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Background. Epidemiological studies suggest that, following infection with influenza virus, there is a short pe-
riod during which a host experiences a lower susceptibility to infection with other influenza viruses. This viral in-
terference appears to be independent of any antigenic similarities between the viruses. We used the ferret model of
human influenza to systematically investigate viral interference.

Methods. Ferrets were first infected then challenged 1–14 days later with pairs of influenza A(H1N1)pdm09,
influenza A(H3N2), and influenza B viruses circulating in 2009 and 2010.

Results. Viral interference was observed when the interval between initiation of primary infection and subse-
quent challenge was <1 week. This effect was virus specific and occurred between antigenically related and unrelated
viruses. Coinfections occurred when 1 or 3 days separated infections. Ongoing shedding from the primary virus
infection was associated with viral interference after the secondary challenge.

Conclusions. The interval between infections and the sequential combination of viruses were important determi-
nants of viral interference. The influenza viruses in this study appear to have an ordered hierarchy according to their ability
to block or delay infection, which may contribute to the dominance of different viruses often seen in an influenza season.

Keywords. temporary immunity; viral interference; A(H1N1)pdm09; seasonal influenza; hierarchy; ferret;
influenza; pandemic; influenza B; A(H3N2).

Viral interference, whereby infection with one virus
limits infection and replication of a second virus, has

been described in humans [1–7]. Within populations,
different respiratory viruses reach their epidemic
peaks at different times [8–11]. In 2009, separate
peaks of rhinovirus, influenza A(H1N1)pdm09 virus,
and respiratory syncytial virus (RSV) infections were
observed in Norway and France, although all 3 viruses
were cocirculating at low levels [10–12]. Separate peaks
of infection with different influenza virus (sub)types
were also observed in 2009. Influenza A(H3N2) viruses
were followed by A(H1N1)pdm09 viruses in South
Africa [13], while A(H3N2), A(H1N1)pdm09, and in-
fluenza B viruses circulated sequentially in Beijing [14].

Viral interference, defined as a state of temporary im-
munity from infection, is proposed to be induced by
viral infection [7].By preventing infection with seasonal
influenza viruses, influenza vaccination may prevent
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induction of temporary immunity that could protect against
subsequent respiratory infections [7, 15, 16]. Epidemiological
studies have shown that preventing seasonal influenza virus infec-
tion by vaccination increased the risk of infection with A(H1N1)
pdm09 virus in Canada and Japan [17–19]. Similarly, in a ran-
domized controlled trial, influenza vaccine recipients displayed
higher rates of infection with noninfluenza respiratory viruses,
compared with unvaccinated subjects [20, 21]. This effect is ob-
served only within specific periods [7, 16], estimated to be weeks
to months [20,22].The interval between initial infection and sub-
sequent exposure may explain the different findings between ep-
idemiological studies [7, 17].

Limited animal studies provide evidence for viral interference.
Separation of a primary infection and a secondary challenge with
different respiratory viruses by 3 days delayed shedding of the
second virus in pigs and poultry [23, 24] or reduced mortality
in chickens [25].When infections of different respiratory viruses
were separated by weeks in mice, morbidity and mortality were
reduced [26]. Cross-protective adaptive immunity directed to
common epitopes between influenza A virus subtypes has been
associated with protection in the ferret and guinea pig models,
with intervals of at least 21 days between infections [27–29].

Overall, epidemiological, modeling and animal studies provide
observational and inferential support for the existence of viral in-
terference. However, the duration and extent of this state of tem-
porary immunity is unclear, as is the importance of the antigenic
relationship between respiratory viruses. In this study, we used the
ferret model of human influenza to investigate viral interference
and its effect on the probability and kinetics of subsequent infec-
tion. We assessed the potential for viral interference between
antigenically unrelated influenza virus types (A and B), for which
few T and B lymphocyte epitopes are similar [30], and between
influenza virus subtypes that share T and B lymphocyte epitopes
(A[H3N2] and A[H1N1]pdm09 viruses). Of direct relevance to
recent epidemiological reports, combinations of influenza viruses
that circulated in 2009 and 2010 were assessed.

MATERIALS AND METHODS

Ferrets
Adult ferrets (weight, 500–1500 g) were housed at bioCSL
under a Support Services Agreement with the Victorian Infec-
tious Diseases Reference Laboratory. Ferrets were seronegative
(hemagglutination inhibition [HI] titer, <10) to currently circu-
lating influenza virus strains before use. Experiments were con-
ducted with approval from the CSL Limited/Pfizer Animal
Ethics Committee, in accordance with the National Health
and Medical Research Council, Australia, code of practice for
the care and use of animals for scientific purposes.

Viruses and Cells
A/Tasmania/2004/2009 (A[H1N1]pdm09), A/Perth/16/2009
A(H3N2) and B/Brisbane/1/2007 (B/Florida/4/2006-like;

B/Yamagata lineage) viruses were passaged in the allantoic cav-
ityof embryonated hen eggs and stored at−80°C. Infectious virus
was measured by 50% tissue culture infectious doses (TCID50)
assays [31], using hemagglutination as the read-out.

Virus Infection, Sampling, and Monitoring of Ferrets
Ferrets were anaesthetized (12.5 mg/kg ketamine and 2.5 mg/kg
Ilium Xylazil-20 in a 1:1 [v/v] mixture; Troy Laboratories) and in-
oculated by dropwise delivery of 103.5 TCID50 of virus in 0.5 mL
into the nostrils. After infection, ferrets were housed individually
in a high-efficiency particulate arrestance (HEPA)-filtered iso-
lation unit. Blood samples were obtained from ferrets before the
primary virus infection and at the termination of the experiment.
Animals were weighed and visually inspected, and their temper-
ature was measured daily by using implanted temperature tran-
sponders fitted to identification chips (LifeChip Bio-Thermo,
Digivet). Nasal wash specimens were collected and stored as
previously described [32]. On the day of collection, RNA was ex-
tracted from 140 µL of nasal wash for real-time reverse transcrip-
tion–polymerase chain reaction (RT-PCR) analysis.

Real-Time RT-PCR Quantification of Viral Load in Ferret Nasal
Wash Samples
RNA was extracted from nasal wash as previously described
[32]. A total of 4 µL RNA was assayed by real-time RT-PCR
with influenza virus–specific primers and probes, using the Sen-
siFAST Probe Lo-ROX One-Step Kit, according to the manu-
facturer’s instructions (Bioline), on the 7500 Fast Real-Time
system (Applied Biosystems). Primers and probes were from
the Centers for Disease Control and Prevention (CDC) Influen-
za Virus Real-Time RT-PCR Influenza A (H1/H3/H1pdm09)
Subtyping Panel and the CDC Influenza B Lineage Genotyping
Panel, obtained from the Influenza Reagent Resource (available
at: http://www.influenzareagentresource.org/).

Definitions of Infection Measurements and Statistical Analyses
Viral kinetics were assessed using real-time RT-PCR data. In-
fection was defined as a challenge virus load of >106 copies/
100 µL of nasal wash for at least 1 measurement, blocking/
prevention was defined as a challenge virus load of <106

copies/100 µL of nasal wash for all measurements, and coinfec-
tion was defined as primary virus and challenge virus loads of
>106 copies/100 µL of nasal wash for at least 1 day.

For statistical analysis, ferrets infected with the challenge
virus were split into 2 groups: those in which primary infection
persisted following challenge and those in which primary infec-
tion subsided and was below the threshold for all days following
challenge. Control ferrets were excluded. The times from chal-
lenge to (1) the start of shedding of challenge virus and (2) the
peak of shedding were calculated for each ferret, and the group
median value was determined. The difference in median values
between groups was analyzed using the Wilcoxon rank sum test,
with the significance level set at an α of 0.05.
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Linear regression was performed on the number of days from
challenge to the start/peak of shedding for the challenge virus
versus the number of days for which the primary infection

persisted following challenge, and a 95% confidence interval
(CI) for the gradient was obtained; this indicates the interval
that the start/peak of shedding for the challenge virus was

Figure 1. Experimental plan. A, Ferrets were infected intranasally with the primary virus and then challenged intranasally with a second virus. Virus
shedding was assessed daily in nasal washings (Δ) as a measure of upper respiratory tract infection. B, Six intervals between primary infection and chal-
lenge were assessed. Primary infections were staggered to allow challenge of all animals on the same day, enabling direct comparison of virus shedding
after challenge. C, Examples of virus shedding patterns after primary infection and challenge. Each graph represents data from an individual ferret. Shedding
patterns were compared to those for controls that were infected with the challenge virus only on day 14 (bottom row).
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delayed for each day that the primary infection persisted follow-
ing challenge. The null hypothesis, that there is no delay, was
tested, with the significance level set at an α of 0.05.

The duration of infection with the challenge virus was com-
pared for ferrets first infected and challenged with heterosub-
typic influenza A viruses (when challenge was successful) and
corresponding control ferrets; the difference in the median
value was analyzed using the Wilcoxon rank sum test, with
the significance level set at an α of 0.05. Statistical analysis
was conducted using R, version 2.15.1 [33].

RESULTS

Infection With Influenza Virus Can Prevent Subsequent
Infection With a Different Influenza Type Within Short Intervals
To investigate viral interference following infection with influ-
enza virus, we systematically assessed the influence of a primary
virus infection on the kinetics of a secondary virus challenge in
the ferret model (Figure 1A). Two intervals (1 day and 3 days)
represented the start and peak of virus shedding, respectively, in
the upper respiratory tract (URT); one interval (5 days) corre-
sponded to decreased virus shedding; and one interval (7 days)
reflected the end of virus shedding. Seroconversion typically oc-
curs 7–12 days following infection (data not shown); thus, the
7-day interval and 2 later intervals (10 days and 14 days) repre-
sented the adaptive immune response (Figure 1B).

We determined whether prior infection could prevent shed-
ding of a different virus type. Test ferrets were first infected with
influenza A virus and then challenged with influenza B virus, or
vice versa (primary infection→ challenge: A[H1N1]pdm09→ B,
B→ A[H1N1]pdm09, A[H3N2]→ B, and B→ A[H3N2]).
Control ferrets had no primary infection.

Infectious virus shedding was defined by a real-time RT-
PCR–determined value of 106 copies/100 µL of nasal wash for
all assays (Flu A M, Flu B NS, H1 HA, and H3 HA), correlating
to the minimum amount of detectable infectious virus in in
vitro TCID50 assays (Supplementary Figure 1) and infectivity
measured previously by transmission [32]. Various patterns of
shedding were observed after challenge: (1) prevention of sec-
ondary infection, (2) coinfection, (3) shortened secondary in-
fection, (4) delayed secondary infection, and (5) no effect as
compared to the control group (Figure 1C). Individual virus
shedding data for all ferrets are shown in Supplementary Fig-
ures 3–6. No clinical signs (weight loss, fever, or symptoms)
were associated with any virus shedding pattern (data not
shown). As virus shedding was measured for only 9 days after
challenge, seroconversion could not reliably be used as a mea-
sure of infection (data not shown).

Different outcomes were observed with different combinations
and sequences of virus infections (Figure 2, Supplementary
Figure 2, and Table 1). Primary infection with A(H1N1)pdm09
virus 1 or 3 days prior prevented secondary infection with

influenza B virus in half of the ferrets (Figure 2A and Table 1).
In contrast, in all animals first infected with influenza B virus and
then challenged with A(H1N1)pdm09 virus, coinfection with
shedding of both viruses was observed (Figure 2B and Table 1).
Prior infection with influenza B virus protected 1 ferret from sub-
sequent infection with A(H3N2) virus, while 2 ferrets were coin-
fected (Figure 2C and Table 1). Ferrets first infected with
A(H3N2) virus and then challenged with influenza B virus
were not protected and shed both viruses after challenge (Fig-
ure 2D and Table 1).

Figure 2. Shedding of the challenge virus is prevented, or coinfections
may occur in short intervals. Ferrets were infected with virus and then chal-
lenged with a different virus type (primary virus→ challenge virus). Data
indicate the outcome of the challenge infection, in which ferrets were in-
fected with challenge virus (black), protected from infection with challenge
virus (white), or coinfected with challenge and primary virus (striped;
n = 3–6).
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Similar patterns were observed for 5- or 7-day intervals (Fig-
ure 2 and Table 1). Prior infection with A(H1N1)pdm09 virus
prevented infection with influenza B virus in half of the ferrets
(Figure 2A and Table 1). Interference was not observed if the
order of viruses was reversed; coinfections occurred in the ma-
jority of animals (Figure 2B and Table 1). Prior infection with
influenza B virus did not protect any ferrets from challenge with
A(H3N2) virus 5 or 7 days later (Figure 2C and Table 1). For
longer intervals of 10 or 14 days, no protection from challenge
was observed in any groups (Figure 2 and Table 1).

Continued Shedding From the Primary Virus Infection Correlates
With a Delay in Shedding Following Challenge With a Different
Influenza Virus Type
Because prevention of challenge virus infection occurred only
for intervals of ≤7 days and primary virus was detected for
5–7 days (Supplementary Figures 3–6), a temporary state of im-
munity that affects challenge outcome may require the presence
of primary virus. Animals shedding secondary virus after
challenge (Figure 2) were grouped according to whether the
primary infection virus could be detected in URT samples
after challenge, as a proxy for the presence of virus on the
day of challenge. The kinetics of challenge virus shedding
were compared between the groups (Figures 3 and 4 and
Supplementary Figure 2).

When A(H1N1)pdm09 or influenza B were the primary in-
fection viruses, their continued shedding on the day of chal-
lenge correlated with a delay to the start (Figure 3A–C) and
peak (Figures 4A–C) of shedding of the challenge viruses. On-
going shedding of A(H1N1)pdm09 virus delayed the start of
shedding of the influenza B challenge virus for a longer period
(Figure 3A) than was observed when the order of the viruses
was reversed (Figure 3B). Ferrets first infected with A(H3N2)
virus displayed no significant delay to the start (Figure 3D) or
peak (Figure 4D) of shedding of the challenge influenza B virus.

We next examined how the duration of primary virus shed-
ding after challenge modified the challenge virus kinetics. When
ferrets were first infected with A(H1N1)pdm09 virus, for every
day that A(H1N1)pdm09 virus was detected following chal-
lenge, the start of B virus shedding was delayed by 1.82 days
(95% CI, .31–3.33; P = .031; Figure 5A), and the peak of B
virus shedding was delayed by 1.68 days (95% CI, .66–2.69;
P = .014; Figure 6A). When ferrets were first infected with influ-
enza B virus, this effect was reduced. For every day the primary
influenza B virus infection continued after A(H1N1)pdm09

Table 1. Outcome of Challenge Infection for Virus Pairs
Evaluated in the Study

Virus Pair

Ferrets Protected, Proportion,
by Interval Between Primary
Infection and Challenge, d

Control1 3 5 7 10 14

A(H1N1)pdm09→B 1/3 2/3 1/3 2/3 0/3 0/3 0/3

B→A(H1N1)pdm09 0/3 0/3 0/3 0/3 0/3 0/3 0/3

B→A(H3N2) 0/3 1/3 0/3 0/3 0/3 0/3 0/6
A(H3N2)→B ND 0/3 ND ND 0/3 ND 0/3

A(H1N1)pdm09→A(H3N2) 0/3 3/3 3/3 3/3 2/3 0/3 0/6

A(H3N2)→A(H1N1)pdm09 0/3 0/3 2/3 2/3 0/3 0/3 0/6

Data are no. of ferrets in which challenge infection was prevented from
secondary challenge/no. evaluated.

Abbreviation: ND, not done.

Figure 3. The presence of primary virus shedding immediately after
challenge can delay the start of shedding of the challenge virus between
influenza virus types. Each ferret was categorized as shedding (present) or
not shedding (cleared) primary virus on the day after challenge, and the
interval to the start of challenge virus shedding was determined. Line in-
dicates median values.
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virus challenge, the peak of A(H1N1)pdm09 virus shedding was
delayed by 0.68 days (95% CI, .10–1.25; P = .025; Figure 6B),
with some evidence for a delay to start of A(H1N1)pdm09
virus shedding (Figure 5B). There was no evidence of delay
when ferrets were first infected with influenza B virus and
then challenged with A(H3N2) virus, or vice versa (Figure 5C
and 5D and Figure 6C and 6D). These data show that temporary
immunity depends on the continued presence of the pri-
mary virus and the respective virus (sub)types. There was no

statistical support for an impact on the kinetics of the primary
virus infection (shedding was not shortened), regardless of the
timing of the secondary virus challenge (Supplementary
Figures 3–6).

Infection With Influenza A Virus May Block, Delay, or Allow
Coinfection With a Different Influenza A Virus Subtype
We assessed viral interference between influenza A viruses that
have common antigenic epitopes. Ferrets were infected with

Figure 4. The presence of primary virus shedding immediately after chal-
lenge can delay the peak of shedding of the challenge virus between influ-
enza virus types. Each ferret was categorized as shedding (present) or not
shedding (cleared) primary virus the day after challenge, and the interval to
the peak of challenge virus shedding was determined. Line indicates median.

Figure 5. The delay of the start of virus shedding after challenge is var-
iable between influenza virus types. For each ferret that was shedding pri-
mary virus on the day after challenge, the number of days after challenge
during which the primary virus shedding was still detected (x-axis) was
plotted against the interval to the start of challenge infection (y-axis).
A line of best fit yielded by linear regression analysis was plotted for
every virus pair to determine the delay for an infection to begin. Abbrevi-
ation: CI, confidence interval.
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A(H1N1)pdm09 virus and challenged with A(H3N2) virus, and
vice versa (Supplementary Figures 2, 7, and 8). At the shortest
interval of 1 day, there was no prevention of the challenge infec-
tion; coinfections occurred in all animals, irrespective of the
order of infection (Supplementary Figure 9 and Table 1). How-
ever, infection with A(H1N1)pdm09 virus completely prevent-
ed infection with A(H3N2) virus 3–7 days later (and, for 2 of 3

ferrets, at a 10-day interval; Supplementary Figure 9A and
Table 1). Infection with A(H3N2) virus 3 days prior to
A(H1N1)pdm09 virus challenge resulted in coinfection (Sup-
plementary Figure 9B and Table 1), while for intervals of 5 or
7 days, infection with A(H3N2) virus prevented infection with
A(H1N1)pdm09 virus in 2 of 3 ferrets (Supplementary Fig-
ure 9B and Table 1). There was no significant delay to the
start or peak of shedding for either combination of influenza
A virus, but this may reflect the small number of ferrets (Sup-
plementary Figure 10).

When ferrets were challenged 10 or 14 days after the primary
infection, prior infection with A(H3N2) virus did not prevent
infection with A(H1N1)pdm09 (Supplementary Figure 9B
and Table 1). However, the challenge virus was cleared more
rapidly (Figure 1C and Supplementary Figure 8); ferrets shed
A(H1N1)pdm09 virus for a median duration of 1 day, com-
pared with 5 days for control ferrets (Figure 7B). Similarly, fer-
rets that were first infected with A(H1N1)pdm09 virus and then
infected with A(H3N2) virus 10–14 days later, shed A(H3N2)
virus for a median of 3 days, compared with 8 days for control
ferrets (Figure 7A).

For all animals first infected with A(H3N2) virus and then
infected with A(H1N1)pdm09 virus, at all intervals, there was

Figure 6. The delay of the peak of virus shedding after challenge is var-
iable between influenza virus types. For each ferret that was shedding pri-
mary virus on the day after challenge, the number of days after challenge
during which the primary virus shedding was still detected (x-axis) was
plotted against the interval to the peak of challenge infection (y-axis).
A line of best fit yielded by linear regression analysis was plotted for
every virus pair to determine the delay for an infection to peak. Abbrevia-
tion: CI, confidence interval.

Figure 7. The duration of virus shedding is reduced when ferrets are
infected with different influenza A subtypes within 10–14-day intervals.
The number of days of shedding of the challenge virus was determined
for each ferret within the 10–14-day intervals and for the control group.
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a statistically significant delay before reaching the peak of
virus shedding of 0.3 days (Supplementary Figure 11D), but
there was no statistical support for a delay to the start of shed-
ding (Supplementary Figure 11B). No delays were seen when
A(H1N1)pdm09 virus infection preceded A(H3N2) virus chal-
lenge (Supplementary Figure 11A and 11C).

DISCUSSION

Using a ferret model of human influenza, we demonstrated that
infection with influenza virus can prevent or modify a subse-
quent infection with a different influenza virus (sub)type. Out-
comes varied according to both virus combination and the
interval between primary infection and challenge. Prior infec-
tion with both antigenically related and unrelated viruses pro-
vided protection from subsequent infection or modified the
infection kinetics of the challenge virus. For relatively short ex-
posure intervals, these effects required the continued presence
of the primary virus following challenge. For heterosubtypic in-
fluenza A viruses, when primary infection and challenge were
separated by at least 1 week, the challenge virus was rapidly
cleared. The outcome depended on the virus combinations, in-
dicating a hierarchy of influenza viruses inducing different lev-
els of temporary immunity. In this study, the A(H1N1)pdm09
virus was most effective at inducing a temporary state of immu-
nity, followed by influenza B virus, and, last, the A(H3N2) virus.
These data may explain why viral interference is observed only
in some epidemiological studies and during some influenza sea-
sons [7, 8, 17], but further studies using other influenza strains
are required to confirm these observations.

A key finding of this study is that coinfection was a consistent
outcome in the ferret (5 of 6 virus pairs) when exposure to both
influenza viruses occurred within 3 days. Human coinfections
with influenza viruses are rarely detected [34–38], probably re-
flecting the low prospect of sequential exposure to different circu-
lating strains within the short window of opportunity. Given that
only a subset of laboratories routinely subtype influenza Aviruses,
there is a potential for missed identification of coinfections [36,
38]. Coinfections with influenza A viruses may give rise to
novel reassortants, so understanding their true frequency and like-
lihood of occurrence is important for public health reasons.

Multiple mechanisms may contribute to establishing a tem-
porary state of immunity. At intervals of <1 week, innate im-
mune antiviral mechanisms may prevent or delay secondary
viral infections. These mechanisms are antigen independent,
so they may be common to both influenza A and B viruses.
Upon infection with influenza virus, expression of type I inter-
ferons is upregulated in infected epithelial cells, and proinflam-
matory cytokines and chemokines are released from cells of the
innate immune system [39]. Intrinsic antiviral factors, such as
the IFITM and IFIT families and MxA, inhibit influenza virus
fusion and replication by directly interacting with viral proteins

or viral RNA [40, 41]. Recent studies have also demonstrated
that nucleoprotein from influenza B virus can interact with nu-
cleoprotein from influenza A virus and limit its polymerase ac-
tivity [42, 43], suggesting that viral intermediates may also
inhibit coinfections. Together, these mechanisms may limit the
amount of virus shed by making epithelial cells refractory to in-
fection, mopping up free virus, phagocytosing infected cells, or
preventing/reducing viral replication. Many of these antigen-
independent mechanisms reach their peak levels at the peak of
virus shedding (L. Carolan and K. Laurie, unpublished observa-
tions); in this study, virus shedding peaked 2–3 days after infec-
tion and persisted for 5–6 days, consistent with the timing
observed for temporary immunity. This timing also implies a
lag of 1–2 days following primary infection before innate immu-
nity and intrinsic antiviral factors reach maximum levels, provid-
ing a possible explanation for the observed window of coinfection.

Cross-reactive immune responses may limit infection by vi-
ruses that share epitopes [44].A shortened period of virus shed-
ding was seen only when ferrets were infected with consecutive
influenza A viruses. Neutralizing antibodies were only detected
7–12 days after inoculation, consistent with our observation of
shortened challenge infection 10 and 14 days after the first in-
fection (data not shown). Previous studies, in which infections
with heterosubtypic influenza A viruses were separated by 8
weeks, showed a similar shortening of the duration of virus
shedding [28]. Cross-reactive epitopes between influenza A
and B viruses have been reported in the fusion peptide of hem-
agglutinin (HA) and the enzymatic region of neuraminidase
[30]. Generation of cross-reactive T cells has yet to be investigat-
ed, but we observed no protection, or change in kinetics, when
ferrets were infected with influenza A virus and then challenged
with influenza B virus 8 weeks later, and vice versa (data not
shown). The rapid clearance observed in ferrets consecutively
infected with influenza A viruses at 10- and 14-day intervals
was not detected in ferrets consecutively infected with influenza
A and B viruses, suggesting that cross-reactive lymphocytes do
not play a major role in viral clearance in this experiment.

Understanding why some challenge viruses can still infect the
respiratory epithelium of ferrets with an established influenza
virus infection is of interest. Viral fitness, whereby one virus
can outgrow another and even successfully be transmitted to
a new host, may be important [45]. In another study, when
ferrets were coinfected with A(H1N1)pdm09/A(H1N1) or
A(H1N1)pdm09/A(H3N2) viruses, only the A(H1N1)pdm09
virus was transmitted to naive contact ferrets, showing a clear
fitness advantage [46]. HA receptor specificity may also con-
tribute. The A(H1N1)pdm09 virus in our study can infect
cells of both the URT and lower respiratory tract, whereas the
A(H3N2) and influenza B viruses used in this study infect
only the URT following intranasal infection (data not shown).
This suggests a broader receptor specificity for the HA of
A(H1N1)pdm09, compared with the H3 or influenza B HA

1708 • JID 2015:212 (1 December) • Laurie et al

http://jid.oxfordjournals.org/lookup/suppl/doi:10.1093/infdis/jiv260/-/DC1
http://jid.oxfordjournals.org/lookup/suppl/doi:10.1093/infdis/jiv260/-/DC1
http://jid.oxfordjournals.org/lookup/suppl/doi:10.1093/infdis/jiv260/-/DC1
http://jid.oxfordjournals.org/lookup/suppl/doi:10.1093/infdis/jiv260/-/DC1


proteins. Experiments are planned to investigate these aspects
on our model.

Our findings imply that temporary immunity between unre-
lated viruses lasts for 1 week or less in the ferret. While this pe-
riod is short in comparison with observed interference in
epidemiological or modeling studies [20, 22], individual level in-
fluences on susceptibility and transmissibility will predictably
have consequences over longer time frames at the level of pop-
ulations. We used a direct inoculation model to ensure that the
challenge was controlled and that the dose of virus was consis-
tent. A low dose of virus was used to mirror the kinetics of a
natural infection, but the duration of temporary immunity
may be different in an aerosol transmission model and more
closely match those periods seen in humans. Live attenuated in-
fluenza vaccines (LAIVs) have been shown to induce the innate
immune response [47], and thus the ability of LAIV to induce
viral interference to homologous and hetero(sub)typic viruses
in rapid time frames is also of interest.

Overall, our study provides insight into the phenomenon of viral
interference and provides the first experimental evidence for a hi-
erarchy among influenza viruses in inducing a temporary state of
immunity, as previously suggested by surveillance studies [13, 14].
In humans, a lack of adaptive immunity in specific age groups was
most likely the major mechanism behind the dominance of the
A(H1N1)pdm09 virus upon its emergence in 2009 [48]. However,
our study suggests that temporary immunity may also have con-
tributed to the observed dominance of A(H1N1)pdm09 virus
and higher levels of infection seen in many countries in 2009. In-
duction of a nonspecific localized temporary state of immunity
may provide a strategy to control infection with emerging influenza
viruses in the absence of an antigen-matched inactivated vaccine.
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