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This paper provides a new method for model-based estimation of intra-cortical connectivity from
electrophysiological measurements. A novel closed-form solution for the connectivity function of the Amari neu-
ral field equations is derived as a function of electrophysiological observations. The resultant intra-cortical con-
nectivity estimate is driven from experimental data, but constrained by the mesoscopic neurodynamics that
are encoded in the computational model. A demonstration is provided to show how the method can be used
to image physiological mechanisms that govern cortical dynamics, which are normally hidden in clinical data
from epilepsy patients. Accurate estimation performance is demonstrated using synthetic data. Following the
computational testing, results from patient data are obtained that indicate a dominant increase in surround inhi-
bition prior to seizure onset that subsides in the cases when the seizures spread.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Introduction

The human brain is arguably nature's most complex system. The
development and validation of a theory that underpins its function is
one of the greatest challenges faced by scientists today. This great
challenge is being addressed by both the experimental and theoretical
neuroscience communities. The experimental neuroscience community
is generating an ever increasing number of facts, describing the interac-
tion betweenmanipulations and observations. The theoretical neurosci-
ence community is developing mathematical models that can explain
generators of data and make non-trivial predictions about system be-
havior (to be validated by experiments). To date, neither approach has
been successful in developing an understanding of high-level brain
function. Continuously accumulating more facts has not brought us
closer to an understanding of what appears to be emergent phenomena
in the brain. Understanding such phenomena requires the development
and acceptance of theory. However, theoretical developments have
been limited by the inability to accurately measure model parameters
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and account for inter-subject variability. This has led to mathematical
models that are either over-parameterized or overly-simplified. Over-
parameterized models often provide ambiguous explanations of data
leading to misleading theories. Overly-simple models can be useful
in certain applications, but can often neglect important aspects of the
underlying biology.

An opportunity to overcome the challenges mentioned above has
arisen with the advent of data-driven neural modeling. Data-driven
modeling is a process of a creating a subject-specific mathematical
model of a particular subject or experimental preparation. The model
is constrained by known relationships and general principles that are
described bymathematical functions,where theparameters of the func-
tions are considered unknown. For example, an excitatory post-synaptic
potential will have a fast rise time (from synaptic dynamics) and a
slower decay time (from membrane dynamics) that is described by

h tð Þ ¼ α exp −
t
ts

� �
−exp −

t
tm

� �� �
; ð1Þ

where α is a synaptic gain parameter and ts b tm are the synaptic and
membrane time constants, respectively. The form of the synaptic
response function (or kernel due to the convolution in time) is well
accepted. However, the parameters are known to vary across subjects,
brain regions, and neural population types and thus need to either
measured or inferred from data to create accurate models.
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Table 1
Notation. The symbols, description of the quantity, and the SI units where relevant.

Symbol Quantity Units

DomainΩ Spatial domain n.a.
ℤ+ Non-negative integers n.a.
ℝn n-Dimensional real numbers n.a.
r Spatial location [mm, mm]
t Time s

Model
yt(rij) Electrophysiological measurement mV
vt(r) Mean membrane potential field mV
f(v(r)) Activation function spike s−1

f̂ ðvðrÞÞ Linearized activation function spike s−1

et(r) Field disturbance, with covariance function γ(r) mV
εt(rij) Observation noise, with covariance matrix Σε mV
m(rij) Observation function, where i = 1, …, I and j = 1, … J n.a.
w(r) Connectivity function mV spike−1

ψi(r) Connectivity basis functions n.a.
θi Weights of the connectivity basis functions mV spike−1

μi Centers of the connectivity basis functions mm
σi Widths of the connectivity basis functions mm

Estimationτ Spatial shift mmν Spatial frequency cycles/mm
ytd Differential re-referenced observations along j-direction mV
R(τ) Spatial correlation mV2

SðνÞ Power spectral density mV2 mm/cycles
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Similarly, the probability that a neuron at position r connects with a
neighbor at position r′ decreases as the distance, r − r′, increases. This
motivates the shape of connectivity functions (or kernels due to the
convolution in space) that are used to describe neural fields, such as
Amari’s model (Amari, 1977) that has the form

w r− r0ð Þ ¼
X
n
θn exp −

r− r0ð ÞΤ r− r0ð Þ
σn

 !
; ð2Þ

where θn are the parameters that describe the effective connectivity
strength of excitatory (n = e) and inhibitory (n = i) connections, and
σn specifies the axonal–dendritic range. The form of the connectivity
function is well accepted in the literature and gives rise to important
phenomena, such as tuning of cortical regions to receptive fields.
However, as for the case with the post-synaptic response function in
Eq. (1), the parameters are subject-specific.

There are several data-driven frameworks recently presented in the
literature (Friston et al., 2003; Schiff and Sauer, 2008; Ullah and Schiff,
2010; Sedigh-Sarvestani et al., 2012; Pinotsis et al., 2013; Gorzelic
et al., 2013; Turner et al., 2013; Aram et al., 2012; Freestone et al.,
2011, 2013, 2014). These frameworks utilize system identification
techniques to solve the problem of inferring parameters from data.
They have demonstrated great potential in furthering our under-
standing of the function and structure of neural circuits. Moreover,
data-driven models provide new opportunities in the field of neural
engineering to incorporate control and systems theory to optimize
therapeutic bionic devices (Schiff, 2011).

Perhaps the most limiting factor in the widespread adoption of
data-driven modeling frameworks is the high level of complexity
of the estimation algorithms. It is often the case with complicated
algorithms that the results are clouded by a lack of understanding of
the methods involved. Furthermore, the high level of complexity has
led to the inappropriate application of data-driven methods to certain
problems. Therefore, the development of methods that do not rely on
complicated, iterative algorithms represents a significant contribution
to neuroscience.

This paper provides a method for data-driven neural field modeling
that does not rely on complicated, computationally intense estimation
algorithms. The output of the method is an estimate of an intra-
cortical connectivity function that can be computed in closed-form
from local field potential or other high-resolution electrophysiological
measurements. The estimated connectivity function is based on the
assumption that the mean field dynamics of the cortex is governed by
Amari-style neuralfield equations (Amari, 1977), where the parameters
are not known. The dynamics of thismodel are governed by the connec-
tivity function, which physically describes the statistics of the axonal–
dendritic projections. Computationally, the shape of the connectivity
function strongly dictates the type of dynamics that the cortical field
can exhibit.

Results from data-driven mesoscopic neural modeling frameworks
must be interpreted with care. A common misconception is that the
variables that are estimated have a direct one-to-one correspondence
to the actual brain. This is not the case. The resultant models are far
less complex than the actual brain. Accordingly, parameter estimates
must be interpreted as being constrained by the models. This is not to
say that the models are not related to actual neural dynamics or that
valuable insights cannot be gained. In actual fact, mesoscopic models
are leading to new hypotheses about many types of phenomena.
Furthermore, the constraints that themodels place on the data facilitate
the estimation of variables that are normally hidden in experimental
observations.

The rest of this paper is set out as follows. In the Methods section,
the stochastic Amari neural field model is briefly reviewed. Then
necessary formulations for the intra-cortical connectivity estimator
are provided. This is followed by the data collection approach and
the pre-processing steps. The Results section provides examples
using synthetic data that demonstrate the estimation performance
with known parameters. Following this, results using recorded intra-
cranial electroencephalogram (iEEG) data over normal, seizure, and
post-seizure periods are presented. Finally, in the Discussion section,
the implications and limitations of this method as well as possible
future extensions are discussed. All frequently used symbols in the
following sections are given in Table 1.

Methods

Neural field model

This manuscript presents a new method for inferring the underlying
connectivity structure of cortex with the assumption that the cortical dy-
namics of interest are governed by physical laws described by the neural
field model of Amari (1977). The single layer Amari neural field model is

v t; rð Þ ¼
Z t

−∞
h t− t0ð Þ

Z
Ω
w r− r0ð Þ f v t0; r0ð Þð Þdr0 þ p t0; rð Þ

� �
dt0: ð3Þ

The spatial dynamics are governed by the connectivity function,
w(r), that collects all the presynaptic firing rates that drive the field of
postsynaptic potentials, v(t, r), and r ∈ Ω ⊂ ℝn are spatial locations in
n-dimensional physical space, n ∈ {1, 2, 3}. The temporal dynamics are
governed by the post-synaptic response function, h(t), acting on action
potentials and the external inputs arriving from other neural popula-
tions. The term p(t, r) denotes external inputs. The relationship between
the presynaptic mean membrane potential, and the presynaptic mean
firing rate is typically described by a sigmoid function in generative
neural population models. The sigmoidal relationship is

f v t; rð Þð Þ ¼ fmax

1þ exp ς v0 − v t; rð Þð Þð Þ ; ð4Þ

where fmax is the maximum firing rate, v0 describes the mean firing
threshold relative to the restingmembrane potential and the parameter
ς defines the steepness of the sigmoid at v0 (also specifies variability of
firing thresholds).
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Simplifying assumptions
In order to relate the model to data, the neural field in Eq. (3) must

be written as an integro-differential equation (IDE). To achieve this,
the convolution of the post-synaptic response function with the firing
rate is rewritten as a differential operator acting on v(t, r),

Dv t; rð Þ ¼
Z
Ω
w r− r0ð Þ f v t; r0ð Þð Þdr0 þ p t; rð Þ: ð5Þ

Under the assumption that synaptic transmission is instantaneous
(infinitely fast rise time on the post-synaptic response function), the
differential operator is

D ¼ d
dt

þ 1
tm

; ð6Þ

where tm is the membrane time constant. Note that here we have set
synaptic gain α = 1, since it is linear with respect to the coupling
strength and can be absorbed into the connectivity function. If we
assume the input p(t, r) is unknown, but modeled by a spatiotemporal
Wiener process, then the system can be discretized using the
Euler–Maruyama method (see Freestone et al., 2011 for details),

vtþ1 rð Þ ¼ ξvt rð Þ þ Ts

Z
Ω w r− r0ð Þ f vt r0ð Þð Þdr0 þ et rð Þ; ð7Þ

where

ξ ¼ 1−
Ts

tm

� �
; ð8Þ

t ∈ ℤ+ indexes discrete time, and Ts is the sampling time step. The dis-
turbance term, et(r) = σd[p(t + Ts, r) − p(t, r)], is the increment of a
spatiotemporal Wiener process, independent and identically distribut-
ed (i. i. d.) with zero mean such that etðrÞ∼GPð0; Tsσ2

dδðt−t0Þγðr−r0ÞÞ.
HereGPð0; Tsσ2

dδðt−t0Þγðr−r0ÞÞdenotes a zeromeanGaussian process,
spatially colored with the spatial covariance function, γ(r − r′),
and temporally independent with the temporal covariance function,
Tsσd

2δ(t − t′) (Rasmussen and Williams, 2005). The shape or width of
the covariance function, γ(r − r′), dictates how correlated the inputs
are at adjoining cortical areas.

The activation function is approximated by linearizing about the
threshold using a first order truncated Taylor-series expansion as

f vt rð Þð Þ≈ f̂ vt rð Þð Þ ¼ fmax
1
2
þ 1
4
ς vt rð Þ− v0ð Þ

� �
: ð9Þ

Given that this model is used for inversion purposes, provided that
not all neurons are silent or firing at the maximal rate, this approxima-
tion will be reasonably accurate. Since maximum firing rate is simply
multiplied with the connectivity strength parameter, we absorb the
maximal firing rate into the connectivity function, w(⋅), in Eq. (7).

Observation system
The electrophysiological measurements are related to the neural

field via themeasurement function, which incorporates a differential
montage, the size and position of the electrodes, and measurement
noise. The electrodes are placed at discrete points within the neural
field that are specified as rij, where n indexes the electrodes and
n = 1, ⋯, ny. The measurement equation is

yt ri j
� � ¼ ZΩ m ri j − r

� �
vt rð Þdrþ ct þ εt ri j

� �
; ð10Þ

where m(⋅) is a function that models the recording electrode pickup
range, ct is common-mode inference, and εtðri jÞ∼Nð0;ΣεÞ denotes an
additive noise component from a multivariate normal distribution
with mean zero and covariance matrix Σε ¼ σ2
ε Iny , where Iny is the

ny × ny identity matrix. The observation system models the tissue
conductivity as being homogeneous and isotropic, where m(rij − r)
is symmetric and the same at all spatial locations. To give a two-
dimensional representation of the observations, the measurements
at each time instant, t, are gathered in the matrix,

yt ri j
� � ¼

yt r11ð Þ yt r12ð Þ ⋯ yt r1 J
� �

yt r21ð Þ yt r22ð Þ ⋯ yt r2 J
� �

⋮ ⋮ ⋱ ⋮
yt rI1ð Þ yt rI2ð Þ ⋯ yt rI J

� �
2
664

3
775
I� J

: ð11Þ

Differential re-referencing along the j-direction is then defined as

ydt ri j
� � ¼ yþt ri j

� �
− y−t ri j

� �
; ð12Þ

where

yþt ri j
� � ¼

yt r11ð Þ yt r12ð Þ ⋯ yt r1 J−1
� �

yt r21ð Þ yt r22ð Þ ⋯ yt r2 J−1
� �

⋮ ⋮ ⋱ ⋮
yt rI1ð Þ yt rI2ð Þ ⋯ yt rI J−1

� �
2
664

3
775
I� J−1ð Þ

; ð13Þ

and

y−t ri j
� � ¼

yt r12ð Þ yt r13ð Þ ⋯ yt r1 J
� �

yt r22ð Þ yt r23ð Þ ⋯ yt r2 J
� �

⋮ ⋮ ⋱ ⋮
yt rI2ð Þ yt rI3ð Þ ⋯ yt rI J

� �
2
664

3
775
I� J−1ð Þ

: ð14Þ

The re-referencing yields nd = I × (J − 1) observation points.

Estimation method

Here, we consider a two-dimensional cortical sheet and present a
closed-form estimate of the connectivity function from electrophys-
iological data. Importantly, the estimate accounts for a realistic dif-
ferential montage of the data. This method of re-referencing
provides a localized, noise-robust measurement of neural activities,
where the common-mode interference and the effect of the reference
electrode are removed.

The closed-form solution to the connectivity function is given by

w rð Þ ¼ 4
Tsς

F−1 Sydtydtþ1
νð Þ

Sydtydt νð Þ þ Sεdt ε
d
t
νð Þ − ξ

 !
; ð15Þ

where ν is the spatial frequency, Sydtydtþ1
ðνÞ and Sydtydt ðνÞ are time-

averaged spatial power spectral densities between consecutive re-
referenced observations at each time point. The term, Sεdt ε

d
t
ðνÞ, is the

analytic spatial power spectral density of the re-referenced observation
noise. The operator F�1 is the inverse Fourier transform. The derivation
and detailed descriptions of each term in Eq. (15) are given in
Appendix A. Note that the solution is independent of thedisturbance co-
variance function, σd

2γ(⋅), the firing threshold parameter, v0, and the
sensor model, m(⋅). However, the activation function slope parameter,
ς, the observation noise variance, σε

2, and the synaptic decay parameter,
ξ, are required to estimate the connectivity function. The slope parame-
ter, ς, can be absorbed into the connectivity function on the left hand
side of Eq. (15), resulting in a scaled estimate of the connectivity func-
tion. This removes a parameter that cannot be recovered by our estima-
tion algorithm. An error in the assumed value of ξwill result in a shift of
the estimated connectivity function amplitude at w(r = 0) (since F�1

(ξ) = ξδ(r)).
The Wiener–Khintchine theorem can be used to provide a

bound on the estimate of the observation noise variance, σε
2. The

denominator of Eq. (15) is equivalent to a power spectral density,
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which is a non-negative real quantity. Therefore, we can rearrange
the denominator to give the bound

Sydtydt νð Þ þ Sεtεt νð Þ ≥ 0 ∀ν; ð16Þ

where (see Appendix A)

Sεtεt νð Þ ¼ 2σ2
ε cos 2πνð Þ− 1ð Þ ð17Þ

giving

Sydtydt νð Þ ≥ 2σ2
ε 1− cos 2πνð Þð Þ ≥ 0 ∀ν: ð18Þ

Data collection and pre-processing

Data were collected from three patients undergoing evaluation
for surgical resection of epileptic brain tissue. The standard procedure
for resective surgery involves implantation of subdural electrodes for
intracranial electroencephalogram (iEEG) monitoring. Data from these
electrodes provide information formapping functional and pathological
tissue to define the surgical margins. These data sets were collected
with informed consent from patients with ethics approval from the
St. Vincent's Hospital Melbourne Human Research Ethics Committee
(HREC-A 006/08). Fig. 1 shows the arrangement of the iEEG elec-
trodes for Patient I. The iEEG electrodes covered the temporal lobe
and consisted of a square grid of 120 (8 × 15). The x-direction and
y-direction electrode spacings were 0.5 cm and 1 cm, respectively,
yielding a coverage of 7 × 7 cm2 of the temporal cortex. The arrange-
ment of the electrodes was the same for Patient II. For Patient III,
a grid of 90 (6 × 15) electrodes was used. Data were acquired with
a sampling rate of 5 kHz.

The iEEG recordings were pre-processed using several steps. The
first step was to identify and exclude channels that had poor signal
quality; this was performed by visual examination. Any linear trend
was removed from the data by subtracting its least-squares fit. The
data was then smoothed using a 5-point median filter to eliminate
sharp fluctuations and discontinuities in the observations, which can
lead to ringing when further filtering is applied. Next, the data was
high-pass and low-pass filtered with cut-off frequencies of 1 Hz and
Fig. 1. X-ray (computed tomography) fused with structural magnetic resonance imaging
showing the intracranial electrode positions. The electrodes were implanted to plan for
epilepsy related surgery.
200 Hz, respectively, using 2nd-order Butterworth filters. To attenuate
the effect of the electrical mains artifact, a notch filter with stop-band
45–55 Hz was also applied using a 2nd-order Butterworth filter. The
data was then down-sampled from 5 kHz to 1 kHz and re-referenced
to the differential montage. A differential montage removes the global
effect of the reference electrode, which may lead to biases in the
connectivity estimates. The re-referencing was accounted for in the
estimation scheme.

Results

This section demonstrates the performance of the estimation scheme.
The estimation results using synthetic data and real iEEG recordings from
patientswith seizures are presented. Synthetic datawas generated using
a nonlinear sigmoidal activation function, Eq. (4), and an activation
function that was linearized about the firing threshold, Eq. (9), to test
for errors resulting from linearization. Both isotropic and anisotropic
connectivity functions in the forward model were tested.

The proposed estimator was also incorporated into a time-varying
algorithm to estimate patient-specific dynamics in functional connec-
tivity from real iEEG at the transition from normal activity to an
epileptic seizure. In these examples, we demonstrate how information
extracted from our estimation algorithm may be used to better under-
stand the mechanisms underlying the brain's dynamics. The detailed
steps of the algorithm are summarized in Table 2.

Example I: nonlinear and linearized models

To demonstrate the performance of the proposed algorithm, we
reconstructed the underlying connectivity function fromdata generated
using the one-dimensional Amari neural fieldmodel. The actual connec-
tivity function is defined as a sum of Gaussian basis functions

w r− r0ð Þ ¼
Xnθ
i¼0

θiψi r− r0ð Þ; ð19Þ

where θi is the weight and

ψi ¼ exp −
r− r0 − μ ið Þ2

σ2
i

 !
; ð20Þ

where μi andσi denote the basis function center andwidth, respectively.
The parameters for each simulation are given in Table 3.

In each example, 250 s of datawas generated over a one-dimensional
field, Ω = [−30, 30], with periodic boundary condition and sampled
at Ts = 1 ms (ten times faster than the membrane time constant
(Stephan et al., 2008)) at 40 regularly spaced locations. The pick-up
range of the sensors was defined by a Gaussian,

m r− r0ð Þ ¼ exp −
r− r0ð Þ2
σ2

m

 !
; ð21Þ
Table 2
Algorithm for estimating the connectivity function. This algorithm shows the steps in the
implementation of the connectivity function estimator.

1. Re-referencing:
yt
d = yt

+ − yt
−

2. Compute correlation terms and find the average over time:
Rydt y

d
t
and Rydt y

d
tþ1

3. Normalize correlation terms, i.e., divide by the number of re-referenced observations.
4. Rearrange each R term such that the zero lag correlation is shifted to the first
index using fftshift and flip commands (in Python or MATLAB).

5. Calculate Sεdt ε
d
t
ðνÞ. Note Rεdt ε

d
t
ðτÞ should have the same structure as the rearranged

correlation terms in Step 4.
6. Compute the connectivity function w(⋅) using Eq. (15) and reverse Step 4.



Table 3
Parameters of the connectivity basis functions of the model used in Example I.

Parameter Isotropic Anisotropic-I Anisotropic-II

θi 100, − 80, 5 80, − 80, 5, 15 200, − 200
σi 1.8, 2.4, 6 1.8, 2.4, 6, 2 2.4, 2.4
μi 0, 0, 0 0, 0, 0, − 3 − 0.5, 0.5
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whereσm sets thewidth andwas chosen to be 0.9. The observation noise
variance, σε

2, was set to 0.1. The field disturbance covariance function,
γ(⋅), was modeled by a Gaussian with width σγ = 1.3 (spatial) and
scaled by the temporal standard deviation, σd = 10. The simulation
parameters are summarized in Table 4.

Two sets of data were generated using the forward model, one
with the nonlinear activation function given in Eq. (4) and the
other with a linearized activation function given in Eq. (9), for each
connectivity function. After re-referencing, there were nd = ny − 1
observation points.

The connectivity function estimates were obtained using Eq. (15),
where the observation noise variance and synaptic decay termswere as-
sumed to be known. The estimation results along with actual connectiv-
ities are shown in Fig. 2. The isotropic function in Fig. 2(A) forms a semi-
compact support Mexican-hat shape commonly used in the neural field
modeling (Amari, 1977; Atay and Hutt, 2005; Breakspear et al., 2010).
The results demonstrate the ability of the proposed method
to reconstruct the connectivity function from observed field, when
either the nonlinear or linearized activation functions were used in the
generative model. Note that the connectivity function could only be re-
constructed at the observation locations (see Figs. 2(A–C)). This high-
lights the importance of the design of a measurement system such that
it adequately samples the underlying field to avoid spatial aliasing
(Yellott, 1982; Sanner and Slotine, 1992). The average (over time) spatial
auto-correlation,Rydt y

d
t
, and cross-correlation, �Rydt y

d
tþ1
, of observedfields are

also shown in Figs. 2(D–F). The figures show a subtle difference between
average (auto-) cross-correlations amplitudes, all having a Mexican hat
form. The Mexican hat form is an artifact of the re-referencing, and
demonstrates that simple correlation analysis provides little indica-
tion of the true shape of the underlying connectivity function.

In the estimation algorithm, the observation noise variance was
assumed to be known. An inaccurate guess of this parameter distorts
the shape of the estimated connectivity function. To examine the effect
of the observation noise, σε

2, on the estimation result, we considered the
data generated with varying noise levels using a forward model with
Table 4
Parameters of the model used to generate simulated data.

Symbol Quantity Value Units

Domain
Δ Spatial discretization step 0.5 mm
Ts Time step 0.001 s
T Number of time steps 2.5 × 105 n.a.

Model
ς Slope of activation function 0.56 Wendling (2005) mV−1

v0 Firing threshold 1.8 Marreiros et al. (2008) mV
tm Membrane time constant 0.01 David and Friston (2003) s−1

σd Temporal disturbance 10 mV
σγ Disturbance covariance

(spatial) width
1.3 mm

ny Number of sensors 40 n.a.
nd Number of observations after

re-referencing
39 n.a.

Δy Distance between sensors 1.5 mm
σm Observation function width 0.9 mmΣε Observation noise covariance 0:1� Iny mV2
the anisotropic connectivity function shown in Fig. 2(C). An upper
bound on the measurement noise, σε

2, was calculated using Eq. (16), giv-
ing 0 ≤σε

2 ≤ 0.25. If the observation noise variancewas set to a value close
to the upper or lower (zero) bounds, then the true shape of the connectiv-
ity function could not be recovered (see Figs. 3(A) and (E)). If the obser-
vation noise variance was close to the true value, the estimates captured
the structural shape of the connectivity function (Figs. 3(B) and (D)).
The estimated connectivity function using the actual value of measure-
ment noise variance is plotted in Fig. 3(C), showing an accurate result.

Example II: intracranial EEG data

Intracranial EEG (iEEG) data from three patients were analyzed to
demonstrate the utility of the method. In this section, we present the
results from two of the three patients. The results from the third patient
are presented in Appendix B. The electrographic seizures from Patients I
and II are shown in Figs. 4(A) and (B), respectively. For the initial
analysis, the time series was segmented into three time periods and
given the labels: normal (background), electrographic seizure, and
post-seizure periods. In the figures, the electrographic seizure onset is
marked by the red line and the electrographic seizure end by the blue
line. Note, our analysis identified a fourth time period that we have
labeled pre-electrical onset, or pre-electrical for short. Before running
the estimation algorithm, the two-dimensional (in space) data was
transformed into one dimension as shown in Fig. 5(A), providing a
higher number of regularly sampled observations.

For all analyses, a physiologically plausible value for the membrane
time constant parameter of tm = 10 ms was used. Varying the value of
membrane time constant changes the value of variable ξ in Eq. (15),
which only alters the connectivity function's amplitude at the origin
(spatial lag zero) since the constant ξ in frequency domain is
transformed to a delta function in the spatial domain.

In all examples, we assumed that the standard deviation of the
measurement noisewas the same at all electrodes and stationary across
the normal, electrographic seizure, and post seizure periods. Following
this, Eq. (16) was used to obtain an upper bound. As the iEEG envelope
amplitude was non-stationary, we calculated upper bounds for the
background, electrographic seizure, and post-seizure time periods
separately. Note that since we did not expect the measurement noise
to change over these time periods, computing the upper bounds on
the segmented data provides the opportunity to obtain multiple
estimates. Since we expect the measurement noise to be stationary
over the entire duration of our datasets (approximately 6 min),
we take the smallest of the three upper bounds as our best estimate.
The corresponding bounds on the observation noise from Patient I for
normal, electrographic seizure period, and post-seizure period were
8.6 × 10−4 mV2, 8.8 × 10−3 mV2, and 6 × 10−4 mV2 respectively. The
bounds for Patients II and III were of the same order of magnitude as
Patient I. Following this analysis, a value slightly smaller than the
minimum upper bound was used as an estimate for the observation
noise, i.e., 1 × 10−4 mV2 in subsequent analysis.

As demonstrated earlier, the shape of the estimated connectivity
function is affected by the accuracy of observation noise variance, σε

2.
Therefore, we performed an analysis to test the sensitivity of this
parameter and to check if we can tighten the bounds. To explore the ef-
fect of the observation noise, we estimated the connectivity functions
over the normal, electrographic seizure, and post-seizure periods
using 1000 different values in the range 0 ≤ σε

2 ≤ 1 × 10−3 mV2 with
step size 1 × 10−6 mV2. The results are shown in Figs. 5(B–G). White
dashed lines show the upper bound on the observation noise variance
for the post-seizure period; any estimates above and slightly below
this bound are distorted and must be rejected. For very small values
of observation noise, no inhibitory connections are present, which
cannot be physiologically plausible for at least pre-electrical onset
and post-seizure regimes. Therefore, we considered a lower bound on
the observation noise where the inhibition first appeared, around
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Fig. 2. Estimation of the connectivity function using synthetic data. (A–C) Estimated connectivity functions, from synthetic data for both nonlinear and linearized forward models,
are shown with blue and red crosses, respectively. The actual connectivity functions are shown by solid lines. (D–F) The average (over-time) auto-correlations, Rydt y

d
t
(dotted line) and

cross-correlations, �Rydt y
d
tþ1

(dashed line) of observations corresponding to the row above.
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σε
2 = 1 × 10−5 mV2. Above this lower bound, the estimated connectiv-

ity functions had aweaker inhibition strength during the electrographic
seizure period than the other time segments (as shown in Fig. 6(B)).

Following our analysis, the plausible range of observation noise was
1 × 10−5 b σε

2 b 6 × 10−4 mV2. For all subsequent analyses, a conserva-
tive valuewithin this rangewas chosen, where σε

2= 1 × 10−4 mV2. For
this value, the estimated connectivity function had aMexican-hat shape
with short range excitation, lateral inhibition, and long range excitation
over the normal and post-seizure regimes for Patient I (Figs. 6(A) and
(C)). During the electrographic seizure, the connectivity function
consisted of only short range excitation (Fig. 6(B)). For Patient II,
a Mexican-hat shaped connectivity function was estimated with
slightly different amplitudes for central excitation and surrounding
inhibition over normal, electrographic seizure, and post-seizure
regimes (Figs. 6(D–F)).

To detect temporal changes in the shape of the connectivity
functions, we performed a sliding window-based analysis. The window
size was set to four seconds (4000 samples) with a one second overlap.
The overlap compensated for the losses in temporal resolution. For
Patient I, this approach resulted in 223 quasi-stationary segments. The
results for Patient I are shown in Fig. 7. In Fig. 7(A), the electrical onset
of the seizure is marked by the red line (index 91) and the electrical
end is marked by the blue line (index 123). From the analysis, it can
be seen that the regular patterns in the shape of the connectivity func-
tion started to change at around the time marked by the magenta line
(index 79), which we label pre-electrical onset. After electrical onset,
A B C

Fig. 3. Effect of the observation noise variance on the connectivity function estimation. Each
σ ε

2. (A) σ ε
2 = 0, (B) σ ε

2 = 0.09, (C) σ ε
2 = 0.1 (corresponding to the actual value), (D) σ ε

2 =
the lateral inhibition began to fluctuate and disappeared until the
termination of the seizure. This suggests that the early sporadic spiking
is driven by fluctuations in the lateral inhibition (see Fig. 4(A)). The ex-
citation and lateral inhibition amplitudes are also shown in Fig. 7(B),
highlighting a paradoxical increase in lateral inhibition prior to the elec-
trical onset of the seizure. This is in agreement with other experimental
and computational studies reported in the literature (Khalilov et al.,
2002; Wendling et al., 2005; Freestone et al., 2013).

The logarithm of the normalized absolute ratio of the central excita-
tion and lateral inhibition peaks is shown in Fig. 7(C). The figure clearly
shows a relatively constant ratio between excitation and inhibition
prior to and after the seizure, with a significant jump during the seizure
period. Note that there was a decrease in the ratio during the pre-
electrical onset period due to the increase in lateral inhibition. A scatter
plot of the inhibition versus the excitation is shown in Fig. 7(D). This
figure better shows the clusters for different activity regimes. It is
interesting to see that the pre-electrical onset cluster is at the opposite
side of the background cluster to the seizure.

The same analysis was performed for Patient II, and the results are
presented in Fig. 8. An increase in lateral inhibition prior to the electrical
onset of the seizure can be also observed (see Fig. 8(B)). The seizure
cluster for Patient II is at a different location compared to Patient I
(see Fig. 8(D)), due to the existence of surround inhibition during
the seizure.

While we do not suggest that these results demonstrate that this
approach gives seizure prediction, we do claim that this method is
D E

panel shows the result of the algorithm using different values of measurement noise,
0.11, (E) σ ε

2 = 0.27 (above the upper bound).



Fig. 4. Electrographic seizures from Patients I and II. Both panels show intracranial EEG recordings from a high-density grid of electrodes that were implanted for surgical planning. The red
lines mark the earliest electrical evidence of seizure onset, as marked by clinicians blinded to the analysis. The blue lines mark the end of the seizures. The magenta lines mark the time
points where large changes occurred in the shape of the estimated connectivity functions. (A) Data from Patient I. The pre-electrical onset interval for Patient I had a duration of 36 s.
(B) Data from Patient II. The pre-electrical onset interval for Patient II had a duration of 24 s.

Fig. 5. Electrodes and the estimation results for different values of measurement noise variance for Patient I. (A) A grid macro-electrode being implanted in surgery, showing electrode
arrangement with the distance between adjacent sensors 0.5 and 1 cm along x and y coordinates respectively. The blue line shows the conversion of the two dimensional grid into the
one dimensional array where missing measurements along y axis is interpolated using their adjacent electrodes (shown by red crosses). Estimated connectivity function from iEEG
data for normal, electrographic seizure and post-seizure regimes for different values of measurement noise, σε

2, are shown in (B), (C), and (D), respectively. The white dashed lines
show the upper bound on the observation noise variance (6 × 10−4 mV2) obtained for the post-seizure period using Eq. (16). (E–G) A zoomed view of estimated connectivity functions
for a more focused range of observation noise parameters, 10−4 ≤ σε

2 ≤ 10−3, are re-plotted for a better visualization.
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Fig. 6. Estimated connectivity functions from iEEG data for normal, electrographic seizure and post-seizure regimes for Patient I and Patient II. Estimated connectivity function using one
dimensional iEEG for (A) normal, (B) electrographic seizure and (C) post-seizure regimes for σ ϵ

2 = 1 × 10−4 for Patient I. Estimated connectivity function using one dimensional iEEG for
(D) normal, (E) electrographic seizure and (F) post-seizure regimes for σ ϵ

2 = 1 × 10−4 for Patient II.
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capable of inferring hidden aspects of physiology that may prove to be
useful in better understanding epilepsy. The question of whether this is
useful for seizure prediction remains open, and we expect solutions to
be highly patient-specific.
Discussion

We have presented an efficient and novel approach to identifying
spatiotemporal cortical dynamics using electrophysiological record-
ings. In particular, our results demonstrate an approach that can be
used to estimate intra-cortical connectivity from synthetic and real
iEEG data.
Fig. 7. Estimation of the connectivity function over time for Patient I. (A) The connectivity fun
strength. The central section of the estimated connectivity function from− 5 to 5 cm is illustr
(223 windows) are shown in top, middle and bottom panels. (C) The logarithm of the norma
connectivity over time. The pre-electrical onset, electrical seizure start and electrical end are
excitation of the estimated connectivity function during normal (background), pre-electrical o
Physiological relevance of connectivity estimates

Before discussing the physiological relevance of the connectivity
estimates, we would like to stress that the contribution of this paper is
a method. The results from patient data are included to demonstrate
the application of the method. Further investigation is required to
draw robust conclusions regarding the mechanisms that govern seizure
initiation and spread. Nevertheless, the results are sufficiently interesting
to warrant a small discussion.

The intra-cortical connectivity estimates from the iEEG data lead to
several interesting insights. Each patient had a qualitative change in
connectivity profile before any electrographic changes could be seen
in the iEEG. During this pre-electrical onset phase, all patients had an
ction estimates over 669 s (223 windows), where the gray scale shows the connectivity
ated in the figure. (B) The central excitation and lateral inhibition amplitudes over 669 s
lized absolute ratio of the central excitation to sum of lateral inhibitions of the estimated
shown by magenta, red and blue lines respectively. (D) Scatter plot of inhibition versus
nset, electrographic seizure and post-seizure regimes.



Fig. 8. Estimation of the connectivity function over time for Patient II. (A) The connectivity function estimates over 725 s (242 windows), where the gray scale shows the connectivity
strength. The central section of the estimated connectivity function from − 5 to 5 cm is illustrated in the Figure. (B) The central excitation and lateral inhibition amplitudes over 725 s
(242 windows) are shown in top, middle and bottom panels. (C) The logarithm of the normalized absolute ratio of the central excitation to sum of lateral inhibitions of the estimated
connectivity over time. The pre-electrical onset and electrical seizure onset and the electrical end of the seizure are shown by magenta, red and blue lines respectively. (D) Scatter plot
of inhibition versus excitation of the estimated connectivity function during normal (background), pre-electrical onset, electrographic seizure and post-seizure regimes.

Fig. 9. Electrographic seizure from Patient III. Intracranial EEG recording from a high-
density grid of electrode that was implanted for surgical planning. The red line marks
the earliest electrical evidence of seizure onset, as marked by clinicians blinded to the
analysis. The blue linemarks the electrical end of the seizure. Themagenta lines mark the
time point where large changes occurred in the shape of the estimated connectivity
function. The pre-electrical onset interval for Patient III had a duration of 36 s.
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increase in both local excitation and surrounding inhibition.Most inter-
estingly, the change in surrounding inhibition strength was dominant
during this pre-electrical onset time period. However, at electrographic
seizure onset, the local excitatory connections overtook the lateral
inhibitory effects and dominated the dynamics. Increased surround
inhibitory activity at seizure onset has recently been observed at themi-
croscopic scale and has been dubbed the ictal penumbra (Schevon et al.,
2012). We expect the onset seizures to be observed earlier at the
microscopic scale, compared to the mesoscopic measurements of
iEEG. Therefore, the increased inhibitory drive that was observed prior
to the electrographic onset may be related to the aforementioned
phenomena. Correspondence between the microscopic observations
and our data-driven model-based results would suggest that the
intra-cortical connectivity estimates enable a physiologically relevant
interpretation. However, the global connectivity function enforces the
seizures to arise as an emergent phenomenon of the entire field and
the notion of a discrete focus is lost.

Patient I and Patient III had seizures that spread electrographically
across the array, while Patient II's seizure did not. The connectivity esti-
mates provide a possible explanation for differences in seizure spread,
where Patient I and III both experienced severe loss of lateral inhibition
during the events, where Patient II maintained a relatively normal con-
nectivity structure. This result points to the loss of surround inhibition
as the mechanism for seizure spread. Evidence of lateral inhibition
being the mechanism for containing epileptic events has previously
been reported (Prince andWilder, 1967). Although the spatial resolution
of their work was limited, Prince and Wilder (1967) demonstrated the
spatial scale of lateral inhibition extended to a spatial scale 8 mm, which
is in agreement with our findings (5mm). These findings provide further
evidence of the physiological relevance of the connectivity estimates.

Advantages over other estimation algorithms

The estimation procedure presented in this paper has several ad-
vantages over previously published methods. For example, although
the derivation is complex, the closed-form estimator presented in
Eq. (15) is algorithmically straightforward when compared to alter-
native algorithms (Dewar et al., 2009; Scerri et al., 2009; Freestone
et al., 2011; Aram et al., 2012). Furthermore, by using the closed-
form solution, one can see how errors in the knowledge of other
parameters of the model that are assumed to be known will affect
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Fig. 10. Estimated connectivity functions from iEEG data for normal, electrographic seizure and post-seizure regimes for Patient III. Estimated connectivity function using one dimensional
iEEG for (A) normal, (B) electrographic seizure, and (C) post-seizure regimes for observation noise σϵ

2 = 1 × 10−4.
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the estimates. The closed-form solution also leads to new insights
into the integro-differential-based neural fields models by formally
relating other parameters of the model to the connectivity structure.
For example, it can be seen that the time constant parameter not only
affects the temporal frequency of the neural field but also its spatial
frequency, which is a uniform shift in power across all frequencies.

Another key contribution of this estimation method is the introduc-
tion of differential electrode referencing in the estimation scheme. Ex-
plicitly accounting for this re-referencing scheme is normally
overlooked in data-drivenmodeling, particularly with intracranial elec-
trophysiological measurements. Other methods that map from the
measurement space to the source space in scalp EEG take care of re-
referencing via source localization algorithms (Mosher and Leahy,
1998). It is critically important to account for the common referencing
effects of electrophysiology amplifiers, even with intracranial measure-
ments. By accounting for the differential montage, the algorithm trans-
forms the problem closer to the source space without requiring source
localization algorithms.

Limitations of the framework

The estimation results are sensitive to observation noise. Assuming
an incorrect value of the noise level can result in a substantial distortion
Fig. 11. Estimation of the connectivity function over time for Patient III. (A) The connectivity fu
strength. The central section of the estimated connectivity function from− 5 to 5 cm is illustrate
windows) are shown in top, middle and bottom panels. (C) The logarithm of the normalize
connectivity over time. The pre-electrical onset, electrographic seizure, and the electrical end
inhibition versus excitation of the estimated connectivity function during normal (background
of the estimated connectivity function. For the real iEEG data, we de-
rived and calculated a theoretical upper bound on the observation
noise variance. We then performed numerous experiments by finely
sampling the permitted range to study the consistency of our estimates.
While the resulting estimates show promise, we cannot rule out the
possibility that the resultant connectivity function is influenced and
distorted by the observation noise. It should also be noted that the
model is an extreme simplification of neural interactions. The results
should be taken as a proof-of-principal of the method derived in this
paper, rather than a direct proof of epilepsy-related functional connec-
tivity changes. Nevertheless, the model-based framework proposed
in this paper enables meaningful estimates to track neural activity
transitions from normal to abnormal states.

We assume the membrane time constant does not change over the
entire estimation period, while an earlier study showed that it varies
during normal and abnormal activities (Freestone et al., 2013), resem-
bling that of a conductance-based synaptic mechanism (rather than
the current-based mechanism used in this framework). In the study
by Freestone et al. (2013), intracranial EEG data was fit to the neural
mass model of Jansen and Rit (1995), and the dynamical evolution of
the synaptic gains and time constants were estimated. The reciprocal
of both the inhibitory and excitatory time constants increased at seizure
onset. Therefore, the increase in the local excitation at electrographic
nction estimates over 669 s (223 windows), where the gray scale shows the connectivity
d in the Figure. (B) The central excitation and lateral inhibition amplitudes over 669 s (223
d absolute ratio of the central excitation to sum of lateral inhibitions of the estimated
of the seizure are shown by magenta, red and blue lines respectively. (D) Scatter plot of
), pre-electrical onset, electrographic seizure, and post-seizure regimes.
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seizure onset could be a result of a change of the membrane time con-
stant, which shifts the level of central excitation of the connectivity
function in our model (see Eq. (15)). Similar arguments can be made
for the activation function parameters. However, this is less likely to
be an issue since the activation function slope is multiplicative to the
connectivity function (the ratio of excitation to inhibition is not
effected) and the threshold parameter cancels in the differential
scheme.

We assumed instantaneous action potential propagation in the
neural field model. However, Ghosh et al. (2008) emphasized that
timedelays play a significant role in determining the dynamics of neural
fields. Therefore, the space-time structure of the brain connectivity
(Sanz-Leon et al., 2015) must be accounted for to capture completely
the physiologically accurate connectivity. Nevertheless, the proof-of-
principal provided in this paper demonstrates that an approximate
model, with its computational simplicity, may lead to useful insights.

It has been shown that subcortical structures play an important role
in initiation of epileptic seizures (Norden and Blumenfeld, 2002). For
example, the strength of excitatory cortico-thalamic interactions has
been shown to be crucial in transitions from healthy to abnormal states
in absence seizures (Marten et al., 2009a,b). In the current study, such
mechanismswere not included in themodel. However, the disturbance
covariance can be thought of as an input.

Extensions to the framework

We assume that the dynamics are dominated by homogeneous
connectivity and, hence, the long range heterogeneous cortico-
cortical connections cannot be recovered. Nevertheless, insights
into the short range intra-cortical structure can be estimated. Algo-
rithms that account for the addition of heterogeneous connectivity
should be explored, such as two-point connection structure
(Qubbaj and Jirsa, 2007). Frameworks currently exist for estimating
and tracking inter-regional functional connectivity usingmesoscopic
neural models (Freestone et al., 2014). However, the aforementioned
framework is far more complicated than the method introduced in
this paper.

Another extension to this framework would be to use a more
accurate post-synaptic response functionwith a finite rise time, leading
to a second-order Markovian dependency. The resultant model would
be a second-order IDE, which can be written as two coupled first-
order differential equations. This way, the synaptic dynamics can be
better approximated (Van Rotterdam et al., 1982), possibly leading to
more physiologically realistic estimates.

The emergence of clusters in the excitation–inhibition space encour-
ages the use of classification techniques to interpret the data and
forecast future events. This is beyond the scope of this paper, which
focuses on themethods, but the preliminary datawarrants future inves-
tigation. For example, k-means clustering (Hartigan and Wong, 1979)
may be applied to identify regions in the excitation–inhibition space
where there is a greater likelihood of imminent seizures.

The ability to track the ratio of excitation to inhibition is of great
importance for developing new therapies, where the ratio can be used
as a control variable. For example, therapies based on electrical stimula-
tion are evaluated by how well they reduce seizure frequencies.
An analogy of this control framework would be to test a system for au-
tomatically controlling the speed of a car (i.e., cruise control) based on
how often the driver gets a speeding ticket. Clearly, this is not a good
idea for controlling speed, nor is it a good idea to measure the effect of
a therapy by accessing seizure frequency. A better approach is to track
the root cause of seizures, which has been strongly linked to the balance
of excitation and inhibition.

The data that was used to demonstrate the proof-of-principal was
spatially under-sampled. Ideally, the distance between sensors should
be less than 1.25 mm to capture the spatial frequencies of mesoscopic
neural dynamics (Freeman et al., 2000). The distance between the
sensors in our case was 5 mm, so the higher spatial frequencies were
lost. Data fromvoltage sensitive dyes ormore densely spaced electrodes
would be well suited to this method. A difficulty in using electrode
arrays is in having a sufficient number of recording sites to obtain an
accurate estimate of the correlation structure. Further work should be
directed towards applying and validating the framework on more sub-
jects with higher fidelity data, such as that used in other recent studies
with implanted Utah arrays (Blackrock Microsystems) in epilepsy
patients (Truccolo et al., 2011).

The bigger picture

The correlation analysis introduced in this work provides an
estimate of the connectivity function. It does not, however, provide an
estimate of the dynamics of the neuralfield. Nevertheless, if one is inter-
ested in tracking the dynamics of thefield, the solutions provided in this
paper can be used to inform priors of other more complicated iterative
algorithms (Freestone et al., 2011; Aram et al., 2012), which is an
extremely challenging task. In our earlier work, the neural field and
the connectivity function were represented by a set of weighted basis
functions, where the weights were considered unknown. The estimate
from this paper can be used as a guide to constrain the placement of
basis functions of the connectivity function. Given an initial estimate
from the closed-form equation provided in this current paper, the
corresponding coefficients of the connectivity basis functions can be
corrected using an iterative state-parameter estimation algorithm for
a more accurate representation of the connectivity structure.
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Appendix A. Derivation of the connectivity function estimator

For the derivation of the connectivity function estimator of the
neural field equations, we switch to a more compact notation to define
convolution and correlation operators. The spatial convolution for
arbitrary functions a(⋅) and b(⋅) are denoted as

Z
Ω a r− r0ð Þb r0ð Þdr0 ¼ a rð Þ � b rð Þ ¼ a � bð Þ rð Þ ðA:1Þ

and the spatial cross-correlation is denoted as

Z
Ω a rð Þb rþ τð Þdr ¼ a τð Þ ⋆ b τð Þ ¼ a ⋆ bð Þ τð Þ; ðA:2Þ

where τ is the spatial shift.
Without loss of generality, we will derive the estimator under the

assumption that the electrode locations are infinitesimally close.
This assumption will simplify the notation. Here, we define the infin-
itesimally close differential observations as yt

d(r). Further, we will
define the underlying neural fields and components that contribute
to the measurements yt+(r) and yt

−(r) as vt+(r) and vt
−(r), respectively,

such that

yþt rð Þ ¼ m � vþt
� �

rð Þ þ cþt þ εþt rð Þ; ðA:3Þ
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and

y−t rð Þ ¼ m � v−t
� �

rð Þ þ c−t þ ε−t rð Þ; ðA:4Þ

where the common-mode signals ct+= ct−. Following this, the differ-
ential electrophysiological measurement at time t+1 can bewritten
in the form

ydtþ1 rð Þ ¼ m � vþtþ1−v−tþ1

� �� �
rð Þ þ εþtþ1 rð Þ−ε−tþ1 rð Þ; ðA:5Þ

noting that the common-mode signals have canceled. By substituting
Eq. (7) for the vt + 1

+,− (r) terms, we obtain

ydtþ1 rð Þ ¼ m � ξ vþt − v−t
� �þ Ts gþt − g−t

� �þ eþt − e−t
� �� �

rð Þ
þ εþtþ1 rð Þ− ε−tþ1 rð Þ; ðA:6Þ

where

gþ;−
t rð Þ ¼ w � f̂

þ;−
t

� �
rð Þ ðA:7Þ

is the weighted collection of firing rates influencing each point in the
field from all other points.

The spatial cross-correlation between re-referenced consecutive (in
time) observations is defined as

Rydtþ1y
d
t
τð Þ ¼ ydtþ1 ⋆ ydt

� � τð Þ: ðA:8Þ

The goal of the derivation is to substitute the model equations
into the auto-correlation and cross-correlation of the observations
and to separate the resulting expressions using the convolution
theorem. In this way, we show that a closed-form expression
can be derived that relates correlation terms to the connectivity
function. In the next step, we substitute Eq. (A.6) for yt + 1

d (r) and
expand to give

Rydtþ1y
d
t
τð Þ ¼ ξ m � vþt − v−t

� �� �
⋆ ydt

� � τð Þ

þ Tsς
4

m �w � vþt − v−t
� �

⋆ ydt
� � τð Þ

þ m � eþt − e−t
� �

⋆ ydt
� � τð Þ

þ εþtþ1− ε−tþ1

� �
⋆ ydt

� � τð Þ:

ðA:9Þ

The last two terms of Eq. (A.9) are zero since the disturbance at
time t and measurement noise at time t + 1 are assumed to be inde-
pendent of the observations at time t. Substituting yt

d − εt+ + εt− for
m ∗ (vt+ − vt

−) we have

Rydtþ1y
d
t
τð Þ ¼ ξ ydt− εþt þ ε−t

� �
⋆ ydt

� � τð Þ

þ Tsς
4

w � ydt − εþt þ ε−t
� �

⋆ ydt
� � τð Þ:

ðA:10Þ

To isolate the connectivity function, the order of the convolution
and cross-correlation is reversed by recognizing that the property
(a ∗ b)(τ) ⋆ c(τ) = a(−τ) ∗ (b ⋆ c)(τ) applies (see Appendix C).
Therefore,

Rydtþ1y
d
t
τð Þ ¼ ξ ydt − εþt þ ε−t

� �
⋆ydt

� � τð Þ

þ Tsς
4

w −τð Þ � ydt − εþt þ ε−t
� �

⋆ ydt
� � τð Þ:

ðA:11Þ

The common term on the right hand side of Eq. (A.11) can be
written as

Rydt y
d
t
τð Þ þ Rεdt ε

d
t
τð Þ ¼ ydt − εþt þ ε−t

� �
⋆ ydt

� � τð Þ ðA:12Þ
where for a sufficiently large number of observations or after averaging
over a sufficiently large number of samples (since the measurement
noise is spatially and temporally white) we can write

Rεdt ε
d
t
τð Þ ¼ σ 2

ε δ τx − 1ð Þδ τy
� �

− 2σ2
ε δ τxð Þδ τy

� �
þ σ2

ε δ τx þ 1ð Þδ τy
� �

: ðA:13Þ

Note, the two dimensional Dirac Delta function (since we are
assuming continuous space for derivation) is written in a separable
form where the spatial shifts along x and y directions are denoted by
τx and τy respectively. The non-zero terms with the spatial shift are
due to re-referencing. A factor of two appears at zero spatial shift,τ=0, since yd consists of the difference between adjacent observations
that both contribute to the noise variance. Note that the result for differ-
ential re-referencing along y-direction can be easily obtained by swap-
ping τx with τy in Eq. (A.13). To minimize the effects of the observation
noise and process disturbance, the average over time of the spatial
auto-correlation and cross-correlation can be used; i.e.,

Rydtþ1y
d
t
τð Þ ¼ 1

T−1

XT−1

t¼1

Rydtþ1y
d
t
τð Þ ðA:14Þ

Rydt y
d
t
τð Þ ¼ 1

T

XT
t¼1

Rydt y
d
t
τð Þ: ðA:15Þ

Now by substituting Eq. (A.12) into Eq. (A.11) using the average
quantities, Rydtþ1y

d
t
ðτÞ and Rydt y

d
t
ðτÞ, taking Fourier transform, and then

rearranging, we have

w τð Þ ¼ 4
Tsς

F−1
Sydtþ1y

d
t
νð Þ

Sydt y
d
t
νð Þ þ Sεdt ε

d
t
νð Þ − ξ

 !
ðA:16Þ

¼ 4
Tsς

F−1
Sydt y

d
tþ1

νð Þ
Sydt y

d
t
νð Þ þ Sεdt ε

d
t
νð Þ − ξ

 !
ðA:17Þ

where

Sydt y
d
tþ1

νð Þ ¼ F Rydt y
d
tþ1

τð Þ
n o

; ðA:18Þ

Sydt y
d
t
νð Þ ¼ F Rydt y

d
t
τð Þ

n o
; ðA:19Þ

Sεdt ε
d
t
νð Þ ¼ F Rεdt ε

d
t
τð Þ

n o
¼ 2σ2

ε cos 2πνð Þ− 1ð Þ;
ðA:20Þ

are the power spectral densities and ν is the spatial frequency.
The over-bar denotes the complex conjugate operator. As the con-

nectivity is a real function, the complex conjugate operator essentially
swap the order of the correlation in the numerator of Eq. (A.16). It
should be noted that all the formulations hold in one-dimensional
space, however, Eq. (A.13) simplifies to

Rεdt ε
d
t
τð Þ ¼ σ2

ε δ τ− 1ð Þ− 2σ2
ε δ τð Þ þ σ2

ε δ τ þ 1ð Þ: ðA:21Þ

Appendix B. Results for Patient III

In this section, the results that demonstrate the utility of the pro-
posed algorithm for Patient III are provided. The electrographic seizure
from Patient III is shown in Fig. 9. In the figure, the pre-electrical onset
is marked by magenta line, the electrographic seizure onset is marked
by the red line and the electrical end by the blue line. From Fig. 10(C)
it can be seen that the post-seizure connectivity exhibits very weak
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inhibition, which perhaps led to sporadic spikes after the seizure
stopped (see Fig. 9). An increase in lateral inhibition prior to the electri-
cal start of the seizure can be also observed (Fig. 11(B)). Another expla-
nation for the sporadic spikes in the post-seizure period for Patient III
could be large peaks in the excitation to inhibition ratio after the seizure
stopped (Fig. 11(C)). The clusters for different activity regimes are
shown in Fig. 11(D). The sporadic spikes in the ratio of excitation to
inhibition in the post-seizure period moved the post-seizure cluster
for Patient III towards the seizure region.

Appendix C. Convolution and correlation

In this section, the property of the cross-correlation and the
convolution used in Appendix A is derived. To show

a � bð Þ τð Þ ⋆ c τð Þ ¼ a − τð Þ � b ⋆ cð Þ τð Þ; ðC:1Þ

first note that cross-correlation function is related to the convolution
by Yarlagadda (2009),

a ⋆ bð Þ τð Þ ¼ a − τð Þ � b τð Þ: ðC:2Þ

Therefore, Eq. (C.1) can be written as

a � bð Þ τð Þ ⋆ c τð Þ ¼ a � bð Þ − τð Þ � c τð Þ
¼ a − τð Þ � b − τð Þ � c τð Þð Þ
¼ a − τð Þ � b ⋆ cð Þ τð Þ:

ðC:3Þ
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