS

In the dual control problem formulated, information is
needed to learn the dynamical system and the learning frame-
work provides the basis for explicitly quantifying and actively
obtaining the next piece of information.

A. Learning the System Dynamics using GP

A short overview of Gaussian Process (GP) regression
is presented next for completeness [2], [42]. Deriving the
estimate f̂ using the set of available data points, D, is known
as the regression problem in the pattern recognition (machine
learning) literature. This task falls under the umbrella of
supervised learning since D is used here as a labeled learning
set. The learning process involves selection of an a-priori
“model” which allows the learned function f̂ to be expressed
in terms of a set of parameters and specific basis functions. At
the same time an error measure between the original function f
and f̂ is minimized using the learning data set. GP regression
provides a “non-parametric” version of this basic idea.

A GP is formally defined as a collection of random vari-
ables, any finite number of which have a joint Gaussian
distribution. In general, it is completely specified by its mean

function m(z) which is assumed to be zero here for simplicity,
and covariance function

ci : (Z,Z)→ R, ci(z, z̃) := E[fi(z)fi(z̃)],

for i = 1, . . . , d and ∀z, z̃ ∈ Z . Hence, the GP is characterized
in this special case entirely by its covariance function c(z, z̃).
Given a set of data D and assuming fixed Gaussian observation
noise, the covariance matrix is defined as the sum of a kernel
matrix Q and noise variance σ:

Cij := Qij + σ, ∀i, j = 1, . . . , card(D) (24)

where card(D) is the cardinality of the data set D. While it is
possible to choose here any (positive definite) kernel function
q(z, z̃) : (Z,Z) → R, one classical choice is the Gaussian
kernel,

q(z, z̃) = exp

[
−1

2
‖z − z̃‖2

]
, (25)

which leads to the kernel matrix Qij = q(zi, zj), where
zi, zj ∈ D. Note that GP makes use of the well-known kernel
trick here by representing an infinite dimensional continuous
function using a (finite) set of continuous basis functions and
associated vector of real parameters in accordance with the
representer theorem [10].

Given the data set D, define the vector

k(D, z) := [q(z1, z), . . . q(zD, z)] (26)

and scalar
κ := q(z, z) + σ = 1 + σ. (27)

Then, the predictive distribution at a given point z, px̂i(D, z),
is a Gaussian random variable, N (f̂i, vi), with the mean f̂i
and variance v:

f̂i(D, z) := kTC−1f̄i(D) and v(D, z) := κ−kTC−1k, (28)

where f̄i(D) = [fi(z0), fi(z2), . . . , fi(zD−1)]T . Note that the
variance is independent of the individual state dimension.
Equation (28) is a key result that defines GP regression. The
mean function f̂i(z) of the Gaussian distribution provides a
prediction of the objective function f(z) in each dimension i.
The variance function v(z) indicates the uncertainty level of
the predictions provided by f̂ .

B. Quantifying Information

Two specific definitions of information, mutual information
and relative entropy (Kullback-Leibler distance), are presented
next using the GPR learning framework.

Mutual Information Metric: One possible way of quanti-
fying the estimated knowledge gain from choosing a control
action ū ∈ U at any given state x̄ ∈ X , is defining it as
a reduction in estimated uncertainty at z̄ := [x̄, ū]T using
(5). Based on GP regression and given the observed data D,
each state dimension, x̂i, is estimated as a multivariate random
variable, N (f̂i, vi), with predictive distribution

px̂i
(D, z) =

1√
2πvi

exp

(
−1

2

(x̂i − f̂i)2

v

)
, (29)
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where f̂i and v are defined in (28), i.e. this is the conditional
distribution of f̂i(z) given data D.

The differential entropy of the predictive Gaussian distribu-
tion (29) at any point z ∈ Z before observing the new data
point, z̄, is

Hb(D, z) =
d

2
ln(2πe) +

d

2
ln (v(D, z)) ,

and the one after observing it is

Ha(D ∪ {z̄}, z) =
d

2
ln(2πe) +

d

2
ln (v(D ∪ {z̄}, z)) .

Here, the entropy value is the same and added over each d
dimensions of the state space. Note again that the entropy is
independent from the value of the system mapping f(z̄) [43].

The functions Hb and Ha quantify the uncertainty at a given
point z ∈ Z . The aggregate uncertainty values Hbefore and
Hafter, however, are computed over the whole space Z . In
order to simplify the analysis and notation, define a dense
sampling of Z , Θ := {z1, . . . , zT : zi ∈ Z, zi /∈ D, ∀i} [1].
Then, an proxy for Hbefore and Hafter are defined as follows:

Ĥbefore(D) :=
∑
z∈Θ

Hb(D, z)

and

Ĥafter(D ∪ {z̄}) :=
∑
z∈Θ\z̄

Ha(D ∪ {z̄}, z) +
d

2
ln(σ),

where σ in (24) is the observation noise.
Let,

Ĥbefore(D) = Hb(D, z̄) +
∑
z∈Θ\z̄

Hb(D, z).

The following lemma provides the basis for a useful approxi-
mation.

Lemma V.1. In the problem setup considered, given the data
set D and the next observation z̄ ∈ Z, z̄ /∈ D, define

ρ(z̄) :=
∑
z∈Θ\z̄

Hb(D, z)−Ha(D ∪ {z̄}, z),

which is equivalent to

ρ(z̄) =
d

2

∑
z∈Θ\z̄

ln (v(D, z))− ln (v(D ∪ {z̄}, z)) .

Then, the following hold:
1) ρ(z̄) ≥ 0.
2) ρ(z̄)→ 0 as card(D)→∞.

Proof. Define [42]:

C−1
D+1 =

[
M m

mT µ

]
, (30)

where

k̄ := Q(z, z̄), µ := v−1, (31)
kD+1 = [kD, k̄]T , m := −µC−1

D k,

M := C−1
D +

1

µ
mmT , ε := κ− k̄.

It follows directly from (26) and (28) that

v(D ∪ {z̄}, z) = κ− kTD+1C
−1
D+1kD+1.

Straightforward algebraic manipulations lead to

v(D ∪ {z̄}, z) = v ·
(

1− (v − ε)2

v2

)
.

The ratio of variances of the predictive distributions before
and after observing z̄ at any point z is then

R(D, z̄, z) :=
v(D, z)

v(D ∪ {z̄}, z)
=

v

v ·
(

1− (v − ε)2

v2

) . (32)

Since ε ≥ 0 (otherwise v(D∪{z̄}, z) would be negative), the
ratio (32) has to be greater than one, R(D, z̄, z) ≥ 1, which
establishes the result in part 1.

As card(D) → ∞ in part 2, both the variance v and
variable ε converge to σ due to consistency property of GP
regression [2]. Consequently, R(D, z̄, z) convergences to one,
and hence,

ρ(z̄) =
d

2

∑
z∈Θ\z̄

ln (R(D, z̄, z))→ 0,

which completes the proof.

Using Lemma V.1, the expected knowledge gain that ap-
proximates (5) is

Î(z̄;D) =
d

2
ln (v(D, z̄)) + ρ(z̄) +

d

2
ln(2πe/σ).

⇒ Î(z̄;D) ≥ d

2
ln (v(D, z̄)) +

d

2
ln(2πe/σ). (33)

This inequality is independent of the sampling Θ which leads
to the following result:

Proposition V.2. Given D and GP model with predictive
distribution (29), a lower bound on the estimated knowledge
gain from observation, (z̄), is

I(z̄;D) ≥ d

2
ln (v(D, z̄)) +

d

2
ln(2πe/σ),

where v(D, z̄) is defined in (28). Moreover, this bound be-
comes tighter as card(D)→∞.

Remark V.3. It is interesting to note that the knowledge
gain is independent of the system dynamics, f , i.e. only the
observation point z̄ plays a role in the definition; see e.g. (5)
and (33).

Corollary V.4. Given D and GP model with predictive distri-
bution (29), a lower bound on the estimated knowledge gain
based on entropy power from observation, (z̄), is

Ie(z̄;D) ≥ v(D, z̄),

where v(D, z̄) is defined in (28). Moreover, this bound be-
comes tighter as card(D)→∞.

Proof. The proof follows directly from the definition
of knowledge gain based on entropy power (6) and
Lemma V.1.
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Relative Entropy (K-L) Metric: If p and q are both Gaussian
distributions, then the K-L divergence (7) between them is

D(p ‖ q) =
1

2

[
ln

(
vq
vp

)
+
vp
vq

+
(mp −mq)

2

vq
− 1

]
, (34)

where mp, mq and vp, vq are the respective means and
variances.

Using (29), define the predictive distribution pb(D, z) before
observing z̄ and pa(D ∪ {z̄}, z) after the observation. A new
problem that was not encountered before with the entropy-
based knowledge metric arises next. When deciding which z̄
to choose, it is not possible to know beforehand the value f(z̄),
which is now explicitly a part of this knowledge metric. This
complication can be addressed in two different ways: (a) by
ignoring the means of pa and pb or (b) by replacing f(z̄) with
f̂(z̄) using the existing data D. For convenience, the former is
called for the rest of the paper as zero-mean K-L knowledge
and the latter as approximate K-L knowledge.

Following similar steps as before, the zero-mean K-L
knowledge metric over Θ is defined as

ÎKLz(z̄;D) =
∑
z∈Θ

D(pa(D ∪ {z̄}, z) ‖ pb(D, z)) (35)

=
∑
z∈Θ

d

2

[
ln

(
vpb
vpa

)
+
vpa
vpb
− 1

]
, (36)

where vpa = v(D ∪ {z̄}, z) and vpb = v(D, z̄). Note that,
v(D ∪ {z̄}, z̄) = σ in accordance with (24).

Define next the quantity

η(D, z̄) :=
∑
z∈Θ\z̄

d

2

[
ln

(
vpb
vpa

)
+
vpa
vpb
− 1

]
, (37)

=
∑
z∈Θ\z̄

d

2

[
ln(R) +

1

R
− 1

]
,

where R is given in (32).

Proposition V.5. Given D and GP model with predictive
distribution (29), a lower bound on the estimated zero-mean
K-L knowledge gain from observation, (z̄), as defined in (35)
is

IKLz(z̄;D) ≥ d

2

[
ln (v(D, z̄)) +

σ

v(D, z̄)

]
+
d

2
(log(1/σ)− 1) ,

where v(D, z̄) is defined in (28). Moreover, this bound be-
comes tighter as card(D)→∞.

Proof. The inequality follows from

IKLz(z̄;D) =
d

2
ln (v(D, z̄)) + η(D, z̄) +

d

2
(log(1/σ)− 1) ,

where η(D, z̄) is defined in (37). Since R ≥ 1 from (32),
η is always non-negative, η ≥ 0, and the inequality holds.
Furthermore, following an argument similar to the one in the
proof of Lemma V.1, η converges to zero as card(D) → ∞,
which completes the proof.

The approximate K-L knowledge extends the definition in
(35) as follows:

ÎKLa(z̄;D) =
∑
z∈ΘD(pa(D ∪ {z̄}, z) ‖ pb(D, z))

=
∑
z∈Θ

(
d

2

[
ln

(
vpb
vpa

)
+
vpa
vpb
− 1

]
+
∑d
i=1

(ma,i −mb,i)
2

2vpb

)
,

(38)

where vpa = v(D ∪ {z̄}, z), vpb = v(D, z̄), ma,i = f̂i(D ∪
{z̄}, z), and mb,i = f̂i(D, z) as in (28).

Define next the quantity ζ similar to η. Straightforward
algebraic manipulations lead to:

ζ(D, z̄) :=
∑
z∈Θ\z̄D(pa(D ∪ {z̄}, z) ‖ pb(D, z)),

=
∑
z∈Θ\z̄

(
d

2

[
ln(R) +

1

R
− 1

]
+
∑d
i=1

(v − ε)2

2v3
(f̂i(z̄)− f̂i(z))2

)
,

(39)

where R is given in (32), ε in (31), and v = v(D, z̄). Since
f(z̄) is naturally not available when deciding on which z̄
to choose, it is replaced by f̂i(z̄) above ∀i. Since ζ ≥ 0
and ζ → 0 as card(D) → ∞, the following counterpart of
Proposition V.5 immediately follows:

Proposition V.6. Given D and GP model with predictive
distribution (29), a lower bound on the estimated approximate
K-L knowledge gain as defined in (38) from observation, (z̄),
is

IKLa(z̄;D) ≥ d

2

[
ln (v(D, z̄)) +

σ

v(D, z̄)

]
+
d

2
(log(1/σ)− 1) ,

where v(D, z̄) is defined in (28). Moreover, this bound be-
comes tighter as card(D)→∞.

Proof. Similar to that of Proposition V.5.

It is interesting to note that the lower bounds in both
Proposition V.5 and V.6 are the same.

C. Dual Control

Using the results from the previous section, the dual control
problem is formulated as

min
u(0:N−1)

J(x(0), u(0 : N − 1), x̂(1 : N)) (40)

= min
u(0:N−1)

N∑
k=1

βk [wC(k)Jk(x̂(k − 1), u(k − 1), x̂(k))

−wI(k)Ik(x̂(k − 1), u(k − 1), x̂(k),D(k))] ,

such that x̂(n+ 1) = f̂(x̂(n), u(n)), n = 0, . . . , N − 1,

where x̂(0) = x(0), Ik ≥ 0 is the expected knowledge
gain at time k. The weighting factors wC(k) and wI(k) are
nonnegative values and capture the balance between control
and knowledge gain dual objectives. Note that, unlike the stage
cost Jk, the expected knowledge gain Ik is time-varying due
to D(k). In order to remedy computational complications this
creates, a special case can be considered where wI(1) > 0
and wI(k) = 0, k = 2, . . . , N . As in the case of MPC,
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the dual control problem (40) is solved repeatedly at each
time step to choose the best control action u from a finite
set despite calculating the future controls over the horizon.
The dual control strategy for nonlinear systems using GPR is
described in Algorithm 2.

The choice of weights wC and wI poses an interesting
research question, especially if they are time-varying. There
are multiple options and interpretations. If wC = 0 and wI > 0
until a certain time instance and changed to wC > 0 and
wI = 0 afterwards, this special case corresponds to first
learning the system and then controlling it based on the
knowledge obtained, which is similar to conventional system
identification. An alternative is starting from the same initial
condition but gradually decreasing wI while increasing wC .
This is then similar to “cooling” in simulated annealing [44].
Yet another and more dynamic solution is inspired by how
window lengths are set in TCP-IP. At each step the measured
value of the system state is compared to the estimation
obtained from the GPR algorithm and an estimation error is
calculated. If the estimation error is less than a pre-determined
threshold, then the value of wI is decreased. However, if
the estimation error is larger than the threshold the value of
wI is set to its original value. This dynamic scheme can be
interpreted as active learning based on need.

Algorithm 2 Dual Control of Nonlinear Systems using GPR
Input: J , U , X , wc, wI , β.

initialize x̂(0) = x(0), D, select u(0).
for k ∈ {1, . . . } do

observe x(k).
extend data set D = D ∪ ([x(k − 1), u(k − 1)], x(k)).
update the system estimate f̂ using GPR (29).
choose u(k) solving (40); apply as next control action.

end for

VI. NUMERICAL EXAMPLES

The applicability of the framework developed is illustrated
with three different problems. Firstly, the methodology pre-
sented in Section IV is applied to an MDP where the transition
matrices are not known. Secondly, the algorithm of Section
V is used to address the problem of controlling an unknown
nonlinear system with linear inputs. Finally, the framework is
applied to dual control of an unknown nonlinear system with
nonlinear control inputs. The Python and Matlab scripts to
generate the results in this section can be found at [45].

A. Dual Control of a Markov Decision Process

This section presents two specific scenarios to illustrate the
application of the presented dual control framework to Markov
Decision Processes (MDPs) as discussed in Section IV. The
first scenario investigates the problem of estimating the tran-
sition matrices of an MDP with n = 5 states and m = 10
actions. The error between the entries of the estimated transi-
tion matrices and their real values are compared for two cases.
In the first case at each step k an action is picked randomly;

in the second case at each step the action that maximizes the
knowledge gain is chosen and applied to the system. The aver-
age of the estimation error

∑m
i=1

∑j=n,l=n
j=1,l=1 |Πi(j, l)−Pi(j, l)|,

after running the experiment for 100 times for different MDPs
is depicted in Fig. 1. The estimation error of the proposed
method is consistently less than the error where the actions are
picked randomly. This exhibits the performance gain obtained
by implementing the learning strategy based on applying
a(k) = argmax

a∈A
Ie(s(k), a) at each step k.

Fig. 1. The average estimation error after repeating the experiment for 100
times as actions are applied randomly and in a way that maximizes the
knowledge gain.

The second scenario addresses an MDP problem where the
transition matrices are not known. The number of states is
n = 5 and there are m = 5 actions. The finite horizon length is
N = 10. The weight of the knowledge gain in (21), wI = 10
and I(s(k0), a(k0)) = Ie(s(k0), a(k0)) given by (16). The
Algorithm 1 is applied to this problem. The result is depicted
in Fig. 2 is compared with the case where wI = 0 and the true
transition matrices are used. The experiment is run 100 times.
It is observed that the rewards obtained from applying the
proposed method in this paper converges to the one achieved
via implementing the optimal strategy with exact information
about the transition matrices associated with each action after
nearly 200 steps.

B. Dual Control of a Logistic Map with Linear Input

The framework developed in Section V is applied to dual
control of a logistic map with linear input. The logistic map
is controlled with additive actions while being identified using
the GP method described in Algorithm 2:

x(n+ 1) = r x(n) (1− x(n)) + u(n).

The controller knows here that the control is linear (additive),
and utilizes this extra knowledge in identifying the system
which simplifies the problem significantly. The system de-
scription (input-output relationship) from the perspective of
the controller is:

y(n+ 1) = ĥ(y(n)) + u(n).
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Fig. 2. The reward obtained by applying Algorithm 1 compared to the gain
where a receding horizon problem is applied to the system with known
transition matrices.

The control actions are taken from the finite set

U = {ui ∈ [−1, 1] : ui+1 = ui + 0.02, i = 1, . . . , 101}.

The kernel variance is 0.5 and the weights in the objective
function (40) are chosen as wI = wC = 1. The goal
is stabilize the system at x∗ = 0.8, which constitutes the
constant reference signal. The starting point is x0 = 0.1.
The control actions and state estimation errors over time (in
each step based on arrived data points) for r = 3.5 and the
corresponding trajectory of the logistic map are depicted in
Figures 3 and 4. Note that, in this case the logistic map acts
only as a nonlinear system with a limit cycle rather than
behaving chaotically. It is observed that approximately the
first 10 steps are used by the algorithm to explore or learn
the system after which the trajectory approaches to the target.
The Fig. 5 shows the estimated function versus the original
mapping for u = 0 as well as one standard deviation from
estimated value. It can be seen that the variance is minimum,
i.e. the estimate is best, around the target value.
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Fig. 3. The control actions and state estimation errors for logistic map with
r = 3.5 and linear control.
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Fig. 4. The controlled trajectory of the logistic map for r = 3.5 and linear
control.
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Fig. 5. The logistic map and its estimate along with one standard deviation
for u = 0 and r = 3.5 after 100 iterations (data points).

C. Dual Control of a Cart with Inverted Pendulum

The framework presented in Section V is next applied to the
problem of controlling the position of a cart with an inverted
pendulum governed by the set of equations [46], [47]:

x1(n+ 1) = x1(n) + T x2(n), (41)

x2(n+ 1) = x2(n) +
T

M +m sin2(x3(n))
[u(n)

+mLx2
4(n) sin(x3(n))− bx2(n)

−mg cos(x3(n)) sin(x3(n))] ,

x3(n+ 1) = x3(n) + T x4(n), (42)

x4(n+ 1) = x4(n) +
T

L
(
M +m sin2(x3(n))

)
[−u(n) cos(x3(n)) + (M +m)g sin(x3(n))

+bx2(n) cos(x3(n))

−mLx2
4(n) cos(x3(n)) sin(x3(n))

]
,

(43)
y(n) = x1(n), (44)

where T = 0.05 is the sampling period, y = x1 is the position
of the cart, x2 ≈ dx/dt is the cart velocity x3 = θ is the
inverted pendulum angle, x4 ≈ dθ/dt is the angular velocity.
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The parameter values are: b = 12.98, M = 1.378, L = 0.325,
g = 9.8, and m = 0.051.

The control objective is to fix the position of the cart
to y∗ = 0.5, i.e. Jn(x̂(n)) = |x̂1(n)− 0.5| at time step
n and the variance v in (28) is used to approximate the
knowledge gain objective In in (5). The cart is controlled
adopting a one-step look-ahead strategy using control actions
u ∈ {−10,−9, . . . , 9, 10}. The weights in the objective
function (40) are chosen as wI = 1 and wC = 20. To simplify
the problem, it is assumed that the controller knows (41) and
(44), but has to learn the main system dynamics (42)-(43).

The actual and the estimated position of the cart as well
as its velocity are depicted in Fig. 6 and the selected control
input is shown in Fig. 7. The performance is rather satisfactory
considering that the trajectory is within 10% distance of the
target within 30 steps. It is important to note that the controller
does not know the model (42)-(43) at all here, and learns (a
representation of) the system while controlling it at the same
time.
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Fig. 6. The actual and estimated positions and velocity of the cart with inverted
pendulum.
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Fig. 7. The magnitude of the control input, u.

The performance of the dual controller is further evaluated
by comparing it to that of the one-step look ahead controller
with full information. The full information controller knows

the entire system dynamics (41)-(44). The resulting position
and velocity of the cart are depicted in Fig. 8 and the selected
control input under full information is shown in Fig. 9. It
is worth noting that the difference between the dual control
and full information cases is rather small considering that
the dual controller has to learn the dynamics (42)-(43) while
concurrently trying to achieve the chosen position objective.

While the one-step look ahead strategy (under full or
limited information) may not result in the best controller
for addressing the given “cart with an inverted pendulum”
problem, that is not the main point of the example here.
The example system and the control strategy are merely used
as a way to illustrate how learning and information can be
integrated to (dual) control decisions when system dynamics
are not available to the controller.
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Fig. 8. The actual position and velocity of the cart with inverted pendulum
under full information control.
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Fig. 9. The magnitude of the control input, u, under full information.

VII. CONCLUSION

A novel multi-objective optimization approach to dual
control is presented where the active learning objective is
explicitly quantified using measures from information the-
ory. Specifically, entropy-based uncertainty reduction, Fisher
information, and relative entropy are used to quantify the
knowledge gain, which is balanced against a standard finite



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. XX, 20XX 12

horizon control objective. The framework is applied to Markov
Decision Processes and discrete-time nonlinear systems via a
Dirichlet prior and Gaussian Process Regression as respective
learning methods. Thus, the broad applicability and usefulness
of the presented approach is demonstrated in diverse problem
settings. In addition, the links between uncertainty variance
in learning and various information-theoretic measures are
investigated.

Although dual control is a well-known problem, the pre-
sented approach opens a new direction for exploring decision
making under limited information [1], [48], [49] by integrating
methods from information and statistical learning theories to
control theory. Future research questions include a study of
system stability under dual control and optimal (dynamic)
quantization of control actions, and the analysis of the frame-
work properties from control and learning perspectives.
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APPENDIX

Definition A.1 (Entropy of a discrete random variable). The
entropy of a discrete random variable X is

H(X) := −
∑
x

p(x) log(p(x)),

where p(x) (or pX(x)) denotes the probability mass function
(pmf) of X [26].

Definition A.2 (Entropy of a continuous random variable).
The differential entropy [26] of a continuous random variable
X with a probability density function (pdf) f(x) is

h(X) := −
∫
x

f(x) log(f(x))dx.
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[25] J. Rathouský and V. Havlena, “MPC-based approximate dual controller
by information matrix maximization,” International Journal of Adaptive
Control and Signal Processing, vol. 27, no. 11, pp. 974–999, 2013.

[26] T. M. Cover and J. A. Thomas, Elements of Information Theory. New
York, NY, USA: Wiley-Interscience, 1991.

[27] C. E. Shannon, “A Mathematical Theory of Communication,”
Bell System Technical Journal, vol. 27, pp. 379–423, July 1948.
[Online]. Available: http://cm.bell-labs.com/cm/ms/what/shannonday/
shannon1948.pdf

[28] L. Campbell, “Exponential entropy as a measure of extent of a
distribution,” Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte
Gebiete, vol. 5, no. 3, pp. 217–225. [Online]. Available: http:
//dx.doi.org/10.1007/BF00533058

[29] M. H. M. Costa and T. M. Cover, “On the Similarity of the Entropy
Power Inequality and the Brunn Minkowski Inequality,” Stanford Uni-
versity, California, USA, Tech. Rep. 48, September 1993.

[30] J. D. Little, “The use of storage water in a hydroelectric system,”
Operations Research, vol. 3, no. 2, pp. 187–197, 1955.



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. XX, 20XX 13

[31] B. G. Kingsman, “Purchasing raw materials with uncertain fluctuating
prices,” European Journal of Operational Research, vol. 25, no. 3, pp.
358–372, 1986.

[32] D. J. White and J. M. Norman, “Control of cash reserves,” Journal of
the Operational Research Society, vol. 16, pp. 309–328, 1965.

[33] D. J. White, “A survey of applications of Markov decision
processes,” Journal of the Operational Research Society, vol. 44,
no. 11, pp. 1073–1096, November 1993. [Online]. Available:
http://www.jstor.org/stable/2583870

[34] W. B. Powell, Introduction to Approximate Dynamic Programming,
2nd ed. Hoboken, New Jersey, USA: John Wiley & Sons, Inc.,
September 2011.

[35] M. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic
Programming, ser. Wiley Series in Probability and Statistics. Hoboken,
New Jersey, USA: John Wiley & Sons, Inc., 2009, vol. 414.

[36] L. E. Baum and T. Petrie, “Statistical inference for probabilistic
functions of finite state Markov chains,” The Annals of Mathematical
Statistics, vol. 37, no. 6, pp. 1554–1563, 1966.

[37] J.-L. Gauvain and C.-H. Lee, “Maximum a posteriori estimation for
multivariate Gaussian mixture observations of Markov chains,” IEEE
Trans. on Speech and Audio Processing, vol. 2, no. 2, pp. 291–298,
1994.

[38] R. K. Hankin, “A Generalization of the Dirichlet Distribution,” Journal
of Statistical Software, vol. 33, no. 11, pp. 1–18, 2010.

[39] L. F. Bertuccelli, “Robust decision-making with model uncertainty
in aerospace systems,” Ph.D. dissertation, Massachusetts Institute of
Technology, 2008.

[40] T. Minka, “Estimating a Dirichlet distribution,” 2012. [Online].
Available: http://research.microsoft.com/en-us/um/people/minka/papers/
dirichlet/minka-dirichlet.pdf

[41] L. F. Bertuccelli and J. P. How, “Estimation of non-stationary Markov
chain transition models,” in Proc. of 47th IEEE Conference on Decision
and Control (CDC) , Cancun, Mexico, December 2008, pp. 55–60.

[42] D. J. C. MacKay, “Introduction to Gaussian Processes,” in Neural
Networks and Machine Learning, ser. NATO ASI Series, C. M. Bishop,
Ed. Berlin, Heidelberg, Germany: Springer Verlag, 1998, pp. 133–166.

[43] N. Ahmed and D. Gokhale, “Entropy expressions and their estimators for
multivariate distributions,” IEEE Trans. on Information Theory, vol. 35,
no. 3, pp. 688–692, May 1989.

[44] R. Rutenbar, “Simulated annealing algorithms: an overview,” IEEE
Circuits and Devices Magazine, vol. 5, no. 1, pp. 19–26, January 1989.

[45] I. Shames. (2013) Simulations scripts of “An Information-based
Learning Framework for Dual Control”. [Online]. Available: https:
//dl.dropboxusercontent.com/u/4527019/Simulations/Dual/Dual.zip

[46] D. Wang and J. Huang, “A Neural Network Based Method for Solving
Discrete-Time Nonlinear Output Regulation Problem in Sampled-Data
Systems,” in Advances in Neural Networks - ISNN 2004, ser. Lecture
Notes in Computer Science, F. Yin, J. Wang, and C. Guo, Eds. Springer
Berlin / Heidelberg, 2004, vol. 3174, pp. 97–97, 10.1007/978-3-540-
28648-6 9.

[47] ——, “A Neural Network-based Approximation Method for Discrete-
time Nonlinear Servomechanism Problem,” IEEE Trans. on Neural
Networks, vol. 12, no. 3, pp. 591–597, May 2001.

[48] T. Alpcan, “A framework for optimization under limited information,” in
5th International ICST Conference on Performance Evaluation Method-
ologies and Tools, ser. VALUETOOLS ’11. ICST, Brussels, Belgium,
Belgium: ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), 2011, pp. 234–243.

[49] ——, “A Risk-Based Approach to Optimisation under Limited Infor-
mation,” in Proc. of the 20th Intl. Symp. on Mathematical Theory of
Networks and Systems (MTNS), Melbourne, Australia, July 2012.

Tansu Alpcan received his B.S. degree in elec-
trical engineering from Bogazici University, Istan-
bul, Turkey in 1998. He received his M.S. and
Ph.D. degrees in electrical and computer engineering
from University of Illinois at Urbana-Champaign in
2001 and 2006, respectively. His research involves
applications of distributed decision making, game
theory, optimization, and control to various security
and resource allocation problems in networked and
energy systems. He is recipient of multiple research
and best paper awards from UIUC and IEEE. He has

played a role in organization of several workshops and conferences such as
IEEE Infocom, ICC, GameComm, and GameSec as TPC member, associate
editor, co-chair, chair, and steering board member. He is the (co-)author of
more than 100 journal and conference articles, two edited volumes, as well
as the book ”Network Security: A Decision and Game Theoretic Approach”
published by the Cambridge University Press in 2011. He has worked as a
senior research scientist in Deutsche Telekom Laboratories, Berlin, Germany,
between 2006-2009, and as Assistant Professor in Technical University of
Berlin from 2009 until 2011. He has been with the Department of Electrical
and Electronic Engineering at the University of Melbourne as Senior Lecturer
since October 2011 and as Associate Professor and Reader since January 2015.

Iman Shames Iman Shames is a Senior Lecturer
and McKenzie fellow at the Department of Electrical
and Electronic Engineering, the University of Mel-
bourne. Previously, he was an ACCESS Postdoctoral
Researcher at the ACCESS Linnaeus Centre, the
KTH Royal Institute of Technology, Stockholm,
Sweden. He received his B.Sc. degree in Electrical
Engineering from Shiraz University, Iran in 2006,
and the Ph.D. degree in engineering and computer
science from the Australian National University,
Canberra, Australia in 2011. His current research

interests include, but are not limited to, optimisation theory, mathematical
systems theory, sensor networks, and secure cyber-physical systems.



 

Minerva Access is the Institutional Repository of The University of Melbourne

 

 

Author/s: 

Alpcan, T; Shames, I

 

Title: 

An Information-Based Learning Approach to Dual Control

 

Date: 

2015-11-01

 

Citation: 

Alpcan, T.  &  Shames, I. (2015). An Information-Based Learning Approach to Dual Control.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 26 (11),

pp.2736-2748. https://doi.org/10.1109/TNNLS.2015.2392122.

 

Persistent Link: 

http://hdl.handle.net/11343/57052

 

File Description:

Accepted version


