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Abstract

DNA methylation is an epigenetic modification that plays an important role in X-
chromosome inactivation, genomic imprinting and the repression of repetitive elements in
the genome. It must be tightly regulated for normal mammalian development and aberrant

DNA methylation is strongly associated with many forms of cancer.

This thesis examines the statistical and computational challenges raised by high-
throughput assays of DNA methylation, particularly the current gold standard assay
of whole-genome bisulfite-sequencing. Using whole-genome bisulfite-sequencing, we can
now measure DNA methylation at individual nucleotides across entire genomes. These
experiments produce vast amounts of data that require new methods and software to

analyse.

The first half of the thesis outlines the biological questions of interest in studying DNA
methylation, the bioinformatics analysis of these data, and the statistical questions we seek
to address. In discussing these bioinformatics challenges, we develop software to facilitate
novel analyses of these data. We pay particular attention to analyses of methylation

patterns along individual DNA fragments, a novel feature of sequencing-based assays.

The second half of the thesis focuses on co-methylation, the spatial dependence of DNA
methylation along the genome. We demonstrate that previous analyses of co-methylation
have been limited by inadequate data and deficiencies in the applied statistical methods.
This motivates a study of co-methylation from 40 whole-genome bisulfite-sequencing
samples. These 40 samples represent a diverse range of tissues, from embryonic and
induced pluripotent stem cells, through to somatic cells and tumours. Making use of
software developed in the first half of the thesis, we explore different measures of co-

methylation and relate these to one another. We identify genomic features that influence



co-methylation and how it varies between different tissues.

In the final chapter, we develop a framework for simulating whole-genome bisulfite-
sequencing data. Simulation software is valuable when developing new analysis methods
since it can generate data on which to assess the performance of the method and benchmark
it against competing methods. Our simulation model is informed by our analyses of the 40

whole-genome bisulfite-sequencing samples and our study of co-methylation.
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Chapter 1

Introduction to genomics and

DNA methylation

Overview

This chapter summarises the basic biology necessary for understanding this thesis. It
introduces DNA methylation, describes some of its biological roles, and introduce assays

for studying DNA methylation, with a particular focus on bisulfite-sequencing.

1.1 From DNA to genomes

The genome is the genetic material of an organism. In most organisms, the genome is
encoded by deoxyribonucleic acid, DNA. In eukaryotesﬂ which includes plants, fungi,
and animals, the DNA is wound around repeating units of eight histone protein cores to
form nucleosomes, which are the fundamental unit of eukaryotic chromatin. Chromatin
compactly packages the DNA into chromosomes, so that the organism’s complete nuclear

DNA, its nuclear genome, might fit into the nucleus of its celleﬂ

!Eukaryotes are organisms composed of one or more cells with a distinct nucleus and cytoplasm. Most
of a eukaryotic cell’s DNA is contained in the nucleus [Alberts et al|2007].

2Not all of an organism’s genome is present in the nucleus of a cell. Important exceptions are mitochondrial
DNA (mtDNA) found in animals, plants and fungi and chloroplast DNA (ctDNA) found in plants.



1.1.1 DNA

The double helix is the most common, and most famous, structure of DNA. In the double
helix, the two strands of DNA run in opposite directions to each other and are therefore
anti-parallel. One strand is called the 5’ strand (pronounced “5 prime strand” and also
known as the sense strand, Crick strand or top strand) and the other strand is called
the 3’ strand (pronounced “3 prime strand” and also known as the antisense strand,
Watson strand or bottom strand). Along each strand of the double helix are the four DNA
nucleobases (bases): adenine (A), cytosine (C'), guanine (G) and thymine (7). These bases
form complementary base pairings, A with T and C' with G, along the DNA double helix.
This is illustrated in Figure|l.1

—= = Adenine

= = Thymine

3 = Cytosine

2 = Guanine

[ ]=Phosphate

backbone

Figure 1.1: Simple diagram of double-stranded DNA showing complementary base pairing.
By Forluvoft (Own work) [Public domain|, via Wikimedia Commons http://commons |
wikimedia.org/wiki/File/3ADNA_simple2.svg

A gene is a sequence of DNA that is transcribed to produce a functional product in the

form of ribonucleic acid, RNA. RNA may in turn be translated into a protein sequence


http://commons.wikimedia.org/wiki/File%3ADNA_simple2.svg
http://commons.wikimedia.org/wiki/File%3ADNA_simple2.svg

or perform other roles in the regulation of gene expression. It is important to note here
than not all DNA is transcribed into RNA, which is not to say that untranscribed DNA
is unimportant. For instance, there are untranscribed regulatory sequences of DNA that
determine whether a nearby gene is transcribed. There is also junk DNA that is of little
consequence to the organism [Alberts et al.|2007]. Conversely, not all transcribed DNA
is a gene. DNA transcription is permissive and there are many DNA sequences that are

transcribed by accident or in error.

DNA is able to self-replicate. This means that eukaryotic cells created during mitosis
contain the same DNA as the ‘parent’ cell. During DNA replication, the two strands are
separated and each strand’s complementary DNA sequence is copied by an enzyme called
DNA polymerase. It is because the two strands of DNA are complementary that ensures

the daughter cell contains the same DNA sequence as the parent cel]ﬂ

1.1.2 Nucleosomes and chromatin

The core of a nucleosome consists of four pairs of histones, H2A, H2B, H3 and H4, which
are consequently known as the core histones. A fifth histone, H1/H5, is known as the
linker histone. Each of these histones has a ‘tail’ consisting of a string of amino acids.
These tails can undergo post-translational modifications, such as methylation, acetylation
and phosphorylation, which can alter their interactions with DNA and nuclear proteins

[Alberts et al/2007). Histone modifications are discussed in Section

The nucleosomes are interconnected by linker DNA to form the macromolecule called
chromatin. The linker sequences are between 20 to 60 base pairs (bp) of DNA in length,
while approximately 147 bp are wrapped around each nucleosome and a further 20 bp

wrapped around each additional H1/H5 histone [Annunziato|2008].

Chromatin is often described as either ‘closed’ or ‘open’. Closed chromatin, heterochro-
matin, is more tightly packed than the open euchromatin. Heterochromatin is associated
with transcriptionally repressed regions of the genome because the machinery required to

translate DNA to RNA is less able to physically access the DNA. In contrast, euchromatin

3This of course ignores errors in the replication process. Such errors are very rare events but because
DNA replication happens so frequently these events do occur. There are error-correcting processes that
reduce the chance that such an error is retained in the daughter sequence, however, these are not perfect.
Hence errors in DNA replication are one source of what are known as mutations in the DNA.



is associated with transcriptionally active regions of the genome since its more open nature

allows easier access for the translational machinery.

The same region of an individual’s genome may vary between heterochromatin and
euchromatin states at different stages of the organism’s life and in different cells of the

organism. This is one mechanism by which gene expression is regulated.

Basic descriptions of nucleosomes and chromatin are ripe with analogies. In one such
popular analogy, the histones are the ‘spool” around which the DNA ‘thread’ is wrapped
to form nucleosomes. The chromatin then has the appearance of “beads on a string” when
viewed under an electron microscope [Alberts et al.2007]. Chromatin is further coiled
up into various literally-named structures, such as the 30-nanometre and 250-nanometre
fibres, and, ultimately, packaged into chromosomes. The set of chromosomes makes up an

individual’s genome.

1.1.3 Genomes

As is clear from the above description, the genome is a complex three-dimensional structure.
Nonetheless, in bioinformatics and computational biology, the genome is mostly considered

as a single-stranded, one-dimensional string of the bases A, C, G and T.

While eukaryotic genomes share the above-described features, and indeed share many
regions of common DNA sequence, eukaryotic genomes come in many shapes and sizes. |
only discuss the genomes of two species relevant to my thesis: Homo sapiens (human) and

Mus musculus (house mouse).

The human genome

Humans are diploid organisms, meaning that we have two copies of each chromosome in a
typical celﬂ We inherit one chromosome of each pair from our mother and one from our
father. A typical human cell has 23 pairs of nuclear chromosomes, 22 autosomes and 1 pair
of sex chromosomes, as well as hundreds or thousands of copy of the small mitochondrial

chromosomd?|

4A sperm or egg cell is haploid and has a single (recombined) copy of each chromosome.
5The mitochondrial DNA is maternally inherited.



The length of a chromosome is typically reported as the number of DNA base pairs
in a single copy of that chromosome and the haploid length of a genome is the sum of
these chromosome lengths. The haploid human genome is approximately 3 billion base
pairs long (Golden Path Length http://asia.ensembl.org/Homo_sapiens/Location/

Genome?r=1).

A human reference genome was jointly completed by the International Human Genome
Consortium and Celera Genomics in 2003 [Venter et al|2001, Lander et al|2001]. This
reference genome does not represent the genome of any one human since it uses DNA
donated by several different people [Venter et al.|[2001} |[Lander et al.|2001]. Rather, a
reference genome is a kind of map or scaffold that can be used to identify similarities and

differences between individual genomes.

The human genome has obvious uses in medical research and biotechnology, but is
also used to learn about evolution and human history, such as human migration patterns
[Hellenthal et al.2014]. Every person, even a monozygotic (‘identical’) twin, has their
own unique genome [Bruder et al.|[2008]. However, genomes of any two randomly selected
people are identical at approximately 99.9% of sites. Furthermore, the vast majority of the
human genome, 98% by some estimates |[Elgar and Vavouri 2008, is made up of non-coding

DNA and upwards of 50% is repetitive sequence [Treangen and Salzberg|2012].

The mouse genome

Mice are also diploid organisms, but have 19 pairs of autosomes, one pair of sex chro-
mosomes and a mitochondrial chromosome. The mouse genome is slightly smaller
than the human genome, at 2.7 billion base pairs long (Golden Path Length http:
//asia.ensembl.org/Mus_musculus/Location/Genome?r=1). Like the human genome,
there is a mouse reference genome [Mouse Genome Sequencing Consortium et al.[2002]. It
is based on several female mice from the C57BL/6J strain, an important strain of mouse

widely used in medical research.

Mouse strains used in medical research are highly inbred due to years of concerted
mating programs. This reduced genetic variability, and the control that researchers have

over it, make these mice a very powerful tool in identifying the biological cause of a diverse
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range of phenotypes.

1.1.4 Genetic variation

A key question in biology, perhaps the key question, is what determines an individual’s
phenotype. An individual’s phenotype is the set of its observable characteristics resulting
from the interaction of its genotype with the environment. Two simple examples of
phenotypes are height and weight. Both have a genetic component, e.g., the offspring
of tall parents are on average taller than the offspring of short parents, but also have
environmental components, such as the contribution of diet to weight. In medical research,
a person’s phenotype might be whether she is affected by a particular disease. It might

also be some proxy, such as her blood pressure or the expression levels of particular genes.

Variation between individual’s genomes, be it at single baseﬁ or across larger regionsﬂ
is one important source of phenotypic variation. Importantly, genetically-driven phenotypic
variation is frequently heritable, meaning that phenotypes can be passed on from one

generation to the generation via the genome.

Environmental variation has clear influence on certain phenotypes. However, it often
can be difficult to determine whether phenotypic variation is driven by genetic variation
or environment variation, particularly in humans where genetically similar individuals

typically also grow up in similar environments.

The above discussion has been about phenotypic variation in a population. But there
is also phenotypic variation within the individual. If that sounds strange, consider the
fact that in your body a neuron, a leukocyte (a white blood cell), and a cone cell (a
photoreceptor in the retina) all have identical genomes. In fact, all cells in an organism,
excluding the gametes, have an identical genomeﬂ yet play very different biological roles.

This is due to different genes being active in different cells.

SA base position that is variable in the population is called a single nucleotide variant (SNV). A
SNV that is frequently variable in the population, say at least 1% frequency, is called a single nucleotide
polymorphism (SNP). All SNPs are SNVs but the converse is not true.

"An example of a larger genetic variant is an indel, which is a short insertion or deletion of sequence in
an organism’s DNA, usually with respect to a reference genome.

8Even this is a simplification. For example, it ignores somatic mutations (the occurrence of a mutation
in the somatic tissue of an organism, resulting in a genetically mosaic individual) and V(D)J recombination
(which occurs in lymphocytes and is vital for antibody diversity).



Epigenetics, which I describe in the next section, plays a role in determining the between-
individual phenotypic variation, as well as the within-individual phenotypic variation. DNA
methylation, the focus of my thesis, is the prototypical and most well-studied epigenetic

modification.

1.2 Epigenetics

Interest in epigenetics has grown remarkably in recent years. However, epigenetics is also
a real Humpty Dumpty phrase; each author seems to believe that, “When I use [the] word,
...1t means just what I choose it to mean — neither more nor less” [Carroll and Tenniel
1897]. As noted by Deans and Maggert, [2015], “the unfortunate fact is that the increased
use of the term epigenetics is likely due more to inconsistencies in its definition than to a

consensus of interest among scientists”.

Conrad Waddington coined the phrase in 1942 as a portmanteau of the words ‘epigenesis’
and ‘genetics’ [Waddington|[2012]. Waddington meant epigenetics as the study of how
“processes involved in the mechanism by which the genes of the genotype bring about

phenotypic effects” [Waddington|2012].

A popular contemporary definition of epigenetics is attributed to the epigeneticist
Arthur Riggs — epigenetics is “the study of mitotically and/or meiotically heritable
changes in gene function that cannot be explained by changes in DNA sequenceﬂ’ [Russo
et al.||1996, pp. 1]. The epi prefix, derived from the Greek word for ‘upon’, ‘near to’, or ‘in
addition’, emphasises the idea that epigenetics encodes information ‘on top of’ the DNA
sequence. However, it is quite different to Waddington’s original definition.

More recently, the definition of epigenetics has taken on a “more biochemical flavour”

[Daxinger and Whitelaw|2010] to include marks whose heritability is yet to be established.
The heritability, or lack thereof, of histone modifications means that many epigeneticists
do not consider these to be truly epigenetic [Berger et al.|2009], and describing them as

such is a sure-fire way to annoy a good percentage of your audience |Ledford [2008].

Sir Adrian Bird, an esteemed British geneticist, attempts to unite these definitions

9Mitotically heritable means heritable during cell division and meitotically heritable means heritable
during sexual reproduction.



[Bird [2007):

“The following could be a unifying definition of epigenetic events: the structural
adaptation of chromosomal regions so as to register, signal or perpetuate altered
activity states. This definition is inclusive of chromosomal marks [e.g., histone
modifications|, because transient modifications associated with both DNA
repair or cell-cycle phases and stable changes maintained across multiple cell

generations qualify.”

Regardless of which definition you subscribe to, an epigenetic mark is the modification
that causes this ‘epigenetic change’. In fact, ‘causes’ may be too strong a claim, as much of
current epigenetics research is in identifying associations rather than causations, and the
question of whether the epigenetic mark is a cause or consequence of the ascribed function

is oft-debated.

The epigenome of a cell is the set of epigenetic marks present on the cell’s genome. In
contrast to the genome, which is identical between cells within an individual, the epigenome
is highly variable between cells within an individual. Indeed, we can identify variation
for a single epigenetic mark within cells of the same cell type from the same individual.
Epigenomics is the study of the epigenome, analogous to genomics being the study of the
genome. However, one can rarely study the epigenome in isolation from the underlying
genetic sequence, as there is evidence that the epigenetic variation is associated with genetic

variation [Zhang et al|2010} Bell et al|2011} van Eijk et al.[2012, McVicker et al.|2013|

One mark that most authors agree is an epigenetic mark is DNA methylation, which I

describe in the next section and the study of which is the focus of my thesis.

1.3 DNA methylation

DNA methylation is a chemical modification of DNA that can impart information on top
of the DNA sequence. It is heritable during mitotic cell division, which means that it is

faithfully copied across to the daughter cell during cell division@ It therefore fits into

10T practice this copying is not as faithful as, say, the copying of DNA from the parent to the daughter
strand. Furthermore, the faithfulness of this copying will be different in different conditions, such as in



Arthur Riggs’ aforementioned definition of an epigenetic modification. DNA methylation

is found in bacteria, fungi, plants and animals.

A major reason that DNA methylation is studied is that it is essential for normal
development in mammals |Li et al.[1992]. It is also involved in many key biological processes
related to human development and health, such as the regulation of gene expression [Razin
and Cedar|[1991], silencing of transposable elements |Jones and Takai2001], X chromosome

inactivation [Mohandas et al.|1981] and tumorigenesis [Ehrlich/[2002].

However, DNA methylation is not found in all organismg T} and so is not essential for
life. Furthermore, the level of DNA methylation varies widely amongst different organisms,

with many having very low levels of methylation |Capuano et al.2014].

When people speak of DNA methylation they are generally referring to methylation of
the cytosine base. Even more specifically, they are referring to the molecule 5-methylcytosine.
5-methylcytosine, abbreviated as §mC; is by far the most common form of DNA methylation
in the animal and plant kingdomﬂ However, I will continue to use the term DNA

methylation to describe the more specific 5mC, as is standard in the literature.

A German chemist, W.G. Ruppel, first identified a methylated nucleic acid in 1898.
Ruppel was studying tuberculinic acid, the poison of Mycobacterium tuberculosiﬂ , and
discovered that it contained a methylated base [Ruppel/[1899]. In 1925, Johnson and
Coghill isolated 5-methylcytosine as a product of hydrolysis of tuberculinic acid, the nucleic
acid of Mycobacterium tuberculosis [Johnson and Coghill [1925]. However, Johnson and
Coghill’s results were disputed for over twenty years by other researchers who were unable

to replicate the original findings [Vischer et al.|/1949).

In 1945, Hotchkiss ultimately proved Johnson and Coghill correct when he isolated
5-methylcytosine from nucleic acid prepared from cow thymus [Hotchkiss [1948]. Using

paper chromatography, Hotchkiss demonstrated that methylated cytosine existed and was

a healthy liver cell compared to a cancerous liver cell. Nevertheless, the copying of DNA methylation is
faithful enough for most biologists to consider it as a mitotically heritable mark, most of the time. The
enzymes responsible the replication of DNA methylation, the DNA methyltransferases, are discussed in
Section 6

"T¥or example, DNA methylation not detectable in yeast [Capuano et al.|[2014]

2Two additional examples of DNA methylation are N6-methyladenine (m6A) and N4-methylcytosine
(m4C). N6-methyladenine is a methylated form of adenine, which is found in mRNA [e.g.,|Adams and Cory
1975] and DNA, although the latter only in bacterial DNA [Ratel et al|2006]. N4-methylcytosine has also
been detected in bacterial DNA [e.g., |[Ehrlich et al.||1985, Ratel et al.|[2006].

13 Mycobacterium tuberculosis was then known as Tubercle bacillus.



distinct from conventional cytosine and uracil.

The typical site of DNA methylation is at the C5 carbon position of a cytosine base,
hence 5-methylcytosine. Figure shows the structure of 5mC.

NH,

NN

|
H

Figure 1.2: Chemical structure of 5-methylcytosine. “5-methylcytosine”. By Yikrazuul
(Own work) [Public domain|, via Wikimedia Commons http://commons.wikimedia.org/
wiki/File:5-Methylcytosine.svg

A cytosine may be described being ‘methylated’ or ‘unmethylated’, however, care
must be taken when using these terms. At the lowest level, the level of single-stranded
DNA, methylation is a binary event: a cytosine is either methylated or unmethylated.
Double-stranded DNA, at least at palindromic methylation locﬂ is generally symmetrically
methylated, i.e. the loci on each strand are both methylated or both unmethylated. However,
hemimethylation, where the methylation loci on one strand is methylated and its partner

on the opposite strand is unmethylated, can and does occur.

Within a diploid cell, a particular cytosine may be unmethylated or methylated on both
homologous chromosomes or methylated on one chromosome and unmethylated on the
other. While the former is more common, examples of the latter case, such as allele-specific
methylation |Shoemaker et al.|2010] and genomic imprinting [Li et al.||1993], are important

epigenetic phenomena.

1.3.1 DNA methylation in mammals

The importance of 5-methylcytosine in mammalian genomes is such it has been dubbed

the “fifth base” of the DNA code [Lister and Ecker|2009]. In mammalian genomes, most

1A palindromic DNA sequence is one that is identical when read in the 5’ to 3’ direction on both the
original strand and the complementary strand of the double helix. For example, CG is a palindromic
sequence.
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cytosines are unmethylated except for those at CpG dinucleotides. A CpG dinucleotide,
or more simply a CpG, is a cytosine followed by a guanine in the linear DNA sequence.
The ‘p’ stands for the phosphate backbone of DNA and some authors omit it in favour
of simply calling it CG methylation. A CpG is a palindromic sequence and is generally
symmetrically methylated. Approximately 70% of CpGs are methylated in mammals [Laird
2003], meaning that the cytosine in the CpG dinucleotide is a 5-methylcytosine.

1.3.2 CpG dinucleotides

CpGs are underrepresented in the human genome. The GC-content of the human genome,
which is defined as the percentage of bases that are either guanines or cytosines [Benjamini
and Speed|[2012], is approximately 41%. If these bases were uniformly distributed across
the genome then we would expect about 4.1% of dinucleotides to be CpGs. Instead, only
1% of dinucleotides are CpGs.

One reason for the relative scarcity of CpGs is that methylated cytosines can sponta-
neously deaminate to thymines [Scarano et al.|1967]. Thus, over time, many methylated
CpGs will become TpGs, leading to a genome-wide reduction in the proportion of CpGs
and a genome-wide increase in the proportion of TpGs (see Figure[1.3)). There are many
other evolutionary pressures on the distribution of bases in a genome. One effect of this is
that the distribution of CpGs is far from uniform. In fact, CpGs tend to form clusters,

which are termed CpG islands.

1.3.3 CpG islands and other sandy metaphors

One way to explore the distribution of CpGs in the human genome is to look at the
distribution of distances from one CpG to the next, the intra-pair distances (IPDs). Figure
is a plot of the empirical cumulative distribution function of CpG IPDs for the human
reference genome (hgl9). We see that approximately 70% of CpGs are within 100 bp of
the next CpG. Figure also shows the expected IPD distribution under a model where
CpGs are uniformly distributed along the genome with probability equal to the observed
frequency of CpGs on each chromosome. By comparing the observed IPDs to the expected

IPDs we see that the distribution of distances between CpGs has more ‘close’ pairs than

11



CpGs are underrepresented in human reference genome (hg19)
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Figure 1.3: Observed to expected ratio of dinucleotides in the human reference genome
(hg19). The expected frequency is computed under an ’independence’ model, based on the
observed frequencies of each base.

we would expect by chance.

Figure is an alternative way to visualise these data by plotting the percentage of
pairs of CpGs with a given IPD. Figure shows that there is a cluster of CpGs with
IPD < 10. These largely correspond to CpGs that lie within what are called CpG islands
(CGIs).

CpG islands contain the 20% to 40% of CpGs that are frequently unmethylated in
mammalian genomes. CpG islands are important regulatory elements in the genome
and are where most differences in DNA methylation between different cell types are
found [Wu et al.|2010]. The classical definition of a CpG island, given by |Gardiner{
Garden and Frommer| [1987], and used by the popular UCSC genome browser (http:
//genome.ucsc.edu/cgi-bin/hgGateway), is a region of the genome where the following

conditions are satisfied:

1. The (moving) average of GC-content is greater than 50%, and
2. The observed-to-expected ratio of CpGs is greater than 0.6, and

3. The region is longer than 200 bp.
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Figure 1.4: Plot of the empirical cumulative distribution function of distance between adja-
cent CpGs in the human reference genome (hgl9). The observed distances are contrasted
with those under the ‘expected’ model whereby CpGs are distributed uniformly at random
with probability equal to the observed frequency of CpGs on each chromosome.

Human reference genome (hg19)

800,000

600,000

400,000

Count

200,000

100 ] 200 300
Distance between adjacent CpGs (bp)
(Axis truncated at 300)

Figure 1.5: The frequency of the observed distances between adjacent CpGs in the human
reference genome (hgl9).
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This definition was refined by Takai and Jones| [2002] to exclude Alu-repetitive elements,
which are otherwise misclassified as bona fide CpG islands. More recently, (Wu et al.|[2010]
developed a hidden Markov model to predict CpG islands based on the CpG density and

GC-content of the region; this definition is used in the remainder of my thesis.

An alternative definition, and one that pre-dates the definition of |Gardiner-Garden
and Frommer| |[1987], is based on the identification of unmethylated regions of the genome,
which are typically CpG-dense. Such regions were previously called Hpall tiny fragment
islands, or HTF islands, and named after the restriction enzyme used to identify them

[Cooper et al.||[1983, Bird et al.|[1985].

These ‘sandy /beachy’ metaphors have been continued (i.e. stretched to breaking point)
with various authors defining CpG island shores, CpG island shelves, CpGs in the open
sea, CpG deserts and CpG canyons. CpG island shores, shelves and the open sea are all

defined with respect to CpG islands:

e CpG island shores are regions within 2 kb of CpG islands. These have been demon-
strated to have an increased variability of CpG methylation [Irizarry et al.|2009).

o CpG island shelves are defined as regions within 2 kb of a CpG island shore |Bibikova
et al2011].

e The open sea contains those CpGs not classed as being in a CpG island, CpG island
shore or CpG island shelf [Sandoval et al.[2011].

Other metaphors, these based on methylation levels rather than CpG density, include
methylation deserts |Li et al.2012] and CpG canyons [Jeong et al|2014]. Because these
regions are defined with respect to methylation levels rather than DNA sequence, these are

generally identified in a tissue-specific manner.

1.3.4 Non-CpG methylation

In humans, cytosine methylation in most cell types is found almost exclusively at CpGs
[Jones 2012]. There are, however, certain cell types with widespread non-CpG methylation.
Non-CpG methylation is often classified as CHH methylation or CHG methylation, where

H is the IUPAC code for any base except G (http://www.bioinformatics.org/sms2/
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iupac.html)). The rule-of-thumb for mammalian genomes is that non-CpG methylation is
rare in somatic cells but common in pluripotent cells. Of course, there are exceptions to

every rule, especially in biology.

To give a few examples, Lister et al.| [2009] found that in a fibroblast cell line that
99.98% of cytosines that displayed statistically significant evidence of methylation occured
at CpGs. In contrast, in an embryonic stem cell line, they found that 24.5% of cytosines that
displayed statistically significant evidence of methylation occured in a non-CpG context.
However, it should also be noted that these non-CpG loci that were methylated had, on

average, a much lower level of methylation than their CpG counterparts.

A subsequent paper from the same group extended this result. [Lister et al.| [2011]
reported that, more generally, non-CpG cytosines account for 20% to 30% of cytosines
with statistically significant evidence of methylation in pluripotent cell lines. Pluripotent

cells includes embryonic stem (ES) cells and induced pluripotent stem (iPS) cell lines.

An exception to the rule that non-CpG methylation is largely restricted to pluripotent
cells is provided by |Lister et al.| [2013], who found that neurons also have non-CpG

methylation, albeit at a lower level (1.3% to 1.5% of all non-CpG cytosines were methylated).

Overall, non-CpG methylation in humans is less well studied and less well understood
than CpG methylation. This is partly due to sampling bias since commonly used assays for
studying DNA methylation, such as the Illumina 27k and 450k microarrays, measure almost
exclusively CpG methylation. However, recent technological advances mean that cytosine

methylation can be routinely assayed regardless of the sequence context (see Section [1.4]).

Non-CpG methylation is very common in other organisms, such as plants. For example,
Lister et al. [2008] found that in the widely-studied Arabidopsis thaliana that 45% of
cytosines that displayed statistically significant evidence of methylation are at CHG or
CHH loci. They also found that the level of methylation at non-CpG loci, however, is
typically lower than that observed at CpG dinucleotides.

1.3.5 Modifications of a modification

Methylation is not the only chemical modification of cytosines, although it is by far the most

common. Listed from most frequent to least frequent, these are 5-hydroxymethylcytosine
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(5hm (), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) |Plongthongkum et al.
2014]. The biological significance of these marks is still being determined, in part because
the assays for studying these are still in development and because their relatively scarcity
in the genome means that experiments to detect these modifications are more difficult and

expensive.

One genome-wide study of 5hmC found that less than 1% of all assayed cytosines in
mouse fetal cortex and adult cortex cells displayed any statistically significant evidence of
hydroxymethylation [Lister et al.|2013]. These cytosines appeared to be restricted to the
CpG context and had only very low levels of 5hmC.

Kriaucionis and Heintz| [2009] and |Tahiliani et al.| [2009] discovered that the TET
enzymes can convert 5mC to 5hmC, 5hmC to 5fC and 5fC to hcaC. This suggests a role

for 5hmC, 5fC and 5caC in the process of removing 5mC marks.

1.3.6 Writers, readers, and erasers

A frequently used analogy when describing epigentic marks refers to ‘writers’, ‘readers’ and
‘erasers’ [e.g., Moore et al.[2013]. In the case of DNA methylation, writers catalyse the
methyl group onto the DNA, readers recognise methylated DNA, and erasers remove the

methyl group from the DNA.

In mammalian cells, the writers are the DNA methyltransferase (DNMT) enzymes. The
DNMTs are commonly split into two groups, namely the maintenance methyltransferases

and the de novo methyltransferases.

DNA methylation is not preserved by the DNA replication machinery and so it is the
role of the maintainence methyltransferases to restore the methylation pattern on the
daughter strand of DNA following DNA replication. In mammals, DNMT1 is known as

the maintenance DNA methyltransferase.

DNMT8a and DNMTS8b are known as the de novo methyltransferases, although these
are also required for the maintenance of DNA methylation [Jones and Liang2009]. Both
DNMT1 and DNMTS8b appear to be essential for mammalian development since mouse

knockoutsFE] for either gene are embryonically lethal [Li et al.[[1992]. In contrast, mouse

15 A knockout mouse for gene X is a mouse that has been genetically engineered to remove or otherwise
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knockouts for DNMTS3a are runted but survive for approximately 4 weeks after birth [Li
et al.[|1992].

DNMT2, now known as TRDMT1, was once thought to be a DNA methyltransferase
but was shown to in fact methylate a small RNA and not DNA [Goll et al|2006]. Another
protein, DNMTS3L, is homologous to DNMT3a and DNMTS8b but does contain catalytic
domain that is necessary for methyltransferase activity. Instead, DNMTS3L is thought to
stimulate the activity of DNMT3a and DNMT3b |[Jurkowska et al.|2011].

The readers of DNA methylation recognise methylated DNA. These readers can recruit
additional proteins to the site of the methylated cytosine to perform a variety of functions
related to gene expression. For example, the methyl-CpG-binding domain (MBD) group
of proteins bind to DNA containing a methylated CpG, which can then suppress gene
expression by preventing transcription factor binding at that site [Nan et al.|1993]. Another
group, the ubiquitin-like, containing PHD and RING finger domain (UHRF') proteins, help
DNMT1 methylate hemimethylated DNA, such as the daughter strand created during
DNA replication [Sharif et al.[2007, Bostick et al.2007].

The removal or erasure of DNA methylation, called demethylation, may be characterised
as passive loss or active removal. Passive loss occurs when the maintenance methyltrans-
ferases do not efficiently perform their role of restoring DNA methylation following cell
division. This leads to a gradual, stochastic, and genome-wide loss of DNA methyla-
tion after multiple cell divisions. This form of passive demethylation, sometimes called
replication-dependent demethylation, cannot explain observations of local tissue-specific
differences in DNA methylation [Irizarry et al.2009] nor the two stages of rapid global
demethylation that occur during development [Wu and Zhang|2014].

Active demethylation is currently an active area in epigenetics research. Multiple
mechanisms have been proposed, and it is indeed likely that there are multiple ways to
achieve active demethylation. These mechanisms were recently reviewed by |Wu and Zhang

[2014], which I briefly summarise:

1. The direct removal of the methyl group from 5mC is considered unlikely due to the

strong carbon-carbon bond between the methyl group and the cytosine.

inactivate gene X. Mouse knockouts can be either heterozygous knockouts (one copy still of the gene is
still present/active) or homozygous knockouts (both copies of gene absent/inactive).
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2. There is evidence that the DNA repair machinery can be co-opted to remove a
methylated base or the surrounding region. The excised base or region is then
repaired with unmethylated cytosines replacing 5mCs.

3. 5mC oxidation-dependent active DNA demethylation. This follows from the obser-
vation that the TET enzymes can iteratively oxidate a 5mC — 5hmC — 5fC —
5caC reaction. The removal of 5hmC, 5fC or 5caC is biochemically ‘easier’ than the
removal of 5mC and could occur via a more efficient form of replication-dependent
demethylation, direct removal of the oxidized methyl group or through the DNA

repair machinery.

One question raised by the third point is whether 5hmC, 5fC and 5caC are simply
intermediate products in an active demethylation cycle or if they themselves are bona fide

epigenetic marks. This is an active area of research.

1.4 Assays for studying DNA methylation

A challenge to measuring DNA methylation is that it is erased by standard molecular
biology techniques, such as the polymerase chain reaction (PCR) and bacterial cloning,
and it is not revealed by DNA hybridization assays [Laird |2010]. Therefore, almost all
assays of DNA methylation require one of the following pre-treatments of the DNA:

1. Enzyme digestion
2. Affinity enrichment

3. Sodium bisulfite conversion

Following a pre-treatment, DNA methylation can be assayed using standard techniques

such as:

—_

. Gel-based analysis
. Sanger sequencing

. Microarray hybridisation

-~ W N

. Massively parallel sequencing

18



An exception to this classification scheme are a new class of assays that seek to directly
‘read’ whether a position is methylated or unmethylated without requiring a pre-treatment
of the DNA. For example, both [Laszlo et al. [2013] and Schreiber et al.| [2013] measure
the change in current as a DNA molecule passes through a nanopore to infer whether a

cytosine is methylated.

Almost all assays of DNA methylation measure a population average from a pool of
hundreds or thousands of cells. For a diploid organism, this is an average over several
distinct levels: the two DNA strands, the two homologous chromosomes within a diploid
cell and the hundreds or thousand of cells used in the assay. Hundreds or thousands of
cells are required in order to have sufficient material as input for the assay. Assays that
require only a single cell as input do exist [e.g., [Smallwood et al.[2014} Guo et al.|[2013]

but are still in development and not yet in widespread use.

The resolution and throughput of an assay are two key variables when choosing which to
use for an experiment. The resolution of an assay is the scale on which DNA methylation
can be measuredlﬂ. For example, a high resolution assay allows a researcher to quantify
the level of DNA methylation at a single base whereas a low resolution assay might only
allow for qualitative assessment (i.e. presence or absence) of DNA methylation at larger

regions, such as CpG islands.

The throughput of an assay can be quantified in two ways. The first is per-sample
throughput, which is how many measurements of DNA methylation are made per—samplﬂ
This is typically what people mean when they describe an assay as being ‘high-throughput’
or ‘low-throughput’ and is the definition I use in the title of my thesis. Depending on your
definition of ‘high’, a high-througput assay will produce on the order of tens of thousands
to billions of measurements per sample. The second definition of throughput is related to

cost, be it money or time, i.e. ‘how many samples can I afford to analyse?’.

The choice of which assay to use for an experiment is a trade-off between resolution,
per-sample throughput, and per-cost throughput. Experiments that use an assay with

high resolution and high per-sample throughput generally have fewer samples (due to the

Depending on the experiment and its aims, the resolution of an assay might instead be defined as the
scale on which DNA methylation can be quantified or the scale at which allows inference to address a
specific hypothesis.

17This might reasonably be argued as being a definition of resolution.
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associated higher costs) than experiments using a lower resolution assay or an assay with

lower per-sample throughput.

In this section I describe each of these pre-treatments but focus on the bisulfite-
conversion assays. In particular, I describe in detail the ‘gold standard’ assay of DNA
methylation, whole-genome bisulfite-sequencing, that combines the sodium bisulfite conver-
sion pre-treatment with massively parallel sequencing to produce whole-genome maps of

DNA methylation at single-base resolution.

1.4.1 Enzyme digestion assays

Restriction endonucleases are an important technique in molecular biology. These enzymes
can preferentially ‘cut’, ‘cleave’, or ‘digest’ DNA at or near to particular sequence motifs.
The motif at which a restriction enzyme cleaves DNA is called the recognition motif or
restriction sequence. The methylation of a position in the recognition motif can inhibit a
restriction enzyme from cleaving the DNA. This can be used to design an assay to infer

the methylation state of a DNA fragment.

For example, the recognition site of the restriction enzyme Hpall is CCGC. However,
Hpall will only digest DNA when the second cytosine in the motif is unmethylated. The
HELP (Hpall tiny fragment enrichment by ligation-mediated PCR) assay compares DNA
digested by Hpall to one digested with another restriction enzyme that has the same
recognition motif but is methylation-insensitive (Mspl) to identify hypomethylated regions

of a genome |[Khulan et al.|2006].

Assays based on restriction enzymes were some of the first developed for studying
DNA methylation. These were initially developed for studying a small number of loci
although they have been extended to genome-scale analysis approaches [Laird|2010]. One
such genome-wide assays is CHARM, ‘comprehensive high-throughput arrays for relative
methylation’ [Irizarry et al.2008]). CHARM combines a methylation fractionation step
(be it MeDIP, Hpall, or, as in the original publication, MecrBC') with a tiling array and

analysis techniques that leverage regional DNA methylation levels.

While restriction enzyme assays do not typically provide single-base resolution data,

the methylCRF software |[Stevens et al.[2013] is able to infer single CpG methylation levels
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by combining data from a restriction enzyme based assay (MRE-seq) with one based on

affinity enrichment (MeDIP-seq) in a sophisticated statistical analysis.

1.4.2 Affinity enrichment assays

Affinity enrichment assays compare measurements between an ‘enriched’ version and an
‘input’ (control) version of the same sample to infer the presence or absence of DNA
methylation. This may use antibody immunoprecipitation or methyl-binding proteins.
Some examples of affinity enrichment assays for DNA methylation are the microarray-based

MeDIP, mDIP and mCIP and their sequencing-based relatives, MeDIP-seq and mDIP-seq.

These are all low resolution assays since they are based on the enrichment of regional
differences between the enriched and input samples. Furthermore, the bioinformatic analysis
of data from these assays is complicated by the varying CpG density along the genome,
which leads to different enrichment affinities for different regions of the genome. However,
these assays can provide a relatively cheap and efficient genome-wide assessment of DNA

methylation [Laird|2010].

1.4.3 Sodium bisulfite conversion assays

In the 1980s, two research groups independently discovered that when DNA is treated with
sodium bisulfite (NaH SOs3), unmethylated cytosines deaminate to uracils much faster than
do methylated cytosines [Shapiro et al.|1970, Hayatsu et al.|1970]. The methylated cytosines
are said to be ‘protected’ from conversion to uracils. This discovery led to the development
of assays for studying studying cytosine methylation based on the pre-treatment of DNA
with sodium bisulfite [Frommer et al.|1992, (Clark et al||1994], which are referred to as

bisulfite-conversion assays.

When bisulfite-treated DNA is amplified by PCR, the uracils are converted to thymines.
Therefore, these bisulfite-conversion assays are all based on the idea of comparing the
sequence of the untreated DNA to the sequence of the bisulfite treated DNA to infer the
methylation state of all cytosines in the sequence by whether or not they were converted

to uracil/thymine following the bisulfite treatment (Figure .

Initial experiments based on the sodium bisulfite pre-treatment of DNA used Sanger
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Figure 1.6: The effect of bisulfite-treatment of DNA. The double-stranded DNA is denatured
and each strand undergoes bisulfite-treatment. Methylated cytosines remain as cytosines
while unmethylated cytosines become uraciles. These bisulfite-converted DNA strands
then undergo PCR amplification which converts the uracils to thymines. Note that while
there are four possible PCR products, some bisulfite-sequencing protocols do not sample
PCR products from the CTOT or CTOB strands. OT = original top strand; OB =
original bottom strand; CTOT = complementary to the original top strand; CTOB =
complementary to the original bottom strand. This figure is adapted from |Krueger et al.
[2012].

sequencing of cloned PCR products, a very laborious task that restricted experiments to
studying a limited number of short segments of DNA. Although subsequent enhancements
in the automation of Sanger sequencing improved the throughput of these assays, it was
never going to be able to deliver a cost-effective, genome-scale assay of DNA methylation.
The development of hybridisation microarrays provided cheap, genome-wide measurements

of DNA methylation from bisulfite-treated DNA.

Microarrays contain thousands, even millions, of short oligonucleotide probes. Each
probe is is designed to hybridise to a particular DNA sequence and emits a fluorescent signal
that can be measured to infer the strength of the hybridisation. Therefore, an (idealised)
way to analyse DNA methylation with a microarray is to hybridise bisulfite-converted DNA
to a microarray that contains probes for both the methylated and unmethylated versions
of all sequences of interest. The relative methylation of each sequence can be inferred from
the relative intensities of the ‘methylated probe’ to the ‘unmethylated probe’ Such an

idealised experiment brushes over many complications including [Laird|2010]:
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o The reduced complexity of bisulfite-converted DNA (from a 4-base alphabet to a
mostly 3-base alphabet) leads to decreased hybridisation specificity

e Sequences containing multiple cytosines require multiple probe versions in order to
assay all possible methylation patterns

e This approach requires the design of organism-specific microarrays

The Ilumina Infinium HumanMethylation450 BeadChip (lllumina 450k array) provides
a modern implementation of this type of assay for studying human DNA. This array assays
482,422 cytosines, 99.3% of these CpGs, across a wide variety of genomic features [Stirzaker
et al.|2014]. There are well-established methods and software for analysing Illumina 450k

data, which were recently reviewed by Dedeurwaerder et al.| [2014].

Genomics research was revolutionised by the development of cheap high-throughput
sequencing technology, and the study of DNA methylation was no exception. In 2008,
two papers were published describing methods for whole-genome shotgun sequencing of
bisulfite-converted DNA using the nascent Solexa/Illumina sequencing technology [Cokus
et al|[2008, |Lister et al[2008]. Whole-genome bisulfite-sequencing remains the gold standard

assay for measuring genome-wide DNA methylation data.

Cokus et al|[2008] termed their approach BS-seq while Lister et al.| [2008] called their
method methylC-seq. From a bioinformatics perspective, the main difference is that the BS-
seq protocol produces sequencing reads from four bisulfite-converted DNA strands — the
original top strand (OT), the complementary strand to the original top strand (CTOT), the
original bottom strand (OB) and the complementary strand to the original bottom strand
(CTOB) — which require mapping to four different in silico converted reference genomes,
followed by a merge of the alignment results. In contrast, the methylC-seq protocol only
produces sequencing reads from two bisulfite-converted strands — O7T and OB — and so
only requires mapping to two different in silico converted reference genomes, followed by a
merge. The methylC-seq protocol is now the standard whole-genome bisulfite-sequencing

protocol, due in part to the simpler bioinformatics analysis.

Whole-genome bisulfite-sequencing remains an expensive assay, which limits its use
in studies involving large numbers of samples. Furthermore, depending on the choice

of several sequencing parameters, approximately 35% to 72% of reads will not contain
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any CpGs (Figure , which might be considered a gross waste of resources for some

experiments.

Lister: Percentage of reads with no CpGs

HSF1

H1 rl

H1_r2

IMR90_r1

IMR90_r2

FF
FF-IPSC_19.11+BMP4
Ho Sequencing

SE
PE

IMR90-iPSC

2
=%
£
©

[%2]

FF-iPSC_6.9
H1+BMP4
FF-iPSC_19.7
FF-iPSC_19.11
H9_Laurent
ADS
ADS-adipose

ADS-iPSC

o
n
o
D
o

40
Reads with no CpGs (%)

Figure 1.7: The percentage of reads that do not contain any CpGs for each sample in the
Lister dataset. Paired-end (PE) reads are counted as a single unit. Therefore, samples
sequenced with paired-end reads have a lower percentage of reads without CpGs than do
samples sequenced with single-end (SE) reads. See Chapter [3|for a description of the Lister
dataset.

Several assays have been developed to perform targeted high-throughput bisulfite-
sequencing. The targeted nature of these assays are their obvious advantage and disadvan-
tage; only a subset of the genome needs be sequenced but you only obtain information
about methylation for that subset. Depending on the experiment, this tradeoff may be

worthwhile, and these assays have been successfully used in a number of studies such as the

BLUEPRINT Epigenome project (http://www.blueprint-epigenome.eu) and the NITH

Roadmap Epigenomics Mapping Consortium (http://www.roadmapepigenomics.org)

Some examples of these targeted bisulfite-sequencing are:

o Reduced representation bisulfite-sequencing (RRBS, Meissner et al|[2005]): RRBS

uses restriction enzymes to first select regions of the genome with a high CpG
density (based on the Msp-I cleavage motif), which are subsequently treated with

sodium-bisulfite and sequenced.


http://www.blueprint-epigenome.eu
http://www.roadmapepigenomics.org

o Extended reduced representation bisulfite-sequencing, also known as enhanced reduced
representation bisulfite-sequencing (eRRBS, |Akalin et al. [2012a]). A modified version
of the RRBS protocol.

e NimbleGen’s SeqCap Epi Enrichment System and Agilent’s SureSelectXT Human
Methyl-Seq: Both of these commercial products use DNA hybridisation to enrich the
sequencing library for pre-defined regions of interest. This enriched library is then

bisulfite-converted and sequenced.

One final class of bisulfite-conversion assays does not use microarrays or high-throughput
sequencing. Sequenom’s EpiTYPER uses mass spectrometry to analyse DNA methylation
from bisulfite-converted DNA [Ehrich et al.[2006]. This platform can provide quantitative
measurements of CpG methylation across hundreds of loci and multiple samples and may

be used to validate findings discovered using other platforms [Laird|2010].

Pros and cons of bisulfite-conversion assays

Bisulfite-conversion assays are considered the gold standard for studying DNA methylation
since cytosine methylation can be detected at single-base resolution [Stirzaker et al.|[2014].
In fact, single-molecule, single-base resolution is even possible for short DNA sequences

when bisulfite-treated DNA is analysed with sequencinﬁ

Almost all bisulfite-based assays require a considerable amount of DNA that is extracted
from a population of cells (e.g., 1 to 5 ug for whole-genome bisulfite-sequencing). However,
the minimal amount of DNA is being reduced with each technological advance. Recently,
Guo et al.| [2013] and Smallwood et al.| [2014] published single-cell bisulfite-sequencing
assays, although these are not yet a commercially available sequencing assay. Furthermore,
these are not yet proper genome-wide assays. The technique of |Guo et al. [2013] is adapted
from RRBS and so only assays a small percentage of cytosines in the genome. And the
technique of Smallwood et al.| [2014], while intended as a genome-wide assay, can reportedly
only “accurately measure DNA methylation at up to 48.4% of CpG sites” |Smallwood et al.
2014].

¥Microarray hybridisation assays can provide single-base resolution but not single-molecule resolution.
The signal from a microarray-based experiment is a sample-wide average since, for each locus, the signal is
relative to the proportion of DNA fragments in the sample methylated at that locus.
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A recently discovered disadvantage of bisulfite-conversion assays is that they are unable
to distinguish 5hmC from 5mC; 5-hydroxymethyl, like 5-methyl, similarly protects a
cytosine from deamination to uracil. In effect, the detection of 5mC, and all subsequent
inference, is confounded with that of 5hmC. For most experiments this isn’t much of a
problem — most cells have very low levels of 5hmC and so there is little confounding
— however, in certain experiments this needs a more careful approach. To address this
issue, Booth et al|[2012] developed oxidative bisulfite-sequencing (oxBS-seq) and [Yu et al.
[2012] developed Tet-assisted bisulfite sequencing (TAB-seq) for separate 5mC and 5hmC

detection.

oxBS-seq specifically measures 5mC. The input DNA is oxidated by potassium per-
ruthenate (RK RuQOy), which converts 5hmC to 5fC, prior to bisulfite-treatment. Only
5mQC is protected from conversion during the bisulfite-treatment, which effectively means
that only 5mC remains to be detected at the sequencing stage. The level of 5hmC can
be estimated by performing traditional bisulfite-sequencing and then ‘subtracting’ the

oxBS-seq signal (5mC) from the bisulfite-sequencing signal (5mC + 5hmC).

TAB-seq takes the opposite approach to oxBS-seq by specifically measuring 5hmC. The
input DNA is treated with a §-glucosyltransferase, which converts 5hmC to g-glucosyl-5-
hydroxymethylcytosine (5gmC), followed by TET oxidation. Only 5gmC is protected from
TET oxidation, which effectively means that only 5hmC remains to be detected at the
sequencing stage. The level of 5mC can be estimated by performing traditional bisulfite-
sequencing and then ‘subtracting’ the TAB-seq signal (5hmC) from the bisulfite-sequencing
signal (5bmC + 5hmC).

There is also potential confounding of 5C, 5mC and 5hmC with 5fC and 5caC, although
this has received less attention since 5fC and 5caC are believed to exist at far lower
quantities than 5mC and 5hmC. Nonetheless, sequencing assays of 5fC and 5caC exist
based on the idea of treating the DNA with a chemical and performing ‘signal subtraction’

with traditional bisulfite-sequencing or another assay [Wu et al.2014].

Another disadvantage of bisulfite-conversion assays is that they require knowledge of
the underlying DNA sequence in order to infer the methylation states of cytosines. This
requires either a parallel experiment to sequence the target region(s) or reliance on a

reference genome. When relying on a reference genome, the inference of the methylation
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state can be confounded by the DNA sequence of the sample [Liu et al|2012]. Figure

illustrates such an example.

Reference genome >>CCGGCATGTTTAAACGCT>>

Sample’'s genome >>CTGGCACGTTTAAACGCT>>
I

m
Read TTGGTATGTTTAAACGTT

Inferred sequence CCGGCATGTTTAAACGCT
I

m

Figure 1.8: Sequence variation between the reference genome and the sample’s genome
can result in incorrect inference about the methylation state of the sample’s genome. The
locus in orange is a cytosine in the reference genome but a thymine in the sample’s genome.
Because the read is compared against the reference genome, it may be incorrectly inferred
to be an unmethylated cytosine. The locus in purple is a thymine in the reference genome
but an unmethylated cytosine in the sample’s genome. Because the read is compared
against the reference genome, it may be incorrectly inferred to be a thymine.

The bisulfite-treatment of DNA can introduce biases and other problems [Warnecke
2002|. Four examples are PCR-bias, incomplete bisulfite-conversion, bisulfite over-

conversion, and DNA degradation. PCR-bias is the difference in amplification efficiency

of methylated and unmethylated versions of the same DNA sequence [Warnecke et al.|

1997|. Incomplete bisulfite-conversion leads to cytosines being incorrectly inferred as 5mC
since they cytosines were not converted to uracils by the bisulfite-treatment. Conversely,
bisulfite over-conversion results in a methylated cytosine incorrectly being inferred to be

an unmethylated cytosine, although this is uncommon than incomplete bisulfite-conversion

[Warnecke et al.|2002]. DNA degredation occurs because sodium bisulfite damages DNA,

resulting in the fragmentation of long molecules. This limits the size of the fragments that
can be studied using bisulfite-conversion assays to approximately 500 bp [Ecker|[2010]. The
influence of these biases can depend on the experimental setup and their potential effects

should be born in mind when interpreting results.
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1.4.4 DNA Kkinetics assays

Ideally, an assay of DNA methylation could simply ‘read” methylated cytosines as a distinct
signal from unmethylated cytosines. This idea forms the basis of assays using the kinetics
of DNA to infer the presence of DNA methylation and other DNA modifications. While
very exciting, these assays do not yet scale to studying genome-wide DNA methylation

levels in mammalian-sized genomes.

The only commercially available assay in this class is the Pacific Biosciences SMRT
technology [Flusberg et al.|2010]. It infers the presence of DNA modifications by comparing
the time it takes to ‘read’ the modified form of a base, such as 5bmC, to the time it takes to
read its unmodified form. This does not require that the DNA is bisulfite-converted prior
to sequencing. Because the DNA does not undergo bisulfite-conversion (nor the attendant
short fragmentation of the DNA), it is in theory possible to analyse DNA methylation from
individual, long DNA molecules using Pacific Biosciences SMRT technologylﬂ However,
due to the error rate and cost of SMRT sequencing, it is currently all but unfeasible to

study genome-wide DNA methylation in mammalian-sized genomes.

The error rate of Pacific Biosciences SMRT sequencing is currently higher than that
of Illumina sequencing. This means it is more difficult to make reliable inferences on
DNA methylation from individual reads. Given sufficient sequencing coverage, it would be
possible to reliably estimate the average level of methylation at a given cytosine, however,
the cost of SMRT sequencing all but prohibits high-coverage sequencing of mammalian-sized

genomes.

1.5 Summary

DNA methylation is an epigenetic modification with important roles in many biological
systems. In mammals, CpGs are frequently methylated while non-CpG cytosines are less
frequently methylated. Most unmethylated CpGs are found in CpG islands, which are

important regulatory elements in the genome.

Whole-genome bisulfite-sequencing provides single-base resolution data and is the gold

19While bisulfite-treated DNA could be sequenced using SMRT sequencing, this would eliminate the real
advantage of the technology, namely, the long reads generated by this sequencer.
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standard assay for studying DNA methylation. Methods for analysing whole-genome
bisulfite-sequencing data are the focus of my thesis. The following chapter describes the
bioinformatics analysis of a bisulfite-sequencing experiment, including its many statistical

and computational challenges.
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Chapter 2

Bioinformatics analysis of
whole-genome bisulfite-sequencing

data

Overview

This chapter explains the bioinformatics analysis of whole-genome bisulfite-sequencing
data, concentrating on the most widely used methylC-seq protocol. All data used in my

thesis were generated using this protocol.
There are four fundamental steps in the analysis of bisulfite-sequencing data:
1. Data quality control checks
2. Read mapping and post-processing of mapped reads
3. Methylation calling

4. Downstream analyses

This chapter focuses on steps 1-3, while Chapter [5| addresses the wide variety of
analyses available at Step 4. Steps 1 and 2 will be familiar to anyone who has analysed

high-throughput sequencing data, but each requires a twist to work with bisulfite-sequencing
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data. Step 3 is obviously unique to assays of DNA methylation, but there are similarities

to variant calling from DNA sequencing.

The chapter concludes by introducing the methtuple software that I wrote, a unique
methylation caller for extracting methylation patterns at tuples of methylation loci.
methtuple is critical for work in later chapters on co-methylation (Chapter [7)) but has

wider application in facilitating downstream analyses of bisulfite-sequencing data.

2.1 Data quality control checks

The first step in any analysis of high-throughput sequencing data is to perform a quality
control check of the data. Much of this is done visually by comparing summary graphs of
the current sample(s) to previous ‘good’ samples. As such, much of data quality control

checking relies on the judgement of the analyst.

The FastQC software is a very useful tool for performing this first step (http://www!
bioinformatics.babraham.ac.uk/projects/fastqc/)). It produces summary graphs of
many key measures such as base quality scores, read length distribution and sequence
contamination. FastQC is a general purpose tool for performing quality control checks of
high-throughput sequencing data. This means that some of its output must be interpreted
with caution for bisulfite-sequencing data. For example, FastQC will report a warning
(resp. error) if the relative frequency of the four bases differ by more than 10% (resp.
20%). As noted in the FastQC documentation, such a warning/error should be ignored for

bisulfite-sequencing data, owing to the inherent bias in its sequence composition.

Perhaps the most important quality control of bisulfite-sequencing data is the iden-
tification and removal of contaminating sequences. FastQC will screen a subset of the
reads against a list of known, common contaminants such as adapter sequences. When
sequencing is performed using the widely used Illumina technology, adapter sequences must
be ligated to the ends of each DNA molecule in the library. The adapters do not contain
the biological sequence of interest, however, the sequencer can ‘read into’ the adapter
sequence, particularly when using paired-end sequencing of short DNA fragments such
as those frequently created in bisulfite-sequencing libraries. This means that some reads

are chimeras that contain the biological sequence of interest (from the sample) and junk
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sequence (from the adapters). This contamination needs to be removed for two reasons:

1. Reads containing adapter contamination will generally not map to the reference
genome, meaning these reads are needlessly wasted.
2. If they do map, then this will result incorrect inferences; the ‘garbage in, garbage

out’ maxim.

Using a tool such as Trim Galore! (http://www.bioinformatics.babraham.ac.uk/
projects/trim_galore/)) or cutadapt |[Martin 2011], the reads can be trimmed to remove
these contaminants. Reads might also be trimmed to remove low quality sequencing cycles,
which are common at the 3’ end of reads, although this isn’t as essential as trimming to

remove contaminants.

2.2 Read mapping and post-processing of mapped reads

Read mapping is complicated by the bisulfite-treatment of the DNA. Following bisulfite-
treatment, the DNA fragments are mostly composed of three bases rather than four, which
means there are many more sequence mismatches between a read and its true mapping
location. Simply using standard read mapping software and allowing for more mismatches
would result in many reads mapping to multiple locations in the reference genome. Instead,
a field of read mapping software dedicated to bisulfite-sequencing data has developed.
Several review articles have summarised and compared the various approaches [Chatterjee

et al. 2012, [Krueger et al.|[2012, Kunde-Ramamoorthy et al.|2014].

These bisulfite-sequencing read mappers take one of two approaches:

1. Methylation-aware mismatch penalties.

2. In silico bisulfite-conversion of reads and reference genomes.

While methylation-aware mappers provide the highest efficiency, these suffer from a
bias whereby methylated reads are preferentially mapped over unmethylated reads [Krueger
et al.|2012]. This biases downstream inference and means that these mappers are generally

less popular.
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In silico bisulfite-conversion mappers convert all cytosines to thymines (resp. guanines
to adenines) of the forward (resp. reverse) strand from the reference genome. They then
take each read and create two in silico bisulfite-converted versions of it the CT-read
replaces all residual thymines with cytosines and the GA-read replaces all residual guanines
with adenines. The CT-read is mapped against the CT-genome and the GA-read is mapped
against the GA-genome using a standard mapping tools such as Bowtiel [Langmead et al.

2009], Bowtie2 |Langmead and Salzberg|2012] or bwa |Li and Durbin 2009, 2010|ﬂ

Depending on the exact settings used, the mapper reports the ‘best’ location of each
read with respect to the two reference genomes. It reports the original sequence of the
read in the output file so that the methylation status of each position can be inferred by

comparing it to the corresponding reference sequence.

In silico bisulfite-conversion mappers avoid the bias inherent in the methylation-aware
mappers because all reads, regardless of methylation status, ‘look the same’ to the mapper.

However, they do suffer from a slight loss in mapping efficiency |[Krueger et al.|[2012].

Table list some popular bisulfite-sequencing read mappers, which have been selected

to highlight the variety of underlying mapping software used by these tools.

Table 2.1: Four popular bisulfite-sequencing read mappers, selected to highlight the variety
of underlying mapping software used by these tools.

Name Reference Underlying mapping
software

Bismark [Krueger and Andrews [2011] Bowtiel or Bowtie2

bwa- Pedersen et al.| [2014] bwa-mem

meth

BSMAP [Xi and Li [2009] SOAP

Novoalign http: Novoalign

//www.novocraft.com/products/novoalign/

Each of these aligners can report the output in the standard Sequence Alignment/Map
format, SAM, or its binary equivalent, BAM [Li et al.|2009]. However, there is no agreed upon
standard in the SAM specification for encoding the data specific to bisulfite-sequencing,

which means that each mapper does this in a slightly different way. This complexity

!Two versions are made because we don’t know a priori from which of the two strands the read originated.
2If the data were generated using a non-directional protocol, then each read of the CT-read and the
GA-read are mapped to both of the CT-genome and GA-genome, resulting in four mapping steps per read.
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makes it difficult for downstream analysis tools to support the output of different mapping

software.

Read mapping is not perfect and produces both false positive and false negative results.
False positives are due to reads mapped to the wrong location and reads mapped to multiple
locations with equal mapping scores. False negatives are reads that are not mapped to any
location; these reads are effectively lost from any downstream analysis. The parameter

settings used by the mapping software determine the false positive and false negative rates.

There are biological and technical reasons why mapping against a reference genome can
produce these errors. Biologically, if the sample contains sequences that are too genetically
divergent from the reference genome then these sequences will be difficult, even impossible,
to map. A particularly problematic class of sequences are those from repetitive regions
of the genome. These repetitive sequences will map to multiple locations in the reference
genome equally well. Furthermore, the number of times these repetitive sequences occur

differs between the reference genome and the sample’s genome.

Reads from Illumina sequencing are often too short to resolve the mapping location
of these repetitive sequences. Resolving the mapping location of repetitive sequences can
be achieved by using other sequencing technologies, such as Pacific Biosciences SMRT

technology [Flusberg et al|2010], which produces longer reads.

Another source of technical error in read mapping is really due to sequencing error. A
sequencing error can transform a uniquely mapping read to one that maps equally well
to multiple locations or, worse still, a read that maps uniquely to a single, but incorrect,
location. Sequencing errors can also corrupt a read so badly that it no longer can be
mapped. In practice, most people try to mitigate these problems through their choice of

parameters used by the read mapping software.

Ideally, mapping software assigns the degree of confidence it has that the read is correctly
mapped via a mapping quality score (mapQ). In theory, reads might be down-weighted
in downstream analyses based on the mapping quality score. However, these mapping
quality scores are often poorly calibrated, particularly for methylC-seq data, which makes
them less useful. Bismark |[Krueger and Andrews 2011], a popular bisulfite-sequencing

mapping software, only recently introduced mapping quality scores (v0.12.1, released in
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April 2014).

The above problems are general challenges of read mapping and are not specific to
bisulfite-sequencing data, although the reduced complexity of bisulfite-sequencing reads
exacerbates these issues. The difficulty of mapping to repetitive regions of the genome
is a particularly frustrating one for bisulfite-sequencing data. Repetitive sequences, such
as LINEs and SINEs, are typically methylated in order to prevent transcription and are
often of interest to researchers studying DNA methylation. The low mapping efficiencies of
these regions means that there is often limited or less reliable data for these elements from

bisulfite-sequencing data.

2.2.1 PCR duplicates

PCR amplification of the input DNA is a common step in creating a library for high-
throughput sequencing. PCR amplification is often required to ensure that there is a
sufficient amount of DNA for the sequencer to properly work. Unfortunately, it can
introduce biases into the library that results in some molecules being over-represented or
under-represented compared to their true frequency. This means that when we sequence
the library that we might sequence multiple fragments that are all copies of the same
original piece of DNA, which gives a biased sampling of our sample’s genome. These

multiply-sequenced fragments are called PCR duplicates.

In bisulfite-sequencing data, PCR, duplicates containing a methylation locus can result
in a biased estimate of the methylation level at that locus. This is because the sequenced

reads do not accurately represent the true methylation levels of the sample.

There is generally no way to tell based on sequencing data if a read is truly a PCR
duplicate. However, it is relatively easy to identify suspected PCR duplicates (which are
almost always referred to as ‘PCR duplicatesﬂ). Software to identify PCR duplicates
includes the MarkDuplicates function that is a part of the Picard software (http://

broadinstitute.github.io/picard/)), the rmdup function that is a part of the SAMtools

3The distinction between suspected PCR duplicates and true PCR duplicates is rarely made, possibly
because the phrase is so clunky. Suspected PCR duplicates are almost always referred to as PCR duplicates
with the implicit assumption that the reader is aware that these very likely include false positive calls.
Consistent with the literature, I will use the term PCR duplicates when I refer to reads identified as PCR
duplicates by some software. I will use true PCR duplicates when I need to distinguish the two concepts.
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software [Li et al.[2009] and SAMBLASTER [Faust and Hall 2014]. These software all use

mapped reads from a SAM or BAM file as input.

Roughly speaking, these tools will flag reads with identical start and end co-ordinates as
being suspected PCR duplicates. This will inevitably lead to some false positives because
reads may have identical co-ordinates yet not be true PCR duplicates. The false positive
rate is a particular problem when a subset of the genome is sequenced at high coverage,
such as in RRBS. This can be thought of as an example of the pigeonhole principle, which
states that if we have m containers (positions where a read can start) and n > m items
(reads), then at least one container must contain more than one item (at least one position

must have more than one read starting there).

We could make this mathematically more precise, but it doesn’t give us a simple answer
to the question, ‘should we remove possible PCR duplicates from bisulfite-sequencing data?’.
The unsatisfactory answer is, ‘it depends’. A rule of thumb is that provided the average
or median sequencing coverage of the ‘genome’ is less than the fragment 1engt}ﬁ then we

expect few false positive calls.

In practice, for whole-genome sequencing data we can be fairly confident that suspected
PCR duplicates are true PCR duplicates. However, for targetted sequencing, such as RRBS
or amplicon sequencing, we are much less confident and may remove some of our signal if
we remove possible PCR duplicates. Instead, for RRBS we might exclude regions with an
“abnormally” high sequencing coverage [Krueger et al.[2012]. For amplicon sequencing we
often can’t afford to exclude possible PCR, duplicates if, for example, the aim is to identify

rare epialleles by very deep sequencing of a small region.

2.2.2 M-bias

Ideally, the probability that a base is called as methylated should be independent of the
sequencing cycle. Hansen et al|[2011] found that this is not the case and that in fact there

is considerable bias towards the start (5’) and end (3’) of reads. They called this M-bias.

M-bias can be identified by plotting the read-position methylation level (rpml), which

is the proportion of reads that are methylated at each read-position, as a function of

4For single-end data, the ‘fragment length’ in these calculations is the read length.
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read-position. These rpml are computed separately for each methylation type and, for
paired-end sequencing data, separately for read-1 and read-2. If there is no M-bias then
this plot should be a horizontal line. A ‘bend’ or ‘spike’ in this plot is evidence of M-bias.
Furthermore, these lines, which indicate the average level of methylation in the sample for
that methylation type, should be at the same level for read-1 and read-2, although we see
this is often not quite the case. Figure is the M-bias plot for the ADS sample from the
Lister datasetﬂ which shows significant CpG M-bias at the start of read-2 and some noise

at the start of read-1.
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Figure 2.1: M-bias plot for the ADS sample from the Lister dataset. Each of read-1 (R1)
and read-2 (R2) are plotted separately.

If a sample is processed over multiple batches, then M-bias estimation (and methylation
calling) should be performed separately for each batch and then combined, or in some
manner that is ‘batch aware’. For example, two libraries with DNA derived from the same
cell line, but with separate library preparations and sequencing runs, will likely suffer
from batch effects due to differences in the library preparations or differences with the
sequencing runs. Unfortunately, the person analysing the data doesn’t always know all the
sample processing steps that may have introduced such batch effects and so these can be

hard to deal with in practice.

5See Chapter [3| for a description of this sample.
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The strongest source of M-bias in Illumina whole-genome bisulfite-sequencing data is at
the 5 end of read-2, which sequences the 3’ end of the DNA fragment. Because the DNA
fragment is often shorter than the sum of the read lengths, the 3’ end of the fragment often
contains adapter sequence and other ‘junk’ sequence. The adapter sequence may contain
cytosine bases, which will be misinterpreted as evidence of methylation [Krueger et al.
2012|. Similarly, “fill-in cytosines” are used in the construction of RRBS libraries to repair
the ends of DNA fragments after cleavage by Mspl; these would also be misinterpreted as
evidence of methylation [Krueger et al.[2012]. Another source of M-bias is incomplete or

uneven bisulfite-conversion.

Estimating M-bias

Estimating M-bias and incorporating it into the methylation calling can be done using two

different strategies:

1. Compute the M-bias from the aligned reads, then call methylation events. The
methylation calling should include filters to remove the detected M-bias (along with
any other additional filters). This strategy requires two passes over the SAM/BAM
file, one to compute the M-bias and one to do the methylation calling. This is the
approach used by bismark_methylation_extractor |[Krueger and Andrews|2011]
and Bis-SNP [Liu et al[2012].

2. Call methylation events but retain the read-position of each methylation event.
Compute the M-bias from this first file and then filter out methylation events that
suffer from M-bias. This strategy requires only a single pass over the SAM/BAM file but
requires additional information to be stored alongside the methylation calls which is
then followed by a pass over the file containing the methylation calls. This is the

approach taken by BSmooth |Hansen et al.[2012].

I find the first strategy conceptually simpler, and easier to program, so use it in my

methylation calling software, methtuple (described in Section [2.4)).

In theory, the M-bias could be estimated during the alignment step or during another
processing step, such as sorting or marking PCR duplicates, to avoid an additional pass

over the SAM/BAM file.
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A somewhat subtle point is that M-bias should only be estimated from reads that are
actually going to be used for methylation calling. Suppose that M-bias is highly correlated
with some other quality metric, such as base quality, so that positions with M-bias also have
low base qualityﬁ If you already intend to ignore read-positions with a base quality less
than some threshold in your methylation calling, then it makes sense to also ignore these
positions when estimating M-bias, otherwise you will overestimate the effect of M-bias and
unnecessarily exclude read-positions in your methylation calling. Unfortunately, perhaps
the most widely used software for estimating M-bias, bismark_methylation_extractor
Krueger and Andrews| [2011], does not allow the user to exclude certain reads or read-

positions when estimating M-bias.

Pre-trimming reads destroys the one-to-one relationship between read-position

and sequencing cycle

Trimming reads prior to alignment (pre-trimming), such as using Trim Galore! (http:
//www.bioinformatics.babraham.ac.uk/projects/trim_galore/) to remove adapter
sequence from reads, destroys the one-to-one relationship between the sequencing cycle
and the read-position. This causes a minor problem when computing M-bias because we
no longer know whether the read-position is identical to the sequencing cycle. Soft-clipping
or hard-clipping reads of their adapter sequence during the alignment avoids this issue,

because the clipping information (should be) preserved in the CIGAR stringﬂ

The M-bias plot is based on the read-position from the aligned data and not the
sequencing cycle (which isn’t directly available in the SAM/BAM file). If the reads have been
pre-trimmed, then each read-position in the M-bias plot will therefore contain data from

multiple sequencing cycles, which can amplify or mask the M-bias signal.

For example, suppose we performed 100 bp single-end sequencing and pre-trimmed the

first 20 bp of 90% of the reads. Then, read-position 80 will comprise 10% sequencing cycle

5This is very often the case since the 3’ end of reads are typically of lower quality and also frequently
suffer from M-bias.

"Not all software properly handles the information in the CIGAR string, particularly for soft-clipped
reads. This is a shortfall of the downstream tools and not of aligner-based clipping per se, but is nonetheless
an issue in practice. bwa-meth |[Pedersen et al|2014] and LAST [Kielbasa et al|2011] both perform well
without pre-trimming of reads because they can soft-clip reads on the fly whereas other bisulfite-sequencing
aligners, such as Bismark [Krueger and Andrews|2011], cannot soft-clip reads and so require that reads are
pre-trimmed.
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80 and 90% sequencing cycle 100. It is very likely that sequencing cycle 100 suffers more
from M-bias than does cycle 80, and so this will appear in the M-bias plot as M-bias at

read-position 80.
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Figure 2.2: M-bias plot for the E18VA sample from the EPISCOPE dataset. Each of read-1
(R1) and read-2 (R2) are plotted separately. For CpGs in read-1, we see noise at the start
of the read, followed by a downward slope in the M-bias, which ends with a spike. For
CpGs in read-2, we see a downward spike at the start of the read following by a gradual
increase in the M-bias curve, with a spike at read-position 101 and a spike at the last
read-positions for all methylation types. The spike at read-position 101 is also evident,
albeit to a lesser extent, in read-1. This position should be ignored in downstream analyses
but we do not necessarily also want to ignore read-positions 102 — 150 since this would
remove one-third of the data.

The loss of the one-to-one relationship between sequencing cycle and read-position
cannot be avoided if reads are pre-trimmed because the trimming information is not
preserved. |[Hansen et al.| [2012] suggest a separate M-bias plot for each read-length,
which will help mitigate the effect of confounding between read-position and sequencing-
cycleﬂ However, if trimming is performed during the alignment then all the necessary
information is retained and the x-axis of M-bias plots would be ‘sequencing cycle’ rather

than ‘read-position’, thus avoiding the issue entirely.

8This would also require that methylation calling is performed separately for read with different lengths
because most methylation callers are unable to deal with different M-bias profiles for different read lengths.
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Identifying M-bias

In practice, the M-bias curves for each sample are visually inspected to look for evidence
of M-bias, i.e. read-positions whose methylation levels are ‘too far away’ from the majority
of read-positions. It is rather a subjective decision to make. Two problems that I found

when making these decisions were:

1. Maintaining consistency across samples.

2. Determining where to draw the line when there is no dramatic ‘spike’ in the M-bias.

For example, in Figure 2.2]it is clear that there are problems at the start and end of
both read-1 and read-2, as well as a big problem at read-position 101 in read-2. What is less
clear is where to draw the line on the gradual decay toward the end of read-1 and towards
the start of read-2. This motivated me to write a few simple functions to perform more
systematic processing of M-bias results. These are included in the MethylationTuples R
package (described in Section with the MBias class, its associated methods, plot ()

and filter (), and the helper function readMBias ().

For each sample, M-bias is computed separately for each methylation type because
the level of methylation varies widely between CG and non-CG methylation types. For
paired-end sequencing experiments, it is also done separately for each of read-1 and read-2
because M-bias is very different for these two mates and also because read-2 often has a

slightly lower average level of methylation than does read-1 (e.g., see Figure .

In MethylationTuples, I use a simple normalisation of the read-position methylation
levels (rpml). Specifically, the median level of methylation across all read-positions is
subtracted from the read-position methylation level to create normalised read-position

ady readi

methylation levels, i.e. nrpmic, o' = rpmlc e —median(rpmlrce;gl), for CpG methylation

in read-1.

The filter () method identifies read-positions where the rpml differs by more than
a given value (threshold) from nrpml. While it computes these statistics separately for
each methylation type and read type, a common threshold is used for all methylation
types and read types. I tend to use a value of threshold = 3, meaning that if the

median(rpmlcya) = 75, then any read-position with rpmlcp,e < 72 or rpmlcpe > 78 is
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flagged as showing evidence of M—biasﬂ It is currently left to the user to decide whether a
read-position should be excluded if it displays evidence of M-bias in a single methylation
type or only if it displays evidence across all methylation types. I tend to exclude read-
positions that display evidence of M-bias in the methylation type I am working with, which

is typically CpG methylation.

What to do about M-bias?

Now that we’ve found read-positions with M-bias, what can we do about it? Typically,
read-positions showing evidence of M-bias are excluded when calling methylation events.
In fact, a slightly cruder procedure is typically used whereby the entire ends of reads are
removed. For example, suppose we have 100 bp reads with M-bias observed at positions
1,2,3,4,9,94,96,97,98,99, 100, then read-positions 1 — 9 and 94 — 100 would be ignored
when methylation calling. Both bismark_methylation_extractor and Bis-SNP, two

popular methylation callers, use this method.

This strategy is generally sufficient because M-bias tends to occur as runs of read-
positions at the 5’ and 3’ ends of reads. However, occasionally there are spikes in the
M-bias plot, which indicate specific read-positions that we would like to exclude. Figure
shows an example of such a spike that occurred at read-position 101 in 150 bp reads.
Using bismark_methylation_extractor we would be forced to either retain this position
or to ignore read-positions 101 — 150, effectively ignoring one third of the sequencing data,
much of it unaffected by M-bias. The methtuple software avoids the unnecessary exclusion
of those bases by allowing the user to specify the exact read-positions that she wants to

exclude (discussed in Section [2.4).

In the datasets I have analysed, I have had to ignore up to 30 read-positions per read
due to M-bias, a considerable loss of data. Ideally, we would be able to remove the effects
of M-bias by accounting for it in methylation calling rather than by simply excluding those
read-positions entirely. One idea is to inversely weight methylation calls by the level of M-
bias. A downside to this approach is that this would turn an otherwise binary methylation

call into a continuous value between 0 and 1, with an attendant loss in interpretability.

9The M-bias files created by bismark_methylation_extractor --mbias_only report the methylation
levels as percentages rather than proportions.
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However, we could still compute the ubiquitous [-values, traditionally defined as the
proportion of reads that are methylated at a locus, and use these in downstream inferences,
without much loss in interpretation. The bigger problem with this approach is the increased

computational complexity and cost, and this is why I have not further pursued this idea.

2.2.3 Other biases

There are several other sources of potential bias in analysing bisulfite-sequencing data.
These include sequencing and alignment errors, and sequence variation at, or nearby to,

methylation loci. A particularly interesting source of bias is due to cellular heterogeneity.

Recent papers using single-cell bisulfite-sequencing |[Guo et al.|2013| Smallwood et al.
2014] have investigated the extent of this cellular heterogeneity by comparing the methy-
lomes of individuals cells that are nominally of the same ‘type’. Cellular heterogeneity is

particularly problematic when a sample contains multiple cell types.

For example, many studies of DNA methylation use whole blood as the sample tissue
due to the ease with which it can be obtained. However, whole blood contains a mixture
of cell types, each of which has a distinct methylation profile. This cellular heterogeneity
can seriously bias downstream analyses and must be properly accounted for in any study
exploring the relationship between differences in DNA methylation and a phenotype [Jaffe
and Irizarry| 2014, Houseman et al.[2014]. For example, |Jaffe and Irizarry| [2014] provide
evidence that several reported relationships between age and DNA methylation are likely
due to changes in the cell composition of whole blood with age and not due to DNA

methylation changes per se.

Methods to estimate the cellular heterogeneity bias and adjust for it are available [e.g.,
Jaffe and Irizarry|2014, Houseman et al.|2014} |Zou et al|2014], although they have mostly
been applied to DNA methylation arrays and not bisulfite-sequencing data. This is not to
say that these problems don’t exist for sequencing data, merely that these have not been

as well-explored.
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2.3 Methylation calling

Methylation calling is the process of calling each sequenced methylation locus as being
either methylated or unmethylatedlg, as well as determining the context or type of each
methylation event (i.e. CpG, CHG or CHH) based on the sequencing data and a reference
DNA sequence. In principle, this is a simple process, however, this belies some complications,

which we discuss in this section.

Most bisulfite-sequencing alignment software either performs methylation calling during
the alignment process, as done by BismarkIEL or as a separate step after the alignment and
post-processing of the SAM/BAM file. An example of the latter is Bis-SNP [Liu et al.|[2012],
which performs methylation calling from bisulfite-sequencing data aligned with the user’s

choice of alignment software.

All bisulfite-sequencing assays use reference-based methylation calling. This means
that they require the specification of a reference DNA sequence that the aligned bisulfite-
sequencing data are compared against to infer the methylation state of each sequenced

locus. Care must be taken to correctly handle the orientation and strand of the alignment.

When using reference-based methylation calling, the position of the methylation locus
is with respect to the reference genome, since then all samples will use a common set of
co-ordinates. Some methylation loci cannot be typed using a reference-based approach.
For example, unless the genome of the sample is fully known, methylation loci in insertions
cannot be distinguished from genetic variation since there is no reference sequence to

compare them against.

2.3.1 Considerations

There are several issues that must be carefully considered when performing methylation

calling, including filtering of reads and biases, choosing and refining the reference sequence,

10A third possibility is making the call that the ‘methylation locus’ is not in fact a methylation locus.
For example, if the sequenced base at a cytosine in the reference sequence is an adenine or a guanine then
this may be evidence that the position is not in fact a methylation locus.

1Bismark also includes a program called bismark_methylation_extractor, which, as the name suggests,
extracts the methylation calls from the SAM/BAM file. So while Bismark annotates each base as methylated or
unmethylated during the alignment, a secondary step using bismark_methylation_extractor is required
to make the methylation calls.
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and determining the context or methylation type of the cytosine.

Filtering of reads and bases

Prior to methylation calling, each read should be filtered to remove low-quality reads and
low quality bases. When using a set of filters, at each step a read either ‘survives’, and
is subjected to the proceeding filter, or ‘dies’, and is excluded from methylation callingﬂ
Strictly speaking, each sequenced bases is assigned a weight in the filtering process, however,
in practice, filters are normally first applied to reads and then to all bases within ‘surviving’
reads. In my own work analysing whole-genome bisulfite-sequencing data, I routinely use

the following filters.

A read survives if:

1. The read is mapped (single-end or paired-end) and mapped in the expected orientation
(paired-end only).
2. The read is not marked as a PCR duplicate.

3. The read has a mapping quality score greater than some threshold.
A sequenced base survives if:

1. The read-position of the base means that it is unlikely to be affected by M-bias.

2. The base quality score is greater than some threshold.

3. The base is a ‘bisulfite mismatch’ (e.g., the sequenced base is a C or T at a C in the
reference sequence) and not a ‘non-bisulfite mismatch’ (e.g., the sequenced base is an

A or a G at a C in the reference sequence).

Although incomplete bisulfite-conversion is a well-recognised issue, most analysis
pipelines don’t attempt to account for this during methylation callingjﬂ An exception is
Bis-SNP [Liu et al.2012] which has an algorithm to exclude bases suspected of suffering

from incomplete bisulfite-conversion at the 5’ end of Illumina-generated reads.

12A read that is not used to estimate M and U may still be used in other analyses, such as estimating
copy number variation.

13Instead, incomplete bisulfite-conversion is usually incorporated into calculations to estimate the
methylation level at a given cytosine (see Section . The bisulfite-conversion rate may be estimated by
analysing cytosines that are expected to be unmethylated, such as those in the chloroplast genome |Lister,
et al.|2008] or a spike-in control of lambda phage DNA [Lister et al2009].
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Choosing and refining the reference sequence

The reference sequence is typically the reference genome used in the alignment step, in
spite of the obvious differences between the sample’s genome and the reference genome.
This reference-based approach may be refined to incorporate genetic differences between

the sample and the reference genome. This can be done in several ways:

1. Whole-genome sequencing or genotyping of the sample
2. Calling genetic variations directly from the bisulfite-sequencing data

3. Excluding sites of known genetic variation

The gold-standard is to perform whole-genome DNA sequencing of each sample. This
data is then used to form a set of sample-specific methylation loci. This approach, however,
is also very expensive due to the extra sequencing requirements. A cheaper alternative is to
genotype the sample on a genome-wide SNP microarray. This will give very accurate, very
cheap genotypes at a large number of loci (500,000 to 5,000,000). However, it obviously
cannot identify genetic differences that aren’t on the array, such as novel sample-specific

genetic variants.

The next best approach is that implemented in Bis-SNP |Liu et al.|[2012], which is to
call genetic variation from the bisulfite-sequence data itself and to then define a set of
sample-specific methylation loci at which to call methylation events. Bis-SNP is designed
for directional bisulfite-sequencing libraries such as the widely used Illumina whole-genome

bisulfite-sequencing protocol.

Certain genetic variants, in particular heterozygous C>T" SNPs, are more difficult to
accurately genotype than others. Unfortunately, C>T SNPs are also quite important
because they are the most common SNPs in mammals [Liu et al.|2012], mostly occur at
CG dinucleotides and, as a result, are easily mis-called as unmethylated cytosines rather
than as genetic variants. Fortunately, it is often possible to distinguish C'>T SNPs from
unmethylated cytosines by examining the base on the opposing strand; if it is a G then
the position must be a C, if it is a A then it must be a T (see Figure . Other base
substitutions are more readily detectable, and insertion and deletion events (indels) may

also be called.
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Figure 2.3: Bis-SNP is able to distinguish unmethylated cytosines (site 1), from cytosine to
thymine genetic variants (site 2) and thymine to (unmethylated) cytosine genetic variants
(site 3) by examining the reads mapped to the reverse strand. For all three loci, the reads
mapped to the forward strand contain a thymine. However, it is the base on the reverse
strand that reveals the true genotype. When combined with the reference genome it can be
inferred whether the sample’s genome, which isn’t directly observed, has a genetic variant
at that location. This is only possible with bisulfite-data generated using the directional
protocol. This figure is adapted from Liu et al. [2012].

To emphasise, Bis-SNP provides three important pieces of information that make it

almost as good as having whole genome DNA sequencing data on the same sample:

1. Reference-specific methylation loci, i.e. cytosines in the reference genome that are
mutated to non-cytosine bases in the sample’s genome.

2. Sample-specific methylation loci, i.e. cytosines in the sample’s genome that are
non-cytosine bases in the reference genome.

3. Other genetic variants that may be used in additional analyses, such as in identifying

allele-specific methylation, or to refine the methylation type or context (see below).

Genotype calls made using Bis—-SNP are less accurate than those from whole-genome
DNA sequencing because of the reduced complexity of bisulfite-converted DNA. However,
we essentially get to measure DNA variation ‘for free’ by using Bis-SNP, which makes it my

preferred approach for incoporating genetic variation into methylation calling. The genetic
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variant calls made by Bis—-SNP can also be used to post-hoc filter methylation calls made

by other software. I use this approach to filter methylation calls made with methtuple.

The third approach, and arguably the bare minimum, is to call methylation events
using the reference genome and to post-hoc exclude any loci that overlap sites of known
genetic variation in the population. For example, we might exclude all cytosines in the

reference genome that are also SNPs in dbSNP [Sherry et al.[2001].

This is a conservative approach, as it will remove loci regardless of whether the sample
has a genetic variant at that position or not, but it may be a good enough method in some
cases. It also obviously requires a database of known variation for the organism being

studied, which is the case for commonly studied organisms such as humans and mice.

This approach can obviously only exclude sites of known variation from consideration,
and cannot add sample-specific methylation loci. To remove those reference-specific
methylation loci that are not found in databases of known genetic variation, we might
identify loci in the sample that display a large number of non-C/T bases (resp. non-G/A

bases) at a C (resp. G) on the forward (resp. reverse) strand of the reference genomﬁ

Determining the context or methylation type

In addition to determining whether a cytosine is methylated or unmethylated, we also
want to determine the context of the cytosine, also known as the methylation type. That is,

we want to determine whether the cytosine is a CG, CHG or a CHH.

This is done by examining the two bases upstream of the cytosine. It can be done
based on the reference sequence, as is done in Bismark and methtuple, or from the reads
themselves. The obvious difficulty with using the reads themselves is if the cytosine occurs
at the last or second last position of the read, in which case the context may not be
unambiguously determined from the the read alone. Instead, the context may be refined
by initially using the reference genome context and then correcting for any sample-specific

genetic variants in the two downstream bases.

A further complication occurs when there is a genetic variant in the two bases upstream

of the methylation locus. We would like to use the two upstream bases from the sample to

M This is like an ad hoc and limited version of Bis-SNP.
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infer the sample-specific methylation context, either inferred from each read separately
or from a variant calling procedure such as Bis-SNP. However, this further complicates
the methylation calling and so tools such as Bismark derive the context from the reference

genome alone.

2.4 methtuple

methtuple (https://github.com/PeteHaitch/methtuple) is software I wrote to perform
methylation calling at genomic tuples that I call m-tuples. Before formally defining m-tuples,

I first motivate the need for methtuple.

2.4.1 Motivation

Most methylation callers, such as bismark_methylation_extractor and Bis-SNP, perform
methylation calling at single methylation loci, which I refer to as 1-tuples. The output
file is a table, where each row records the co-ordinates of a cytosine and the number of
methylated (M) and unmethylated (U) reads at that position. Table is representative
of the type of data returned by these programs. The file format is generally tab-delimited
plain text, the Browser Extensible Data (BED) format or the Variant Call Format (VCF).

Chromosome Strand Position M U

chrl + 100 7T 1
chrl — 101 5 2
chr2 + 400 0 3
chr2 + 450 1 2

Table 2.2: Example of output for methylation calling at 1-tuples. Each row records the
the number of methylated (M) and unmethylated (U) reads at a 1-tuple. Loci may be
stratified by strand, as is done here, in which case most CpGs will have measurements for
both the positive and negative strands.

While 1-tuples are the basis of most analyses of bisulfite-sequencing data, they do not
always give the complete picture of how DNA methylation is acting in the sample. To gain
a clearer picture, we can leverage the fact that many bisulfite-sequencing reads contain

multiple methylation loci (m-tuples) and that each read is from a single cel]E} An example

15This ignores chimeric reads, which are created when two DNA fragments ligate to one another during
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of where this is useful is shown in Figure [2.4] where we have two regions, each with four
methylation loci, that have identical methylation calls at 1-tuples yet very different overall
methylation patterns. Further examples of where m-tuples are useful are in studying

epialleles and epipolymorphisms (Chapter 4)) and co-methylation (Chapters |§| and .

Region 1 Region 2

1 1 1 1
B-value 0.%\0.%\ 2, o Q o Q %\0. 0 Q 0 o o0

Figure 2.4: Two regions, each with four methylation loci that have identical g-values
(6= M]\J{U) at 1-tuples yet have very different overall methylation patterns. Each line is a
read, a white circle is an unmethylated CpG and a black circle is a methylated CpG.

In order to study these phenomena, we firstly need software that can perform methyla-
tion calling at m-tuples, which is why I wrote methtuple. When I began my PhD, there
was no software capable of calling methylation patterns at arbitrarily sized m-tuples from
whole-genome bisulfite-sequencing data. Simultaneous with the development of methtuple,
there have been some software published with similar functionality. However, none of
these do exactly what I require and some have what I consider to be severe deficiencies
(Table . To the best of my knowledge, methtuple is the only software that can perform

methylation calling at m-tuples from whole-genome bisulfite-sequencing data.

the library preparation. Certain bisulfite-sequencing protocols frequently produce chimeric reads. For
example, using the post-bisulfite adapter tagging (PBAT) protocol [Miura et al.|2012] with a low input
amount of DNA results in a huge number of chimeric reads (personal communication from Felix Krueger).
The standard whole-genome bisulfite-sequencing protocol is not known to suffer from this issue.
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Table 2.3: Other software for methylation calling at m-tuples and their limitations. Abbre-
viations: bme = bismark_methylation_extractor.

Soft-  Reference Input Limitations

ware

meth- |Li et al|[2014] Bismark Unable to install

clone BAM

meth- https://github.com/| Output  Designed for amplicons not whole-genome
pat bjpop/methpat of bme data.

DMEASHe et al. [2013] Output  Windows operating system only. Perl

of bme code only available as PDF file.

2.4.2 m-tuples

I define an m-tuple to be a tuple of m = 1,2, ... methylation loci. I refer to m as the size
of the tuple. In principle, the m loci that make up an m-tuple could come from anywhere
in the genome, but it makes most sense to require that the m loci be close to one another.
In fact, I generally require that an m-tuple consists of m adjacent methylation loci[ﬂ An
equivalent way of describing an m-tuple as comprising adjacent methylation loci is one
where the number of intervening loci is zero (NIL = 0). There are three reasons that I

focus on m-tuples with NIL = 0:

1. Quantity: From a sequence containing [ methylation loci there are [ —m+1 NIL =0
m-tuples. In contrast, there are (ril) NIL > 0 m-tuples. Obviously, (nlj) >]l—m+1,
with strict inequality if m # 1 or m # [.

2. Interpretability: Results for m-tuples with NIL = 0 are simpler to interpret than
when allowing NIL > 0. This is discussed in Chapter

3. Measurability: We cannot observe methylation patterns from individual reads at
m-tuples where the methylation loci are far apart due to the read length limitations

of the Illumina sequencing technology. This is true even when NIL = 0 but is more

of an issue if we allow NIL > 0.

1Two methylation loci are adjacent if there is no methylation loci in between the pair. For example,
CGCG and CGTTACG both contain two adjacent CpGs (the intervening TTA in the second sequence does not
include a CpG). In contrast, the first and last CpG in the sequence CGTCGTCG are not adjacent, since
the intervening sequencing, TCGT include a CpG. Note that in situations where we are only interested in
studying CpGs, we define ‘methylation loci’ to mean ‘CpGs’. Therefore the sequence CGTCTTCG contains
two adjacent methylation loci; while there is a C in the intervening sequence, TCTT, it is a CHH not a CpG.
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When referring to m-tuples I implicitly mean those with NIL = 0; I will explicitly use
the notation NIL > 0 when I wish to make clear that there may be intervening methylation
loci in the m-tuple. The default option of methtuple is to produce m-tuples with NIL =0

unless the --all-combinations flag is seffl’]

I require that each methylation call at an m-tuple comes from a single read. There
are 2™ possible methylation calls at an m-tuple. For example, at a 1-tuple there are 2!
possible methylation calls — M or U; at a 3-tuple there are 23 = 8 possible methylation
calls — MMM, MMU, MUM, MUU, UMM, UMU, UUM or UUU.

For each m-tuple, I also define the intra-pair distance (IPD) as the vector containing
the (m — 1) pair-wise distances (measured in bp) between methylation loci in the m-tuple.
For example, the 2-tuple (chr7:+:145, chr7:+:163) has IPD = (163 — 145) = (18). The
5-tuple (chr2:-:560, chr2:-:570, chr2:-:572, chr2:-:588, chr2:-:612) has IPD =
(570 — 560,572 — 570, 588 — 572,612 — 588) = (10,2, 16,24). The IPD vector of a 1-tuple is
undefined.

To illustrate several of the above-mentioned concepts, suppose we sequence a region
of the genome containing five methylation loci with three paired-end reads (A, B and C),

shown in Figure 2.5

If we are interested in 1-tuples, Figure 2.6|shows what we would obtain from each read by
running methtuple. The result is identical regardless of whether the -—all-combinations

flag is set.

If we are interested in 3-tuples, Figure shows what we would obtain from each read

by running methtuple in its default mode. A few things to note:

o Read-pair A sequences all three (= 5 - 3 4+ 1) adjacent 3-tuples

o Read-pair B sequences none of the adjacent 3-tuples but does ‘erroneously’ construct
two 3-tuples from pairs of non-adjacent loci. This happens because m-tuples are
created independently from each read-pair; effectively, read-pair B is unaware of

methylation locus 3. Depending on the downstream analysis, the user may wish to

17 Actually, while methtuple tries to produce m-tuples with NIL = 0 it can’t guarantee this because it
would require looking up the reference genome sequence for each m-tuple (this is avoided for computational
simplicity). This is only really an issue with paired-end sequencing, as is made clear in the examples of
Figures [2.5] [2:6] 2.7 and [2:8] Some post-hoc filtering of the m-tuples will generally be required in order to
remove those m-tuples with NIL > 0.
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Figure 2.5: Diagram of three-paired end reads (A, B and C) mapping to a region containing
five methylation loci (1, 2, 3, 4 and 5). The suffix _1 or _2 indicates whether it is read-1
or read-2, respectively.

A: {1}, {2}, {3}, {4}, {5}
B: {1}, {2}, {4}, {5}
C: {2}, {3}, {4}

Figure 2.6: 1-tuples produced for each read for the toy example in Figure

post-hoc filter out these m-tuples with non-adjacent loci.

e The twice-sequenced methylation loci in read-pair C, 2 and 3, are only counted once.

A: {1, 2, 3}, {2, 3, 4}, {3, 4, 5}
B: {1, 2, 4}, {2, 4, 5}
c: {2, 3, 4}

Figure 2.7: 3-tuples produced for each read for the toy example in Figure [2.6]

Finally, Figure [2.8) shows the output if we were to analyse 3-tuples but with the

--all-combinations flag set.

With current sequencing technology we are limited to extracting m-tuples that span no
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a: {1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {1, 2, 4}, {1, 2, 5},
{1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 5}, {2, 4, 5}

B: {1’ 2’ 4}’ {2, 4’ 5}’ {1I 2’ 5}’ {1’ 4’ 5}

c: {2, 3, 4}

Figure 2.8: 3-tuples produced for each read for the toy example in Figure [2.6] when the
--all-combinations flag is set.

more than 200 to 250 bp. This obviously affects the size of m-tuples that we can study.
Figure shows the number of CpGs per read for the Lister dataset (see Chapter [3| for
a description of the Lister dataset). Longer reads, and paired-end reads, contain more
methylation loci and so are more informative for analyses using m-tuples. This can be seen
by comparing, for example, the ADS and HSF1 samples. Samples sequenced more deeply
will have more reads per m-tuple, although this can’t be seen in these plots since they are

normalised by sequencing depth.

Lister: Number of CpGs per read

ADS I ADS-adipose ] ADS-iPSC FF FF-iPSC_19.11 ]
60
40
ol 0 [T | 0
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| | | | 0
=
g H1 r2 Il H9 ] H9 Laurent HSF1 IMR90-iPSC
D60
<
40 I I
<4
3 | | I [
e 0 [ P L [ --__7 .- _____ .-__7 --__7
[

IMR90O_r1 IMR90_r2 ]

40
il | | i
0 [Fo T [P
0 2 4 6 8 0 2 4 6

8
Number of CpGs per read
(Axis truncated at 8)

Figure 2.9: Number of CpGs per read for the Lister dataset.

2.4.3 Implementation

methtuple performs methylation calling for a single BAM file generated by Bismark.

The user is required to specify the size of the tuples (--m), and the methylation type
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(--methylationType) for each run of the program. There are many useful options to filter
reads and read-positions. Apart from the standard quality filters, methtuple is careful
when processing paired-end reads to only count the base from one of the reads in any
overlapping paired-end reads to avoid double-counting the bases in the overlapping regior@
methtuple also allows the user to filter out specific read-positions rather than wholesale
filtering of the ends of reads. This is particularly useful for samples where there is a ‘spike’
in the M-bias plot, such as that shown in Figure Such a spike can be filtered out
without also being forced to also filter out additional upstream read-positions that are not

affected by M-bias.

methtuple is written in Python and uses the pysam (https://github.com/pysam-developers/
pysam/) module to parse the BAM file. It is compatible with both Python2 and Python3.
To improve performance, I provide a helper script to split the sample by chromosome
and process each chromosome in parallel (https://github.com/PeteHaitch/methtuple/
blob/master/helper_scripts/run_methtuple.sh). This helper script makes extensive
use of GNU parallel |Tange 2011]. While Python-level parallel processing is desirable, this

GNU parallel-based approach was simpler to implement and sufficient for my purposes.

methtuple is currently limited to processing files produced by Bismark due to its reliance
on the Bismark-specific tags XM, the “methylation call string”, XR, the “read conversion
state for the alignment”, and XG, the “genome conversion state for the alignment” (http://
www.bioinformatics.bbsrc.ac.uk/projects/bismark/Bismark_User_Guide.pdf). It
could be extended to work with other bisulfite-sequencing aligners. However, due to the
eccentricities of each aligner, such an extension would have to be aligner-specific and is
therefore a considerable undertaking. Each extension would require that tags analogous
to the XR, XG and XM tags can be generated from the given BAM file. In the case of the XM
tag, this would likely require that the reference genome is parsed in parallel with the BAM
file, adding considerable computational overhead. Perhaps the easiest option would be to
add a script that ‘Bismark-ifies’ the original BAM file. Since all my data are aligned with
Bismark, or were converted to Bismark’s BAM format, I have not yet had need to pursue

this line of work.

8nethtuple has several options for handling overlapping mates of paired-end reads via the
—-overlap-filter flag. The default method is to ignore any read-positions in the overlapping region
where the methylation calls disagree.
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The output format of methtuple is tab-delimited plain text, optionally compressed

with gzip or bzip2. Figure shows an example of the output for 3-tuples.

chr strand posl pos2 pos3 MMM MMU MUM MUU UMM UMU UuM uuu
chrl + 469 471 484 0 0 4 1 1 0 0 0
chrl + 471 484 489 1 0 0 0 2 2 1 0

Figure 2.10: Example output of methtuple for 3-tuples.

2.4.4 Performance

I have used methtuple to perform methylation calling at CpG m-tuples, m = 1,...,8, for
more than 40 whole-genome bisulfite-sequencing samples. Figure[2.11]shows the distribution
of running times, Figure the maximum memory usage across, and Figure [2.13 the
output file sizes, for all the samples from the EPISCOPE, Lister, and Ziller datasets. For
each sample, each chromosome was processed using a single core on one of the shared-use
servers in the Bioinformatics Division (see Table in the Appendix for details of these

machines).

The running time of methtuple is proportional to the number of reads mapped to the
chromosome, which is proportional to the length of the chromosome and its copy number.
The running time is largely independent of the tuple size (-m). The variation in running
times within a chromosome is due to the number of reads generated per sample and the
length of the reads, where the length of a paired-end read is defined as the sum of the
mates’ lengths. Samples with more reads take longer to process and samples sequenced

with longer reads take longer because these contain more m-tuples.

The maximum memory usage is not strictly proportional to chromosome length. It
is instead driven by the number and density of CpGs on the chromosome. For example,
chromosome 19, which has the highest CpG density of all the autosomes in the human
genome, requires far more memory than chromosome 18, which has less than half the
CpG density of chromosome 19 (see Figure . The relationship between the maximum
memory usage and the tuple size (-m) is complex; more data have to be retained as -m
increases, thus increasing the memory usage, but fewer reads contain tuples of that size and
so there aren’t as many m-tuples or observations on these to count and retain. Memory

usage is therefore relatively constant across values of -m for a given chromosome. The
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Running time of methtuple across 48 samples
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Figure 2.11: The running times are the ‘User time’ reported by GNU time converted
from seconds to minutes. The suffix ‘ac’ on the tuple size means that the option
--all-combinations was set. Note that the total number of samples is 48 because
each of the Ziller sequencing runs is separately counted (see Chapter |3| for details).
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obvious exception is for the results labelled 2ac, which used the -—all-combinations flag
in conjunction with -m 2. This means that all 2-tuples with NIL > 0 were extracted and
there are many, many more CpG 2-tuples with NIL > 0 than there are with NIL = 0,

hence the increase in memory usage.

The regular structure of the output file means that these are particularly compressible.

The size of the output file is almost always less than 1 GB when compressed with gzip.
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Maximum memory usage of methtuple across 48 samples
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Figure 2.12: The maximum memory usage is the ‘Maximum resident set size’ reported by
GNU time converted from kilobytes to gigabytes. These values are divided by four to fix bug
in how GNU time reports the maximum memory usage (https://bugzilla.redhat.com/
show_bug.cgi?id=703865). The suffix ‘ac’ means that the option --all-combinations
was set. Note that the total number of samples is 48 because each of the Ziller sequencing
runs is separetely counted (see Chapter [3|for details).
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Figure 2.13: The sizes of the output file when compressed with gzip. The suffix ‘ac’ on
the tuple size means that the option --all-combinations was set. Note that the total
number of samples is 48 because each of the Ziller sequencing runs is separately counted
(see Chapter |3| for details).
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Figure 2.14: Percentage of dinucleotides that are CpGs for each chromosome in the human
reference genome (hgl9).
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2.4.5 Availability

methtuple is open-source software released under the MIT licence and available from

https://github.com/PeteHaitch/methtuple.

2.5 Summary

This chapter has detailed the first steps in a bioinformatics analysis of whole-genome
bisulfite-sequencing data. There are many decisions to be made at each step and these will

ultimately affect the quality of the data available for downstream analysis.

This chapter also introduced methtuple, the first of several pieces of software that were
developed as part of my thesis. methtuple is software for calling methylation patterns at
m-tuples from whole-genome bisulfite-sequencing data. It will be essential for our later
analysis of within-fragment co-methylation (Chapter |7) and has wider utility in facilitating

other downstream analyses based on methylation patterns at m-tuples (Chapter [5).
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Chapter 3

Datasets used in thesis

3.1 Overview of data processing

This chapter briefly documents the 40 whole-genome bisulfite-sequencing samples that 1
use in my thesis. The BAM files containing the aligned reads for each sample underwent the

same basic processing:

1. Genetic variants were called using the bissnp_easy_usage.pl script included with
Bis-SNP (v0.82.2).

2. M-bias was estimated using bismark_methylation_extractor with the --mbias_only
flag set. These output files were then analysed using the MethylationTuples R
package (see section and all read-positions with an CpG normalised read-position
methylation level (nrpml) more than 0.03 from the median, i.e. |nrpmicyg —
median(nrpmlcpa)| > 0.03, were excluded from methylation calling (read-1 and
read-2 analysed separately where applicable).

3. CpG methylation calling was performed using methtuple (v1.4.0) for m-tuples m =
1,...,8. CpG 2-tuples were called both with and without the --all-combinations
flag; all other tuple sizes were called without the ——all-combinations flag. The fol-
lowing methtuple flags were also used: —-methylation-type CG --ignore-duplicates
--min-mapq O --overlap-filter XM_ol --ignore-duplicates.

4. Sample-level m-tuples were combined at the dataset-level using the MethylationTuples

R package (see Section [5.3). Specifically, a MethPat object was created for each of
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the EPISCOPE, Lister, Seisenberger and Ziller datasets for 1-tuples, 2-tuples and
2ac-tuples (2-tuples with the -—all-combinations flag in methtuple set), 3-tuples
and 4-tuples. I did not create MethPat objects for m-tuples with m > 4 because the

data are too sparse at this larger sizes to be generally useful.

The raw data for the Lister, Seisenberger and EPISCOPE datasets are all publicly
available. The EPISCOPE data are not yet published and I do not have permission to
make these publicly available. The scripts used to prepare the results for each chapter are
available from https://github.com/PeteHaitch/phd_thesis_analyses. Further details
of software used are available in Appendix

3.2 Lister dataset

The Lister dataset refers to whole-genome bisulfite-sequencing libraries used in |Lister et al.
[2009] and |Lister et al.|[2011]. The Lister data were the largest publicly available human

whole-genome bisulfite-sequencing datasets until quite recently.

3.2.1 Sample descriptions

The methylC-seq libraries from the Lister et al| [2009] paper were the first published
whole-genome bisulfite-sequencing libraries of mammalian DNA. A focus of this paper was
comparing DNA methylation levels in a somatic tissue, fetal lung fibroblasts (IMR90),
with those from a pluripotent tissue, embryonic stem cells (H1). Each tissue was run in
duplicate. While Lister et al.|[2009] refer to these “biological” replicates I believe that these
are better described as technical replicates since each replicate is from the same cell line;
what distinguishes the replicates are the number of cell passages and the subsequent library
preparations and sequencing. In any case, the published analyses pool these duplicates,

which ignores all between-replicate variability. These samples are detailed in Table

The methylC-seq libraries from the Lister et al. [2011] include some created by the
authors and some published by other groups. These samples include cell lines from
differentiated cell lines, embryonic stem cell lines, pluripotent stem cell lines and in vitro

differentiated from pluripotent stem cells. There are no replicates for any of the |Lister
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Table 3.1: Samples in Lister dataset from Lister et al.| [2009]. The reported read lengths
are prior to any trimming of the reads. Abbreviations: ESC = embryonic stem cell; SE =
single-end sequencing.

Sample Tissue type Sequencing Read length Ave. coverage
IMR90 rl1 Lung fibroblasts SE 87 bp 14 x
IMR90_r2 Lung fibroblasts SE 87 bp 15x
H1_rl ESC SE 85 bp 15x%
H1l r2 ESC SE 85 bp 14 x

et al.|[2011] samples. These samples are detailed in Table

Table 3.2: Samples in Lister dataset from Lister et al.| [2011]. The reported read lengths
are prior to any trimming of the reads. Abbreviations: ¢PSC = induced pluripotent stem
cell; ESC = embryonic stem cell; IVD = in vitro differentiated from pluripotent cell line;
SE = single-end sequencing; PE = paired-end sequencing.

Sample Tissue type Sequenc-  Read Ave.
ing length coverage

ADS Adipose PE 75 bp 23 x
ADS-adipose Adipocytes from ADS  PE 75 bp 24 x
ADS-iPSC iPSC from ADS PE 75 bp 26 x
FF Foreskin fibroblasts SE 85 bp 16x
FF-iPSC_6.9 iPSC from FF SE 85 bp 10x
FF-iPSC_19.7 iPSC from FF SE 85 bp 9x
FF-iPSC_19.11 iPSC from FF SE 85 bp 8%
FF- IVD from SE 85 bp 17x
iPSC_19.114BMP4 FF-iPSC_19.11

IMR90-iPSC iPSC from IMR90 SE 85 bp 9x
H1+BMP4 IVD from H1 SE 85 bp 33x
H9 ESC SE 85 bp 9x
H9_ Laurent ESC PE 75 bp 8x
HSF1 ESC SE 47 bp 5x

There are four ‘mini datasets’ within the Lister data that I make some use of in my
thesis. The first I refer to as the Lister-ADS data and includes samples ADS, ADS-adipose
and ADS-iPSC, all from the 2011 paper. The ADS sample, a human adipose tissue cell line,
is the ‘founder’ of this mini dataset. The ADS-adipose and ADS-iPSC are both derived
from the ADS cell line. The ADS-adipose sample are “adipocytes derived from the ADS
cells through adipogenic differentiation conditions”. The ADS-iPSC cell line is an induced

pluripotent stem cell line derived from ADS.

The second mini dataset I refer to as the Lister-FF data and includes samples FF,
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FF-iPSC 6.9, FF-iPSC _19.7, FF-iPSC _19.11 and FF-iPSC _11.11+BMP/, all from the
2011 paper. The FF sample, a foreskin fibroblast cell line, is the ‘founder’ of this this
mini dataset. The FF-iPSC 6.9, FF-iPSC 19.7 and FF-iPSC 19.11 are all induced
pluripotent stem cell lines derived from FF. In fact, FF-iPSC 19.7 and FF-iPSC 19.11
are subclones derived from FF-iPSC 19, whose methylome was not sequenced. I believe
FF-{PSC 6.9 is an independently derived iPSC cell line from FF, although this isn’t made
clear in the original publication. The FF-iPSC 19.11+BMP/ sample is a trophoblast cell
line derived by in vitro differentiating the FF-iPSC _19.11 by growing a clone of it in bone
morphogenic protein 4 (BMP/).

The third mini dataset I refer to as the Lister-IMR90 data and includes samples
IMR90_r1 (2009), IMR90_r2 (2009) and IMR90-iPSC (2011). The IMR90-iPSC sample

is an induced pluripotent stem cell line derived from the IMR90 cell line.

The final mini dataset I refer to as the Lister-HI data and includes samples HI ri
(2009), H1_r2 (2009) and H1+BMP/ (2011). The H1+BMP/ sample is a trophoblast cell
line derived by in vitro differentiating the HI by growing a clone of it in bone morphogenic

protein 4 (BMP4).

3.2.2 Creation of BAM files

The aligned reads for the Lister et al. [2009] data were downloaded from http://neomorph.
salk.edu/human_methylome/. The aligned reads for the |Lister et al|[2011] data were
downloaded from http://neomorph.salk.edu/ips_methylomes/ These samples had

been aligned against the hgl8 build of the human reference genome.

As the aligned reads were in a custom file format, I wrote Python scripts to convert these
files to the canonical SAM format. These scripts are available from https://github.com/
PeteHaitch/Lister2BAM. These SAM files were then converted to BAM files with SAMtools
[Li et al|2009] and duplicate reads were marked using Picard’s MarkDuplicates routine

(http://broadinstitute.github.io/picard/).
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3.3 EPISCOPEFE dataset

The EPISCOPE data were kindly provided to me by Professor Susan Clark (Garvan
Institute of Medical Research, Sydney) and Dr Peter Molloy (CSIRO Animal, Food and
Health Sciences). This dataset is not yet published.

3.3.1 Sample descriptions

The data are from three human donors across four different tissues, for a total of 12

whole-genome bisulfite-sequencing libraries. The four tissues are:

e BUF': Buffty coat layer, which are leukocytes and platelets derived by centrifugation
of a whole blood sample.

e SA: Subcutaneous adidose tissue, which is fat found just below the skin. Unlike
visceral adipose tissue, subcutaneous adipose tissue is thought to be protective against
obesity-related metabolic dysfunction [Chau et al.|2014].

e VA: Visceral adipocytes, which are derived from VAT.

e VAT: Visceral adipose tissue, which is located inside the abdominal cavity, packed

between the organs and is associated with metabolic dysfunction [Chau et al.[2014].

The data are summarised in Table B3l

3.3.2 Creation of BAM files

The sequencing data for these 12 samples were processed and aligned by Aaron Statham
(Garvan Institute of Medical Research, Sydney). Each sample was aligned to the human
reference genome (hgl9) using Bismark (v0.8.3) with the Bowtie2 backend. The default
alignment options were used, except that the maximum insert size for valid paired-end
alignments was set to 1000 instead of 500 (=X 1000). Duplicate reads had already been

removed from the BAM files that I received.
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Table 3.3: Samples in EPISCOPE dataset. The reported read lengths are prior to any
trimming of the reads. Abbreviations: PE = paired-end sequencing; BUF = buffy coat;
SA = subcutaneous adipose; VA = visceral adipocytes; VAT = visceral adipose tissue.

Sample  Tissue Sequencing Read length Ave. coverage

E13BUF BUF PE 101 bp 8x

E13SA SA PE 101 bp 28 x
E13VA VA PE 150 bp 27x
E13VAT VAT PE 101 bp 25 %
E18BUF BUF PE 101 bp 21 %
E18SA SA PE 101 bp 25 %
EI8VA VA PE 150 bp 36 x
E18VAT VAT PE 101 bp 26 %
E23BUF BUF PE 101 bp 12x
E23SA SA PE 101 bp 29x
E23VA VA PE 101 bp 32x
E23VAT VAT PE 101 bp 31x

3.4 Seisenberger dataset

The Seisenberger data are from a study of the dynamics of DNA methylation reprogramming
in mouse primordial germ cells [Seisenberger et al.[2012]. These were a convenience sample
provided to me by a colleague, Felix Krueger (Babraham Institute). I thank Felix who

sent me the BAM files containing processed and aligned reads.

3.4.1 Sample descriptions

I have the data for only three samples from the original publication, detailed in Table
The JI__1 sample is from an embryonic stem cell line while both the E6.5 epiblast_1 and
E16.5 _male_ 1 samples are derived from pools of 10 to 30 embryos. Developmentally, the
samples are ordered JI_ 1 (embryonic stem cell), E6.5 epiblast_1 (embryonic day 6.5
epiblast) and F16.5 _male_1 (embryonic day 16.5 male progenitor germ cells).

I believe that the samples I received labelled JI__ 1 and F16.5 _male__1 in fact correspond
to J1_2 and E16.5_male__2, respectively, i.e. the second replicate rather than the first.
The data I received are all 100 bp paired-end sequences, which matches replicate 2 rather
than replicate 1 for both of these samples [Seisenberger et al.|[2012, Supplementary Table
1].
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Table 3.4: Samples in Seisenberger dataset. The reported read lengths are prior to any
trimming of the reads. All samples were first published in Seisenberger et al|[2012].
Abbreviations: PE = paired-end sequencing

Sample Tissue Sequenc- Read Ave.
ing length coverage
J1_1 ESC PE 100 bp 12x
E6.5_epiblast_ 1 Epiblast PE 100 bp 13x
E16.5_male 1  Male progenitor germ PE 100 bp 12x
cells

3.4.2 Creation of BAM files

The sequencing data for these 3 samples were processed and aligned by Felix Krueger (Babra-
ham Institute). Each sample was aligned to the mouse reference genome (GRCm38/mm10)
using Bismark (v0.7.12) with the Bowtiel backend. The default alignment options were

used.

3.5 Ziller dataset

The Ziller data are a subset of the data used in |[Ziller et al.| [2013]. Specifically, I use a
convenience sample of 8 whole-genome bisulfite-sequencing libraries. These were made
available to me by a collaborator, Aaron Statham (Garvan Institute of Medical Research,

Sydney). I thank Aaron who sent me the BAM files containing processed and aligned reads.

3.5.1 Sample descriptions

The eight biological samples are as follows: frontal cortex from two ‘normal” women donors
(Frontal _cortez_normal__1 and Frontal cortex_normal_2) and from two women who
had Alzheimer’s disease (Frontal cortez_AD__1 and Frontal corter_AD__2); a sample
from a human liver carcinoma cell line (HepG2_ cell_line); a new sample from the IMR90
lung fibroblast cell line (IMR90 _cell line); and samples from a colon cancer matched

tumour-normal pair (Colon_ Tumor_Primary and Colon__ Primary_Normal).

Table summarises the data for the 19 individual sequencing rund!]

!The average sequencing coverage of the post-hoc merged samples are approximately the sums of the
average sequencing coverage for the corresponding individual sequencing runs.
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Table 3.5: Sequencing runs in Ziller dataset. The reported read lengths are prior to any
trimming of the reads. All samples were first published in Ziller et al|[2013]. Abbreviations:
PFE = paired-end sequencing

Sample Tissue Sequencing Read length Ave. coverage
SRR949193 Frontal cortex normal 1 PE 101 bp 10x
SRR949194 Frontal cortex mnormal 1 PE 101 bp 10x
SRR949195 Frontal cortex normal 1 PE 101 bp 10x
SRR949196 Frontal cortex normal 2 PE 101 bp 9x
SRR949197 Frontal cortex normal 2 PE 101 bp 9x
SRR949198 Frontal cortex normal 2 PE 101 bp 9x
SRR949199 Frontal cortex AD 1 PE 101 bp 9x
SRR949201 Frontal cortex AD 1 PE 101 bp 9x
SRR949202 Frontal cortex AD 2 PE 101 bp 10x
SRR949203 Frontal cortex AD 2 PE 101 bp 10x
SRR949206 HepG2_ cell_line PE 101 bp 2%
SRR949207 HepG2_ cell line PE 101 bp 1x
SRR949208 IMRI0_ cell_line PE 101 bp 1x
SRR949209 IMR90_ cell line PE 101 bp 3%
SRR949210 Colon_ Tumor_ Primary PE 101 bp 8%
SRR949211 Colon_ Tumor_ Primary PE 101 bp 8%
SRR949212 Colon_ Tumor_ Primary PE 101 bp 9x
SRR949213 Colon_ Tumor_Primary PE 101 bp 8
SRR949215 Colon_ Primary_ Normal PE 101 bp 8%

3.5.2 Creation of BAM files

I received 19 BAM files from Aaron, which represent 19 sequencing runs of the eight biological
samples. Each of the 19 BAM files was processed separately and I then post hoc merged
the processed data from sequencing runs. This unfortunately reduces the power to detect
genetic variants since the coverage of individual sequencing runs is lower than merged
data, but does not adversely affect methylation calling since the number of methylated

and unmethylated reads can be summed across sequencing runs.

3.6 CpG islands

I have used the CpG island definition from the hidden Markov model proposed by [Wu
et al. [2010] and implemented in the makeCGI R package (v1.2, http://rafalab. jhsph.
edu/CGI/). The predicted CpG islands for the human reference genome (both hgl8 and
hgl9) were downloaded from http://rafalab.jhsph.edu/CGI/ on 29/10/2014. I used
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the makeCGI R package to create the predicted CpG islands for the mouse reference genome

(mm10) since these were not available for download.
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Chapter 4

A statistical framework for
analysing whole-genome

bisulfite-sequencing data

Overview

This chapter sets out a statistical framework for analysing bisulfite-sequencing data. The
ideas here are simple, however, they have not yet been put into a unified mathematical
framework. My intention in doing so is to clarify several subtleties that, in my experience,

are potential sources of confusion.

Beginning with a single sample, I explain the various sources of variation in DNA
methylation data and introduce the mathematical notation that I use throughout my thesis.

I then extend this framework to multiple samples.

Finally, I describe key variables, common estimators of these and their statistical

properties by analysing 40 whole-genome bisulfite-sequencing samples.

4.1 One sample

There are several levels of variation to consider in a bisulfite-sequencing experiment, even

with only a single sample. I find it convenient to separate these into:
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1. Pre-sequencing sources of variation

2. Sequencing and post-sequencing sources of variation.

In the following, I describe these sources of variation, which are illustrated in Figure
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Figure 4.1: A schematic illustrating several sources of variation in a bisulfite-sequencing
experiment. Each sample starts as a population of cells, with potentially different methy-
lation patterns. Each DNA fragment is coloured by its originating cell (although this
is unknown in practice). Illustrated are PCR amplication bias (unequal representation
of DNA from each cell following PCR amplification), sampling variation (not all DNA
fragments are sequenced), alignment errors (not all sequenced fragments are mapped or may
be mapped to the wrong location, as is the case for the green fragment), and filtering during
methylation calling (not reads are used, the blue read, and reads may have read-positions
removed, the black reads).
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4.1.1 Pre-sequencing

A methylation locus is a single cytosine, that is, a CpG, CHG or CHH. The set of these
loci is labelled Z = {pos; : i = 1,..., Njye; }, where pos; is the genomic co-ordinates of the
ith locus, e.g., chri1:+:666. It will be convenient to refer to loci by the subscript i rather
than by pos;, although it is important to remember that the number of base pairs between
the it" and (i + 1) methylation loci varies along the genome. Furthermore, depending
on whether the data are stranded, a pair of loci may be on opposite strands. In a small

th

number of instances the i** and (i + 1)"* methylation loci are on separate chromosomes,

e.g., the last CpG on chromosome 1 and the first CpG on chromosome 2.

The methylation state of a locus can vary within a sample due to cell-to-cell heterogeneity
of DNA methylation. A sample in a bisulfite-sequencing experiment contains DNA that is
extracted from hundreds or thousands of cells and each cell may have a slightly different
methylation profile. Furthermore, within a diploid cell there are two copies of each
chromosome, and therefore two copies of each methylation locus, and these two copies can
have different methylation states. It is also therefore necessary to consider not just the
genomic co-ordinates of the locus but from which DNA fragment the methylation state

originated.

Suppose that in the pool of DNA fragments for the sample that there are H; fragments
containing the " methylation locus. In general, H; is unknown and will vary from locus
to locus within a Sampleﬂ Note that the value of H; is determined following the library
preparation, including PCR amplification of the DNA; therefore, it can give a grossly
distorted picture of the true representation of the cells. We denote by H,; the set of all

fragments containing the i*? locus.

Although we do not know the number of fragments in the pool, we can define (and
measure) the methylation state of a locus on a single DNA fragment. We denote by the
indicator random variable, Zj, ;, the methylation state of it" methylation locus on the ht"

DNA fragment:

'Knowing H; would require knowing: (1) the number of cells used as input (which might only be known
to within an order of magnitude), (2) the ploidy of each cell (generally known) and (3) the number of
PCR cycles (generally known). But the real problem is that none of the steps in creating the pool of DNA
fragments is perfect. In particular, PCR introduces biases; some molecules are preferentially amplified
while others ‘drop out’. So even if we knew (1), (2) and (3) we cannot simply multiply these together to
compute H;, although this might at least give us a rough estimate.
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1 if methylated on the A" fragment

0  if unmethylated on the ht* fragment

By summing over the fragments containing the i*" locus, we obtain the number of

fragments that are methylated at the i** locus (M;) and unmethylated at the i** locus

(Ui):

x

Mi=N Zni=[Z:ZeH;, Z =1}

)

>
Il
—

U; = (1—-2Zn:)={Z:ZeH;, Z =0}

=

>
Il
—_

From these we can compute the proportion of fragments that are methylated at the "

locus:

M;

Bi=-——t
M; + U;

The above definitions can be extended from individual methylation loci, 1-tuples,
to m-tuples. Mathematically, an m-tuple is denoted by a sequence of methylation loci,
(t,i4+1,...,i+m—1).

We denote the methylation pattern on the h*» DNA fragment containing the m-tuple

(4,i+1,...,4+m — 1) by the vector of indicator random variables, Zj, (; i+1,..i+m—1)»

73



(0,0,...,0) if unmethylated at the (z’th, o (i m— 1)th)
locus on the " fragment

0,0,...,1) if unmethylated at the (z’th, oo (i 4+ m— Q)th)
locus and methylated at the (i +m — 1)t

Zh(iyit1,.itm—1) = 3 .
locus on the ht"* fragment

(1,1,...,1) if methylated at the (z’th, co, (il +m— 1)th>

locus on the ht" fragment

We denote the set of all fragments containing the m-tuple (i, + 1,7 + m — 1) by
Hiit1,i4m—1)-
There are 2™ possible methylation patterns at an m-tuple. Rather than describe a

methylation pattern by an m-vector of zeros and ones, I also write these using U and M;

for example, the possible methylation patterns at a 2-tuple are MM, MU, UM and UU.

Analogous to the definition of M; and U; for 1-tuples (m = 1), we have when m = 2:

MMy =17 Z € Hiirr), Z = (1,1)}]

(
MUy =WH{Z:Z € Hiivr), Z = (
UMy = RZ : Z € Hiiipry, Z = (0,1)}]
(

UUgivy={Z:Z €Ny, Z =

We could extend the B; values to m-tuples, although the intuitive interpretation of
these as the average methylation level is lost. Instead, it reflects the relative frequencies of

each methylation pattern. Here are the definitions for m = 2:
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MM MM(i,iH)

BMM - _
(i,i+1) MM i1y + MUG 1) + UM 1) + UUg 41

U _ MU i41)
@D MM 1) + MU 1) + UM i) + UUG i)
BUM UM it1)
(iyi+1) MM iz + MU 1) + UM i1y + UUg i)
- UUg it

BUU  _
Gt MM i1y + MU 1) + UM 1) + UUg i)

The definitions for m > 2 follow in the obvious manner.
Again, I emphasise that H(i,i+1,i+m—1),j’ Zh,(i,i+1,i+m—1),ja B(i,i+1,i+m—1),j and the set
of methylation patterns are unobservable. We aim to estimate these variables through

sequencing the pool of DNA fragments.

4.1.2 Post-sequencing

A whole-genome bisulfite-sequencing experiment does not sequence every DNA fragment
in the pool. Rather, sequencing can be thought of as sampling without replacement from
the pool of DNA fragments. We have a large number (~10'%) of fragments in the pool
and each methylation locus is only present on a small number of those fragments. We can
therefore approximate this sampling by Poisson sampling, where the rate parameter for
locus ¢ is proportional to the number of fragments in the pool and inversely proportional

to the number of fragmentation containing the i*" methylation locus, H;.

We can ignore reads that do not contain any methylation loci as these are not relevant

to ths discussion. We make three further simplifying assumptions:

1. Sequencing is performed without error.
2. Read mapping is perfect.

3. We perform single-end sequencing.

The effect of the first two assumptions are discussed in Section [2.2] The effect of the
third assumption is minor. When using single-end sequencing, the methylation loci from a

single read will always form a positively ordered sequence without gaps, i.e. (7,7 + 1,7 + 2)
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and not, for example, (i,7 — 1,7 — 2) nor (i,7 + 1,7 + 3). However, when using paired-end
sequencing, the methylation loci from a paired-end read will still be an ordered sequence

but one of the following may occur:

1. There may be gaps due to the insert size being longer than the sum of the read
lengths, e.g., (i, + 1,7 + 3,7 +4). In effect, we have missing data for any intervening
methylation loci, the (i + 2)™ loci in this example.

2. Loci may be measured twice if the insert size is less than the sum of the read lengths,
e.g. read-1 gives us (i,7+ 1) and read-2 gives us (i + 1,7 + 2,7 + 3). In this example
we must use only one of read-1 or read-2 as the measurement of the (i 4+ 1) locus

because otherwise we are ‘double—countingﬂ

Each read measures the methylation state of one or more loci from a single DNA
fragment. We denote by R; the set of all mapped reads containing the " locus. The
number of reads containing the i*" locus is referred to as the sequencing depth at the i"

locus, which we denote by d; = |R;|, where d; < H; with strict inequality for almost all 7.

A single read containing the i locus is denoted z : z € R; and the observed methylation

state is indicated by:

1 if methylated at the i*" locus
z:z€ER; =

0  if unmethylated at the i** locus

By summing over the reads containing the i*” locus we obtain the number of reads that

are methylated at the it" locus (m;) and unmethylated at the i** locus (u;):

2We should also check that the overlapping bases agree and, if not, either use the call with the highest
base quality or ignore these overlapping positions in both reads. methtuple has several options for handling
overlapping mates of paired-end reads via the -—overlap-filter flag. The default method is to ignore any
read-positions in the overlapping region where the methylation calls disagree.
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m; = Zr,i
r=1
=|{z:2€eRiz =1}
d;
u; = (1—24)
r=1

From these we can compute the proportion of reads that are methylated at the i*"

locus as:

Here we have assumed that d; = m; + u;, meaning that reads that do not have a

methylation locus mapped to pos; do not contributdﬂ

This is the so-called S-value, which is commonly interpreted as an estimate of B;, the
proportion of cells in the sample that are methylated at the i** locus. In Section we

discuss this interpretation and other estimators of the ‘methylation level’ at a locus.

These definitions can also be extended from 1-tuples to m-tuples. The set of all
reads containing the m-tuple (7,4 + 1,...,4 +m — 1) is denoted by R; 11, . i+m—1) and
has sequencing depth d;;41,. i4m-1) = |R(i,i+1,...,i+mfl)" A single read containing the
m-tuple (i,7 +1,...,4+m — 1) is denoted by 2 : 2 € R(; 41, i+m—1), and the observed

methylation state is given by:

3Such reads can occur due to sequencing error, mapping error or genetically heterozygous methylation
loci.
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(0,0,...,0) if unmethylated at the
(ith, (i +1)™, ... (i +m— 1)th)
locus
(0,0,...,1) if unmethylated at the
(ith, G+ 1), (i +m— z)th)
212 € Riitt,.itm—1) = 3 locus

and methlyated at the (i +m — 1) locus

(1,1,...,1) if methylated at the
(ith, (i +1)™, ..., (i+m— 1)“1)

locus

Note that we do not know from which DNA fragment (h) each read came from, only

that all methylation loci in the read came from the same DNA fragment.

By summing over the reads containing the m-tuple, (i,7 + 1,...,7 + m — 1), we obtain
the number of reads containing each methylation pattern at that m-tuple. Here are the

definitions for m = 2:

mm i) = {22 € Riipny, 2 = (1,1)

mug i1y = {22 € Reipr), 2 = (1,0)

UMGi41) = {z:z¢€ R(i,i+1)az = (0,1)}]
(0,0)

UU(5541) = [{z:2€ R(i,iJrl),Z = (0,0

As we did for B-values, we can extend the § values to m-tuples. Here are the definitions

for m = 2:
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MM (;4+1)

Bliit1) = d(iit1)
Blii+) = Tm
Blii+1) = 127:;::)1)
Blii+1) = m

The definitions for m > 2 follow in the obvious manner.

One final definition is the average methylation level of each read, which is used by
Landan et al. [2012]. For each read, z € R(;;41,. i+m—1), the average methylation of the
read, (., is defined as the proportion of methylation loci in the read that are methylated.
Thus, ¢, =O,%,%,...,1.

4.1.3 Some complications

We now discuss some complications and how this framework might accommodate these

issues in practice.

What is 7?7

As mentioned in Chapter 2] studies using bisulfite-conversion assays rely on either a reference
genome or, less commonly, separate DNA sequencing of the sample that is assayed. Different
analysis strategies lead to different definitions of Z, which are approximations to the ‘true’

Itruth

set of methylation loci in the sample, . Listed here are definitions of Z from least

closely matching to most closely matching Zt .

1. 77¢f: Defined by the set of methylation loci in the reference genome. This ignore all
genetic variation between the sample and the reference.

2. ZrefFilter. Defined by filtering out problematic loci from Z7¢f. A conservative
approach that removes many sites of genetic variation between the sample and the

reference as well as sites that do not display genetic variation between the sample
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and the reference. This approach cannot identify sample-specific methylation loci.
3. IB=SNP. Defined by calling genetic variants from the bisulfite-sequencing data
using Bis-SNP [Liu et al|[2012]. Identifies sample-specific methylation loci and
removes reference-specific methylation loci. This is the best approach if only bisulfite-
sequencing data are available.
4. ZWGS: Defined by identifying all methylation loci from whole-genome sequencing
(WGS) of the sample’s genome. The gold standard. All methylation loci are defined
with respect to the sample’s genome. The only differences between ZW &S and Ztruth

are due to sequencing errors, incomplete sequencing coverage of the sample’s genome

and variant calling errors.

Genetic heterozygosity at a methylation locus

The genome of a diploid organism has sites that are genetically heterozygous due to
differences between the maternal and paternal chromosomes. Such heterozygous loci are
sometimes also methylation loci; for example, a locus where the maternal chromosome
is a CpG and the paternal chromosome is an ApG. In effect, the maternal and paternal

chromosomes within the sample have different Zt"%"

The number of these genetically heterozygous methylation loci is often small enough
not to worry about. However, in some studies, such as those of allele-specific methylation,
these loci can be very important and should first be identified by calling heterozygous
genetic variants using Bis-SNP or from whole-genome sequencing of the sample. In practice,

the existence of such loci is often ignored.

4.2 Multiple samples

From a purely notational perspective, the move from a single sample to multiple samples
simply requires an additional subscript, j = 1,..., Nyamples, Where Nggmpies is the number
of samples. This defines the three levels in the hierarchy of a typical experiment: DNA
fragments (h), methylation loci (i) and samples (j). For example, Zj, ; ; is the methylation
state on the At" DNA fragment at the i*"* methylation locus in the j** sample and Bi,j is

the SB-value for the i*" locus in the j* sample.
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A fourth level is how the samples relate to one another, such as the treatment group of
each sample. This fourth level might be defined up-front, such as in a designed experiment
looking for differences in methylation between tumour and normal tissue. Alternatively, the

aim of the experiment might be to discover this grouping, such as in a clustering analysis.

We can define this fourth level using a design matrix X = [X;]. For example, in a
two-group experiment X; = 1 if the sample is from group 1 and X; = 0 if the sample is
from group 2. We may also include covariates in the standard way by allowing X; to be a
row vector, X; = (z14,...,2p;), where x, ; encodes the information on the pth covariate

for the j** sample.

4.2.1 Some complications

In addition to the complications of the Section we now have sample-to-sample

variation that must be addressed within this framework.

What is 7?7

Each sample has its own set of methylation loci, that is, 7; differs across j. Furthermore,
sequencing coverage varies from sample-to-sample. This means that even if the samples
have exactly the same Z;, i.e. the samples are genetically identical, each sample will have a
different set of loci with ‘sufficient’ sequencing coverage. Loci without sufficient sequencing

coverage are effectively missing data.

In practice, we might choose to study Z<"™om = N ;Z; or some other suitably defined
intersection of the Z;, such as all methylation loci present in at least some fraction of the

Ngamples samples.

A conservative analysis might only analyse those loci where at least some fraction of
the samples have sufficient sequencing coverage. A less conservative analysis might try to

impute the missing values based on methylation levels at neighbouring loci.
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4.3 Parameter estimation

In this section we review various methods for estimating these key parameters. The main
parameter of interest for each sample is the vector of methylation levels for each locus,
B = (B1,...,Bn,,,;)- When necessary, I have ‘translated’ the original work into my
notation to make these methods more readily comparable. I have suppressed j subscript

when referring to a single sample.

4.3.1 Estimating M, U

It is rare to need direct estimates of M; or U;. In order to estimate M; and U;, the absolute
number of methylated and unmethylated DNA fragments at the it" locus, we would also
require an estimate of the number of DNA fragments containing the i** locus, H;. Rather,
we are generally interested in estimating the proportion of reads that are methylated,

B; = %, which does not require an estimate of H;.

4.3.2 Estimating B

m;

The simplest estimator of B; is 3; = T which has been widely used [e.g., |Cokus et al.
2008, |Lister et al./2008, 2009, [2011]). The values of m; and u; are obtained by methylation
calling and then counting the number of reads with each methylation state (see Section
53).

B; is the maximum likelihood estimator of B; under a (conditional) binomial model for

the number of methylated reads at the i** locus, M; ;|d; ; 4 Binomial(d; j, B ;).

More sophisticated methods have recently been proposed to estimate or model the
average methylation level. These methods, which are still based on m; ; and u; ;, include
beta-binomial models [Feng et al. 2014} Sun et al.|2014, Dolzhenko and Smith |2014], and
smoothing-methods [Hansen et al.[2011} 2012, Hebestreit et al.[2013].

Beta-binomial models

Several papers have proposed the beta-binomial distribution since, as noted by [Dolzhenko

and Smith| [2014], it is “a natural model for describing methylation levels of an individual
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site across replicates” . The ‘beta’ component of the distribution models the underlying
methylation level, B; j, while the ‘binomial’ component models the sampling of reads by
sequencing. Another way to think of this is that the ‘beta’ component models the biological
variability of the data, while the ‘binomial’ component models the sampling variability of
sequencing. This separation of biological and technical variability has proven successful in
detecting differential gene expression from RNA-seq data. For example, the edgeR software
[Robinson et al.[2010] uses the negative binomial distribution, which can be thought of as
a gamma-Poisson mixture distribution, to account for both the biological and sampling

variability.

An attractive feature of the beta-binomial distribution is that it can be motivated by,
and analysed with, Bayesian methods, including empirical Bayes methods, or frequentist
techniques such as maximum likelihood. For example, the software DSS [Feng et al.[2014]
and MOABS [Sun et al.|2014] both use the beta-binomial distribution in an empirical Bayes
analysis of differential methylation from bisulfite-sequencing data. In contrast, RADmeth
[Dolzhenko and Smith 2014 uses the beta-binomial model in a maximum likelihood

framework to address the same problem.

Smoothing S-values

BSmooth, published in Hansen et al|[2011} 2012] and available in the R/Bioconductor
package bsseq, and BiSeq, published in |Hebestreit et al.| [2013] and available in the
R/Bioconductor package BiSeq, take a different approach to getting improved estimates

mij

of the B; ;. Both bsseq and BiSeq use statistical smoothing of the ‘raw’ 3;; = @

Smoothing is motivated and justified by the fact that the B;; are spatially correlated
within a sample. This phenomenon, called co-methylation is discussed and analysed in

Chapters [6] and [7]

Smoothing is particularly powerful for loci with low sequencing coverage, where the
denominator m; ; + u; j is small and the corresponding standard error of 3; ; is large. The
smoothed (-values, rather than the raw §-values, are then generally used in all downstream

analyses.

Both bsseq and BiSeq use a binomial local likelihood smoother. In each case this
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smoother is chosen because BSmooth and BiSeq model the number of methylated reads at
the i’ locus in the j* sample by M; ;|d; ; g Binomial(d; ;, B; j). The smoothing is ‘local’

to leverage co-methylation, which is considered a local phenomenon.

In both bsseq and BiSeq the raw [-values are weighted according to the binomial
likelihood and a kernel function. The binomial likelihood weights §; inversely to their
standard error, se(/3;), and the kernel gives greater weight to those f; near the centre of
the window. Lacey et al. [2013] note that loci with very high sequencing coverage will
strongly influence the smoother, potentially biasing estimates at neighbouring loci with

lower coverage.

bsseq assumes that for each sample that the underlying methylation level, B; ;, is a
smoothly varying function of the position in the genome, ¢. In contrast, BiSeq first creates
clusters of CpGs and only assumes that the underlying methylation level is smooth at

positions within each cluster.

Whenever smoothing is used, a key parameter is the bandwidth, which is the size of
the window in which observations are included at each iteration of the smoother. bsseq
uses a much larger window size than BiSeq; the default window size in bsseq is one that
contains at least 70 CpGs and is at least 2000kb wide, whereas the default window size
in BiSeq is 80bp, regardless of CpG-density. This is due to BiSeq being developed for
RRBS data, which has a high CpG-density per window, whereas bsseq was developed for
whole-genome data, which has a more variable, and lower on average, CpG density per

window.

Another ‘parameter’ choice when smoothing is the choice of kernel, although this is
generally less important than the choice of bandwidth. bsseq uses a tricube kernel and

BiSeq uses a triangular kernel.

Hebestreit et al.| [2013] and [Lacey et al|[2013] compare the smoothing results of BiSeq
to bsseq. Both Hebestreit et al.|[2013] and Lacey et al.| [2013] provide instances where
they claim BiSeq gives more ‘reasonable’ smoothed values than bsseq. However, these
comparison studies use RRBS data, which bsseq is not designed for‘, and their simulation

so will favour methods designed for RRBS dataf’}

“Both [Hebestreit et al] [2013] and [Lacey et al|[2013] altered the default bsseq parameters to try to
make them comparable to BiSeq. Hebestreit et al| [2013] changed the default minimum window size to 80
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4.4 Statistical properties of S-values

Under the (conditional) binomial model, M; ;|d; ; 4 Binomial(d; ;, B; j), Bij = 73:; is an
unbiased estimator of B; ; with standard error se(f3; ;) = %ZB”) [Hansen et al.[2012].
The natural interpretation of 3; ; is then as an estimator of the average level of methylation
at the i*" locus in the j** sample. In this section I discuss this interpretation and statistical

properties of this estimator.

4.4.1 Empirical distributions of $-values

In a study involving multiple samples, the set of S-values can be summarised as a matrix
where each row is a locus and each column is a sample. Some values will be missing, either
because there was insufficient sequencing coverage to estimate a §-value or because that
locus is not a cytosine for the sample in question. This matrix might be visualised to learn
about the distribution of methylation levels, either row-wise (to learn about the variability

across samples) or column-wise (to learn about the variability within samples).

Genome-wide distribution of S-values

Restricting our attention to CpGs, Figures [4.2] [£.3] [£.4] and [£.5] show the kernel density
estimates of the genome-wide distributions of g-values, that is, the column-wise summaries,
for each sample of the EPISCOPE, Lister, Seisenberger and Ziller datasets, respectively.
Figures [4.6], [4.7] [4.§ and [£.9] show the same data but with the S-values grouped into
0.01-width bins and plotted against the percentages of CpGs that fall into each bin.

What is immediately clear is that these distributions are bimodal: most CpGs are highly
methylated or lowly methylated. The exception is the E16.5 male_ 1 sample from the
Seisenberger data which is hypomethylated and with an enormous number of intermediately
methylated CpGs. The E16.5 male 1 sample is a progenitor germ cells from a pool of
embryonic day 16.5 male mice. Between days E6.5 and E13.5, the mouse progenitor germ

cells undergo global demethylation and it is only from day E16.5 onwards that they begin

bp but still required at least 20 CpGs per window. [Lacey et al|[2013] kept the default minimum window
size of 2,000 bp but reduced the minimum number of CpGs per window to 50 from the default of 70.
Nevertheless, the fact remains that bsseq is designed for analysing whole-genome bisulfite-sequencing data
and not RRBS, which puts it at a disadvantage in these comparisons.
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to be de novo methylated [Seisenberger et al.|2012], hence the wide variation in S-values.

Almost all the samples with significant intermediate methylation are either somatic
cell lines (ADS, ADS-adipose, FF, IMR90_r1 and IMR90_r2 from the Lister dataset;
IMRI0 cell_line from the Ziller dataset) or cancer cells lines and tissue (HepG2_cell_line,
Colon__Tumor_Primary and Colon__ Primary_Normal from the Ziller dataset). Aside from
the aforementioned E16.5 male_1, the E6.5 epiblast_1 sample from the Seisenberger
dataset also displays greater levels of intermediate methylation. This sample was also
created by pooling DNA from multiple mice, which may explain the extra variability in

the §-value distribution.

It has previously been observed that cancer samples have highly variable DNA methy-
lation [Hansen et al.|2011], which, combined with the possibility of multiple sub-clones,

explains these intermediate S-values in the cancer samples.

The explanation for the somatic cell lines is less clear. Notably, all of the 12 EPISCOPE
samples, which are tissue samples rather than cell lines, have relatively low levels of
intermediate methylation. Likewise, the various frontal cortex samples in the Ziller
dataset, which includes both ‘normal’ and Alzheimer’s samples (Frontal _cortex_normal 1,
Frontal__cortex_normal__2, Frontal _cortex_AD__1 and Frontal cortex_AD__2), have very
low levels of intermediate methylation. This raises the question as to whether the widespread
partial methylation observed in the somatic samples from the Lister dataset is in fact a
feature of somatic cell lines rather than somatic cells per se. Naively, a cell line is a ‘pure’
cell population, however, the DNA methylation data clearly reveal widespread cellular

heterogeneity of DNA methylation.
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EPISCOPE: Distribution of B—values (min. coverage = 10)

E13BUF | E13SA I E13VA E13VAT
1.00
0.75
0.50
- J“ L Al J\“
0.00 k — -
E18BUF | E18SA I[ E18VA E18VAT
1.00
0.75
e)
(]
©0.50
[S]
(2]
0.25 I i “ l l
0.00 l — —
E23BUF | E23SA I[ E23VA E23VAT
1.00
0.75
0.50
| AL L l
0.00
N Nl ) \o) S O Q O O \) N <5 o \o) \)
N NG ? o RN o? NN o? N NG ? o N
B-values

Figure 4.2: Kernel density estimates of the genome-wide distribution of CpG S-values
for the EPISCOPE data. Densities are normalised so that the maximum value for each
sample is 1. Observations have been combined across strands and only CpGs with at least
10x sequencing coverage are included. ‘Spikes’ in the density estimate are due to the
discreteness of S-values.
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Figure 4.3: Kernel density estimates of the genome-wide distribution of CpG S-values for
the Lister data. Densities are normalised so that the maximum value for each sample
is 1. Observations have been combined across strands and only CpGs with at least 10x
sequencing coverage are included. ‘Spikes’ in the density estimate are due to the discreteness

Lister: Distribution of f—values (min. coverage = 10)
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Seisenberger: Distribution of B—values (min. coverage = 10 )
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Figure 4.4: Kernel density estimates of the genome-wide distribution of CpG [S-values
for the Seisenberger data. Densities are normalised so that the maximum value for each
sample is 1. Observations have been combined across strands and only CpGs with at least

10x sequencing coverage are included. ‘Spikes’ in the density estimate are due to the
discreteness of S-values.
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Ziller: Distribution of f—values (min. coverage = 10)
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Figure 4.5: Kernel density estimates of the genome-wide distribution of CpG S-values
for the Ziller data. Densities are normalised so that the maximum value for each sample
is 1. Observations have been combined across strands and only CpGs with at least 10x
sequencing coverage are included. ‘Spikes’ in the density estimate are due to the discreteness
of B-values.
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Figure 4.6: Frequency polygon of the genome-wide distribution of CpG [-values for the
EPISCOPE data. p-values are grouped into 0.01-width bins and the percentage of CpGs
in each bin is plotted on the y-axis. Observations have been combined across strands and
only CpGs with at least 10x sequencing coverage are included.



Lister: Distribution of B-values (min. coverage = 10)
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Figure 4.7: Frequency polygon of the genome-wide distribution of CpG S-values for the
Lister data. [-values are grouped into 0.01-width bins and the percentage of CpGs in each
bin is plotted on the y-axis. Observations have been combined across strands and only

CpGs with at least 10x sequencing coverage are included.
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Seisenberger: Distribution of B—values (min. coverage = 10)
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Figure 4.8: Frequency polygon of the genome-wide distribution of CpG S-values for the
Seisenberger data. [-values are grouped into 0.01-width bins and the percentage of CpGs
in each bin is plotted on the y-axis. Observations have been combined across strands and
only CpGs with at least 10x sequencing coverage are included.
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Ziller: Distribution of f—values (min. coverage = 10)
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Figure 4.9: Frequency polygon of the genome-wide distribution of CpG fS-values for the
Ziller data. f-values are grouped into 0.01-width bins and the percentage of CpGs in each
bin is plotted on the y-axis. Observations have been combined across strands and only
CpGs with at least 10x sequencing coverage are included.
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The bimodality of the genome-wide S-value distributions is driven by the fact that
most CpGs in CpG islands are unmethylated whereas those outside of the CpG islands
are mostly methylated. Figures [4.10] [£.11], 4.12] and [.13] show the kernel density plots
of the B-value distributions stratified by CpG island status for the EPISCOPE, Lister,

Seisenberger and Ziller datasets, respectively. These distributions are normalised so that

each density has a maximum value of 1.

These plots show that CpG islands have a more strictly bimodal distribution than do
the non-islands. While the majority of CpGs in CpG islands are unmethylated, there are a
subset of methylated CpGs in CpG islands in each sample (except for the F16.5 male_1
sample). The H1_r1 and HI_r2 samples, replicates of an embryonic stem cell line, stand
out for having CpGs in CpG islands being more methylated than unmethylated. These
plots also show that most of the intermediate methylation occurs outside of the CpG

islands.

Because these densities are normalised, these plots don’t show the proportion of CpGs

in CpG islands. Therefore, Figures [£.14] .15}, [£.16] and [£.17] show the same data but with

[B-values grouped into 0.01-width bins and plotted against the percentage of total CpGs in
each bin. These plots highlight that the majority of unmethylated CpGs occur in CpG
islands and that most of the intermediate methylation occurs outside of CpG islands, owing

to most CpGs being outside a CpG island.
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Figure 4.10: Kernel density estimates of the genome-wide distribution of CpG (S-values for
the EPISCOPE data, stratified by whether the CpG is in a CpG island. Only CpGs with
at least 10x sequencing coverage are included. ‘Spikes’ in the density estimate are due to
the discreteness of S-values.
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Figure 4.11: Kernel density estimates of the genome-wide distribution of CpG (S-values for
the Lister data, stratified by whether the CpG is in a CpG island. Only CpGs with at
least 10x sequencing coverage are included. ‘Spikes’ in the density estimate are due to the
discreteness of S-values.
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Seisenberger: Distribution of B—values (min. coverage = 10 )
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Figure 4.12: Kernel density estimates of the genome-wide distribution of CpG (S-values for
the Seisenberger data, stratified by whether the CpG is in a CpG island. Only CpGs with
at least 10x sequencing coverage are included. ‘Spikes’ in the density estimate are due to
the discreteness of S-values.
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Figure 4.13: Kernel density estimates of the genome-wide distribution of CpG S-values
for the Ziller data, stratified by whether the CpG is in a CpG island. Only CpGs with at
least 10x sequencing coverage are included. ‘Spikes’ in the density estimate are due to the

discreteness of S-values.
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EPISCOPE: Distribution of 3-values (min. coverage = 10 )
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Figure 4.14: Frequency polygon of the genome-wide distribution of CpG [S-values for the
EPISCOPE data, stratified by whether the CpG is in a CpG island. §-values are grouped
into 0.01-width bins and the percentage of CpGs in each bin is plotted on the y-axis. Only
CpGs with at least 10x sequencing coverage are included. Percentages are with respect to
all CpGs with at least 10x sequencing coverage, unstratified by CpG island status.
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Lister: Distribution of f—values (min. coverage = 10)
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Figure 4.15: Frequency polygon of the genome-wide distribution of CpG [S-values for the
Lister data, stratified by whether the CpG is in a CpG island. S-values are grouped into
0.01-width bins and the percentage of CpGs in each bin is plotted on the y-axis. Only
CpGs with at least 10x sequencing coverage are included. Percentages are with respect to
all CpGs with at least 10x sequencing coverage, unstratified by CpG island status.
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Seisenberger: Distribution of B—values (min. coverage = 10 )
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Figure 4.16: Frequency polygon of the genome-wide distribution of CpG [S-values for the
Seisenberger data, stratified by whether the CpG is in a CpG island. S-values are grouped
into 0.01-width bins and the percentage of CpGs in each bin is plotted on the y-axis. Only
CpGs with at least 10x sequencing coverage are included. Percentages are with respect to
all CpGs with at least 10x sequencing coverage, unstratified by CpG island status.
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Ziller: Distribution of B-values (min. coverage = 10)
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Figure 4.17: Frequency polygon of the genome-wide distribution of CpG [S-values for the
Ziller data, stratified by whether the CpG is in a CpG island. S-values are grouped into
0.01-width bins and the percentage of CpGs in each bin is plotted on the y-axis. Only
CpGs with at least 10x sequencing coverage are included. Percentages are with respect to

B—values (banldth 0 01)
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all CpGs with at least 10x sequencing coverage, unstratified by CpG island status.
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Strand-specific f-values

CpG [-values are often computed by aggregating the m and w counts across the forward
and reverse strands. On average, this doubles the sequencing coverage of each CpG but
presupposes that the two strands are indeed symmetrically methylated. To investigate
the validity of this assumption we can compute the correlation of strand-specific S-values.

Figures [4.18], [£.19] [£.20] and [4.21] report the Pearson correlation of these strand-specific

(B-values for varying sequencing coverage cutoffs.
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Figure 4.18: Correlations of §-values across strands for the FPISCOPE dataset using
different minimum sequencing coverage cutoffs.

There is a considerable amount of noise in the estimates of S-values when using low
sequencing coverage, as can be seen from the smaller strand-correlations at these lower
cutoffs. Once we require a minimum sequencing coverage of 5x, we see that most samples
have a very high correlation of 8-values across strands, r = 0.8 to 0.9, with some notable

exceptions.

Some of the embryonic stem cell samples (HI1_r1, Hl_r2 and HSF1 from the Lister
dataset) have less correlated strand-specific S-values, r = 0.5 to 0.7. The other embryonic
stem cell samples have higher correlations of g-values across strands, although the esti-

mates are quite different between the two replicates of the same cell line (H9: r = 0.77,
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Figure 4.19: Correlations of §-values across strands for the Lister dataset using different
minimum sequencing coverage cutoffs.
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Figure 4.20: Correlations of §-values across strands for the Seisenberger dataset using
different minimum sequencing coverage cutoffs.

H9_ Laurent: r = 0.92). This suggests that caution may be warranted in combining CpG

methylation levels across strands for embryonic stem cell samples.
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Ziller merged: Across strand correlations

Colon_Primary_Normal | | Colon_Tumor_Primary | Frontal_cortex_ AD_1

1.00

0.75| «

0.50

0.25

0.00

Frontal_cortex AD_2 | | Frontal_cortex_normal_1 Frontal_cortex_normal_2
S1.00
8
0.75
=
8050
c
Ro0.25
4
I
Lo.00
HepG2_cell_line | | IMR90_cell_line

1.00

0.75| .

0.50

0.25

0.00

2 4 6 8 10 4 6 8 10

2
Minimum sequencing coverage

Figure 4.21: Correlations of 8-values across strands for the Ziller dataset using different
minimum sequencing coverage cutoffs.

All three Seisenberger samples have noticeably less correlated strand-specific -values,
including the embryonic stem cell, J1_ 1. However, since these data are from pooled DNA,

the source of this reduced correlation is difficult to identify.

Overall, with the exception of embryonic stem cells, it seems that most samples have
highly correlated strand-specific CpG S-values, which means that these data can safely be
combined across strands. However, it remains a good idea to first check this assumption

prior to combining data across strands.

4.4.2 Interpretation of g-values

Laird, [2003] says in a review paper on DNA methylation that, “about 70% of the CpG
dinucleotides in the mammalian genome are methylated”. Similar statements are made in

many papers about DNA methylation, but how should these be interpreted?

In the context of a whole-genome bisulfite-sequencing experiment, this can be interpreted
as the expected -value of a randomly selected CpG. However, as can be seen from Figures
[47) [4-8 and the bimodality of the S-value distributions means that the expected

value is not a particularly useful estimate of the methylation level of a particular CpG. To
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make a useful statement about the methylation level of a particular CpG really requires

more information, such as whether it is within a CpG island.

The “70%” statement can also be interpreted as an estimate of the probability that a
cytosine randomly sampled from a haploid copy of a mammalian genome is a methylcytosine.
Note that this refers to individual cytosines, Zj, ;, and not the genomic position of the locus,
pos;. Also recall that most assays measure DNA methylation from a pool of cells, not a
single haploid copy of the genome. The methylation state at the i*? locus may vary across
the H; DNA fragments. Therefore, I do not think it makes sense to describe a locus, 7, as
being a ‘methylcytosine’. However, several important whole-genome bisulfite-sequencing
papers, Lister et al.|[2008, 2009, 2011|E|, have used this latter definition, which I believe to

be an unnecessary source of confusion.

Lister et al| introduced a method “to identify the presence of a methylated cytosine”
[Lister et al.[2008, Supplementary Material]. In the language of these papers, a “methylcy-
tosine” is a cytosine in the reference genome where “at least s [sic; I believe this should
be “a”] subset of the genomes within the sample were methylated” [Lister et al.| 2009,
Supplementary Material]. This amounts to testing the hypothesis Hy : 8; ; = 0 against the
one-sided alternative Hy : 3; ; > 0. This can be thought of as testing the null hypothesis
that the observed number of methylated reads at the i cytosine were simply due to ‘error’,
where the ‘error’ is a combination of the estimated sequencing error and the estimated

bisulfite-converstion error.

Although the exact procedure is not particularly well described in any of [Lister et al.
[2008, 2009, 2011}, nor is any code made available, I believe the method is as followsﬂ For
each cytosine they compute the probability of observing more than m; methylated reads by
chance, P; = Z:i%i+1 Pr(X = k), where X = Binom(d;,€) and € is the estimated ‘error’.

Any site with an FDR-adjusted P-value below a threshold was declared a “methylcytosine’ﬂ

5Tt is worth noting that this concept was not used in more recent paper from the same group |Lister
et al.2013).

%The earliest of these papers, [Lister et al. [2008], includes a short non-mathematical description, while
the most detailed description is given in the supplementary material of [Lister et al|[2009]. Lister et al.
|2011] simply refers to [Lister et al.|[2009]

TLister et al.|[2008] used an FDR-adjusted P-value cutoff of 0.05; [Lister et al., [2009] used an FDR-
adjusted P-value cutoff of 0.01. I presume the FDR-adjustment to be based on the Benjamini-Hochberg
procedure |Benjamini and Hochberg||1995|, although this is not explicitly stated. This procedure was
performed separately for each methylation context in|Lister et al|[2009], but it is not clear if this is the case
for [Lister et al.| [2008] (a study of Arabidopsis thaliani, which has large amounts of non-CG methylation)
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The € are estimated on a per-sample basis, with bisulfite-conversion error rates estimated
from the unmethylated chloroplast genome [Lister et al.|[2008] or from the genome of the
lambda phage spike-in control [Lister et al.|2009, 2011]. It is not clear how the sequencing
error rates were estimated, particularly since the base qualities are not included in the
data available from the website.

)

The proportion of cytosines that are identified by this procedure as “methylcytosines’
is a poor estimator of the probability that a cytosine randomly sampled from a haploid
genome is methylated, unless the sample is incredibly homogeneous. For example, suppose
we had a sample where the true methylation level of every CpG, B;, was 0.2. Given sufficient
sequencing coverage, every CpG in the genome would be declared a “methylcytosine” when
in fact for any haploid copy of the genome only 20% of CpGs would be expected to be

methylcytosines.

Furthermore, referring to CpGs as “methylcytosines” results in a loss of information
since two “methylcytosines” may have very different S-values. For example, in |Lister et al.
[Supplementary Figure 2a of [2009] the authors use a Venn diagram to compare the number
of “methylcytosines” called in two biological replicates to summarise the concordance
between the two biological replicates. A far better summary of the biological replicability
is to plot the S-values from each replicate against one another as a scatter plot, as this
includes the magnitude of the S-values and not just whether they are statistically different

from zero.

In summary, for bisulfite-sequencing experiments where the DNA for each sample comes
from multiple cells I do not think it makes sense, nor is it useful, to refer to individual
cytosines, i, as being methylated or unmethylated. Instead, it is better to summarise the
methylation level at a CpG by a f-value since this has a natural interpretation as the
estimated proportion of haploid genomes in the sample that are methylated at that CpG.

Unfortunately, S-values are not without their own issues, as discussed in Section [4.4.3

or |Lister et al|[2011] (a study that includes pluripotent human cell lines that have non-negligible levels
of non-CG methylation). This affects the false discovery rate correction since the number of tests is far
greater if all cytosines are simultaneously corrected compared to a separate correction for each context.
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4.4.3 Sources of bias in S-values

The natural interpretation of ; is the average level of methylation at the " locus. However,
this will be biased if the probability of sequencing a fragment with a methylated site is
different from the probability of sequencing a fragment with an unmethylated site. In
fact, it has been shown that methylated DNA is overrepresented in bisulfite-sequencing
data due, with the problem exacerbated by higher rounds of PCR amplification and
dependent on the bisulfite-conversion protocol |Ji et al|2014]. PCR amplification can
result in overreprestation of one of the DNA strands in bisulfite-sequencing data [Warnecke

et al.||1997].

Lab-based solutions to overcome these biases exist for targeted bisulfite-sequencing, but
are technically difficult and their cost prohibits their extension to whole-genome bisulfite-
sequencing [Ji et al.[2014]. Computational correction for these biases have been proposed

[Ji et al2014], but as yet these have not been implemented in any available software.

4.4.4 Transformations of S-values

[B-values are the de facto standard unit for reporting methylation levels due to their natural
interpretation as an estimate of the average level of methylation at the locus. However,
they are not necessarily the best unit for statistical inference. This is because a S-value is
an estimate of a proportion and there are a well-known statistical challenges when working

with proportion data, including;:

1. The estimate of the standard error depends on the estimate of the mean (i.e. f3),

through se(3) = M. Taking the derivative of this with respect to 3, we see that
the maximum standard error, %, occurs at f = 0.5 and the minimum standard

error, 0, occurs at § =0, 1.

2. We need to know more than just the §-value to have a sense of how precise an
estimate it is. Essentially, we need to also know the sequencing coverage of the
methylation loci. Consider two CpGs, one with m = 1,4 = 3 and the other with
m = 100,u = 300. Both CpGs have § = 1/4 but the second CpG is measured

with much greater precision. Assuming the binomial model, the first CpG has

se(B) =4/ M = 0.22 whereas the second CpG has se(3) = «/% = 0.02.
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3. Proportions are bound between 0 and 1, inclusive.

To address (1), proportion data are often transformed via a variance stabilisation
transformation. The aim is to make the variance independent of the mean, at least

approximately. Popular variance stabilisation transformations include:

o The arcsine transformation, arcsin( m’i‘iil) [Anscombe||1948]. A small value, in

this case 1, is added to both m and u to avoid 5 =0, 1.

o The “averaged arcsine” transformation, arcsin , /" + arcsin mﬁ;}rl [Freeman
and Tukey|1950]. One problem with this transformation is that it does not have a

unique inverse [Nunes and Nason![2009].

However, the use of variance stabilising transformations for proportion data has fallen
out of favour with the widespread availability of generalised linear model software, in

particular for the logistic regression model [Warton and Hui 2011].

One transformation that remains popular, at least in the analysis of DNA methylation

microarray data, is the logit-transformation, also known as M-values. An M-value is

defined as logits(3) = log, <%) = logy (Z‘ig), where here m and u are the intensities

from the methylated and unmethylated probes, respectively, and « is an offset to avoid
a numerator or denominator that is zero. M-values are also known as log-ratios and are

widely used in the analysis of RNA expression two-colour microarrays [e.g., |Smyth|2005].

Du et al.| [2010] advocate for the use of M-values for conducting differential methylation
analysis from microarray dataﬂ The main reason they advocate for the use of M-values is
that they are approximately homoscedastic, i.e. their variances are approximately constant
across the full range of M-values. As already noted, the logit-transformation is not
the only possible variance-stabilising transformation, but the familiarity of log-ratios to
bioinformaticians and genomics researchers makes it a favourable choice. As with (-values,
the M-values derived from bisulfite-sequencing data cannot generally be directly analysed

due to the variable sequencing coverage across loci.

8Du et al. [2010] also recommend that the results of analyses are reported as -values owing to their
“more intuitive biological interpretation”.
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4.4.5 Spatial correlations of S-values

Many researchers have observed that DNA methylation is spatially correlated along the
genome, le.g., [Eckhardt et al|2006, Cokus et al.| 2008, |Li et al. 2010, Hansen et al.[2011},
Hebestreit et al.|[2013, Wang et al.|2011], [Pedersen et al.|2012) Lacey et al.[2013], [Sofer et al.
2013, [Liu et al|2014} Lyko et al.|2010, Landan et al|2012} Lister et al|2009]. I call this

spatial correlation of methylation levels co-methylation.

I examine in detail the spatial correlations of S-values in Chapters [6] and

4.5 Summary

This chapter has defined a mathematical framework for describing data from whole-genome
bisulfite-sequencing data. It has addressed some subtleties and complications that arise due
to within-sample and between-sample differences in where DNA methylation is measured.
By using a common statistical framework we can better understand how different statistical
methods relate to one another. Using this framework, we described common estimators
of DNA methylation levels and some of their statistical properties. We then examined
the empirical distributions of these variables across a diverse set of 40 whole-genome

bisulfite-sequencing samples.

From these analyses we have seen that the CpG islands drive the strong bimodal
distribution of -values that is observed in almost all samples. We have also observed
that most intermediate methylation occurs outside of the CpG islands. The most distinct
methylomes are the hypermethylated embryonic stem cells (H1_r! and HI_ r2) and
the hypomethylated cancer cell lines (HepG2__cell_line). The Seisenberger samples also
stand out, particularly the hypervariable progenitor germ cells (E16.5 _male_1). The
genome-level results for the Seisenberger samples are more difficult to interpret, however,
since they are from pooled DNA. Nonetheless, some of the increased variability in the
Seisenberger data will also reflect that these samples are from developmental timepoints

during which DNA methylation is very dynamic.

In contrast, the somatic samples, particularly those from tissue samples rather than

cell lines, have very ‘well-behaved’ 5-value distributions that are globally similar between
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samples. The may reflect that the DNA methylome is well-established in these samples and
relatively static. The increased level of partial methylation in somatic cell lines compared
to somatic tissue samples may be attributable to the development of sub-clones during
the culturing of the sample. This is consistent with the high epipolymorphism observed in
a study that tracked the dynamics of DNA methylation in an in vitro evolutionary cell
culture system [Landan et al.|[2012]. Somatic samples also have very highly correlated CpG
(B-values across strands, meaning that these data can generally be combined across strands

to increase the sequencing coverage of each CpG.

Induced pluripotent stem cell lines also appear to have a quite strictly regulated
methylome, with little intermediate methylation. This is likely a consequence of the fact
that during the induction of pluripotency, the methylome of the sample is ‘reset’ [Lister:
et al|[2011} [Stricker et al|[2013] thereby resulting in a homogeneous population of cells.
These samples also have highly correlated strand-specific S-values, meaning that these data

can generally be combined across strands to increase the sequencing coverage of each CpG.

All of the above highlights the considerable variability of DNA methylation data, both
between samples and within a sample, and the care with which S-values must be interpreted.
While an attractively simple measure, analyses based on S-values are based on the ‘average’
behaviour, where the averaging is over many sources of variation. Analyses based on

[B-values also do not make full use of the information available in bisulfite-sequencing data,

as we shall see in Chapter
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Chapter 5

Downstream analyses of

whole-genome bisulfite-sequencing

data

Overview

This chapter discusses methods for the downstream analysis of bisulfite-sequencing data.
Downstream analyses proceed the processing of the raw data (Chapter [2|) to address the
scientific questions of interest. Most downstream analyses are based on methylation counts
at 1-tuples, however, there is growing interest in analyses based on methylation patterns at
m-tuples. I discuss the statistical questions underlying these downstream analyses, paying
particular attention to those based on m-tuples (m > 1) since these have received less

attention in the literature.

A barrier to analyses based on m-tuples has been a lack of software. To help eliminate
this barrier, I develop MethylationTuples, an R package for managing, analysing and vi-
sualising methylation patterns at m-tuples. MethylationTuples complements methtuple
(Chapter [2)) by providing a framework for the manipulation and analysis of methylation pat-
terns at m-tuples. I describe methods available in MethylationTuples for the downstream

analysis of whole-genome bisulfite-sequencing data.
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5.1 Methods based on 1-tuples

The majority of downstream analysis methods use methylation patterns at 1-tuples, i.e.
m = (my,...,m;,...,my,,) and u = (ul,...,ui,...,uNloci)ﬂ Methods based on 1-
tuples have been developed to address a variety of scientific questions including testing

for differential methylation (Section [5.1.1)), testing for differentially variable methylation
(Section [5.1.4)) and identifying regulatory regions of the genome (Section [5.1.5]).

5.1.1 Differential methylation

By far the most common analysis of bisulfite-sequencing data is to identify differentially
methylated cytosines (DMCs) and differentially methylated regions (DMRs). Consequently,
there has been a flurry of methods proposed for identifying differential methylation [e.g.,
Akalin et al|2012b| |(Chen et al.|[2014a,b, |Dolzhenko and Smith|[2014, |(Gokhman et al.[2014,
Jaffe et al|2012al [Lacey et al.|2013, Lister et al.|[2009] Rijlaarsdam et al.[2014] [Sofer et al.
2013, Xie et al.|[2014] [Feng et al.|[2014) Hebestreit et al|2013, |Sun et al.|[2014], [Park et al.
2014, Hansen et al.[2012]. Robinson et al. [2014] recently reviewed methods for identifying

DMCs and DMRs and so I give but an overview of this important topic.

Experimental design

In any analysis of differential methylation, we want the DMCs and DMRs to be both
biologically and statistically significant; it’s no good if all the differences are simply due to
technical artefacts or random fluctuations. Key to ensuring biological relevance is good
experimental design, such as the use of replicates in each experimental group. A distinction
is often made in the literature between technical replicates and biological replicates. Briefly,
biological replicates are experimental units that all undergo the same treatment and are
used to estimate the within-group variability of the treatment. Technical replicates are
repeated measurements of the same experimental unit, perhaps with slight variations in
the sample preparation, and are used to estimate the variability of the sample preparation

and measurement process.

Tt is insufficient to use 8 = mta because the conversion to S-values loses information about the

precision with which each methylation locus is measured (i.e. the sequencing depth, d = m + u).
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The boundary between biological and technical replication is not always clear. For
example, Lister et al. [2009] state that, “For each cell type, two biological replicates were
performed with cells of different passage number [emphasis added]”. I contend that these
are better defined as technical replicates since each replicate came from the same cell line,
underwent passaging under near-identical conditions and differ only by the number of cell

passages in each mediaﬂ

Initial experiments with whole-genome bisulfite-sequencing rarely had replicates of any
kind or, if they did, these were pooled prior to analysis (e.g., the analysis of the H1 and
IMR90 cell lines in |Lister et al. [2009]). Simply pooling replicates and analysing as if they

were a single sample ignores all variability between replicates and should not be used.

Technical variability is ideally orthogonal to the biological variability, but this rarely
occurs in practice. Indeed, high-throughput sequencing experiments are particularly
susceptible to batch effects, and other sources of unwanted variation, that can swamp the
biological variation of interest [Leek et al.|2010]. This again emphasises the importance
of good experimental design, with randomisation, replication and the use of positive and

negative controls.

5.1.2 Differentially methylated cytosines

A differentially methylated cytosine (DMC) is one where the true methylation level, B;, is
different between experimental conditions. This is typically framed as a test of the mean
levels of methylation at the locus in each grouplﬂ Suppose we have a two-group experiment
and let B; j, denote the true methylation level of the it methylation locus for samples
in the k' group (k = 0,1). We wish to test the null hypothesis of Hy : B;j, = Bij,
against the alternative hypothesis Hy : B; j, # B;j,. As such, identifying DMCs boils
down to identifying differences in means, for which there is an enormous body of statistical
literature. This problem can be viewed as a ‘stand-alone’ test, such as a t-test, or framed

as a regression problem to allow for the inclusion of additional covariates.

2In the case of IMR90 cell line, the first replicate, IMR90_rl, underwent 4 cell passages and the second
replicate, IMR90_ r2, underwent 5 cell passages. In the case of the H1 cell line, the first replicate, H1_rl,
underwent 25 passages in the first media and 9 passages in the second media, and the second replicate,
H1_r2, underwent 27 passages in the first media and 5 passages in the second media.

3This could alternatively be framed as a test of the median methylation level at the locus in each group
(or of some other location parameter of the distribution of methylation levels).
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Regardless of the statistical test used, all attempts to identify DMCs from whole-genome
bisulfite-sequencing data must pay a large multiple-hypothesis testing penalty. Correcting
for multiple hypothesis testing is standard practice in the analysis of genomics data, but the
number of tests, in this case approximately 25 million, is at least one order of magnitude
greater than what is commonly tested in other genomics experimentsﬂ Various methods

have been used to correct for this multiple testing, as illustrated in Table

Table 5.1: Methods proposed for adjusting for the multiple hypothesis testing performed
in an analysis of DMCs. Several papers use describe their analysing as performing a “false
discovery rate adjustment” or “false discovery rate correction” without explicitly stating
what they are doing or citing a reference. One paper uses the Bonferonni correction, leading
to a very conservative analysis since this correction aims to control the family-wise error
rate.

Method Used by

Benjamini and Hochberg) |Akalin et al. [2012b], |Jaffe et al. [2012a], Lacey et al.|[2013],
[1995] Rijlaarsdam et al.| [2014], |Sofer et al|[2013]

Wang et al.| [2011] Akalin et al. [2012b]

“False discovery rate Dolzhenko and Smith| [2014], Gokhman et al.|[2014], Lister
correction/adjustment” et al.[2009], Xie et al|[2014]

Storey| [2007] Jaffe et al|[2012a]

Benjamini and Yekutieli  [Sofer et al|[2013], Hebestreit et al.| [2013]
[2001]
“Bonferonni adjustment” |Feng et al.| [2014]

One thing to note, however, is that the effective number of tests is fewer than the
actual number of tests. This is because the methylation levels at neighbouring loci are
correlated (see Chapters @ and @, which means that tests of differential methylation are
generally positively correlated, thus reducing the effective number of independent tests.
The classical Benjamini-Hochberg procedure also controls the false discovery rate under

certain forms of positive dependence |[Benjamini and Yekutieli|2001].

While there have been reports of DMCs resulting in a phenotypic difference [e.g., Fiirst
et al.[[2012], DMCs are mostly tested as a prelude to the identification of differentially
methylated regions (DMRs). Moreover, with approximately 25 million CpGs in the human
genome, not to mention the many, many more non-CpG cytosines, it is an optimist who aims

for the reliable detection of DMCs from whole-genome bisulfite-sequencing experiments.

4For example, there are approximately 20,000 tests in studies of differential gene expression and two
million tests in genome-wide association studies.
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This will remain true while sample sizes can be counted on one or two hands and the

average sequencing depth is 10x to 30x.

Several software packages are now available for identifying DMCs. Most are limited
to analysing two-group experiments. Rather than directly analysing the m and u, these
software generally make additional modelling assumptions, such as the beta-binomial model

(Section |4.3.2)), and/or perform some transformation of the data, such as smoothing of the
B-values (Section 4.4.4)).

DSS [Feng et al.|2014], BiSeq [Hebestreit et al.[2013], MOABS [Sun et al[2014], methylSig
[Park et al|[2014] and RADmeth [Dolzhenko and Smith| 2014] all use a beta-binomial
hierarchical model of DNA methylation, although the exact details differ considerably
between packages. DSS and MOABS use empirical Bayes methods to estimate parameters
whereas methylSig, BiSeq and RADmeth use maximum likelihood estimation. BiSeq and

methlySig also perform spatial smoothing of the data.

The statistical test used to identify DMCs in these regression models is variously a Wald
test (BiSeq, DSS), a likelihood ratio test (methlySig, RADmeth) or based on the Bayesian

credible interval of the difference in methylation between the two groups (MOABS).

Not all software for identifying differential methylation are designed for identifying
DMCs. For example, both bsseq |[Hansen et al.|[2012] and Aclust [Sofer et al.2013| are
methods explicitly designed for identifying differentially methylated regions rather than
DMCs.

5.1.3 Differentially methylated regions

A differentially methylated region (DMR) is a region of the genome where there are multiple
cytosines with evidence of differential methylation. Importantly, not all cytosines in the
region need necessarily be genome-wide statistically significant DMCs. Rather, the idea is
that a DMR might capture a weaker but broader difference in methylation. For example, it
may be more biologically relevant to identify a broad region with a consistent, albeit small,
difference in methylation than it is to identify individual cytosines with large differences in

methylation.

There are two very different strategies for identifying DMRs:
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1. Using regions that are defined a priori, which are then tested for differential methy-
lation. Such regions might be CpG islands [e.g., [Huang et al.[1999, Doi et al. 2009]E|;
Mspl restriction fragments [e.g., Stockwell et al.[2014]; a predefined genomic feature,
such as a gene promoters or transcription factor binding sites; or general predefined
bins [e.g., 100 bp bins used by Park et al.[2014].

2. Using data-driven regions, such as those defined from an analysis of DMCs, which

are then tested for differential methylation.

The former is much simpler to analyse but is limited in its ability to discover novel
DMRs. It is also hampered because the correct unit or scale for differential methylation

may not be known for the experiment.

The latter offers the opportunity to identify novel regions that are subject to differential
methylation. Included in this is the opportunity to discover the scale over which differential

methylation acts. However, valid statistical inference of these regions is far more challenging.

Using a priori regions

The idea of testing for differential methylation at a priori defined regions is relatively
straightforward. Suppose we have a two-group experiment and let Br, j, be the true average
level of methylation for the 7" region for samples in the k** group (k = 0,1). The null

hypothesis is Hy : Bm‘o = Bm& against the alternative hypothesis Hj : Bm’O # B'f',jl'

We might estimate Bif by the group-wise average of the sample-wise weighted average
of -values for all methylation loci in the region, where the weights are proportional to the
sequencing coverage. Identifying differential methylation at a priori defined regions simply
boils down to identifying differences in means, just as is the case for testing for DMCs.
Again, this problem can be viewed as a ‘stand-alone’ test, such as a t-test, or framed as a

regression problem to allow for the inclusion of additional covariates.

The above description brushes over some technicalities, such as how to handle CpGs
with insufficient sequencing coverage. An alternative approach for testing a priori defined

regions for differential methylation is offered by BiSeq [Hebestreit et al.|2013].

®Both these examples are from microarray studies, but the same idea can be applied to sequencing
studies.
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A hierarchical procedure for testing a priori defined regions for differential

methylation

BiSeq [Hebestreit et al.|[2013] uses a hierarchical procedure to test for differential methyla-
toin at a priori defined regions. To begin, BiSeq first defines CpG clusters by identifying
CpGs that are within a user-specified genomic distance of one another and that have suffi-
cient sequencing coverage across the set of Samplesﬂ While there is clearly a ‘data-driven’
component to these cluster definitions, I reserve the use of ‘data-driven regions’ for those

that are based on the methylation levels of loci rather than their genomic co-ordinates.

Once these clusters are defined, the §-values in each cluster are smoothed for each
sample using a local binomial likelihood smoother. This procedure will create a smoothed
B-value for each CpG, even those with insufficient sequencing coverage. Then, for each
CpG, BiSeq fits a beta regression mode][Z] to the smoothed f-values, which is tested for
evidence of differential methylation at that cytosine (i.e. a test of whether the cytosine is a

DMC).

Based on these P-values, BiSeq then use a hierarchical testing procedure to control
the false discovery rate at both the cluster-level and locus-level. This method is based on
several papers by Yoav Benjamini and colleagues [Benjamini and Hochberg||1997, [Benjamini
and Yekutieli 2001, Benjamini et al.|[2006, Benjamini and Heller|[2007]. It aims to first
control the false discovery rate at the cluster-level and then refines the signal by trimming
non-DMCs from those clusters that have been declared as differentially methylated. Finally,
these differentially methylated clusters are post hoc filtered to ensure they are consistent,

i.e. that the differences in methylation are in the same direction.

Using data-driven regions

Methods for identifying data-driven DMRs are statistically ad hoc. The most common
approach is to scan the genome for clusters of DMCs and declare these to be DMRs. The
initial scan for DMCs will typically use a relaxed statistical significance threshold (i.e. not

necessarily genome-wide significant). Notably, many of these methods do not include a

5As an alternative to creating these CpG clusters, Hebestreit et al. [2013] also suggest using the target
regions of the assay, such as Mspl fragments in the case of RRBS.
"This is different to the beta-binomial regression framework described in Section m
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formal statistical test of differential methylation at the region-level [e.g., |Lister et al.|2009,

2011, Hansen et al.[2011}, Feng et al.[2014].

For example, Hansen et al.| [2011] start by testing all CpGs for differential methylation
and retain all those with a P-value in the lowest 5%. They then declare putative DMRs to
be contiguous runs of such CpGs that are within a given distance of one another and with
“all differences in the same direction” (i.e. the region is consistent). These putative DMRs
may be subject to further filtering, such as requiring that they contain a minimum number
of CpGs and span a minimum number of bases, and the merging of nearby putative DMRs

into a single putative DMR |Hansen et al.[2011].

It is challenging to perform valid statistical inference of differential methylation at these
data-driven regions. We must be careful when ‘double-dipping’ into the data, whereby the
same data are being used to define the regions as are being used to test their significance.
These regions have been selected because loci in these region display a difference and
therefore tests of whether the region has a difference are biased towards rejecting the null

hypothesis.

The challenges of valid statistical inference at such data-driven regions are not unique
to the problem of testing for DMRs. Similar problems arise in the analysis of chromatin
immunoprecipitation sequencing (ChIP-seq) experiments [Schwartzman et al.[2011a, Lun

and Smyth|2014] and in the field of signal processing [Schwartzman et al.|2011b].

One way to avoid this issue, and I would argue the best, is to test these regions using
a separate dataset, which completely avoids the issue of statistical ‘double-dipping’. Of
course, this requires that such a dataset is available or that resources exist to create it,

which is frustratingly rare.

If the sample size is large enough, then permutation testing may also be appropriate.
For example, Hansen et al.|[2014] permute the group labels of their samples and re-ran
the analysis to determine for each of the observed DMRs “how often we see another block
of similar length and effect size anywhere in the genome and in any of the permutations”.
The chief limitation of the permutation strategy is the restricted number of permutations

that are possible from small sample sizes, along with the often substantial time and
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computational resources it takes to analyse the data for each permutation[ﬂ

Related to the method of creating DMRs by forming clusters of DMCs is that of “bump-
hunting”. Initially developed for application to methylation microarray data |Jaffe et al.
2012a], and now available for broader use in the R/Bioconductor package bumphunter (http:
//bioconductor.org/packages/bumphunter/)), bump-hunting may be used to identify
DMRs. The idea is as follows. Firstly, each each CpG is tested for differential methylation.
The resulting test statistic is then considered as a function of the position in the genomeﬂ
and processed with an algorithm to identify “bumps” in the signal. Bumps are defined as
contiguous regions of the genome where the signal is above some threshold. The algorithm
may include an error term to account for the spatial correlation of the signal and the

significance of these peaks may be assessed using a permutation strategy.

Another alternative for combining individual loci into data-driven DMRs uses the
locus-specific P-values rather than the locus-specific test statistics. These methods can
be thought of extensions to Fisher’s method for combining P-values [Fisher|[1936], that
attempt to account for the correlation of tests at nearby methylation loci. comb-p [Pedersen
et al.|2012] uses the Stouffer-Liptak-Kechris [Stouffer|[1949, Kechris et al. 2010} Zaykin
2011] correction for spatially correlated P-values. methylKit |Akalin et al.|2012b] uses

SLIM [Wang et al.[2011] to do a similar correction.

Finally, there are a class of methods that turn the problem of identifying data-driven
DMRs on its head by constructing the regions without first testing the individual loci for
differential methylation. Then, only once these regions are defined, these methods test for
differential methylation. This is different to using a priori regions, since the regions are still
data-defined, but not with respect to differential methylation. The only example of such a
method that I am aware of is Aclust [Sofer et al.2013]. Aclust first clusters CpGs into
candidate regions by performing agglomerative nested clustering of the between-sample
co-methylation. Briefly, this is the correlation of methylation levels at two loci across the
samples{r_q These clusters are then tested for differential methylation using generalised

estimating equations.

Regardless of the statistical method used to identify differential methylation, it remains

8For example, Hansen et al. [2014] only performed nine permutations to estimate significance.
9The test statistic may be smoothed to reduce variation at the expense of increasing bias.
10See Chapter @ for further details of between-sample co-methylation.
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important to validate these differences. This validation should ideally be performed in a

new dataset and perhaps using a different assay in order to mitigate potential biases.

5.1.4 Differentially variable methlyation

It has been hypothesised that increased variability in DNA methylation indicates an
epigentic plasticity that may be highly relevant to common diseases, in particular, cancer
[Feinberg and Irizarry|2010|. Differential variability is distinct from differential methylation.
Whereas the analysis of differential methylation is based on statistical tests of differences
in means, the analysis of differential variability is based on statistical tests of differences
in variances. Analogously, we define variably methylated cytosines (VMCs) and variably
methylated regions (VMRs). To emphasise, a locus (resp. region) may be a DMC (resp.
DMR) while not a VMC (resp. VMR) and vice versa.

Jaffe et al|[2012Db] first developed formal statistical tests for differential variability
of methylation for both the one-group and two-group experiments. These methods were
developed for use with data from the CHARM array (see . In a one-group experiment,
a variably methylated region is one that has increased variability compared to ‘similar’
regions elsewhere in the genome. In a two-group experiment, a differentially variable locus

is one where the variation in one group is significantly larger than that in the other group.

Statistical tests of variances are well known to be more difficult than tests of means
and require larger sample sizes. A more subtle difficulty is in dealing with outliers. An
outlier in one group will greatly increase the variation in that group, but this does not
necessarily mean that the locus is differentially variably methylated. It might, for example,
be due to an error in the assay. It is not difficult to envisage an example where the two

groups in fact have very similar variability once the outlier is excluded.

Tests of differential variability that are based on the F-test [e.g., Hansen et al.[2011] or
Bartlett’s test [e.g., [Teschendorff and Widschwendter||2012] will be susceptible to calling
loci with such outliers as being differentially variable. By contrast, DiffVar [Phipson and
Oshlack [2014] uses Levene’s test [Olkin/1960] to test for differential variability since it is

robust to outliers.
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5.1.5 Epigenome segmentation

Methylation data in the form of the vectors of m and u may also be used by methods to
segment the genome or epigenome into regulatory regions [Stadler et al.[2011]. One type
of region that has received particular attention are so-called partially methylated domains
(PMDs). Partially methylated domains are long stretches of the genome where the average
methylation level, B;, is away from the extremes of 0 and 1, typically in the range 0.2 to

0.7.

PMDs were first identified in the IMR90 methylome by Lister et al.[[2009]. Using a
simple sliding window algorithm, |[Lister et al.| found that approximately 40% of every
autosome was a PMD and that the average length of these PMDs was a large 153 kb.
They also showed that these PMDs were not simply due to a methylated subpopulation
and an unmethylated subpopulation of cells in the sample. This did this by showing that
individual reads mapped to these PMDs contained both methylated and unmethylated

bases.

A subsequent study found that PMDs are a common feature of somatic cell lines
and that they comprise > 30% of the genome [Lister et al.|[2011]. Perhaps even more
intriguingly, across four somatic cell lines profiled with whole-genome bisulfite-sequencing,

Lister et al.| found a large amount of these genomes (664 Mb) comprised shared PMDs.

PMDs have also been identified within tumour methylomes [Berman et al.2012, [Hansen
et al.2011]. Hansen et al.|[2011] found that these PMDs overlap with other important
genomic features called large organized chromatin lysine modifications (LOCKs) and
lamina associated domains (LADs). However, PMDs are conspicuous by their absence in
pluripotent cell lines, including both embryonic stem cells and induced pluripotent stem
cells |Lister et al.|2011]. Their absence in the induced pluripotent cell lines may reflect
the fact that the methylome is ‘reset’ upon induction of pluripotency |Lister et al.|2011}
Stricker et al.[2013].

Recently, more sophisticated methods have been proposed to identify these PMDs.
methylSeekR [Burger et al.|[2013] is one such method. It uses a hidden Markov model of
the p-values, combined with other filters, to segment the genome into unmethylated, lowly

methylated and partially methylated regions.
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5.2 Methods based on m-tuples (m > 2)

This section reviews the different types of questions that can be addressed by expanding
our analysis to use methylation patterns at m-tuples (m > 2) rather than just 1-tuples.
This extra information is only available from sequencing-based assays. We also review

existing software that implement some of these methods.

5.2.1 Methylation entropy

The natural interpretation of methylation entropy is a measure of ‘disorder’. It has been
used to quantify how heterogeneous DNA methylation is at a locus [e.g., Xie et al.2011}
He et al. 2013][1;11 These methylation entropies can be analysed to identify heterogeneous

regions of the genome or perhaps tested for an association with a phenotype.

On the one hand, if we only observe a single unique methylation pattern, then the
m-tuple has the minimum methylation entropy of zero. On the other hand, if we observe all
possible 2 methylation patterns at equal frequency, then the m-tuple has the maximum
methylation entropy (typically normalised to one). Depending on the frequency of the
observed methylation patterns patterns, we obtain intermediate values of the methylation

entropy.

5.2.2 Allele-specific methylation

In a diploid cell, allele-specific methylation occurs when only one of the parental chromo-
somes is methylated at a particular locus, where the locus may be an individual cytosine
or a broader region such as a gene promoter. A particularly interesting form of allele
specific methylation occurs at imprinted genes, where one copy of the gene is active in a
parent-specific manner. However, it is now apparent that allele-specific methylation is far

more prevalent than at just these imprinted regions |Tycko [2010} Shoemaker et al.[2010].

The obvious method to detect allele-specific methylation from bisulfite-sequencing

requires reads that contain a heterozygous genetic variant, such as a single nucleotide

1This is closely related to the idea of identifying epialleles, for which methylation entropy has also played
a role [Li et al][2014] and which I discuss in Section Methylation entropy has also been used to
identify differential methylation, however, I do not discuss this further since it uses a different definition
that is not based on analysing methylation patterns at m-tuples |[Zhang et al|2011] [Su et al|2013].
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polymorphism, along with at least one methylation locus. The heterozygous variant allows
these reads to be separated by the observed allele{T_ZI, which can then be used to test
for allele-specific methylation. For example, Shoemaker et al.|]2010] construct a 2 x 2
contingency table, like that shown in Table and test for an association between the

allele and the methylation state using Fisher’s exact test [Fisher |1922].

Table 5.2: 2 x 2 table used to test for allele-specific methylation. m! is the number of reads
with the first allele and that are also methylated at the methylation locus, u' is the number
of reads with the first allele and that are also unmethylated at the methylation locus, etc.

Allele 1 Allele 2

m ml m2

u ul u2

While straightforward, this approach is also obviously limited to the small number
of methylation loci that are nearby to a heterozygous genetic variant. [Fang et al. [2012]
and [Peng and Ecker| [2012] published methods to detect allele-specfic methylation that
do not require heterozygous genetic variants nearby to the methylation locus of interest.
These methods rely on the probabilistic assignment of reads to alleles (which are treated
as missing data). Unfortunately, there is no publicly available software implementing the

method proposed by Peng and Ecker| [2012] and so I do not discuss it further.

Fang et al.| [2012] use reads containing multiple methylation loci and looks for regions
of the genome where there are two distinct methylation patterns at the read-level that
occur at roughly equal proportions, indicating one pattern comes from one allele and
the other pattern from the other allele. The likelihood of allele-specific methylation is
computed using an expectation-maximisation algorithm, which assigns reads to one of the
two possible alleles. Neighbouring regions displaying allele-specific methylation are then
joined together. While not mentioned in the paper, the proposed method is now available

in the MethPipe software (http://smithlabresearch.org/software/methpipe/).

5.2.3 Epialleles

A DNA sequence may have multiple epigenetic states. For example, the cytosine in

the sequence TCGA may be methylated or unmethylated; each of the methylated and

12This does not give parent-specificity unless the phase of the genotype is also known.
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unmethylated versions of that sequence is an epiallele. Rakyan et al. [2002] define an
epiallele as “an allele that can stably exist in more than one epigenetic state, resulting
in different phenotypes”. The latter requirement, while obviously more interesting than
the alternative, may be unduly restrictive. After all, we refer to alternative forms of a
genetic sequence as alleles regardless of whether we know of a phenotypic consequence of

the variant.

Most of the examples of epialleles with a phenotypic consequence come from the plant
kingdom and, even there, the number of such epialleles is small: a review from 2012 put the
number at “about a dozen” [Weigel and Colot||2012]. In mammals, the study of epialleles
has focused on identifying metastable epialleles, which are epialleles that are mitotically
heritable [Rakyan et al/2002]. The poster child for the potential importance of epialleles
in mammals is the Agouti viable yellow (A") allele [Morgan et al.|[1999]. Genetically
identical mice with different versions of the A"Y allele are phenotypically distinct. Those
mice with an unmethylated version of the allele have a yellow coat, are obese, diabetic,
and have an increased susceptibility to tumours; those mice with a methylated version of

the allele have a pseudoagoutﬁ (brown) coat and none of the associated health defects.

In humans, there have been several interesting studies using putative epialleles to infer
the clonality and evolution of cancer [Siegmund et al. 2009, [Li et al.[2014], as well as to
study the evolution of methylation dynamics and the rate of epipolymorphism of various

loci in an immortalised cell line |[Landan et al.[2012].

Regardless of where you draw the line as to what constitutes an epiallele, it has become
clear in the analysis of bisulfite-sequencing data that the occurrence of multiple methylation

patterns at an m-tuple is the norm rather than the exception.

Restricting our attention to CpG methylation, a sequence with m CpGs has 2™ potential
epialleles. In other words, an epiallele is just a methylation pattern at an m-tuple, with the
additional constraint that the underlying DNA sequence also be identical. An epiallele may

also be described as an epimutation if it is different from the ‘normal’ methylation state.

The rate of epipolymorphism of a locus is defined as the probability that two epialleles

13These mice are properly described as pseudoagouti rather than agouti. They are heterozygous for the
wildtype agouti allele (A%Y/a) but are phenotypically indistinguishable from true agouti mice, which are
homozygous for the wildtype gene (a/a).
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randomly sampled from the locus are different from one another |[Landan et al. 2012]@
Landan et al.| define the rate of epipolymorphism of an m-tuple as 1 — szm 5 where
fp is the estimated frequency of the p'" methylation pattern, i.e. the number of times the
p'" pattern is observed divided by the total number of reads mapped to that m—tuplﬁ
Unlike genetic polymorphisms, where the population is typically a set of chromosomes from
multiple individuals, the population of epipolymorphisms is often within an individual,

even within a tissue within an individual.

The obvious challenge in estimating the frequency of an epiallele is in distinguishing
a ‘real’ epiallele from a spurious one (perhaps caused by incomplete bisulfite-conversion)
sequencing error or mapping error. Another difficulty, perhaps unavoidable with current
technology, is the effect of PCR amplification bias, which will bias estimates of the relative

abundance of each epiallele.

Of the downstream analyses based on methylation patterns at m-tuples, the study of

epialleles has received the most attention with respect to methods and software development.

methclone [Li et al.[2014] is a method to estimate the frequency of epialleles at m-tuples
(the rate of epipolymorphism) and to identify “shifts” in these distributions between a pair
of samples. methclone is based on computing and comparing two forms of methylation
entropy, the “foreground” and “background”. The foreground combinatorial entropy, S,
is based on the observed frequency of epialleles in the two samples. The background
combinatorial entropy, S, is the expected frequency of epialleles in the two samples if “all
patterns of epialleles are uniformly mixed between the two [samples]”. The difference in
these combinatorial entropies, AS = S — S, a kind of observed-to-expected log-ratio, is
used to identify shifts in the epiallele distribution between a pair of samples. A AS =0
corresponds to no change and a AS = —144 corresponds to maximal difference in entropy.
It isn’t clear whether the range of AS depends on the size of the m-tuples nor is it clear
how to choose the threshold at which to declare a significant shift in the distribution of

epialleles.

MLandan et al. [2012] actually call this the “epipolymorphism” of the locus rather than the “rate of
epipolymorphism” of the locus. However, I think this is better described as a rate since it refers to the
frequency at which we observe epialleles/epipolymorphisms.

158trictly speaking, this is in fact an estimate of the rate of epipolymorphism of the locus under a
model that assumes sampling with replacement or, equivalently, an infinite population size. While neither
assumption is true, the correction for sampling without replacement from a finite population will not
substantially affect the results provided that the sequencing depth is high.
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methclone uses the observed frequencies of methylation patterns as being unbiased
estimates of the true epiallele frequencies and does not attempt to account for po-
tential sources of bias. In contrast, MPFE (http://bioconductor.org/packages/MPFE,
http://£1000.com/posters/browse/summary/1097258), an R/Bioconductor package for
“[estimating] the distribution of methylation patterns [i.e. epialleles]” at m-tuples, uses a

probabilistic model to account for some of these biases.

MPFE is designed to estimate the frequency of epialleles by maximising a multinomial
likelihood that includes error terms for both incomplete bisulfite-conversion and sequencing
error. The maximisation of this likelihood is computatationally demanding, as evidenced
by the need for a “fast” algorithm that approximates the likelihood. MPFE is designed for
amplicon bisulfite-sequencing and may not scale to whole-genome data. The input is a file
containing the number of times each methylation pattern was observed at that m-tuple.

Unfortunately, MPFE does not provide a way to create this file.

Methods designed to detect allele-specific methylation, specifically those that are
based on the observed methylation patterns [e.g., [Fang et al[2012, Peng and Ecker||2012],
might also be adapted to identify epialleles and their associated frequencies. It is worth
emphasising that since all of the methods described in this section are based entirely on
the observed methylation patterns, none of these actually check that the underlying DNA
sequencing is identical, which, strictly speaking, is a requirement for the m-tuple to be an

epipolymorphic locus.

5.2.4 Software for analysing methylation patterns at m-tuples

Generally speaking, there are fewer software options for analysing methylation patterns at m-
tuples (m > 2) than there are for analysing methylation patterns at 1-tuples. Furthermore,
the available options are often difficult to extend since they are typically developed for a

specific task and not for general computations with methylation patterns at m-tuples.

I have also experienced considerable difficulty in applying some of these methods owing
to poor software implementations. To give two examples, DMEAS [He et al.[2013] is only
available as a Windows binary or as a Perl script that itself is only available as a PDF file,

and I have been unable to install methclone due to compilation errors.
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MethPipe is perhaps the best documented and potentially extensible software for
analysing methylation patterns at m-tuples. MethPipe is mostly written in C++ and
is designed as a suite of tools for a complete ‘pipeline’ analysis of bisulfite-sequencing
data. As such, it does not feature tools that are particularly amenable to interactive or
exploratory analyses. In fact, I am unaware of any software that allows easy exploratory
analyses of methylation patterns at m-tuples, which in part motivated the development of

MethylationTuples.

5.3 MethylationTuples

In order to facilitate the development of downstream analysis methods based on methylation

patterns at m-tuples, I saw the need for two pieces of software:

1. Software for extracting methylation patterns at m-tuples,

2. Software for manipulating, analysing and visualising these methylation patterns.

I have made significant progress towards the first goal with methtuple (see Sec-
tion [2.4) and now introduce MethylationTuples (https://github.com/PeteHaitch/

MethylationTuples) to address the second missing link.

5.3.1 Design

MethylationTuples is an R package for managing, analysing and visualising methylation
patterns at m-tuples. It is released under an Artistic-2.0 license, consistent with core
Bioconductor packages. I chose to write this software in R because it is a very popular
language for data analysis, particularly in bioinformatics, and facilitates both batch and
interactive usage. R is also my computational mother tongue and an R package is a conve-
nient unit for sharing reusable code. To improve the performance of key functionality, parts
of MethylationTuples are written in C++, making use of the Rcpp package [Eddelbuettel
et al.2011} [Eddelbuettel 2013].

While initially developed to support my research into co-methylation (Chapter (7)),

the data structures developed in MethylationTuples are well-suited to other analyses
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based on methylation patterns of m-tuples such as methylation entropy, allele-specific
methylation and the identification of epialleles. Of course, MethylationTuples can also
be used to develop methods based on 1-tuples, such as identifying differential methylation,

since 1-tuples are just a particular type of m-tuple.

MethylationTuples is written to work within the Bioconductor project |Gentleman
et al. 2004]@ Bioconductor makes extensive use of R’s S4 object system and encourages
developers to re-use existing Bioconductor infrastructure. From a developer’s perspective,
this avoids the need to re-invent the wheel when tackling common tasks. And from the
user’s perspective, it helps avoid multiple versions of the wheel, each that might otherwise

act slightly differently and that may not be as well-tested.

Bioconductor already has excellent support for working with data defined on genomic
ranges via the IRanges and GenomicRanges packages [Lawrence et al.[2013, Lawrence and
Morgan [2014]. Genomic tuples, however, such as the co-ordinates of an m-tuple, do not
naturally fit into this frameworkm Therefore, I first wrote a Bioconductor package for
working with genomic tuples, rather unimaginatively called GenomicTuples, first released as
part of Bioconductor version 3.0 (http://bioconductor.org/packages/GenomicTuples).
In fact, GenomicTuples is heavily based on the GenomicRanges package, with modifica-
tions for tuple-specific operations. This makes it easy to use for users already familiar
with the GenomicRanges package. For example, there is a tuple-specific method for the
findOverlaps generic function to identify genomic tuples with equal co-ordinates (i.e. type
= ‘equal’). Since the classes in GenomicTuples extend those defined in GenomicRanges,

these have excellent interoperability with existing Bioconductor infrastructure.

In the MethylationTuples package I define the MethPat class to store the genomic
co-ordinates of m-tuples and the associated counts of each methylation pattern. A MethPat
object is as a matrix-like object, where rows represent m-tuples and columns represent

samples. The MethPat class extends the GenomicRanges: :SummarizedExperiment{T_g] class

!SMethylationTuples has not yet been submitted to Bioconductor but its development is being published
to https://github.com/PeteHaitch/MethylationTuples).

"The difference between a genomic range and a genomic tuple can be thought of as the difference between
an interval and a set. Namely, an interval includes the co-ordinates in between the start and end whereas
a set only includes those co-ordinates listed in the set. For example, the genomic interval chr3:+: [10,
12] includes the co-ordinates chr3:10, chr3:11 and chr3:12 on the forward strand, whereas the genomic
2-tuple chr3:+:{10, 12} only includes the co-ordinates chr3:10 and chr3:12 on the forward strand.

'8 This uses the NAMESPACE notation of R: GenomicRanges: : SummarizedExperiment can be read as
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but makes use of classes defined in the GenomicTuples package to store the genomic
co-ordinates of the m-tuples. Currently, it is a requirement that all m-tuples in a MethPat

object have the same size (i.e. same m).

Figure [5.1] is a schematic of a MethPat object storing methylation patterns at 3-tuples
for n samples. The similarities to the output format of methtuple are clear (see Figure
2.10), with the added advantage that a single MethPat object can contain data from

multiple samples.

MethPat
Genomic co-ordinates Methylation patterns
MMM MMU uuu
Seqname Strand Pos. ... Pos, S, «. S, S, S, S, S,
chr1 + 666 .. 684 7 .. 3 1T .0 1T .. 2

Figure 5.1: Schematic of the MethPat class, shown here for 3-tuples. Each row represents
a 3-tuple to which the genomic co-ordinates of the tuples (green box) and the counts of
the methylation patterns (grey box) are aligned. The counts of each methylation pattern
(MMM, MMU,... UUU) are stored as separate matrices where the columns represent
samples (S1,...,5,). Some samples may not have any sequencing coverage for a particular
m-tuple, in which case the corresponding frequencies are recorded as NA.

5.3.2 Methods

A MethPat object can be constructed directly using the MethPat () constructor function

or from the output files of methtuple via the readMethtuple() function.

The MethPat object provides fast subsetting by rows (m-tup