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Dengue, the most common mosquito-borne viral infection of humans, is

endemic across much of the world, including much of tropical Asia and is

increasing in its geographical range. Here, we present a mathematical model

of dengue virus dynamics within infected individuals, detailing the interaction

between virus and a simple immune response. We fit this model to measure-

ments of plasma viral titre from cases of primary and secondary DENV 1

infection in Vietnam. We show that variation in model parameters governing

the immune response is sufficient to create the observed variation in virus

dynamics between individuals. Estimating model parameter values, we find

parameter differences between primary and secondary cases consistent with

the theory of antibody-dependent enhancement (namely enhanced rates of

viral entry to target cells in secondary cases). Finally, we use our model to

examine the potential impact of an antiviral drug on the within-host dynamics

of dengue. We conclude that the impact of antiviral therapy on virus dyna-

mics is likely to be limited if therapy is only started at the onset of

symptoms, owing to the typically late stage of viral pathogenesis reached by

the time symptoms are manifested and thus treatment is started.
1. Introduction
Dengue, the most common arboviral disease of humans, is endemic across

much of tropical Asia, Latin America and possibly parts of Africa [1]. Recent

global estimates suggest approximately 400 million infections per year resulting

in approximately 100 million apparent illnesses [1]. There are four dengue virus

types (DENV 1–4), and each is capable of causing clinical disease. Human

infection is acute and self-limiting, with a wide spectrum of disease severity

that ranges from a mild undifferentiated illness to severe and life-threatening

dengue shock syndrome [2].

Primary infection with one of the four dengue serotypes (DENV 1–4) is

thought to lead to lifelong immunity to that serotype, but in addition to gener-

ate a temporary period of cross-protective immunity to all serotypes [3,4].

However, subsequent infection with a heterologous serotype is more likely to

result in severe disease than primary infection [5–11]. The mechanism for

this is not fully understood, but a leading hypothesis is antibody-dependent

enhancement (ADE), whereby antibodies generated in the primary infection

are not sufficient to neutralize the virus, but still attach to the virus particles

and, as neutralized virus would be, are taken up by cells such as macrophages.

Unlike virus bound to neutralizing antibody, virus bound to non-neutralizing

antibody is capable of infecting macrophages, amplifying the viral replication

process [12]. A role is also hypothesized for ‘original antigenic sin’, in which
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there is preferential activation of memory T or B cells with

lower than optimal avidity for the infecting virus [13,14].

The mechanisms underlying the transient vascular per-

meability syndrome that is a feature of severe dengue are

as yet not clear, but high viraemia levels early in the illness

have been implicated in some studies [15–18], though not in

others [19]. Various mechanisms secondary to high viral bur-

dens are speculated to account for the vascular permeability

syndrome, though none have been validated in either animal

models or by clinical interventions. Differences in the humoral

immune response between primary and secondary DENV

infections have been observed, with cross-reactive antibodies

[20,21] dominating the response in a secondary infection, and

differences in the length of viraemia have also been noted [16].

The target cell population for DENV replication is not

well characterized. In vitro, monocytes [22–24], dendritic

cells [23], endothelial and epithelial cells among others

were found to support replication. However, it is not clear

how these findings relate to in vivo infection. Given the sys-

temic nature of human DENV infection, it is reasonable to

assume a variety of cell types and tissues are infected in vivo.

Elucidating the dynamics of dengue pathogenesis is useful

to help understand the mechanisms of infection and for the

rational development of interventions such as antivirals or vac-

cines. Though there are currently no dengue antivirals available,

development is ongoing and there have been early antiviral

trials (for example the data in this paper come from a trial of

chloroquine treatment) [25]. Evaluating how antivirals might

modify the within-host dynamics of dengue infection in the con-

text of treatment only starting at the earliest with the onset of

symptoms (and therefore relatively late in infection) is of use

for the rational development and application of antivirals.

In addition, as viral dynamics affect infectiousness of an

infected host to a mosquito taking a blood meal, better charac-

terization of virus dynamics is relevant to understanding

transmission. This has applications for vector-control strategies

targeting vector competence, the most notable example being

the use of the bacterial symbiont Wolbachia to infect Aedes
aegypti, where the level of transmission blocking induced by

Wolbachia infection depends on the human viral titre when

the mosquito feeds [26].

Mathematical modelling of the interaction between the virus

and immune response, validated against available quantitative

data on viral kinetics, has proved a powerful tool for gaining

such understanding in other infections. For example, in a set

of seminal papers Ho, Perelson, Neumann and co-workers

[27,28] examined HIV dynamics under therapy, elucidating

important virus properties such as the lifespan of infected

cells and virus. More recently, models of acute infections have

been developed, including influenza [29–34] and measles [35].

Little modelling of within-host dengue pathogenesis has

been undertaken previously. A statistical mechanics approach

was used to explore the immune response to dengue vaccination

[36], while other work considered a simple dynamical model of

virus and immune dynamics [37], but did not examine alterna-

tive modes of immune action, the difference between primary

and secondary disease, and did not fit the model to data. Most

recently, another theoretical study of potential differences in

within-host viral dynamics between primary and secondary

infection has been published, but was not linked to individual

patient data throughout infection [38]. Here, we develop a math-

ematical model of dengue pathogenesis which includes a simple

representation of the clearing immune response. We use the
model to characterize the viral dynamics of both primary and

secondary dengue infections by fitting to DENV 1 viral titre

data measured at multiple time points throughout infection

from a large number of patients with clinically apparent

dengue infection. The resulting parameter estimates allow us

to hypothesize as to the factors that could be governing the het-

erogeneity observed in infection dynamics between individuals

infected with the same serotype (DENV 1) and between primary

and secondary DENV 1 cases.
2. Material and methods
2.1. Data
The data used to parametrize the model were derived from a clini-

cal trial of chloroquine in adult dengue patients at the Hospital for

Tropical Diseases in Ho Chi Minh City, Vietnam, by Tricou et al.
[39]. There were no significant differences found between the

placebo and treatment groups in this original clinical trial of cho-

loroquine treatment [39]. The treatment and placebo groups

results have previously been analysed together [40] and we do like-

wise here. Blood was taken twice daily from arrival in hospital for a

minimum of 5 days and RT-PCR was used to quantify virus RNA

in plasma; measurements are per millilitre of plasma. The assay

used either had a limit of detection (LOD) of 1500 copies ml21 or

15 000 copies ml21. Both infectious and non-infectious virions are

detected using this assay.

We use individual patient data on DENV-1 primary dengue

fever (DF, n ¼ 15), secondary DF (n ¼ 91) and secondary den-

gue haemorrhagic fever (DHF, n ¼ 32) (figure 1). See source

paper for details on classifications [40]. There were not enough

primary DHF patients in these dataset for statistically signifi-

cant conclusions to be drawn (n ¼ 3), so we do not use those

data for model fitting (primary DHF data are shown in the

electronic supplementary material, figure S1).

Viraemia measurements are reported at various time points

following reported symptom onset and always begin within

72 h of reported symptom onset. A full description and analysis

of the data can be found in the papers published on the source

study [39,40].
2.2. Model definition
Given the limited data available, we use one of the simplest models

of virus and immune dynamics [41]. This model has four state

variables: the population sizes of free virus (v), uninfected target

cells (x), infected target cells (y) and an (adaptive) clearing

immune response (z). Free virus infects target cells via a mass-

action process with rate b, and infected cells produce more virus

at rate v. Using a single-state variable for the immune response

is clearly a gross simplification, but in the absence of detailed

data on correlates of immunity in acute dengue to fit the model

to, a more complex representation cannot be robustly parame-

trized. The (deterministic) model is defined by the following

ordinary differential equations:

dx
dt
¼ A� gx� bxv,

dy
dt
¼ bxv� dy� azy,

dv
dt
¼ vy� kv

and
dz
dt
¼ hyz:

Target cells are produced at a constant rate throughout infec-

tion (A) and have a mean lifespan 1/g. Infected cells have a

lifespan in the absence of the immune response of 1/d. The
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Figure 1. Plot of viral load data from hospitalized dengue patients used in this study. Filled points are viral load measurements above the LOD; unfilled points show
measurements below the LOD (a) primary DF, (b) secondary DF and (c) secondary DHF.
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lifespan of free virus is 1/k. The model is very similar to that

used previously for a theoretical study of dengue within-host

dynamics [37].

This model assumes the immune response proliferates in

response to infected cells at rate h, with a decay rate which is

assumed negligible over the timescale of dengue infection. The

initial size of the immune response population is z0. Immunity acts

by clearing infected cells (again via a mass action process) at rate a.

The basic reproduction number (mean number of infected

cells produced by each infected cell at the start of infection),

R0, for this model, is given by R0 ¼ b x0 v/k(d þ az0), where x0

is the initial number of target cells, and the other parameters as

defined above.

As we appreciate this is only one possible model of immune

action, we also consider a model variant in which the immune

response acts by clearing free virus instead of infected cells (see

the electronic supplementary material, equations S1). In the

absence of additional data, we do not currently consider a

more complex immune response or target cell model.

2.3. Parameter estimation
Table 1 lists all model parameters, states whether they are esti-

mated or assigned, and, if assigned, their default values (with

references). Estimated parameters can be fitted as patient-specific,

group-specific or common to all patients (global). All assigned par-

ameters are global. We consider three patient groups: primary DF,

secondary DF and secondary DHF cases.

We assign certain parameters because, in the absence of data

on the size of the target cell or immune effector populations, not

all parameters are independent. Substituting x0 ¼ x/A, y0 ¼ y/A,

v0 ¼ bn and z0 ¼ az in the differential equations above demon-

strates that out of h, v and A, only v A and h A can be

estimated independently, and that similarly only a z0 can be esti-

mated, not a and z0 independently (see the electronic

supplementary material, equations S2). In addition, estimates

of v and b are expected to be inversely correlated. We therefore

do not fit the parameters A, v, a and instead assign values to

these parameters for all patients. The first two are set to plausible

values, and the third (arbitrarily) to 0.001/day.

In addition, the excess death rate of infected cells proved dif-

ficult to resolve given the much larger impact of immune-related

clearance of infected cells. We therefore assumed infection did

not shorten the life of target cells except via the action of the

immune response.

Assigned parameter values were taken from the literature

(table 1), and we also explored sensitivity analyses to assess what

impact these assumed values have on the other estimated par-

ameter values. For target cell numbers, the density of monocytes
lies in the standard range 0.2–0.8 � 106 ml21 blood [43] or

0.36–1.5 � 106 ml21 plasma (assuming 55% of blood is plasma).

We explore different target cell densities up to 108 ml21 of

plasma, as monocytes represent only a small fraction of all macro-

phages, with most macrophage populations being distributed in

other body tissues, and much virus replication thought to occur

in these tissue-based cells.

We assign values of the rate of virus production per infected

cell, v, using data from in vitro experiments in which virus

output from infected cells was measured [44]. We discuss the

sensitivity to the values assumed later in this paper.

Our baseline assumption was that target cells had a mean life of

7 days, comparable to estimates for activated macrophages [42], but

also examine the effect of assuming much longer lived tar-

get cells (mean life of 2 years). For the equilibrium density of

target cells to remain fixed, varying the target cell death rate, g,

requires the rate of target cell recruitment, A, to be scaled proportion-

ately, so examining a scenario of long-lived target cells is equivalent

to exploring the effect of very low target cell replenishment rates.

We then estimate the remaining parameters. We used

Markov chain Monte Carlo (MCMC) methods in a Bayesian fra-

mework for parameter estimation [47]. Code was written in R

[48] and C. Parameters were updated singly using the Metropo-

lis–Hasting algorithm, with the median and 95% credible

intervals for the parameters reported. A burn-in of 300 000

updates was used and then a 1 in 100 sample of the following

700 000 updates used to calculate posterior distributions.

MCMC traces of each parameter were plotted and convergence

was assessed visually; runs where all parameters converged

were accepted. To assess differences between patient groups

in the estimated values of patient-specific parameters, the

joint posterior distributions across all patients within a group

were compared.

The viral titre data we analyse are reported as a function of

time since self-reported symptom onset. However, we wished

to model from the beginning of infection, so it was necessary

to estimate the incubation period (IP) or equivalently, the time

of infection, which we would expect to be correlated with the

(unobserved) initial virus inoculum, v0. The viral inoculum

may differ between people depending on the level of virus inocu-

lated by a mosquito when it bites and whether it is interrupted

during feeding. In the models here, we fixed v0 at a value of

1 copy ml21 plasma, and then estimated the IP. Using data

from previous infection experiments [45,46], we assigned a

normal prior on the IP with a mean of 5.7 days and s.d. of 1.73

days. The priors on all other parameters were kept vague,

using improper flat uniform distributions.

To fit to the data, we assumed log viraemia measurements had

normally distributed errors. For measurements below the LOD,



Table 1. Parameters of the model and their values if assigned.

parameter description estimated or assigned value if set

g uninfected cell death rate per day assigned (global) 0.14 (7 day mean lifespan) [42]

A target cell production per millilitre per day assigned (global) 1.4 � 106, 1.4 � 107 (giving target cell

densities of 107 or 108 ml21) [43]

b infection rate of target cells per virion (includes

proportion of virions that are infectious and the rate of

entering target cells)

estimated (global or

group)

—

a removal rate of infected cells per immune cell per day assigned (global) 0.001 (arbitrary-scales with z0)

d baseline infected cell death rate per day assigned (global) 0.14 (7 day mean lifespan) [42]

v production rate of virions per infected cell per day assigned (global) 1 � 104 [44]

k virion clearance rate per day estimated (global or

group)

—

h proliferation rate of immune cells per infected cell per day estimated (global,

group or patient)

—

z0 initial population size of immune effector population per

millilitre

estimated (global,

group or patient)

constrained less than 1 to ensure

immune response is not initially

shaping dynamics

v0 initial inoculum of virus per millilitre assigned (global) 1

IP incubation period estimated ( patient) prior from: [45,46]

Table 2. Table of the six models, the parameters in each model estimated at each of the three levels and the mean posterior log-likelihoods values for the
different model variants considered.

model number global parameters group-specific parameters patient-specific parameters median log-likelihood

1 k, b — z0, h, IP 2981

2 k, b z0 h, IP 21085

3 k, b h z0, IP 22235

4a — k, b z0, h, IP 2857

5 — z0, k, b h, IP 2947

6 — h, k, b z0, IP 21139
aAll with target cell density 107 (shown in figure 3).
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we need to take into account the fact that all we know about these

measurements is that the viraemia is at or below the LOD. This

means we need to use the cumulative distribution function (cdf)

of the likelihood density in the likelihood. In the likelihood

expression below, w and f are, respectively, the probability and

cumulative density functions (pdf and cdf) of the normal distri-

bution, n is the numbers of observations, Di are the viraemia

measurements and xi are the model predictions. s2 was taken to

be 1. Following Howey et al. [49], for the measurements under

the LOD, ci ¼ 0 if Di . LOD (value was 1500 or 15 000 depending

on the PCR assay used) and ci ¼ 1 if not.

Yn

i¼1

w( log Di log xi
�� , s2)1�cif( log LOD log xi,

�� s2)ci :

Log-likelihood values (together with a qualitative assessment

of model fit) were used to assess how well each model variant

recreated patient and group-level variation in virus dynamics.
In order to see which factors best explained the observed

variation in viral kinetics between patients and groups of

patients (i.e. primary DF versus secondary DF versus secondary

DHF cases), we considered a variety of model variants with

fitted parameters being estimated on one of three levels:

patient-specific, group-specific or global. The six models variants

considered and the parameters estimated at each level for each

are shown in table 2.

We assumed a priori that it would be biologically plausible for

(some of) the immune response parameters and the IP parameter

to vary between patients, and then considered the extent to

which variation in each of these immune response parameters

was able to recreate the variation observed between individuals.

Preliminary fitting (not shown) demonstrated that it was necessary

for the IP parameter to be patient-specific. However, if the IP was

assumed to be the only patient-specific parameter, it was not poss-

ible to reproduce the observed between-patient variation in virus

dynamics. Model variants assuming different combinations of
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parameters fitted as patient-specific are described in models 1–3

(table 2). Models 2 and 3 take each of the immune-related par-

ameters assumed to be patient-specific in model 1 and assess the

loss of model fit seen when the variation in that parameter was

assumed to be at group level rather than at the individual patient

level. We then examined how model fit improved if the virus par-

ameter fitted as global in models 1–3 were fitted as varying by

patient group (table 2, models 4–6).

There may be differences in fitness between different dengue

1 virus genotypes [44,50], but as the cases analysed in this paper

arose from one short-time period, we did not consider this

further here.
 J.R.Soc.Interface
11:20140094
2.4. Modelling antiviral treatment
We used our model to consider the potential impact of antiviral

treatment on virus dynamics. The model used to simulate an

antiviral treatment that completely blocks virus production is

shown below.

dx
dt
¼ A� gx� bxv,

dy
dt
¼ bxv� dy� azy,

dv
dt
¼ dvy� kv

and
dz
dt
¼ hyz:

State variables and parameters are as in the main model,

with the addition of d, where d ¼ 0 after drug administered,

and 1 before. We assume that antiviral treatment begins immedi-

ately after a patient is admitted to hospital. We do not model the

pharmacokinetics or dynamics of drug, and in the absence of

data otherwise, assume that the drug is above therapeutic

levels immediately and remains so for the remainder of infection.

Using parameter estimates from the posterior distributions,

we evaluate the effect of this modelled antiviral treatment on

viral kinetics for the primary DF, secondary DF and secondary

DHF patient groups separately, using the following three sum-

mary measures: percentage change in the area under the

complete log10 viral titre curve (AUC) (setting all modelled

titres under the LOD (¼1500) to 1500 and then subtracting

log10(1500) from each log10 titre measurement), log10 change in

virus peak titre and change in number of days until viral titre

reaches the LOD (1500 ml21).
3. Results
Figure 2 shows the sensitivity of viral dynamics to model par-

ameters, varying one parameter at a time. Except for h (which

does not affect R0), we vary each parameter so as to step

through the following set of values of R0: 20, 30, 40, 50, 60

and 70. This range was selected to span the values of R0 esti-

mated by fitting the model to patient data (see below). As

would be expected from the expression for R0 given in the

Material and methods, we see that increasing b (virus entry

to cell) or A (target cell production) increases R0 and viral

growth rate and causes earlier peaking of virus. Increasing k

(virus clearance rate) reduces R0 and viral growth rate, leading

to virus peaking later and increases the virus clearance rate.

Increasing h (immunity proliferation rate) also moves the

peak earlier by achieving earlier control of virus, but with no

impact on initial viral growth rates. Changes in a (immune

mediated clearance rate of infected cells) or (equivalently) z0

(initial size of immune cell population) have a subtle impact
in this model: as expected, initial viral growth rates are not sub-

stantially affected, but increases in these parameters cause

immune control of virus replication to occur when immune

cell populations are at a lower level, which can lead to viraemia

decaying more slowly thereafter (though this may be sensitive

to the assumed form of the immune response proliferation).

Model dynamics are relatively insensitive to the value of d

(infected cell death rate in the absence of immunity), justifying

our choice not to fit this parameter.

Table 2 lists the model fits undertaken and their likelihoods,

which vary by which parameters were fitted on a global,

patient- or group-specific basis. Predicted viral dynamics of

the model variant which gave the best fit (in terms of likeli-

hood) (fitting z0, h and IP as patient-specific parameters and

b, k as group-specific: model 4) is shown for five patients

from each patient group in figure 3. Computed immune

response and target cell dynamics are also shown.

Allowing h and IP to vary between patients (models 2

and 5) is enough to recreate the differences we see between

individuals’ dynamics in viral peak height and timing, but

cannot produce variation in initial virus growth rate.

Owing to the lack of data on the early stage of infection

(prior to symptoms), we know little about much of the vari-

ation that occurs between individuals in this period. The

addition of variation in z0 between patients improves the

fit, but varying this parameter alone (with the IP—models 3

and 6) cannot recreate the variation in peak viral titre and

timing observed. Allowing for variation in z0 in addition to

h and IP (model 1) substantially increases the log-likelihood

(models 1 and 4), though formally not sufficiently to justify

statistically the large number of parameters added. However,

in qualitative terms, this model does produce more reason-

able, less sharp virus peaks, and hence we present results

for model 4 henceforth. Estimated parameter values for this

model are shown in table 3 and in the electronic supplementary

material, table S1, for the other models.

We examined the sensitivity of model fit to the assumed

density of target cells (controlled by the parameter A). In gen-

eral, for fixed v, increasing the density of target cells improved

model fit, allowing the model to reproduce peaks viral titres

seen in some secondary DF patients that are missed when

assuming a lower target cell density (see the electronic

supplementary material, table S2). However, if v (viral pro-

duction rate per infected cell per day) is allowed to increase

by the same factor as A is decreased by, then the quality of fit

can be maintained for lower values of A, though the resulting

values of v quickly become unrealistically large.

In order to assess what is driving the differences observed

in primary and secondary virus dynamics, it is informative to

compare parameter estimates between DENV1 primary (DF)

and secondary (DF and DHF) case patient groups. Patient-

specific variation in z0, h and IP was not sufficient alone to

capture group differences (table 2, model 1). Allowing virus

parameters to vary between case groups (table 2, model 4)

produced a better likelihood and generated a model in

which estimates of viral transmission rates (b) and virus kill-

ing rates (k) were higher for secondary cases than for primary

cases. These values are consistent with the theory of ADE and

are consistent across models 4–6. In model 4, these par-

ameters are greater for the secondary DHF group than the

secondary DF group, though this is not consistent across all

model variants. Interestingly, despite these parameter differ-

ences, R0 values are similar across groups: the mean R0 value
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is 35 (95% CI: 29, 40) for primary DF, 30 for secondary DF

(95% CI: 27, 34) and 33 for secondary DHF (95% CI: 29, 37).

Using the model variant with the highest likelihood

(table 2, model 4), we examined the potential impact of

antiviral treatment on viral dynamics, summarized using a

number of measures (table 4 and figure 4). It should be

noted that antiviral treatment would only be administe-

red after onset of symptoms and therefore after a

substantial fraction of viral replication would have occurred,

limiting the potential impact on virus dynamics. The

previously highlighted heterogeneity in virus dynamics

between individuals is also important here, with antiviral

treatment estimated to have considerable impact on some

patients, but a negligible impact for patients arriving at hos-

pital at a later stage of infection. Antivirals have a somewhat
greater impact in primary versus secondary cases, due to

peak viraemia being more likely to occur after arrival in hos-

pital (and therefore after treatment onset) in primary cases

(though it is rare even in that patient group) and because

rates of viral decline in the absence of treatment are higher

in secondary infection compared with primary [40]. Antivir-

als in this model have a negligible impact on peak virus titres.
4. Discussion
We have presented a simple mathematical model of dengue

virus dynamics within a human host, and by fitting to data

from DENV1 patients, estimated model parameters. By allow-

ing parameters to vary by patient or patient group, we were
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able to capture the observed heterogeneity between patients

and between primary and secondary infection.

We found it was necessary to vary the immune response

proliferation rate (h) and the IP between people to reproduce

the variation in viral kinetics seen (the majority of which is

seen in timing and magnitude of peak titres). This provides

evidence for a key role of the immune response proliferation

in shaping virus dynamics, supporting the conclusions of

earlier theoretical work [37].

We found relatively high target cell densities (106–107 for

each ml of plasma) were required for the model to reproduce

observed viral dynamics while keeping viral production rates

per infected cell at reasonable levels [44]. This is in keeping

with tissue reservoirs playing an important role in pathogenesis,

with virus produced in such reservoirs contributing substan-

tially to viraemia seen in plasma. We find some evidence to

support the role of target cell depletion in shaping virus

dynamics, with more rounded peaks in viraemia being consist-

ent with those predicted by our model when target cell

depletion is significant. However, this conclusion must remain

tentative until more data are available, in particular to allow

the impact of infection on target cell lifetime to be estimated.

Previous analysis of the dataset we use here found some

evidence for DENV1 secondary infections being of shorter dur-

ation than DENV1 primary infections, with secondary cases

more likely to arrive at hospital at or after peak virus titre
and having a faster rate of virus decline [40]. This is despite

the fact that primary and secondary cases were assessed to

not arrive on significantly different days of symptoms. While

these trends are not clear-cut, our analyses reproduce these

differences via some systematic differences in parameter

estimates between primary and secondary infection groups.

When considering differences between primary and sec-

ondary cases, the best fitting model we found had the virus

clearance rate (k) and rate of cell entry (b) varying by patient

group. This model predicts a greater value of b in secondary

cases, a finding consistent with the theory of ADE whereby

antibody aids virus entrance to cells in a secondary infection.

This model also predicts that k is greater in secondary cases

(with some suggestion that h is also larger in secondary infec-

tion), consistent with an increased activation of the immune

system in secondary infection and therefore faster viral clear-

ance. We find few significant differences between the DF and

DHF secondary infection patient groups, but slight differ-

ences are seen in one model variant which might suggest

even higher values of b for DHF cases.

We tested whether our results were robust to uncertainties

in assigned parameter values and model specification. In the

electronic supplementary material, table S3, figures S2a and

S2b, we show that the differences between patient groups

hold for the model in which the immune response clears

virus instead of infected cells, strengthening this still tentative
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conclusion. This result is also insensitive to the assumed rate of

the target cells regeneration during infection (see the electronic

supplementary material, table S4 and figure S3).

A shortcoming of our analysis is the absence of data on viral

titres in the early stages of infection (before symptoms) and

how early viral kinetics vary between primary and secondary

cases (as noted, we rarely see the peak of viraemia in primary

cases and even more rarely in secondary cases). Reducing the

numbers of parameters being estimated (e.g. by fitting h as a

group-level parameter—table 2, model 6) constrains model

dynamics, resulting in viral peaks being inferred as occurring

before the first data point. However, even with this more con-

strained model, we still find the same systematic differences in

the estimates of other parameters between primary and sec-

ondary infections (see the electronic supplementary material,

table S1).

Obtaining viral titre data early in infection, and considering

it in the context of these models, would clearly improve our

understanding of dengue pathogenesis, but such data are chal-

lenging to collect. Two possible sources are household studies

(where blood samples are taken from members of households

in which an index case has been detected) and human challenge

studies, should the latter receive ethical approval.

Our analysis has a number of other limitations, principal

among which is the fact we are solely analysing viral titre

data [51]. The absence of data on the target cell population or

effector immune response necessarily limits model complexity

with the assumptions about both necessarily needing to be

kept simple. One result of the simple representation of the

immune response used is that the model predicts an early

increase and plateau in immune response and sharp peaks in

viraemia in the absence of substantial target cell depletion.

This, together with the absence of data on target cell popu-

lations, means our conclusions about target cell population

sizes and depletion are necessarily tentative. With additional

data, it may be possible to parametrize more complex models

of the immune response, the different impacts of the innate

and adaptive immune response and to include explicitly how

immune responses are modified in secondary infection.

The main mechanism by which the immune response con-

trols infection is of importance for understanding how virus is

cleared, how viral clearance is modified during secondary

infection and how it could be modulated by antiviral drugs.

In our results, we are not definitively able to distinguish

between the two forms of action we considered (clearance of

infected cells and of free virus). For the results presented

above, we assumed that the immune response clears infec-

ted cells. We found broadly similar results (notably for the

differences in parameter estimates between primary and sec-

ondary infection) for a model in which the immune response

is assumed to directly clear free virus instead. However, in

this alternative model our estimates of the intrinsic virus life

span are very short (a few hours), meaning any immune

response targeting free virus needs to act within minutes of

the virus being released from an infected cell to give a

reduction in the within-host R0 sufficient to achieve control

of infection. The extent to which such fast clearance is biologi-

cally feasible is open to question, though this could be possible

with an effective antibody. Infected cells are expected to have a

considerably longer lifespan for other infections [28,29], giving

more opportunity for immune clearance to act, though this

would also depend on the extent to which virus production

destroys cells.
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Figure 4. Impact of antivirals on virus dynamics, same selected patients as above. Model dynamics as figure 3 shown with the addition of the considered antivirals.
Sample from posterior of dynamics of virus without antiviral are in grey. Virus dynamics with an antiviral are shown in black. Target cell dynamics without antiviral
are shown in purple and with antiviral are shown in orange. Immune response dynamics without antiviral are shown in pink and with antiviral are shown in green.

Table 4. Impact of antiviral treatment initiated immediately after onset of symptoms for a drug which reduces viral production from infected cells. The model
was run for each patient in our dataset with the 200 samples from the posterior distributions for the parameters of the best fit model (by likelihood,
model 4—z0, h, IP fitted as patient-specific and b, k fitted as group-specific), without the antiviral (as shown in figure 4) and with the antiviral
(administered on arrival to hospital and active immediately). Three measures of antiviral impact were then compared per sample from the posterior distributions
with and without the antiviral, and differences averaged across all samples in a patient group. Mean and 95% credible interval reported. Virus was assumed
undetectable at less than 1500 copies ml21.

primary DF secondary DF secondary DHF

average % change in log10 virus AUC 29.96 (222.8, 21.76) 27.68 (221.8, 20.845) 27.58 (220.6, 21.05)

average difference in log10 peak virus 20.633 (21.49, 0.0101) 20.402 (21.72, 0.0157) 20.362 (21.45, 0.0133)

change in days until virus undetectable 21.64 (24.62, 20.247) 21.74 (24.64, 20.191) 21.73 (24.79, 20.213)
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In our model, the impact of antiviral treatment on virus

dynamics of secondary DENV1 cases is predicted to be less

than on primary DENV1 cases on average, because cases

arrive in hospital at a later stage of viraemia in secondary

DENV1 infection (despite the day of reported symptoms

being similar) and because the rate of decay of virus titre is

seen to be higher in secondary cases. There is substantial vari-

ation between patients in the predicted impact of antivirals; in

some cases, we predict an antiviral would have a minimal

impact, while the impact in those treated earlier in infection

dynamics is much greater. All this should also be borne in

mind for testing antivirals on primary and secondary cases

(and possibly, by extension, on different serotypes). Our analy-

sis supports the use of the change in the AUC of log10 viraemia

as a sensitive measure of antiviral effect on viral dynamics [25],
but whether this is the important measure for predicting

impact on symptoms is less clear; there may be other more

important predictors of symptom severity and duration, such

as the time spent above a certain virus titre threshold.

In summary, we have fitted a dynamical model to primary

and secondary DENV1 dengue infection viraemia data, with

the resulting parameter estimates confirming a role for the

immune response in shaping variation between individuals

in viral kinetics and generating parameter differences between

primary and secondary cases, which are consistent with the

hypothesis of ADE. In addition, we considered the possible

impact of an antiviral therapy with different modes of action,

which should be of use in the development and testing of anti-

virals. More comprehensive data on both viral titres and

immune responses would allow more sophisticated models
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of dengue pathogenesis to be developed. Other extensions to

this work would be to consider viraemia data for different ser-

otypes and from less severe cases, ideally including

asymptomatic infections, to fit to data on immune responses

and/or target cell populations as well as viral titre and to

refine the simple immune response model used (e.g. refining

the form of immune proliferation, explicitly modelling the

impacts of innate and adaptive immunity and mechanistically

representing the differences (e.g. ADE) in immune responses

between primary and secondary infection).
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