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Abstract

DNA methylation is an epigenetic modification that plays an important role in X-

chromosome inactivation, genomic imprinting and the repression of repetitive elements in

the genome. It must be tightly regulated for normal mammalian development and aberrant

DNA methylation is strongly associated with many forms of cancer.

This thesis examines the statistical and computational challenges raised by high-

throughput assays of DNA methylation, particularly the current gold standard assay

of whole-genome bisulfite-sequencing. Using whole-genome bisulfite-sequencing, we can

now measure DNA methylation at individual nucleotides across entire genomes. These

experiments produce vast amounts of data that require new methods and software to

analyse.

The first half of the thesis outlines the biological questions of interest in studying DNA

methylation, the bioinformatics analysis of these data, and the statistical questions we seek

to address. In discussing these bioinformatics challenges, we develop software to facilitate

novel analyses of these data. We pay particular attention to analyses of methylation

patterns along individual DNA fragments, a novel feature of sequencing-based assays.

The second half of the thesis focuses on co-methylation, the spatial dependence of DNA

methylation along the genome. We demonstrate that previous analyses of co-methylation

have been limited by inadequate data and deficiencies in the applied statistical methods.

This motivates a study of co-methylation from 40 whole-genome bisulfite-sequencing

samples. These 40 samples represent a diverse range of tissues, from embryonic and

induced pluripotent stem cells, through to somatic cells and tumours. Making use of

software developed in the first half of the thesis, we explore different measures of co-

methylation and relate these to one another. We identify genomic features that influence
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co-methylation and how it varies between different tissues.

In the final chapter, we develop a framework for simulating whole-genome bisulfite-

sequencing data. Simulation software is valuable when developing new analysis methods

since it can generate data on which to assess the performance of the method and benchmark

it against competing methods. Our simulation model is informed by our analyses of the 40

whole-genome bisulfite-sequencing samples and our study of co-methylation.
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Chapter 1

Introduction to genomics and

DNA methylation

Overview

This chapter summarises the basic biology necessary for understanding this thesis. It

introduces DNA methylation, describes some of its biological roles, and introduce assays

for studying DNA methylation, with a particular focus on bisulfite-sequencing.

1.1 From DNA to genomes

The genome is the genetic material of an organism. In most organisms, the genome is

encoded by deoxyribonucleic acid, DNA. In eukaryotes1, which includes plants, fungi,

and animals, the DNA is wound around repeating units of eight histone protein cores to

form nucleosomes, which are the fundamental unit of eukaryotic chromatin. Chromatin

compactly packages the DNA into chromosomes, so that the organism’s complete nuclear

DNA, its nuclear genome, might fit into the nucleus of its cells2.
1Eukaryotes are organisms composed of one or more cells with a distinct nucleus and cytoplasm. Most

of a eukaryotic cell’s DNA is contained in the nucleus [Alberts et al. 2007].
2Not all of an organism’s genome is present in the nucleus of a cell. Important exceptions are mitochondrial

DNA (mtDNA) found in animals, plants and fungi and chloroplast DNA (ctDNA) found in plants.
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1.1.1 DNA

The double helix is the most common, and most famous, structure of DNA. In the double

helix, the two strands of DNA run in opposite directions to each other and are therefore

anti-parallel. One strand is called the 5’ strand (pronounced “5 prime strand” and also

known as the sense strand, Crick strand or top strand) and the other strand is called

the 3’ strand (pronounced “3 prime strand” and also known as the antisense strand,

Watson strand or bottom strand). Along each strand of the double helix are the four DNA

nucleobases (bases): adenine (A), cytosine (C ), guanine (G) and thymine (T ). These bases

form complementary base pairings, A with T and C with G, along the DNA double helix.

This is illustrated in Figure 1.1.

Figure 1.1: Simple diagram of double-stranded DNA showing complementary base pairing.
By Forluvoft (Own work) [Public domain], via Wikimedia Commons http://commons.
wikimedia.org/wiki/File%3ADNA_simple2.svg

A gene is a sequence of DNA that is transcribed to produce a functional product in the

form of ribonucleic acid, RNA. RNA may in turn be translated into a protein sequence

2
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or perform other roles in the regulation of gene expression. It is important to note here

than not all DNA is transcribed into RNA, which is not to say that untranscribed DNA

is unimportant. For instance, there are untranscribed regulatory sequences of DNA that

determine whether a nearby gene is transcribed. There is also junk DNA that is of little

consequence to the organism [Alberts et al. 2007]. Conversely, not all transcribed DNA

is a gene. DNA transcription is permissive and there are many DNA sequences that are

transcribed by accident or in error.

DNA is able to self-replicate. This means that eukaryotic cells created during mitosis

contain the same DNA as the ‘parent’ cell. During DNA replication, the two strands are

separated and each strand’s complementary DNA sequence is copied by an enzyme called

DNA polymerase. It is because the two strands of DNA are complementary that ensures

the daughter cell contains the same DNA sequence as the parent cell3.

1.1.2 Nucleosomes and chromatin

The core of a nucleosome consists of four pairs of histones, H2A, H2B, H3 and H4, which

are consequently known as the core histones. A fifth histone, H1/H5, is known as the

linker histone. Each of these histones has a ‘tail’ consisting of a string of amino acids.

These tails can undergo post-translational modifications, such as methylation, acetylation

and phosphorylation, which can alter their interactions with DNA and nuclear proteins

[Alberts et al. 2007]. Histone modifications are discussed in Section 1.2.

The nucleosomes are interconnected by linker DNA to form the macromolecule called

chromatin. The linker sequences are between 20 to 60 base pairs (bp) of DNA in length,

while approximately 147 bp are wrapped around each nucleosome and a further 20 bp

wrapped around each additional H1/H5 histone [Annunziato 2008].

Chromatin is often described as either ‘closed’ or ‘open’. Closed chromatin, heterochro-

matin, is more tightly packed than the open euchromatin. Heterochromatin is associated

with transcriptionally repressed regions of the genome because the machinery required to

translate DNA to RNA is less able to physically access the DNA. In contrast, euchromatin
3This of course ignores errors in the replication process. Such errors are very rare events but because

DNA replication happens so frequently these events do occur. There are error-correcting processes that
reduce the chance that such an error is retained in the daughter sequence, however, these are not perfect.
Hence errors in DNA replication are one source of what are known as mutations in the DNA.
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is associated with transcriptionally active regions of the genome since its more open nature

allows easier access for the translational machinery.

The same region of an individual’s genome may vary between heterochromatin and

euchromatin states at different stages of the organism’s life and in different cells of the

organism. This is one mechanism by which gene expression is regulated.

Basic descriptions of nucleosomes and chromatin are ripe with analogies. In one such

popular analogy, the histones are the ‘spool’ around which the DNA ‘thread’ is wrapped

to form nucleosomes. The chromatin then has the appearance of “beads on a string” when

viewed under an electron microscope [Alberts et al. 2007]. Chromatin is further coiled

up into various literally-named structures, such as the 30-nanometre and 250-nanometre

fibres, and, ultimately, packaged into chromosomes. The set of chromosomes makes up an

individual’s genome.

1.1.3 Genomes

As is clear from the above description, the genome is a complex three-dimensional structure.

Nonetheless, in bioinformatics and computational biology, the genome is mostly considered

as a single-stranded, one-dimensional string of the bases A, C, G and T.

While eukaryotic genomes share the above-described features, and indeed share many

regions of common DNA sequence, eukaryotic genomes come in many shapes and sizes. I

only discuss the genomes of two species relevant to my thesis: Homo sapiens (human) and

Mus musculus (house mouse).

The human genome

Humans are diploid organisms, meaning that we have two copies of each chromosome in a

typical cell4. We inherit one chromosome of each pair from our mother and one from our

father. A typical human cell has 23 pairs of nuclear chromosomes, 22 autosomes and 1 pair

of sex chromosomes, as well as hundreds or thousands of copy of the small mitochondrial

chromosome5.
4A sperm or egg cell is haploid and has a single (recombined) copy of each chromosome.
5The mitochondrial DNA is maternally inherited.
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The length of a chromosome is typically reported as the number of DNA base pairs

in a single copy of that chromosome and the haploid length of a genome is the sum of

these chromosome lengths. The haploid human genome is approximately 3 billion base

pairs long (Golden Path Length http://asia.ensembl.org/Homo_sapiens/Location/

Genome?r=1).

A human reference genome was jointly completed by the International Human Genome

Consortium and Celera Genomics in 2003 [Venter et al. 2001, Lander et al. 2001]. This

reference genome does not represent the genome of any one human since it uses DNA

donated by several different people [Venter et al. 2001, Lander et al. 2001]. Rather, a

reference genome is a kind of map or scaffold that can be used to identify similarities and

differences between individual genomes.

The human genome has obvious uses in medical research and biotechnology, but is

also used to learn about evolution and human history, such as human migration patterns

[Hellenthal et al. 2014]. Every person, even a monozygotic (‘identical’) twin, has their

own unique genome [Bruder et al. 2008]. However, genomes of any two randomly selected

people are identical at approximately 99.9% of sites. Furthermore, the vast majority of the

human genome, 98% by some estimates [Elgar and Vavouri 2008], is made up of non-coding

DNA and upwards of 50% is repetitive sequence [Treangen and Salzberg 2012].

The mouse genome

Mice are also diploid organisms, but have 19 pairs of autosomes, one pair of sex chro-

mosomes and a mitochondrial chromosome. The mouse genome is slightly smaller

than the human genome, at 2.7 billion base pairs long (Golden Path Length http:

//asia.ensembl.org/Mus_musculus/Location/Genome?r=1). Like the human genome,

there is a mouse reference genome [Mouse Genome Sequencing Consortium et al. 2002]. It

is based on several female mice from the C57BL/6J strain, an important strain of mouse

widely used in medical research.

Mouse strains used in medical research are highly inbred due to years of concerted

mating programs. This reduced genetic variability, and the control that researchers have

over it, make these mice a very powerful tool in identifying the biological cause of a diverse

5
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range of phenotypes.

1.1.4 Genetic variation

A key question in biology, perhaps the key question, is what determines an individual’s

phenotype. An individual’s phenotype is the set of its observable characteristics resulting

from the interaction of its genotype with the environment. Two simple examples of

phenotypes are height and weight. Both have a genetic component, e.g., the offspring

of tall parents are on average taller than the offspring of short parents, but also have

environmental components, such as the contribution of diet to weight. In medical research,

a person’s phenotype might be whether she is affected by a particular disease. It might

also be some proxy, such as her blood pressure or the expression levels of particular genes.

Variation between individual’s genomes, be it at single base6 or across larger regions7,

is one important source of phenotypic variation. Importantly, genetically-driven phenotypic

variation is frequently heritable, meaning that phenotypes can be passed on from one

generation to the generation via the genome.

Environmental variation has clear influence on certain phenotypes. However, it often

can be difficult to determine whether phenotypic variation is driven by genetic variation

or environment variation, particularly in humans where genetically similar individuals

typically also grow up in similar environments.

The above discussion has been about phenotypic variation in a population. But there

is also phenotypic variation within the individual. If that sounds strange, consider the

fact that in your body a neuron, a leukocyte (a white blood cell), and a cone cell (a

photoreceptor in the retina) all have identical genomes. In fact, all cells in an organism,

excluding the gametes, have an identical genome8, yet play very different biological roles.

This is due to different genes being active in different cells.
6A base position that is variable in the population is called a single nucleotide variant (SNV ). A

SNV that is frequently variable in the population, say at least 1% frequency, is called a single nucleotide
polymorphism (SNP). All SNPs are SNVs but the converse is not true.

7An example of a larger genetic variant is an indel, which is a short insertion or deletion of sequence in
an organism’s DNA, usually with respect to a reference genome.

8Even this is a simplification. For example, it ignores somatic mutations (the occurrence of a mutation
in the somatic tissue of an organism, resulting in a genetically mosaic individual) and V(D)J recombination
(which occurs in lymphocytes and is vital for antibody diversity).
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Epigenetics, which I describe in the next section, plays a role in determining the between-

individual phenotypic variation, as well as the within-individual phenotypic variation. DNA

methylation, the focus of my thesis, is the prototypical and most well-studied epigenetic

modification.

1.2 Epigenetics

Interest in epigenetics has grown remarkably in recent years. However, epigenetics is also

a real Humpty Dumpty phrase; each author seems to believe that, “When I use [the] word,

. . . it means just what I choose it to mean — neither more nor less” [Carroll and Tenniel

1897]. As noted by Deans and Maggert [2015], “the unfortunate fact is that the increased

use of the term epigenetics is likely due more to inconsistencies in its definition than to a

consensus of interest among scientists”.

Conrad Waddington coined the phrase in 1942 as a portmanteau of the words ‘epigenesis’

and ‘genetics’ [Waddington 2012]. Waddington meant epigenetics as the study of how

“processes involved in the mechanism by which the genes of the genotype bring about

phenotypic effects” [Waddington 2012].

A popular contemporary definition of epigenetics is attributed to the epigeneticist

Arthur Riggs — epigenetics is “the study of mitotically and/or meiotically heritable

changes in gene function that cannot be explained by changes in DNA sequence9” [Russo

et al. 1996, pp. 1]. The epi prefix, derived from the Greek word for ‘upon’, ‘near to’, or ‘in

addition’, emphasises the idea that epigenetics encodes information ‘on top of’ the DNA

sequence. However, it is quite different to Waddington’s original definition.

More recently, the definition of epigenetics has taken on a “more biochemical flavour”

[Daxinger and Whitelaw 2010] to include marks whose heritability is yet to be established.

The heritability, or lack thereof, of histone modifications means that many epigeneticists

do not consider these to be truly epigenetic [Berger et al. 2009], and describing them as

such is a sure-fire way to annoy a good percentage of your audience [Ledford 2008].

Sir Adrian Bird, an esteemed British geneticist, attempts to unite these definitions
9Mitotically heritable means heritable during cell division and meitotically heritable means heritable

during sexual reproduction.
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[Bird 2007]:

“The following could be a unifying definition of epigenetic events: the structural

adaptation of chromosomal regions so as to register, signal or perpetuate altered

activity states. This definition is inclusive of chromosomal marks [e.g., histone

modifications], because transient modifications associated with both DNA

repair or cell-cycle phases and stable changes maintained across multiple cell

generations qualify.”

Regardless of which definition you subscribe to, an epigenetic mark is the modification

that causes this ‘epigenetic change’. In fact, ‘causes’ may be too strong a claim, as much of

current epigenetics research is in identifying associations rather than causations, and the

question of whether the epigenetic mark is a cause or consequence of the ascribed function

is oft-debated.

The epigenome of a cell is the set of epigenetic marks present on the cell’s genome. In

contrast to the genome, which is identical between cells within an individual, the epigenome

is highly variable between cells within an individual. Indeed, we can identify variation

for a single epigenetic mark within cells of the same cell type from the same individual.

Epigenomics is the study of the epigenome, analogous to genomics being the study of the

genome. However, one can rarely study the epigenome in isolation from the underlying

genetic sequence, as there is evidence that the epigenetic variation is associated with genetic

variation [Zhang et al. 2010, Bell et al. 2011, van Eijk et al. 2012, McVicker et al. 2013]

One mark that most authors agree is an epigenetic mark is DNA methylation, which I

describe in the next section and the study of which is the focus of my thesis.

1.3 DNA methylation

DNA methylation is a chemical modification of DNA that can impart information on top

of the DNA sequence. It is heritable during mitotic cell division, which means that it is

faithfully copied across to the daughter cell during cell division10. It therefore fits into
10In practice this copying is not as faithful as, say, the copying of DNA from the parent to the daughter

strand. Furthermore, the faithfulness of this copying will be different in different conditions, such as in
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Arthur Riggs’ aforementioned definition of an epigenetic modification. DNA methylation

is found in bacteria, fungi, plants and animals.

A major reason that DNA methylation is studied is that it is essential for normal

development in mammals [Li et al. 1992]. It is also involved in many key biological processes

related to human development and health, such as the regulation of gene expression [Razin

and Cedar 1991], silencing of transposable elements [Jones and Takai 2001], X chromosome

inactivation [Mohandas et al. 1981] and tumorigenesis [Ehrlich 2002].

However, DNA methylation is not found in all organisms11, and so is not essential for

life. Furthermore, the level of DNA methylation varies widely amongst different organisms,

with many having very low levels of methylation [Capuano et al. 2014].

When people speak of DNA methylation they are generally referring to methylation of

the cytosine base. Even more specifically, they are referring to the molecule 5-methylcytosine.

5-methylcytosine, abbreviated as 5mC, is by far the most common form of DNA methylation

in the animal and plant kingdoms12. However, I will continue to use the term DNA

methylation to describe the more specific 5mC, as is standard in the literature.

A German chemist, W.G. Ruppel, first identified a methylated nucleic acid in 1898.

Ruppel was studying tuberculinic acid, the poison of Mycobacterium tuberculosis13 , and

discovered that it contained a methylated base [Ruppel 1899]. In 1925, Johnson and

Coghill isolated 5-methylcytosine as a product of hydrolysis of tuberculinic acid, the nucleic

acid of Mycobacterium tuberculosis [Johnson and Coghill 1925]. However, Johnson and

Coghill’s results were disputed for over twenty years by other researchers who were unable

to replicate the original findings [Vischer et al. 1949].

In 1945, Hotchkiss ultimately proved Johnson and Coghill correct when he isolated

5-methylcytosine from nucleic acid prepared from cow thymus [Hotchkiss 1948]. Using

paper chromatography, Hotchkiss demonstrated that methylated cytosine existed and was

a healthy liver cell compared to a cancerous liver cell. Nevertheless, the copying of DNA methylation is
faithful enough for most biologists to consider it as a mitotically heritable mark, most of the time. The
enzymes responsible the replication of DNA methylation, the DNA methyltransferases, are discussed in
Section 1.3.6.

11For example, DNA methylation not detectable in yeast [Capuano et al. 2014]
12Two additional examples of DNA methylation are N6-methyladenine (m6A) and N4-methylcytosine

(m4C). N6-methyladenine is a methylated form of adenine, which is found in mRNA [e.g., Adams and Cory
1975] and DNA, although the latter only in bacterial DNA [Ratel et al. 2006]. N4-methylcytosine has also
been detected in bacterial DNA [e.g., Ehrlich et al. 1985, Ratel et al. 2006].

13Mycobacterium tuberculosis was then known as Tubercle bacillus.
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distinct from conventional cytosine and uracil.

The typical site of DNA methylation is at the C5 carbon position of a cytosine base,

hence 5-methylcytosine. Figure 1.2 shows the structure of 5mC.

Figure 1.2: Chemical structure of 5-methylcytosine. “5-methylcytosine”. By Yikrazuul
(Own work) [Public domain], via Wikimedia Commons http://commons.wikimedia.org/
wiki/File:5-Methylcytosine.svg

A cytosine may be described being ‘methylated’ or ‘unmethylated’, however, care

must be taken when using these terms. At the lowest level, the level of single-stranded

DNA, methylation is a binary event: a cytosine is either methylated or unmethylated.

Double-stranded DNA, at least at palindromic methylation loci14, is generally symmetrically

methylated, i.e. the loci on each strand are both methylated or both unmethylated. However,

hemimethylation, where the methylation loci on one strand is methylated and its partner

on the opposite strand is unmethylated, can and does occur.

Within a diploid cell, a particular cytosine may be unmethylated or methylated on both

homologous chromosomes or methylated on one chromosome and unmethylated on the

other. While the former is more common, examples of the latter case, such as allele-specific

methylation [Shoemaker et al. 2010] and genomic imprinting [Li et al. 1993], are important

epigenetic phenomena.

1.3.1 DNA methylation in mammals

The importance of 5-methylcytosine in mammalian genomes is such it has been dubbed

the “fifth base” of the DNA code [Lister and Ecker 2009]. In mammalian genomes, most
14A palindromic DNA sequence is one that is identical when read in the 5’ to 3’ direction on both the

original strand and the complementary strand of the double helix. For example, CG is a palindromic
sequence.
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cytosines are unmethylated except for those at CpG dinucleotides. A CpG dinucleotide,

or more simply a CpG, is a cytosine followed by a guanine in the linear DNA sequence.

The ‘p’ stands for the phosphate backbone of DNA and some authors omit it in favour

of simply calling it CG methylation. A CpG is a palindromic sequence and is generally

symmetrically methylated. Approximately 70% of CpGs are methylated in mammals [Laird

2003], meaning that the cytosine in the CpG dinucleotide is a 5-methylcytosine.

1.3.2 CpG dinucleotides

CpGs are underrepresented in the human genome. The GC-content of the human genome,

which is defined as the percentage of bases that are either guanines or cytosines [Benjamini

and Speed 2012], is approximately 41%. If these bases were uniformly distributed across

the genome then we would expect about 4.1% of dinucleotides to be CpGs. Instead, only

1% of dinucleotides are CpGs.

One reason for the relative scarcity of CpGs is that methylated cytosines can sponta-

neously deaminate to thymines [Scarano et al. 1967]. Thus, over time, many methylated

CpGs will become TpGs, leading to a genome-wide reduction in the proportion of CpGs

and a genome-wide increase in the proportion of TpGs (see Figure 1.3). There are many

other evolutionary pressures on the distribution of bases in a genome. One effect of this is

that the distribution of CpGs is far from uniform. In fact, CpGs tend to form clusters,

which are termed CpG islands.

1.3.3 CpG islands and other sandy metaphors

One way to explore the distribution of CpGs in the human genome is to look at the

distribution of distances from one CpG to the next, the intra-pair distances (IPDs). Figure

1.4 is a plot of the empirical cumulative distribution function of CpG IPDs for the human

reference genome (hg19). We see that approximately 70% of CpGs are within 100 bp of

the next CpG. Figure 1.4 also shows the expected IPD distribution under a model where

CpGs are uniformly distributed along the genome with probability equal to the observed

frequency of CpGs on each chromosome. By comparing the observed IPDs to the expected

IPDs we see that the distribution of distances between CpGs has more ‘close’ pairs than
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Figure 1.3: Observed to expected ratio of dinucleotides in the human reference genome
(hg19). The expected frequency is computed under an ’independence’ model, based on the
observed frequencies of each base.

we would expect by chance.

Figure 1.5 is an alternative way to visualise these data by plotting the percentage of

pairs of CpGs with a given IPD. Figure 1.5 shows that there is a cluster of CpGs with

IPD ă 10. These largely correspond to CpGs that lie within what are called CpG islands

(CGIs).

CpG islands contain the 20% to 40% of CpGs that are frequently unmethylated in

mammalian genomes. CpG islands are important regulatory elements in the genome

and are where most differences in DNA methylation between different cell types are

found [Wu et al. 2010]. The classical definition of a CpG island, given by Gardiner-

Garden and Frommer [1987], and used by the popular UCSC genome browser (http:

//genome.ucsc.edu/cgi-bin/hgGateway), is a region of the genome where the following

conditions are satisfied:

1. The (moving) average of GC-content is greater than 50%, and

2. The observed-to-expected ratio of CpGs is greater than 0.6, and

3. The region is longer than 200 bp.
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This definition was refined by Takai and Jones [2002] to exclude Alu-repetitive elements,

which are otherwise misclassified as bona fide CpG islands. More recently, Wu et al. [2010]

developed a hidden Markov model to predict CpG islands based on the CpG density and

GC-content of the region; this definition is used in the remainder of my thesis.

An alternative definition, and one that pre-dates the definition of Gardiner-Garden

and Frommer [1987], is based on the identification of unmethylated regions of the genome,

which are typically CpG-dense. Such regions were previously called HpaII tiny fragment

islands, or HTF islands, and named after the restriction enzyme used to identify them

[Cooper et al. 1983, Bird et al. 1985].

These ‘sandy/beachy’ metaphors have been continued (i.e. stretched to breaking point)

with various authors defining CpG island shores, CpG island shelves, CpGs in the open

sea, CpG deserts and CpG canyons. CpG island shores, shelves and the open sea are all

defined with respect to CpG islands:

• CpG island shores are regions within 2 kb of CpG islands. These have been demon-

strated to have an increased variability of CpG methylation [Irizarry et al. 2009].

• CpG island shelves are defined as regions within 2 kb of a CpG island shore [Bibikova

et al. 2011].

• The open sea contains those CpGs not classed as being in a CpG island, CpG island

shore or CpG island shelf [Sandoval et al. 2011].

Other metaphors, these based on methylation levels rather than CpG density, include

methylation deserts [Li et al. 2012] and CpG canyons [Jeong et al. 2014]. Because these

regions are defined with respect to methylation levels rather than DNA sequence, these are

generally identified in a tissue-specific manner.

1.3.4 Non-CpG methylation

In humans, cytosine methylation in most cell types is found almost exclusively at CpGs

[Jones 2012]. There are, however, certain cell types with widespread non-CpG methylation.

Non-CpG methylation is often classified as CHH methylation or CHG methylation, where

H is the IUPAC code for any base except G (http://www.bioinformatics.org/sms2/
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iupac.html). The rule-of-thumb for mammalian genomes is that non-CpG methylation is

rare in somatic cells but common in pluripotent cells. Of course, there are exceptions to

every rule, especially in biology.

To give a few examples, Lister et al. [2009] found that in a fibroblast cell line that

99.98% of cytosines that displayed statistically significant evidence of methylation occured

at CpGs. In contrast, in an embryonic stem cell line, they found that 24.5% of cytosines that

displayed statistically significant evidence of methylation occured in a non-CpG context.

However, it should also be noted that these non-CpG loci that were methylated had, on

average, a much lower level of methylation than their CpG counterparts.

A subsequent paper from the same group extended this result. Lister et al. [2011]

reported that, more generally, non-CpG cytosines account for 20% to 30% of cytosines

with statistically significant evidence of methylation in pluripotent cell lines. Pluripotent

cells includes embryonic stem (ES) cells and induced pluripotent stem (iPS) cell lines.

An exception to the rule that non-CpG methylation is largely restricted to pluripotent

cells is provided by Lister et al. [2013], who found that neurons also have non-CpG

methylation, albeit at a lower level (1.3% to 1.5% of all non-CpG cytosines were methylated).

Overall, non-CpG methylation in humans is less well studied and less well understood

than CpG methylation. This is partly due to sampling bias since commonly used assays for

studying DNA methylation, such as the Illumina 27k and 450k microarrays, measure almost

exclusively CpG methylation. However, recent technological advances mean that cytosine

methylation can be routinely assayed regardless of the sequence context (see Section 1.4).

Non-CpG methylation is very common in other organisms, such as plants. For example,

Lister et al. [2008] found that in the widely-studied Arabidopsis thaliana that 45% of

cytosines that displayed statistically significant evidence of methylation are at CHG or

CHH loci. They also found that the level of methylation at non-CpG loci, however, is

typically lower than that observed at CpG dinucleotides.

1.3.5 Modifications of a modification

Methylation is not the only chemical modification of cytosines, although it is by far the most

common. Listed from most frequent to least frequent, these are 5-hydroxymethylcytosine
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(5hmC ), 5-formylcytosine (5fC ) and 5-carboxylcytosine (5caC ) [Plongthongkum et al.

2014]. The biological significance of these marks is still being determined, in part because

the assays for studying these are still in development and because their relatively scarcity

in the genome means that experiments to detect these modifications are more difficult and

expensive.

One genome-wide study of 5hmC found that less than 1% of all assayed cytosines in

mouse fetal cortex and adult cortex cells displayed any statistically significant evidence of

hydroxymethylation [Lister et al. 2013]. These cytosines appeared to be restricted to the

CpG context and had only very low levels of 5hmC.

Kriaucionis and Heintz [2009] and Tahiliani et al. [2009] discovered that the TET

enzymes can convert 5mC to 5hmC, 5hmC to 5fC and 5fC to hcaC. This suggests a role

for 5hmC, 5fC and 5caC in the process of removing 5mC marks.

1.3.6 Writers, readers, and erasers

A frequently used analogy when describing epigentic marks refers to ‘writers’, ‘readers’ and

‘erasers’ [e.g., Moore et al. 2013]. In the case of DNA methylation, writers catalyse the

methyl group onto the DNA, readers recognise methylated DNA, and erasers remove the

methyl group from the DNA.

In mammalian cells, the writers are the DNA methyltransferase (DNMT) enzymes. The

DNMTs are commonly split into two groups, namely the maintenance methyltransferases

and the de novo methyltransferases.

DNA methylation is not preserved by the DNA replication machinery and so it is the

role of the maintainence methyltransferases to restore the methylation pattern on the

daughter strand of DNA following DNA replication. In mammals, DNMT1 is known as

the maintenance DNA methyltransferase.

DNMT3a and DNMT3b are known as the de novo methyltransferases, although these

are also required for the maintenance of DNA methylation [Jones and Liang 2009]. Both

DNMT1 and DNMT3b appear to be essential for mammalian development since mouse

knockouts15 for either gene are embryonically lethal [Li et al. 1992]. In contrast, mouse
15A knockout mouse for gene X is a mouse that has been genetically engineered to remove or otherwise
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knockouts for DNMT3a are runted but survive for approximately 4 weeks after birth [Li

et al. 1992].

DNMT2, now known as TRDMT1, was once thought to be a DNA methyltransferase

but was shown to in fact methylate a small RNA and not DNA [Goll et al. 2006]. Another

protein, DNMT3L, is homologous to DNMT3a and DNMT3b but does contain catalytic

domain that is necessary for methyltransferase activity. Instead, DNMT3L is thought to

stimulate the activity of DNMT3a and DNMT3b [Jurkowska et al. 2011].

The readers of DNA methylation recognise methylated DNA. These readers can recruit

additional proteins to the site of the methylated cytosine to perform a variety of functions

related to gene expression. For example, the methyl-CpG-binding domain (MBD) group

of proteins bind to DNA containing a methylated CpG, which can then suppress gene

expression by preventing transcription factor binding at that site [Nan et al. 1993]. Another

group, the ubiquitin-like, containing PHD and RING finger domain (UHRF) proteins, help

DNMT1 methylate hemimethylated DNA, such as the daughter strand created during

DNA replication [Sharif et al. 2007, Bostick et al. 2007].

The removal or erasure of DNA methylation, called demethylation, may be characterised

as passive loss or active removal. Passive loss occurs when the maintenance methyltrans-

ferases do not efficiently perform their role of restoring DNA methylation following cell

division. This leads to a gradual, stochastic, and genome-wide loss of DNA methyla-

tion after multiple cell divisions. This form of passive demethylation, sometimes called

replication-dependent demethylation, cannot explain observations of local tissue-specific

differences in DNA methylation [Irizarry et al. 2009] nor the two stages of rapid global

demethylation that occur during development [Wu and Zhang 2014].

Active demethylation is currently an active area in epigenetics research. Multiple

mechanisms have been proposed, and it is indeed likely that there are multiple ways to

achieve active demethylation. These mechanisms were recently reviewed by Wu and Zhang

[2014], which I briefly summarise:

1. The direct removal of the methyl group from 5mC is considered unlikely due to the

strong carbon-carbon bond between the methyl group and the cytosine.
inactivate gene X. Mouse knockouts can be either heterozygous knockouts (one copy still of the gene is
still present/active) or homozygous knockouts (both copies of gene absent/inactive).
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2. There is evidence that the DNA repair machinery can be co-opted to remove a

methylated base or the surrounding region. The excised base or region is then

repaired with unmethylated cytosines replacing 5mCs.

3. 5mC oxidation-dependent active DNA demethylation. This follows from the obser-

vation that the TET enzymes can iteratively oxidate a 5mC Ñ 5hmC Ñ 5fC Ñ

5caC reaction. The removal of 5hmC, 5fC or 5caC is biochemically ‘easier’ than the

removal of 5mC and could occur via a more efficient form of replication-dependent

demethylation, direct removal of the oxidized methyl group or through the DNA

repair machinery.

One question raised by the third point is whether 5hmC, 5fC and 5caC are simply

intermediate products in an active demethylation cycle or if they themselves are bona fide

epigenetic marks. This is an active area of research.

1.4 Assays for studying DNA methylation

A challenge to measuring DNA methylation is that it is erased by standard molecular

biology techniques, such as the polymerase chain reaction (PCR) and bacterial cloning,

and it is not revealed by DNA hybridization assays [Laird 2010]. Therefore, almost all

assays of DNA methylation require one of the following pre-treatments of the DNA:

1. Enzyme digestion

2. Affinity enrichment

3. Sodium bisulfite conversion

Following a pre-treatment, DNA methylation can be assayed using standard techniques

such as:

1. Gel-based analysis

2. Sanger sequencing

3. Microarray hybridisation

4. Massively parallel sequencing
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An exception to this classification scheme are a new class of assays that seek to directly

‘read’ whether a position is methylated or unmethylated without requiring a pre-treatment

of the DNA. For example, both Laszlo et al. [2013] and Schreiber et al. [2013] measure

the change in current as a DNA molecule passes through a nanopore to infer whether a

cytosine is methylated.

Almost all assays of DNA methylation measure a population average from a pool of

hundreds or thousands of cells. For a diploid organism, this is an average over several

distinct levels: the two DNA strands, the two homologous chromosomes within a diploid

cell and the hundreds or thousand of cells used in the assay. Hundreds or thousands of

cells are required in order to have sufficient material as input for the assay. Assays that

require only a single cell as input do exist [e.g., Smallwood et al. 2014, Guo et al. 2013]

but are still in development and not yet in widespread use.

The resolution and throughput of an assay are two key variables when choosing which to

use for an experiment. The resolution of an assay is the scale on which DNA methylation

can be measured16. For example, a high resolution assay allows a researcher to quantify

the level of DNA methylation at a single base whereas a low resolution assay might only

allow for qualitative assessment (i.e. presence or absence) of DNA methylation at larger

regions, such as CpG islands.

The throughput of an assay can be quantified in two ways. The first is per-sample

throughput, which is how many measurements of DNA methylation are made per-sample17.

This is typically what people mean when they describe an assay as being ‘high-throughput’

or ‘low-throughput’ and is the definition I use in the title of my thesis. Depending on your

definition of ‘high’, a high-througput assay will produce on the order of tens of thousands

to billions of measurements per sample. The second definition of throughput is related to

cost, be it money or time, i.e. ‘how many samples can I afford to analyse?’.

The choice of which assay to use for an experiment is a trade-off between resolution,

per-sample throughput, and per-cost throughput. Experiments that use an assay with

high resolution and high per-sample throughput generally have fewer samples (due to the
16Depending on the experiment and its aims, the resolution of an assay might instead be defined as the

scale on which DNA methylation can be quantified or the scale at which allows inference to address a
specific hypothesis.

17This might reasonably be argued as being a definition of resolution.
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associated higher costs) than experiments using a lower resolution assay or an assay with

lower per-sample throughput.

In this section I describe each of these pre-treatments but focus on the bisulfite-

conversion assays. In particular, I describe in detail the ‘gold standard’ assay of DNA

methylation, whole-genome bisulfite-sequencing, that combines the sodium bisulfite conver-

sion pre-treatment with massively parallel sequencing to produce whole-genome maps of

DNA methylation at single-base resolution.

1.4.1 Enzyme digestion assays

Restriction endonucleases are an important technique in molecular biology. These enzymes

can preferentially ‘cut’, ‘cleave’, or ‘digest’ DNA at or near to particular sequence motifs.

The motif at which a restriction enzyme cleaves DNA is called the recognition motif or

restriction sequence. The methylation of a position in the recognition motif can inhibit a

restriction enzyme from cleaving the DNA. This can be used to design an assay to infer

the methylation state of a DNA fragment.

For example, the recognition site of the restriction enzyme HpaII is CCGC. However,

HpaII will only digest DNA when the second cytosine in the motif is unmethylated. The

HELP (HpaII tiny fragment enrichment by ligation-mediated PCR) assay compares DNA

digested by HpaII to one digested with another restriction enzyme that has the same

recognition motif but is methylation-insensitive (MspI ) to identify hypomethylated regions

of a genome [Khulan et al. 2006].

Assays based on restriction enzymes were some of the first developed for studying

DNA methylation. These were initially developed for studying a small number of loci

although they have been extended to genome-scale analysis approaches [Laird 2010]. One

such genome-wide assays is CHARM, ‘comprehensive high-throughput arrays for relative

methylation’ [Irizarry et al. 2008]). CHARM combines a methylation fractionation step

(be it MeDIP, HpaII, or, as in the original publication, McrBC ) with a tiling array and

analysis techniques that leverage regional DNA methylation levels.

While restriction enzyme assays do not typically provide single-base resolution data,

the methylCRF software [Stevens et al. 2013] is able to infer single CpG methylation levels
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by combining data from a restriction enzyme based assay (MRE-seq) with one based on

affinity enrichment (MeDIP-seq) in a sophisticated statistical analysis.

1.4.2 Affinity enrichment assays

Affinity enrichment assays compare measurements between an ‘enriched’ version and an

‘input’ (control) version of the same sample to infer the presence or absence of DNA

methylation. This may use antibody immunoprecipitation or methyl-binding proteins.

Some examples of affinity enrichment assays for DNA methylation are the microarray-based

MeDIP, mDIP and mCIP and their sequencing-based relatives, MeDIP-seq and mDIP-seq.

These are all low resolution assays since they are based on the enrichment of regional

differences between the enriched and input samples. Furthermore, the bioinformatic analysis

of data from these assays is complicated by the varying CpG density along the genome,

which leads to different enrichment affinities for different regions of the genome. However,

these assays can provide a relatively cheap and efficient genome-wide assessment of DNA

methylation [Laird 2010].

1.4.3 Sodium bisulfite conversion assays

In the 1980s, two research groups independently discovered that when DNA is treated with

sodium bisulfite (NaHSO3), unmethylated cytosines deaminate to uracils much faster than

do methylated cytosines [Shapiro et al. 1970, Hayatsu et al. 1970]. The methylated cytosines

are said to be ‘protected’ from conversion to uracils. This discovery led to the development

of assays for studying studying cytosine methylation based on the pre-treatment of DNA

with sodium bisulfite [Frommer et al. 1992, Clark et al. 1994], which are referred to as

bisulfite-conversion assays.

When bisulfite-treated DNA is amplified by PCR, the uracils are converted to thymines.

Therefore, these bisulfite-conversion assays are all based on the idea of comparing the

sequence of the untreated DNA to the sequence of the bisulfite treated DNA to infer the

methylation state of all cytosines in the sequence by whether or not they were converted

to uracil/thymine following the bisulfite treatment (Figure 1.6).

Initial experiments based on the sodium bisulfite pre-treatment of DNA used Sanger
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>>CCGGCATGTTTAAACGCT>>
<<GGCCGTACAAATTTGCGA<<
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>>UCGGUATGTTTAAACGUT>>
<<GGCUGTAUAAATTTGCGA<<

Bisulfite-conversion

>>TCGGTATGTTTAAACGTT>>
<<AGCCATACAAATTTGCAA<<

>>CCGACATATTTAAACGCT>>
<<GGCTGTATAAATTTGCGA<<

PCR amplification

OT
CTOT

CTOB
OB

Figure 1.6: The effect of bisulfite-treatment of DNA. The double-stranded DNA is denatured
and each strand undergoes bisulfite-treatment. Methylated cytosines remain as cytosines
while unmethylated cytosines become uraciles. These bisulfite-converted DNA strands
then undergo PCR amplification which converts the uracils to thymines. Note that while
there are four possible PCR products, some bisulfite-sequencing protocols do not sample
PCR products from the CTOT or CTOB strands. OT = original top strand; OB =
original bottom strand; CTOT = complementary to the original top strand; CTOB =
complementary to the original bottom strand. This figure is adapted from Krueger et al.
[2012].

sequencing of cloned PCR products, a very laborious task that restricted experiments to

studying a limited number of short segments of DNA. Although subsequent enhancements

in the automation of Sanger sequencing improved the throughput of these assays, it was

never going to be able to deliver a cost-effective, genome-scale assay of DNA methylation.

The development of hybridisation microarrays provided cheap, genome-wide measurements

of DNA methylation from bisulfite-treated DNA.

Microarrays contain thousands, even millions, of short oligonucleotide probes. Each

probe is is designed to hybridise to a particular DNA sequence and emits a fluorescent signal

that can be measured to infer the strength of the hybridisation. Therefore, an (idealised)

way to analyse DNA methylation with a microarray is to hybridise bisulfite-converted DNA

to a microarray that contains probes for both the methylated and unmethylated versions

of all sequences of interest. The relative methylation of each sequence can be inferred from

the relative intensities of the ‘methylated probe’ to the ‘unmethylated probe’. Such an

idealised experiment brushes over many complications including [Laird 2010]:
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• The reduced complexity of bisulfite-converted DNA (from a 4-base alphabet to a

mostly 3-base alphabet) leads to decreased hybridisation specificity

• Sequences containing multiple cytosines require multiple probe versions in order to

assay all possible methylation patterns

• This approach requires the design of organism-specific microarrays

The Illumina Infinium HumanMethylation450 BeadChip (Illumina 450k array) provides

a modern implementation of this type of assay for studying human DNA. This array assays

482, 422 cytosines, 99.3% of these CpGs, across a wide variety of genomic features [Stirzaker

et al. 2014]. There are well-established methods and software for analysing Illumina 450k

data, which were recently reviewed by Dedeurwaerder et al. [2014].

Genomics research was revolutionised by the development of cheap high-throughput

sequencing technology, and the study of DNA methylation was no exception. In 2008,

two papers were published describing methods for whole-genome shotgun sequencing of

bisulfite-converted DNA using the nascent Solexa/Illumina sequencing technology [Cokus

et al. 2008, Lister et al. 2008]. Whole-genome bisulfite-sequencing remains the gold standard

assay for measuring genome-wide DNA methylation data.

Cokus et al. [2008] termed their approach BS-seq while Lister et al. [2008] called their

method methylC-seq. From a bioinformatics perspective, the main difference is that the BS-

seq protocol produces sequencing reads from four bisulfite-converted DNA strands — the

original top strand (OT ), the complementary strand to the original top strand (CTOT ), the

original bottom strand (OB) and the complementary strand to the original bottom strand

(CTOB) — which require mapping to four different in silico converted reference genomes,

followed by a merge of the alignment results. In contrast, the methylC-seq protocol only

produces sequencing reads from two bisulfite-converted strands — OT and OB — and so

only requires mapping to two different in silico converted reference genomes, followed by a

merge. The methylC-seq protocol is now the standard whole-genome bisulfite-sequencing

protocol, due in part to the simpler bioinformatics analysis.

Whole-genome bisulfite-sequencing remains an expensive assay, which limits its use

in studies involving large numbers of samples. Furthermore, depending on the choice

of several sequencing parameters, approximately 35% to 72% of reads will not contain
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any CpGs (Figure 1.7), which might be considered a gross waste of resources for some

experiments.
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Figure 1.7: The percentage of reads that do not contain any CpGs for each sample in the
Lister dataset. Paired-end (PE) reads are counted as a single unit. Therefore, samples
sequenced with paired-end reads have a lower percentage of reads without CpGs than do
samples sequenced with single-end (SE) reads. See Chapter 3 for a description of the Lister
dataset.

Several assays have been developed to perform targeted high-throughput bisulfite-

sequencing. The targeted nature of these assays are their obvious advantage and disadvan-

tage; only a subset of the genome needs be sequenced but you only obtain information

about methylation for that subset. Depending on the experiment, this tradeoff may be

worthwhile, and these assays have been successfully used in a number of studies such as the

BLUEPRINT Epigenome project (http://www.blueprint-epigenome.eu) and the NIH

Roadmap Epigenomics Mapping Consortium (http://www.roadmapepigenomics.org)

Some examples of these targeted bisulfite-sequencing are:

• Reduced representation bisulfite-sequencing (RRBS, Meissner et al. [2005]): RRBS

uses restriction enzymes to first select regions of the genome with a high CpG

density (based on the Msp-I cleavage motif), which are subsequently treated with

sodium-bisulfite and sequenced.
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• Extended reduced representation bisulfite-sequencing, also known as enhanced reduced

representation bisulfite-sequencing (eRRBS, Akalin et al. [2012a]). A modified version

of the RRBS protocol.

• NimbleGen’s SeqCap Epi Enrichment System and Agilent’s SureSelectXT Human

Methyl-Seq: Both of these commercial products use DNA hybridisation to enrich the

sequencing library for pre-defined regions of interest. This enriched library is then

bisulfite-converted and sequenced.

One final class of bisulfite-conversion assays does not use microarrays or high-throughput

sequencing. Sequenom’s EpiTYPER uses mass spectrometry to analyse DNA methylation

from bisulfite-converted DNA [Ehrich et al. 2006]. This platform can provide quantitative

measurements of CpG methylation across hundreds of loci and multiple samples and may

be used to validate findings discovered using other platforms [Laird 2010].

Pros and cons of bisulfite-conversion assays

Bisulfite-conversion assays are considered the gold standard for studying DNA methylation

since cytosine methylation can be detected at single-base resolution [Stirzaker et al. 2014].

In fact, single-molecule, single-base resolution is even possible for short DNA sequences

when bisulfite-treated DNA is analysed with sequencing18.

Almost all bisulfite-based assays require a considerable amount of DNA that is extracted

from a population of cells (e.g., 1 to 5 µg for whole-genome bisulfite-sequencing). However,

the minimal amount of DNA is being reduced with each technological advance. Recently,

Guo et al. [2013] and Smallwood et al. [2014] published single-cell bisulfite-sequencing

assays, although these are not yet a commercially available sequencing assay. Furthermore,

these are not yet proper genome-wide assays. The technique of Guo et al. [2013] is adapted

from RRBS and so only assays a small percentage of cytosines in the genome. And the

technique of Smallwood et al. [2014], while intended as a genome-wide assay, can reportedly

only “accurately measure DNA methylation at up to 48.4% of CpG sites” [Smallwood et al.

2014].
18Microarray hybridisation assays can provide single-base resolution but not single-molecule resolution.

The signal from a microarray-based experiment is a sample-wide average since, for each locus, the signal is
relative to the proportion of DNA fragments in the sample methylated at that locus.

25



A recently discovered disadvantage of bisulfite-conversion assays is that they are unable

to distinguish 5hmC from 5mC; 5-hydroxymethyl, like 5-methyl, similarly protects a

cytosine from deamination to uracil. In effect, the detection of 5mC, and all subsequent

inference, is confounded with that of 5hmC. For most experiments this isn’t much of a

problem — most cells have very low levels of 5hmC and so there is little confounding

— however, in certain experiments this needs a more careful approach. To address this

issue, Booth et al. [2012] developed oxidative bisulfite-sequencing (oxBS-seq) and Yu et al.

[2012] developed Tet-assisted bisulfite sequencing (TAB-seq) for separate 5mC and 5hmC

detection.

oxBS-seq specifically measures 5mC. The input DNA is oxidated by potassium per-

ruthenate (RKRuO4), which converts 5hmC to 5fC, prior to bisulfite-treatment. Only

5mC is protected from conversion during the bisulfite-treatment, which effectively means

that only 5mC remains to be detected at the sequencing stage. The level of 5hmC can

be estimated by performing traditional bisulfite-sequencing and then ‘subtracting’ the

oxBS-seq signal (5mC) from the bisulfite-sequencing signal (5mC + 5hmC).

TAB-seq takes the opposite approach to oxBS-seq by specifically measuring 5hmC. The

input DNA is treated with a β-glucosyltransferase, which converts 5hmC to β-glucosyl-5-

hydroxymethylcytosine (5gmC), followed by TET oxidation. Only 5gmC is protected from

TET oxidation, which effectively means that only 5hmC remains to be detected at the

sequencing stage. The level of 5mC can be estimated by performing traditional bisulfite-

sequencing and then ‘subtracting’ the TAB-seq signal (5hmC) from the bisulfite-sequencing

signal (5mC + 5hmC).

There is also potential confounding of 5C, 5mC and 5hmC with 5fC and 5caC, although

this has received less attention since 5fC and 5caC are believed to exist at far lower

quantities than 5mC and 5hmC. Nonetheless, sequencing assays of 5fC and 5caC exist

based on the idea of treating the DNA with a chemical and performing ‘signal subtraction’

with traditional bisulfite-sequencing or another assay [Wu et al. 2014].

Another disadvantage of bisulfite-conversion assays is that they require knowledge of

the underlying DNA sequence in order to infer the methylation states of cytosines. This

requires either a parallel experiment to sequence the target region(s) or reliance on a

reference genome. When relying on a reference genome, the inference of the methylation
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state can be confounded by the DNA sequence of the sample [Liu et al. 2012]. Figure 1.8

illustrates such an example.

>>CCGGCATGTTTAAACGCT>>
>>CTGGCACGTTTAAACGCT>>

m
TTGGTATGTTTAAACGTT
CCGGCATGTTTAAACGCT

m

Reference genome
Sample’s genome

Read
Inferred sequence

Figure 1.8: Sequence variation between the reference genome and the sample’s genome
can result in incorrect inference about the methylation state of the sample’s genome. The
locus in orange is a cytosine in the reference genome but a thymine in the sample’s genome.
Because the read is compared against the reference genome, it may be incorrectly inferred
to be an unmethylated cytosine. The locus in purple is a thymine in the reference genome
but an unmethylated cytosine in the sample’s genome. Because the read is compared
against the reference genome, it may be incorrectly inferred to be a thymine.

The bisulfite-treatment of DNA can introduce biases and other problems [Warnecke

et al. 2002]. Four examples are PCR-bias, incomplete bisulfite-conversion, bisulfite over-

conversion, and DNA degradation. PCR-bias is the difference in amplification efficiency

of methylated and unmethylated versions of the same DNA sequence [Warnecke et al.

1997]. Incomplete bisulfite-conversion leads to cytosines being incorrectly inferred as 5mC

since they cytosines were not converted to uracils by the bisulfite-treatment. Conversely,

bisulfite over-conversion results in a methylated cytosine incorrectly being inferred to be

an unmethylated cytosine, although this is uncommon than incomplete bisulfite-conversion

[Warnecke et al. 2002]. DNA degredation occurs because sodium bisulfite damages DNA,

resulting in the fragmentation of long molecules. This limits the size of the fragments that

can be studied using bisulfite-conversion assays to approximately 500 bp [Ecker 2010]. The

influence of these biases can depend on the experimental setup and their potential effects

should be born in mind when interpreting results.
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1.4.4 DNA kinetics assays

Ideally, an assay of DNA methylation could simply ‘read’ methylated cytosines as a distinct

signal from unmethylated cytosines. This idea forms the basis of assays using the kinetics

of DNA to infer the presence of DNA methylation and other DNA modifications. While

very exciting, these assays do not yet scale to studying genome-wide DNA methylation

levels in mammalian-sized genomes.

The only commercially available assay in this class is the Pacific Biosciences SMRT

technology [Flusberg et al. 2010]. It infers the presence of DNA modifications by comparing

the time it takes to ‘read’ the modified form of a base, such as 5mC, to the time it takes to

read its unmodified form. This does not require that the DNA is bisulfite-converted prior

to sequencing. Because the DNA does not undergo bisulfite-conversion (nor the attendant

short fragmentation of the DNA), it is in theory possible to analyse DNA methylation from

individual, long DNA molecules using Pacific Biosciences SMRT technology19. However,

due to the error rate and cost of SMRT sequencing, it is currently all but unfeasible to

study genome-wide DNA methylation in mammalian-sized genomes.

The error rate of Pacific Biosciences SMRT sequencing is currently higher than that

of Illumina sequencing. This means it is more difficult to make reliable inferences on

DNA methylation from individual reads. Given sufficient sequencing coverage, it would be

possible to reliably estimate the average level of methylation at a given cytosine, however,

the cost of SMRT sequencing all but prohibits high-coverage sequencing of mammalian-sized

genomes.

1.5 Summary

DNA methylation is an epigenetic modification with important roles in many biological

systems. In mammals, CpGs are frequently methylated while non-CpG cytosines are less

frequently methylated. Most unmethylated CpGs are found in CpG islands, which are

important regulatory elements in the genome.

Whole-genome bisulfite-sequencing provides single-base resolution data and is the gold
19While bisulfite-treated DNA could be sequenced using SMRT sequencing, this would eliminate the real

advantage of the technology, namely, the long reads generated by this sequencer.
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standard assay for studying DNA methylation. Methods for analysing whole-genome

bisulfite-sequencing data are the focus of my thesis. The following chapter describes the

bioinformatics analysis of a bisulfite-sequencing experiment, including its many statistical

and computational challenges.
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Chapter 2

Bioinformatics analysis of

whole-genome bisulfite-sequencing

data

Overview

This chapter explains the bioinformatics analysis of whole-genome bisulfite-sequencing

data, concentrating on the most widely used methylC-seq protocol. All data used in my

thesis were generated using this protocol.

There are four fundamental steps in the analysis of bisulfite-sequencing data:

1. Data quality control checks

2. Read mapping and post-processing of mapped reads

3. Methylation calling

4. Downstream analyses

This chapter focuses on steps 1-3, while Chapter 5 addresses the wide variety of

analyses available at Step 4. Steps 1 and 2 will be familiar to anyone who has analysed

high-throughput sequencing data, but each requires a twist to work with bisulfite-sequencing
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data. Step 3 is obviously unique to assays of DNA methylation, but there are similarities

to variant calling from DNA sequencing.

The chapter concludes by introducing the methtuple software that I wrote, a unique

methylation caller for extracting methylation patterns at tuples of methylation loci.

methtuple is critical for work in later chapters on co-methylation (Chapter 7) but has

wider application in facilitating downstream analyses of bisulfite-sequencing data.

2.1 Data quality control checks

The first step in any analysis of high-throughput sequencing data is to perform a quality

control check of the data. Much of this is done visually by comparing summary graphs of

the current sample(s) to previous ‘good’ samples. As such, much of data quality control

checking relies on the judgement of the analyst.

The FastQC software is a very useful tool for performing this first step (http://www.

bioinformatics.babraham.ac.uk/projects/fastqc/). It produces summary graphs of

many key measures such as base quality scores, read length distribution and sequence

contamination. FastQC is a general purpose tool for performing quality control checks of

high-throughput sequencing data. This means that some of its output must be interpreted

with caution for bisulfite-sequencing data. For example, FastQC will report a warning

(resp. error) if the relative frequency of the four bases differ by more than 10% (resp.

20%). As noted in the FastQC documentation, such a warning/error should be ignored for

bisulfite-sequencing data, owing to the inherent bias in its sequence composition.

Perhaps the most important quality control of bisulfite-sequencing data is the iden-

tification and removal of contaminating sequences. FastQC will screen a subset of the

reads against a list of known, common contaminants such as adapter sequences. When

sequencing is performed using the widely used Illumina technology, adapter sequences must

be ligated to the ends of each DNA molecule in the library. The adapters do not contain

the biological sequence of interest, however, the sequencer can ‘read into’ the adapter

sequence, particularly when using paired-end sequencing of short DNA fragments such

as those frequently created in bisulfite-sequencing libraries. This means that some reads

are chimeras that contain the biological sequence of interest (from the sample) and junk
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sequence (from the adapters). This contamination needs to be removed for two reasons:

1. Reads containing adapter contamination will generally not map to the reference

genome, meaning these reads are needlessly wasted.

2. If they do map, then this will result incorrect inferences; the ‘garbage in, garbage

out’ maxim.

Using a tool such as Trim Galore! (http://www.bioinformatics.babraham.ac.uk/

projects/trim_galore/) or cutadapt [Martin 2011], the reads can be trimmed to remove

these contaminants. Reads might also be trimmed to remove low quality sequencing cycles,

which are common at the 3’ end of reads, although this isn’t as essential as trimming to

remove contaminants.

2.2 Read mapping and post-processing of mapped reads

Read mapping is complicated by the bisulfite-treatment of the DNA. Following bisulfite-

treatment, the DNA fragments are mostly composed of three bases rather than four, which

means there are many more sequence mismatches between a read and its true mapping

location. Simply using standard read mapping software and allowing for more mismatches

would result in many reads mapping to multiple locations in the reference genome. Instead,

a field of read mapping software dedicated to bisulfite-sequencing data has developed.

Several review articles have summarised and compared the various approaches [Chatterjee

et al. 2012, Krueger et al. 2012, Kunde-Ramamoorthy et al. 2014].

These bisulfite-sequencing read mappers take one of two approaches:

1. Methylation-aware mismatch penalties.

2. In silico bisulfite-conversion of reads and reference genomes.

While methylation-aware mappers provide the highest efficiency, these suffer from a

bias whereby methylated reads are preferentially mapped over unmethylated reads [Krueger

et al. 2012]. This biases downstream inference and means that these mappers are generally

less popular.
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In silico bisulfite-conversion mappers convert all cytosines to thymines (resp. guanines

to adenines) of the forward (resp. reverse) strand from the reference genome. They then

take each read and create two in silico bisulfite-converted versions of it1: the CT-read

replaces all residual thymines with cytosines and the GA-read replaces all residual guanines

with adenines. The CT-read is mapped against the CT-genome and the GA-read is mapped

against the GA-genome using a standard mapping tools such as Bowtie1 [Langmead et al.

2009], Bowtie2 [Langmead and Salzberg 2012] or bwa [Li and Durbin 2009, 2010]2.

Depending on the exact settings used, the mapper reports the ‘best’ location of each

read with respect to the two reference genomes. It reports the original sequence of the

read in the output file so that the methylation status of each position can be inferred by

comparing it to the corresponding reference sequence.

In silico bisulfite-conversion mappers avoid the bias inherent in the methylation-aware

mappers because all reads, regardless of methylation status, ‘look the same’ to the mapper.

However, they do suffer from a slight loss in mapping efficiency [Krueger et al. 2012].

Table 2.1 list some popular bisulfite-sequencing read mappers, which have been selected

to highlight the variety of underlying mapping software used by these tools.

Table 2.1: Four popular bisulfite-sequencing read mappers, selected to highlight the variety
of underlying mapping software used by these tools.
Name Reference Underlying mapping

software
Bismark Krueger and Andrews [2011] Bowtie1 or Bowtie2
bwa-
meth

Pedersen et al. [2014] bwa-mem

BSMAP Xi and Li [2009] SOAP
Novoalign http:

//www.novocraft.com/products/novoalign/
Novoalign

Each of these aligners can report the output in the standard Sequence Alignment/Map

format, SAM, or its binary equivalent, BAM [Li et al. 2009]. However, there is no agreed upon

standard in the SAM specification for encoding the data specific to bisulfite-sequencing,

which means that each mapper does this in a slightly different way. This complexity
1Two versions are made because we don’t know a priori from which of the two strands the read originated.
2If the data were generated using a non-directional protocol, then each read of the CT-read and the

GA-read are mapped to both of the CT-genome and GA-genome, resulting in four mapping steps per read.
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makes it difficult for downstream analysis tools to support the output of different mapping

software.

Read mapping is not perfect and produces both false positive and false negative results.

False positives are due to reads mapped to the wrong location and reads mapped to multiple

locations with equal mapping scores. False negatives are reads that are not mapped to any

location; these reads are effectively lost from any downstream analysis. The parameter

settings used by the mapping software determine the false positive and false negative rates.

There are biological and technical reasons why mapping against a reference genome can

produce these errors. Biologically, if the sample contains sequences that are too genetically

divergent from the reference genome then these sequences will be difficult, even impossible,

to map. A particularly problematic class of sequences are those from repetitive regions

of the genome. These repetitive sequences will map to multiple locations in the reference

genome equally well. Furthermore, the number of times these repetitive sequences occur

differs between the reference genome and the sample’s genome.

Reads from Illumina sequencing are often too short to resolve the mapping location

of these repetitive sequences. Resolving the mapping location of repetitive sequences can

be achieved by using other sequencing technologies, such as Pacific Biosciences SMRT

technology [Flusberg et al. 2010], which produces longer reads.

Another source of technical error in read mapping is really due to sequencing error. A

sequencing error can transform a uniquely mapping read to one that maps equally well

to multiple locations or, worse still, a read that maps uniquely to a single, but incorrect,

location. Sequencing errors can also corrupt a read so badly that it no longer can be

mapped. In practice, most people try to mitigate these problems through their choice of

parameters used by the read mapping software.

Ideally, mapping software assigns the degree of confidence it has that the read is correctly

mapped via a mapping quality score (mapQ). In theory, reads might be down-weighted

in downstream analyses based on the mapping quality score. However, these mapping

quality scores are often poorly calibrated, particularly for methylC-seq data, which makes

them less useful. Bismark [Krueger and Andrews 2011], a popular bisulfite-sequencing

mapping software, only recently introduced mapping quality scores (v0.12.1, released in
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April 2014).

The above problems are general challenges of read mapping and are not specific to

bisulfite-sequencing data, although the reduced complexity of bisulfite-sequencing reads

exacerbates these issues. The difficulty of mapping to repetitive regions of the genome

is a particularly frustrating one for bisulfite-sequencing data. Repetitive sequences, such

as LINEs and SINEs, are typically methylated in order to prevent transcription and are

often of interest to researchers studying DNA methylation. The low mapping efficiencies of

these regions means that there is often limited or less reliable data for these elements from

bisulfite-sequencing data.

2.2.1 PCR duplicates

PCR amplification of the input DNA is a common step in creating a library for high-

throughput sequencing. PCR amplification is often required to ensure that there is a

sufficient amount of DNA for the sequencer to properly work. Unfortunately, it can

introduce biases into the library that results in some molecules being over-represented or

under-represented compared to their true frequency. This means that when we sequence

the library that we might sequence multiple fragments that are all copies of the same

original piece of DNA, which gives a biased sampling of our sample’s genome. These

multiply-sequenced fragments are called PCR duplicates.

In bisulfite-sequencing data, PCR duplicates containing a methylation locus can result

in a biased estimate of the methylation level at that locus. This is because the sequenced

reads do not accurately represent the true methylation levels of the sample.

There is generally no way to tell based on sequencing data if a read is truly a PCR

duplicate. However, it is relatively easy to identify suspected PCR duplicates (which are

almost always referred to as ‘PCR duplicates’3). Software to identify PCR duplicates

includes the MarkDuplicates function that is a part of the Picard software (http://

broadinstitute.github.io/picard/), the rmdup function that is a part of the SAMtools

3The distinction between suspected PCR duplicates and true PCR duplicates is rarely made, possibly
because the phrase is so clunky. Suspected PCR duplicates are almost always referred to as PCR duplicates
with the implicit assumption that the reader is aware that these very likely include false positive calls.
Consistent with the literature, I will use the term PCR duplicates when I refer to reads identified as PCR
duplicates by some software. I will use true PCR duplicates when I need to distinguish the two concepts.
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software [Li et al. 2009] and SAMBLASTER [Faust and Hall 2014]. These software all use

mapped reads from a SAM or BAM file as input.

Roughly speaking, these tools will flag reads with identical start and end co-ordinates as

being suspected PCR duplicates. This will inevitably lead to some false positives because

reads may have identical co-ordinates yet not be true PCR duplicates. The false positive

rate is a particular problem when a subset of the genome is sequenced at high coverage,

such as in RRBS. This can be thought of as an example of the pigeonhole principle, which

states that if we have m containers (positions where a read can start) and n ą m items

(reads), then at least one container must contain more than one item (at least one position

must have more than one read starting there).

We could make this mathematically more precise, but it doesn’t give us a simple answer

to the question, ‘should we remove possible PCR duplicates from bisulfite-sequencing data?’.

The unsatisfactory answer is, ‘it depends’. A rule of thumb is that provided the average

or median sequencing coverage of the ‘genome’ is less than the fragment length4 then we

expect few false positive calls.

In practice, for whole-genome sequencing data we can be fairly confident that suspected

PCR duplicates are true PCR duplicates. However, for targetted sequencing, such as RRBS

or amplicon sequencing, we are much less confident and may remove some of our signal if

we remove possible PCR duplicates. Instead, for RRBS we might exclude regions with an

“abnormally” high sequencing coverage [Krueger et al. 2012]. For amplicon sequencing we

often can’t afford to exclude possible PCR duplicates if, for example, the aim is to identify

rare epialleles by very deep sequencing of a small region.

2.2.2 M-bias

Ideally, the probability that a base is called as methylated should be independent of the

sequencing cycle. Hansen et al. [2011] found that this is not the case and that in fact there

is considerable bias towards the start (5’) and end (3’) of reads. They called this M-bias.

M-bias can be identified by plotting the read-position methylation level (rpml), which

is the proportion of reads that are methylated at each read-position, as a function of
4For single-end data, the ‘fragment length’ in these calculations is the read length.
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read-position. These rpml are computed separately for each methylation type and, for

paired-end sequencing data, separately for read-1 and read-2. If there is no M-bias then

this plot should be a horizontal line. A ‘bend’ or ‘spike’ in this plot is evidence of M-bias.

Furthermore, these lines, which indicate the average level of methylation in the sample for

that methylation type, should be at the same level for read-1 and read-2, although we see

this is often not quite the case. Figure 2.1 is the M-bias plot for the ADS sample from the

Lister dataset5, which shows significant CpG M-bias at the start of read-2 and some noise

at the start of read-1.
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Figure 2.1: M-bias plot for the ADS sample from the Lister dataset. Each of read-1 (R1)
and read-2 (R2) are plotted separately.

If a sample is processed over multiple batches, then M-bias estimation (and methylation

calling) should be performed separately for each batch and then combined, or in some

manner that is ‘batch aware’. For example, two libraries with DNA derived from the same

cell line, but with separate library preparations and sequencing runs, will likely suffer

from batch effects due to differences in the library preparations or differences with the

sequencing runs. Unfortunately, the person analysing the data doesn’t always know all the

sample processing steps that may have introduced such batch effects and so these can be

hard to deal with in practice.
5See Chapter 3 for a description of this sample.
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The strongest source of M-bias in Illumina whole-genome bisulfite-sequencing data is at

the 5’ end of read-2, which sequences the 3’ end of the DNA fragment. Because the DNA

fragment is often shorter than the sum of the read lengths, the 3’ end of the fragment often

contains adapter sequence and other ‘junk’ sequence. The adapter sequence may contain

cytosine bases, which will be misinterpreted as evidence of methylation [Krueger et al.

2012]. Similarly, “fill-in cytosines” are used in the construction of RRBS libraries to repair

the ends of DNA fragments after cleavage by MspI; these would also be misinterpreted as

evidence of methylation [Krueger et al. 2012]. Another source of M-bias is incomplete or

uneven bisulfite-conversion.

Estimating M-bias

Estimating M-bias and incorporating it into the methylation calling can be done using two

different strategies:

1. Compute the M-bias from the aligned reads, then call methylation events. The

methylation calling should include filters to remove the detected M-bias (along with

any other additional filters). This strategy requires two passes over the SAM/BAM

file, one to compute the M-bias and one to do the methylation calling. This is the

approach used by bismark_methylation_extractor [Krueger and Andrews 2011]

and Bis-SNP [Liu et al. 2012].

2. Call methylation events but retain the read-position of each methylation event.

Compute the M-bias from this first file and then filter out methylation events that

suffer from M-bias. This strategy requires only a single pass over the SAM/BAM file but

requires additional information to be stored alongside the methylation calls which is

then followed by a pass over the file containing the methylation calls. This is the

approach taken by BSmooth [Hansen et al. 2012].

I find the first strategy conceptually simpler, and easier to program, so use it in my

methylation calling software, methtuple (described in Section 2.4).

In theory, the M-bias could be estimated during the alignment step or during another

processing step, such as sorting or marking PCR duplicates, to avoid an additional pass

over the SAM/BAM file.
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A somewhat subtle point is that M-bias should only be estimated from reads that are

actually going to be used for methylation calling. Suppose that M-bias is highly correlated

with some other quality metric, such as base quality, so that positions with M-bias also have

low base quality6. If you already intend to ignore read-positions with a base quality less

than some threshold in your methylation calling, then it makes sense to also ignore these

positions when estimating M-bias, otherwise you will overestimate the effect of M-bias and

unnecessarily exclude read-positions in your methylation calling. Unfortunately, perhaps

the most widely used software for estimating M-bias, bismark_methylation_extractor

Krueger and Andrews [2011], does not allow the user to exclude certain reads or read-

positions when estimating M-bias.

Pre-trimming reads destroys the one-to-one relationship between read-position

and sequencing cycle

Trimming reads prior to alignment (pre-trimming), such as using Trim Galore! (http:

//www.bioinformatics.babraham.ac.uk/projects/trim_galore/) to remove adapter

sequence from reads, destroys the one-to-one relationship between the sequencing cycle

and the read-position. This causes a minor problem when computing M-bias because we

no longer know whether the read-position is identical to the sequencing cycle. Soft-clipping

or hard-clipping reads of their adapter sequence during the alignment avoids this issue,

because the clipping information (should be) preserved in the CIGAR string7.

The M-bias plot is based on the read-position from the aligned data and not the

sequencing cycle (which isn’t directly available in the SAM/BAM file). If the reads have been

pre-trimmed, then each read-position in the M-bias plot will therefore contain data from

multiple sequencing cycles, which can amplify or mask the M-bias signal.

For example, suppose we performed 100 bp single-end sequencing and pre-trimmed the

first 20 bp of 90% of the reads. Then, read-position 80 will comprise 10% sequencing cycle
6This is very often the case since the 3’ end of reads are typically of lower quality and also frequently

suffer from M-bias.
7Not all software properly handles the information in the CIGAR string, particularly for soft-clipped

reads. This is a shortfall of the downstream tools and not of aligner-based clipping per se, but is nonetheless
an issue in practice. bwa-meth [Pedersen et al. 2014] and LAST [Kiełbasa et al. 2011] both perform well
without pre-trimming of reads because they can soft-clip reads on the fly whereas other bisulfite-sequencing
aligners, such as Bismark [Krueger and Andrews 2011], cannot soft-clip reads and so require that reads are
pre-trimmed.
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80 and 90% sequencing cycle 100. It is very likely that sequencing cycle 100 suffers more

from M-bias than does cycle 80, and so this will appear in the M-bias plot as M-bias at

read-position 80.
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Figure 2.2: M-bias plot for the E18VA sample from the EPISCOPE dataset. Each of read-1
(R1) and read-2 (R2) are plotted separately. For CpGs in read-1, we see noise at the start
of the read, followed by a downward slope in the M-bias, which ends with a spike. For
CpGs in read-2, we see a downward spike at the start of the read following by a gradual
increase in the M-bias curve, with a spike at read-position 101 and a spike at the last
read-positions for all methylation types. The spike at read-position 101 is also evident,
albeit to a lesser extent, in read-1. This position should be ignored in downstream analyses
but we do not necessarily also want to ignore read-positions 102´ 150 since this would
remove one-third of the data.

The loss of the one-to-one relationship between sequencing cycle and read-position

cannot be avoided if reads are pre-trimmed because the trimming information is not

preserved. Hansen et al. [2012] suggest a separate M-bias plot for each read-length,

which will help mitigate the effect of confounding between read-position and sequencing-

cycle8. However, if trimming is performed during the alignment then all the necessary

information is retained and the x-axis of M-bias plots would be ‘sequencing cycle’ rather

than ‘read-position’, thus avoiding the issue entirely.
8This would also require that methylation calling is performed separately for read with different lengths

because most methylation callers are unable to deal with different M-bias profiles for different read lengths.
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Identifying M-bias

In practice, the M-bias curves for each sample are visually inspected to look for evidence

of M-bias, i.e. read-positions whose methylation levels are ‘too far away’ from the majority

of read-positions. It is rather a subjective decision to make. Two problems that I found

when making these decisions were:

1. Maintaining consistency across samples.

2. Determining where to draw the line when there is no dramatic ‘spike’ in the M-bias.

For example, in Figure 2.2 it is clear that there are problems at the start and end of

both read-1 and read-2, as well as a big problem at read-position 101 in read-2. What is less

clear is where to draw the line on the gradual decay toward the end of read-1 and towards

the start of read-2. This motivated me to write a few simple functions to perform more

systematic processing of M-bias results. These are included in the MethylationTuples R

package (described in Section 5.3) with the MBias class, its associated methods, plot()

and filter(), and the helper function readMBias().

For each sample, M-bias is computed separately for each methylation type because

the level of methylation varies widely between CG and non-CG methylation types. For

paired-end sequencing experiments, it is also done separately for each of read-1 and read-2

because M-bias is very different for these two mates and also because read-2 often has a

slightly lower average level of methylation than does read-1 (e.g., see Figure 2.1).

In MethylationTuples, I use a simple normalisation of the read-position methylation

levels (rpml). Specifically, the median level of methylation across all read-positions is

subtracted from the read-position methylation level to create normalised read-position

methylation levels, i.e. nrpmlread1
CpG “ rpmlread1

CpG ´medianprpmlread1
CpG q, for CpG methylation

in read-1.

The filter() method identifies read-positions where the rpml differs by more than

a given value (threshold) from nrpml. While it computes these statistics separately for

each methylation type and read type, a common threshold is used for all methylation

types and read types. I tend to use a value of threshold = 3, meaning that if the

medianprpmlCpGq “ 75, then any read-position with rpmlCpG ă 72 or rpmlCpG ą 78 is
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flagged as showing evidence of M-bias9. It is currently left to the user to decide whether a

read-position should be excluded if it displays evidence of M-bias in a single methylation

type or only if it displays evidence across all methylation types. I tend to exclude read-

positions that display evidence of M-bias in the methylation type I am working with, which

is typically CpG methylation.

What to do about M-bias?

Now that we’ve found read-positions with M-bias, what can we do about it? Typically,

read-positions showing evidence of M-bias are excluded when calling methylation events.

In fact, a slightly cruder procedure is typically used whereby the entire ends of reads are

removed. For example, suppose we have 100 bp reads with M-bias observed at positions

1, 2, 3, 4, 9, 94, 96, 97, 98, 99, 100, then read-positions 1´ 9 and 94´ 100 would be ignored

when methylation calling. Both bismark_methylation_extractor and Bis-SNP, two

popular methylation callers, use this method.

This strategy is generally sufficient because M-bias tends to occur as runs of read-

positions at the 5’ and 3’ ends of reads. However, occasionally there are spikes in the

M-bias plot, which indicate specific read-positions that we would like to exclude. Figure

2.2 shows an example of such a spike that occurred at read-position 101 in 150 bp reads.

Using bismark_methylation_extractor we would be forced to either retain this position

or to ignore read-positions 101´ 150, effectively ignoring one third of the sequencing data,

much of it unaffected by M-bias. The methtuple software avoids the unnecessary exclusion

of those bases by allowing the user to specify the exact read-positions that she wants to

exclude (discussed in Section 2.4).

In the datasets I have analysed, I have had to ignore up to 30 read-positions per read

due to M-bias, a considerable loss of data. Ideally, we would be able to remove the effects

of M-bias by accounting for it in methylation calling rather than by simply excluding those

read-positions entirely. One idea is to inversely weight methylation calls by the level of M-

bias. A downside to this approach is that this would turn an otherwise binary methylation

call into a continuous value between 0 and 1, with an attendant loss in interpretability.
9The M-bias files created by bismark_methylation_extractor --mbias_only report the methylation

levels as percentages rather than proportions.
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However, we could still compute the ubiquitous β-values, traditionally defined as the

proportion of reads that are methylated at a locus, and use these in downstream inferences,

without much loss in interpretation. The bigger problem with this approach is the increased

computational complexity and cost, and this is why I have not further pursued this idea.

2.2.3 Other biases

There are several other sources of potential bias in analysing bisulfite-sequencing data.

These include sequencing and alignment errors, and sequence variation at, or nearby to,

methylation loci. A particularly interesting source of bias is due to cellular heterogeneity.

Recent papers using single-cell bisulfite-sequencing [Guo et al. 2013, Smallwood et al.

2014] have investigated the extent of this cellular heterogeneity by comparing the methy-

lomes of individuals cells that are nominally of the same ‘type’. Cellular heterogeneity is

particularly problematic when a sample contains multiple cell types.

For example, many studies of DNA methylation use whole blood as the sample tissue

due to the ease with which it can be obtained. However, whole blood contains a mixture

of cell types, each of which has a distinct methylation profile. This cellular heterogeneity

can seriously bias downstream analyses and must be properly accounted for in any study

exploring the relationship between differences in DNA methylation and a phenotype [Jaffe

and Irizarry 2014, Houseman et al. 2014]. For example, Jaffe and Irizarry [2014] provide

evidence that several reported relationships between age and DNA methylation are likely

due to changes in the cell composition of whole blood with age and not due to DNA

methylation changes per se.

Methods to estimate the cellular heterogeneity bias and adjust for it are available [e.g.,

Jaffe and Irizarry 2014, Houseman et al. 2014, Zou et al. 2014], although they have mostly

been applied to DNA methylation arrays and not bisulfite-sequencing data. This is not to

say that these problems don’t exist for sequencing data, merely that these have not been

as well-explored.
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2.3 Methylation calling

Methylation calling is the process of calling each sequenced methylation locus as being

either methylated or unmethylated10, as well as determining the context or type of each

methylation event (i.e. CpG, CHG or CHH) based on the sequencing data and a reference

DNA sequence. In principle, this is a simple process, however, this belies some complications,

which we discuss in this section.

Most bisulfite-sequencing alignment software either performs methylation calling during

the alignment process, as done by Bismark11, or as a separate step after the alignment and

post-processing of the SAM/BAM file. An example of the latter is Bis-SNP [Liu et al. 2012],

which performs methylation calling from bisulfite-sequencing data aligned with the user’s

choice of alignment software.

All bisulfite-sequencing assays use reference-based methylation calling. This means

that they require the specification of a reference DNA sequence that the aligned bisulfite-

sequencing data are compared against to infer the methylation state of each sequenced

locus. Care must be taken to correctly handle the orientation and strand of the alignment.

When using reference-based methylation calling, the position of the methylation locus

is with respect to the reference genome, since then all samples will use a common set of

co-ordinates. Some methylation loci cannot be typed using a reference-based approach.

For example, unless the genome of the sample is fully known, methylation loci in insertions

cannot be distinguished from genetic variation since there is no reference sequence to

compare them against.

2.3.1 Considerations

There are several issues that must be carefully considered when performing methylation

calling, including filtering of reads and biases, choosing and refining the reference sequence,
10A third possibility is making the call that the ‘methylation locus’ is not in fact a methylation locus.

For example, if the sequenced base at a cytosine in the reference sequence is an adenine or a guanine then
this may be evidence that the position is not in fact a methylation locus.

11Bismark also includes a program called bismark_methylation_extractor, which, as the name suggests,
extracts the methylation calls from the SAM/BAM file. So while Bismark annotates each base as methylated or
unmethylated during the alignment, a secondary step using bismark_methylation_extractor is required
to make the methylation calls.
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and determining the context or methylation type of the cytosine.

Filtering of reads and bases

Prior to methylation calling, each read should be filtered to remove low-quality reads and

low quality bases. When using a set of filters, at each step a read either ‘survives’, and

is subjected to the proceeding filter, or ‘dies’, and is excluded from methylation calling12.

Strictly speaking, each sequenced bases is assigned a weight in the filtering process, however,

in practice, filters are normally first applied to reads and then to all bases within ‘surviving’

reads. In my own work analysing whole-genome bisulfite-sequencing data, I routinely use

the following filters.

A read survives if:

1. The read is mapped (single-end or paired-end) and mapped in the expected orientation

(paired-end only).

2. The read is not marked as a PCR duplicate.

3. The read has a mapping quality score greater than some threshold.

A sequenced base survives if:

1. The read-position of the base means that it is unlikely to be affected by M-bias.

2. The base quality score is greater than some threshold.

3. The base is a ‘bisulfite mismatch’ (e.g., the sequenced base is a C or T at a C in the

reference sequence) and not a ‘non-bisulfite mismatch’ (e.g., the sequenced base is an

A or a G at a C in the reference sequence).

Although incomplete bisulfite-conversion is a well-recognised issue, most analysis

pipelines don’t attempt to account for this during methylation calling13. An exception is

Bis-SNP [Liu et al. 2012] which has an algorithm to exclude bases suspected of suffering

from incomplete bisulfite-conversion at the 5’ end of Illumina-generated reads.
12A read that is not used to estimate M and U may still be used in other analyses, such as estimating

copy number variation.
13Instead, incomplete bisulfite-conversion is usually incorporated into calculations to estimate the

methylation level at a given cytosine (see Section 4.4.2). The bisulfite-conversion rate may be estimated by
analysing cytosines that are expected to be unmethylated, such as those in the chloroplast genome [Lister
et al. 2008] or a spike-in control of lambda phage DNA [Lister et al. 2009].
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Choosing and refining the reference sequence

The reference sequence is typically the reference genome used in the alignment step, in

spite of the obvious differences between the sample’s genome and the reference genome.

This reference-based approach may be refined to incorporate genetic differences between

the sample and the reference genome. This can be done in several ways:

1. Whole-genome sequencing or genotyping of the sample

2. Calling genetic variations directly from the bisulfite-sequencing data

3. Excluding sites of known genetic variation

The gold-standard is to perform whole-genome DNA sequencing of each sample. This

data is then used to form a set of sample-specific methylation loci. This approach, however,

is also very expensive due to the extra sequencing requirements. A cheaper alternative is to

genotype the sample on a genome-wide SNP microarray. This will give very accurate, very

cheap genotypes at a large number of loci (500, 000 to 5, 000, 000). However, it obviously

cannot identify genetic differences that aren’t on the array, such as novel sample-specific

genetic variants.

The next best approach is that implemented in Bis-SNP [Liu et al. 2012], which is to

call genetic variation from the bisulfite-sequence data itself and to then define a set of

sample-specific methylation loci at which to call methylation events. Bis-SNP is designed

for directional bisulfite-sequencing libraries such as the widely used Illumina whole-genome

bisulfite-sequencing protocol.

Certain genetic variants, in particular heterozygous C>T SNPs, are more difficult to

accurately genotype than others. Unfortunately, C>T SNPs are also quite important

because they are the most common SNPs in mammals [Liu et al. 2012], mostly occur at

CG dinucleotides and, as a result, are easily mis-called as unmethylated cytosines rather

than as genetic variants. Fortunately, it is often possible to distinguish C>T SNPs from

unmethylated cytosines by examining the base on the opposing strand; if it is a G then

the position must be a C, if it is a A then it must be a T (see Figure 2.3). Other base

substitutions are more readily detectable, and insertion and deletion events (indels) may

also be called.
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>>----C-----C-----T---->> 
<<----G-----G-----A----<<

>>----C-----T-----C---->> 
<<----G-----A-----G----<<

>>|---T-----T-----T->-->>
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>> -|--T-----T-----T-->-->>
<<--<-G-----A-----G-| -<<
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Figure 2.3: Bis-SNP is able to distinguish unmethylated cytosines (site 1), from cytosine to
thymine genetic variants (site 2) and thymine to (unmethylated) cytosine genetic variants
(site 3) by examining the reads mapped to the reverse strand. For all three loci, the reads
mapped to the forward strand contain a thymine. However, it is the base on the reverse
strand that reveals the true genotype. When combined with the reference genome it can be
inferred whether the sample’s genome, which isn’t directly observed, has a genetic variant
at that location. This is only possible with bisulfite-data generated using the directional
protocol. This figure is adapted from Liu et al. [2012].

To emphasise, Bis-SNP provides three important pieces of information that make it

almost as good as having whole genome DNA sequencing data on the same sample:

1. Reference-specific methylation loci, i.e. cytosines in the reference genome that are

mutated to non-cytosine bases in the sample’s genome.

2. Sample-specific methylation loci, i.e. cytosines in the sample’s genome that are

non-cytosine bases in the reference genome.

3. Other genetic variants that may be used in additional analyses, such as in identifying

allele-specific methylation, or to refine the methylation type or context (see below).

Genotype calls made using Bis-SNP are less accurate than those from whole-genome

DNA sequencing because of the reduced complexity of bisulfite-converted DNA. However,

we essentially get to measure DNA variation ‘for free’ by using Bis-SNP, which makes it my

preferred approach for incoporating genetic variation into methylation calling. The genetic
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variant calls made by Bis-SNP can also be used to post-hoc filter methylation calls made

by other software. I use this approach to filter methylation calls made with methtuple.

The third approach, and arguably the bare minimum, is to call methylation events

using the reference genome and to post-hoc exclude any loci that overlap sites of known

genetic variation in the population. For example, we might exclude all cytosines in the

reference genome that are also SNPs in dbSNP [Sherry et al. 2001].

This is a conservative approach, as it will remove loci regardless of whether the sample

has a genetic variant at that position or not, but it may be a good enough method in some

cases. It also obviously requires a database of known variation for the organism being

studied, which is the case for commonly studied organisms such as humans and mice.

This approach can obviously only exclude sites of known variation from consideration,

and cannot add sample-specific methylation loci. To remove those reference-specific

methylation loci that are not found in databases of known genetic variation, we might

identify loci in the sample that display a large number of non-C/T bases (resp. non-G/A

bases) at a C (resp. G) on the forward (resp. reverse) strand of the reference genome14

Determining the context or methylation type

In addition to determining whether a cytosine is methylated or unmethylated, we also

want to determine the context of the cytosine, also known as the methylation type. That is,

we want to determine whether the cytosine is a CG, CHG or a CHH.

This is done by examining the two bases upstream of the cytosine. It can be done

based on the reference sequence, as is done in Bismark and methtuple, or from the reads

themselves. The obvious difficulty with using the reads themselves is if the cytosine occurs

at the last or second last position of the read, in which case the context may not be

unambiguously determined from the the read alone. Instead, the context may be refined

by initially using the reference genome context and then correcting for any sample-specific

genetic variants in the two downstream bases.

A further complication occurs when there is a genetic variant in the two bases upstream

of the methylation locus. We would like to use the two upstream bases from the sample to
14This is like an ad hoc and limited version of Bis-SNP.
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infer the sample-specific methylation context, either inferred from each read separately

or from a variant calling procedure such as Bis-SNP. However, this further complicates

the methylation calling and so tools such as Bismark derive the context from the reference

genome alone.

2.4 methtuple

methtuple (https://github.com/PeteHaitch/methtuple) is software I wrote to perform

methylation calling at genomic tuples that I call m-tuples. Before formally defining m-tuples,

I first motivate the need for methtuple.

2.4.1 Motivation

Most methylation callers, such as bismark_methylation_extractor and Bis-SNP, perform

methylation calling at single methylation loci, which I refer to as 1-tuples. The output

file is a table, where each row records the co-ordinates of a cytosine and the number of

methylated (M) and unmethylated (U) reads at that position. Table 2.2 is representative

of the type of data returned by these programs. The file format is generally tab-delimited

plain text, the Browser Extensible Data (BED) format or the Variant Call Format (VCF).

Chromosome Strand Position M U
chr1 ` 100 7 1
chr1 ´ 101 5 2
chr2 ` 400 0 3
chr2 ` 450 1 2

Table 2.2: Example of output for methylation calling at 1-tuples. Each row records the
the number of methylated (M) and unmethylated (U) reads at a 1-tuple. Loci may be
stratified by strand, as is done here, in which case most CpGs will have measurements for
both the positive and negative strands.

While 1-tuples are the basis of most analyses of bisulfite-sequencing data, they do not

always give the complete picture of how DNA methylation is acting in the sample. To gain

a clearer picture, we can leverage the fact that many bisulfite-sequencing reads contain

multiple methylation loci (m-tuples) and that each read is from a single cell15. An example
15This ignores chimeric reads, which are created when two DNA fragments ligate to one another during
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of where this is useful is shown in Figure 2.4 where we have two regions, each with four

methylation loci, that have identical methylation calls at 1-tuples yet very different overall

methylation patterns. Further examples of where m-tuples are useful are in studying

epialleles and epipolymorphisms (Chapter 4) and co-methylation (Chapters 6 and 7).

0.25
0.25

0.25
0.25

0.25
0.25

0.25
0.25

Region 1 Region 2

β-value

Figure 2.4: Two regions, each with four methylation loci that have identical β-values
(β “ M

M`U ) at 1-tuples yet have very different overall methylation patterns. Each line is a
read, a white circle is an unmethylated CpG and a black circle is a methylated CpG.

In order to study these phenomena, we firstly need software that can perform methyla-

tion calling at m-tuples, which is why I wrote methtuple. When I began my PhD, there

was no software capable of calling methylation patterns at arbitrarily sized m-tuples from

whole-genome bisulfite-sequencing data. Simultaneous with the development of methtuple,

there have been some software published with similar functionality. However, none of

these do exactly what I require and some have what I consider to be severe deficiencies

(Table 2.3). To the best of my knowledge, methtuple is the only software that can perform

methylation calling at m-tuples from whole-genome bisulfite-sequencing data.

the library preparation. Certain bisulfite-sequencing protocols frequently produce chimeric reads. For
example, using the post-bisulfite adapter tagging (PBAT) protocol [Miura et al. 2012] with a low input
amount of DNA results in a huge number of chimeric reads (personal communication from Felix Krueger).
The standard whole-genome bisulfite-sequencing protocol is not known to suffer from this issue.
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Table 2.3: Other software for methylation calling at m-tuples and their limitations. Abbre-
viations: bme = bismark_methylation_extractor.
Soft-
ware

Reference Input Limitations

meth-
clone

Li et al. [2014] Bismark
BAM

Unable to install

meth-
pat

https://github.com/
bjpop/methpat

Output
of bme

Designed for amplicons not whole-genome
data.

DMEASHe et al. [2013] Output
of bme

Windows operating system only. Perl
code only available as PDF file.

2.4.2 m-tuples

I define an m-tuple to be a tuple of m “ 1, 2, . . . methylation loci. I refer to m as the size

of the tuple. In principle, the m loci that make up an m-tuple could come from anywhere

in the genome, but it makes most sense to require that the m loci be close to one another.

In fact, I generally require that an m-tuple consists of m adjacent methylation loci16. An

equivalent way of describing an m-tuple as comprising adjacent methylation loci is one

where the number of intervening loci is zero (NIL “ 0). There are three reasons that I

focus on m-tuples with NIL “ 0:

1. Quantity: From a sequence containing l methylation loci there are l´m`1 NIL “ 0

m-tuples. In contrast, there are
`

l
m
˘

NIL ě 0 m-tuples. Obviously,
`

l
m
˘

ě l ´m` 1,

with strict inequality if m ‰ 1 or m ‰ l.

2. Interpretability: Results for m-tuples with NIL “ 0 are simpler to interpret than

when allowing NIL ě 0. This is discussed in Chapter 7.

3. Measurability: We cannot observe methylation patterns from individual reads at

m-tuples where the methylation loci are far apart due to the read length limitations

of the Illumina sequencing technology. This is true even when NIL “ 0 but is more

of an issue if we allow NIL ě 0.
16Two methylation loci are adjacent if there is no methylation loci in between the pair. For example,

CGCG and CGTTACG both contain two adjacent CpGs (the intervening TTA in the second sequence does not
include a CpG). In contrast, the first and last CpG in the sequence CGTCGTCG are not adjacent, since
the intervening sequencing, TCGT include a CpG. Note that in situations where we are only interested in
studying CpGs, we define ‘methylation loci’ to mean ‘CpGs’. Therefore the sequence CGTCTTCG contains
two adjacent methylation loci; while there is a C in the intervening sequence, TCTT, it is a CHH not a CpG.
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When referring to m-tuples I implicitly mean those with NIL “ 0; I will explicitly use

the notation NIL ě 0 when I wish to make clear that there may be intervening methylation

loci in the m-tuple. The default option of methtuple is to produce m-tuples with NIL “ 0

unless the --all-combinations flag is set17.

I require that each methylation call at an m-tuple comes from a single read. There

are 2m possible methylation calls at an m-tuple. For example, at a 1-tuple there are 21

possible methylation calls — M or U ; at a 3-tuple there are 23 “ 8 possible methylation

calls — MMM , MMU , MUM , MUU , UMM , UMU , UUM or UUU .

For each m-tuple, I also define the intra-pair distance (IPD) as the vector containing

the pm´ 1q pair-wise distances (measured in bp) between methylation loci in the m-tuple.

For example, the 2-tuple (chr7:+:145, chr7:+:163) has IPD “ p163´ 145q “ p18q. The

5-tuple (chr2:-:560, chr2:-:570, chr2:-:572, chr2:-:588, chr2:-:612) has IPD “

p570´ 560, 572´ 570, 588´ 572, 612´ 588q “ p10, 2, 16, 24q. The IPD vector of a 1-tuple is

undefined.

To illustrate several of the above-mentioned concepts, suppose we sequence a region

of the genome containing five methylation loci with three paired-end reads (A, B and C),

shown in Figure 2.5.

If we are interested in 1-tuples, Figure 2.6 shows what we would obtain from each read by

running methtuple. The result is identical regardless of whether the --all-combinations

flag is set.

If we are interested in 3-tuples, Figure 2.7 shows what we would obtain from each read

by running methtuple in its default mode. A few things to note:

• Read-pair A sequences all three (= 5 - 3 + 1) adjacent 3-tuples

• Read-pair B sequences none of the adjacent 3-tuples but does ‘erroneously’ construct

two 3-tuples from pairs of non-adjacent loci. This happens because m-tuples are

created independently from each read-pair; effectively, read-pair B is unaware of

methylation locus 3. Depending on the downstream analysis, the user may wish to
17Actually, while methtuple tries to produce m-tuples with NIL “ 0 it can’t guarantee this because it

would require looking up the reference genome sequence for each m-tuple (this is avoided for computational
simplicity). This is only really an issue with paired-end sequencing, as is made clear in the examples of
Figures 2.5, 2.6, 2.7 and 2.8. Some post-hoc filtering of the m-tuples will generally be required in order to
remove those m-tuples with NIL ą 0.
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ref: 1    2   3 4 5
A_1: |----->
A_2:         <------|
B_1: |----->
B_2:           <----|
C_1:    |----->
C_2:      <------|

Figure 2.5: Diagram of three-paired end reads (A, B and C) mapping to a region containing
five methylation loci (1, 2, 3, 4 and 5). The suffix _1 or _2 indicates whether it is read-1
or read-2, respectively.

A: {1}, {2}, {3}, {4}, {5}
B: {1}, {2}, {4}, {5}
C: {2}, {3}, {4}

Figure 2.6: 1-tuples produced for each read for the toy example in Figure 2.6.

post-hoc filter out these m-tuples with non-adjacent loci.

• The twice-sequenced methylation loci in read-pair C, 2 and 3, are only counted once.

A: {1, 2, 3}, {2, 3, 4}, {3, 4, 5}
B: {1, 2, 4}, {2, 4, 5}
C: {2, 3, 4}

Figure 2.7: 3-tuples produced for each read for the toy example in Figure 2.6.

Finally, Figure 2.8 shows the output if we were to analyse 3-tuples but with the

--all-combinations flag set.

With current sequencing technology we are limited to extracting m-tuples that span no
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A: {1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {1, 2, 4}, {1, 2, 5}, 
   {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 5}, {2, 4, 5}
B: {1, 2, 4}, {2, 4, 5}, {1, 2, 5}, {1, 4, 5}
C: {2, 3, 4}

Figure 2.8: 3-tuples produced for each read for the toy example in Figure 2.6 when the
--all-combinations flag is set.

more than 200 to 250 bp. This obviously affects the size of m-tuples that we can study.

Figure 2.9 shows the number of CpGs per read for the Lister dataset (see Chapter 3 for

a description of the Lister dataset). Longer reads, and paired-end reads, contain more

methylation loci and so are more informative for analyses using m-tuples. This can be seen

by comparing, for example, the ADS and HSF1 samples. Samples sequenced more deeply

will have more reads per m-tuple, although this can’t be seen in these plots since they are

normalised by sequencing depth.

ADS ADS−adipose ADS−iPSC FF FF−iPSC_19.11

FF−iPSC_19.11+BMP4 FF−iPSC_19.7 FF−iPSC_6.9 H1+BMP4 H1_r1

H1_r2 H9 H9_Laurent HSF1 IMR90−iPSC
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Figure 2.9: Number of CpGs per read for the Lister dataset.

2.4.3 Implementation

methtuple performs methylation calling for a single BAM file generated by Bismark.

The user is required to specify the size of the tuples (--m), and the methylation type
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(--methylationType) for each run of the program. There are many useful options to filter

reads and read-positions. Apart from the standard quality filters, methtuple is careful

when processing paired-end reads to only count the base from one of the reads in any

overlapping paired-end reads to avoid double-counting the bases in the overlapping region18.

methtuple also allows the user to filter out specific read-positions rather than wholesale

filtering of the ends of reads. This is particularly useful for samples where there is a ‘spike’

in the M-bias plot, such as that shown in Figure 2.2. Such a spike can be filtered out

without also being forced to also filter out additional upstream read-positions that are not

affected by M-bias.

methtuple is written in Python and uses the pysam (https://github.com/pysam-developers/

pysam/) module to parse the BAM file. It is compatible with both Python2 and Python3.

To improve performance, I provide a helper script to split the sample by chromosome

and process each chromosome in parallel (https://github.com/PeteHaitch/methtuple/

blob/master/helper_scripts/run_methtuple.sh). This helper script makes extensive

use of GNU parallel [Tange 2011]. While Python-level parallel processing is desirable, this

GNU parallel-based approach was simpler to implement and sufficient for my purposes.

methtuple is currently limited to processing files produced by Bismark due to its reliance

on the Bismark-specific tags XM, the “methylation call string”, XR, the “read conversion

state for the alignment”, and XG, the “genome conversion state for the alignment” (http://

www.bioinformatics.bbsrc.ac.uk/projects/bismark/Bismark_User_Guide.pdf). It

could be extended to work with other bisulfite-sequencing aligners. However, due to the

eccentricities of each aligner, such an extension would have to be aligner-specific and is

therefore a considerable undertaking. Each extension would require that tags analogous

to the XR, XG and XM tags can be generated from the given BAM file. In the case of the XM

tag, this would likely require that the reference genome is parsed in parallel with the BAM

file, adding considerable computational overhead. Perhaps the easiest option would be to

add a script that ‘Bismark-ifies’ the original BAM file. Since all my data are aligned with

Bismark, or were converted to Bismark’s BAM format, I have not yet had need to pursue

this line of work.
18methtuple has several options for handling overlapping mates of paired-end reads via the

--overlap-filter flag. The default method is to ignore any read-positions in the overlapping region
where the methylation calls disagree.
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The output format of methtuple is tab-delimited plain text, optionally compressed

with gzip or bzip2. Figure 2.10 shows an example of the output for 3-tuples.

chr     strand  pos1    pos2    pos3    MMM     MMU     MUM     MUU     UMM     UMU     UUM     UUU
chr1    +       469     471     484     0       0       4       1       1       0       0       0
chr1    +       471     484     489     1       0       0       0       2       2       1       0

Figure 2.10: Example output of methtuple for 3-tuples.

2.4.4 Performance

I have used methtuple to perform methylation calling at CpG m-tuples, m “ 1, . . . , 8, for

more than 40 whole-genome bisulfite-sequencing samples. Figure 2.11 shows the distribution

of running times, Figure 2.12 the maximum memory usage across, and Figure 2.13 the

output file sizes, for all the samples from the EPISCOPE, Lister, and Ziller datasets. For

each sample, each chromosome was processed using a single core on one of the shared-use

servers in the Bioinformatics Division (see Table A.1 in the Appendix for details of these

machines).

The running time of methtuple is proportional to the number of reads mapped to the

chromosome, which is proportional to the length of the chromosome and its copy number.

The running time is largely independent of the tuple size (-m). The variation in running

times within a chromosome is due to the number of reads generated per sample and the

length of the reads, where the length of a paired-end read is defined as the sum of the

mates’ lengths. Samples with more reads take longer to process and samples sequenced

with longer reads take longer because these contain more m-tuples.

The maximum memory usage is not strictly proportional to chromosome length. It

is instead driven by the number and density of CpGs on the chromosome. For example,

chromosome 19, which has the highest CpG density of all the autosomes in the human

genome, requires far more memory than chromosome 18, which has less than half the

CpG density of chromosome 19 (see Figure 2.14). The relationship between the maximum

memory usage and the tuple size (-m) is complex; more data have to be retained as -m

increases, thus increasing the memory usage, but fewer reads contain tuples of that size and

so there aren’t as many m-tuples or observations on these to count and retain. Memory

usage is therefore relatively constant across values of -m for a given chromosome. The
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Figure 2.11: The running times are the ‘User time’ reported by GNU time converted
from seconds to minutes. The suffix ‘ac’ on the tuple size means that the option
--all-combinations was set. Note that the total number of samples is 48 because
each of the Ziller sequencing runs is separately counted (see Chapter 3 for details).

obvious exception is for the results labelled 2ac, which used the --all-combinations flag

in conjunction with -m 2. This means that all 2-tuples with NIL ě 0 were extracted and

there are many, many more CpG 2-tuples with NIL ě 0 than there are with NIL “ 0,

hence the increase in memory usage.

The regular structure of the output file means that these are particularly compressible.

The size of the output file is almost always less than 1 GB when compressed with gzip.
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Figure 2.12: The maximum memory usage is the ‘Maximum resident set size’ reported by
GNU time converted from kilobytes to gigabytes. These values are divided by four to fix bug
in how GNU time reports the maximum memory usage (https://bugzilla.redhat.com/
show_bug.cgi?id=703865). The suffix ‘ac’ means that the option --all-combinations
was set. Note that the total number of samples is 48 because each of the Ziller sequencing
runs is separetely counted (see Chapter 3 for details).
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2.4.5 Availability

methtuple is open-source software released under the MIT licence and available from

https://github.com/PeteHaitch/methtuple.

2.5 Summary

This chapter has detailed the first steps in a bioinformatics analysis of whole-genome

bisulfite-sequencing data. There are many decisions to be made at each step and these will

ultimately affect the quality of the data available for downstream analysis.

This chapter also introduced methtuple, the first of several pieces of software that were

developed as part of my thesis. methtuple is software for calling methylation patterns at

m-tuples from whole-genome bisulfite-sequencing data. It will be essential for our later

analysis of within-fragment co-methylation (Chapter 7) and has wider utility in facilitating

other downstream analyses based on methylation patterns at m-tuples (Chapter 5).
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Chapter 3

Datasets used in thesis

3.1 Overview of data processing

This chapter briefly documents the 40 whole-genome bisulfite-sequencing samples that I

use in my thesis. The BAM files containing the aligned reads for each sample underwent the

same basic processing:

1. Genetic variants were called using the bissnp_easy_usage.pl script included with

Bis-SNP (v0.82.2).

2. M-bias was estimated using bismark_methylation_extractor with the --mbias_only

flag set. These output files were then analysed using the MethylationTuples R

package (see section 5.3) and all read-positions with an CpG normalised read-position

methylation level (nrpml) more than 0.03 from the median, i.e. |nrpmlCpG ´

medianpnrpmlCpGq| ą 0.03, were excluded from methylation calling (read-1 and

read-2 analysed separately where applicable).

3. CpG methylation calling was performed using methtuple (v1.4.0) for m-tuples m “

1, . . . , 8. CpG 2-tuples were called both with and without the --all-combinations

flag; all other tuple sizes were called without the --all-combinations flag. The fol-

lowing methtuple flags were also used: --methylation-type CG --ignore-duplicates

--min-mapq 0 --overlap-filter XM_ol --ignore-duplicates.

4. Sample-level m-tuples were combined at the dataset-level using the MethylationTuples

R package (see Section 5.3). Specifically, a MethPat object was created for each of
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the EPISCOPE, Lister, Seisenberger and Ziller datasets for 1-tuples, 2-tuples and

2ac-tuples (2-tuples with the --all-combinations flag in methtuple set), 3-tuples

and 4-tuples. I did not create MethPat objects for m-tuples with m ą 4 because the

data are too sparse at this larger sizes to be generally useful.

The raw data for the Lister, Seisenberger and EPISCOPE datasets are all publicly

available. The EPISCOPE data are not yet published and I do not have permission to

make these publicly available. The scripts used to prepare the results for each chapter are

available from https://github.com/PeteHaitch/phd_thesis_analyses. Further details

of software used are available in Appendix A.3.

3.2 Lister dataset

The Lister dataset refers to whole-genome bisulfite-sequencing libraries used in Lister et al.

[2009] and Lister et al. [2011]. The Lister data were the largest publicly available human

whole-genome bisulfite-sequencing datasets until quite recently.

3.2.1 Sample descriptions

The methylC-seq libraries from the Lister et al. [2009] paper were the first published

whole-genome bisulfite-sequencing libraries of mammalian DNA. A focus of this paper was

comparing DNA methylation levels in a somatic tissue, fetal lung fibroblasts (IMR90 ),

with those from a pluripotent tissue, embryonic stem cells (H1 ). Each tissue was run in

duplicate. While Lister et al. [2009] refer to these “biological” replicates I believe that these

are better described as technical replicates since each replicate is from the same cell line;

what distinguishes the replicates are the number of cell passages and the subsequent library

preparations and sequencing. In any case, the published analyses pool these duplicates,

which ignores all between-replicate variability. These samples are detailed in Table 3.1.

The methylC-seq libraries from the Lister et al. [2011] include some created by the

authors and some published by other groups. These samples include cell lines from

differentiated cell lines, embryonic stem cell lines, pluripotent stem cell lines and in vitro

differentiated from pluripotent stem cells. There are no replicates for any of the Lister
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Table 3.1: Samples in Lister dataset from Lister et al. [2009]. The reported read lengths
are prior to any trimming of the reads. Abbreviations: ESC = embryonic stem cell; SE =
single-end sequencing.

Sample Tissue type Sequencing Read length Ave. coverage
IMR90_r1 Lung fibroblasts SE 87 bp 14ˆ
IMR90_r2 Lung fibroblasts SE 87 bp 15ˆ
H1_r1 ESC SE 85 bp 15ˆ
H1_r2 ESC SE 85 bp 14ˆ

et al. [2011] samples. These samples are detailed in Table 3.2.

Table 3.2: Samples in Lister dataset from Lister et al. [2011]. The reported read lengths
are prior to any trimming of the reads. Abbreviations: iPSC = induced pluripotent stem
cell; ESC = embryonic stem cell; IVD = in vitro differentiated from pluripotent cell line;
SE = single-end sequencing; PE = paired-end sequencing.
Sample Tissue type Sequenc-

ing
Read
length

Ave.
coverage

ADS Adipose PE 75 bp 23ˆ
ADS-adipose Adipocytes from ADS PE 75 bp 24ˆ
ADS-iPSC iPSC from ADS PE 75 bp 26ˆ
FF Foreskin fibroblasts SE 85 bp 16ˆ
FF-iPSC_6.9 iPSC from FF SE 85 bp 10ˆ
FF-iPSC_19.7 iPSC from FF SE 85 bp 9ˆ
FF-iPSC_19.11 iPSC from FF SE 85 bp 8ˆ
FF-
iPSC_19.11+BMP4

IVD from
FF-iPSC_19.11

SE 85 bp 17ˆ

IMR90-iPSC iPSC from IMR90 SE 85 bp 9ˆ
H1+BMP4 IVD from H1 SE 85 bp 33ˆ
H9 ESC SE 85 bp 9ˆ
H9_Laurent ESC PE 75 bp 8ˆ
HSF1 ESC SE 47 bp 5ˆ

There are four ‘mini datasets’ within the Lister data that I make some use of in my

thesis. The first I refer to as the Lister-ADS data and includes samples ADS, ADS-adipose

and ADS-iPSC, all from the 2011 paper. The ADS sample, a human adipose tissue cell line,

is the ‘founder’ of this mini dataset. The ADS-adipose and ADS-iPSC are both derived

from the ADS cell line. The ADS-adipose sample are “adipocytes derived from the ADS

cells through adipogenic differentiation conditions”. The ADS-iPSC cell line is an induced

pluripotent stem cell line derived from ADS.

The second mini dataset I refer to as the Lister-FF data and includes samples FF,
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FF-iPSC_6.9, FF-iPSC_19.7, FF-iPSC_19.11 and FF-iPSC_11.11+BMP4, all from the

2011 paper. The FF sample, a foreskin fibroblast cell line, is the ‘founder’ of this this

mini dataset. The FF-iPSC_6.9, FF-iPSC_19.7 and FF-iPSC_19.11 are all induced

pluripotent stem cell lines derived from FF. In fact, FF-iPSC_19.7 and FF-iPSC_19.11

are subclones derived from FF-iPSC_19, whose methylome was not sequenced. I believe

FF-iPSC_6.9 is an independently derived iPSC cell line from FF, although this isn’t made

clear in the original publication. The FF-iPSC_19.11+BMP4 sample is a trophoblast cell

line derived by in vitro differentiating the FF-iPSC_19.11 by growing a clone of it in bone

morphogenic protein 4 (BMP4 ).

The third mini dataset I refer to as the Lister-IMR90 data and includes samples

IMR90_r1 (2009), IMR90_r2 (2009) and IMR90-iPSC (2011). The IMR90-iPSC sample

is an induced pluripotent stem cell line derived from the IMR90 cell line.

The final mini dataset I refer to as the Lister-H1 data and includes samples H1_r1

(2009), H1_r2 (2009) and H1+BMP4 (2011). The H1+BMP4 sample is a trophoblast cell

line derived by in vitro differentiating the H1 by growing a clone of it in bone morphogenic

protein 4 (BMP4).

3.2.2 Creation of BAM files

The aligned reads for the Lister et al. [2009] data were downloaded from http://neomorph.

salk.edu/human_methylome/. The aligned reads for the Lister et al. [2011] data were

downloaded from http://neomorph.salk.edu/ips_methylomes/. These samples had

been aligned against the hg18 build of the human reference genome.

As the aligned reads were in a custom file format, I wrote Python scripts to convert these

files to the canonical SAM format. These scripts are available from https://github.com/

PeteHaitch/Lister2BAM. These SAM files were then converted to BAM files with SAMtools

[Li et al. 2009] and duplicate reads were marked using Picard’s MarkDuplicates routine

(http://broadinstitute.github.io/picard/).
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3.3 EPISCOPE dataset

The EPISCOPE data were kindly provided to me by Professor Susan Clark (Garvan

Institute of Medical Research, Sydney) and Dr Peter Molloy (CSIRO Animal, Food and

Health Sciences). This dataset is not yet published.

3.3.1 Sample descriptions

The data are from three human donors across four different tissues, for a total of 12

whole-genome bisulfite-sequencing libraries. The four tissues are:

• BUF : Buffy coat layer, which are leukocytes and platelets derived by centrifugation

of a whole blood sample.

• SA: Subcutaneous adidose tissue, which is fat found just below the skin. Unlike

visceral adipose tissue, subcutaneous adipose tissue is thought to be protective against

obesity-related metabolic dysfunction [Chau et al. 2014].

• VA: Visceral adipocytes, which are derived from VAT.

• VAT : Visceral adipose tissue, which is located inside the abdominal cavity, packed

between the organs and is associated with metabolic dysfunction [Chau et al. 2014].

The data are summarised in Table 3.3.

3.3.2 Creation of BAM files

The sequencing data for these 12 samples were processed and aligned by Aaron Statham

(Garvan Institute of Medical Research, Sydney). Each sample was aligned to the human

reference genome (hg19) using Bismark (v0.8.3) with the Bowtie2 backend. The default

alignment options were used, except that the maximum insert size for valid paired-end

alignments was set to 1000 instead of 500 (-X 1000). Duplicate reads had already been

removed from the BAM files that I received.
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Table 3.3: Samples in EPISCOPE dataset. The reported read lengths are prior to any
trimming of the reads. Abbreviations: PE = paired-end sequencing; BUF = buffy coat;
SA = subcutaneous adipose; VA = visceral adipocytes; VAT = visceral adipose tissue.

Sample Tissue Sequencing Read length Ave. coverage
E13BUF BUF PE 101 bp 8ˆ
E13SA SA PE 101 bp 28ˆ
E13VA VA PE 150 bp 27ˆ
E13VAT VAT PE 101 bp 25ˆ
E18BUF BUF PE 101 bp 21ˆ
E18SA SA PE 101 bp 25ˆ
E18VA VA PE 150 bp 36ˆ
E18VAT VAT PE 101 bp 26ˆ
E23BUF BUF PE 101 bp 12ˆ
E23SA SA PE 101 bp 29ˆ
E23VA VA PE 101 bp 32ˆ
E23VAT VAT PE 101 bp 31ˆ

3.4 Seisenberger dataset

The Seisenberger data are from a study of the dynamics of DNA methylation reprogramming

in mouse primordial germ cells [Seisenberger et al. 2012]. These were a convenience sample

provided to me by a colleague, Felix Krueger (Babraham Institute). I thank Felix who

sent me the BAM files containing processed and aligned reads.

3.4.1 Sample descriptions

I have the data for only three samples from the original publication, detailed in Table 3.4.

The J1_1 sample is from an embryonic stem cell line while both the E6.5_epiblast_1 and

E16.5_male_1 samples are derived from pools of 10 to 30 embryos. Developmentally, the

samples are ordered J1_1 (embryonic stem cell), E6.5_epiblast_1 (embryonic day 6.5

epiblast) and E16.5_male_1 (embryonic day 16.5 male progenitor germ cells).

I believe that the samples I received labelled J1_1 and E16.5_male_1 in fact correspond

to J1_2 and E16.5_male_2, respectively, i.e. the second replicate rather than the first.

The data I received are all 100 bp paired-end sequences, which matches replicate 2 rather

than replicate 1 for both of these samples Seisenberger et al. [2012, Supplementary Table

1].
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Table 3.4: Samples in Seisenberger dataset. The reported read lengths are prior to any
trimming of the reads. All samples were first published in Seisenberger et al. [2012].
Abbreviations: PE = paired-end sequencing
Sample Tissue Sequenc-

ing
Read
length

Ave.
coverage

J1_1 ESC PE 100 bp 12ˆ
E6.5_epiblast_1 Epiblast PE 100 bp 13ˆ
E16.5_male_1 Male progenitor germ

cells
PE 100 bp 12ˆ

3.4.2 Creation of BAM files

The sequencing data for these 3 samples were processed and aligned by Felix Krueger (Babra-

ham Institute). Each sample was aligned to the mouse reference genome (GRCm38/mm10)

using Bismark (v0.7.12) with the Bowtie1 backend. The default alignment options were

used.

3.5 Ziller dataset

The Ziller data are a subset of the data used in Ziller et al. [2013]. Specifically, I use a

convenience sample of 8 whole-genome bisulfite-sequencing libraries. These were made

available to me by a collaborator, Aaron Statham (Garvan Institute of Medical Research,

Sydney). I thank Aaron who sent me the BAM files containing processed and aligned reads.

3.5.1 Sample descriptions

The eight biological samples are as follows: frontal cortex from two ‘normal’ women donors

(Frontal_cortex_normal_1 and Frontal_cortex_normal_2 ) and from two women who

had Alzheimer’s disease (Frontal_cortex_AD_1 and Frontal_cortex_AD_2 ); a sample

from a human liver carcinoma cell line (HepG2_cell_line); a new sample from the IMR90

lung fibroblast cell line (IMR90_cell_line); and samples from a colon cancer matched

tumour-normal pair (Colon_Tumor_Primary and Colon_Primary_Normal).

Table 3.5 summarises the data for the 19 individual sequencing runs1.
1The average sequencing coverage of the post-hoc merged samples are approximately the sums of the

average sequencing coverage for the corresponding individual sequencing runs.
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Table 3.5: Sequencing runs in Ziller dataset. The reported read lengths are prior to any
trimming of the reads. All samples were first published in Ziller et al. [2013]. Abbreviations:
PE = paired-end sequencing
Sample Tissue Sequencing Read length Ave. coverage
SRR949193 Frontal_cortex_normal_1 PE 101 bp 10ˆ
SRR949194 Frontal_cortex_normal_1 PE 101 bp 10ˆ
SRR949195 Frontal_cortex_normal_1 PE 101 bp 10ˆ
SRR949196 Frontal_cortex_normal_2 PE 101 bp 9ˆ
SRR949197 Frontal_cortex_normal_2 PE 101 bp 9ˆ
SRR949198 Frontal_cortex_normal_2 PE 101 bp 9ˆ
SRR949199 Frontal_cortex_AD_1 PE 101 bp 9ˆ
SRR949201 Frontal_cortex_AD_1 PE 101 bp 9ˆ
SRR949202 Frontal_cortex_AD_2 PE 101 bp 10ˆ
SRR949203 Frontal_cortex_AD_2 PE 101 bp 10ˆ
SRR949206 HepG2_cell_line PE 101 bp 2ˆ
SRR949207 HepG2_cell_line PE 101 bp 1ˆ
SRR949208 IMR90_cell_line PE 101 bp 1ˆ
SRR949209 IMR90_cell_line PE 101 bp 3ˆ
SRR949210 Colon_Tumor_Primary PE 101 bp 8ˆ
SRR949211 Colon_Tumor_Primary PE 101 bp 8ˆ
SRR949212 Colon_Tumor_Primary PE 101 bp 9ˆ
SRR949213 Colon_Tumor_Primary PE 101 bp 8ˆ
SRR949215 Colon_Primary_Normal PE 101 bp 8ˆ

3.5.2 Creation of BAM files

I received 19 BAM files from Aaron, which represent 19 sequencing runs of the eight biological

samples. Each of the 19 BAM files was processed separately and I then post hoc merged

the processed data from sequencing runs. This unfortunately reduces the power to detect

genetic variants since the coverage of individual sequencing runs is lower than merged

data, but does not adversely affect methylation calling since the number of methylated

and unmethylated reads can be summed across sequencing runs.

3.6 CpG islands

I have used the CpG island definition from the hidden Markov model proposed by Wu

et al. [2010] and implemented in the makeCGI R package (v1.2, http://rafalab.jhsph.

edu/CGI/). The predicted CpG islands for the human reference genome (both hg18 and

hg19) were downloaded from http://rafalab.jhsph.edu/CGI/ on 29/10/2014. I used
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the makeCGI R package to create the predicted CpG islands for the mouse reference genome

(mm10) since these were not available for download.
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Chapter 4

A statistical framework for

analysing whole-genome

bisulfite-sequencing data

Overview

This chapter sets out a statistical framework for analysing bisulfite-sequencing data. The

ideas here are simple, however, they have not yet been put into a unified mathematical

framework. My intention in doing so is to clarify several subtleties that, in my experience,

are potential sources of confusion.

Beginning with a single sample, I explain the various sources of variation in DNA

methylation data and introduce the mathematical notation that I use throughout my thesis.

I then extend this framework to multiple samples.

Finally, I describe key variables, common estimators of these and their statistical

properties by analysing 40 whole-genome bisulfite-sequencing samples.

4.1 One sample

There are several levels of variation to consider in a bisulfite-sequencing experiment, even

with only a single sample. I find it convenient to separate these into:
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1. Pre-sequencing sources of variation

2. Sequencing and post-sequencing sources of variation.

In the following, I describe these sources of variation, which are illustrated in Figure

4.1.

Population of cells

DNA extracted and fragmented
Adapters ligated and fragments size-selected

DNA fragments bisulfite-converted

PCR amplification

Pre-sequencing

Alignment

Sequencing
and

post-sequencing
Sample from the pool of DNA fragments

Methylation calling

Figure 4.1: A schematic illustrating several sources of variation in a bisulfite-sequencing
experiment. Each sample starts as a population of cells, with potentially different methy-
lation patterns. Each DNA fragment is coloured by its originating cell (although this
is unknown in practice). Illustrated are PCR amplication bias (unequal representation
of DNA from each cell following PCR amplification), sampling variation (not all DNA
fragments are sequenced), alignment errors (not all sequenced fragments are mapped or may
be mapped to the wrong location, as is the case for the green fragment), and filtering during
methylation calling (not reads are used, the blue read, and reads may have read-positions
removed, the black reads).
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4.1.1 Pre-sequencing

A methylation locus is a single cytosine, that is, a CpG, CHG or CHH. The set of these

loci is labelled I “ tposi : i “ 1, . . . , Nlociu, where posi is the genomic co-ordinates of the

ith locus, e.g., chr1:+:666. It will be convenient to refer to loci by the subscript i rather

than by posi, although it is important to remember that the number of base pairs between

the ith and pi` 1qth methylation loci varies along the genome. Furthermore, depending

on whether the data are stranded, a pair of loci may be on opposite strands. In a small

number of instances the ith and pi` 1qth methylation loci are on separate chromosomes,

e.g., the last CpG on chromosome 1 and the first CpG on chromosome 2.

The methylation state of a locus can vary within a sample due to cell-to-cell heterogeneity

of DNA methylation. A sample in a bisulfite-sequencing experiment contains DNA that is

extracted from hundreds or thousands of cells and each cell may have a slightly different

methylation profile. Furthermore, within a diploid cell there are two copies of each

chromosome, and therefore two copies of each methylation locus, and these two copies can

have different methylation states. It is also therefore necessary to consider not just the

genomic co-ordinates of the locus but from which DNA fragment the methylation state

originated.

Suppose that in the pool of DNA fragments for the sample that there are Hi fragments

containing the ith methylation locus. In general, Hi is unknown and will vary from locus

to locus within a sample1. Note that the value of Hi is determined following the library

preparation, including PCR amplification of the DNA; therefore, it can give a grossly

distorted picture of the true representation of the cells. We denote by Hi the set of all

fragments containing the ith locus.

Although we do not know the number of fragments in the pool, we can define (and

measure) the methylation state of a locus on a single DNA fragment. We denote by the

indicator random variable, Zh,i, the methylation state of ith methylation locus on the hth

DNA fragment:
1Knowing Hi would require knowing: (1) the number of cells used as input (which might only be known

to within an order of magnitude), (2) the ploidy of each cell (generally known) and (3) the number of
PCR cycles (generally known). But the real problem is that none of the steps in creating the pool of DNA
fragments is perfect. In particular, PCR introduces biases; some molecules are preferentially amplified
while others ‘drop out’. So even if we knew (1), (2) and (3) we cannot simply multiply these together to
compute Hi, although this might at least give us a rough estimate.
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Zh,i “

$

&

%

1 if methylated on the hth fragment

0 if unmethylated on the hth fragment

By summing over the fragments containing the ith locus, we obtain the number of

fragments that are methylated at the ith locus (Mi) and unmethylated at the ith locus

(Ui):

Mi “

Hi
ÿ

h“1
Zh,i “ |tZ : Z P Hi, Z “ 1u|

Ui “
Hi
ÿ

h“1
p1´ Zh,iq “ |tZ : Z P Hi, Z “ 0u|

From these we can compute the proportion of fragments that are methylated at the ith

locus:

Bi “
Mi

Mi ` Ui

The above definitions can be extended from individual methylation loci, 1-tuples,

to m-tuples. Mathematically, an m-tuple is denoted by a sequence of methylation loci,

pi, i` 1, . . . , i`m´ 1q.

We denote the methylation pattern on the hth DNA fragment containing the m-tuple

pi, i` 1, . . . , i`m´ 1q by the vector of indicator random variables, Zh,pi,i`1,...,i`m´1q,:
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Zh,pi,i`1,...,i`m´1q “

$
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’

’

’

’
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’

’

’

’

’

%

p0, 0, . . . , 0q if unmethylated at the
´

ith, . . . , pi`m´ 1qth
¯

locus on the hth fragment

p0, 0, . . . , 1q if unmethylated at the
´

ith, . . . , pi`m´ 2qth
¯

locus and methylated at the pi`m´ 1qth

locus on the hth fragment
...

p1, 1, . . . , 1q if methylated at the
´

ith, . . . , pi`m´ 1qth
¯

locus on the hth fragment

We denote the set of all fragments containing the m-tuple pi, i ` 1, i ` m ´ 1q by

Hpi,i`1,i`m´1q.

There are 2m possible methylation patterns at an m-tuple. Rather than describe a

methylation pattern by an m-vector of zeros and ones, I also write these using U and M ;

for example, the possible methylation patterns at a 2-tuple are MM,MU,UM and UU .

Analogous to the definition of Mi and Ui for 1-tuples (m “ 1), we have when m “ 2:

MMpi,i`1q “ |tZ : Z P Hpi,i`1q, Z “ p1, 1qu|

MUpi,i`1q “ |tZ : Z P Hpi,i`1q, Z “ p1, 0qu|

UMpi,i`1q “ |tZ : Z P Hpi,i`1q, Z “ p0, 1qu|

UUpi,i`1q “ |tZ : Z P Hpi,i`1q, Z “ p0, 0qu|

We could extend the Bi values to m-tuples, although the intuitive interpretation of

these as the average methylation level is lost. Instead, it reflects the relative frequencies of

each methylation pattern. Here are the definitions for m “ 2:
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BMM
pi,i`1q “

MMpi,i`1q
MMpi,i`1q `MUpi,i`1q ` UMpi,i`1q ` UUpi,i`1q

BMU
pi,i`1q “

MUpi,i`1q
MMpi,i`1q `MUpi,i`1q ` UMpi,i`1q ` UUpi,i`1q

BUM
pi,i`1q “

UMpi,i`1q
MMpi,i`1q `MUpi,i`1q ` UMpi,i`1q ` UUpi,i`1q

BUU
pi,i`1q “

UUpi,i`1q
MMpi,i`1q `MUpi,i`1q ` UMpi,i`1q ` UUpi,i`1q

The definitions for m ą 2 follow in the obvious manner.

Again, I emphasise that Hpi,i`1,i`m´1q,j , Zh,pi,i`1,i`m´1q,j , Bpi,i`1,i`m´1q,j and the set

of methylation patterns are unobservable. We aim to estimate these variables through

sequencing the pool of DNA fragments.

4.1.2 Post-sequencing

A whole-genome bisulfite-sequencing experiment does not sequence every DNA fragment

in the pool. Rather, sequencing can be thought of as sampling without replacement from

the pool of DNA fragments. We have a large number (~1010) of fragments in the pool

and each methylation locus is only present on a small number of those fragments. We can

therefore approximate this sampling by Poisson sampling, where the rate parameter for

locus i is proportional to the number of fragments in the pool and inversely proportional

to the number of fragmentation containing the ith methylation locus, Hi.

We can ignore reads that do not contain any methylation loci as these are not relevant

to ths discussion. We make three further simplifying assumptions:

1. Sequencing is performed without error.

2. Read mapping is perfect.

3. We perform single-end sequencing.

The effect of the first two assumptions are discussed in Section 2.2. The effect of the

third assumption is minor. When using single-end sequencing, the methylation loci from a

single read will always form a positively ordered sequence without gaps, i.e. pi, i` 1, i` 2q
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and not, for example, pi, i´ 1, i´ 2q nor pi, i` 1, i` 3q. However, when using paired-end

sequencing, the methylation loci from a paired-end read will still be an ordered sequence

but one of the following may occur:

1. There may be gaps due to the insert size being longer than the sum of the read

lengths, e.g., pi, i` 1, i` 3, i` 4q. In effect, we have missing data for any intervening

methylation loci, the pi` 2qth loci in this example.

2. Loci may be measured twice if the insert size is less than the sum of the read lengths,

e.g. read-1 gives us pi, i` 1q and read-2 gives us pi` 1, i` 2, i` 3q. In this example

we must use only one of read-1 or read-2 as the measurement of the pi` 1qth locus

because otherwise we are ‘double-counting’2.

Each read measures the methylation state of one or more loci from a single DNA

fragment. We denote by Ri the set of all mapped reads containing the ith locus. The

number of reads containing the ith locus is referred to as the sequencing depth at the ith

locus, which we denote by di “ |Ri|, where di ď Hi with strict inequality for almost all i.

A single read containing the ith locus is denoted z : z P Ri and the observed methylation

state is indicated by:

z : z P Ri “

$

&

%

1 if methylated at the ith locus

0 if unmethylated at the ith locus

By summing over the reads containing the ith locus we obtain the number of reads that

are methylated at the ith locus (mi) and unmethylated at the ith locus (ui):
2We should also check that the overlapping bases agree and, if not, either use the call with the highest

base quality or ignore these overlapping positions in both reads. methtuple has several options for handling
overlapping mates of paired-end reads via the --overlap-filter flag. The default method is to ignore any
read-positions in the overlapping region where the methylation calls disagree.
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mi “

di
ÿ

r“1
zr,i

“ |tz : z P Ri, z “ 1u|

ui “
di
ÿ

r“1
p1´ zr,iq

“ |tz : z P Ri, z “ 0u

From these we can compute the proportion of reads that are methylated at the ith

locus as:

βi “
mi

di

Here we have assumed that di “ mi ` ui, meaning that reads that do not have a

methylation locus mapped to posi do not contribute3.

This is the so-called β-value, which is commonly interpreted as an estimate of Bi, the

proportion of cells in the sample that are methylated at the ith locus. In Section 4.3.2 we

discuss this interpretation and other estimators of the ‘methylation level’ at a locus.

These definitions can also be extended from 1-tuples to m-tuples. The set of all

reads containing the m-tuple pi, i ` 1, . . . , i `m ´ 1q is denoted by Rpi,i`1,...,i`m´1q and

has sequencing depth dpi,i`1,...,i`m´1q “ |Rpi,i`1,...,i`m´1q|. A single read containing the

m-tuple pi, i ` 1, . . . , i `m ´ 1q is denoted by z : z P Rpi,i`1,...,i`m´1q, and the observed

methylation state is given by:
3Such reads can occur due to sequencing error, mapping error or genetically heterozygous methylation

loci.
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z : z P Rpi,i`1,...,i`m´1q “
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%

p0, 0, . . . , 0q if unmethylated at the
´

ith, pi` 1qth, . . . , pi`m´ 1qth
¯

locus

p0, 0, . . . , 1q if unmethylated at the
´

ith, pi` 1qth, . . . , pi`m´ 2qth
¯

locus

and methlyated at the pi`m´ 1qth locus
...

p1, 1, . . . , 1q if methylated at the
´

ith, pi` 1qth, . . . , pi`m´ 1qth
¯

locus

Note that we do not know from which DNA fragment (h) each read came from, only

that all methylation loci in the read came from the same DNA fragment.

By summing over the reads containing the m-tuple, pi, i` 1, . . . , i`m´ 1q, we obtain

the number of reads containing each methylation pattern at that m-tuple. Here are the

definitions for m “ 2:

mmpi,i`1q “ |tz : z P Rpi,i`1q, z “ p1, 1qu|

mupi,i`1q “ |tz : z P Rpi,i`1q, z “ p1, 0qu|

umpi,i`1q “ |tz : z P Rpi,i`1q, z “ p0, 1qu|

uupi,i`1q “ |tz : z P Rpi,i`1q, z “ p0, 0qu|

As we did for B-values, we can extend the β values to m-tuples. Here are the definitions

for m “ 2:
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βmmpi,i`1q “
mmpi,i`1q
dpi,i`1q

βmupi,i`1q “
mupi,i`1q
dpi,i`1q

βumpi,i`1q “
umpi,i`1q
dpi,i`1q

βuupi,i`1q “
uupi,i`1q
dpi,i`1q

The definitions for m ą 2 follow in the obvious manner.

One final definition is the average methylation level of each read, which is used by

Landan et al. [2012]. For each read, z P Rpi,i`1,...,i`m´1q, the average methylation of the

read, ζz, is defined as the proportion of methylation loci in the read that are methylated.

Thus, ζz “ 0, 1
m ,

2
m , . . . , 1.

4.1.3 Some complications

We now discuss some complications and how this framework might accommodate these

issues in practice.

What is I?

As mentioned in Chapter 2, studies using bisulfite-conversion assays rely on either a reference

genome or, less commonly, separate DNA sequencing of the sample that is assayed. Different

analysis strategies lead to different definitions of I, which are approximations to the ‘true’

set of methylation loci in the sample, Itruth. Listed here are definitions of I from least

closely matching to most closely matching Itruth:

1. Iref : Defined by the set of methylation loci in the reference genome. This ignore all

genetic variation between the sample and the reference.

2. IrefF ilter: Defined by filtering out problematic loci from Iref . A conservative

approach that removes many sites of genetic variation between the sample and the

reference as well as sites that do not display genetic variation between the sample
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and the reference. This approach cannot identify sample-specific methylation loci.

3. IBis´SNP : Defined by calling genetic variants from the bisulfite-sequencing data

using Bis-SNP [Liu et al. 2012]. Identifies sample-specific methylation loci and

removes reference-specific methylation loci. This is the best approach if only bisulfite-

sequencing data are available.

4. IWGS : Defined by identifying all methylation loci from whole-genome sequencing

(WGS) of the sample’s genome. The gold standard. All methylation loci are defined

with respect to the sample’s genome. The only differences between IWGS and Itruth

are due to sequencing errors, incomplete sequencing coverage of the sample’s genome

and variant calling errors.

Genetic heterozygosity at a methylation locus

The genome of a diploid organism has sites that are genetically heterozygous due to

differences between the maternal and paternal chromosomes. Such heterozygous loci are

sometimes also methylation loci; for example, a locus where the maternal chromosome

is a CpG and the paternal chromosome is an ApG. In effect, the maternal and paternal

chromosomes within the sample have different Itruth.

The number of these genetically heterozygous methylation loci is often small enough

not to worry about. However, in some studies, such as those of allele-specific methylation,

these loci can be very important and should first be identified by calling heterozygous

genetic variants using Bis-SNP or from whole-genome sequencing of the sample. In practice,

the existence of such loci is often ignored.

4.2 Multiple samples

From a purely notational perspective, the move from a single sample to multiple samples

simply requires an additional subscript, j “ 1, . . . , Nsamples, where Nsamples is the number

of samples. This defines the three levels in the hierarchy of a typical experiment: DNA

fragments (h), methylation loci (i) and samples (j). For example, Zh,i,j is the methylation

state on the hth DNA fragment at the ith methylation locus in the jth sample and βi,j is

the β-value for the ith locus in the jth sample.
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A fourth level is how the samples relate to one another, such as the treatment group of

each sample. This fourth level might be defined up-front, such as in a designed experiment

looking for differences in methylation between tumour and normal tissue. Alternatively, the

aim of the experiment might be to discover this grouping, such as in a clustering analysis.

We can define this fourth level using a design matrix X “ rXjs. For example, in a

two-group experiment Xj “ 1 if the sample is from group 1 and Xj “ 0 if the sample is

from group 2. We may also include covariates in the standard way by allowing Xj to be a

row vector, Xj “ px1,j , . . . , xP,jq, where xp,j encodes the information on the pth covariate

for the jth sample.

4.2.1 Some complications

In addition to the complications of the Section 4.1.3, we now have sample-to-sample

variation that must be addressed within this framework.

What is I?

Each sample has its own set of methylation loci, that is, Ij differs across j. Furthermore,

sequencing coverage varies from sample-to-sample. This means that even if the samples

have exactly the same Ij , i.e. the samples are genetically identical, each sample will have a

different set of loci with ‘sufficient’ sequencing coverage. Loci without sufficient sequencing

coverage are effectively missing data.

In practice, we might choose to study Icommon “
Ş

j Ij or some other suitably defined

intersection of the Ij , such as all methylation loci present in at least some fraction of the

Nsamples samples.

A conservative analysis might only analyse those loci where at least some fraction of

the samples have sufficient sequencing coverage. A less conservative analysis might try to

impute the missing values based on methylation levels at neighbouring loci.
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4.3 Parameter estimation

In this section we review various methods for estimating these key parameters. The main

parameter of interest for each sample is the vector of methylation levels for each locus,

Bj “ pB1,j , . . . , BNloci,jq. When necessary, I have ‘translated’ the original work into my

notation to make these methods more readily comparable. I have suppressed j subscript

when referring to a single sample.

4.3.1 Estimating M , U

It is rare to need direct estimates of Mi or Ui. In order to estimate Mi and Ui, the absolute

number of methylated and unmethylated DNA fragments at the ith locus, we would also

require an estimate of the number of DNA fragments containing the ith locus, Hi. Rather,

we are generally interested in estimating the proportion of reads that are methylated,

Bi “
Mi

Mi`Ui
, which does not require an estimate of Hi.

4.3.2 Estimating B

The simplest estimator of Bi is βi “ mi
di
, which has been widely used [e.g., Cokus et al.

2008, Lister et al. 2008, 2009, 2011]). The values of mi and ui are obtained by methylation

calling and then counting the number of reads with each methylation state (see Section

2.3).

βi is the maximum likelihood estimator of Bi under a (conditional) binomial model for

the number of methylated reads at the ith locus, Mi,j |di,j
d
“Binomialpdi,j , Bi,jq.

More sophisticated methods have recently been proposed to estimate or model the

average methylation level. These methods, which are still based on mi,j and ui,j , include

beta-binomial models [Feng et al. 2014, Sun et al. 2014, Dolzhenko and Smith 2014], and

smoothing-methods [Hansen et al. 2011, 2012, Hebestreit et al. 2013].

Beta-binomial models

Several papers have proposed the beta-binomial distribution since, as noted by Dolzhenko

and Smith [2014], it is “a natural model for describing methylation levels of an individual
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site across replicates” . The ‘beta’ component of the distribution models the underlying

methylation level, Bi,j , while the ‘binomial’ component models the sampling of reads by

sequencing. Another way to think of this is that the ‘beta’ component models the biological

variability of the data, while the ‘binomial’ component models the sampling variability of

sequencing. This separation of biological and technical variability has proven successful in

detecting differential gene expression from RNA-seq data. For example, the edgeR software

[Robinson et al. 2010] uses the negative binomial distribution, which can be thought of as

a gamma-Poisson mixture distribution, to account for both the biological and sampling

variability.

An attractive feature of the beta-binomial distribution is that it can be motivated by,

and analysed with, Bayesian methods, including empirical Bayes methods, or frequentist

techniques such as maximum likelihood. For example, the software DSS [Feng et al. 2014]

and MOABS [Sun et al. 2014] both use the beta-binomial distribution in an empirical Bayes

analysis of differential methylation from bisulfite-sequencing data. In contrast, RADmeth

[Dolzhenko and Smith 2014] uses the beta-binomial model in a maximum likelihood

framework to address the same problem.

Smoothing β-values

BSmooth, published in Hansen et al. [2011, 2012] and available in the R/Bioconductor

package bsseq, and BiSeq, published in Hebestreit et al. [2013] and available in the

R/Bioconductor package BiSeq, take a different approach to getting improved estimates

of the Bi,j . Both bsseq and BiSeq use statistical smoothing of the ‘raw’ βi,j “ mi,j
di,j

.

Smoothing is motivated and justified by the fact that the Bi,j are spatially correlated

within a sample. This phenomenon, called co-methylation is discussed and analysed in

Chapters 6 and 7.

Smoothing is particularly powerful for loci with low sequencing coverage, where the

denominator mi,j ` ui,j is small and the corresponding standard error of βi,j is large. The

smoothed β-values, rather than the raw β-values, are then generally used in all downstream

analyses.

Both bsseq and BiSeq use a binomial local likelihood smoother. In each case this
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smoother is chosen because BSmooth and BiSeq model the number of methylated reads at

the ith locus in the jth sample by Mi,j |di,j
d
“Binomialpdi,j , Bi,jq. The smoothing is ‘local’

to leverage co-methylation, which is considered a local phenomenon.

In both bsseq and BiSeq the raw β-values are weighted according to the binomial

likelihood and a kernel function. The binomial likelihood weights βi inversely to their

standard error, sepβiq, and the kernel gives greater weight to those βi near the centre of

the window. Lacey et al. [2013] note that loci with very high sequencing coverage will

strongly influence the smoother, potentially biasing estimates at neighbouring loci with

lower coverage.

bsseq assumes that for each sample that the underlying methylation level, Bi,j , is a

smoothly varying function of the position in the genome, i. In contrast, BiSeq first creates

clusters of CpGs and only assumes that the underlying methylation level is smooth at

positions within each cluster.

Whenever smoothing is used, a key parameter is the bandwidth, which is the size of

the window in which observations are included at each iteration of the smoother. bsseq

uses a much larger window size than BiSeq; the default window size in bsseq is one that

contains at least 70 CpGs and is at least 2000kb wide, whereas the default window size

in BiSeq is 80bp, regardless of CpG-density. This is due to BiSeq being developed for

RRBS data, which has a high CpG-density per window, whereas bsseq was developed for

whole-genome data, which has a more variable, and lower on average, CpG density per

window.

Another ‘parameter’ choice when smoothing is the choice of kernel, although this is

generally less important than the choice of bandwidth. bsseq uses a tricube kernel and

BiSeq uses a triangular kernel.

Hebestreit et al. [2013] and Lacey et al. [2013] compare the smoothing results of BiSeq

to bsseq. Both Hebestreit et al. [2013] and Lacey et al. [2013] provide instances where

they claim BiSeq gives more ‘reasonable’ smoothed values than bsseq. However, these

comparison studies use RRBS data, which bsseq is not designed for‘, and their simulation

so will favour methods designed for RRBS data4.
4Both Hebestreit et al. [2013] and Lacey et al. [2013] altered the default bsseq parameters to try to

make them comparable to BiSeq. Hebestreit et al. [2013] changed the default minimum window size to 80
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4.4 Statistical properties of β-values

Under the (conditional) binomial model, Mi,j |di,j
d
“Binomialpdi,j , Bi,jq, βi,j “ mi,j

di,j
is an

unbiased estimator of Bi,j with standard error sepβi,jq “
b

βi,jp1´βi,jq
di,j

[Hansen et al. 2012].

The natural interpretation of βi,j is then as an estimator of the average level of methylation

at the ith locus in the jth sample. In this section I discuss this interpretation and statistical

properties of this estimator.

4.4.1 Empirical distributions of β-values

In a study involving multiple samples, the set of β-values can be summarised as a matrix

where each row is a locus and each column is a sample. Some values will be missing, either

because there was insufficient sequencing coverage to estimate a β-value or because that

locus is not a cytosine for the sample in question. This matrix might be visualised to learn

about the distribution of methylation levels, either row-wise (to learn about the variability

across samples) or column-wise (to learn about the variability within samples).

Genome-wide distribution of β-values

Restricting our attention to CpGs, Figures 4.2, 4.3, 4.4 and 4.5 show the kernel density

estimates of the genome-wide distributions of β-values, that is, the column-wise summaries,

for each sample of the EPISCOPE, Lister, Seisenberger and Ziller datasets, respectively.

Figures 4.6, 4.7, 4.8 and 4.9 show the same data but with the β-values grouped into

0.01-width bins and plotted against the percentages of CpGs that fall into each bin.

What is immediately clear is that these distributions are bimodal: most CpGs are highly

methylated or lowly methylated. The exception is the E16.5_male_1 sample from the

Seisenberger data which is hypomethylated and with an enormous number of intermediately

methylated CpGs. The E16.5_male_1 sample is a progenitor germ cells from a pool of

embryonic day 16.5 male mice. Between days E6.5 and E13.5, the mouse progenitor germ

cells undergo global demethylation and it is only from day E16.5 onwards that they begin

bp but still required at least 20 CpGs per window. Lacey et al. [2013] kept the default minimum window
size of 2, 000 bp but reduced the minimum number of CpGs per window to 50 from the default of 70.
Nevertheless, the fact remains that bsseq is designed for analysing whole-genome bisulfite-sequencing data
and not RRBS, which puts it at a disadvantage in these comparisons.
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to be de novo methylated [Seisenberger et al. 2012], hence the wide variation in β-values.

Almost all the samples with significant intermediate methylation are either somatic

cell lines (ADS, ADS-adipose, FF, IMR90_r1 and IMR90_r2 from the Lister dataset;

IMR90_cell_line from the Ziller dataset) or cancer cells lines and tissue (HepG2_cell_line,

Colon_Tumor_Primary and Colon_Primary_Normal from the Ziller dataset). Aside from

the aforementioned E16.5_male_1, the E6.5_epiblast_1 sample from the Seisenberger

dataset also displays greater levels of intermediate methylation. This sample was also

created by pooling DNA from multiple mice, which may explain the extra variability in

the β-value distribution.

It has previously been observed that cancer samples have highly variable DNA methy-

lation [Hansen et al. 2011], which, combined with the possibility of multiple sub-clones,

explains these intermediate β-values in the cancer samples.

The explanation for the somatic cell lines is less clear. Notably, all of the 12 EPISCOPE

samples, which are tissue samples rather than cell lines, have relatively low levels of

intermediate methylation. Likewise, the various frontal cortex samples in the Ziller

dataset, which includes both ‘normal’ and Alzheimer’s samples (Frontal_cortex_normal_1,

Frontal_cortex_normal_2, Frontal_cortex_AD_1 and Frontal_cortex_AD_2 ), have very

low levels of intermediate methylation. This raises the question as to whether the widespread

partial methylation observed in the somatic samples from the Lister dataset is in fact a

feature of somatic cell lines rather than somatic cells per se. Naively, a cell line is a ‘pure’

cell population, however, the DNA methylation data clearly reveal widespread cellular

heterogeneity of DNA methylation.
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EPISCOPE: Distribution of β−values (min. coverage = 10 )

Figure 4.2: Kernel density estimates of the genome-wide distribution of CpG β-values
for the EPISCOPE data. Densities are normalised so that the maximum value for each
sample is 1. Observations have been combined across strands and only CpGs with at least
10ˆ sequencing coverage are included. ‘Spikes’ in the density estimate are due to the
discreteness of β-values.
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Lister: Distribution of β−values (min. coverage = 10 )

Figure 4.3: Kernel density estimates of the genome-wide distribution of CpG β-values for
the Lister data. Densities are normalised so that the maximum value for each sample
is 1. Observations have been combined across strands and only CpGs with at least 10ˆ
sequencing coverage are included. ‘Spikes’ in the density estimate are due to the discreteness
of β-values.
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Seisenberger: Distribution of β−values (min. coverage = 10 )

Figure 4.4: Kernel density estimates of the genome-wide distribution of CpG β-values
for the Seisenberger data. Densities are normalised so that the maximum value for each
sample is 1. Observations have been combined across strands and only CpGs with at least
10ˆ sequencing coverage are included. ‘Spikes’ in the density estimate are due to the
discreteness of β-values.
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Figure 4.5: Kernel density estimates of the genome-wide distribution of CpG β-values
for the Ziller data. Densities are normalised so that the maximum value for each sample
is 1. Observations have been combined across strands and only CpGs with at least 10ˆ
sequencing coverage are included. ‘Spikes’ in the density estimate are due to the discreteness
of β-values.

E13BUF E13SA E13VA E13VAT

E18BUF E18SA E18VA E18VAT

E23BUF E23SA E23VA E23VAT

0

10

20

30

0

10

20

30

0

10

20

30

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

β−values (binwidth = 0.01)

P
er

ce
nt

ag
e 

of
 C

pG
s

EPISCOPE: Distribution of β−values (min. coverage = 10 )

Figure 4.6: Frequency polygon of the genome-wide distribution of CpG β-values for the
EPISCOPE data. β-values are grouped into 0.01-width bins and the percentage of CpGs
in each bin is plotted on the y-axis. Observations have been combined across strands and
only CpGs with at least 10ˆ sequencing coverage are included.
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Figure 4.7: Frequency polygon of the genome-wide distribution of CpG β-values for the
Lister data. β-values are grouped into 0.01-width bins and the percentage of CpGs in each
bin is plotted on the y-axis. Observations have been combined across strands and only
CpGs with at least 10ˆ sequencing coverage are included.
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Figure 4.8: Frequency polygon of the genome-wide distribution of CpG β-values for the
Seisenberger data. β-values are grouped into 0.01-width bins and the percentage of CpGs
in each bin is plotted on the y-axis. Observations have been combined across strands and
only CpGs with at least 10ˆ sequencing coverage are included.
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Figure 4.9: Frequency polygon of the genome-wide distribution of CpG β-values for the
Ziller data. β-values are grouped into 0.01-width bins and the percentage of CpGs in each
bin is plotted on the y-axis. Observations have been combined across strands and only
CpGs with at least 10ˆ sequencing coverage are included.
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The bimodality of the genome-wide β-value distributions is driven by the fact that

most CpGs in CpG islands are unmethylated whereas those outside of the CpG islands

are mostly methylated. Figures 4.10, 4.11, 4.12 and 4.13 show the kernel density plots

of the β-value distributions stratified by CpG island status for the EPISCOPE, Lister,

Seisenberger and Ziller datasets, respectively. These distributions are normalised so that

each density has a maximum value of 1.

These plots show that CpG islands have a more strictly bimodal distribution than do

the non-islands. While the majority of CpGs in CpG islands are unmethylated, there are a

subset of methylated CpGs in CpG islands in each sample (except for the E16.5_male_1

sample). The H1_r1 and H1_r2 samples, replicates of an embryonic stem cell line, stand

out for having CpGs in CpG islands being more methylated than unmethylated. These

plots also show that most of the intermediate methylation occurs outside of the CpG

islands.

Because these densities are normalised, these plots don’t show the proportion of CpGs

in CpG islands. Therefore, Figures 4.14, 4.15, 4.16 and 4.17 show the same data but with

β-values grouped into 0.01-width bins and plotted against the percentage of total CpGs in

each bin. These plots highlight that the majority of unmethylated CpGs occur in CpG

islands and that most of the intermediate methylation occurs outside of CpG islands, owing

to most CpGs being outside a CpG island.
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Figure 4.10: Kernel density estimates of the genome-wide distribution of CpG β-values for
the EPISCOPE data, stratified by whether the CpG is in a CpG island. Only CpGs with
at least 10ˆ sequencing coverage are included. ‘Spikes’ in the density estimate are due to
the discreteness of β-values.
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Figure 4.11: Kernel density estimates of the genome-wide distribution of CpG β-values for
the Lister data, stratified by whether the CpG is in a CpG island. Only CpGs with at
least 10ˆ sequencing coverage are included. ‘Spikes’ in the density estimate are due to the
discreteness of β-values.
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Figure 4.12: Kernel density estimates of the genome-wide distribution of CpG β-values for
the Seisenberger data, stratified by whether the CpG is in a CpG island. Only CpGs with
at least 10ˆ sequencing coverage are included. ‘Spikes’ in the density estimate are due to
the discreteness of β-values.
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Figure 4.13: Kernel density estimates of the genome-wide distribution of CpG β-values
for the Ziller data, stratified by whether the CpG is in a CpG island. Only CpGs with at
least 10ˆ sequencing coverage are included. ‘Spikes’ in the density estimate are due to the
discreteness of β-values.
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Figure 4.14: Frequency polygon of the genome-wide distribution of CpG β-values for the
EPISCOPE data, stratified by whether the CpG is in a CpG island. β-values are grouped
into 0.01-width bins and the percentage of CpGs in each bin is plotted on the y-axis. Only
CpGs with at least 10ˆ sequencing coverage are included. Percentages are with respect to
all CpGs with at least 10ˆ sequencing coverage, unstratified by CpG island status.
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Figure 4.15: Frequency polygon of the genome-wide distribution of CpG β-values for the
Lister data, stratified by whether the CpG is in a CpG island. β-values are grouped into
0.01-width bins and the percentage of CpGs in each bin is plotted on the y-axis. Only
CpGs with at least 10ˆ sequencing coverage are included. Percentages are with respect to
all CpGs with at least 10ˆ sequencing coverage, unstratified by CpG island status.
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Figure 4.16: Frequency polygon of the genome-wide distribution of CpG β-values for the
Seisenberger data, stratified by whether the CpG is in a CpG island. β-values are grouped
into 0.01-width bins and the percentage of CpGs in each bin is plotted on the y-axis. Only
CpGs with at least 10ˆ sequencing coverage are included. Percentages are with respect to
all CpGs with at least 10ˆ sequencing coverage, unstratified by CpG island status.
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Figure 4.17: Frequency polygon of the genome-wide distribution of CpG β-values for the
Ziller data, stratified by whether the CpG is in a CpG island. β-values are grouped into
0.01-width bins and the percentage of CpGs in each bin is plotted on the y-axis. Only
CpGs with at least 10ˆ sequencing coverage are included. Percentages are with respect to
all CpGs with at least 10ˆ sequencing coverage, unstratified by CpG island status.
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Strand-specific β-values

CpG β-values are often computed by aggregating the m and u counts across the forward

and reverse strands. On average, this doubles the sequencing coverage of each CpG but

presupposes that the two strands are indeed symmetrically methylated. To investigate

the validity of this assumption we can compute the correlation of strand-specific β-values.

Figures 4.18, 4.19, 4.20 and 4.21 report the Pearson correlation of these strand-specific

β-values for varying sequencing coverage cutoffs.
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Figure 4.18: Correlations of β-values across strands for the EPISCOPE dataset using
different minimum sequencing coverage cutoffs.

There is a considerable amount of noise in the estimates of β-values when using low

sequencing coverage, as can be seen from the smaller strand-correlations at these lower

cutoffs. Once we require a minimum sequencing coverage of 5ˆ, we see that most samples

have a very high correlation of β-values across strands, r “ 0.8 to 0.9, with some notable

exceptions.

Some of the embryonic stem cell samples (H1_r1, H1_r2 and HSF1 from the Lister

dataset) have less correlated strand-specific β-values, r “ 0.5 to 0.7. The other embryonic

stem cell samples have higher correlations of β-values across strands, although the esti-

mates are quite different between the two replicates of the same cell line (H9 : r “ 0.77,
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Figure 4.19: Correlations of β-values across strands for the Lister dataset using different
minimum sequencing coverage cutoffs.
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Figure 4.20: Correlations of β-values across strands for the Seisenberger dataset using
different minimum sequencing coverage cutoffs.

H9_Laurent: r “ 0.92). This suggests that caution may be warranted in combining CpG

methylation levels across strands for embryonic stem cell samples.
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Figure 4.21: Correlations of β-values across strands for the Ziller dataset using different
minimum sequencing coverage cutoffs.

All three Seisenberger samples have noticeably less correlated strand-specific β-values,

including the embryonic stem cell, J1_1. However, since these data are from pooled DNA,

the source of this reduced correlation is difficult to identify.

Overall, with the exception of embryonic stem cells, it seems that most samples have

highly correlated strand-specific CpG β-values, which means that these data can safely be

combined across strands. However, it remains a good idea to first check this assumption

prior to combining data across strands.

4.4.2 Interpretation of β-values

Laird [2003] says in a review paper on DNA methylation that, “about 70% of the CpG

dinucleotides in the mammalian genome are methylated”. Similar statements are made in

many papers about DNA methylation, but how should these be interpreted?

In the context of a whole-genome bisulfite-sequencing experiment, this can be interpreted

as the expected β-value of a randomly selected CpG. However, as can be seen from Figures

4.6, 4.7, 4.8 and 4.9, the bimodality of the β-value distributions means that the expected

value is not a particularly useful estimate of the methylation level of a particular CpG. To
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make a useful statement about the methylation level of a particular CpG really requires

more information, such as whether it is within a CpG island.

The “70%” statement can also be interpreted as an estimate of the probability that a

cytosine randomly sampled from a haploid copy of a mammalian genome is a methylcytosine.

Note that this refers to individual cytosines, Zh,i, and not the genomic position of the locus,

posi. Also recall that most assays measure DNA methylation from a pool of cells, not a

single haploid copy of the genome. The methylation state at the ith locus may vary across

the Hi DNA fragments. Therefore, I do not think it makes sense to describe a locus, i, as

being a ‘methylcytosine’. However, several important whole-genome bisulfite-sequencing

papers, Lister et al. [2008, 2009, 2011]5, have used this latter definition, which I believe to

be an unnecessary source of confusion.

Lister et al. introduced a method “to identify the presence of a methylated cytosine”

[Lister et al. 2008, Supplementary Material]. In the language of these papers, a “methylcy-

tosine” is a cytosine in the reference genome where “at least s [sic; I believe this should

be “a”] subset of the genomes within the sample were methylated” [Lister et al. 2009,

Supplementary Material]. This amounts to testing the hypothesis H0 : βi,j “ 0 against the

one-sided alternative H1 : βi,j ą 0. This can be thought of as testing the null hypothesis

that the observed number of methylated reads at the ith cytosine were simply due to ‘error’,

where the ‘error’ is a combination of the estimated sequencing error and the estimated

bisulfite-converstion error.

Although the exact procedure is not particularly well described in any of Lister et al.

[2008, 2009, 2011], nor is any code made available, I believe the method is as follows6. For

each cytosine they compute the probability of observing more than mi methylated reads by

chance, Pi “
řk“di
k“mi`1 PrpX “ kq, where X “ Binompdi, εq and ε is the estimated ‘error’.

Any site with an FDR-adjusted P-value below a threshold was declared a “methylcytosine”7

5It is worth noting that this concept was not used in more recent paper from the same group [Lister
et al. 2013].

6The earliest of these papers, Lister et al. [2008], includes a short non-mathematical description, while
the most detailed description is given in the supplementary material of Lister et al. [2009]. Lister et al.
[2011] simply refers to Lister et al. [2009]

7Lister et al. [2008] used an FDR-adjusted P-value cutoff of 0.05; Lister et al. [2009] used an FDR-
adjusted P-value cutoff of 0.01. I presume the FDR-adjustment to be based on the Benjamini-Hochberg
procedure [Benjamini and Hochberg 1995], although this is not explicitly stated. This procedure was
performed separately for each methylation context in Lister et al. [2009], but it is not clear if this is the case
for Lister et al. [2008] (a study of Arabidopsis thaliani, which has large amounts of non-CG methylation)
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The ε are estimated on a per-sample basis, with bisulfite-conversion error rates estimated

from the unmethylated chloroplast genome [Lister et al. 2008] or from the genome of the

lambda phage spike-in control [Lister et al. 2009, 2011]. It is not clear how the sequencing

error rates were estimated, particularly since the base qualities are not included in the

data available from the website.

The proportion of cytosines that are identified by this procedure as “methylcytosines”

is a poor estimator of the probability that a cytosine randomly sampled from a haploid

genome is methylated, unless the sample is incredibly homogeneous. For example, suppose

we had a sample where the true methylation level of every CpG, Bi, was 0.2. Given sufficient

sequencing coverage, every CpG in the genome would be declared a “methylcytosine” when

in fact for any haploid copy of the genome only 20% of CpGs would be expected to be

methylcytosines.

Furthermore, referring to CpGs as “methylcytosines” results in a loss of information

since two “methylcytosines” may have very different β-values. For example, in Lister et al.

[Supplementary Figure 2a of 2009] the authors use a Venn diagram to compare the number

of “methylcytosines” called in two biological replicates to summarise the concordance

between the two biological replicates. A far better summary of the biological replicability

is to plot the β-values from each replicate against one another as a scatter plot, as this

includes the magnitude of the β-values and not just whether they are statistically different

from zero.

In summary, for bisulfite-sequencing experiments where the DNA for each sample comes

from multiple cells I do not think it makes sense, nor is it useful, to refer to individual

cytosines, i, as being methylated or unmethylated. Instead, it is better to summarise the

methylation level at a CpG by a β-value since this has a natural interpretation as the

estimated proportion of haploid genomes in the sample that are methylated at that CpG.

Unfortunately, β-values are not without their own issues, as discussed in Section 4.4.3.

or Lister et al. [2011] (a study that includes pluripotent human cell lines that have non-negligible levels
of non-CG methylation). This affects the false discovery rate correction since the number of tests is far
greater if all cytosines are simultaneously corrected compared to a separate correction for each context.
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4.4.3 Sources of bias in β-values

The natural interpretation of βi is the average level of methylation at the ith locus. However,

this will be biased if the probability of sequencing a fragment with a methylated site is

different from the probability of sequencing a fragment with an unmethylated site. In

fact, it has been shown that methylated DNA is overrepresented in bisulfite-sequencing

data due, with the problem exacerbated by higher rounds of PCR amplification and

dependent on the bisulfite-conversion protocol [Ji et al. 2014]. PCR amplification can

result in overreprestation of one of the DNA strands in bisulfite-sequencing data [Warnecke

et al. 1997].

Lab-based solutions to overcome these biases exist for targeted bisulfite-sequencing, but

are technically difficult and their cost prohibits their extension to whole-genome bisulfite-

sequencing [Ji et al. 2014]. Computational correction for these biases have been proposed

[Ji et al. 2014], but as yet these have not been implemented in any available software.

4.4.4 Transformations of β-values

β-values are the de facto standard unit for reporting methylation levels due to their natural

interpretation as an estimate of the average level of methylation at the locus. However,

they are not necessarily the best unit for statistical inference. This is because a β-value is

an estimate of a proportion and there are a well-known statistical challenges when working

with proportion data, including:

1. The estimate of the standard error depends on the estimate of the mean (i.e. β),

through sepβq “
b

βp1´βq
d . Taking the derivative of this with respect to β, we see that

the maximum standard error,
b

0.25
d , occurs at β “ 0.5 and the minimum standard

error, 0, occurs at β “ 0, 1.

2. We need to know more than just the β-value to have a sense of how precise an

estimate it is. Essentially, we need to also know the sequencing coverage of the

methylation loci. Consider two CpGs, one with m “ 1, u “ 3 and the other with

m “ 100, u “ 300. Both CpGs have β “ 1{4 but the second CpG is measured

with much greater precision. Assuming the binomial model, the first CpG has

sepβq “

b

1{4ˆ3{4
4 “ 0.22 whereas the second CpG has sepβq “

b

1{4ˆ3{4
400 “ 0.02.
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3. Proportions are bound between 0 and 1, inclusive.

To address (1), proportion data are often transformed via a variance stabilisation

transformation. The aim is to make the variance independent of the mean, at least

approximately. Popular variance stabilisation transformations include:

• The arcsine transformation, arcsinp
b

m`1
m`u`1q [Anscombe 1948]. A small value, in

this case 1, is added to both m and u to avoid β “ 0, 1.

• The “averaged arcsine” transformation, arcsin
b

m
m`u`1 ` arcsin

b

m`1
m`u`1 [Freeman

and Tukey 1950]. One problem with this transformation is that it does not have a

unique inverse [Nunes and Nason 2009].

However, the use of variance stabilising transformations for proportion data has fallen

out of favour with the widespread availability of generalised linear model software, in

particular for the logistic regression model [Warton and Hui 2011].

One transformation that remains popular, at least in the analysis of DNA methylation

microarray data, is the logit-transformation, also known as M-values. An M-value is

defined as logit2pβq “ log2

´

β
1´β

¯

“ log2

´

m`α
u`α

¯

, where here m and u are the intensities

from the methylated and unmethylated probes, respectively, and α is an offset to avoid

a numerator or denominator that is zero. M-values are also known as log-ratios and are

widely used in the analysis of RNA expression two-colour microarrays [e.g., Smyth 2005].

Du et al. [2010] advocate for the use of M-values for conducting differential methylation

analysis from microarray data8. The main reason they advocate for the use of M-values is

that they are approximately homoscedastic, i.e. their variances are approximately constant

across the full range of M-values. As already noted, the logit-transformation is not

the only possible variance-stabilising transformation, but the familiarity of log-ratios to

bioinformaticians and genomics researchers makes it a favourable choice. As with β-values,

the M-values derived from bisulfite-sequencing data cannot generally be directly analysed

due to the variable sequencing coverage across loci.
8Du et al. [2010] also recommend that the results of analyses are reported as β-values owing to their

“more intuitive biological interpretation”.
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4.4.5 Spatial correlations of β-values

Many researchers have observed that DNA methylation is spatially correlated along the

genome, [e.g., Eckhardt et al. 2006, Cokus et al. 2008, Li et al. 2010, Hansen et al. 2011,

Hebestreit et al. 2013, Wang et al. 2011, Pedersen et al. 2012, Lacey et al. 2013, Sofer et al.

2013, Liu et al. 2014, Lyko et al. 2010, Landan et al. 2012, Lister et al. 2009]. I call this

spatial correlation of methylation levels co-methylation.

I examine in detail the spatial correlations of β-values in Chapters 6 and 7.

4.5 Summary

This chapter has defined a mathematical framework for describing data from whole-genome

bisulfite-sequencing data. It has addressed some subtleties and complications that arise due

to within-sample and between-sample differences in where DNA methylation is measured.

By using a common statistical framework we can better understand how different statistical

methods relate to one another. Using this framework, we described common estimators

of DNA methylation levels and some of their statistical properties. We then examined

the empirical distributions of these variables across a diverse set of 40 whole-genome

bisulfite-sequencing samples.

From these analyses we have seen that the CpG islands drive the strong bimodal

distribution of β-values that is observed in almost all samples. We have also observed

that most intermediate methylation occurs outside of the CpG islands. The most distinct

methylomes are the hypermethylated embryonic stem cells (H1_r1 and H1_r2 ) and

the hypomethylated cancer cell lines (HepG2_cell_line). The Seisenberger samples also

stand out, particularly the hypervariable progenitor germ cells (E16.5_male_1 ). The

genome-level results for the Seisenberger samples are more difficult to interpret, however,

since they are from pooled DNA. Nonetheless, some of the increased variability in the

Seisenberger data will also reflect that these samples are from developmental timepoints

during which DNA methylation is very dynamic.

In contrast, the somatic samples, particularly those from tissue samples rather than

cell lines, have very ‘well-behaved’ β-value distributions that are globally similar between
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samples. The may reflect that the DNA methylome is well-established in these samples and

relatively static. The increased level of partial methylation in somatic cell lines compared

to somatic tissue samples may be attributable to the development of sub-clones during

the culturing of the sample. This is consistent with the high epipolymorphism observed in

a study that tracked the dynamics of DNA methylation in an in vitro evolutionary cell

culture system [Landan et al. 2012]. Somatic samples also have very highly correlated CpG

β-values across strands, meaning that these data can generally be combined across strands

to increase the sequencing coverage of each CpG.

Induced pluripotent stem cell lines also appear to have a quite strictly regulated

methylome, with little intermediate methylation. This is likely a consequence of the fact

that during the induction of pluripotency, the methylome of the sample is ‘reset’ [Lister

et al. 2011, Stricker et al. 2013] thereby resulting in a homogeneous population of cells.

These samples also have highly correlated strand-specific β-values, meaning that these data

can generally be combined across strands to increase the sequencing coverage of each CpG.

All of the above highlights the considerable variability of DNA methylation data, both

between samples and within a sample, and the care with which β-values must be interpreted.

While an attractively simple measure, analyses based on β-values are based on the ‘average’

behaviour, where the averaging is over many sources of variation. Analyses based on

β-values also do not make full use of the information available in bisulfite-sequencing data,

as we shall see in Chapter 5.
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Chapter 5

Downstream analyses of

whole-genome bisulfite-sequencing

data

Overview

This chapter discusses methods for the downstream analysis of bisulfite-sequencing data.

Downstream analyses proceed the processing of the raw data (Chapter 2) to address the

scientific questions of interest. Most downstream analyses are based on methylation counts

at 1-tuples, however, there is growing interest in analyses based on methylation patterns at

m-tuples. I discuss the statistical questions underlying these downstream analyses, paying

particular attention to those based on m-tuples (m ą 1) since these have received less

attention in the literature.

A barrier to analyses based on m-tuples has been a lack of software. To help eliminate

this barrier, I develop MethylationTuples, an R package for managing, analysing and vi-

sualising methylation patterns at m-tuples. MethylationTuples complements methtuple

(Chapter 2) by providing a framework for the manipulation and analysis of methylation pat-

terns at m-tuples. I describe methods available in MethylationTuples for the downstream

analysis of whole-genome bisulfite-sequencing data.
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5.1 Methods based on 1-tuples

The majority of downstream analysis methods use methylation patterns at 1-tuples, i.e.

m “ pm1, . . . ,mi, . . . ,mNlociq and u “ pu1, . . . , ui, . . . , uNlociq
1. Methods based on 1-

tuples have been developed to address a variety of scientific questions including testing

for differential methylation (Section 5.1.1), testing for differentially variable methylation

(Section 5.1.4) and identifying regulatory regions of the genome (Section 5.1.5).

5.1.1 Differential methylation

By far the most common analysis of bisulfite-sequencing data is to identify differentially

methylated cytosines (DMCs) and differentially methylated regions (DMRs). Consequently,

there has been a flurry of methods proposed for identifying differential methylation [e.g.,

Akalin et al. 2012b, Chen et al. 2014a,b, Dolzhenko and Smith 2014, Gokhman et al. 2014,

Jaffe et al. 2012a, Lacey et al. 2013, Lister et al. 2009, Rijlaarsdam et al. 2014, Sofer et al.

2013, Xie et al. 2014, Feng et al. 2014, Hebestreit et al. 2013, Sun et al. 2014, Park et al.

2014, Hansen et al. 2012]. Robinson et al. [2014] recently reviewed methods for identifying

DMCs and DMRs and so I give but an overview of this important topic.

Experimental design

In any analysis of differential methylation, we want the DMCs and DMRs to be both

biologically and statistically significant; it’s no good if all the differences are simply due to

technical artefacts or random fluctuations. Key to ensuring biological relevance is good

experimental design, such as the use of replicates in each experimental group. A distinction

is often made in the literature between technical replicates and biological replicates. Briefly,

biological replicates are experimental units that all undergo the same treatment and are

used to estimate the within-group variability of the treatment. Technical replicates are

repeated measurements of the same experimental unit, perhaps with slight variations in

the sample preparation, and are used to estimate the variability of the sample preparation

and measurement process.
1It is insufficient to use β “ m

m`u because the conversion to β-values loses information about the
precision with which each methylation locus is measured (i.e. the sequencing depth, d “ m` u).
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The boundary between biological and technical replication is not always clear. For

example, Lister et al. [2009] state that, “For each cell type, two biological replicates were

performed with cells of different passage number [emphasis added]”. I contend that these

are better defined as technical replicates since each replicate came from the same cell line,

underwent passaging under near-identical conditions and differ only by the number of cell

passages in each media2.

Initial experiments with whole-genome bisulfite-sequencing rarely had replicates of any

kind or, if they did, these were pooled prior to analysis (e.g., the analysis of the H1 and

IMR90 cell lines in Lister et al. [2009]). Simply pooling replicates and analysing as if they

were a single sample ignores all variability between replicates and should not be used.

Technical variability is ideally orthogonal to the biological variability, but this rarely

occurs in practice. Indeed, high-throughput sequencing experiments are particularly

susceptible to batch effects, and other sources of unwanted variation, that can swamp the

biological variation of interest [Leek et al. 2010]. This again emphasises the importance

of good experimental design, with randomisation, replication and the use of positive and

negative controls.

5.1.2 Differentially methylated cytosines

A differentially methylated cytosine (DMC) is one where the true methylation level, Bi, is

different between experimental conditions. This is typically framed as a test of the mean

levels of methylation at the locus in each group3. Suppose we have a two-group experiment

and let Bi,jk denote the true methylation level of the ith methylation locus for samples

in the kth group (k “ 0, 1). We wish to test the null hypothesis of H0 : Bi,j0 “ Bi,j1

against the alternative hypothesis H1 : Bi,j0 ‰ Bi,j1 . As such, identifying DMCs boils

down to identifying differences in means, for which there is an enormous body of statistical

literature. This problem can be viewed as a ‘stand-alone’ test, such as a t-test, or framed

as a regression problem to allow for the inclusion of additional covariates.
2In the case of IMR90 cell line, the first replicate, IMR90_r1, underwent 4 cell passages and the second

replicate, IMR90_r2, underwent 5 cell passages. In the case of the H1 cell line, the first replicate, H1_r1,
underwent 25 passages in the first media and 9 passages in the second media, and the second replicate,
H1_r2, underwent 27 passages in the first media and 5 passages in the second media.

3This could alternatively be framed as a test of the median methylation level at the locus in each group
(or of some other location parameter of the distribution of methylation levels).
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Regardless of the statistical test used, all attempts to identify DMCs from whole-genome

bisulfite-sequencing data must pay a large multiple-hypothesis testing penalty. Correcting

for multiple hypothesis testing is standard practice in the analysis of genomics data, but the

number of tests, in this case approximately 25 million, is at least one order of magnitude

greater than what is commonly tested in other genomics experiments4. Various methods

have been used to correct for this multiple testing, as illustrated in Table 5.1.

Table 5.1: Methods proposed for adjusting for the multiple hypothesis testing performed
in an analysis of DMCs. Several papers use describe their analysing as performing a “false
discovery rate adjustment” or “false discovery rate correction” without explicitly stating
what they are doing or citing a reference. One paper uses the Bonferonni correction, leading
to a very conservative analysis since this correction aims to control the family-wise error
rate.
Method Used by
Benjamini and Hochberg
[1995]

Akalin et al. [2012b], Jaffe et al. [2012a], Lacey et al. [2013],
Rijlaarsdam et al. [2014], Sofer et al. [2013]

Wang et al. [2011] Akalin et al. [2012b]
“False discovery rate
correction/adjustment”

Dolzhenko and Smith [2014], Gokhman et al. [2014], Lister
et al. [2009], Xie et al. [2014]

Storey [2007] Jaffe et al. [2012a]
Benjamini and Yekutieli
[2001]

Sofer et al. [2013], Hebestreit et al. [2013]

“Bonferonni adjustment” Feng et al. [2014]

One thing to note, however, is that the effective number of tests is fewer than the

actual number of tests. This is because the methylation levels at neighbouring loci are

correlated (see Chapters 6 and 7), which means that tests of differential methylation are

generally positively correlated, thus reducing the effective number of independent tests.

The classical Benjamini-Hochberg procedure also controls the false discovery rate under

certain forms of positive dependence [Benjamini and Yekutieli 2001].

While there have been reports of DMCs resulting in a phenotypic difference [e.g., Fürst

et al. 2012], DMCs are mostly tested as a prelude to the identification of differentially

methylated regions (DMRs). Moreover, with approximately 25 million CpGs in the human

genome, not to mention the many, many more non-CpG cytosines, it is an optimist who aims

for the reliable detection of DMCs from whole-genome bisulfite-sequencing experiments.
4For example, there are approximately 20,000 tests in studies of differential gene expression and two

million tests in genome-wide association studies.
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This will remain true while sample sizes can be counted on one or two hands and the

average sequencing depth is 10ˆ to 30ˆ.

Several software packages are now available for identifying DMCs. Most are limited

to analysing two-group experiments. Rather than directly analysing the m and u, these

software generally make additional modelling assumptions, such as the beta-binomial model

(Section 4.3.2), and/or perform some transformation of the data, such as smoothing of the

β-values (Section 4.4.4).

DSS [Feng et al. 2014], BiSeq [Hebestreit et al. 2013], MOABS [Sun et al. 2014], methylSig

[Park et al. 2014] and RADmeth [Dolzhenko and Smith 2014] all use a beta-binomial

hierarchical model of DNA methylation, although the exact details differ considerably

between packages. DSS and MOABS use empirical Bayes methods to estimate parameters

whereas methylSig, BiSeq and RADmeth use maximum likelihood estimation. BiSeq and

methlySig also perform spatial smoothing of the data.

The statistical test used to identify DMCs in these regression models is variously a Wald

test (BiSeq, DSS), a likelihood ratio test (methlySig, RADmeth) or based on the Bayesian

credible interval of the difference in methylation between the two groups (MOABS).

Not all software for identifying differential methylation are designed for identifying

DMCs. For example, both bsseq [Hansen et al. 2012] and Aclust [Sofer et al. 2013] are

methods explicitly designed for identifying differentially methylated regions rather than

DMCs.

5.1.3 Differentially methylated regions

A differentially methylated region (DMR) is a region of the genome where there are multiple

cytosines with evidence of differential methylation. Importantly, not all cytosines in the

region need necessarily be genome-wide statistically significant DMCs. Rather, the idea is

that a DMR might capture a weaker but broader difference in methylation. For example, it

may be more biologically relevant to identify a broad region with a consistent, albeit small,

difference in methylation than it is to identify individual cytosines with large differences in

methylation.

There are two very different strategies for identifying DMRs:
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1. Using regions that are defined a priori, which are then tested for differential methy-

lation. Such regions might be CpG islands [e.g., Huang et al. 1999, Doi et al. 2009]5;

MspI restriction fragments [e.g., Stockwell et al. 2014]; a predefined genomic feature,

such as a gene promoters or transcription factor binding sites; or general predefined

bins [e.g., 100 bp bins used by Park et al. 2014].

2. Using data-driven regions, such as those defined from an analysis of DMCs, which

are then tested for differential methylation.

The former is much simpler to analyse but is limited in its ability to discover novel

DMRs. It is also hampered because the correct unit or scale for differential methylation

may not be known for the experiment.

The latter offers the opportunity to identify novel regions that are subject to differential

methylation. Included in this is the opportunity to discover the scale over which differential

methylation acts. However, valid statistical inference of these regions is far more challenging.

Using a priori regions

The idea of testing for differential methylation at a priori defined regions is relatively

straightforward. Suppose we have a two-group experiment and let sBr,jk be the true average

level of methylation for the rth region for samples in the kth group (k “ 0, 1). The null

hypothesis is H0 : sBr,j0 “
sBr,j1 against the alternative hypothesis H1 : sBr,j0 ‰

sBr,j1 .

We might estimate ĎBk
r by the group-wise average of the sample-wise weighted average

of β-values for all methylation loci in the region, where the weights are proportional to the

sequencing coverage. Identifying differential methylation at a priori defined regions simply

boils down to identifying differences in means, just as is the case for testing for DMCs.

Again, this problem can be viewed as a ‘stand-alone’ test, such as a t-test, or framed as a

regression problem to allow for the inclusion of additional covariates.

The above description brushes over some technicalities, such as how to handle CpGs

with insufficient sequencing coverage. An alternative approach for testing a priori defined

regions for differential methylation is offered by BiSeq [Hebestreit et al. 2013].
5Both these examples are from microarray studies, but the same idea can be applied to sequencing

studies.
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A hierarchical procedure for testing a priori defined regions for differential

methylation

BiSeq [Hebestreit et al. 2013] uses a hierarchical procedure to test for differential methyla-

toin at a priori defined regions. To begin, BiSeq first defines CpG clusters by identifying

CpGs that are within a user-specified genomic distance of one another and that have suffi-

cient sequencing coverage across the set of samples6. While there is clearly a ‘data-driven’

component to these cluster definitions, I reserve the use of ‘data-driven regions’ for those

that are based on the methylation levels of loci rather than their genomic co-ordinates.

Once these clusters are defined, the β-values in each cluster are smoothed for each

sample using a local binomial likelihood smoother. This procedure will create a smoothed

β-value for each CpG, even those with insufficient sequencing coverage. Then, for each

CpG, BiSeq fits a beta regression model7 to the smoothed β-values, which is tested for

evidence of differential methylation at that cytosine (i.e. a test of whether the cytosine is a

DMC).

Based on these P-values, BiSeq then use a hierarchical testing procedure to control

the false discovery rate at both the cluster-level and locus-level. This method is based on

several papers by Yoav Benjamini and colleagues [Benjamini and Hochberg 1997, Benjamini

and Yekutieli 2001, Benjamini et al. 2006, Benjamini and Heller 2007]. It aims to first

control the false discovery rate at the cluster-level and then refines the signal by trimming

non-DMCs from those clusters that have been declared as differentially methylated. Finally,

these differentially methylated clusters are post hoc filtered to ensure they are consistent,

i.e. that the differences in methylation are in the same direction.

Using data-driven regions

Methods for identifying data-driven DMRs are statistically ad hoc. The most common

approach is to scan the genome for clusters of DMCs and declare these to be DMRs. The

initial scan for DMCs will typically use a relaxed statistical significance threshold (i.e. not

necessarily genome-wide significant). Notably, many of these methods do not include a
6As an alternative to creating these CpG clusters, Hebestreit et al. [2013] also suggest using the target

regions of the assay, such as MspI fragments in the case of RRBS.
7This is different to the beta-binomial regression framework described in Section 4.3.2.
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formal statistical test of differential methylation at the region-level [e.g., Lister et al. 2009,

2011, Hansen et al. 2011, Feng et al. 2014].

For example, Hansen et al. [2011] start by testing all CpGs for differential methylation

and retain all those with a P-value in the lowest 5%. They then declare putative DMRs to

be contiguous runs of such CpGs that are within a given distance of one another and with

“all differences in the same direction” (i.e. the region is consistent). These putative DMRs

may be subject to further filtering, such as requiring that they contain a minimum number

of CpGs and span a minimum number of bases, and the merging of nearby putative DMRs

into a single putative DMR [Hansen et al. 2011].

It is challenging to perform valid statistical inference of differential methylation at these

data-driven regions. We must be careful when ‘double-dipping’ into the data, whereby the

same data are being used to define the regions as are being used to test their significance.

These regions have been selected because loci in these region display a difference and

therefore tests of whether the region has a difference are biased towards rejecting the null

hypothesis.

The challenges of valid statistical inference at such data-driven regions are not unique

to the problem of testing for DMRs. Similar problems arise in the analysis of chromatin

immunoprecipitation sequencing (ChIP-seq) experiments [Schwartzman et al. 2011a, Lun

and Smyth 2014] and in the field of signal processing [Schwartzman et al. 2011b].

One way to avoid this issue, and I would argue the best, is to test these regions using

a separate dataset, which completely avoids the issue of statistical ‘double-dipping’. Of

course, this requires that such a dataset is available or that resources exist to create it,

which is frustratingly rare.

If the sample size is large enough, then permutation testing may also be appropriate.

For example, Hansen et al. [2014] permute the group labels of their samples and re-ran

the analysis to determine for each of the observed DMRs “how often we see another block

of similar length and effect size anywhere in the genome and in any of the permutations”.

The chief limitation of the permutation strategy is the restricted number of permutations

that are possible from small sample sizes, along with the often substantial time and
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computational resources it takes to analyse the data for each permutation8.

Related to the method of creating DMRs by forming clusters of DMCs is that of “bump-

hunting”. Initially developed for application to methylation microarray data [Jaffe et al.

2012a], and now available for broader use in the R/Bioconductor package bumphunter (http:

//bioconductor.org/packages/bumphunter/), bump-hunting may be used to identify

DMRs. The idea is as follows. Firstly, each each CpG is tested for differential methylation.

The resulting test statistic is then considered as a function of the position in the genome9

and processed with an algorithm to identify “bumps” in the signal. Bumps are defined as

contiguous regions of the genome where the signal is above some threshold. The algorithm

may include an error term to account for the spatial correlation of the signal and the

significance of these peaks may be assessed using a permutation strategy.

Another alternative for combining individual loci into data-driven DMRs uses the

locus-specific P-values rather than the locus-specific test statistics. These methods can

be thought of extensions to Fisher’s method for combining P-values [Fisher 1936], that

attempt to account for the correlation of tests at nearby methylation loci. comb-p [Pedersen

et al. 2012] uses the Stouffer-Liptak-Kechris [Stouffer 1949, Kechris et al. 2010, Zaykin

2011] correction for spatially correlated P-values. methylKit [Akalin et al. 2012b] uses

SLIM [Wang et al. 2011] to do a similar correction.

Finally, there are a class of methods that turn the problem of identifying data-driven

DMRs on its head by constructing the regions without first testing the individual loci for

differential methylation. Then, only once these regions are defined, these methods test for

differential methylation. This is different to using a priori regions, since the regions are still

data-defined, but not with respect to differential methylation. The only example of such a

method that I am aware of is Aclust [Sofer et al. 2013]. Aclust first clusters CpGs into

candidate regions by performing agglomerative nested clustering of the between-sample

co-methylation. Briefly, this is the correlation of methylation levels at two loci across the

samples10. These clusters are then tested for differential methylation using generalised

estimating equations.

Regardless of the statistical method used to identify differential methylation, it remains
8For example, Hansen et al. [2014] only performed nine permutations to estimate significance.
9The test statistic may be smoothed to reduce variation at the expense of increasing bias.

10See Chapter 6 for further details of between-sample co-methylation.
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important to validate these differences. This validation should ideally be performed in a

new dataset and perhaps using a different assay in order to mitigate potential biases.

5.1.4 Differentially variable methlyation

It has been hypothesised that increased variability in DNA methylation indicates an

epigentic plasticity that may be highly relevant to common diseases, in particular, cancer

[Feinberg and Irizarry 2010]. Differential variability is distinct from differential methylation.

Whereas the analysis of differential methylation is based on statistical tests of differences

in means, the analysis of differential variability is based on statistical tests of differences

in variances. Analogously, we define variably methylated cytosines (VMCs) and variably

methylated regions (VMRs). To emphasise, a locus (resp. region) may be a DMC (resp.

DMR) while not a VMC (resp. VMR) and vice versa.

Jaffe et al. [2012b] first developed formal statistical tests for differential variability

of methylation for both the one-group and two-group experiments. These methods were

developed for use with data from the CHARM array (see 1.4.1). In a one-group experiment,

a variably methylated region is one that has increased variability compared to ‘similar’

regions elsewhere in the genome. In a two-group experiment, a differentially variable locus

is one where the variation in one group is significantly larger than that in the other group.

Statistical tests of variances are well known to be more difficult than tests of means

and require larger sample sizes. A more subtle difficulty is in dealing with outliers. An

outlier in one group will greatly increase the variation in that group, but this does not

necessarily mean that the locus is differentially variably methylated. It might, for example,

be due to an error in the assay. It is not difficult to envisage an example where the two

groups in fact have very similar variability once the outlier is excluded.

Tests of differential variability that are based on the F-test [e.g., Hansen et al. 2011] or

Bartlett’s test [e.g., Teschendorff and Widschwendter 2012] will be susceptible to calling

loci with such outliers as being differentially variable. By contrast, DiffVar [Phipson and

Oshlack 2014] uses Levene’s test [Olkin 1960] to test for differential variability since it is

robust to outliers.
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5.1.5 Epigenome segmentation

Methylation data in the form of the vectors of m and u may also be used by methods to

segment the genome or epigenome into regulatory regions [Stadler et al. 2011]. One type

of region that has received particular attention are so-called partially methylated domains

(PMDs). Partially methylated domains are long stretches of the genome where the average

methylation level, Bi, is away from the extremes of 0 and 1, typically in the range 0.2 to

0.7.

PMDs were first identified in the IMR90 methylome by Lister et al. [2009]. Using a

simple sliding window algorithm, Lister et al. found that approximately 40% of every

autosome was a PMD and that the average length of these PMDs was a large 153 kb.

They also showed that these PMDs were not simply due to a methylated subpopulation

and an unmethylated subpopulation of cells in the sample. This did this by showing that

individual reads mapped to these PMDs contained both methylated and unmethylated

bases.

A subsequent study found that PMDs are a common feature of somatic cell lines

and that they comprise ą 30% of the genome [Lister et al. 2011]. Perhaps even more

intriguingly, across four somatic cell lines profiled with whole-genome bisulfite-sequencing,

Lister et al. found a large amount of these genomes (664 Mb) comprised shared PMDs.

PMDs have also been identified within tumour methylomes [Berman et al. 2012, Hansen

et al. 2011]. Hansen et al. [2011] found that these PMDs overlap with other important

genomic features called large organized chromatin lysine modifications (LOCKs) and

lamina associated domains (LADs). However, PMDs are conspicuous by their absence in

pluripotent cell lines, including both embryonic stem cells and induced pluripotent stem

cells [Lister et al. 2011]. Their absence in the induced pluripotent cell lines may reflect

the fact that the methylome is ‘reset’ upon induction of pluripotency [Lister et al. 2011,

Stricker et al. 2013].

Recently, more sophisticated methods have been proposed to identify these PMDs.

methylSeekR [Burger et al. 2013] is one such method. It uses a hidden Markov model of

the β-values, combined with other filters, to segment the genome into unmethylated, lowly

methylated and partially methylated regions.
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5.2 Methods based on m-tuples (m ą 2)

This section reviews the different types of questions that can be addressed by expanding

our analysis to use methylation patterns at m-tuples (m ą 2) rather than just 1-tuples.

This extra information is only available from sequencing-based assays. We also review

existing software that implement some of these methods.

5.2.1 Methylation entropy

The natural interpretation of methylation entropy is a measure of ‘disorder’. It has been

used to quantify how heterogeneous DNA methylation is at a locus [e.g., Xie et al. 2011,

He et al. 2013]11. These methylation entropies can be analysed to identify heterogeneous

regions of the genome or perhaps tested for an association with a phenotype.

On the one hand, if we only observe a single unique methylation pattern, then the

m-tuple has the minimum methylation entropy of zero. On the other hand, if we observe all

possible 2m methylation patterns at equal frequency, then the m-tuple has the maximum

methylation entropy (typically normalised to one). Depending on the frequency of the

observed methylation patterns patterns, we obtain intermediate values of the methylation

entropy.

5.2.2 Allele-specific methylation

In a diploid cell, allele-specific methylation occurs when only one of the parental chromo-

somes is methylated at a particular locus, where the locus may be an individual cytosine

or a broader region such as a gene promoter. A particularly interesting form of allele

specific methylation occurs at imprinted genes, where one copy of the gene is active in a

parent-specific manner. However, it is now apparent that allele-specific methylation is far

more prevalent than at just these imprinted regions [Tycko 2010, Shoemaker et al. 2010].

The obvious method to detect allele-specific methylation from bisulfite-sequencing

requires reads that contain a heterozygous genetic variant, such as a single nucleotide
11This is closely related to the idea of identifying epialleles, for which methylation entropy has also played

a role [Li et al. 2014] and which I discuss in Section 5.2.3. Methylation entropy has also been used to
identify differential methylation, however, I do not discuss this further since it uses a different definition
that is not based on analysing methylation patterns at m-tuples [Zhang et al. 2011, Su et al. 2013].
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polymorphism, along with at least one methylation locus. The heterozygous variant allows

these reads to be separated by the observed allele12, which can then be used to test

for allele-specific methylation. For example, Shoemaker et al. [2010] construct a 2 ˆ 2

contingency table, like that shown in Table 5.2, and test for an association between the

allele and the methylation state using Fisher’s exact test [Fisher 1922].

Table 5.2: 2ˆ 2 table used to test for allele-specific methylation. m1 is the number of reads
with the first allele and that are also methylated at the methylation locus, u1 is the number
of reads with the first allele and that are also unmethylated at the methylation locus, etc.

Allele 1 Allele 2
m m1 m2

u u1 u2

While straightforward, this approach is also obviously limited to the small number

of methylation loci that are nearby to a heterozygous genetic variant. Fang et al. [2012]

and Peng and Ecker [2012] published methods to detect allele-specfic methylation that

do not require heterozygous genetic variants nearby to the methylation locus of interest.

These methods rely on the probabilistic assignment of reads to alleles (which are treated

as missing data). Unfortunately, there is no publicly available software implementing the

method proposed by Peng and Ecker [2012] and so I do not discuss it further.

Fang et al. [2012] use reads containing multiple methylation loci and looks for regions

of the genome where there are two distinct methylation patterns at the read-level that

occur at roughly equal proportions, indicating one pattern comes from one allele and

the other pattern from the other allele. The likelihood of allele-specific methylation is

computed using an expectation-maximisation algorithm, which assigns reads to one of the

two possible alleles. Neighbouring regions displaying allele-specific methylation are then

joined together. While not mentioned in the paper, the proposed method is now available

in the MethPipe software (http://smithlabresearch.org/software/methpipe/).

5.2.3 Epialleles

A DNA sequence may have multiple epigenetic states. For example, the cytosine in

the sequence TCGA may be methylated or unmethylated; each of the methylated and
12This does not give parent-specificity unless the phase of the genotype is also known.
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unmethylated versions of that sequence is an epiallele. Rakyan et al. [2002] define an

epiallele as “an allele that can stably exist in more than one epigenetic state, resulting

in different phenotypes”. The latter requirement, while obviously more interesting than

the alternative, may be unduly restrictive. After all, we refer to alternative forms of a

genetic sequence as alleles regardless of whether we know of a phenotypic consequence of

the variant.

Most of the examples of epialleles with a phenotypic consequence come from the plant

kingdom and, even there, the number of such epialleles is small: a review from 2012 put the

number at “about a dozen” [Weigel and Colot 2012]. In mammals, the study of epialleles

has focused on identifying metastable epialleles, which are epialleles that are mitotically

heritable [Rakyan et al. 2002]. The poster child for the potential importance of epialleles

in mammals is the Agouti viable yellow (Avy) allele [Morgan et al. 1999]. Genetically

identical mice with different versions of the Avy allele are phenotypically distinct. Those

mice with an unmethylated version of the allele have a yellow coat, are obese, diabetic,

and have an increased susceptibility to tumours; those mice with a methylated version of

the allele have a pseudoagouti13 (brown) coat and none of the associated health defects.

In humans, there have been several interesting studies using putative epialleles to infer

the clonality and evolution of cancer [Siegmund et al. 2009, Li et al. 2014], as well as to

study the evolution of methylation dynamics and the rate of epipolymorphism of various

loci in an immortalised cell line [Landan et al. 2012].

Regardless of where you draw the line as to what constitutes an epiallele, it has become

clear in the analysis of bisulfite-sequencing data that the occurrence of multiple methylation

patterns at an m-tuple is the norm rather than the exception.

Restricting our attention to CpG methylation, a sequence withm CpGs has 2m potential

epialleles. In other words, an epiallele is just a methylation pattern at an m-tuple, with the

additional constraint that the underlying DNA sequence also be identical. An epiallele may

also be described as an epimutation if it is different from the ‘normal’ methylation state.

The rate of epipolymorphism of a locus is defined as the probability that two epialleles
13These mice are properly described as pseudoagouti rather than agouti. They are heterozygous for the

wildtype agouti allele (Avy{a) but are phenotypically indistinguishable from true agouti mice, which are
homozygous for the wildtype gene (a{a).
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randomly sampled from the locus are different from one another [Landan et al. 2012]14.

Landan et al. define the rate of epipolymorphism of an m-tuple as 1´
řp“2m
p“1 f2

p , where

fp is the estimated frequency of the pth methylation pattern, i.e. the number of times the

pth pattern is observed divided by the total number of reads mapped to that m-tuple15.

Unlike genetic polymorphisms, where the population is typically a set of chromosomes from

multiple individuals, the population of epipolymorphisms is often within an individual,

even within a tissue within an individual.

The obvious challenge in estimating the frequency of an epiallele is in distinguishing

a ‘real’ epiallele from a spurious one (perhaps caused by incomplete bisulfite-conversion)

sequencing error or mapping error. Another difficulty, perhaps unavoidable with current

technology, is the effect of PCR amplification bias, which will bias estimates of the relative

abundance of each epiallele.

Of the downstream analyses based on methylation patterns at m-tuples, the study of

epialleles has received the most attention with respect to methods and software development.

methclone [Li et al. 2014] is a method to estimate the frequency of epialleles at m-tuples

(the rate of epipolymorphism) and to identify “shifts” in these distributions between a pair

of samples. methclone is based on computing and comparing two forms of methylation

entropy, the “foreground” and “background”. The foreground combinatorial entropy, S,

is based on the observed frequency of epialleles in the two samples. The background

combinatorial entropy, S̃, is the expected frequency of epialleles in the two samples if “all

patterns of epialleles are uniformly mixed between the two [samples]”. The difference in

these combinatorial entropies, ∆S “ S ´ S̃, a kind of observed-to-expected log-ratio, is

used to identify shifts in the epiallele distribution between a pair of samples. A ∆S “ 0

corresponds to no change and a ∆S “ ´144 corresponds to maximal difference in entropy.

It isn’t clear whether the range of ∆S depends on the size of the m-tuples nor is it clear

how to choose the threshold at which to declare a significant shift in the distribution of

epialleles.
14Landan et al. [2012] actually call this the “epipolymorphism” of the locus rather than the “rate of

epipolymorphism” of the locus. However, I think this is better described as a rate since it refers to the
frequency at which we observe epialleles/epipolymorphisms.

15Strictly speaking, this is in fact an estimate of the rate of epipolymorphism of the locus under a
model that assumes sampling with replacement or, equivalently, an infinite population size. While neither
assumption is true, the correction for sampling without replacement from a finite population will not
substantially affect the results provided that the sequencing depth is high.
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methclone uses the observed frequencies of methylation patterns as being unbiased

estimates of the true epiallele frequencies and does not attempt to account for po-

tential sources of bias. In contrast, MPFE (http://bioconductor.org/packages/MPFE,

http://f1000.com/posters/browse/summary/1097258), an R/Bioconductor package for

“[estimating] the distribution of methylation patterns [i.e. epialleles]” at m-tuples, uses a

probabilistic model to account for some of these biases.

MPFE is designed to estimate the frequency of epialleles by maximising a multinomial

likelihood that includes error terms for both incomplete bisulfite-conversion and sequencing

error. The maximisation of this likelihood is computatationally demanding, as evidenced

by the need for a “fast” algorithm that approximates the likelihood. MPFE is designed for

amplicon bisulfite-sequencing and may not scale to whole-genome data. The input is a file

containing the number of times each methylation pattern was observed at that m-tuple.

Unfortunately, MPFE does not provide a way to create this file.

Methods designed to detect allele-specific methylation, specifically those that are

based on the observed methylation patterns [e.g., Fang et al. 2012, Peng and Ecker 2012],

might also be adapted to identify epialleles and their associated frequencies. It is worth

emphasising that since all of the methods described in this section are based entirely on

the observed methylation patterns, none of these actually check that the underlying DNA

sequencing is identical, which, strictly speaking, is a requirement for the m-tuple to be an

epipolymorphic locus.

5.2.4 Software for analysing methylation patterns at m-tuples

Generally speaking, there are fewer software options for analysing methylation patterns at m-

tuples (m ą 2) than there are for analysing methylation patterns at 1-tuples. Furthermore,

the available options are often difficult to extend since they are typically developed for a

specific task and not for general computations with methylation patterns at m-tuples.

I have also experienced considerable difficulty in applying some of these methods owing

to poor software implementations. To give two examples, DMEAS [He et al. 2013] is only

available as a Windows binary or as a Perl script that itself is only available as a PDF file,

and I have been unable to install methclone due to compilation errors.
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MethPipe is perhaps the best documented and potentially extensible software for

analysing methylation patterns at m-tuples. MethPipe is mostly written in C++ and

is designed as a suite of tools for a complete ‘pipeline’ analysis of bisulfite-sequencing

data. As such, it does not feature tools that are particularly amenable to interactive or

exploratory analyses. In fact, I am unaware of any software that allows easy exploratory

analyses of methylation patterns at m-tuples, which in part motivated the development of

MethylationTuples.

5.3 MethylationTuples

In order to facilitate the development of downstream analysis methods based on methylation

patterns at m-tuples, I saw the need for two pieces of software:

1. Software for extracting methylation patterns at m-tuples,

2. Software for manipulating, analysing and visualising these methylation patterns.

I have made significant progress towards the first goal with methtuple (see Sec-

tion 2.4) and now introduce MethylationTuples (https://github.com/PeteHaitch/

MethylationTuples) to address the second missing link.

5.3.1 Design

MethylationTuples is an R package for managing, analysing and visualising methylation

patterns at m-tuples. It is released under an Artistic-2.0 license, consistent with core

Bioconductor packages. I chose to write this software in R because it is a very popular

language for data analysis, particularly in bioinformatics, and facilitates both batch and

interactive usage. R is also my computational mother tongue and an R package is a conve-

nient unit for sharing reusable code. To improve the performance of key functionality, parts

of MethylationTuples are written in C++, making use of the Rcpp package [Eddelbuettel

et al. 2011, Eddelbuettel 2013].

While initially developed to support my research into co-methylation (Chapter 7),

the data structures developed in MethylationTuples are well-suited to other analyses
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based on methylation patterns of m-tuples such as methylation entropy, allele-specific

methylation and the identification of epialleles. Of course, MethylationTuples can also

be used to develop methods based on 1-tuples, such as identifying differential methylation,

since 1-tuples are just a particular type of m-tuple.

MethylationTuples is written to work within the Bioconductor project [Gentleman

et al. 2004]16. Bioconductor makes extensive use of R’s S4 object system and encourages

developers to re-use existing Bioconductor infrastructure. From a developer’s perspective,

this avoids the need to re-invent the wheel when tackling common tasks. And from the

user’s perspective, it helps avoid multiple versions of the wheel, each that might otherwise

act slightly differently and that may not be as well-tested.

Bioconductor already has excellent support for working with data defined on genomic

ranges via the IRanges and GenomicRanges packages [Lawrence et al. 2013, Lawrence and

Morgan 2014]. Genomic tuples, however, such as the co-ordinates of an m-tuple, do not

naturally fit into this framework17. Therefore, I first wrote a Bioconductor package for

working with genomic tuples, rather unimaginatively called GenomicTuples, first released as

part of Bioconductor version 3.0 (http://bioconductor.org/packages/GenomicTuples).

In fact, GenomicTuples is heavily based on the GenomicRanges package, with modifica-

tions for tuple-specific operations. This makes it easy to use for users already familiar

with the GenomicRanges package. For example, there is a tuple-specific method for the

findOverlaps generic function to identify genomic tuples with equal co-ordinates (i.e. type

= ‘equal’). Since the classes in GenomicTuples extend those defined in GenomicRanges,

these have excellent interoperability with existing Bioconductor infrastructure.

In the MethylationTuples package I define the MethPat class to store the genomic

co-ordinates of m-tuples and the associated counts of each methylation pattern. A MethPat

object is as a matrix-like object, where rows represent m-tuples and columns represent

samples. The MethPat class extends the GenomicRanges::SummarizedExperiment18 class
16MethylationTuples has not yet been submitted to Bioconductor but its development is being published

to https://github.com/PeteHaitch/MethylationTuples).
17The difference between a genomic range and a genomic tuple can be thought of as the difference between

an interval and a set. Namely, an interval includes the co-ordinates in between the start and end whereas
a set only includes those co-ordinates listed in the set. For example, the genomic interval chr3:+:[10,
12] includes the co-ordinates chr3:10, chr3:11 and chr3:12 on the forward strand, whereas the genomic
2-tuple chr3:+:{10, 12} only includes the co-ordinates chr3:10 and chr3:12 on the forward strand.

18This uses the NAMESPACE notation of R: GenomicRanges::SummarizedExperiment can be read as
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but makes use of classes defined in the GenomicTuples package to store the genomic

co-ordinates of the m-tuples. Currently, it is a requirement that all m-tuples in a MethPat

object have the same size (i.e. same m).

Figure 5.1 is a schematic of a MethPat object storing methylation patterns at 3-tuples

for n samples. The similarities to the output format of methtuple are clear (see Figure

2.10), with the added advantage that a single MethPat object can contain data from

multiple samples.

Seqname
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+
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...
...

 Pos3
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... ... ... ... ...
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... ... ...
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MMU UUU
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Figure 5.1: Schematic of the MethPat class, shown here for 3-tuples. Each row represents
a 3-tuple to which the genomic co-ordinates of the tuples (green box) and the counts of
the methylation patterns (grey box) are aligned. The counts of each methylation pattern
(MMM,MMU, . . . , UUU) are stored as separate matrices where the columns represent
samples (S1, . . . , Sn). Some samples may not have any sequencing coverage for a particular
m-tuple, in which case the corresponding frequencies are recorded as NA.

5.3.2 Methods

A MethPat object can be constructed directly using the MethPat() constructor function

or from the output files of methtuple via the readMethtuple() function.

The MethPat object provides fast subsetting by rows (m-tuples) and columns (samples)

via the “[” method. It also benefits from fast subsetting based on overlaps of m-tuples

with genomic features via the findOverlaps()-based methods. Several other useful utility

functions for working with MethPat objects include:

• collapseStrand(): Collapse strand-specific data by aggregating the counts. Only

applicable to CpG methylation loci.

“the SummarizedExperiment class is part of the GenomicRanges package”.
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• combine(): Combine multiple MethPat objects into one.

• filterOutVariants(): Remove m-tuples that contain a known variant. Variants

must be provided as a VCF file.

• findMTuples(): Find m-tuples of a given size in a reference genome.

• getCoverage(): Compute the sequencing coverage of each m-tuples in each sample.

• IPD(): Compute the IPD vector for each m-tuple.

• methLevel(): Compute β-values or M-values. Only applicable to 1-tuples.

• tuples(): Extract the pos1, . . . , posm of the m-tuples.

These are in addition to the many useful methods inherited from the

GenomicRanges::SummarizedExperiment class.

With the MethPat class, its associated methods and other utility functions, the

MethylationTuples package provides a toolbox for manipulating methylation patterns

at m-tuples. Aside from providing the necessary infrastructure to analyse methylation

patterns at m-tuples, MethylationTuples currently includes specific methods to analyse

and visualise co-methylation (Chapter 7) with the cometh() and methLevelCor() methods.

I also plan to add methods for estimating epialleles and epipolymorphism. It is my hope

that MethylationTuples will provide a useful foundation on which others can implement

their own methods for analysing methylation patterns at m-tuples.

5.3.3 Compatability with other Bioconductor packages

Since MethylationTuples is based on core Bioconductor functionality, it is highly com-

patible with existing Bioconductor packages. In particular, MethPat objects containing

1-tuples are readily coerced for use with differential methylation calling packages, e.g.,

bsseq and BiSeq, or to identify partially methylated domains with MethylSeekR. I also

make extensive use of MethylationTuples in my methsim software (Chapter 8)

5.3.4 Computational challenges and future directions

The challenges of working with large datasets in R are well-known. These are in large

part due to R being designed as an ‘in-memory’ application and its implementation of
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‘copy-on-modify’ semantics [Wickham 2014]. More generally, with large datasets, there is

often a trade-off to be made between storage efficiency and algorithm simplicity; a more

efficient way of storing the data may be less convenient to work with and vice versa.

I have used the MethylationTuples package to analyse various sized m-tuples from

datasets containing up to 17 whole-genome bisulfite-sequencing samples (the Lister data).

I have found the MethPat class to be a very convenient representation of the data, however,

it has also raised challenges that will apply for larger datasets.

One such challenge is the size of a MethPat object in memory. The MethPat class

currently favours a simpler implementation at the expense of storage efficiency. The

main inefficiency with the MethPat class is that the matrices storing the counts of each

methylation pattern grow increasingly sparse as the size of the tuples increases.

Shown in Table 5.3 is the size of the MethPat objects in memory for the EPISCOPE

whole-genome bisulfite-sequencing data with various sized m-tuples. We see that as the

size of the m-tuples increases, the data become sparser: most counts are 0 (meaning that

particular methylation pattern was not observed in that particular sample) or NA (meaning

that that m-tuple was not observed in that particular sample). However, for values of

m ă 5, and particularly for ‘dense’ data, such as RRBS, this is far less of an issue.

Table 5.3: Size of MethPat objects for the EPISCOPE data (Nsamples “ 12). All m-tuples
are stranded. The ‘size’ of the MethPat object, reported in gigabytes (GB), is computed
using the pryr::object_size() function (http://cran.r-project.org/web/packages/
pryr/index.html). The ‘number of rows’ corresponds to the number of m-tuples in the
object. The ‘number of assays’ is 2m, where m is the size of the m-tuples. The final column
is a measure of how sparse the data are: a 0 value means that particular methylation
pattern was not observed in that particular sample and an NA value means that that
m-tuple was not observed in that particular sample.

Size
(GB)

Number of
rows

Number of
assays

Percentage of 0 and
NA values

1-tuples 5.9 56, 348, 522 2 28%
2-tuples 20.1 100, 586, 237 4 80%
2-tuples
(--all-combinations)

60.0 299, 814, 999 4 78%

3-tuples 43.3 109, 376, 348 8 93%
4-tuples 80.5 102, 625, 758 16 97%

It will be possible to improve the storage efficiency by using a different approach to
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the internal storage of the data. For example, it may be possible to use sparse matrices

to store the counts or to create an index so that counts can be re-ordered and stored as

run-length encodings, a very space-efficient storage scheme.

In the short term, my aim for MethylationTuples is to release a version to Bioconductor

with the core infrastructure for manipulating data of methylation patterns at m-tuples. In

the longer term, I would like to extend the set of downstream analyses of m-tuples that are

available in the package and to help users extend the package to add their own methods.

5.4 Summary

Most methods for downstream analyses of bisulfite-sequencing data have focused on the

problem of identifying differential methylation using methylation calls at 1-tuples. However,

there is a growing interest in questions related to the heterogeneity of DNA methylation

and these might be better addressed by analyses based on methylation patterns at m-tuples.

A barrier to these type of analyses has been a lack of software for extracting and

manipulating these data. It is my hope that the methtuple and MethylationTuples

software will prove useful in facilitating the development of methods for these new types of

downstream analyses.

130



Chapter 6

A critical review of co-methylation

Overview

Co-methylation is the dependence structure of DNA methylation data. This chapter

critically reviews different definitions of co-methylation and puts them in the statistical

framework of Chapter 4. It highlights various shortcomings of existing methods for

quantifying co-methylation, which led me to develop the methods and software described

in Chapter 7. We also review how methods to detect differential methylation have sought

to account for, and leverage, co-methylation.

6.1 What is co-methylation and why study it?

I define co-methylation as the dependence structure of DNA methylation data. This broad

definition encompasses several similar concepts previously described in the literature. These

include: “the presence of methylation over a stretch of neighbouring CpG positions” [Schatz

et al. 2004]; “the relationship between the degree of methylation over distance” [Eckhardt

et al. 2006]; the “correlation of two [loci] across many samples” [Akulenko and Helms 2013];

and the “vertical (i.e. progenitor to descendant) correlation between the same CpG site in

neighbouring cell types” [Capra and Kostka 2014].

It is important to understand that there exists both within-sample and between-sample

co-methylation.
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Within-sample co-methylation is the spatial dependence of DNA methylation along

the genome within a single sample. Many researchers have observed that there is a strong

spatial dependence of DNA methylation along the genome, that is, methylation loci near

to one another in the genome tend to be similarly methylated [e.g., Eckhardt et al. 2006,

Cokus et al. 2008, Lister et al. 2009, Lacey and Ehrlich 2009, Li et al. 2010, Lyko et al.

2010, Landan et al. 2012]. These studies also found that the strength of this dependence

itself depends on the distance between the loci and on the genomic context.

The fundamental level of within-sample co-methylation is the dependence structure of

DNA methylation events occurring on the same DNA fragment, which I call within-fragment

co-methylation. At a higher level is the correlation of aggregate methylation levels, such as

the spatial correlation of β-values within a sample.

Between-sample co-methylation is the relationship between methylation levels at a pair

of loci across a set of samples1. For example, Akulenko and Helms [2013] reported 187

pairs of genes whose methylation level was highly correlated (Pearson |r| ě 0.75) across

more than 300 breast cancer samples. It is worth noting that measures of within-sample

co-methylation can themselves be compared between samples.

There have been several attempts to analyse co-methylation, most with the aim of

better understanding the biological processes that lay down and regulate DNA methylation.

An increased understanding of co-methylation could also lead to cheaper and more efficient

assays of DNA methylation. For example, we might identify methylation loci whose

methylation status is highly predictive of the methylation level of a surrounding region

and design an assay to interrogate those highly predictive loci. This idea is analogous to

the use of tag-SNPs on genotyping microarrays.

There are also reasons for studying co-methylation that are less to do with improving our

biological understanding and more to do with improving statistical techniques for analysing

DNA methylation data. If co-methylation can be better estimated and understood, then

statistical techniques can be developed that explicitly account for and leverage these
1One measure of between-sample correlation of aggregate methylation levels that does not fall under

my definition of co-methylation is the following: Consider a pair of samples, j and j1, and compute the
correlation between the set of β-values for sample j against sample j1, i.e. corptβi,jui“Nloci

i“1 , tβi,j1u
i“Nloci
i“1 q.

This measure is often reported as evidence for the “concordance” of methylation levels between replicates,
but is not what I consider a form of co-methylation.
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dependencies to create more powerful and efficient analysis methods.

A common difficulty in translating biological observations into mathematical or sta-

tistical language are vague, ambiguous or otherwise insufficiently detailed descriptions of

the analyses performed. This is frequently coupled with a lack of software to implement

the proposed method. These deficiencies can bring into question the results and certainly

hinder the development of new analysis methods and software. Many of the papers reviewed

in this chapter suffer from these deficiencies and in these cases I have made my best attempt

at deciphering the methods, often via correspondence with the authors.

6.2 Correlations of aggregate methylation levels

To date, most analyses of co-methylation have been based on analysing correlations of

aggregate methylation levels, such as β-values, within individual samples [Eckhardt et al.

2006, Cokus et al. 2008, Li et al. 2010, Lyko et al. 2010, Lacey et al. 2013]. These analyses

have an implicit assumption of stationarity, that is, that the correlation between two loci

depends only on the distance between them and not the actual position of the loci in the

genome.

6.2.1 Eckhardt et al. [2006]

Eckhardt et al. [2006] is one of the first publications to apply bisulfite-sequencing to a

large number of regions and samples. Of particular relevance to this chapter, Eckhardt

et al. [2006] is often cited as evidence of co-methylation. For example, Hebestreit et al.

[2013] cite Eckhardt et al. [2006] as evidence that “methylation levels are strongly spatially

correlated” and Hansen et al. [2011] cite Eckhardt et al. [2006] as evidence that “proximal

CpGs [have] similar methylation levels”.

Eckhardt et al. [2006] performed PCR-amplicon bisulfite-sequencing of 2, 524 amplicons

on human chromosomes 6, 20 and 22. PCR-amplicon bisulfite-sequencing is a labour-

intensive assay and so it was a considerable effort to produce these data. Nonetheless,

it is important to bear in mind that these data are nowhere near as comprehensive as

data generated using modern whole-genome bisulfite-sequencing assays. The samples are a
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variety of human tissue types from multiple donors of different ages, both male and female.

As part of their analysis, the authors explore co-methylation, which they define as “the

relationship between the degree of methylation over distance”. They state that “we were

able to establish a significant correlation for comethylation over short distances (ď 1, 000

bp), it deteriorated rapidly for distances ą 2, 000 bp” and reference the plot reprinted

in Figure 6.1 in support of this claim. In Figure 6.1, the authors plot the “percentage

identical methylation” against “distance in bp”, which ranges from 0 to 20, 000 bp. This is

not a correlation in the usual sense of the word. Nowhere in the original paper is it clearly

described what the “percentage identical methylation” is nor how it is computed2.

The average amplicon length is reported as 411 bp with a standard deviation of 71

bp. Therefore, it is impossible for the “percentage identical methylation” to have been

obtained from methylation events co-occuring on the same amplicon, at least for those

pairs separated by more than approximately 600 bp.

My best guess as to the definition of “percentage identical methylation” is that it is

the proportion of pairs of identical methylation calls at different CpGs from (generally)

different amplicons, that is, PrpZh,i “ Zh1,i1q. I will refer to my best guess of “percentage

identical methylation” as PIM˚, and now turn to some of its properties.

Let 0 ď ph ď 1 be the genome-wide average CpG methylation level for the sample from

which Zh,i is sampled, that is, PrpZh,i “ 1q “ ph. For two distinct CpGs sequenced on

two (potentially) distinct amplicons, Zh,i and Zh1,i1 , we want to compute the probability

that the methylation states are identical, that is, PrpZh,i “ Zh1,i1q. Not only may the two

CpGs be from distinct amplicons, but in the original analysis the amplicons themselves

may be from distinct samples with different genome-wide average methylation levels. This

most general setting is described by Zh,i d“Bernoullipphq and Zh1,i1 d“Bernoullipph1q, with

corpZh,i, Zh1,i1q “ c. In this setting we can compute the theoretical PIM˚ as follows:
2An email discussion with the senior author, Professor Stephan Beck (University College London), was

unable to clarify the definition or method.
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Figure 6.1: Correlation of DNA methylation with spatial distance. (a) Correlation between
comethylation and spatial distance. Orange dots represent CpG methylation values
aggregated and averaged over 25, 000 individual measurements. Gray dots represent CpG
methylation values based on resampling of random CpG positions. Blue dots indicate CpG
methylation values based on resampling of amplicon positions. At distances ą 1, 000 bp,
we did not detect any correlation between CpG methylation and spatial distance. Adapted
by permission from Macmillan Publishers Ltd: [Nature Genetics] (Eckhardt et al. [2006]),
copyright (2006).

PIM˚ “ PrpZh,i “ Zh1,i1q

“ PrpZh,i “ 0, Zh1,i1 “ 0q ` PrpZh,i “ 1, Zh1,i1 “ 1q

“ PrpZh1,i1 “ 0|Zh,i “ 0qPrpZh,i “ 0q ` PrpZh1,i1 “ 1|Zh,i “ 1qPrpZh,i “ 1q

“
“

p1´ ph1q ` cph
‰

p1´ phq `
“

ph1 ` cp1´ phq
‰

ph

“ p1´ phqp1´ ph1q ` phph1 ` 2cphp1´ phq
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The proof of this result is given in Appendix A.1.

In general, PIM˚ P r0, 1s since it is a probability, which is already unlike a correlation

coefficient that takes values in r´1, 1s. There are a few important special cases that are

worth discussing:

1. PIM˚
inid “ p1´phqp1´ph1q`phph1 : Independent and non-identically distributed (inid),

i.e. Zh,i d“Bernoullipphq and Zh1,i1 d“Bernoullipph1q and with corpZh,i, Zh1,i1q “ c “

0.

2. PIM˚
did “ p1´ pq2 ` p2 ` 2cpp1´ pq: Dependent and identically distributed (did),

i.e. Zh,i, Zh1,i1 d“Bernoullippq and corpZh,i, Zh1,i1q “ c ‰ 0.

3. PIM˚
iid “ p1 ´ pq2 ` p2: Independent and identically distributed (iid), i.e. Zh,i,

Zh1,i1
d
“Bernoullippq and corpZh,i, Zh1,i1q “ c “ 0.

As for PIM˚, PIM˚
inid P r0, 1s. In contrast, it is easy to show by differentiation that

PIM˚
iid ě 0.5 and that PIM˚

did ě 0.5pc` 1q, which is ą 0.5 (resp. ă 0.5) for c ą 0 (resp.

c ă 0).

To return to the plot shown in Figure 3a; the “percentage identical methylation”

asymptotes at 40%, or 0.4, which is less than the theoretical lower-bound of PIM˚
iid. If we

believed that all samples had the same average CpG methylation levels, ph, then we would

conclude that the methylation states of two CpGs separated by a large distance are in fact

anti-correlated (c ă 0) for CpGs separated by approximately 1, 000 bp. However, since

we know that there is sample-to-sample variability in the average level of CpG methylation,

the more likely explanation for this result is that the ph vary between samples and therefore

PIM˚ ă 0.5 are possible, even supposing c ą 0.

Of course, the above discussion pre-supposes that what is labelled “percentage identical

methylation” in Figure 6.1 is mathematically equivalent to PIM˚. I believe this to be true

but due to the aforementioned inadequacies of the method description it is not possible to

verify this derivation.

Quite apart from what exactly is plotted in Figure 6.1, the analysis is based on data

from only 2, 524 amplicons. These limited data cannot give a genome-wide picture of

co-methylation. Furthermore, the data come from a variety of tissues and donors, which
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makes it difficult to know how applicable these results are for a particular tissue. Caution

is warranted in extrapolating these results to general statements about the correlation of

aggregate methylation levels.

6.2.2 Cokus et al. [2008]

Cokus et al. [2008] published the BS-seq protocol for performing whole-genome bisulfite-

sequencing. They demonstrated this technique by generating a genome-wide map of DNA

methylation in wildtype Arabidopsis thaliana, a small flowering plant whose methylome is

widely studied. They performed an “autocorrelation” analysis of the β-values for CG, CHG

and CHH methylation3. The autocorrelation computes, for a set of distances (0´ 5, 000

bp), the (Pearson) correlation coefficient of methylation levels for all pairs of methylation

loci separated by each distance. To emphasise, I believe this analysis uses all pairs of

methylation loci, that is, regardless of how many intervening methylation loci there are for

each pair.

Cokus et al. [2008] found that methylation levels are highly correlated, particularly for

CG methylation levels, and that the correlation decays as a function of genomic distance

between methylation loci. From this they concluded that the “significant correlation

between methylated cytosines for distances up to 5,000 nucleotides or more [were] probably

a reflection of regional foci of methylation throughout the genome and of large blocks

of pericentromeric heterochromatin”. They also identified correlations between different

methylation contexts, e.g., CG vs. CHG, which “suggest[s] complex interactions between

the different types of methylation”.

The autocorrelation plots showed two periodicities, one of approximately 167 bp (CpG,

CHG and CHH) and the other of 10 bp (CHH only). Both periodicities are visible in plots

of the raw autocorrelations and are confirmed by a Fourier analysis of the autocorrelation

signal.

The 167 bp period “is similar to, but slightly shorter than, estimates of the average

spacing of nucleosomes in plant chromatin” and Cokus et al. hypothesise that this

periodicity is due to histones dictating access to DNA by the DNA methyltransferases.
3Many plant species, such as A. thaliana, have much higher levels of non-CG methylation than do

mammals.
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The 10 bp period is equal to the length of one helical DNA turn. From this result

Cokus et al. hypothesise that the DOMAINS REARRANGED METHYLASE 2 (DRM2 ),

“the main enzyme controlling asymmetric methylation in Arabidopsis”, contains two active

sites that methylate sites 8 to 10 bp apart4, like its mammalian homologue, DNA methyl-

transferase 3 (DNMT3 ). The 10 bp CHH-only period in the autocorrelation analysis of

the β-values is also observed in a within-fragment analysis (discussed in Section 6.3)

6.2.3 Lister et al. [2009]

Lister et al. [2009] report an 8 to 10 bp period in the occurrence of “methylcytosines”.

Recall that Lister et al. define a “methylcytosine” as a cytosine that has a non-zero

β-value, as determined by a binomial test (see Section 4.4.2 for details and a criticism

of this concept). With its reference to “methylcytosines”, this may first appear to be a

within-fragment analysis of co-methylation, but it is in fact based on β-values. However,

unlike other methods described in this section, the analysis is not based on a correlation

of these β-values, but rather on patterns in the spacing of “methylcytosines” along the

genome. This leads to problems.

Lister et al. [2009] tabulate the number of neighbouring5 pairs of “methylcytosines” as

a function of the IPD. These counts are plotted as a bar chart, with IPD along the x-axis

and count on the y-axis, along with a cubic spline fit to the counts. This is done separately

for each combination of methylation context (CG, CHG and CHH) and genomic context

(exonic, intronic or random) for a total of nine plots (reproduced in Figure 6.2).

An 8 to 10 bp period in the fitted cubic spline is observed in most, but not all, of these

nine plots. This periodicity is very weak in several contexts and is absent for exonic CpGs.

The weakness of the signal is partially attributable to the small number of “methylcytosines”

in the CHG and CHH contexts in human samples. More concerning is that the reported

8 to 10 bp periods are weaker than a 3 bp period for “methylcytosines” at exonic CpGs.

Unlike the 8 to 10 bp period, the 3 bp period can clearly be observed in the raw counts,
4This is also referred to as “co-methylation” by Jurkowska et al. [2011], here meaning the methylation

of multiple loci in a single event. Jurkowska et al. [2011] review a plausible biochemical model for how
DNMT3a could co-methylate two CpGs separated by 8 to 10 bp; this model includes both the scenario
where both CpGs are on the same DNA strand and the scenario where the CpGs are on opposite strands.

5I think that “neighbouring” is what is meant by “non-redundant pair-wise distances” in the caption of
Figure 6.2, but I am not certain.
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Figure 6.2: Spacing of Adjacent Methylcytosines in Different Contexts. Prevalence of
mCHG/mCHH sites (y-axis) as a function of the number of bases between adjacent
mCHG/mCHH sites (x-axis) based on all non redundant pair-wise distances up to 50 nt in
exons, introns and random sequences. The blue line represents smoothing by cubic splines.
Adapted by permission from from Macmillan Publishers Ltd: [Nature Genetics] (Lister
et al. [2009]), copyright (2009)

although the cubic spline smoother seemingly ignores it. Lister et al. do not comment on

the 3 bp period.

Based on these nine plots, Lister et al. [2009] draw parallels to the 10 bp period in

the autocorrelation of CHH β-values observed by Cokus et al. [2008] and speculate that

“DNMT3A may be responsible for catalysing the methylation at non-CG sites”. However,

I suspect that the results in these nine plots are in fact driven by periodicities in where

cytosines are located in the genome rather than any periodicities in the actual methylation

of these cytosines. That is not to say that there aren’t periodicities in the methylation of

cytosines, but that is not what is being measured in this analysis. To explain, these plots

use the raw counts of “methylcytosines”, which are not adjusted for the frequency of pairs

of cytosines with a given IPD. If pairs of cytosines are observed more often at certain

IPDs then even if methylation was totally independent of IPD we would expect more

pairs of “methylcytosines” at these same IPDs. Therefore, at a minimum, it is necessary
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to normalise the number of “methylcytosines” by the number of cytosines.

In fact, there are well known periodicities in the distribution of bases in genomes. For

example, in eukaryotic genomes there is a 10 bp period of G+C dinucleotides that acts

out of phase with a 10 bp period of A+T dinucleotides for nucleosome-bound DNA [Segal

et al. 2006] and a “well-known period-3 oscillation in coding regions” of the genome [Li

1997]; the former likely explains the 8 to 10 bp period and the latter the 3 bp period for

exonic CpGs.

6.2.4 Chodavarapu et al. [2010]

Chodavarapu et al. [2010] use MNase-seq to study nucleosome positioning and the rela-

tionship to DNA methylation, including co-methylation, in Arabidopsis and an embryonic

human stem cell line (HSF1 ). The authors plot a “weighted average methylation”, which

I presume to be a weighted version of the β-values, against the distance from predicted

nucleosome start sites, which are obtained via MNase-seq. The nucleosome start sites

anchor the methylation observations to a common grid and this plot is used to show that

nucleosome bound DNA has a greater level of methylation than DNA that is not bound

to nucleosomes. A 10 bp period is readily observed in these plots, consistent with the

discovery of 10 bp period in the autocorrelation of β-values published by Cokus et al.

[2008]. Again, the observed periodicity is confirmed by analysing a Fourier transform of

this correlation signal.

In addition to the genome-wide analyses, the same method is used to examine promoters,

genes, repeats, euchromatic regions and centromeric regions of the Arabidopsis sample,

and promoters, genes, repeats and CpG islands of the HSF1 sample, which confirmed the

10 bp periodicity. In fact, these results revealed that the 10 bp period is common to all

methylation types, including symmetric CpG methylation, at least for nucleosome-bound

DNA. This led Chodavarapu et al. to discard their earlier hypothesis6 as to the source of the

10 bp period in favour of one that “nucleosomes are to some extent dictating access to the

DNA and therefore setting the register of methylation for all DNA methyltransferases

[emphasis added]” and not just for the DRM2 methyltransferase.
6Many of the same authors contributed to Cokus et al. [2008] and Chodavarapu et al. [2010].
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6.2.5 Li et al. [2010]

Li et al. [2010] compute “the correlation of methylation level of any two nearby CpGs

and the relationship between spatial distance (from one CpG to another) and strength

of this correlation”. Li et al. report that “co-methylation deteriorates over distance and

becomes nearly undetectable at distances ą 1, 000 bp”, and conclude that their results are

consistent with those in Eckhardt et al. [2006]. In addition to this genome-wide analysis, Li

et al. [2010] perform the same analysis for CpGs within 19 different genomic contexts such

as upstream of a gene, untranslated regions, coding DNA sequences and various repetitive

elements. Somewhat surprisingly, they do not specifically compare CpG islands to non

CpG islands, although some of these differences will be captured by the analysis of regions

upstream of a gene, which include many CpG island promoters.

Unfortunately, just as in Eckhardt et al. [2006], Li et al. [2010] never define exactly

what is being computed in their analysis of co-methylation and no software is available.

All the co-methylation results are presented as supplementary figures, which lack figure

legends and are supported by only very brief captions. So, once again, I have been forced

to make my best guess as to what these figures show and how it was computed.

Figure 6.3 plots the “correlation” against “distance of CpG” (0 to 1000), which I believe

are estimates of the correlation of aggregate methylation levels over the range 0 to 1000

bp. Based on the “n “ 18, 936, 995” quoted in the header of panel (a) of this figure, which

I interpret as the number of pairs used in this plot of “correlation” against “distance of

CpG” (0´ 1000), I believe that what is shown are the correlations of pairs of CpG β-values

where the pairs are separated by a common distance and have no intervening CpGs (i.e.

NIL “ 0 pairs). If all pairs were used, n would be much larger since there are some 25

millions CpGs in the haploid human genome. To emphasise, the correlation computed by

Li et al. [2010] is not the same as the autocorrelation computed in Cokus et al. [2008] since

Li et al. [2010] only use pairs of adjacent CpGs whereas Cokus et al. [2008] use all pairs of

CpGs, regardless of the number of intervening CpGs.

The plot of genome-wide correlations (panel (a) in Figure 6.3) contains a period of

approximately 170 bp, very similar to the 167 bp period identified in Arabidopsis by Cokus

et al. [2008]. This is further evidence that nucleosome spacing effects the strength of
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Figure 6.3: Co-methylation patterns for different genomic features. A reproduction of
Supplementary Figure 6 from Li et al. [2010] under the Creative Common Attribution
(CCBY) licence.

co-methylation. However, Li et al. [2010] found no evidence of higher frequency periods,

such as the 10 bp period reported by Cokus et al. [2008] and Chodavarapu et al. [2010].
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Figure 6.4: Transformation of methylation correlation at nearby CpG cytosines. A
reproduction of Supplementary Figure 7 from Li et al. [2010] under the Creative Common
Attribution (CCBY) licence.

6.2.6 Lyko et al. [2010]

In their study of differential methylation in queen and worker honey bees (Apis mellifera),

Lyko et al. [2010] perform an autocorrelation analysis of CpG methylation. They report

that the “correlation of methylation status of neighbouring CpGs increases sharply between

1 bp and 20 bp, then drops rapidly between 40 bp and 100 bp, and then slowly fades away”.

This analysis, however, is potentially flawed.

Figure 6.5 reproduces the results for the co-methylation analysis. Note that the

maximum value of the “CpG autocorrelation” is less than 0.015 (panel (A) of Figure 6.5). I

suspect that the autocorrelation has been incorrectly computed. Specifically, what I believe

has been computed is the autocorrelation of all positions in the genome, not just CpGs,

where non-CpGs have been artificially assigned a β-value of zero. It does not make sense

to include non-CpG positions, particularly non-cytosines that can never be methylated, in

an analysis of CpG co-methylation.
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A B

C D

Figure 6.5: Periodicity of methylation patterns. (A) Autocorrelation of CpG methylation
status over 1 kb. (B) Autocorrelation over 100 bp. Figures A and B show that the
correlation of methylation status of neighboring CpGs increases sharply between 1 bp and
20 bp, then drops rapidly between 40 bp and 100 bp, and then slowly fades away. CpGs
within a neighborhood of 2 bp to 100 bp are thus more likely to share the same methylation
status than more distant CpGs. (C) Fourrier [sic] transform of autocorrelation showing
a clear periodicity peak at 33 cycles per 100 bp (every 3 bp). (D) Distribution of codon
position of mCs, and distribution of methylation level depending on the position. These
two panels indicate that the distance between methylated CpGs is often a multiple of three
and that the methylated cytosine corresponds most frequently to the first nucleotide of an
arginine codon. A reproduction of Supplementary Figure 7 from Lyko et al. [2010] under
the Creative Common Attribution (CCBY) licence.

I do not have the data used in Lyko et al. [2010], but the following example supports

my belief. This example uses the chromosome 22 data from the FF sample in the Lister

dataset (see Section 3.2 for full details of this sample).

Let β˚ be the augmented vector of β-values, where:
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Figure 6.6 is a plot of the autocorrelation of the augmented vector, β˚ for the chro-

mosome 22 data from the FF sample. We see that it is remarkably similar to that of

panel (A) in Figure 6.5; the correlation first increases then decreases and the maximum

autocorrelation is very small, close to zero.
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Figure 6.6: Autocorrelation of β˚ for the chromosome 21 data of the FF sample.

On the one hand, this suggests that this may be the cause of the negligible auto-

correlations in Figure S7 of Lyko et al. [2010]. On the other hand, supposing that the

maximum autocorrelation of the β-values is truly less than 0.015, then this suggests that

co-methylation itself is negligible in honeybees, in contrast to results from other organisms.

The effort required to process the Lyko dataset, and the insufficient detail in the paper

to facilitate the reproducibility of the analysis, mean that I decided not to invest further

effort into exploring potential interpretations of the co-methylation analysis of Lyko et al.

[2010].

6.2.7 Lacey et al. [2013]

Lacey et al. [2013] explore co-methylation in their paper on modelling and analysing

reduced representation bisulfite-sequencing data (RRBS). To do so, Lacey et al. fit a
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Gaussian variogram model to the CpG β-values from chromosome 11 of a normal myotube

cell line (MTCTL2 ). The empirical and fitted variograms asymptote for CpGs separated

by approximately 3000 bp (Figure 1d of Lacey et al. [2013]; I am unable to reproduce the

figure here due to rights restrictions) and so they conclude that the methylation level of

CpGs “show a strong correlation for sites in close proximity, decaying to near independence

at distances beyond 3000 bp”.

Caution is warranted in extrapolating these results to statements about genome-wide

co-methylation. Firstly, this analysis uses only approximately 60, 000 CpGs7, far fewer than

the 25 million CpGs in the haploid human genome. Secondly, these data are from a single

sample from a single tissue, which cannot capture the sample-to-sample nor tissue-to-tissue

variability in co-methylation. Finally, RRBS targets CpG dense regions of the genome

with low levels of methylation and so these data do not capture co-methylation outside of

these regions, where the majority of the CpGs are found and which are highly methylated.

6.3 Within-fragment co-methylation

As discussed in Section 2.4.2, bisulfite-sequencing allows for the study of methylation

patterns at m-tuples from individual DNA fragments. Since each read comes from a single

haplotype from a single cell8, these data can be used to study co-methylation at the level

of individual DNA molecules. I argue that this is the more biologically meaningful level at

which to study co-methylation, since this is the same scale as the physical process that

lays down and maintains DNA methylation.

I call this within-fragment co-methylation, where ‘fragment’ refers to a fragment of DNA.

More precisely, within-fragment co-methylation is the dependence of DNA methylation

at methylation loci that occur on the same DNA fragment. It can be thought of as the

dependence structure of the binary stochastic process Zh “ pZh,1, Zh,2, . . . , Zh,Nlociq. There

is less previous research studying within-fragment co-methylation than there is studying
7The data for MTCTL2 are not publicly available so I estimated the number of sequenced CpGs

on chromosome 11 from three comparable myoblast RRBS libraries (samples wgEncodeHaibMethylRrbs-
HsmmtubefshdDukeSitesRep1, wgEncodeHaibMethylRrbsHsmmtubefshdDukeSitesRep2, and wgEncodeHaib-
MethylRrbsHsmmtubefshdDukeSitesRep3 available from http://hgdownload.cse.ucsc.edu/goldenPath/
hg19/encodeDCC/wgEncodeHaibMethylRrbs/).

8Here I ignore the possibility of chimeric reads that may be artificially produced by DNA fragments
ligating to one another during the library preparation or sequencing process.
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correlations of aggregate methylation levels. Chapter 7 extensively explores within-fragment

co-methylation and how different variables affect this dependence, such as the distance

between methylation loci and the genomic context of the methylation loci.

If we could sequence entire chromosomes by single reads, then we could analyse

co-methylation between any set of methylation loci. However, the most commonly used

technology for high-throughput bisulfite-sequencing, which is based on Illumina’s sequencing

technology, can only generate reads that span approximately 200 to 250 bp. We are therefore

limited to studying within-fragment co-methylation between methylation loci separated by

at most 200 to 250 bp9. Long-read sequencing technologies (e.g., Pacific Biosciences, Roche

454 and Oxford Nanopore) would overcome this limitation but the lower throughput of

these technologies, and the reliability with which they can identify methylcytosines, create

new complications. An alternative solution, although completely hypothetical, is to use

a technique that generates synthetic long reads, similar to those generated by Illumina’s

TruSeq Synthetic Long-Read technique10.

To summarise, current technologies mean that we are limited to studying within-

fragment co-methylation at loci that are within regions of approximately 200 to 250

bp.

6.3.1 Cokus et al. [2008]

As discussed in Section 6.2.2, Cokus et al. [2008] identify a 10 bp period in the autocorrela-

tion of β-values for CHH methylation from a whole-genome bisulfite-sequencing experiment

of Arabidopsis thaliana. They also report that they find this same period “when individual

reads are examined directly”.

The sequencing technology at the time of this publication produced very short reads,

on average only 31 bp of usable sequence. For the within-fragment co-methylation results,

Cokus et al. first identify all reads containing multiple CHH loci. Then, for a pair of CHH

loci in the same read, they estimate the probability that the second CHH in the pair is
9NB assembling these reads into longer contigs will not solve this problem since the assembly does

not guarantee that the reads assembled into longer fragments actually originated from the same cell or
haplotype.

10My understanding is that Illumina’s TruSeq Synthetic Long-Read technique cannot be directly applied
to bisulfite-sequencing for a number of technical reasons, including the fragility of large DNA fragments
treated with sodium bisulfite.
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methylated given that the first CHH in the pair is methylated. This is estimated by simply

counting the number of times this occurs and dividing by the number of pairs of CHH

loci that occur within the same read11. They estimate this probability separately for each

distance between CHH loci and separately for each of the five Arabidopsis chromosomes.

Cokus et al. then plot the average across the five chromosomes as a function of the

number of bp between the CHH loci. The plot includes pointwise 95% confidence intervals,

computed under an assumption of normality, and a running average of these averages.

This plot, reproduced in Figure 6.7, shows evidence of an approximately 10 bp period,

supporting the interpretation of the results observed in the autocorrelation of the β-values.

I consider these results as based on a restricted definition of within-fragment co-

methylation. To explain, these results tell us nothing about the probability that both CHH

loci are unmethylated nor the joint probability distribution of methylation for two CHH

loci on the same fragment; they tell us only about the probability that both CHH loci are

methylated.

Specifically, Cokus et al. [2008] only estimate the marginal probability that a CHH is

methylated, PrpZh,i “ 1q, and the probability that two CHH loci on the same fragment

are both methylated, PrpZh,i1 “ 1|Zh,i “ 1q, where i ă i1. From these two quantities we

can only estimate two of the four joint probabilities, PrpZh,i “ x, Zh,i “ yq, x, y P t0, 1u,

namely, PrpZh,i “ 1, Zh,i1 “ 1q and PrpZh,i “ 1, Zh,i1 “ 0q. It does not allow estimation

of PrpZh,i “ 0, Zh,i1 “ 0q, nor of PrpZh,i “ 0, Zh,i1 “ 1q, since these require estimates of

PrpZh,i1 “ 0|Zh,i “ 0q. While it is trivial to additionally estimate PrpZh,i1 “ 0|Zh,i “ 0q,

I argue in Section 7.3 that it is more useful and simpler to estimate the odds ratio,

ψ “
PrpZh,i“1,Zh,i1“1qPrpZh,i“0,Zh,i1“0q
PrpZh,i“1,Zh,i1“0qPrpZh,i“0,Zh,i1“1q , rather than the conditional probabilities, PrpZh,i1 “

1|Zh,i “ 1q and PrpZh,i1 “ 0|Zh,i “ 0q.

Furthermore, by aggregating all pairs of CHH loci separated by a common distance

and then estimating these probabilities, there is an implicit assumption that all such pairs

on the same chromosome have the same conditional probability, PrpZh,i1 “ 1|Zh,i “ 1q.

There is good reason to suspect that this is not true and that there exists significant
11A read may contain multiple pairs of CHH loci and it is not clear whether Cokus et al. consider all

pairs of CHH loci or only the first pair of CHH loci in a read. The number of pairs of CHH loci that occur
within the same read is not the same as the number of reads containing multiple CHH loci. Either method
should give similar results since there will be few 31 bp reads containing multiple pairs of CHH loci.
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Figure 6.7: Within-read probability of additional methylation of CHH sites within a given
distance from a methylated CHH site. Data were derived from individual BS-Seq reads.
The x-axis indicates the distance between the two cytosines. The y-axis indicates the
probability of methylation of CHH sites within the given distance from another methylated
CHH site. Each point is the mean value from averaging the probability from each of the
five Arabidopsis chromosomes, and the blue line is a running average of these mean values.
Error bars represent 95% confidence intervals via critical values of Student t distributions.
Adapted by permission from from Macmillan Publishers Ltd: [Nature Genetics] (Cokus
et al. [2008]), copyright (2008).

pair-to-pair variability. For example, we know for CpGs that those within CpG islands

have a vastly different probability of being methylated than do those outside of islands; it is

reasonable to suspect that this is also true for CHH methylation in different regions of the

Arabidopsis genome and hence for the co-methylation of these same loci. This aggregation

may also introduction artificial associations into the 2ˆ 2 contingency table from which

these probabilities are estimated [Good and Mittal 1987].
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6.3.2 Ball et al. [2009]

Ball et al. [2009] use bisulfite padlock probes with 36 bp single-end reads to profile

CpG methylation at approximately 7, 000 CpGs in an Epstein-Barr virus transformed

B-lymphocyte cell line. As part of their study, Ball et al. sought to investigate whether

the co-methylation reported by Eckhardt et al. [2006] occurs at the single-molecule level.

To do so, Ball et al. took all reads containing multiple CpGs and mapping to positions

with intermediate β-values (0.2 ă β ă 0.8) with at least 100ˆ sequencing coverage. From

these reads they computed the Pearson correlation of within-read methylation states. Ball

et al. found that the distribution of these correlations is centred around 0.5 with very few

values below zero, evidence that methylation levels at CpGs on the same DNA fragment

“are generally positively correlated”.

The obvious limitation to this analysis is the small number of CpG pairs interrogated

by the assay. The short reads also only allow for the exploration of within-fragment

co-methylation at very close CpGs and Ball et al. do not explore the effect of distance

between CpGs (IPD) on co-methylation.

6.3.3 Lacey and Ehrlich [2009]

Lacey and Ehrlich [2009] develop stochastic models of DNA methylation replication during

mitosis (cell division) for a single double-stranded DNA molecule in humans. The most

complex model that Lacey and Ehrlich consider, called the neighbouring sites model, uses a

one-step Markov random field. Under this model, the methylation state of one locus, Zh,i,

depends on the methylation states of the adjacent loci, Zh,i´1 and Zh,i`1. The physical

distances between these neighbours, the IPDs, are not considered.

The neighbouring sites model requires an analysis of within-fragment co-methylation

in order to estimate the transition probabilities. They estimate these parameters from

two small regions of 10 human ovarian carcinoma samples and a pool of somatic controls,

each region approximately 200 bp in length and containing 13 and 14 CpGs, respectively.

These regions were sequenced using hairpin-bisulfite PCR, an assay that measures DNA

methylation on both strands of a double-stranded DNA molecule12. For each region, 12 to
12This is unlike traditional bisulfite-sequencing, which only measures methylation along a single DNA
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16 clones were sequenced per sample13

For each of these regions, Lacey and Ehrlich found that the methylation level of a

CpG strongly depends on that of its neighbours. In other words, they found significant

within-fragment co-methylation. They also found that the overall level of methylation of

the CpGs in a region influenced the strength of the within-fragment co-methylation.

In summary, this analysis uses high resolution measurements from a moderate number

of clones from a moderate number of samples for a very small fraction of the human genome.

While the methods and models are quite interesting, the data are limited to such a small

region that it is difficult to know whether these results give an accurate genome-wide

picture of within-fragment co-methylation.

6.3.4 Landan et al. [2012]

Landan et al. [2012] is notable for its use of the within-read information available from

bisulfite-sequencing data. The authors explore the within-sample heterogeneity of methyla-

tion patterns at 4-tuples and 6-tuples of CpGs from ultra-deep bisulfite-sequencing (the

median sequencing coverage of each CpG in the target is greater than 10, 000ˆ) of 45

cancer-related CpG islands and study how methylation dynamics at this regions evolves

over time.

As part of their analysis, Landan et al. construct “methylation linkage diagrams” based

on a Pearson correlation estimate of within-fragment co-methylation. For each CpG 2-tuple

in their targeted regions, they create a 2ˆ 2 contingency table. The general form of the

table is shown below in Table 6.1. They then compute the Pearson correlation of each

table14, r “ nmmnuu´nmunum?
nu`nm`n`un`m

. Importantly, r is based on within-read measurements from a

single sample and so these r are estimates of within-read, within-sample co-methylation.

So-called “methylation linkage diagrams” are created by plotting the Pearson correlation

of each 2-tuple, rpi,i1q as a heatmap (à la heatmaps of linkage disequilibrium) to identify

blocks of CpGs with significant co-methylation. It should be noted that the concepts of

strand.
13Essentially, 12´ 16 reads were generated per sample.
14The formula I give for r is also known as the φ coefficient of a 2 ˆ 2 table. The φ coefficient of a

2ˆ 2 table of binary variables, such as Table 6.1, is mathematically equivalent to the Pearson correlation
coefficient of the same data.
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Table 6.1: Summary of read counts at a CpG 2-tuple. For example, num is the number of
reads methylated at the first CpG and unmethylated at the second CpG. We use the ’plus’
notation to denote the sum over the index it replaces, e.g., nu` “ nuu ` num.

Second CpG
Unmethylated Methylated Total

First CpG Unmethylated nuu num nu`
Methylated nmu nmm nm`

Total n`u n`m n “ n``

‘subject’ and ‘population’ are rather different for “methylation linkage” than they are for

genetic linkage (see Table 6.2).

Table 6.2: Notions of ‘subject’ and ‘population’ in traditional genetic linkage and the
“methylation linkage” of Landan et al. [2012]. NB ‘person’ could be any organism, e.g,
‘mouse’, ‘dog’, etc.

Subject Population
Genetic linkage Person Population
Methylation linkage (Haploid) genome of cell Person

From the methylation linkage analysis of these 45 regions, Landan et al. conclude that:

“[the] correlation between the methylation states of pairs of CpGs was generally

very low. This lack of correlation suggests that methylation dynamics are

typically independent for different CpGs, making the methylation state of one

CpG (whether high or low) uninformative on the methylation state of nearby

CpGs.”

As we will see in Chapter 7, this result is contradicted by my analyses of within-fragment

co-methylation using whole-genome data.

6.4 Between-sample co-methylation

As is now abundantly clear, there are multiple definitions of within-sample co-methylation.

An almost orthogonal concept is between-sample co-methylation, the correlation of methy-

lation levels for a single pair of loci between a set of samples.
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Since it is a loci-specific, population-level correlation, between-sample co-methylation

is somewhat analogous to the idea of linkage disequilibrium between genetic loci. Briefly,

for two loci, pi, i1q, the correlation of aggregate methylation levels is computed across

samples using, for example, the Pearson correlation coefficient, r “ corpβi,βi1q, where

βi “ pβi,1, . . . , βi,Nsamplesq.

The concept of between-sample co-methylation leads to the attractive idea of identifying

“methylation tag-loci”, whose methylation level is a good proxy for the methylation level

across a larger region. These tag-loci could act like tag-SNPs used in genome-wide

association studies, which would allow researchers to assay a small subset of loci in the

methylome and capture much of the methylation variability. This idea has also been

explored by Barrera and Peinado [2012] with respect to the use of HpaII sites as proxies

for the methylation level of CpG islands.

Unfortunately, unlike linkage disequilibrium, we cannot assume that between-sample

co-methylation is identical between different tissues from the same individuals since DNA

methylation, unlike DNA sequence, varies between tissues. Therefore, at best, we might

hope to generate tissue-specific maps of between-sample co-methylation.

In order to leverage between-sample co-methylation in this way, we also need to know

the size of these co-methylation blocks, that is, the length of the regions over which

between-sample co-methylation is sufficiently strong. The longer these blocks are, the more

sparsely we can afford to sample individual methylomes.

Bell et al. [2011] identify evidence of between-sample co-methylation using the Illumina

27k microarray to measure DNA methylation in lymphoblastoid cell lines from 77 HapMap

Yoruba individuals. Of note, they found that between-sample co-methylation decays as a

function of the distance between CpGs (IPD) and is stronger within CpG islands than

outside of CpG islands. However, it must be recognised that the Illumina 27k microarray

measures DNA methylation at less than 1% of all CpGs as is biased towards CpG islands.

Another example of between-sample co-methylation is given by Liu et al. [2014]. The

authors compute the correlation of pairs of β-values between samples in three studies

(n “ 247, n “ 91 and n “ 305, respectively) to identify clusters of correlated CpGs and

relate methylation changes at these clusters to nearby SNP genotypes. The resolution of
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their data is better than Bell et al. [2011] since they use the Illumina 450k microarray,

however it still only captures less than 2% of all CpGs in the genome. Liu et al. conclude

that “DNA methylation is correlated over regions with a median length of 274 bp from our

data set”. They also note that, “methylation codependency [co-methylation] itself varies

across the genome”, as is to be expected.

A simple way to estimate between-sample co-methylation is to create a matrix of

β-values, β, where the pi, jq entry is βi,j . Then, compute R “ corpβq, whose pk, lq entry is

corpβ.,k,β.,lq, where β.,k is the column vector of β-values for the kth methylation loci. This

is what the R package, coMET [Martin et al. 2015], does to estimate the between-sample

co-methylation of Illumina HumanMethylation450 array data. As far as I am aware, coMET

is the only software specifically designed to estimate between-sample co-methylation and

integrate this with other genomic annotations.

6.5 Leveraging co-methylation in downstream analyses

The variety of definitions, rigour, and reproducibility of the published analyses of co-

methylation, not to mention the lack of software implementing the proposed methods, has

made it difficult to properly account for co-methylatoin in downstream analyses. Ideally,

co-methylation would not only be accounted for, but leveraged, in downstream analyses of

DNA methylation data. In fact, some authors have already sought to do this.

For example, the R/Bioconductor packages bsseq [Hansen et al. 2011, 2012] and

BiSeq [Hebestreit et al. 2013] both cite Eckhardt et al. [2006] as providing evidence of

co-methylation, which can be leveraged by spatial smoothing of the β-values prior to testing

for differential methylation. Specifically, by assuming that CpGs close to one another have

similar methylation levels, the smoothed β-values are, on average, more accurate than the

raw β-values. Both bsseq and BiSeq smooth β-values on a per-sample basis.

Smoothing is particularly powerful for experiments with low sequencing coverage since

the error in estimating the raw β-values is inversely proportional to the sequencing coverage

and smoothing reduces this error. An important parameter when smoothing is the choice

of window size over which to smooth, also known as the bandwidth of the smoother. The

default window size in bsseq is defined as one that contains at least 70 CpGs and is at least
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2000 bp wide. BiSeq uses a much smaller default window size of 80 bp, a decision that is

driven by its focus on RRBS data which has a higher CpG density than whole-genome

bisulfite-sequencing data. Ideally, a data-driven bandwidth would be used, one driven by

the strength of co-methylation in the region, but this is difficult to implement in practice. A

simpler but potentially useful hybrid would be to define different window sizes for genomic

features with generally different co-methylation structures, e.g., CpG islands vs. the rest of

the genome (see Chapter 7).

In addition to smoothing the β-values, BiSeq also estimates and tries to account

for the spatial correlation of test statistics when testing for differential methylation at

neighbouring loci. This is not the same as looking for correlations between the β-values,

but is rather based on looking for correlations amongst the differences in β-values, since

these differences are what the test statistics of differential methylation are based upon.

Specifically, BiSeq fits a semivariogram to the test statistics of differentially methylated

CpGs. The correlations estimated using the semivariogram are in turn used in estimates of

the standard deviations when identifying differentially methylated regions.

More generally, methods such as SLIM [Wang et al. 2011] and comb-p [Pedersen et al.

2012] attempt to account for the correlation amongst test statistics in genomics data.

Rather than analysing the distribution of the test statistics themselves or the underlying

data, they do this by analysing the distribution of the resulting P-values. This makes

these methods quite general, although application-specific methods may be more powerful.

comb-p has been used in the analysis of DNA methylation data from the Illumina microarray

platforms [Pedersen et al. 2012].

These methods leveraging correlations amongst the test statistics or their P-values are

not directly based on co-methylation estimates. However, what drives the correlations

amongst the test statistics is a complex mixture of within-sample and between-sample

co-methylation.

Aclust [Sofer et al. 2013] is notable for its use of between-sample co-methylation to

identify differentially methylated regions. Unlike other methods for detecting DMRs, which

test for DMCs and then cluster these DMCs into DMRs, Aclust clusters loci prior to

testing for differential methylation. That is, Aclust tests for DMRs and not DMCs. This

has the advantage of reducing the dimensionality of the data. Clusters are formed using a
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modified form of agglomerative nested clustering, where the modification restricts clusters

to comprise neighbouring loci. The distance metric used in the clustering is based on an

estimate of the between-sample co-methylation for each pair of adjacent loci.

Capra and Kostka [2014] also make use of between-sample co-methylation, albeit a

specialised form of it, to study the dynamics of DNA methylation in differentiating cell

lineages. For each locus there is a correlation between its methylation state in the precursor

cell and its dependent cell types, which they call “vertical” correlations (in contrast to

the “horizontal” correlations of within-sample co-methylation). In this specialised setting,

where ‘between-samples’ means “between samples in a lineage”, they show that a method

based on “vertical” correlations is better at imputing the methylation level of CpGs than a

method based on “horizontal” within-sample co-methylation.

6.6 Summary

While it has long been observed that DNA methylation at nearby loci is highly correlated,

pinning down exactly what this means, and its implications, is surprisingly difficult. As I

have shown, there are problems and limitations with most, if not all, previous analyses.

These problems range from a lack of methodological detail and limited data, through to

serious flaws in the methodology or its implementation. Moreover, despite numerous papers

including an analysis of co-methylation, few of these have includes software to reproduce

their method, further complicating the assessment of these methods.

It is clearly inappropriate to treat methylation at nearby loci as independent and

methods have been proposed to account for or leverage this in various ways. These methods

would be better informed by a more rigorous and reproducible analysis of co-methylation,

which I give in Chapter 7.
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Chapter 7

Co-methylation

Overview

This chapter describes two measures of within-sample co-methylation, within-fragment co-

methylation and correlation of β-values. In order to analyse within-fragment co-methylation,

we first study methods for estimating meaningful summaries of dependence in sparse 2ˆ2ˆK

contingency tables.

Using estimates of both within-fragment co-methylation and correlation of β-values,

we explore how co-methylation is affected by the distance between methylation loci and

the genomic context of the methylation loci. We apply these methods to 40 whole-genome

bisulfite-sequencing samples to study how co-methylation varies between different samples.

This chapter focuses on co-methylation of CpGs, although the methods described are

also applicable to non-CpG methylation loci.

7.1 Correlations of β-values

Chapter 6 documented several previous analyses based on ‘correlations’ of aggregate

methylation levels, such as β-values. What was lacking from these were clear descriptions

of the proposed methods and software implementations. In this chapter I try to rectify the

former and with the MethylationTuples I make available a software implementation of

these methods.
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7.1.1 Methods

Here I describe two simple methods based on correlations of β-values. Both of these

are implemented in the methLevelCor() function that is part of the MethylationTuples

software.

The aim of this analysis is to address the question of ‘how are aggregate methylation

levels correlated as a function of the distance between loci?’. There are two steps in this

analysis:

1. Define the pairs of methylation loci.

2. For each intra-pair distance (IPD), compute the correlation of β-values for all pairs

of methylation loci separated by that IPD.

The second step may be further stratified by the genomic context of the pair of CpGs,

such as whether they are in a CpG island, or other variables of interest.

The same analysis could be performed using M-values rather than β-values, and this

is available as an option in the methLevelCor() function.

Constructing the pairs

I consider two different strategies for creating pairs of CpGs. Both strategies are based

on CpGs in the reference genome after having filtered out those reference-specific CpGs.

That is, I begin with Iref and, based on the Bis-SNP output, I filter out loci that are

not CpGs in the sample’s genome. Rather than actually remove these sites, I simply set

the corresponding β-value to NA. I also set the β-values of ‘missing’ CpGs, those without

sufficient sequencing coverage to call a β-value, to NA so that these are still included in the

set of CpGs.

The first strategy creates all pairs of adjacent CpGs on the same chromosome and

strand, which are then stratified by IPD and any secondary variables, such as genomic

context. For a chromosome with Nloci CpGs there are pNloci ´ 1q pairs. I call this the

‘adjacent pairs’ or NIL “ 0 strategy, since all pairs have no intervening loci (NIL =

number of intervening loci)1.
1Recall that this is with respect to the reference genome and not the sample genome.
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The second strategy uses all pairs of CpGs on the same chromosome and strand, which

are then stratified by IPD and any secondary variables, such as genomic context. In

practice, the second strategy only uses pairs from a set of IPDs, e.g., IPD “ 2 to 2000 bp,

otherwise the number of pairs becomes unwieldy. This is what is called an ‘autocorrelation’

analysis of β “ pβ1, . . . , βNlociq by Cokus et al. [2008], although it is somewhat different

to the traditional notion of an autocorrelation analysis. I refer to this as the NIL ě 0

strategy. Using the NIL ě 0 strategy, two pairs of CpGs with an identical IPD may have

a very different number of intervening CpGs.

The interpretation of correlations computed using the NIL ě 0 is complicated because

the set of pairs are more heterogeneous than those under the NIL “ 0 strategy. For this

reason I prefer the NIL “ 0 strategy, however, it is useful to consider and contrast the

two strategies, which is what I have done in what follows.

Stratifying by a genomic feature

Two pairs of CpGs with an identical IPD may come from two regions, even when using the

NIL “ 0 strategy. These regions may have very different methylation dynamics. In other

words, the vector of β-values for a given sample is highly non-stationary; the correlation

between two loci depends on more than just the IPD. An obvious variable to investigate

is how strong an influence the genomic context has on these correlations of β-values. To

do this, we can stratify our analysis by a genomic feature. While this does not eliminate

this heterogeneity, it may help identify factors that drive some of the variation.

For any genomic feature, a pair of loci may be inside, outside or spanning the boundary

of the feature. Figure 7.1 illustrates the ‘feature status’ of some pairs of loci. Note that a

pair where each locus is in a distinct feature from the same class is declared to be inside

the feature, i.e. elements need not be in the same feature but rather in the same type

of feature. The genomic feature should partition the genome so that each locus is either

inside or outside of the feature. Since the number of ‘spanning pairs’ is substantially fewer

than those inside or outside of the feature, and the boundaries of the feature are oftentimes

fuzzy, I have excluded these ‘spanning pairs’ in the results shown below.
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Outside Inside

Spanning Inside

Figure 7.1: Schematic illustrating the ‘feature status’ of four pairs of methylation loci. The
circles represent loci and the grey bars a genomic feature, such as CpG islands. Each pair’s
feature status is determined by whether both loci are outside of the feature (outside), one
locus is inside and one outside of the feature (spanning), or both inside the feature (inside).
Note that the rightmost pair is ‘inside’ even though the two loci that comprise the pair are
in different elements of the genomic feature.

Choice of correlation coefficient

Three commonly used correlation coefficients are Pearson’s r [Pearson 1895], Spearman’s

ρ [Spearman 1904] and Kendall’s τ [Kendall 1938]. Briefly, Pearson’s product-moment

correlation is designed to detect linear relationships between two variables. However, it is

not robust to outliers, which motivates the use of Spearman’s and Kendall’s rank-based

correlation coefficients. Spearman’s ρ is simply the Pearson product-moment correlation of

the ranks of the data while Kendall’s τ is based on the relative frequency of concordantly

ranked pairs.

Owing to the size of whole-genome bisulfite-sequencing data, I have chosen to only

compute Pearson’s r and Spearman’s ρ, which are much faster to compute than Kendall’s

τ . The methLevelCor() function in the MethylationTuples package will compute a

confidence interval, 95% by default, for the Pearson correlation. This feature is not yet

available when using Spearman’s or Kendall’s correlation coefficient.

Interpretation of correlation

Before computing correlations and trying to interpret these, it is a good idea to look at

the data from which these correlations are computed. Figure 7.2 shows kernel density

smoothed scatterplots for pairs of β-values separated by IPD “ 2, 20, 200 or 2000 bp with

NIL “ 0 or NIL ě 0 from the ADS sample from the Lister dataset. It highlights two
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major problems.

Firstly, the bimodality of the distribution of β-values means that the points concentrate

in the corners of the plot: p0, 0q, p0, 1q, p1, 0q and p1, 1q. A correlation coefficient is not well

suited to summarising these distributions of points. Secondly, when using the NIL “ 0

strategy, as the IPD increases, the number of points in each scatterplot decreases and so

the correlations are very unstable.

In summary, the correlations of pairs of β-values should be cautiously interpreted,

bearing in mind that these are somewhat crude summaries that hide many details of the

underlying scatterplots.
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Figure 7.2: Kernel density smoothed scatterplots for pairs of CpG β-values, pβ1, β2q, from
the ADS sample. β-values are computed using strand-collapsed counts. n is the number of
pairs in each scatterplot. The Spearman correlation of each scatterplot is also reported.
Individual plots created using the smoothScatter() function in R.

7.1.2 Results

For all 40 samples in the EPISCOPE, Lister, Seisenberger and Ziller datasets, I compute

the Pearson and Spearman correlations using both the NIL “ 0 and NIL ě 0 strategies.

I compute these genome-wide and after stratifying CpG pairs by whether they are in a

CpG island. These analyses are performed separately for each strand and also for strand-
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collapsed β-values. The plots of these analyses show the raw estimates as semi-transparent

points and are overlaid with a loess fit to these points.

The effect of strand

We have seen that the CpG β-values are very highly correlated across strands for most

samples when the minimum sequencing coverage is at least 5ˆ (r “ 0.8 to 0.9, Section

4.4.1). While there are some notable exceptions (the embryo-derived and embryonic stem

cell samples), I have opted to collapse by strand in most of the analyses in Section 7.1.2 in

order to simplify the plots.

Figures 7.3, 7.4, 7.5 and 7.6 are the only plots to stratify by strand and show the

Spearman correlations of β-values for NIL “ 0 pairs of CpGs. These correlations are very

similar across strands, even for those embyro-derived and embryonic stem cell samples.

E13BUF E13SA E13VA E13VAT

E18BUF E18SA E18VA E18VAT

E23BUF E23SA E23VA E23VAT

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

0 500 1000 1500 0 500 1000 1500 0 500 1000 1500 0 500 1000 1500
IPD (bp)

Truncated at 1500 bp

S
pe

ar
m

an
 c

or
re

la
tio

n

strand
+
−

EPISCOPE: NIL = 0 pairs (min. coverage = 5 )

Figure 7.3: Correlations of β-values for strand-specific pairs of CpGs with NIL “ 0 for
samples from the EPISCOPE dataset. The raw estimates of the correlations are shown as
semi-transparent points and are overlaid with a loess fit to these points (span = 0.1).
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Figure 7.4: Correlations of β-values for strand-specific pairs of CpGs with NIL “ 0 for
samples from the Lister dataset. The raw estimates of the correlations are shown as
semi-transparent points and are overlaid with a loess fit to these points (span = 0.1).
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Figure 7.5: Correlations of β-values for strand-specific pairs of CpGs with NIL “ 0 for
samples from the Seisenberger dataset. The raw estimates of the correlations are shown as
semi-transparent points and are overlaid with a loess fit to these points (span = 0.1).
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Figure 7.6: Correlations of β-values for strand-specific pairs of CpGs with NIL “ 0 for
samples from the Ziller dataset. The raw estimates of the correlations are shown as
semi-transparent points and are overlaid with a loess fit to these points (span = 0.1).

Choice of correlation coefficient

Figures 7.7, 7.8, 7.9 and 7.10 compare the Pearson correlation coefficient to the Spearman

correlation coefficient. The two correlation coefficient give qualitatively similar results,

however, the Spearman correlation is consistently smaller in magnitude than the Pearson

correlation.

I have elected to use Spearman’s correlation coefficient in what follows because it is

more robust to outliers than Pearson’s correlation [Kraemer 2006]. However, this does not

remove the general limitations of using correlation coefficients (discussed in Section 7.1.1).
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Figure 7.7: Pearson correlation versus Spearman correlations of β-values for strand-collapsed
pairs of CpGs with NIL “ 0 for samples from the EPISCOPE dataset. The raw estimates
of the correlations are shown as semi-transparent points and are overlaid with a loess fit to
these points (span = 0.1).
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Figure 7.8: Pearson correlation versus Spearman correlations of β-values for strand-collapsed
pairs of CpGs with NIL “ 0 for samples from the Lister dataset. The raw estimates of
the correlations are shown as semi-transparent points and are overlaid with a loess fit to
these points (span = 0.1).
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Figure 7.9: Pearson correlation versus Spearman correlations of β-values for strand-collapsed
pairs of CpGs with NIL “ 0 for samples from the Seisenberger dataset. The raw estimates
of the correlations are shown as semi-transparent points and are overlaid with a loess fit to
these points (span = 0.1).
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Figure 7.10: Pearson correlation versus Spearman correlations of β-values for strand-
collapsed pairs of CpGs with NIL “ 0 for samples from the Ziller dataset. The raw
estimates of the correlations are shown as semi-transparent points and are overlaid with a
loess fit to these points (span = 0.1).
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7.1.3 CpG pairs with NIL “ 0

Figures 7.11, 7.12, 7.13 and 7.14 show the Spearman correlations of strand-collapsed

β-values for NIL “ 0 pairs of CpGs. Two things immediately stand out. Firstly, for all

samples the trend is that the strength of the correlation decays as a function of IPD; pairs

of CpGs separated by larger distances are on average less correlated than pairs of CpGs

separated by shorter distances. Secondly, the estimated correlations violently jump around

for larger IPDs. The latter is simply due to the aforementioned lack of NIL “ 0 pairs at

larger IPDs with which to estimate these correlations. Therefore, it is the trend, rather

than the individual values, that should be analysed in these plots.

There are some consistent patterns in comparing these trends across samples. The

correlations very quickly drop well below 0.5, within approximately 50 bp for all the EPIS-

COPE and Seisenberger samples and most of the Lister and Ziller samples. Samples that

are exceptions to this trend (ADS, ADS-adipose, ADS-iPSC, FF, IMR90_r1, IMR90_r2,

IMR90_cell_line and HepG2_cell_line) have a slower decay in these correlations and

remain more highly correlated over IPD “ 2, . . . , 1500. These same samples are also

notable because they have significant amounts of intermediate methylation (Section 4.4.1).

I believe this is what drives the stronger and more slowly decaying correlations. The

scatterplots of β-values for these samples will have more β-values in the middle of the

scatterplot, and fewer in the corners, hence the stronger correlations.

Most samples have a correlation close to 1 for neighbouring CpGs (IPD “ 2). The

notable exceptions are the embryonic stem cell replicates, H1_r1 and H1_r2 (Lister

dataset), which begin with a maximum correlation of only around 0.5. This is not observed

in the other embryonic stem cells (H9, H9_Laurent, HSF1 and J1_1 ), which makes it

difficult to know whether β-values of embryonic stem cells are truly less correlated than

other cell types.

The trend of the correlations for all these samples plateaus out close to zero, slightly

higher for those samples with significant intermediate methylation. It should not be

concluded from this, however, that the methylation of CpGs separated by more than a

few hundred base pairs are uncorrelated. Recall that these results are only for NIL “ 0

pairs of CpGs, which are increasingly rare for larger IPDs. These results tell us about the
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‘first-order’ correlations of β-values, which decay very quickly but whose importance also

decreases quite quickly owing to the vast majority of CpGs being within 100 bp of another

CpG (e.g., Figure 1.4 shows the distribution of IPDs for humans).

One final aspect of these genome-wide plots bears mentioning. There are hints of an

approximately 150 to 200 bp periodicity in these plots. This is a similar scale to the

previously reported periodicities in correlations of β-values (see Chapter 6). While this

periodicity can readily be detected by eye, it is somewhat more difficult to verify using

classical methods from spectral analysis. The chief reason is that the data are very noisy

beyond the second or third putative cycle due to the limited data at these larger IPDs.
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Figure 7.11: Spearman correlations of β-values as a function of IPD for strand-collapsed
pairs of CpGs with NIL “ 0 for samples from the EPISCOPE dataset. The raw estimates
of the correlations are shown as semi-transparent points and are overlaid with a loess fit to
these points (span = 0.1).
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Figure 7.12: Spearman correlations of β-values as a function of IPD for strand-collapsed
pairs of CpGs with NIL “ 0 for samples from the Lister dataset. The raw estimates of
the correlations are shown as semi-transparent points and are overlaid with a loess fit to
these points (span = 0.1).

E16.5_male_1 E6.5_epiblast_1 J1_1

−1.0

−0.5

0.0

0.5

1.0

0 500 1000 1500 0 500 1000 1500 0 500 1000 1500
IPD (bp)

Truncated at 1500 bp

S
pe

ar
m

an
 c

or
re

la
tio

n

Seisenberger: NIL = 0 pairs (min. coverage = 10 )

Figure 7.13: Spearman correlations of β-values as a function of IPD for strand-collapsed
pairs of CpGs with NIL “ 0 for samples from the Seisenberger dataset. The raw estimates
of the correlations are shown as semi-transparent points and are overlaid with a loess fit to
these points (span = 0.1).
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Figure 7.14: Spearman correlation of β-values as a function of IPD for strand-collapsed
pairs of CpGs with NIL “ 0 for samples from the Ziller dataset. The raw estimates of
the correlations are shown as semi-transparent points and are overlaid with a loess fit to
these points (span = 0.1).
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Figures 7.11, 7.12, 7.13 and 7.14 are genome-wide plots; all pairs of CpGs with a

given IPD are treated identically. However, there are good reasons to expect that the

correlations of β-values, like the β-values themselves, might be influenced by their genomic

context. To investigate this, we can stratify pairs of CpGs pairs by a genomic feature and

repeat the analysis. The obvious feature to stratify on is CpG islands.

Figures 7.15, 7.16, 7.17 and 7.18 are plots of Spearman correlations of β-values for

pairs of CpGs stratified by whether the pair is inside or outside of a CpG island2. Again,

the substantial noise in these plots is due to a lack of NIL “ 0 pairs with large IPDs,

particularly inside CpG islands.

The message from these plots is clear, β-values of NIL “ 0 pairs within CpG islands

are much more correlated than those pairs outside of islands. Stratifying by CpG island

status also reveals that the correlation of the methylation levels of CpGs inside CpG islands

is less influenced by IPD. In fact, for some samples it appears that the most correlated

NIL “ 0 pairs inside CpG islands are not those with the minimum IPD “ 2, but those

with a slightly larger IPD. From these plots we can now see that the apparent sharp

decline in correlations over the first 50 bp from the genome-wide data is really driven by a

shift from pairs that are frequently inside CpG islands to pairs that are mostly outside of

islands.

2Pairs spanning the boundary of a CpG island are ignored. There are few such pairs when NIL “ 0.
While there are considerably more such pairs when NIL ě 0, I have ignored these in favour of simplicity.
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Figure 7.15: Spearman correlations of β-values as a function of IPD stratified by CpG
island status for strand-collapsed pairs of CpGs with NIL “ 0 for samples from the
EPISCOPE dataset. The raw estimates of the correlations are shown as semi-transparent
points and are overlaid with a loess fit to these points (span = 0.1).
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Figure 7.16: Spearman correlations of β-values as a function of IPD stratified by CpG
island status for strand-collapsed pairs of CpGs with NIL “ 0 for samples from the Lister
dataset. The raw estimates of the correlations are shown as semi-transparent points and
are overlaid with a loess fit to these points (span = 0.1).
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Figure 7.17: Spearman correlations of β-values as a function of IPD stratified by CpG
island status for strand-collapsed pairs of CpGs with NIL “ 0 for samples from the
Seisenberger dataset. The raw estimates of the correlations are shown as semi-transparent
points and are overlaid with a loess fit to these points (span = 0.1).
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Figure 7.18: Spearman correlations of β-values as a function of IPD stratified by CpG
island status for strand-collapsed pairs of CpGs with NIL “ 0 for samples from the Ziller
dataset. The raw estimates of the correlations are shown as semi-transparent points and
are overlaid with a loess fit to these points (span = 0.1).
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7.1.4 CpG pairs with NIL ě 0

Figures 7.19, 7.20, 7.21 and 7.22 are the plots of CpG β-value correlations against IPD

for NIL ě 0 pairs. In contrast to the NIL “ 0 results, the correlations here are relatively

stable, at least for IPD “ 2, . . . , 20003. This is because there are many more NIL ě 0

pairs than there are NIL “ 0 pairs.

When we aggregate over as many factors as we are in these genome-wide NIL ě 0

plots, we find that there is little difference in the correlation curves between samples. All

samples have a very high correlation, close to 1, for small IPDs that steadily decays to a

lower correlation of 0.2 to 0.4 by IPD “ 2000.
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Figure 7.19: Spearman correlation of β-values for strand-collapsed pairs of CpGs with
NIL ě 0 for samples from the EPISCOPE dataset. The raw estimates of the correlations
are shown as semi-transparent points and are overlaid with a loess fit to these points (span
= 0.1).

3These correlations could be computed for IPD ą 2000. However, constructing all NIL ě 0 pairs
requires much more time and memory than constructing all NIL “ 0 pairs because there are many more
such pairs. For this reason I have focused on IPD “ 2, . . . , 2000 for the NIL ě 0 pairs.
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Figure 7.20: Spearman correlation of β-values for strand-collapsed pairs of CpGs with
NIL ě 0 for samples from the Lister dataset. The raw estimates of the correlations are
shown as semi-transparent points and are overlaid with a loess fit to these points (span =
0.1).
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Figure 7.21: Spearman correlation of β-values for strand-collapsed pairs of CpGs with
NIL ě 0 for samples from the Seisenberger dataset. The raw estimates of the correlations
are shown as semi-transparent points and are overlaid with a loess fit to these points (span
= 0.1).
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Figure 7.22: Spearman correlation of β-values for strand-collapsed pairs of CpGs with
NIL ě 0 for samples from the Ziller dataset. The raw estimates of the correlations are
shown as semi-transparent points and are overlaid with a loess fit to these points (span =
0.1).

176



Comparing CpG islands to non-islands, we again see that the methylation levels of

pairs of CpGs within islands are consistently more correlated than those outside of islands4

(Figures 7.23, 7.24, 7.25 and 7.26).
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Figure 7.23: Spearman correlations of β-values as a function of IPD stratified by CpG
island status for strand-collapsed pairs of CpGs with NIL ě 0 for samples from the
EPISCOPE dataset. The raw estimates of the correlations are shown as semi-transparent
points and are overlaid with a loess fit to these points (span = 0.1).

The 150 to 200 bp periodicity is also evident from the NIL ě 0 data and is particularly

clear for the CpG pairs outside of CpG islands. This may be due to different regulation

of DNA methylation outside of CpG islands or simply because CpG islands have such

consistently high correlations that these periodicities are not evident.

4The minor exception is the HepG2_cell_line where the CpG island and non-island lines intersect by
IPD “ 1500, but we have already seen that this sample has an unusual methylome compared to the other
samples, particularly with respect to CpG islands (see Figure 4.17).
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Figure 7.24: Spearman correlations of β-values as a function of IPD stratified by CpG
island status for strand-collapsed pairs of CpGs with NIL ě 0 for samples from the Lister
dataset. The raw estimates of the correlations are shown as semi-transparent points and
are overlaid with a loess fit to these points (span = 0.1).
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Figure 7.25: Spearman correlations of β-values as a function of IPD stratified by CpG
island status for strand-collapsed pairs of CpGs with NIL ě 0 for samples from the
Seisenberger dataset. The raw estimates of the correlations are shown as semi-transparent
points and are overlaid with a loess fit to these points (span = 0.1).
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Figure 7.26: Spearman correlations of β-values as a function of IPD stratified by CpG
island status for strand-collapsed pairs of CpGs with NIL ě 0 for samples from the Ziller
dataset. The raw estimates of the correlations are shown as semi-transparent points and
are overlaid with a loess fit to these points (span = 0.1).
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7.1.5 Limitations

A limitation to these analyses is that they are based on correlations of measurements

that are aggregates from many thousands of DNA molecules. We are not measuring

co-methylation on the scale at which the biological process of DNA methylation acts,

namely at the level of individual DNA molecules. As noted by Ball et al. [2009], “the clonal

feature of Illumina sequencing [allows us] to investigate whether co-methylation occurs at

the single-molecule level”. We explore this topic in Section 7.3, but before doing so we first

must first discuss the challenge of estimating meaningful measures of dependence in sparse

2ˆ 2ˆK contingency tables. While perhaps not yet apparent, this will be essential for

the analysis of within-fragment co-methylation.

7.2 Estimating dependence in sparse 2 ˆ 2 ˆK contingency

tables

We will begin with an overview of the simplest case, estimating dependence in a 2 ˆ 2

contingency table (i.e. K “ 1). We will then progressively introduce the complications of

sparsity, K ą 1, and heterogeneity across the K tables. We conclude with a simulation

study highlighting the performance of several different estimators of dependence in sparse

2 ˆ 2 ˆ K contingency tables and determine which is most appropriate for a study of

within-fragment co-methylation.

7.2.1 2ˆ 2 contingency tables

Consider two binary random variables, X and Y . Let πij denote the probability that a

subject has response i for variable X and response j for variable Y (i, j,“ 1, 2). We wish

to estimate the odds ratio, which is defined as ψ “ π11π22
π12π21

. The odds ratio is a convenient

summary of dependence in a 2ˆ 2 table. Provided that all πij ą 0, the odds ratio, ψ, can

be interpreted as follows:

• ψ “ 1: X is independent of Y .

• ψ ą 1: Subjects are more likely to have the same level for both X and Y , e.g.,
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subjects with pX,Y q “ p1, 1q or pX,Y q “ p2, 2q are more likely than subjects with

pX,Y q “ p1, 2q or pX,Y q “ p2, 1q.

• ψ ă 1: Subjects are more likely to have the the opposite level for X than they do for

Y , e.g., subjects with pX,Y q “ p1, 2q or pX,Y q “ p2, 1q are more likely than subjects

with pX,Y q “ p1, 1q or pX,Y q “ p2, 2q.

The odds ratio is a simple summary of the dependence in a 2ˆ 2 table. An attractive

feature is that it is independent of the marginal probabilities. The odds ratio is not

perfect, however. For one, the possible values of ψ are highly skewed, with 0 ă ψ ă 1 and

1 ă ψ ă 8 corresponding to the two distinct dependence scenarios. Rather than estimating

ψ directly, we will instead focus our attention on the log odds ratio, θ “ logψ. The log

odds ratio is symmetric about 0, which makes statistical inference somewhat simpler. I

will routinely switch between discussing the estimation of ψ and θ, noting here that we

can always convert one to the other by appropriate exponentiation or taking of logarithms.

Suppose we observe pX,Y q for n samples. Denote by nij the number of subjects with

response i for variable X and response j for variable Y . We use the ‘plus’ notation to

denote the sum over the index it replaces, e.g., n1` “ n11 ` n12. The general form of this

2ˆ 2 contingency table is shown in Table 7.1.

Table 7.1: Notation for a 2ˆ 2 contingency table.
Y

1 2 Total

X 1 n11 n12 n1`
2 n21 n22 n2`

Total n`1 n`m n “ n``

The simplest estimator of θ is the unconditional maximum likelihood estimator, pθU “

log n11n22
n12n21

. The asymptotic standard error of pθU is given by σ̂ppθU q “
b

1
n11
` 1

n12
` 1

n21
` 1

n22
.

The asymptotic distribution of pθU as nÑ8 is Gaussianpθ, σ̂pθq2q.

A problem with the estimator pθU is that it is 0 or 8 if any nij “ 0 and unde-

fined if either the row or column sums are zero, events that have positive probabili-

ties. We can avoid such problems by adding 1
2 to each of the nij and defining a modi-

fied estimator pθ0.5 “ log pn11`0.5qpn22`0.5q
pn12`0.5qpn21`0.5q with corresponding asymptotic standard error

181



σ̂ppθ0.5q “
b

1
n11
` 1

n12
` 1

n21
` 1

n22
. Haldane [1956] and Anscombe [1956] showed that pθU

and pθ0.5 have the same asymptotic distribution around θ as n Ñ 8 but that pθ0.5 has

reduced first-order bias. The modified estimator, pθ0.5, is therefore generally recommended.

Another alternative to pθU is the conditional maximum likelihood estimator, xθC . This is

computed by first conditioning on n1`, n`1. Some algebra then leads to the conditional

distribution of n11, fpn11;n1`, n`,1,ψq, which is a hypergeometric distribution [Fisher 1935].

The maximum likelihood estimator of ψ, pψC , is solved using iterative methods. The

conditional estimator, xθC “ log pψC , works better than the unconditional estimator, pθU ,

when the sample size, n, is small [Agresti 2007, pp. 157-158].

Estimation of the odds ratio is made more difficult when the contingency table is sparse.

We say that a contingency table is sparse when some of the nij are small. Sparsity can

occur even when the sample size, n, is large. Sparsity becomes more of a problem as we

move from a 2ˆ 2 table to a 2ˆ 2ˆK table.

7.2.2 2ˆ 2ˆK contingency tables

Suppose we now measure the same two binary variables X and Y in K different strata.

We summarise these data in a 2ˆ 2ˆK contingency table, tnijku, where the kth ‘slice’ of

the table corresponds to the 2ˆ 2 table for the kth stratum. We assume for now that the

odds ratio, ψ “ π11kπ22k
π12kπ21k

, remains constant across the K tables but we allow the marginal

probabilities, π`1k “ 1´ π`2k, π1`k “ 1´ π2`k to vary.

We can again compute an unconditional maximum likelihood estimator, a ‘0.5-adjusted’

unconditional maximum likelihood estimator, and a conditional maximum likelihood

estimator of the odds ratio ψ [see Breslow 1981].

Another estimator of the common odds ratio, ψ, is the Mantel-Haenszel estimator

[Mantel and Haenszel 1959], pψMH “

ř

kpn11kn22k{n``kq
n12kn21k{n``k

. Robins et al. [1986] derived a simple

robust estimator of the variance for pθMH “ log pψMH , σ̂2ppθMHq. This variance estimator

did not appear until some 25 years after the initial publication of the Mantel-Haenszel

estimator5. This delay was in part due to the existance of two asymptotic forms of 2ˆ2ˆK

contingency tables.
5Other estimators had been proposed but were supplanted by the work of Robins et al. [1986].
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The first asymptotic environment, A1, assumes that K remains small while the the

sample sizes in each strata, n``k, grows large. The second asymptotic environment, A2,

assumes that K grows while n``k remains small. The variance estimator proposed by

Robins et al. [1986] is consistent under both A1 and A2. For our study of within-fragment

co-methylation, A2 is the more relevant asymptotic environment.

Breslow [1981] showed that under A2 that the unconditional maximum likelihood

estimator does not converge to the true odds ratio. In contrast, both the Mantel-Haenszel

estimator and the conditional maximum likelihood estimator do converge to the true odds

ratio, with the Mantel-Haenszel estimator having the advantage of a simple closed form

expression [Breslow 1996].

7.2.3 Homogeneity of odds ratios assumption

So far we have assumed a common odds ratio for the K 2ˆ 2 tables. This is also known as

the homogeneity of odds ratios assumption. As noted by Liang and Self [1985], Mantel and

Haenszel [1959] did not explicitly assume homogeneity of the odds ratio in their original

work. Nonetheless, it does raise the question of how to test this assumption and the effect

on these estimators when this assumption is not true.

Under asymptotic environment A2, where the 2 ˆ 2 tables are sparse and K Ñ 8,

Liang and Self [1985] developed three conditional tests of the homogeneity of odds ratios

assumption and compared these with two unconditional tests that were designed under

A1. Unsurprisingly, Liang and Self found that the three tests designed for A2 are more

appropriate than either of the tests designed for A1 when the data are simulated under

A2. The disadvantage of these conditional tests is the extra computation required. It has

been noted, however, that statistical tests of homogeneity versus heterogeneity typically

have low power and are only able to detect large departures form homogeneity [e.g., Hauck

1989]. These tests are therefore not always of great practical use.

7.2.4 Simulation study

We carry out a simulation study to explore the effects of sparsity and heterogeneity of odds

ratios on estimates of odds ratios in 2ˆ 2ˆK contingency tables. The simulation requires
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that we specify several parameters. In order to relate these back to DNA methylation, I

describe each parameter using the statistical framework proposed in Chapter 4:

• the number of tables, K. The number of CpG pairs (2-tuples).

• the marginal probabilities, π2` “ PrpZiq and π`2 “ PrpZi1q. Some simulations use

a common set of marginal probabilities across all tables but others simulate the

marginal probabilities from a specified distribution.

• the odds ratio of each table, ψk. Most simulations use a common odds ratio across

the K tables, ψk “ ψ.

• the sample size of each table, n``k “ dpi,i1q. The number of reads containing both the

ith and i1th methylation locus (sequencing depth). Most simulations use a truncated

negative binomial distribution to model the sequencing depth. The truncated negative

binomial distribution is parameterised by the mean (µ), the dispersion parameter

(size) and the truncation level (trunc). Unless otherwise noted, simulations use

µ “ 30, size “ 10 and trunc “ 9, corresponding to an average sequencing depth of

30ˆ but where only pairs with at least 10ˆ sequencing depth are used in downstream

analyses6.

For each set of parameters, we generate K 2ˆ 2 contingency tables having the desired

marginal probabilities and odds ratio. We then compute the following statistics:

1. The K 0.5-adjusted unconditional log odds ratio estimates, pθ0.5, from each 2 ˆ 2

table.

2. The unconditional log odds ratio estimate from the 2ˆ 2 table formed by collapsing

over k, pθU .

3. The Mantel-Haenszel log odds ratio estimate from the 2ˆ 2ˆK table, pθMH .

The results of each simulation are summarised by a plot of pθ0.5 (histogram), the point

estimate (inner line) and 95% confidence interval (outer lines) of pθU (coloured orange), and

the point estimate (inner line) and 95% confidence interval (outer lines) of pθMH (coloured
6In the simulation study, a larger value of ‘trunc’ results in higher quality data since we can simply

keep simulating until we have K tables with sufficient sequencing depth. In analysing real data, however,
increasing this cutoff may be detrimental since we end up with fewer tables to analyse.
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blue). The density of θk, the value of the true log odds ratio in the kth slice of the 2ˆ2ˆK

table, is shown by a black curve7.

Results

To begin, we explore the effect of the marginal probabilities, π2` and π`2, when θ “ 0

(ψ “ 1) identically across the K tables (corresponding to independence of X and Y ) for

K “ 100 (Simulation 1a, Figure 7.27), and K “ 1000 (Simulation 1b, Figure 7.28). In

this setting we expect both pθU and pθMH to converge to the true value, θ “ 0, as K Ñ8.

The rate of convergence, however, also depends on the the marginal probabilities, π2`

and π`2. We see that when the marginal probabilities are uniformly near the boundaries

(π2` “ π`2 “ 0.01 and π2` “ π`2 “ 0.99), that the approximation is poor when K “ 100

(Simulation 1a, Figure 7.27) but is reasonable when K “ 1000 (Simulation 1b, Figure 7.28).

Regardless of whether K “ 100 or K “ 1000, the histograms of pθ0.5 are not centred around

the true value, θ “ 0, unless the marginal probabilities are well away from the boundaries

(0.25 ă π2` “ π`2 ă 0.75).

The bias can be eliminated only by having ultra-deep sequencing coverage, such as

in Simulation 1c where the average sequencing coverage is greater 10, 000ˆ. Even then,

however, the variation of pθ0.5 across the K “ 1000 tables remains non-negligible when the

marginal probabilities, π2` and π`2 are near the boundaries.

7In many simulations θ is constant across the K tables and therefore the density is degenerate.
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Figure 7.27: Results of simulation 1a (K “ 100). Estimating the log odds ratio, θ “ 0
(shown by the black line), from a 2 ˆ 2 ˆ 100 contingency table when the marginal
probabilities, π2` and π`2, are equal. The results of three estimators of θ are shown: pθ0.5
(histogram); the point estimate (inner line) and 95% confidence interval (outer lines) of pθU
(coloured orange); and the point estimate (inner line) and 95% confidence interval (outer
lines) of pθMH (coloured blue). The average sample size (sequencing-coverage) of each 2ˆ 2
table is 30.
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Figure 7.28: Results of simulation 1b (K “ 1000). Estimating the log odds ratio, θ “ 0
(shown by the black line), from a 2 ˆ 2 ˆ 1000 contingency table when the marginal
probabilities, π2` and π`2, are equal. The results of three estimators of θ are shown: pθ0.5
(histogram); the point estimate (inner line) and 95% confidence interval (outer lines) of pθU
(coloured orange); and the point estimate (inner line) and 95% confidence interval (outer
lines) of pθMH (coloured blue). The average sample size (sequencing-coverage) of each 2ˆ 2
table is 30.
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Figure 7.29: Results of simulation 1c (K “ 1000). Estimating the log odds ratio, θ “ 0
(shown by the black line), from a 2 ˆ 2 ˆ 1000 contingency table when the marginal
probabilities, π2` and π`2, are equal. The results of three estimators of θ are shown: pθ0.5
(histogram); the point estimate (inner line) and 95% confidence interval (outer lines) of pθU
(coloured orange); and the point estimate (inner line) and 95% confidence interval (outer
lines) of pθMH (coloured blue). The average sample size (sequencing-coverage) of each 2ˆ 2
table is 10, 000.
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Next, we explore what happens when we allow the marginal probabilities, π2` and π`2,

to vary across the K “ 100 tables for a fixed (possibly non-zero) value of θ. To do so, we

simulate π2`, π`2
d
“Uniformp0, 1q for each 2ˆ 2 table. As is expected from the theory,

the results of Simulation 2 show that the Mantel-Haenszel estimator does an excellent

job of estimating the true value of θ (Figure 7.32). By contrast, the estimate formed by

collapsing over the K tables, pθU , is well away from the true value and the distribution of
pθ0.5 is skewed and widely dispersed.
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Figure 7.30: Results of simulation 2 (K “ 100). Estimating the log odds ratio, θ (shown
by the black line, ´4,´3, . . . , 3, 4 across the panels), from a 2ˆ 2ˆ 100 contingency table
where the marginal probabilities, π2` and π`2, are distributed as Uniformp0, 1q random
variables. The results of three estimators of θ are shown: pθ0.5 (histogram); the point
estimate (inner line) and 95% confidence interval (outer lines) of pθU (coloured orange); and
the point estimate (inner line) and 95% confidence interval (outer lines) of pθMH (coloured
blue). The average sample size (sequencing-coverage) of each 2ˆ 2 table is 30.

In a sense, the π2`, π`2
d
“Uniformp0, 1q assumption in Simulation 2 is too easy. As we

have seen in Chapter 4, the marginal probabilities of DNA methylation are not uniformly

distributed but, rather, are bimodal and mostly near the boundaries. Furthermore, each

methylation locus in a pair will likely have a similar marginal probability of methylation.

To simulate this more relevant scenario, Simulation 3 uses π2` “ π`2
d
“Betap0.3, 0.2q,

which has a similar shape to the genome-wide distribution of β-values observed in most
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mammalian genomes (Figure 7.31).
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Figure 7.31: Histogram of 1000 points simulated from a Betap0.3, 0.2q distribution.

The results of this simulation (Simulation 3, Figure 7.32) are basically an exaggerated

version of Simulation 2. The Mantel-Haenszel estimator, pθMH , remains an excellent

estimator; the unconditional log odds ratio estimator of the collapsed table does an awful

job, regularly returning pθU ą 0 when in fact θ ă 0; and the distribution of pθ0.5 is even

more widely dispersed and typically not centred around θ.

We now turn our attention to what happens when the odds ratio is heterogeneous

across the K tables. Although results are shown for pθ0.5 and pθU , we do not discuss these

estimators further since we have seen that these perform poorly in even the simplest

simulation scenarios.
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Figure 7.32: Results of simulation 3 (K “ 100). Estimating the log odds ratio, θ (shown
by the black line, ´4,´3, . . . , 3, 4 across the panels), from a 2ˆ 2ˆ 100 contingency table
where the marginal probabilities, π2` and π`2, are distributed as Betap0.3, 0.2q random
variables. The results of three estimators of θ are shown: pθ0.5 (histogram); the point
estimate (inner line) and 95% confidence interval (outer lines) of pθU (coloured orange); and
the point estimate (inner line) and 95% confidence interval (outer lines) of pθMH (coloured
blue). The average sample size (sequencing-coverage) of each 2ˆ 2 table is 30.

In these remaining simulations, all parameters are as for Simulation 3 except that the

true log odds ratio of each table, θk, comes from the following distributions:

• Simulation 4a and Simulation 4b: θk d
“Gaussianpθ0, 1q, where θ0 “ ´4, . . . , 4 is

identical across the K tables.

• Simulation 5: θk d
“Skewed-Gaussianpθ0, 1,´10q, where θ0 “ ´4, . . . , 4 is identical

across the K tables.

• Simulation 6: θk d
“ 0.5 ˆ Gaussianp´θ0, 1q ` 0.5 ˆ Gaussianpθ0, 1q, i.e. a mixture

distribution.

Simulations 4a, 4b and 5 (Figures 7.33, 7.34 and 7.35) demonstrate that the Mantel-

Haenszel estimator, pθMH , is a reasonable estimator of the centre of the distribution of the

true log odds ratios, θk. It performs better in Simulation 4a and 4b, where the distribution

of the θk is symmetric, as opposed to Simulation 5, where the distribution of the θk is
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skewed. Unsurprisingly, pθMH does a better job when K “ 1000 (Simulation 4b, Figure

7.34) than when K “ 100 (Simulation 4a, Figure 7.33).
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Figure 7.33: Results of simulation 4a (K “ 100). Estimating a heterogeneous log odds ratio,
θk “ Gaussianpθ0, 1q (density shown by the black curve), from a 2ˆ 2ˆ 100 contingency
table where the marginal probabilities, π2` and π`2, are distributed as Betap0.3, 0.2q
random variables. The results of three estimators of θ are shown: pθ0.5 (histogram); the
point estimate (inner line) and 95% confidence interval (outer lines) of pθU (coloured
orange); and the point estimate (inner line) and 95% confidence interval (outer lines) of
pθMH (coloured blue). The average sample size (sequencing-coverage) of each 2ˆ 2 table is
30.

To take this heterogeneity even further, Simulation 6 (Figure 7.36) shows that if the

distribution of θ is multimodel, then pθMH will estimate the ‘average’ effect. Of course, the

utility of any point estimate is severely reduced when the true effect is multimodal.

One final note. When the true log odds ratios, θk, is heterogeneous, then the asymptotic

variance of the estimator Mantel-Haenszel estiamtor, σ̂ppθMHq
2, is not an estimate of the

variance of the true odds ratios, varpθkq. We can see in Simulations 4a, 4b, 5 and 6 (Figures

7.33, 7.34, 7.35 and 7.36) that the asymptotic 95% confidence interval of pθMH only covers

a small amount of the variation in the θk.
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Figure 7.34: Results of simulation 4b (K “ 1000). Estimating a heterogeneous log odds
ratio, θk “ Gaussianpθ0, 1q (density shown by the black curve), from a 2 ˆ 2 ˆ 1000
contingency table where the marginal probabilities, π2` and π`2, are distributed as
Betap0.3, 0.2q random variables. The results of three estimators of θ are shown: pθ0.5
(histogram); the point estimate (inner line) and 95% confidence interval (outer lines) of pθU
(coloured orange); and the point estimate (inner line) and 95% confidence interval (outer
lines) of pθMH (coloured blue). The average sample size (sequencing-coverage) of each 2ˆ 2
table is 30.
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Figure 7.35: Results of simulation 5 (K “ 100). Estimating a heterogeneous log odds
ratio, θk “ Skewed-Gaussianpθ0, 1,´10q (density shown by the black curve), from a
2ˆ2ˆ100 contingency table where the marginal probabilities, π2` and π`2, are distributed
as Betap0.3, 0.2q random variables. The results of three estimators of θ are shown: pθ0.5
(histogram); the point estimate (inner line) and 95% confidence interval (outer lines) of pθU
(coloured orange); and the point estimate (inner line) and 95% confidence interval (outer
lines) of pθMH (coloured blue). The average sample size (sequencing-coverage) of each 2ˆ 2
table is 30.
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Figure 7.36: Results of simulation 5 (K “ 100). Estimating a heterogeneous log odds ratio,
θk “ 0.5ˆGaussianp´θ0, 1q ` 0.5ˆGaussianpθ0, 1q (density shown by the black curve),
from a 2ˆ 2ˆ 100 contingency table where the marginal probabilities, π2` and π`2, are
distributed as Betap0.3, 0.2q random variables. The results of three estimators of θ are
shown: pθ0.5 (histogram); the point estimate (inner line) and 95% confidence interval (outer
lines) of pθU (coloured orange); and the point estimate (inner line) and 95% confidence
interval (outer lines) of pθMH (coloured blue). The average sample size (sequencing-coverage)
of each 2ˆ 2 table is 30.
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7.2.5 Summary

We summarise the results of the simulation study with respect to our aim of estimating

within-fragment co-methylation from whole-genome bisulfite-sequencing data.

This simulation study demonstrates that we cannot estimate within-fragment co-

methylation at individual pairs of methylation loci using the simple odds ratio estimator,

θ0.5, unless ultra-deep8 sequencing is used (d ą 10000ˆ). The distributions of pθ0.5 at

typical sequencing depths (d « 30) are highly biased and dispersed, even under very simple

simulation scenarios. Therefore, some degree of aggregation is required in order to study

within-fragment co-methylation.

Suppose that we aggregate K CpG pairs to form a 2ˆ 2ˆK contingency table. When

little can be assumed about this 2ˆ2ˆK contingency table, the Mantel-Haenszel estimator

is the most appropriate of those considered. Firstly, it is highly robust to different marginal

probabilities across the K tables. Secondly, when the odds ratios are heterogeneous across

the K tables, the Mantel-Haenszel estimator will estimate the ‘average’ effect.

Of course, the utility of this ‘average’ will depend on the distribution of θ, which

is unknown in practice. However, we might explore its variability by computing the

Mantel-Haenszel estimate under a range of aggregation strategies (i.e. across different k).

7.3 Within-fragment co-methylation

This section describes a simple method to study within-fragment co-methylation by

analysing methylation patterns at pairs of methylation loci (2-tuples). For simplicity, we

will use pairs of CpGs, but the method is applicable to any methylation type. This method

is to be implemented in the cometh() function that is part of the MethylationTuples

software9.

The aim of this analysis is to address the questions:

1. How dependent are methylation states at nearby methylation loci on the same DNA

fragment?
8Ultra-deep sequencing has its own problems, such as an increased effect of PCR-bias.
9At the time of writing, this is available as a stand alone mantelhaen() function, but it will soon be one

of several strategies of estimating within-fragment co-methylation using the cometh() function.
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2. What factors influence this dependence?

7.3.1 Methods

There are three important decisions to make in our analysis:

1. How to define the CpG pairs?

2. How to aggregate the CpG pairs?

3. Which estimator to use?

Answers to the latter two are informed by Section 7.2, in particular the simulation

study.

How to define the CpG pairs

The construction of CpG pairs is very similar to constructing the pairs of β-values, described

in Section 7.1.1. However, we are now limited to analysing co-methylation of loci that can

be captured within a single read. With current technology this means we are limited to

studying within-fragment co-methylation for pairs with IPD less than approximately 250.

As in Section 7.1, we will consider pairs with NIL “ 0 and NIL ě 0.

How to aggregate the CpG pairs?

The counts of methylation patterns at each CpG pair can be summarised by a 2 ˆ 2

contingency table. The sequencing depth of each pair is typically low. Furthermore, for

each locus in the pair, the marginal probability that it is methylated is very often close to

zero or one. Therefore, in light of the results in Section 7.2.4, we must aggregate these

2ˆ 2 tables in order to perform any useful inference.

The ideal level of aggregation combines those pairs with homogeneous odds ratios. Of

course, this information is unknown to us. Instead, we will aggregate by chromosome

to explore the variation of co-methylation across chromosomes and compare these to

genome-level estimates. The resulting estimates must be interpreted as the ‘average’ degree

of within-fragment co-methylation across the aggregation levels.
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Which estimator to use?

We will use the Mantel-Haenszel odds ratio estimator since it is robust to variable marginal

probabilities. This allows us to combine data for pairs from different regions of the genome,

e.g., regions that are hypomethylated, partially methylated and hypermethylated.

7.3.2 Results

We analyse all 40 samples in the EPISCOPE, Lister, Seisenberger and Ziller datasets. For

each sample we compute pθMH using different levels of aggregation (listed here in decreasing

order):

1. IPD-only: A 2ˆ 2ˆK table for each IPD.

2. IPD-CGI: A 2 ˆ 2 ˆK table for each IPD and ‘CpG island status’ (CGI-status)

combination. The CGI-status of each pair is whether it is inside a CpG island or

outside a CpG island10.

3. IPD-chromosome: A 2ˆ 2ˆK table for each IPD and chromosome combination.

No minimum sequencing coverage cutoff is required since the Mantel-Haenszel estimator

appropriately downweights pairs with low sequencing coverage.

We will first compare the results of chromosome-level estimates to genome-level esti-

mates11.

Chromosome-level NIL “ 0 analyses

Figure 7.37, 7.38, 7.39 and 7.40 show the results using CpG pairs with NIL “ 0 for the

EPISCOPE, Lister, Seisenberger and Ziller datasets, respectively.

Unsurprisingly, there is variation in the chromosome-level estimates for a given IPD.

Overall, however, we see that the genome-level and chromosome-level estimates follow a
10Pairs spanning the boundary of a CpG island are ignored. There are few such pairs when NIL “ 0.

While there are considerably more such pairs when NIL ě 0, I have ignored these in favour of simplicity.
11Some female samples have apparent Y chromosome data, e.g., all the EPISCOPE samples. This is

indicative of mapping errors and such data should be ignored.
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Figure 7.37: The Mantel-Haenszel estimate of the log odds ratio, pθMH , is plotted as a
function of IPD for the EPISCOPE dataset using NIL “ 0 pairs. The genome-level
estimates are shown by the blue line while the chromosome-level estimates are plotted as
points coloured by whether the chromosome is an autosome, X chromosome, Y chromosome
or mtDNA. All samples were sequenced with paired-end reads.

similar trend for all samples12: co-methylation is strongest for smaller IPDs, decaying

fairly rapidly before levelling out by IPD “ 20 to 50. As the IPD increases, we see more

variation in the chromosome-level and genome-level estimates, but this is due to the smaller

sample sizes we have for pairs with NIL “ 0 at larger IPDs.

Notably, although the genome-level estimates decay as a function of IPD, pθMH is

almost entirely positive over the observable range of IPDs, suggesting that within-fragment

co-methylation extends for at least a few hundred bp. Furthermore, in samples with

sufficiently long paired-end reads, there is a hint of an upturn in the genome-wide pθMH

at approximately IPD “ 180. This is approximately the distance between two CpGs on

adjacent nucleosomes (see Section 1.1.2), and may be evidence of the three-dimensional

structure of the genome affecting co-methylation.

12The obvious outlier on each of these plots is the mitochondrial DNA. The mitochondria are typically
almost completely unmethylated, i.e. the marginal probability of methylation at a CpG on the mitochondria
is very close to zero, and so the concept of co-methylation is perhaps not particularly meaningful here.
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Figure 7.38: The Mantel-Haenszel estimate of the log odds ratio, pθMH , is plotted as a
function of IPD for the Lister dataset using NIL “ 0 pairs. The genome-level estimates
are shown by the blue line while the chromosome-level estimates are plotted as points
coloured by whether the chromosome is an autosome, X chromosome, Y chromosome or
mtDNA. Only the ADS, ADS-adipose, ADS-iPSC and H9_Laurent samples were sequenced
with paired-end reads.
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Figure 7.39: The Mantel-Haenszel estimate of the log odds ratio, pθMH , is plotted as a
function of IPD for the Seisenberger dataset using NIL “ 0 pairs. The genome-level
estimates are shown by the blue line while the chromosome-level estimates are plotted as
points coloured by whether the chromosome is an autosome, X chromosome, Y chromosome
or mtDNA. All samples were sequenced with paired-end reads.
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Figure 7.40: The Mantel-Haenszel estimate of the log odds ratio, pθMH , is plotted as a
function of IPD for the Ziller dataset using NIL “ 0 pairs. The genome-level estimates
are shown by the blue line while the chromosome-level estimates are plotted as points
coloured by whether the chromosome is an autosome, X chromosome, Y chromosome or
mtDNA. All samples were sequenced with paired-end reads.
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Chromosome-level NIL ě 0 analyses

The equivalent plots for the NIL ě 0 pairs paint a similar picture, as shown in Figures

7.41, 7.42, 7.43 and 7.44. In addition to the mitochondria, the estimates for X chromosome

are frequently distinguishable from the rest of the chromosome-level estimates; e.g., the

ADS-based samples (ADS, ADS-adipose and ADS-iPSC ; ADS is a female cell line), the H9 -

based samples (H9 and H9_Laurent; sex of cell line not reported in Lister et al. [2011]), the

IMR90 -based samples (IMR90_r1, IMR90_r2, IMR90_cell_line, IMR90-iPSC ; IMR90 is

a female cell line).
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Figure 7.41: The Mantel-Haenszel estimate of the log odds ratio, pθMH , is plotted as a
function of IPD for the EPISCOPE dataset using NIL ě 0 pairs. The genome-level
estimates are shown by the blue line while the chromosome-level estimates are plotted as
points coloured by whether the chromosome is an autosome, X chromosome, Y chromosome
or mtDNA. All samples were sequenced with paired-end reads. There is no Y chromosome
or mtDNA data for E18BUF due to a coding error that meant these chromosomes weren’t
processed by methtuple for 2ac tuples. This omission does not affect the other results.

By analysing CpG pairs with NIL ě 0 we are increasing the heterogeneity of the K

2ˆ 2 tables, which consequently makes more difficult the interpretation of these results.

However, it does give the advantage of allowing the analysis of pairs with larger IPDs.

Nonetheless, the short DNA fragments and read lengths of our data make it difficult

to perform reliable chromosome-level inference in even the highest-quality samples for

203



ADS ADS−adipose ADS−iPSC FF FF−iPSC_19.11

FF−iPSC_19.11+BMP4 FF−iPSC_19.7 FF−iPSC_6.9 H1+BMP4 H1_r1

H1_r2 H9 H9_Laurent HSF1 IMR90−iPSC

IMR90_r1 IMR90_r2

−2.5

0.0

2.5

5.0

7.5

−2.5

0.0

2.5

5.0

7.5

−2.5

0.0

2.5

5.0

7.5

−2.5

0.0

2.5

5.0

7.5

0
10

0
20

0
30

0
40

0
50

0 0
10

0
20

0
30

0
40

0
50

0

IPD (bp)

θ̂ M
H

Tr
un

ca
te

d 
[−

2.
5,

 7
.5

]

Estimate level
●

●

●

●

autosomes
chrMT
chrX
chrY
genome

Lister: NIL ≥ 0 pairs

Figure 7.42: The Mantel-Haenszel estimate of the log odds ratio, pθMH , is plotted as a
function of IPD for the Lister dataset using NIL ě 0 pairs. The genome-level estimates
are shown by the blue line while the chromosome-level estimates are plotted as points
coloured by whether the chromosome is an autosome, X chromosome, Y chromosome or
mtDNA. Only the ADS, ADS-adipose, ADS-iPSC and H9_Laurent samples were sequenced
with paired-end reads.

IPDs greater than 250 to 300 bp. Retreating to a genome-level analysis suggests that

within-fragment co-methylation is active over at least a few hundred basepairs in distance.

In many of the NIL ě 0 plots there are samples with autosomal pθMH that are noticeably

separated from the main cloud of autosomal estimates. For example, this can be readily

observed in the Colon_Primary_Normal, Colon_Primary_Tumour samples from the

Ziller dataset (Figure 7.44), but it is also apparent in other samples from the Ziller dataset

and the EPISCOPE dataset (Figure 7.41). These plots do not distinguish estimates from

different autosomes. Further analysis, however, reveals that these outliers almost all come

from a single chromosome, chromosome 21.

Figures 7.45 (EPISCOPE), 7.46 (Lister) and 7.47 (Ziller) show the exact same plots

as before, but with the chromosome 21 data highlighted by a black line. The chromosome

21 data stand out remarkably from the rest of the autosomal data for all samples from

the EPISCOPE dataset and several samples from the Ziller dataset. Just as remarkable,

however, is that this phenomenon is not observed in the Lister dataset nor for any of the
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Figure 7.43: The Mantel-Haenszel estimate of the log odds ratio, pθMH , is plotted as a
function of IPD for the Seisenberger dataset using NIL ě 0 pairs. The genome-level
estimates are shown by the blue line while the chromosome-level estimates are plotted as
points coloured by whether the chromosome is an autosome, X chromosome, Y chromosome
or mtDNA. All samples were sequenced with paired-end reads.

frontal cortex samples form the Ziller dataset13. At this time I have no explanation for

this result. I cannot rule out it being a technical artefact, although preliminary analyses

suggest this is not the case (data not shown), and I do not have a hypothesis for a potential

biological cause of this phenomenon.

13This phenomenon cannot occur in the Seisenberger dataset since these samples are mice, and mice only
have 19 autosomes.
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Figure 7.44: The Mantel-Haenszel estimate of the log odds ratio, pθMH , is plotted as a
function of IPD for the Ziller dataset using NIL ě 0 pairs. The genome-level estimates
are shown by the blue line while the chromosome-level estimates are plotted as points
coloured by whether the chromosome is an autosome, X chromosome, Y chromosome or
mtDNA. All samples were sequenced with paired-end reads.
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Figure 7.45: The Mantel-Haenszel estimate of the log odds ratio, pθMH , is plotted as a
function of IPD for the EPISCOPE dataset using NIL ě 0 pairs. The genome-level
estimates are shown by the blue line while the chromosome-level estimates are plotted as
points coloured by whether the chromosome is an autosome, X chromosome, Y chromosome
or mtDNA. The chromosome 21 data are shown by the black line. All samples were
sequenced with paired-end reads. There is no Y chromosome or mtDNA data for E18BUF
due to a coding error that meant these chromosomes weren’t processed by methtuple for
2ac tuples. This omission does not affect the other results.
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Figure 7.46: The Mantel-Haenszel estimate of the log odds ratio, pθMH , is plotted as a
function of IPD for the Lister dataset using NIL ě 0 pairs. The genome-level estimates
are shown by the blue line while the chromosome-level estimates are plotted as points
coloured by whether the chromosome is an autosome, X chromosome, Y chromosome or
mtDNA. The chromosome 21 data are shown by the black line. Only the ADS, ADS-adipose,
ADS-iPSC and H9_Laurent samples were sequenced with paired-end reads.
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Figure 7.47: The Mantel-Haenszel estimate of the log odds ratio, pθMH , is plotted as a
function of IPD for the Ziller dataset using NIL ě 0 pairs. The genome-level estimates
are shown by the blue line while the chromosome-level estimates are plotted as points
coloured by whether the chromosome is an autosome, X chromosome, Y chromosome or
mtDNA. The chromosome 21 data are shown by the black line. All samples were sequenced
with paired-end reads.
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The effect of CpG islands

Since we must aggregate pairs in order to perform any meaningful analysis of within-

fragment co-methylation, there will obviously be unaccounted-for heterogeneity in our

estimates. In general, it will be difficult to identify sources of this heterogeneity. One

obvious candidate, however, are CpG islands and so we compare estimates of within-

fragment co-methylation inside CpG islands and outside of CpG islands. In order to

simplify the figures for these analyses, the chromosome-level estimates are not shown.

We have seen that the genome-wide estimates capture the trend of the chromosome-level

estimates, at least for the autosomes, and so these are sufficient for our purpose.

We observe that there is very little difference between genome-wide estimates of θ

inside and outside of CpG islands for pairs with NIL “ 0 (Figures 7.48, 7.49, 7.50). This

is perhaps a little surprising; CpG islands are typically more homogeneous in their average

methylation levels and so we would reasonably expect their within-fragment methylation

states are more dependent than elsewhere in the genome. However, the NIL “ 0 results

do not tell the full story.

When we analyse pairs with NIL “ 0, we are only estimating the ‘first-order’ within-

fragment co-methylation. But suppose that the methylation state of the current locus (Zh,i)

depends not only on the state at the previous locus (Zh,i´1) but also on the states at the

two previous states (Zh,i´2 and Zh,i´3). Or it might depend on the states at both upstream

and downstream loci (i.e. Zh,i`i1 and Zi´i2 , i1, i2 ą 0). The NIL “ 0 analyses reduce

heterogeneity by focusing on adjacent loci but cannot (by themselves) tell us whether

within-fragment co-methylation is truly ‘first-order’.

To look for evidence of higher-order within-fragment co-methylation we turn to the

analysis of pairs with NIL ě 0 (Figures 7.52, 7.53, 7.54 and 7.55). We now see a fairly

clear separation of the genome-wide estimates of θ, with CpG islands being more co-

methylated than the rest of the genome. Moreover, the estimates of θ within CpG islands

are approximately constant with respect to IPD. Also notable is that the pairs of CpGs

outside of CpG islands have fairly similar estimates of θ in both the NIL “ 0 and NIL ě 0

analyses.

Taken together, these results suggests that within-fragment co-methylation in CpG
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Figure 7.48: The Mantel-Haenszel estimate of the log odds ratio, pθMH , is plotted as a
function of IPD for the EPISCOPE dataset using NIL “ 0 pairs. Only the genome-level
estimates are shown, stratified by whether the pair is inside a CpG island (CGI). All
samples were sequenced with paired-end reads.

islands depends on multiple loci and that the genomic distance between these loci is of little

direct importance14. In contrast, within-fragment co-methylation outside of CpG islands

depends mostly on the adjacent locus and the distance to that locus (IPD)15. We might

try to estimate the order of within-fragment co-methylation in CpG islands by analysing

m-tuples with m ą 2. This quickly becomes complicated, however, since there are 2m´1

odds ratios to estimate for m-tuples. We have therefore not yet pursued this refinement.

14The overall density of methylation loci is likely important, which is of course related to IPDs.
15The ratio NILą0pairs

NILě0pairs is lower outside of CpG islands than inside CpG islands owing to the decreased
density of CpGs outside of CpG islands. We therefore can’t rule out that the similarity of NIL “ 0 and
NIL ě 0 estimates outside of CpG islands is simply due to a lack of data.
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Figure 7.49: The Mantel-Haenszel estimate of the log odds ratio, pθMH , is plotted as a
function of IPD for the Lister dataset using NIL “ 0 pairs. Only the genome-level
estimates are shown, stratified by whether the pair is inside a CpG island (CGI). Only the
ADS, ADS-adipose, ADS-iPSC and H9_Laurent samples were sequenced with paired-end
reads.
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Figure 7.50: The Mantel-Haenszel estimate of the log odds ratio, pθMH , is plotted as a
function of IPD for the Seisenberger dataset using NIL “ 0 pairs. Only the genome-level
estimates are shown, stratified by whether the pair is inside a CpG island (CGI). All
samples were sequenced with paired-end reads.
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Figure 7.51: The Mantel-Haenszel estimate of the log odds ratio, pθMH , is plotted as a
function of IPD for the Ziller dataset using NIL “ 0 pairs. Only the genome-level
estimates are shown, stratified by whether the pair is inside a CpG island (CGI). All
samples were sequenced with paired-end reads.
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Figure 7.52: The Mantel-Haenszel estimate of the log odds ratio, pθMH , is plotted as a
function of IPD for the EPISCOPE dataset using NIL ě 0 pairs. Only the genome-level
estimates are shown, stratified by whether the pair is inside a CpG island (CGI). All
samples were sequenced with paired-end reads.
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Figure 7.53: The Mantel-Haenszel estimate of the log odds ratio, pθMH , is plotted as a
function of IPD for the Lister dataset using NIL ě 0 pairs. Only the genome-level
estimates are shown, stratified by whether the pair is inside a CpG island (CGI). Only the
ADS, ADS-adipose, ADS-iPSC and H9_Laurent samples were sequenced with paired-end
reads.
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Figure 7.54: The Mantel-Haenszel estimate of the log odds ratio, pθMH , is plotted as a
function of IPD for the Seisenberger dataset using NIL ě 0 pairs. Only the genome-level
estimates are shown, stratified by whether the pair is inside a CpG island (CGI). All
samples were sequenced with paired-end reads.
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Figure 7.55: The Mantel-Haenszel estimate of the log odds ratio, pθMH , is plotted as a
function of IPD for the Ziller dataset using NIL ě 0 pairs. Only the genome-level
estimates are shown, stratified by whether the pair is inside a CpG island (CGI). All
samples were sequenced with paired-end reads.
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Variation of within-fragment co-methylation between samples

The analyses so far have highlighted the broad similarities of within-fragment co-methylation

between a diverse set of samples. Reasuringly, samples done in technical duplicate

(IMR90_r1 and IMR90_r2 ; H1_r1 and H1_r2 ) have very similar genome-level esti-

mates of θ. Furthermore, biological samples assayed by different laboratories (H9 and

H9_Laurent; IMR90_r1, IMR90_r2 and IMR90_cell_line) also have fairly similar genome-

level estimates of θ16.

There are of course differences, and we now turn our attention to these. The results of

this section should be interpreted with some caution: few samples have replicates and so we

will have little evidence to conclude what is driving any observed variation nor do we have

sufficient power to definitively rule out large differences in co-methylation. Nonetheless, I

will offer some hypotheses and support for these as appropriate.

The EPISCOPE dataset is the best dataset for studying between sample variation

of within-fragment co-methylation. It has a fully crossed design of donors and tissues.

The genome-level estimates of θ are similar across all 12 samples. Visually, the variation

between tissues is greater than that between donors (the plots are more similar by column

than by row).

Turning to the Ziller dataset, there is little difference between the genome-level estimates

of θ for Colon_Normal_Primary and Colon_Tumour_Primary nor between the various

frontal cortex samples. This does not exclude the possibility that there exist more local

differences in co-methylation but there is no evidence that within-fragment co-methylation

is globally affected by the disease status in each case.

The most interesting differences between samples occur in the Lister dataset. Recall

that the Lister dataset contains four ‘mini datasets’: Lister-ADS, Lister-FF, Lister-IMR90

and Lister-H1 (see section 3.2). In each mini datasets, the pluripotent cell lines (induced

pluripotent stem cells or embryonic stem cells) have larger genome-level estimates of θ than

do their precursor forms. This difference is less pronounced, even absent, in the samples

differentiated in vitro with BMP4 from the induced pluripotent stem cell lines (iPSCs).
16Differences in the NIL ě 0 results between the IMR90_r1, IMR90_r2 and IMR90_cell_line samples

are due to the IMR90_cell_line being sequenced with paired-end reads and therefore having many more
NIL ą 0 pairs to analyse.
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This suggests that pluripotent cells have stronger within-fragment co-methylation than

do somatic or differentiated cells. Consistent with this is that the H9, H9_Laurent and J1

samples (embryonic stem cell lines), the E6.5_epiblast_1 sample (epiblasts derived from

day 6.5 embryos) and the E16.5_male_1 (male progenitor germ cells derived from day

16.5 embryos) all have relatively high genome-wide estimates of θ.

One explanation of this result, at least for the iPSCs, is that it is due to ‘resetting’ of

the methylome during embryonic development induction of pluripotency [Lister et al. 2011,

Stricker et al. 2013]. This explanation does not immediately carry over the the embryonic

stem cell lines, although there is extensive reprogramming of DNA methylation during

embryogenesis, which may be relevant [Seisenberger et al. 2013].

A second observation on the results for the Lister dataset is that genome-level estimates

of θ decay particularly rapidly in the somatic cell lines (ADS, ADS-adipose, FF, IMR90_r1

and IMR90_r2 ). This is recapitulated in the IMR90_cell_line sample from the Ziller

dataset.

The reduced within-fragment co-methylation in the somatic cell lines may be due to

culturing of the cells. As a population of cells develops from a single cell, there are errors

in copying the DNA methylation patterns from mother to daughter cell. These errors

disrupt the co-methylation of pairs. If the iPSC and iPSC-derived cell lines have had less

(developmental) time between the laying down of the original DNA methylation pattern

and the point at which they were sequenced, then there is a lower probability that the

co-methylation has been disrupted by replication errors. There are also reports that DNA

methylation profiles differ widely between cell lines and their precursor primary tissues

Nestor et al. [2015], which very likely also affect co-methylation.

7.3.3 Limitations

A major challenge in analysing within-fragment co-methylation is the susceptibility of

estimates of θ to M-bias, particularly when the IPD is large and measurements are taken

towards the ends of reads. As noted in Section 2.2.2, it is difficult to properly account

for M-bias in pre-trimmed data such as the Lister dataset. Since we can do little about

data that has already been pre-trimmed, we are forced to be cautious in our interpretation
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of within-fragment co-methylation for pairs with larger IPDs from these datasets. This

is particularly relevant to the apparent increase in within-fragment co-methylation for

NIL ě 0 CpG pairs with IPD « 180. This result is tantalisingly similar to the periodicity

we see in the correlations of β-values and the approximate spacing of nucleosomes in human

DNA (see Section 1.1.2). However, it is less apparent in other paired-end samples, and this

is only likely to be resolved by longer reads that can span multiple nucleosomes.

In analysing these data at the genome-level, and even the chromosome-level, we are

aggregating measurements from heterogeneous regions of the genome. Our simulation

results of Section 7.2.4 tell us that the Mantel-Haenszel estimator estimates the ‘average’

effect across these potentially heterogeneous regions. We might reduce this heterogeneity

by aggregating over smaller regions, although choosing the resolution is non-trivial, and so

we content ourselves with studying an estimate of the average effect.

7.4 Summary

Correlations of β-values and estimates of within-fragment co-methylation are complementary

methods to better understand the complex dependence structure of DNA methylatin data.

Which is more relevant depends on the question at hand. Within-fragment co-methylation

seems closer to the biology because it measures the dependence of DNA methylation on

the scale that the DNA methyltransferases act. However, the most common downstream

analyses are based on β-values and so these correlations may be more relevant to analyses of

DNA methylation data. Ultimately, the two measures are intertwined since the correlations

of β-values will in part be driven by co-methylation on individual DNA fragments. This

idea is explored in greater detail in Chapter 8.

The presented analyses only measure pairwise dependencies. More specifically, the

NIL “ 0 results measure the ‘first-order’ dependence whereas the NIL ě 0 measure a

mixture of different orders of dependences but all are done in a pairwise manner. I find

the NIL “ 0 results easier interpret but they clearly do not tell the whole story.

By comparing the NIL “ 0 and NIL ě 0 results, we see that the strength of the

dependency itself depends on not just the distance between the two CpGs, but the number

of intervening CpGs. This is most noticeable for within-fragment co-methylation. This
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indicates that these dependencies are more than ‘first-order’. Moreover, the differences

in dependencies between CpG islands and non-islands indicates that the ‘order’ of these

dependencies itself varies across the genome. All this means that the DNA methylation

measurements for a single sample form a complicated and highly non-stationary process

with variable order dependencies.

In theory, we could explore these higher-order dependencies of within-fragment co-

methylation by analysing m-tuples with m ą 2. However, the complexity of the challenge

increases exponentially as 2m. Moreoever, the IPD vector now has pm´ 1q dimensions,

which makes it difficult to visualise the strength of co-methylation as a function of IPD.

Another complexity that these analyses have brushed over is the fact that the genome

is not a one-dimensional object but is rather a complex three-dimensional structure (whose

shape also varies in time). Therefore, the relevant distance between two loci is not necessarily

the number of base pairs between them but may instead be the Euclidean distance in

three-dimensional space. Such complexities cannot be resolved with bisulfite-sequencing

data alone but will require measures of the three-dimensional structure of the genome,

such as those provided by chromatin conformation capture technologies [e.g., Dekker et al.

2013].

In summary, the results of this chapter demonstrate that DNA methylation has a

complex dependence structure. Co-methylation exists along individual DNA fragments and

also manifests as correlations of aggregate measures of methylation. We have estimated the

effect of this co-methylation using two complementary approaches: correlations of β-values

and within-fragment co-methylation. Consistent with previous work, our analysis identifies

the intra-pair distance between CpGs and the genomic context of these CpGs, in particular,

CpG islands, as being important drivers of co-methylation.

Unique to our results are genome-level and chromosome-level estimates of within-

fragment co-methylation that reveal a possible role for nucleosome positioning in deter-

mining co-methylation. Future work integrating these results with data from assays of

nucleosome occupancy may clarify the nature of this relationship. Furthermore, stratifying

these analyses by other genomic features, such as genic versus intergenic regions, way help

elucidate what other factors are at play.
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While it is the highest resolution assay for studying DNA methylation, bisulfite-

sequencing can still only give a rather limited picture of co-methylation, particularly of

within-fragment co-methylation. Data from assays with longer reads will be immensely

useful in to advancing our understanding of DNA methylation dynamics. In particular,

reads that can span multiple nucleosomes will allow for co-methylation to be better tied

in with, and expand upon, existing results on the relationship between nucleosomes and

DNA methylation. Until such data are available, we can try to learn more about plausible

models of DNA co-methylation through computational methods such as the simulation

method described in the next chapter.
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Chapter 8

A simulation model of DNA

methylation data

Overview

This chapter describes the methsim software to simulate DNA methylation data. methsim

incorporates a model of within-fragment co-methylation and simulates individual sequencing

reads, which sets it apart from existing software. We explore different parameter choices and

highlight promising directions of research, as well as areas requiring further improvement

in ongoing work.

8.1 Introduction

It can be difficult to design an experiment that can be used for validating or benchmarking

different analysis strategies. In fact, the huge variety of experimental factors, and their

possible values, can make such a task infeasible. But perhaps the bigger hurdle is that

these are not attractive experiments to perform; why spend your time and money on an

experiment where you ‘know the answer’ when you could be spending that same time

and money on investigating some new biology? In these scenarios and others, simulation

studies play a vital role in applied statistics, where they can be used in the development,

validation and benchmarking of different analysis methodologies.
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The key advantage of simulated data is that we know the truth a priori. Moreover, we

can manipulate the truth via parameters in the simulation model and can examine how an

analysis method performs under a variety of scenarios. And this manipulation is cheap, a

mere matter of changing parameters and re-running a piece of software, which means that

we can investigate a broad range of plausible scenarios.

Simulation studies can provide many insights into the performance of a method. At

the most basic level, if a method fails or performs poorly when applied to ‘easy’ simulated

data, then it is very unlikely to work well when applied to more complex experimental

data. We can also identify which scenarios are ‘easy’ (ones where most methods are able to

identify the truth) and scenarios under which certain methods perform better than others.

While simulated data can never fully capture the richness of real data, we can learn a lot

about a method by studying how it performs when applied to simulated data.

Simulation methods may also be used to learn about the plausibility of hypothesised

models of a phenomenon, be they mechanistic or stochastic. By simulating data from the

proposed model, and comparing it to the real data, we can identify hypotheses that are

incompatible with reality. This can also help identify shortcomings in the model so that it

may be refined in an iterative manner.

There are a few key criteria when designing a simulation method:

1. Realism: The simulated data must be ‘similar’ to the real data. While this is obvious,

it is also often hard to clearly define or agree upon what constitutes ‘similar enough’.

2. Cost: It should be fast and cheap to simulate data. The most common use of

simulation models in applied statistics is to repeatedly generate datasets under a range

of parameter settings. This requires that each simulation is fast and computationally

cheap, otherwise it will be prohibitive to explore the full space of scenarios. An

exception to this rule may occur when the simulation model is used to test a proposed

mechanistic or stochastic model of a phenomenon, such as in studies of molecular

dynamics. Even then, however, the cost of a simulation should be less than the cost

of performing the equivalent experiments, otherwise the simulation is generally not

worth the effort.

3. Usability: There must be a software implementation. Simulation models exist to be
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simulated from; a simulation model without an implementation is next to useless.

The implementation should give the user easy access to the key parameters and have

sensible default settings. The output of the software should be in a standard format

or readily convertible to a simple, manipulable format.

There is a lack of gold-standard datasets in the field of DNA methylation for the

benchmarking and validation of analysis methods. Therefore, the development of realistic,

cheap, and user-friendly software to simulate DNA methylation data will be of benefit.

8.2 Literature review

The simulation methods described here can be thought to lie on a spectrum with model-

based methods at one end and re-sampling based methods at the other end1. It is often

simpler to simulate from a model-based simulation, particularly if the model is a well-

studied parametric distribution. This simplicity often comes at the cost, however, of

increased assumptions, whose validity may be questionable. Simulations based on sampling

of real data may reduce the number of assumptions required. However, care must be taken

in selecting the units to be sampled so that the sampling process is efficient and so that

the sampled data don’t grossly distort within-sample and between-sample dependencies.

Any procedure for simulating DNA methylation data should obviously be tailored

to its purpose. For example, if the study is comparing alignment software for bisulfite-

sequencing data then the simulation software should produce FASTQ files with realistic base

quality score profiles and sequencing errors. On the other hand, it may be sufficient to

simulate some aggregate data, such as β-values, when the simulated data are to be used

for comparing methods to identify differential methylation.

8.2.1 Methods for simulating bisulfite-sequencing reads

All of the currently available methods for simulating bisulfite-sequencing reads are designed

for the comparison of alignment strategies and are model-based. These are not generally

suitable for comparisons of downstream analysis methods.
1Of course, the parameters in any model-based simulation should be based on real data, although this

may not use a formal estimation procedure such as maximum likelihood.
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Sherman is software to simulate bisulfite-sequencing reads as FASTQ files, including

various ‘contaminants’, such as SNPs, basecall errors and sequence artefacts (http://

www.bioinformatics.babraham.ac.uk/projects/sherman/). The simulated reads are

designed for comparing the performance of different alignment strategies. Sherman has

many parameters, of which the ones relevant to our discussion of simulating realistic

DNA methylation data are -CG and -CH, the bisulfite conversion rates for CG and CH

methylation loci, respectively. These are set by the user with values between 0 and 100

(%). Reads are simulated by sampling from the user-specified reference genome. When a

read contains a CG (resp. CH) locus, it is randomly assigned as being converted to a TG

(resp. TH) with probability -CG / 100 (resp. -CH / 100).

While appropriate for comparing alignment strategies, Sherman produces data that is

not suitable for use in comparing downstream analysis methods. All CG (resp. CH) loci

have an average β-value of -CG (resp. -CH) regardless of the genomic context, which we know

to be incompatible with real data. Furthermore, the methylation state of each methylation

locus is independent, which is clearly inconsistent with the strong co-methylation observed

in real data.

DNemulator (http://www.cbrc.jp/dnemulator/README.html) uses a slightly more

sophisticated simulation strategy to simulate FASTQ files for use in comparing alignment

strategies for bisulfite-sequencing data. DNemulator does this with three separate routines,

fasta-methly-sim, fasta-polymorph and fasta-bisulf-sim:

1. fasta-methyl-sim converts cytosines in the reference genome (FASTA file) to a char-

acter indicating the methylation level of that locus: C represents 0% methylated, c

represents 10% methylated, d represents 20% methylated, v represents 50% methy-

lated and t represents 100% methylated. Each of these conversions has a different

probability in the CG and CH contexts.

2. fasta-polymorph simulates a polymorphic, diploid genome based on the modified

reference sequence created by fasta-methyl-sim.

3. fasta-bisulf-sim simulates reads by sampling from the simulated genome created by

fasta-polymorph. Read are simulated with bisulfite-conversion error and sequencing

error.

224

http://www.bioinformatics.babraham.ac.uk/projects/sherman/
http://www.bioinformatics.babraham.ac.uk/projects/sherman/
http://www.cbrc.jp/dnemulator/README.html


The reads simulated by DNemulator will result in β-values that have more context-

dependence than those resulting from reads generated by Sherman. However, methylation

events are still generated independently of one another, which means there is no co-

methylation in the simulated data. Therefore, reads simulated by DNemulator, while

suitable for comparing alignment strategies, are not suitable for comparing downstream

analysis methods.

Other software for simulating individual bisulfite-sequencing reads are FastqToBS

(http://users.dimi.uniud.it/~nicola.prezza/projects.html), which uses a similar

strategy as Sherman, and BSsim (http://122.228.158.106/BSSim/, and used in Xie et al.

[2014]), which has a similar strategy to DNemulator.

8.2.2 Methods for simulating aggregate methylation levels

The most widely studied downstream analysis problem is that of identifying differential

methylation, which is done by comparing summary measures of methylation, such as β-

values, between two or more groups. It is therefore generally sufficient to directly simulate

these aggregated measures, rather than simulating reads, for these type of simulation

studes.

Most papers that propose a new method for downstream analysis of bisulfite-sequencing

data include a simulation study. Generally, such a simulation method exists to support

claims about the performance of the proposed method and is not a major feature of the

paper. Consequently, the simulation model is often only briefly described and a software

implementation is rarely made available. In fact, until recently, of the methods reviewed

in this section, only that of Lacey et al. [2013] had a software implementation available.

As I was writing this chapter, the WGBSSuite software was published [Rackham et al.

2015]. WGBSSuite is the only software specifically published for the purpose of simulating

whole-genome bisulfite-sequencing data for comparing methods for identifying differential

methylation. WGBSSuite is available for download as a collection of R scripts2.

Fortunately, these simulation methods follow a common framework, even if the details
2Unfortunately, WGBSSuite is not available as an R package, which is the “fundamental unit of repro-

ducible R code” (http://r-pkgs.had.co.nz/) which would greatly simplify the installation and use of the
software. Furthermore, no license file is included in the download, meaning that it is unclear how the user
is permitted to use WGBSSuite and whether they may modify or redistribute the code.
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differ:

0. [Optional] Simulate the locations of methylation loci.

1. Simulate the unobserved group-specific true methylation levels.

2. Simulate the observed sample-specific sequencing depths.

3. Simulate the observed sample-specific methylation levels, e.g., the β-values.

A popular choice of parametric model in this framework is the beta-binomial model

[e.g., Feng et al. 2014, Lacey et al. 2013, Xu et al. 2013, Chen et al. 2014b, Dolzhenko and

Smith 2014]. This model, and others, are now discussed.

Simulating methylation loci

Lacey et al. [2013] and Rackham et al. [2015] are notable in that they choose to simulate

the locations of CpGs rather than simply using their locations in a reference genome. Both

papers use hidden Markov models to simulate genomes with regions of high and low CpG

density.

I do not think this a useful or necessary step, and it may even be counterproductive.

While in truth the set of methylation loci do vary between samples due to genetic variation,

it is a reasonable approximation to consider the positions of these loci as fixed. If sequence

variation is required then it is easily accommodated by sampling from the set of methylation

loci in the reference genome. Furthermore, the aim of the simulation model is to realistically

simulate methylation levels, not the locations of these loci.

Almost all downstream analyses are reference-based (see Section 2.3), so it is desirable

to know how these methods perform with respect to the relevant reference genome, not

a simulated genome in which the location of methylation loci vary from simulation to

simulation.

Simulating Bi,j

Recall that Bi,j is the underlying ‘true’ methylation level at locus i in sample j. In the

context of simulating data for comparing differential methylation calling methods, we want

these to be group-specific. That is, we want to specify Bi,jk , where jk indicates that sample
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j comes from group k. For non-differentially methylated loci all k groups have identical

Bi,jk “ Bi,j0 ; differentially methylated loci are simulated by setting Bi,jk ‰ Bi,jk1 for some

k ‰ k1.

Under the beta-binomial model, the true methylation level, Bi,j , is assumed to follow

a Betapµi,jk , φi,jkq distribution, where µi,jk is the mean and φi,jk is the dispersion of the

beta distribution3. Both the means, µi,jk , and the dispersions, φi,jk , are group-specific and

are allowed to vary across methylation loci (i.e. across i). The dispersion parameter models

the within-group variability of the Bi,j , i.e. the within-group biological variability of DNA

methylation.

As noted by Feng et al. [2014], the beta distribution is a very flexible distribution with

support on r0, 1s and has “long been a natural choice to model binomial proportions”,

particularly as a conjugate prior, as it is used in the empirical Bayes model of Feng et al.

[2014]. The beta-binomial model can also be viewed from a non-Bayesian perspective as a

compound distribution or as an overdispersed binomial distribution.

Other distributions may be used instead of the beta distribution for modelling Bi,j .

For example, Xie et al. [2014] consider both a single Gaussian distribution and a mixture

of Gaussian distributions, while Xu et al. [2013] consider both a truncated Gaussian and a

mixture of truncated Gaussian distributions.

An alternative to specifying a parametric distribution for the Bi,j is to sample these from

real data, e.g., by sampling some observed βi,j for a particular dataset and treating them as

if they were observations on Bi,j . WGBSSuite [Rackham et al. 2015] uses a modified form of

this approach. In WGBSSuite, a hidden Markov model is used to classify every CpG as having

an underlying state (“de-methylated”, “1st transition”, “2nd transition” or “methylated”).

Each of these four states has a region-specific average methylation level that is based on the

distribution of β-values for a chosen dataset. For example, the average methylation level for

all “de-methylated” regions is defined as Bde´methylated “ medianptβi,j : βi,j P r0, 0.5qusq.

Then, each Bi,j is a perturbed version of this region-level average methylation, Bregion´type,

obtained by adding on a zero-mean Gaussian random variable, i.e. Bi,j “ Bregion´type`εi,j ,
3Note that this is different to the standard parameterisation of the Beta distribution, which is described

by two shape parameters, α and β. The relationship between the two parameterisations is µ “ α
α`β

and
φ “ 1

α`β`1 [Feng et al. 2014].
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where εi,j d“Normalp0, s2q. Care needs to be taken that 0 ď Bi,j ď 1.

Simulating sequence depth

The sequencing depth at each methylation loci, di,j , may be sampled from real data [Feng

et al. 2014, Chen et al. 2014b, Dolzhenko and Smith 2014], or simulated from a parametric

distribution such as the Poisson [Rackham et al. 2015], a rounded Gaussian distribution

[Xu et al. 2013], or a rounded mixture of Gamma distributions [Lacey et al. 2013].

The most sophisticated approach to simulation of sequencing depth in bisulfite-

sequencing experiments is given by Lacey et al. [2013]. In addition to using a mixture of

distributions to capture both the low-coverage and high-coverage modes observed in RRBS

sequencing coverage, Lacey et al. [2013] model the correlation of sequencing depth across

samples for a given region. They do this by using a Gaussian copula to make the set of

sequencing depths a jointly dependent set of random variables. While this is undoubtably

sophisticated, the effect of correlated versus uncorrelated sequencing depths in a simulation

model is not explored in the paper and so the cost-benefit trade-off is unclear. Moreover,

it is simpler, and likely more computationally efficient, to include such correlations by a

sensible sampling of sequencing depths from real data.

Simulating the observed methylation levels

The final step is to simulate the read counts, Mi,j and Ui,j . These are based on the true

underlying methylation level, Bi,j , and the sequencing depth, di,j . In the beta-binomial

model, this is done by binomial sampling where Mi,j
d
“Binomialpdi,j , Bi,jq. In addition

to binomial read sampling, the WGBSSuite software also implements (truncated) negative

binomial read sampling [Rackham et al. 2015], which essentially introduces overdispersion

in the read counts.

Simulating differentially methylated regions

As we have seen, the simulation of a differentially methylated locus is straightforward;

for the ith locus, simply vary Bi,jk across the k groups. The simulation of a differentially

methylated region is more complex.
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In principal we can simulate a differentially methylated region by simply simulating

runs of differentially methylated loci. However, it must be noted that this requires careful

choice of parameters. Such parameters include the length of the DMR, the minimal number

of loci it must contain, the maximal intra-pair distances of loci within the DMR and how

many of the loci in the DMR must themselves be differentially methylated, e.g., should

Figure 8.1 be considered one DMR or two DMRs? Such decisions ultimately have to be

made by the user of the simulation software based on the types of events she is interested

in analysing.
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∆
β 0
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Position (bp)

DMR
1

DMR
2

DMR
merged

100 200

Figure 8.1: A hypothetical region in a study of differential methylation in a two-group
experiment. Plotted is the difference in β-value between the two groups (∆β) with
associated standard error against the position along the genome (Position (bp)). The first
three methylation loci are DMCs, as are the last five methylation loci. However, the fourth
locus is not a DMC. Should this region be considered as two distinct DMRs or as a single
DMR?
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8.2.3 Simulating co-methylation

A key feature ignored by the majority of simulation methods, with the notable exceptions

of Lacey et al. [2013] and Rackham et al. [2015], is co-methylation. The methylation states

of neighbouring loci are highly dependent and, consequently, the Bi,j of nearby loci are

highly dependent. To be clear, the majority of studies using simulated DNA methylation

data do not model an important feature of DNA methylation data, co-methylation.

Most simulation methods do not simulate individual reads and so cannot simulate

within-fragment co-methylation. Instead, they capture correlations of methylation levels

by inducing dependence in the Bi,j . For example, under the beta-binomial model these

correlations could be induced by forcing the µi,j to be spatially dependent. This idea takes

its inspiration from Jaffe et al. [2012a] who simulate spatially correlated DNA methylation

microarray data by imposing an autocorrelation structure via a lag-1 autoregressive model

of the simulated β-values.

Lacey et al. [2013] take a different approach, but one that still results in correlated

Bi,jk across i, within group k. To begin, they compute β-values from chromosome 11

for a single normal myotube cell line that was sequenced with RRBS. They then fit a

Gaussian variogram to these β-values, which shows “a strong correlation for sites in close

proximity, decaying to near independence at distances beyong 3000 bp”. To simulate

spatially correlated Bi,j they use an iterative process:

1. Simulate Bi,jk from a Beta distribution with parameters estimated from the chromo-

some 11 MTCTL2 data. These are estimated under an assumption of independence.

2. Induce correlation amongst the Bi,jk (across i) by a transformation of the Bi,jk .

The second step uses a method published by Zaykin et al. [2002]. The transformed

values, B˚i,jk , are created by the transformation B˚jk
“ 1 ´ Φ

!

CΦ´1p1 ´ Bjkq
)

, where

Bjk is the vector of Bi,jk , C is a factor of the correlation matrix Σ “ CC
1 , where Σ is

estimated from the fitted Gaussian variogram, and where Φp¨q denotes the standard normal

distribution function.

WGBSSuite induces spatial correlation amongst the Bi,jk in a less direct manner. Recall

that each methylation locus is assigned one of the four underlying states (“de-methylated”,
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“1st transition”, “2nd transition”, “methylated”) via a hidden Markov model. The transition

matrix of this hidden Markov model ensures that neighbouring loci, i, pi`1q, are more likely

to be assigned the same state. Furthermore, since all loci within each of the four states are

assigned the same (perturbed) underlying methylation level, Bi,jk “ Bregion´type ` εi,jk ,

neighbouring loci have similar methylation levels. Note that the IPD only plays a direct

role in the initial segmentation of the genome, not in the assigning of the Bi,j .

Other model-based simulations

A separate class of model-based simulation methods are those that simulate the β-values

directly, i.e. without simulating sequencing depth [Jaffe et al. 2012a, Chen et al. 2014a,b].

These models are designed for simulating microarray data and not sequencing data, since

they do not include the variability due to variation in sequencing depth. Of these methods,

only Jaffe et al. [2012a] simulate correlation amongst the Bi,jk .

8.2.4 Methods based on re-sampling real data

A simulation may also be based entirely on re-sampling of real data4. This type of

simulation is attractive because, through careful sampling, it can capture behaviour that

is otherwise very difficult, if not impossible, to capture in a parametric model. At the

same time, however, if the sampling units are poorly chosen or the sampling strategy is

incorrect, then it may ignore these same features or, worse still, introduce artefacts into

the simulated data.

Re-sampling methods are most easily implemented at the level of β-values. Re-sampling

reads is more difficult, except in the special case of down-sampling whereby the positions

of reads are held constant but only a sub-sample of them are used in downstream analysis.

Down-sampling is only really of interest to examine the effects of sequencing coverage on

downstream analyses.

Sofer et al. [2013] use a re-sampling based simulation method in the development of

their Aclust software (designed for identifying differential methylation from microarray

data). The idea is adapted from Gaile et al. [2007], which is a simulation method for array
4This may also be referred to as creating a synthetic dataset.
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comparative genomic hybridization experiments. Sofer et al. [2013] sample “blocks” of

CpGs, a region of the genome where all CpGs are within 10 kb of the next, to “generate

(spatial) correlation-preserved methylation data”. By sampling blocks rather than individual

CpGs, this sampling scheme preserves the correlation structure between CpGs occurring in

the same block. Two blocks are unlikely to be correlated since there is little evidence that

CpGs separated by more than 10 kb have spatially correlated methylation levels.

Sofer et al. [2013] sample from a dataset of 539 Illumina 450k microarrays and select a

small number of “target” CpGs, which are CpGs whose methylation level is highly variable

across the 539 samples. If a block does not contain a target then it is sampled uniformly at

random from the 539 samples. If a block does contain a target, however, then the sampling

is weighted so that the “cases” are preferentially sampled from blocks with a high level of

methylation at the target CpG and the “controls” are preferentially sampled from blocks

with a low level of methylation at the target CpG5. This is essentially weighted re-sampling

of the real data to induce differential methylation.

Due to the correlation structure of the β-values (the co-methylation) it is likely, although

not guaranteed, that other CpGs in the blocks containing targets also display differential

methylation.

8.2.5 Summary

My initial interest in simulation methods was to explore models of co-methylation, particu-

larly at the level of individual DNA fragments. This requires two key capabilities:

1. Simulation of individual reads.

2. Simulation of co-methylation.

None of the published simulation methods satisfied both these requirements. This

motivated the development of methsim.

methsim is specifically designed to model the co-methylation structure of bisulfite-

sequencing data by simulating individual DNA fragments rather than directly simulating

summary methylation measurements. In order to model the co-methylation structure,
5The use of “cases” and “controls” is arbitrary, as is the choice of highly methylated for “cases” and

lowly methylated for “controls” at target CpGs.
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I decided that methsim should simulate at the level of individual DNA fragments. An

added bonus of this approach is that methsim can (in theory) generate data at multiple

resolutions: β-values, methylation patterns at m-tuples, or entire sequencing reads. While

my initial motivation in developing methsim was to explore models of co-methylation, I

realised that it could also be used in the development and comparison of methods for the

downstream analysis of DNA methylation data.

8.3 Methods

Simulating data with methsim involves 3 steps:

1. Simulating the true methylome of each sample.

2. Simulating reads, including sequencing error and bisulfite-conversion error, by sam-

pling from the true methylome.

3. Constructing the output, be it reads, methylation patterns at m-tuples, or β-values.

methsim requires an input dataset from which to estimate key parameters. For the

input dataset, methsim requires the methylation patterns at various sized m-tuples, which

can be produced by the methtuple software. methsim can currently only simulate CpG

methylation and assumes that the methylation states of all CpGs are strand symmetric.

In what follows we will simulate data based on the ADS methylome from the Lis-

ter dataset. We focus on simulating autosomal data, since the sex chromosomes and

mitochondrial DNA have very different methylation dynamics.

8.3.1 Implementation

methsim is written in R and builds on the MethylationTuples package described in

Chapter 5, as well as several R packages available on Bioconductor and CRAN (see the

DESCRIPTION file for a complete list.). It is currently a very experimental package and

is therefore not yet published on Biocondutor, but its development can be followed at

https://github.com/PeteHaitch/methsim.

methsim makes extensive use of the S4 object system in R. The most important
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classes defined in methsim are MethylomeParam, SimulatedMethylome, WGBSParam and

SimulatedBS. The most important methods are the simulate() methods defined for the

MethylomeParam and WGBSParam classes.

The MethylomeParam object contains the empirical distributions of key statistics from

which the parameters for simulating the ‘true’ methylome are sampled. Therefore, the

MethylomeParam object should be based on data from a relevant sample. To help a new

user get started, methsim includes MethylomeParam objects for the ADS, ADS-adipose

and ADS-iPSC samples from the Lister dataset. Alternatively, the user may process the

BAM file for their sample with methtuple and then use the helper functions in methsim to

construct a MethylomeParam object based on their sample of interest. The user runs the

simulate() method on the MethylomeParam object to simulate a true methylome; this

returns a SimulatedMethylome object.

Once we have a true methylome, we can simulate data from it. methsim currently

supports the simulation of whole-genome bisulfite-sequencing reads via the WGBSParam

class and associated simulate() method. Other assays, such as RRBS or microarrays

could in principle be supported. A WGBSParam object will contain a SimulatedMethylome

object, along with parameters such as the read-length, sequencing coverage and error

rate of the data to be simulated. When applied to a WGBSParam object, the simulate()

method returns a SimulatedBS object or a MethylationTuples::MethPat object6. A

SimulatedBS object contains all simulated reads and is generally a large object (on the

order of 10 GB). By contrast, the MethylationTuples::MethPat object, which summarises

the simulated reads for m-tuples of a particular size7, is much smaller (on the order of

500 MB) but does not contain the full information of the simulation since read-level data

are lost. methsim also includes a helper function, asMethPat(), to coerce a SimulatedBS

object to a MethylationTuples::MethPat object.
6This uses the NAMESPACE notation of R: MethylationTuples::MethPat can be read as “the MethPat

class is part of the MethylationTuples package”. See Section 5.3 for details of this class.
7Returning a MethylationTuples::MethPat object may be appropriate, for example, if all that is

required for downstream analyses are methylation counts at 1-tuples.
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8.3.2 Simulating a single methylome

As we have seen, DNA methylation is highly heterogeneous along the genome. Nonetheless,

there are clear regions of ‘similarity’, such as the unmethylated CpG islands and long

partially methylated domains. In these locally-similar regions we might hope to model

DNA methylation by a simple parametric model. methsim, like other simulation methods,

is based on the idea of segmenting the genome into ‘regions of similarity’, fitting a simple

model to each region and then ‘stitching’ the results together to form the true methylome.

The idea of segmenting a globally heterogenous stochastic process into a series of

locally homogeneous processes is not new. A hidden Markov model is an example of

such a process; while the entire process may highly heterogeneous, conditional on the

hidden states the process may be homogeneous. Hidden Markov models, and other models

assuming local similarity in spite of global heterogeneity, have been used with great success

in bioinformatics.

methsim takes the following approach to simulating the true underlying methylome for

each sample:

1. Segment the methylome into regions of similarity.

2. Sample parameters for the ith methylation locus based on the segmentation and the

empirical distributions of key statistics.

I now describe each step in greater detail.

Segmenting the methylome

methsim uses the the R/Bioconductor package, MethylSeekR [Burger et al. 2013], to

segment the input methylome into regions of similarity. MethylSeekR was developed to

discover regulatory motifs from bisulfite-sequencing data by segmenting the methylome into

unmethylated regions (UMRs), lowly-methylated regions (LMRs) and partially methylated

regions8 (PMRs). It does this using a two-stage algorithm applied to the β-values from a

sample:
8Partially methylated regions are also commonly known as partially methylated domains, but we will

refer to them as ‘regions’ for consistency with UMRs and LMRs.
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1. Identify partially methylated regions. A summary statistic, α, which is based on

the β-values in a sliding window of 100 CpGs, is used to identify PMRs. Briefly, a

two-state hidden Markov model is fit to the α values to identify PMRs and non-PMRs.

2. Identify UMRs and LMRs. The PMRs are masked from the genome and simple

heuristics are used to identify UMRs and LMRs based on the average β-values in a

window and the number of CpGs in the window.

methsim post-processes the segmentation provided by MethylSeekR to partition the

methylome into regions of similarity, namely UMR, LMR, PMRS and other9. Roughly

speaking, other regions are ‘mostly methylated regions’ (see Figures 8.2, 8.3, 8.4, 8.5),

although Burger et al. [2013] do not describe these regions as such.
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Figure 8.2: Boxplots of CpG β-values in each region-type following segmentation by
MethylSeekR for the EPISCOPE dataset.

While a tailored algorithm may improve this segmentation process, the result produced

by MethylSeekR is a reasonable approximation to segmenting the methylome into the

required ‘regions of similarity’.

9The output returned by MethylSeekR does not strictly partition the methylome since it is neither
disjoint nor exhaustive, hence the need for post-processing.
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Figure 8.3: Boxplots of CpG β-values in each region-type following segmentation by
MethylSeekR for the Lister dataset.
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Figure 8.4: Boxplots of CpG β-values in each region-type following segmentation by
MethylSeekR for the Seisenberger dataset. MethylSeekR was unable to partition the
E16.5_male_1 methylome due to its unusual β-value distribution, hence no data is shown
for this sample.
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Figure 8.5: Boxplots of CpG β-values in each region-type following segmentation by
MethylSeekR for the Ziller dataset.

Parameterising the model

methsim uses a two-state (1 “ methylated, 0 “ unmethylated), first-order Markov chain

to model Z “ tZhu
h“nh
h“1 . This allows the incorporation of within-fragment co-methylation

into the simulation. The choice of a first-order Markov process is one of computational

simplicity and is a reasonable approximation for most of the genome given the available

data (see Chapter 7).

In Chapter 7 we saw that the strength of within-fragment co-methylation varies as a

function of the intra-pair distance and by the genomic context. For this reason I allow

the transition probabilities, p, to vary with i, that is, I allow the Markov chain to be

spatially inhomogeneous. In particular, I allow the transition probabilities to depend on

the intra-pair distance between the ith and pi` 1qth locus and on the region type, ri (UMR,

LMR, PMR or other), for each pair of loci10.

The above-described model is not particularly amenable to analytical calculations due

to the spatial inhomogeneity. It is, however, relatively simple to simulate realisations from
10Actually, it only depends on the region of the ith locus. Most pairs of loci, pi, i` 1q, will lie in the same

region. For pairs that span the boundary of two different regions I have arbitrarily chosen to use the region
of the ith locus.
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this model, requiring only a single loop over the set of loci on each chromosome. For a

chromosome containing n methylation loci, there are n´ 1 transition matrices to estimate

or otherwise assign.

Rather than directly modelling the transition probabilities, p, methsim is parameterised

by a vector of marginal probabilities, B “ tPrpZi “ 1qu, and a vector of odds ratios,

ψ “
PrpZi`1“1|Zi“1qˆPrpZi`1“0|Zi“0q
PrpZi`1“1|Zi“0qˆPrpZi`1“0|Zi“1q “

PrpZi“1,Zi`1“1qˆPrpZi“0,Zi`1“0q
PrpZi“1,Zi`1“0qˆPrpZi“0,Zi`1“1q . We can compute

the transition probabilities, p, from B and ψ.

For each 2-tuple, pi, i` 1q, methsim first constructs the joint probability matrix, Pi,i`1

from the marginal probabilities, Bi and Bi`1, and the odds ratio, ψi. The general form of

Pi,i`1 is shown below:

Pi,i`1 “

¨

˝

1´Bi`1 Bi`1

1´Bi PrpZi “ 0, Zi`1 “ 0q PrpZi “ 0, Zi`1 “ 1q

Bi PrpZi “ 1, Zi`1 “ 0q PrpZi “ 1, Zi`1 “ 1q

˛

‚

methsim computes Pi,i`1 using the iterative proportional fitting algorithm. Iterative

proportional fitting is a general method “for constructing tables of numbers satisfying

certain constraints” [Speed 2005]. In the case of methsim, we use iterative proportional

fitting to construct the unique 2 ˆ 2 array (the joint probability matrix) with specified

margins (the marginal probabilities of each methylation state at each locus) and the

specified cross-ratio (the odds-ratio). An example of this procedure is illustrative.

Let Bi “ 0.7, Bi`1 “ 0.6 and ψi “ 2. To begin the iterative proportional fitting

algorithm, form the matrix P p0qi,i`1 “
´

ψi 1
1 1

¯

. This matrix has the desired cross-ratio, ψi,

but not the desired row and column margins. At each iteration of the algorithm, iterative

proportional fitting adjusts the rows and columns such that the cross-ratio remains ψi
while the row and column margins converge towards the desired values. The algorithm

continues in this manner, forming a series of 2 ˆ 2 tables that converge pointwise (and

uniquely) to a 2ˆ 2 table P p˚qi,i`1 ” Pi,i`1. For our example, P p˚qi,i`1 “
´

0.155 0.145
0.245 0.455

¯

, to three

decimal places of precision. It is easily verified that P p˚q has the desired cross-ratio and

marginal sums.

Once Pi,i`1 is computed, the desired transition probability is obtained by dividing
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the appropriate element of Pi,i`1 by the appropriate marginal probability. To continue

our example, suppose Zi “ 0, then the probability that Zi`1 is also zero is given by

PrpZi`1 “ 0|Zi “ 0q “ PrpZi“0,Zi`1“0q
PrpZi“0q “ 0.155

0.3 “ 0.517 (to three decimal places). In fact,

methsim only stores PrpZi`1 “ 1|Zi “ 0q and PrpZi`1 “ 1|Zi “ 1q since PrpZi`1 “

0|Zi “ 0q “ 1´PrpZi`1 “ 1|Zi “ 0q and PrpZi`1 “ 0|Zi “ 1q “ 1´PrpZi`1 “ 1|Zi “ 1q.

The above-described model implicitly assumes that all nh haplotypes have the same

marginal probabilities and co-methylation structure. We may extend this model to define

Z as a mixture of a small number of first-order Markov chains defined as in the above.

Such a mixture model may be appropriate when simulating a sample that is a combination

of cell types.

To simulate values of B and ψ, methsim uses the empirical distributions of their

estimates, β and pθ “ logp pψq, in the input methylome. More specifically, B is based on

βi|ri
(the empirical distribution of βi conditional on the region type of the ith locus, ri)

and θ is based on pθMH . We have already seen many examples of the distribution of pθMH in

Chapter 7. The empirical distributions βi|ri
for the ADS sample are shown in Figure 8.6.
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Figure 8.6: βi|ri
, the distribution of β-values for CpGs in each region type, for the ADS

sample. Only CpGs with at least 10ˆ sequencing coverage are used. UMR = unmethylated
region; LMR = lowly methylated region; PMR = partially methylated region; other = any
other region.
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There are many ways to simulate values of B and θ “ logψ based on these empirical

distributions. I have so far only had time to explore a few simple methods and this remains

ongoing work. We will discuss the results from three methods for simulating B (m1, m2,

and m3 ) and two ways for simulating θ (A and B):

m1 All loci in each region have the same B, which is sampled from βi|ri
.

m2 All loci in each region have the same average B, which is sampled from βi|ri
; this

average is then perturbed for each locus by a Gaussianp0, σ2
Bq random variable. This

is similar to what is done by WGBSsuite. Here I have used σ2
B “ B ˆ p1´Bq. The

resulting B is truncated so that all values lie between 0.01 and 0.99 (necessary to

avoid issues in the iterative proportional fitting algorithm at the boundaries).

m3 B simulated as in m2 but with the perturbations in each region simulated from a

first-order autoregressive process with coefficient equal to 0.5.

A θ identically zero. This is to simulate independence of within-fragment methylation

states and as a control to check that methsim is working as intended for simulating

within-fragment co-methylation.

B θ sampled from GaussianpµIPD, σ
2
IPDq, where µIPD and σIPD are plug-in estimates

computed from the distribution of chromosome-level pθMH (autosomes only).

Furthermore, we will consider simulations where:

I The sample is ‘pure’ and all haplotypes have the same parameters.

II The sample is a mixture of subpopulations with different parameters. We will consider a

sample with four subpopulations with relative frequencies equal to p0.6, 0.25, 0.1, 0.05q.

We do not explore all combinations of these factors in the results presented here but

look at five informative combinations: m1AI, m1BI, m2BI, m3BI and m3BII. We compare

these five models to the real ADS data. The limitations of these models may already be

clear, and we will discuss these further in Section 8.4.

The simulation of θ “ logψ requires further explanation. The empirical distributions

of pθ will only include values for small IPDs since these are estimated from individual
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sequencing reads (see Chapter 7 for details). When simulating a methylome, we will

encounter 2-tuples with much larger IPDs and the question is how to deal with these.

Again, there are several options. For example, we might assume a parametric form

for the distribution of θ as a function of IPD, such as a exponential decay towards θ “ 0

(corresponding to independence). Given the quality and read-lengths of the ADS data,

I have elected to use the empirical pθMH for pairs with IPD ď 180 and set µIPD “ 0

for those with IPD ą 180. σIPD is given by the median absolute deviation of σIPD for

pairs with IPD ď 180. While obviously a gross simplification, the vast majority of CpG

pairs with NIL “ 0 have an IPD ď 180 and so will be unaffected by this ‘independence’

assumption.

8.3.3 Simulating reads

Once we have our ‘true’ methylome, we want to simulate an assay of this sample. In theory

this could be any type of methylation assay, but here we focus on simulating whole-genome

bisulfite-sequencing data.

methsim uses a simple Poisson-based method for simulating bisulfite-sequencing. The

user specifies the desired read length11, the average sequencing coverage, the error rate

(ε, which includes both sequencing error and bisulfite-conversion error), and provides the

simulated ‘true’ methylome. We will use 200 bp, single-end reads (equivalently, 100 bp

paired-end reads that are always end-to-end) with an average coverage of 23ˆ (mimicking

the actual ADS data) in what follows.

The number of reads required is computed by nreads “
average sequencing coverage

read length ˆ

size of genome. The number of reads per chromosome is assigned proportional to the

chromosome length. Then, the start of each read is sampled uniformly across the respective

chromosome. We only retain those reads that overlap a methylation locus.

Suppose we have a simulated read, z, that overlaps the 3-tuple pi, i ` 1, i ` 2q. The

methylation state along the read is simulated as follows:
11Currently only single-end data are supported. This isn’t a big issue. Most paired-end bisulfite-sequencing

datasets have overlapping mates, and so paired-end data can be approximated by simply doubling the read
length. Also, all reads must currently have the same length, i.e. no simulation of read trimming. I don’t
consider this feature a priority, but it could easily be implemented by generating read lengths from a given
probability distribution.
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1. Sample zi from a Bernoulli(Bi) distribution12.

2. Sample zi`1 from a Bernoulli(pi) distribution, where pi is the appropriate transition

probability given the simulated zi.

3. Sample zi`2 from a Bernoulli(pi`1) distribution, where pi`1 is the appropriate tran-

sition probability given the simulated zi`1.

4. Each of element of the simulated z is independently flipped with probability ε to

simulate sequencing error.

The result of this process is a SimulatedBS object storing the ID of each read that

overlaps a methylation locus, along with the corresponding genomic co-ordinates and the

methylation states of the read.

8.3.4 Constructing the output

The SimulatedBS object contains all the data from the simulation. However, it is not

always the most convenient or efficient format with which to work. For example, many

downstream analyses only make use of β-values, so we might want to summarise our

simulated data this way. methsim provides the asMethPat() function to convert the

SimulatedBS object to a MethylationTuples::MethPat object containing methylation

patterns at m-tuples of a given size13; all the functionality of the MethylationTuples

package is then available to the user, such as computing β-values with the methLevel()

method or the correlations of β-values using the methLevelCor() function.

8.3.5 Simulating multiple samples

So far we have described how to simulate a single whole-genome bisulfite-sequencing sample.

If we want to simulate six independent samples then we could simply run this procedure

six times, with a different MethylomeParam object for each realisation. However, we will

generally be interested in simulating experiments where there is some relationship between

the samples. For example, suppose we want to simulate a two-group experiment with three
12If Z is a mixture of Markov chains then we first simulate which component the read comes from by

sampling from a multinomial(w) distribution, where w is the vector of weights of each component. All
subsequent steps will be simulated according to which component is sampled at this step.

13Alternatively, the user may use the simplify argument of the simulate() method to return an already
‘simplified’ MethylationTuples::MethPat object rather than the SimulatedBS object.
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samples per group. Furthermore, suppose we want to include differentially methylated

regions between the two groups. How do we simulate such an experiment?

To simulate these type of experiments, we need to be able to control the variation

between the resulting SimulatedBS objects. In this example, we probably want the three

samples in each group to be more similar to each other than to the three samples in the

other group. Essentially, we need to be able to control the within-group and between-group

variation.

Biological variation is controlled through the MethylomeParam object and the method

with which we simulate B and ψ through the simulate() method. Technical variation

is controlled the WGBSParam object. If we want two samples to be very different from one

another, then we would use two different MethylomeParam objects at the beginning of the

process. If we want to simulate two technical replicates, however, then we would use the

same WGBSParam objects; the two samples have identical ‘true’ methylomes and they only

diverge at the ‘sequencing’ step of the simulation.

We might also consider more subtle ways of introducing variation. For example, we

might use the same MethylomeParam object but vary how we simulate B and ψ between

calls to simulate(). This avenue remains to be explored.

8.3.6 Simulating differential methylation

An obvious application of methsim is to simulate data to be used in a study comparing

methods for identifying differential methylation.

One way of doing this would be to take a SimulatedMethylome object and create a

modified copy where B has been perturbed by specified amounts at a set of specified

loci. We could then simulate bisulfite-sequencing data from each SimulatedMethylome

and study which analysis methods can identify these simulated DMCs and DMRs.

8.3.7 Performance

While methsim is an R package, much of it is written in C++, using the Rcpp package

[Eddelbuettel et al. 2011, Eddelbuettel 2013], which greatly speeds up the running time of

key procedures. Furthermore, several steps of the simulation can be run in parallel for each
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chromosome. Parallelism is implemented via the BiocParallel Bioconductor package

(http://bioconductor.org/packages/BiocParallel).

The SimulatedMethylome and SimulatedBS objects are large in memory. This is to

some extent unavoidable; we are simulating whole-genome bisulfite-sequencing sequencing

experiments that produce an enormous amount of data.

Using up to 8 CPU cores in parallel, it takes less than 9 minutes to simulate a single

30ˆ sequencing coverage whole-genome bisulfite-sequencing assay from a ‘true’ methylome.

These results are indicative of simulating high-coverage whole-genome bisulfite-sequencing

for human-sized genomes. Simulations using a smaller genome or lower sequencing coverage

will have faster running times and lower memory usage.

8.4 Results

A central feature of methsim is that the simulation parameters are sampled from an

input sample. At a bare minimum, the first test of methsim is that simulated data are

similar to the real data on which they are based. To assess this, we compare several

summary measures between the simulated data and the real data. The simplest of these

are summaries of the distributions of β-values and within-fragment co-methylation, which

are explicitly sampled in methsim.

Firstly, looking at the distribution of β-values, we see that all of m1AI, m1BI, m2BI,

m3BI and m3BII do a reasonable job of capturing the bimodality of β-values (Figure 8.7)

and their relationship to CpG islands (Figure 8.8). The effect of both the independent

perturbations (m2 ) and the correlated perturbations (m3 ) appear to be dominated by vari-

ation due to variation in sequencing coverage. The lack of within-fragment co-methylation

in m1AI does not affect the genome-wide distribution of methylation levels. The mix-

ture model, m3BII, has noticeably more intermediate β-values owing to the increased

heterogeneity at each CpG across the sub-populations.

Turning our attention to within-fragment co-methylation, Figure 8.9 shows the genome-

level and chromosome-level Mantel-Haenszel estimates of within-fragment co-methylation.

Figure 8.10 shows the genome-level estimates of within-fragment co-methylation stratified

by CpG islands. These results are only available for CpG pairs with NIL “ 0 because the
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Figure 8.7: Frequency polygon of the genome-wide distribution of CpG β-values for methsim
simulated data and the ADS input sample. β-values are grouped into 0.01-width bins
and the percentage of CpGs in each bin is plotted on the y-axis. Observations have been
combined across strands and only CpGs with at least 10ˆ sequencing coverage are included.

asMethPat() function does not create NIL ą 0 pairs.

Reassuringly, we see no evidence of within-fragment co-methylation in m1AI, which

simulates independence of within-fragment methylation states. The trend of the genome-

level estimates, by design, very closely match that of the ADS input sample. We see,

however, that the chromosome-level estimates of m1BI, m2BI, m3BI and m3BII are

perhaps a little too homogeneous when compared to the ADS input sample. We also

see in the results for m1BI, m2BI, m3BI and m3BII the effect of simulating from a

Gaussianp0, σq for IPD ą 180, as outlined in Section 8.3.2. The m3BII model again

stands out, this time with a noticeably higher level of within-fragment co-methylation. Each

sub-population has its own θ and, although these are sampled from the same parametric

model, this suggests that such heterogeneity in the sample will artificially inflate estimates

of within-fragment co-methylation, even those made at the genome-level. While this

requires further investigation, it raises the possibility that increased genome-level estimates

of within-fragment co-methylation may in fact be measuring increased heterogeneity of the

sample.
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Figure 8.8: Frequency polygon of the genome-wide distribution of CpG β-values for the
methsim simulated data and the ADS input sample, stratified by whether the CpG is in a
CpG island. Only CpGs with at least 10ˆ sequencing coverage are included. ‘Spikes’ in
the density estimate are due to the discreteness of β-values.

These caveats aside, all five models do quite a good job of capturing the average level

of CpG methylation and the strength of within-fragment co-methylation. Unfortunately,

the results are not so promising for the correlations of β-values.
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In contrast to the other two summaries, the intention with methsim was to not explicitly

model the spatial correlation of β-values. Rather, the idea was to see how the marginal

level of methylation and the within-fragment co-methylation affected these correlations14.

However, this overlooks that we are already imposing some structure, and therefore

correlations, on the B by specifying them in a region-specific manner.

Figure 8.11 shows the dramatic consequences of this modelling decision. When compared

to the correlations of β-values from the ADS input sample, we see that in all five models

the correlations of β-values are far too strong. Stratifying these correlations by CpG islands,

we see that the source of this problem is in regions outside of CpG islands (Figure 8.12).

This gives some hope that this deficiency may fixed by a more careful modelling of β-values

outside CpG islands, and remains a source of ongoing work.
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Figure 8.11: Spearman correlations of β-values as a function of IPD for strand-collapsed
pairs of CpGs with NIL “ 0 for methsim simulated data and the ADS input sample. The
raw estimates of the correlations are shown as semi-transparent points and are overlaid
with a loess fit to these points (span = 0.1).

14While m3BI and m3BII do include some spatial dependence of the B via the autoregressive perturbation,
these perturbations are independent of IPD and are really intended to analyse the effect of the independence
condition in m2BI.
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Figure 8.12: Spearman correlations of β-values as a function of IPD stratified by CpG
island status for strand-collapsed pairs of CpGs with NIL “ 0 for methsim simulated
data and the ADS input sample. The raw estimates of the correlations are shown as
semi-transparent points and are overlaid with a loess fit to these points (span = 0.1).

8.5 Summary

Simulating DNA methylation data is complicated by its heterogeneity. This heterogeneity

exists is in multiple ‘directions’: along the genome, between cells in a sample, and between

subjects. As more data become available, we can get a better handle on the causes of the

variation but, for now, it remains challenging.

methsim provides a framework that I have used to experiment with models for simulating

DNA methylation data. The models I have currently explored capture some key aspects

of the data including, for the first time, within-fragment co-methylation. Unfortunately,

while these results are promising on some fronts, there is clearly much work to be done on

others.

Most notably, and frustratingly, I do not yet have an adequate model for the correlations

of the true methylation levels, B. The model of Lacey et al. [2013] is promising, although

may be computationally infeasible for whole-genome data given the timings reported in

the original publication (13 seconds for 5, 000 CpGs increasing to 80 seconds for 10, 000
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CpGs). The model used by WGBSsuite Rackham et al. [2015] is similar to m2, so I suspect

it will produce similar results, but this requires further investigation. I continue to explore

how alternative models of B might be integrated into methsim to improve this aspect of

the simulation.
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Chapter 9

Concluding remarks

This thesis has examined the statistical and computational challenges raised by high-

throughput assays of DNA methylation. The first chapter introduced DNA methylation

and then extensively reviewed different high-throughput assays for measuring it, focusing

on the current gold standard assay of whole-genome bisulfite-sequencing.

The second chapter detailed the bioinformatics analysis of whole-genome bisulfite-

sequencing data. Beginning with the FASTQ files created by the DNA sequencers, we

reviewed the quality control procedures, read mapping, and post-processing steps that are es-

sential to creating a BAM file containing high-quality mapped reads. We then described meth-

ods for calling methylation events from bisulfite-sequencing data. The chapter concluded

by introducing m-tuples and the methtuple software that I wrote. Uniquely, methtuple

can call methylation patterns at m-tuples from whole-genome bisulfite-sequencing data.

The third chapter described the 40 whole-genome bisulfite-sequencing samples that are

analysed throughout the remainder of the thesis.

Chapter 4 laid out a statistical framework for analysing bisulfite-sequencing data. This

process illustrated that the commonly used summary of methylation levels, the β-value,

aggregates over many potential sources of variation. In light of this, we discussed the

interpretation of β-values and examined the distributions of β-values in our 40 samples.

Chapter 5 examined methods for analysing bisulfite-sequencing data to address key

biological questions. Most downstream analyses are based on β-values, such as the identifi-

cation of differential methylation, and we reviewed these. There is, however, a growing
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interest in analyses based on methylation patterns at m-tuples since these can address

novel biological questions. A limitation to the development of these methods has been a

lack of software. The chapter concluded with the development of the MethylationTuples

R package, which, together with methtuple, is designed to facilitate analyses based on

methylation patterns at m-tuples.

The sixth and seventh chapters are a comprehensive review and analysis of co-

methylation, the spatial dependence of DNA methylation. Chapter 6 re-examined previous

analyses of co-methylation and found that these have been limited by inadequate data

and deficiencies in the statistical methods applied. We addressed some of these limitations

with an extensive analysis of co-methylation in Chapter 7. We proposed a novel analysis

of co-methylation using methylation patterns from individual DNA fragments, which we

call within-fragment co-methylation. A simulation study demonstrated that, in general,

we cannot estimate this within-fragment co-methylation for individual pairs of CpGs. By

aggregating pairs of CpG, however, the simulation study showed that we can estimate a

summary of this spatial dependence of DNA methylation along individual DNA fragments.

We applied this method to 40 whole-genome bisulfite-sequencing samples to identify ge-

nomic features that influence co-methylation and examined how it varies between different

tissues.

To conclude, Chapter 8 detailed our efforts to develop the methsim software to simulate

whole-genome bisulfite-sequencing data. Unlike existing software, methsim seeks to model

co-methylation so as to create more realistic simulated data. Such simulated data will be

useful in developing and benchmarking methods for the analysis of DNA methylation data.

While aspects of methsim are promising, the overly-strong correlations of β-values is an

obvious inadequacy in the current model. We continue to work to improve this and to

develop the software more generally.

DNA methylation data have a complex dependence structure, as demonstrated by the

analyses presented in this thesis. Any analysis must bear in mind the multiple sources of

variation in the data and the amount of aggregation required in order to extract meaningful

results.

The large size of the data generated by these experiments can make it challenging to

develop analysis methods. This is particularly true when coupled with a lack of software
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for extracting, manipulating and summarising the relevant features of the data. Much

of the effort in this thesis has gone into developing software to extract and manage this

information (methtuple and MethylationTuples) so that new tools can be built on a

higher foundation (methsim). It is my hope that, with continued development, these tools

may facilitate other analyses to unravel the complexity of DNA methylation and its many

biological roles.
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Appendix A

Appendix

A.1 The probability that two dependent Bernoulli random

variables are identical

Lindqvist [1978] wrote a brief note on Bernoulli trials with dependence. Building on earlier

work by Klotz [1973], Lindqvist parameterises the Bernoulli process X1, X2, . . . on t0, 1u

by the parameters p “ PrpXi “ 1q and c “ corpXi´1, Xiq and shows that the transition

matrix is given by

Π “

¨

˝

p1´ pq ` cp pp1´ cq

p1´ pqp1´ cq p` cp1´ pq

˛

‚

provided that maxp1´ 1
p , 1´

1
1´pq ď c ď 1.

From this we can compute the joint distribution,

PrpX1 “ x1, . . . , Xn “ xnq

“PrpX1 “ x1qPrpX2 “ x2|X2 “ x2q ¨ ¨ ¨PrpXn “ xn|Xn´1 “ xn´1q

In particular, in the case n “ 2 we can compute the probability that two dependent

and identically distributed Bernoulli random variables are equal.
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To extend the above result to the probability that two dependent and non-identically

distributed Bernoulli random variables are equal, simply requires that we derive the appropri-

ate transition matrix. Switching notation to that used in Chapter 6, let Zh,i d“Bernoullipphq

and Zh1,i1 d“Bernoullipph1q. The transition matrix, Π “
`

PrpZh1,i1“zh1,i1 |Zh,i“zh,iq
˘

, is given

by

Π “

¨

˝

p1´ ph1q ` cph ph1 ´ cph

p1´ ph1q ´ cp1´ phq ph1 ` cp1´ phq

˛

‚

We can then compute the desired probability

PrpZh,i “ Zh1,i1q “ PrpZh,i “ 0, Zh1,i1 “ 0q ` PrpZh,i “ 1, Zh1,i1 “ 1q

“ PrpZh1,i1 “ 0|Zh,i “ 0qPrpZh,i “ 0q

` PrpZh1,i1 “ 1|Zh,i “ 1qPrpZh,i “ 1q

“
“

p1´ ph1q ` cph
‰

p1´ phq `
“

ph1 ` cp1´ phq
‰

ph

“ p1´ phqp1´ ph1q ` cph
“

1´ phs ` phph1 ` cphp1´ phq

“ p1´ phqp1´ ph1q ` phph1 ` 2cphp1´ phq

A.2 Computing details

All computational work was performed on one of the Bioinformatics Division’s HP Blade

servers. These are shared-use, shared-memory machines. The basic specifications are shown

in Table A.1.

Table A.1: Bioinformatics Division server specifications.
Machine name Processors Number of cores RAM
unix88 4ˆ Intel Xeon X7350 @ 2.93GHz 16 128 GB
unix301 4ˆ AMD Opteron 8435 @ 2.6GHz 24 256 GB
unix302 4ˆ AMD Opteron 6174 @ 2.2GHz 48 512 GB
unix303 4ˆ AMD Opteron 6176 @ 2.3GHz 48 512 GB
unix305 4ˆ AMD Opteron 6276 @ 2.3GHz 64 512 GB
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A.3 Software details

The analyses described in my thesis made extensive use of R (R Under development

(unstable) (2014-10-29 r66891) and R version 3.2.0 (2015-04-16)) and Python

(v2.7). All analyses were run on one of the servers described above. The scripts used to

prepare the results for each chapter are available from https://github.com/PeteHaitch/

phd_thesis_analyses.

I developed several pieces of software during my PhD. These are listed below, along

with the version used in for analyses in my thesis:

• methtuple (v1.4.0)

• GenomicTuples (v1.2.1)

• MethylationTuples (v0.3.0.9007, commit 4e127d2)

• methsim (v0.5.0.9013, commit 9162c8b)

In addition, I made use of the R packages listed in Table A.2 and gratefully acknowledge

the developers.

Table A.2: R packages used in thesis (as reported by

devtools::session_info())

package version source

BiocGenerics 0.14.0 Bioconductor

BiocParallel 1.2.1 Bioconductor

Biostrings 2.36.0 Bioconductor

BSgenome 1.36.0 Bioconductor

BSgenome.Hsapiens.UCSC.hg18 1.3.1000 Bioconductor

BSgenome.Hsapiens.UCSC.hg19 1.4.0 Bioconductor

BSgenome.Mmusculus.UCSC.mm10 1.4.0 Bioconductor

cmm 0.8 CRAN (R 3.2.0)

data.table 1.9.4 CRAN (R 3.2.0)

devtools 1.7.0 CRAN (R 3.2.0)

dplyr 0.4.1 CRAN (R 3.2.0)
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GenomeInfoDb 1.4.0 Bioconductor

GenomicRanges 1.20.3 Bioconductor

GenomicTuples 1.2.1 Bioconductor

ggplot2 1.0.1 CRAN (R 3.2.0)

gridExtra 0.9.1 CRAN (R 3.2.0)

IRanges 2.2.1 Bioconductor

knitr 1.10 CRAN (R 3.2.0)

makeCGI 1.2 local

MethylSeekR 1.8.0 Bioconductor

mhsmm 0.4.14 CRAN (R 3.2.0)

mipfp 2.0 CRAN (R 3.2.0)

mvtnorm 1.0-2 CRAN (R 3.2.0)

numDeriv 2012.9-1 CRAN (R 3.2.0)

pryr 0.1 CRAN (R 3.2.0)

RColorBrewer 1.1-2 CRAN (R 3.2.0)

Rcpp 0.11.6 CRAN (R 3.2.0)

R.methodsS3 1.7.0 CRAN (R 3.2.0)

R.oo 1.19.0 CRAN (R 3.2.0)

RPushbullet 0.2.0 CRAN (R 3.2.0)

Rsamtools 1.20.1 Bioconductor

Rsolnp 1.15 CRAN (R 3.2.0)

rtracklayer 1.28.2 Bioconductor

R.utils 2.0.2 CRAN (R 3.2.0)

S4Vectors 0.6.0 Bioconductor

scales 0.2.4 CRAN (R 3.2.0)

sn 1.2-1 CRAN (R 3.2.0)

SNPlocs.Hsapiens.dbSNP.20120608 0.99.9 Bioconductor

stringr 1.0.0 CRAN (R 3.2.0)

tidyr 0.2.0 CRAN (R 3.2.0)

truncnorm 1.0-7 CRAN (R 3.2.0)

VariantAnnotation 1.14.0 Bioconductor
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XVector 0.8.0 Bioconductor
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