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1. Introduction  

Transcription of the ~200 copies of ribosomal RNA genes (rDNA), present in the 

mammalian haploid genome, by the dedicated RNA Polymerase I (Pol I) enzyme 

and subsequent processing of the ribosomal RNA (rRNA) are fundamental 

control steps in the synthesis of functional ribosomes (reviewed in [1-3]). If 

rRNA synthesis is inhibited, cells undergo cell cycle arrest associated with 

apoptosis, senescence or autophagy depending on the cell type. Conversely, 

accelerated rRNA synthesis tightly correlates with cellular proliferation rates. 

Not surprisingly, it is becoming increasingly clear that dysregulation of Pol I 

transcription and ribosome biogenesis is linked to the etiology of a broad range 

of human diseases.   

 

Perhaps the best recognized diseases associated with dysregulated ribosome 

biogenesis are caused by loss of function mutations in the molecular constituents 

of the ribosome or factors intimately associated with Pol I transcription and 

processing collectively termed ribosomopathies (Table 1)[4]. This class of 

genetic diseases includes those caused by mutations in ribosomal proteins for 

example Diamond-Blackfan anemia and 5q-syndrome[4-7]. Alternatively they 

are associated with mutations in modulators or components which impact on Pol 

I transcription, such as is the case for Treacher Collins Syndrome[8-10], or 

Blooms and Werner syndrome[11-13]. Other ribosomopathies are associated 

with mutations that affect rRNA processing and modification such as 

Shwachman-Diamond Syndrome[14], Dyskeratosis Congenita[15], Cartilage Hair 

Hypoplasia[16, 17], North American Indian childhood cirrhosis[18, 19], Bowen-

Conradi syndrome[20] and alopecia, neurological defect and endocrinopathy 
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(ANE) Syndrome[21] (Table 1). Ribosomopathies are generally rare and 

treatment options are unfortunately extremely limited tending to be more 

palliative than curative. 

 

In addition to ribosomopathies, dysregulation of Pol I activity is common in 

diseases associated with profound changes in cellular growth such as cardiac 

hypertrophy, atrophy or cancer. Indeed abnormal nucleoli, the site of Pol I 

transcription, has been used as a marker of aggressive tumours for over 100 

years, well before the function of the nucleolus was known. In contrast to 

ribosomopathies, altered Pol I transcriptional activity in these diseases largely 

results from dysregulated upstream signaling pathways and consequently 

altered expression or activity of factors directly involved in Pol I transcription. In 

the case of cancer, this includes hyperactivation of classic oncogenes and 

upstream oncogenic signaling pathways, (e.g., epidermal growth factor (EGF) 

receptor, c-MYC and mammalian target of rapamycin (mTOR)/PI3K/AKT), or 

release from repression by tumour suppressors, (e.g., p53, retinoblastoma 

protein (pRb)). While it has been debated for some time whether the 

dysregulation of Pol I is a cause or a consequence in diseases such as cancer, 

recent studies have gone a long way to answer this question[22, 23]. Using 

genetic approaches and small molecule inhibitors of Pol I activity Bywater et 

al.,[22] provided definitive proof that hyperactive Pol I transcription is required 

for the malignant phenotype of certain cancers and targeting Pol I can be used as 

a therapeutic approach to treat malignancy with few side effects on normal 

cells[22].  
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These examples illustrate how far the concept of dysregulated Pol I transcription 

and its contribution to human disease has come in the past 10 years. However, in 

reality we are just at the beginning of the long journey to fully understanding the 

etiology and development of the diverse array of pathologies and proliferative 

disorders associated with ribosomopathies and deranged Pol I transcription. 

While a number of recent publications have covered ribosomopathies associated 

with mutation in ribosomal proteins and processing /assembly factors (see 

reviews[4, 24, 25]), here we review our current knowledge of human diseases 

specifically associated with dysregulation of Pol I transcription and its associated 

regulatory apparatus, including some cases where this dysregulation is directly 

causative. Through out the review, for clarity, we will utilize the 

mammalian/human terminology for the Pol I transcription factors. We will also 

provide insight into and discussion of possible therapeutic approaches to treat 

patients with dysregulated Pol I transcription. 

 

2. Diseases with mutations in factors directly associated with RNA 

Polymerase I transcription 

A number of factors have been identified that co-immunoprecipitate with the Pol 

I transcription components and whose encoding genes when mutated result in 

both dysregulated Pol I transcription and a specific human disease syndromes 

(Table 1; Figure 1). These include the proteins treacle, blooms syndrome 

helicase , werner helicase , cockayne syndrome B , plant homeodomain finger 

protein 8  and Filamin A which underlie the diseases Treacher Collins Syndrome , 

Blooms and Werner syndrome, Cockayne Syndrome, Siderius X-linked mental 

retardation and a group of Filamin A associated diseases . Other proteins, which 
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either regulate or are structural components of the cohesin complex, have also 

been shown to modulate Pol I transcription. However, their mechanism of action 

with respect to Pol I transcription has not been well established. These include 

the proteins nipped-B-like (NIPBL), structural maintenance of chromosomes 

(SMC) 1A, SMC3 and establishment of cohesin 1 homologue 2 (ESCO2), which 

when mutated are associated with the cohesinopathy diseases , Cornelia de 

Lange Syndrome or Roberts Syndrome.  

 

Interestingly, while these diseases are all unique, collectively they possess many 

overlapping symptoms. For instance, the majority of these patients present with 

symptoms of aging including hearing loss, cataracts and decreased subcutaneous 

fat. Two thirds have neuronal issues typically stemming from altered migration 

or development of the progenitor cells. Five of these diseases exhibit 

malformations in the skeletal or facial tissues and also limb or body growth 

defects. It is tempting to speculate that these overlapping symptoms provide an 

insight into the consequence of dysregulated Pol I transcription, where as the 

unique features of each disease are due to the "other" functions of the disease 

causing protein in question.  

 

For ribosomopathies associated with ribosomal protein mutations (eg., Diamond 

Blackfan anaemia, 5q- syndrome) or those associated with rRNA processing 

defects (eg., North American Indian childhood cirrhosis, Bowen-Conradi 

syndrome) the causative lesions have been definatively linked to a ribosome 

biogenesis factor (Table 1).  In contrast, for Pol I transcription-linked diseases, 

many of the proteins we will discuss were first described in the context of Pol II 
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transcription or DNA damage/p53 mediated responses. It has only been in the 

last 10 years that their role in Pol I transcription has been uncovered. As such 

there are varying degrees of confidence for the direct impact of their role in 

dysregulation of Pol I activity on disease etiology. However, in a few cases the 

evidence for a causative role is overwhelming. For example, in the case of 

Treacher Collins Syndrome, mouse models have confirmed that deletion of 

TCOF1 is sufficient for development of this disease[26-28]. Moreover, despite 

some non-Pol I functions attributed to the TCOF1 encoded protein treacle, 

Treacher Collins Syndrome patients without TCOF1 mutations exhibited 

mutations in two subunits common to Pol I and III, POLRIC (AC40 in yeast) and 

POLRID (AC19 in yeast)[29]. This strongly suggests that the disease primarily 

results from defects in Pol I activity and thus can be considered a bone fide 

ribosomopathy. Of course the list of potential ribosomopathy causing genes is 

not static and with the proteomic analysis of the nucleolus coming to fruition[30, 

31] and the advent of massively parallel sequencing, new gene candidates whose 

mutation can induce disease through defects in Pol I transcription are likely to be 

described in the near future.   

  

2.1 Treacher Collins Syndrome (TCS) 

TCS (Treacher Collins-Franceschetti syndrome) is classified as a mandibulofacial 

dysostosis and is extremely rare (1/50,000 live births)[32, 33]. TCS is an 

autosomal dominant disorder with 60% of the cases resulting from new or de 

novo mutations rather than being hereditary[32, 33].  
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TCS results from abnormal differentiation of the first and second pharyngeal 

arches during the fourth week of fetal development. Specifically the defect lies 

with the neuroepitheium which gives rise to the neural crest cells, a migratory 

cell population from which the cartilage, bone and connective tissue of the head 

and face are generated[9]. Thus TCS is characterized by abnormal craniofacial 

development in early embryogenesis and also hearing loss. Distinguishing 

features include cleft palate, down slanting palpebral fissures, coloboma of the 

lower eyelid, micrognathia, microtia, hypoplastic zygomatic arches and 

macrostomia[9]. 

 

Most cases of TCS are caused by mutations in one copy of the TCOF1 gene (81-

93% of cases)[34]. No patients have been reported with both copies of the gene 

mutated. Over 120 different mutations have been described, predominantly in 

the coding region on the gene resulting in an aberrant, truncated protein, which 

mislocalizes to the cytoplasm[33, 35]. This observation was supported by the 

phenotype of TCOF1+/- mouse embryos, which showed similar craniofacial 

defects and growth retardation as the human disease[26-28]. Those patients 

with an absence of a TCOF1 mutation instead exhibited mutations in the subunits 

common to Pol I and Pol III (POLRIC and POLRID)[29]. As described above 

together this data suggests that TCS is a heterogeneous disease primarily 

resulting from defects in ribosome biogenesis and thus is a true ribosomopathy. 

 

TCOF1 encodes the serine/alanine-rich phosphoprotein treacle which has been 

reported to associate with the centrosomes, kinetochores[36], the Nop65p-

associated pre-ribosomal ribonucleoprotein (pre-rRNP) complex, and localize to 
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the dense fibrillar centre (DFC) of the nucleolus[9]. Treacle’s role as a 

centrosome- and kinetochore-associated protein is mediated by its interaction 

with Polo-like kinase 1 (Plk1) and was found to be critical for spindle fidelity and 

mitotic progression. Thus, when absent, spindle orientation and cell cycle 

progression is disrupted, which perturbs maintenance, proliferation and 

localization of the neural progenitors during cortical neurogenesis[36]. As a 

component of the human Nop65p-associated pre-rRNP complex, treacle 

participates in 2'-O-methylation of pre-rRNA. This occurs at an early stage in 

processing and is important for ribosome maturation[9].  

 

However, it is treacle's localization to the nucleolus and the nucleolar organizer 

region (NOR) that suggested a role in Pol I transcription. Indeed, treacle 

promotes Pol I transcription by interacting with the transcription factor 

upstream binding factor (UBF)[8, 10], rDNA chromatin[10], and the Pol I enzyme 

itself (Figure 1)[9]. Conversely, treacle knock down leads to inhibition of rDNA 

transcription and cell growth, which was associated with dispersion of Pol I and 

UBF from the nucleolus (Figure 1)[8]. Consistent with an essential function for 

treacle in rDNA transcription, mice haploinsufficient for TCOF1 exhibited 

reduced ribosomal production associated with decreased cell proliferation, 

increased neuroepithelial apoptosis and deficient formation of migrating cranial 

neural crest cells which are responsible for the craniofacial anomalies 

characteristic of TCS[27]. 

   

2.2 Blooms (BS) and Werner Syndrome (WRNS)  
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BS and WRNS are both rare autosomal recessive disorders with very similar 

characteristics (Table 1). Specifically, they both exhibit severe growth 

retardation (proportional dwarfism), cancer predisposition (particularly to 

sarcomas), juvenile cataracts, atrophy of the skin, faciocranial abnormalities, 

genome instability and premature aging, which characterizes them as Progeria 

diseases. They also develop hypogonadism, osteoporosis, diabetes mellitus, and 

arthrosclerosis. Blooms syndrome is characterized by a high level of sister 

chromatid exchange and dysregulated insulin signaling, manifested as insulin 

resistance in children or insulin-resistance diabetes mellitus in young adults[37]. 

Onset typically occurs in the third decade of life with a significant decline in 

health resulting in death at ~50[38]. A number of these human phenotypes have 

been recapitulated in knock out mouse models[39-41].  

 

The cause of BS is a mutation in the blooms syndrome helicase (BLH) encoding 

gene (BLM) and in the case of WRNS a mutation in the WRN gene resulting in the 

production of a truncated protein (WRN). BLH and WRN are both nuclear 

helicases and members of the RecQ subfamily of ATP dependent 3'-5' DNA 

helicases that localize to the nucleolus in S phase[42] or when quiescent cells are 

re-activated[12]. BLH and WRN co-localized in the nucleolus, while they do not 

interact by immunoprecipitation[42], they both positively regulate rDNA 

transcription by Pol I[11-13].  

 

WRN was shown to be required for vascular EGF (VEGF), fibroblast GF-  (FGF- ) 

and EGF stimulation of Pol I, but not for platelet derived GF (PDGF)-AB or insulin 

GF-1 (IGF-1)[13] presumably due to differences in the signaling pathways. Low 
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dose actinomycin D treatment, which selectively inhibits rDNA transcription, 

caused both helicases to relocate out of the nucleolus[11, 12]. Similarly, serum 

starvation promotes WRN relocation from the nucleolus[12]. In quiescent cells 

any residual nucleolar WRN was found exclusively bound to the remaining active 

rDNA[13]. Consistent with direct roles in the regulation of rDNA transcription, 

both helicases co-immunopreciptiate with subunits of Pol I (Figure 1)[11, 12]. 

BLH was also shown to associate with telomeres and the rDNA repeats by 

chromatin immunoprecipitation, binding in the non-transcribed spacer region of 

the rDNA, which presumably are the sites of replication initiation[43]. Recently, 

it's been shown that BLH directly interacts with the rDNA and "unwinds these 

GC-rich rDNA-like substrates that normally inhibit transcription"[11]. WRN also 

appears to be associated with Pol I to mediate promoter clearance rather than 

elongation[38].   

 

While both BLM and WRN appear to contribute to the regulation of rDNA 

transcription, critical details are still missing as to how these helicases 

mechanistically modulate their effects on Pol I transcription and how they 

themselves are regulated. One publication demonstrated that WRN activity is 

inhibited by the serine/threonine kinase DNA-dependent protein kinase, and 

stimulated by p300 acetylation[38]. Understanding this regulation and 

adequately assessing the effect of BLM and WRN mutations on the modulation of 

Pol I transcription is important if we are to establish the role of rDNA 

transcription in the etiology of Blooms and Werner Syndromes. Furthermore, 

these studies will be necessary if we are to uncover the relative contibution of 

inhibition of Pol I activity to the disease phenotype in comparison to other 
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functions of the two proteins. In this vein, it should be noted that these two 

helicases have also been shown to be important for p53 regulation, telomere 

maintance, DNA repair and Pol II transcription, with an overriding influence on 

genomic stability[37, 38, 44, 45].  

 

2.3 Human Cockayne Syndrome (CS)  

CS is an inherited autosomal recessive disease, which is extremely rare. For 

example, only 2.7 cases occur per million births in Western Europe[46]. In the 

majority of cases, the individual is characterized by severe postnatal growth 

failure (cachectic dwarfism), premature aging and progressive neurological 

dysfunction (demyelination, brain atrophy, calcification), that results in physical 

and mental retardation. The symptoms vary but can include photosensitivity, 

microcephaly, very low body weight, gait defects, ocular and skeletal 

abnormalities, high pitched voice, and dental caries. A number of symptoms also 

phenocopy aging, such as retinal degeneration, sensorineural hearing loss, 

cataracts and loss of subcutaneous fat. The majority of afflicted people die in 

childhood (average survival 12 years) or as they age they will progressively lose 

skills such as walking, talking, sitting and are often prone to pneumonia, kidney 

and liver dysfunction. To date there is no cure and treatment is palliative[46].  

 

CS is caused by mutations in ERCC8 or ERCC6, which encode the cockayne 

syndrome WD repeat protein (CSA) and cockayne syndrome B protein (CSB) 

respectively. The majority of cases (62-80%) are attributed to mutations in 

ERCC6[47]. Both CSA and CSB are required for the transcription coupled repair 

branch of the nucleotide excision repair pathway[48] and initially the phenotype 
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for CS was ascribed to these roles. However, Bradsher et al.[49] demonstrated a 

role for CSB in regulating Pol I transcription. They identified the presence of a 

complex containing CSB, Pol I, selectivity factor 1 (SL-1), two transcription 

initiation factor II H (TFIIH) subunits (the helicases xeroderma pigmentosum D 

(XPD) and XPB) and XPG, which modulated Pol I transcription (Figure 1). 

Moreover, mutations in CSB, XPB and XPD destablized this complex and reduced 

rRNA synthesis[49]. Subsequently, CSB, XPD and XPB were implicated in the 

positive regulation of elongation by Pol I[50, 51]. It has also been reported that 

CSB recruits DNA repair and chromatin remodeling factors to UV-stalled Pol I in 

vivo[48]. Yuan et al.[52] reported data consistant with an alternative mechanism. 

They demonstrated that CSB binds the Pol I transcription terminator factor, TTF-

1 (Figure 1), to form a complex at the active rRNA genes with Pol I and the 

histone methyltransferase G9a. In the absence of CSB this complex is disrupted 

and pre-rRNA synthesis reduced. Since CSB knockout mice are viable this would 

suggest that CSB may function more as a facilitator, rather than as an essential 

component in Pol I transcription[52]. Alternatively, another protein may 

compensate for CSB under these circumstances. 

 

Like BS and WRNS, there is also evidence that CSB modulates and is modulated 

by p53 levels[53-55].  CSB knockdown also causes metaphase chromosome 

fragility of human small RNA U1, U2 and 5S rRNA genes suggesting a further role, 

this time in Pol II and Pol III transcription[56]. Thus CSB can affect transcription 

by all three Pol's and further investigation will be required to elucidate the 

relative contributions of dysregulation of each polymerase. Strikingly however, a 

number of the hallmarks characterizing CS, including defective growth and 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 16 

neuronal development and premature aging, are similar to those observed in 

TCS, consistent with the model that dysregulation of Pol I is a significant 

determinant of these phenotypes. 

 

2.4 Siderius X-linked mental retardation (XLMR-CL/P)  

XLMR-CL/P itself is rare, although it is a subset of the much larger group of 

diseases, X-linked mental retardation (XLMR). XLMR is considered a common 

cause of intellectual disability which affects about 1.6/1000 males. Since it is an 

X-linked inherited recessive trait female carriers only occasionally display 

symptoms and these are mild[57]. To put this in perspective, mental retardation 

affects 1-3% of the population, of these cases 25-35% have a genetic background 

and 25-30% of these are classified as XLMR[58]. To date ~90 genes have been 

implicated as the causative genetic abnormalities in XLMR. Typically these genes 

encode proteins involved in transcription regulation, either functioning as 

transcription factors or chromatin structure modifiers[59].  

 

XLMR-CL/P is a syndrome characterized by mild mental retardation and facial 

issues such as the presence of a cleft lip and palate, broad nasal tip and large 

hands[57, 58, 60] very similar to those features observed in TCS. XLMR-CL/P is 

caused by a mutation in the PHF8 gene. Plant homeodomain finger protein 8  

(PHF8) is a histone lysine demethylase belonging to the Jmjc domain-containing 

histone demethylase family[61, 62].  

 

PHF8 is thought to function in chromatin remodelling thus affecting global gene 

transcription[61, 63, 64]. In particular, PHF8 is instrumental in the regulation of 
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neuronal differentiation[57, 63], cell survival, brain and jaw development in 

Zebrafish[64], and regulation of the cell cycle[65]. Potentially, the mental 

retardation symptoms associated with XLMR-CL/P are accounted for by PHF8 

role in early brain development; via regulation of the transcription of genes 

essential for neurogenesis, particularly in the neuronal populations involved in 

memory and learning[59]. Importantly however, with respect to Pol I, PHF8 has 

4-6 nucleolar localization sequences (NLS)[57, 60] and localizes to the nucleolus 

[66]. In the nucleolus PHF8 binds to hypomethylated rRNA genes 

(transcriptionally competent), co-localizing with the euchromatin histone 

marker trimethylated histone H3 K4 (H3K4me3) throughout the rDNA 

repeat[66]. Knockdown of PHF8 reduced rRNA expression, which correlated 

with decreased dimethylated H3K9 (H3K9me2) levels at the rDNA promoter and 

was reversed by overexpression of PHF8[67]. Consistent with a role in the 

control of rRNA synthesis, PHF8 was shown to co-immunoprecipate with Pol I 

and UBF, and was required for Pol I localization at the promoter (Figure 1)[66]. 

It is tempting to speculate that perhaps treacle, which also regulates the 

association of UBF with Pol I, may cooperate with PHF8 in this function. 

However, as is the case for the other ribosomopathies, further study will be 

required to evaluate the consequence of PHF8 dysregulating Pol I transcription 

in these diseases. 

 

2.5 Cohesinopathies 

Cohesin is a complex that is critical for sister chromatid cohesion, chromosome 

segregation during S phase, chromosome condensation, DNA damage repair and 

gene regulation including Pol I transcription of the rRNA[68, 69]. Mutations in 
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modulators or components of the cohesion complex have been associated with 

two human cohesinopathy diseases; Roberts syndrome (RS) (caused by 

homozygous mutations in ESCO2 which encodes an cohesin acetylase) and 

Cornelia de Lange syndrome (CdLS) (60% of cases are attributed to 

heterozygous mutations in genes coding for the cohesin subunits, SMC1A or 

SMC3, and the regulator NIPBL). RS is a rare autosomal recessive disorder (~1 

per 160,000 births) whereas CdLS is an autosomal dominant disorder. Both CdLS 

and RS are multisystem developmental disorders characterized by pre- and post-

natal growth retardation, cognitive impairment, severe limb growth deficiency, 

external and internal structural malformations, and facial dysmorphia (such as 

cleft lip and palate)[70].  

 

The cohesinopathies are thought to stem not from defects in chromosome 

segregation but from altered gene expression. However, the precise mechanism 

involved is not well understood. Intriguingly, yeast strains bearing mutations 

(eco1-W216G and scc2-D730V) analogous to those associated with human RS and 

CdLS respectively, exhibit reduced rRNA levels and as a consequence protein 

translation is impaired[68]. The reduced protein translation was sufficient to 

account for the large number of mRNAs misregulated in response to these 

mutations. These observations were confirmed in a human RS cell line. Thus the 

observed decrease in rRNA levels and resultant reduced ribosome capacity and 

protein synthesis may be the drivers for cohesinopathies [68]. However, a 

publication, using Zebrafish as a model, demonstrated that mutating the ESCO2 

acetylase generated a different gene expression profile than that observed when 

mutating a cohesin component[71]. This data suggests that ESCO2 role in RS may 
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be independent of cohesin and thus differs to CdLS. Since both ESCO2 and 

cohesin affect Pol I transcription perhaps the similarities in phenotype observed 

between these two diseases are due to their effects on Pol I transcription[71]. 

 

2.6 Filamin A associated diseases 

Mutations in the gene FLNA have been associated with a number of rare diseases, 

including periventricular nodular heteropia (PVNH) caused by a null mutation 

and otopalatodigital syndrome (OPD), frontometaphyseal dysplasia (FMD), 

Melnick-Needles syndrome (MNS) and X-linked cardiac valvular dystrophy 

(XCVD) which are the result of missense mutations generating a gain of function 

for Filamin A. Filamin A is one of three isoforms (Filamin A, B and C) and is the 

most abundant in humans. Filamin A was first reported as a F-actin-binding 

protein functioning as an intracellular signaling scaffold and thus has been 

ascribed roles in modulating three dimensional shape, cell motility and 

transcriptional regulation (reviewed in [72-76]).  

 

A recent study demonstrated that Filamin A localizes to the nucleolus[77]. This 

observation was supported by the identification of Filamin A peptides in the 

human nucleolus using large-scale mass spectrometry (Nucleolar Online 

Proteomics Database, http://www.lamondlab.com/NOPdb3.0). Filamin A was 

found to interact with components of a Pol I complex, including RRN3, and 

RPA40 (Figure 1). In the absence of Filamin A Pol I occupancy at the rDNA 

promoter increases[77], thus Filamin A functions to suppress Pol I transcription.  
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2.7 How do mutations in Pol I components cause specific disease 

syndromes? 

How do mutations in components of a ubiquitously required processes, such as 

Pol I transcription, ribosome processing and assembly, have such specific effects 

on certain cell lineages and tissues remains a fundamental unanswered question. 

A number of plausible hypotheses have been put forward. When tested in mouse 

models or tissue culture, some of these mutations reproduce many aspects of 

ribosomopathies. However, no single mechanism can at this stage account for the 

full spectrum of the disease phenotype.   

 

One of the most intensively studies ribosomopathies is Diamond Blackfan 

Anemia (DBA), a disease associated with defects in erythropoiesis[78]. The 

etiology of this disease has been definitively linked, in the majority of cases, to 

haploinsufficient mutations in ribosomal proteins (Rps). This allowed modeling 

of the syndrome in cell culture systems by RNAi mediated knockdown of specific 

Rps and by knockouts of select Rps in mice[79-82]. One of the leading 

hypotheses to account for DBA centers on the recently discovered “nucleolar 

surveillance pathway” (also called nucleolar stress pathway)[25]. In this model, 

mutations or insults that disrupt ribosome biogenesis at the level of rRNA 

synthesis, processing or assembly, result in the sequestration of the E3 ubiquitin 

ligase murine double minute 2 (MDM2) by free Rps (predominantly the 60S Rps, 

L5 and L11) in a complex with 5S rRNA. This then leads to accumulation of p53. 

The elevated levels of p53 subsequently induce cell cycle arrest or apoptosis 

depending on the cell type[25, 83-85]. In the case of DBA, the nucleolar stress 

and activation of p53 results in preferential apoptosis or cell cycle arrest of the 
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erythroid progenitors leading to anemia[86]. It has also been proposed that the 

reduced levels of functional ribosomes in surviving erythroid cells results in 

altered translation of mRNAs that encode proteins critical for erythropoiesis[6, 

87]. Another proposal is that the aberrant accumulation of defective ribosomal 

precursors somehow contributes to the disease, for example perhaps via 

ribophagy[88]. On balance, it seems most plausible that the disease results from 

a combination of nucleolar stress and altered patterns in mRNA translation due 

to competition for the remaining ribosomes. 

 

Some of the general mechanisms hypothesized to account for DBA may be 

relevant to almost all of the ribosomopathies associated with defects in Pol I 

associated factors described above. For example, as most of the mutations are 

predicted to be associated with defective rDNA transcription (possibly with the 

exception of Filamin A which normally functions to repress Pol I) they would be 

expected to exhibit, to varying degrees, activation of the nucleolar surveillance 

pathway associated with p53 accumulation and apoptosis. The findings with TCS, 

arguably the ribosomopathy most robustly linked to defective Pol I transcription, 

supports this model. For example, reduced rDNA transcription associated with 

haploinsufficiency of TCOF1 results in stabilization of p53, cell-cycle arrest and 

apoptosis of the migrating cranial neural crest cells[28].  Moreover, both 

pharmacological and genetic inhibition of p53 prevents apoptotic elimination of 

neural crest cells while rescuing the craniofacial abnormalities associated with 

mutations in TCOF1[9, 28].   
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What is more difficult to explain is why the TCS phenotype is restricted to the 

craniofacial tissues. Why isn’t p53 activated in all tissue haploinsufficient for 

TCOF1? One hypothesis is that specific cell and tissue types exhibit significant 

differences in the threshold for activation of p53 in response to reductions in Pol 

I transcription. This concept has now been experimentally confirmed in a cancer 

model where malignant hemapoietic cells were profoundly more sensitive to a 

selective small molecule inhibitor of Pol I transcription compared to normal 

hematologic cells of the same lineage[22].  This was shown to be due to 

differential activation of p53 even though Pol I transcription was inhibited to the 

same extent in normal and cancer cell[22]. Interestingly, loss of treacle has also 

been proposed to make cells more sensitive to oxidative stress, reducing their 

threshold for p53 activation[89]. 

 

However, this model would predict that all ribosomopathies associated with 

mutations that affect Pol I transcription should have the same phenotypes, which 

is not the case. One non–mutually exclusive possibility to explain this is that 

different cells and tissues exhibit varing expression levels of critical Pol I 

components.  Thus a mutation in any given Pol I factor may only reduce its 

expression below a critical level to inhibit rDNA transcription, sufficient to 

activate nucleolar stress, in a subset of cells at a specific stage in development. 

Alternatively, a given Pol I associated component might be more essential for 

optimal ribosome biogenesis in certain tissues (i.e., tissue specific regulation of 

Pol I transcription), and thus deficiencies in that factor would be more likely to 

cause nucleolar stress in that tissue type. In this regard it is interesting to note 

that the high sensitivity of the rapidly proliferating neuroepithelium may be 
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linked to the observation that the highest expression of treacle is found in the 

brain[90]. 

 

With respect to defective translation, a given ribosomopathy disease phenotype 

might also reflect specific changes in translation of mRNAs that encode proteins 

critical for development of that particular tissue and this may underlie the 

pathology of the disease. For example, TCS might reflect selective defects in the 

translation of mRNA encoding factors critical for the development of the 

neuroepithelium which gives rise to the neural crest cells from which the 

cartilage, bone and connective tissue of the head and face are generated[27].  In 

contrast to this specific model, a recent study demonstrated that the rescue of 

apoptosis and the normalization of craniofacial abnormalities in a mouse model 

of TCS, in response to p53 inhibition, occurred independently of the effects on 

ribosome biogenesis[28]. This suggests that p53-dependent neuroepithelial 

apoptosis is the primary mechanism underlying the pathogenesis of TCS. It will 

be interesting to see in future studies if this can be replicated in mice harboring 

mutations in POLR1C or POLR1D.  

 

With respect to the other putative ribosomopathies, such as Blooms and Werner 

Syndrome, Siderius X-linked mental retardation and Cohesinopathy, it is highly 

likely that nucleolar stress and/or deficiencies in mRNA translation contribute to 

a component of their disease phenotype. However, as the transcription factors 

and chromatin modifiers implicated in these ribosomopathies have additional 

roles in Pol II transcription/replication/repair, it is most likely that these 

diseases reflect a mosaic of these different functions. As a first step in better 
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defining the contribution of nucleolar stress to these diseases, future studies 

could examine the effect of modulating the activity of p53 in transgenic models 

that faithfully reflect the mutations and disease phenotypes observed in these 

complex syndromes.  

  

3. Diseases associated with modulation of Pol I transcriptional activity 

through dysregulation of upstream signaling pathways. 

Proliferative growth requires that protein synthesis, and thus ribosome 

availability, can match cell cycle rates. Insufficient protein synthesis and the 

daughter cells will progressively get smaller, where as a surplus results in 

enlarged cells and is often associated with cellular transformation. Consequently, 

in normal cells Pol I transcription and ribosome biogenesis is tightly coordinated 

with the cell cycle in order to respond to changes in demand for proliferative 

growth. Interestingly, inhibition of cell cycle progression typically does not 

prevent cell growth, where as blocking growth invariable leads to cell cycle 

arrest[91, 92]. Thus ribosome biogenesis is upstream of and dominant to cell 

cycle regulation. However, it is not only proliferating cells that require tight 

regulation of ribosome biogenesis as it is also essential for terminally 

differentiated cells, particularly those with specialized functions that require a 

high demand for protein synthesis, such as muscle or secretory cells[93]. For 

example fetal and adult hearts have the same number of cardiomyocytes at birth, 

thus, with post-natal development the hypertrophic growth (an increase in size 

and mass of cell in the absence of proliferation) of the cardiomyocytes is critical 

to meet the increasing circulatory demand and pressure load on the heart. 

Hypertrophic growth of the heart is also observed in response to prolonged 
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training exercise or pregnancy. This growth is achieved to a large extent by 

increasing the protein synthesis capacity of the cells through accelerated 

ribosome biogenesis and up regulation of rDNA transcription[93]. Similar 

regulation is used in reverse to promote atrophy rather than hypertrophy[94]. 

For example atrophy is required during normal development to cause shrinking 

and involution of the thymus in early childhood or the tonsils in adolescence. 

Atrophy of skeletal muscle is also observed naturally with aging, which is know 

as sarcopenia, and presumably this too, at least in part, is linked to decreased 

ribosome output.  

 

Regulation of cellular growth utilizes a complicated network of signaling 

molecules, which can respond to environmental or cellular cues to impact on 

pivotal points to modulate Pol I transcription. As a consequence, the signaling 

network maintaining cellular growth during normal development frequently 

goes awry contributing to diseases, such as pathological hypertrophy observed 

with heart disease or hyper proliferation in cancer. Thus dysregulation of 

signaling pathways and their impact on modulators of Pol I transcription 

underlies growth dependent diseases. 

 

3.1 Muscle Hypertrophy and Atrophy 

 

3.1.1 Cardiac Hypertrophy  

Pathological events including myocardial infarction, pressure or volume 

overload and congenital factors can initiate pathophysiological hypertrophic 

growth of the myocardium. This inappropriate and sustained cardiac 
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hypertrophy is associated with a re-expression of fetal genes, sarcomere 

remodeling, thickening of the heart muscle and enlargement of the ventricles 

(reviewed in [95, 96]). Such growth initially compensates for the increased work 

demands on the heart muscle, but often deteriorates into structural and 

electrophysiological remodelling that results in reduced cardiac output and 

contractile dysfunction, increasing the likelihood of stroke and heart failure 

(ischemia and dilated cardiomyopathy)[97]. Clinically, cardiac hypertrophy is an 

independent risk factor for heart failure. Any deterioration of heart muscle 

function is broadly classified as cardiomyopathy, which is also a symptom often 

associated with RASopthies, that is disorders caused by germline mutations in 

the RAS pathway, one of the key regulators of rDNA transcription and ribosome 

biogenesis[98]. For example cardiomyopathy is common in Noonan syndrome 

patients (mutated RAF1), Leopard syndrome (mutated PTPN11: SHP2), and 

Costello syndrome (mutated HRAS)[99].  

 

In 1985 Morgan and colleagues[100, 101] published landmark studies 

demonstrating that increased ribosome synthesis, as opposed to increased 

protein translation rate, predominantly mediated the muscle cell growth 

associated with cardiac hypertrophy. They went on to demonstrate that it was 

the rate of Pol I transcription, which dictated the number of ribosomes in this 

system[102]. It was a further 6 years before the Pol I specific transcription factor, 

UBF, was established as a key modulator of Pol I transcription in cardiac 

hypertrophy. Utilizing a rat cardiomyocyte model, hypertrophic stimuli such as 

contraction, norepinephrine and endothelin where shown to increase ribosome 

biogenesis via elevating the amount and activity of UBF[103-105]. Hannan and 
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Rothblum extended this work to demonstrate that overexpression of UBF, or 

reducing UBF expression with antisense RNA, increased or prevented rDNA 

transcription and cardiac hypertrophy respectively[106-108]. While this 

mechanism has not been evaluated in humans it was reported that heart failure 

patients display morphological changes in the nucleus of their myocytes 

including an increase in size of the nucleolus[109].  

 

Since these initial reports, few studies have evaluated the involvement of rDNA 

transcription in cardiac hypertrophy, although numerous additional components 

of the Pol I transcription apparatus have been cloned, including the key 

transcription factor RRN3[2]. Many of these factors play critical roles in growth 

factor mediated control of rRNA synthesis.  Furthermore, our understanding of 

the growth factors and signaling pathways activated during pathophysiology has 

grown immensely but have not been examined in the context of modulating Pol I 

transcription. Thus ironically, although cardiac hypertrophy was one of the first 

diseases to be associated with deranged rDNA transcription, our knowledge of 

the exact mechanism of action by which Pol I transcription is modulated during 

hypertrophy lags behind other diseases such as cancer.  

 

Although numerous signaling pathways have been reported to play a role in 

cardiac hypertrophy, these often depend on the model system being evaluated 

(reviewed in [110]). In addition to mechanical load[111], the RAS and 

PI3K/AKT/mTOR signaling pathways have been shown to modulate cardiac 

hypertrophy and there is increasing evidence that they may cooperate in this 

process.  In one study PI3K and p21-activated kinase (PAK) signaling pathways 
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were both shown to co-operate with RAS to activate RAF1 kinase[112] which 

promotes hypertrophy[113]. More recently it was suggested that 1A-

adrenergic receptor activation of PI3K and Rac1 GTP exchange factor T-cell 

lymphoma invasion and metastasis factor 1 (TIAM) leads to activation of ERK in 

neonatal cardiomyocytes[114]. Other studies have linked cyclic AMP stimulation 

of G-protein coupled receptors (GPCR) and RAS signaling or GPCR activation of 

ERK in promoting cardiac hypertrophy[99]. In addition, a fundamental regulator 

of cardiac growth is the oncogene c-MYC[115, 116] (discussed in section 3.2.1.1).  

 

While a number of the above signaling pathways have been shown to mediate 

phosphorylation and/or increased expression of UBF in non cardiac systems 

such as smooth muscle[117], to what extend they do so in myocytes and the 

contribution of additional Pol I components, such as RRN3 or SL-1, remains 

fertile ground for further investigations. It is important to note however, that 

many of the pathological signaling pathways thought to contribute to left 

ventricular hypertrophy including RAS/ERK, PI3K/AKT/mTOR and c-MYC play 

prominent roles in regulating Pol I transcription in tumor cells (section 3.2). It is 

possible that the dysregulation of signaling to Pol I transcription during 

pathological cardiac hypertrophy will be very similar to the regulation of Pol I 

transcription in cancer. Consistent with this notion, more contemporaneous 

studies investigating the regulation of 5S rRNA, transcribed by Pol III, 

demonstrated that oncogenic and tumor suppressor pathways involved in the 

regulation of ribosome biogenesis in tumor cells also regulate 5S synthesis in 

cardiac myocytes [118]. 
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3.1.1 Renal hypertrophy  

Loss of a kidney can promote compensatory hypertrophy in the remaining 

kidney, resulting in no net loss of kidney function. The resultant hypertrophy is 

associated with newly formed epithelium and growth of the glomeruli and 

capsules. However, in disease states induced by diabetes, renal hypertrophy is 

deleterious, resulting in reduced function and kidney failure.  Renal hypertrophy 

and the accumulation of extracellular matrix proteins are hallmarks of kidney 

disease observed early in the development of both Type 1 and 2 diabetes[119, 

120]. Both hallmarks require elevated protein synthesis rates, which was 

initially ascribed to reduced degradation of the rRNA[121, 122], whereas a more 

recent publication reported increased rDNA transcription followed by elevated 

protein translation[120]. In the glomerular epithelial cells, Mariappan et al.[120] 

demonstrated that high glucose induction of Pol I transcription was mediated via 

the PI3K signaling pathway activating both ERK and S6 Kinase which resulted in 

phosphorylation and thus activation of UBF at serine 338. Phosphorylated UBF 

was released from an inhibitory complex with p19ARF and could now freely bind 

the RPA194 subunit of Pol I thus promoting rDNA transcription. Interestingly, 

elevated UBF phosphorylation has previously been reported in vivo in the kidney 

of Type 1 or 2 diabetic rats and mice respectively[120]. However, it has not been 

established whether elevated UBF phosphorylation occurs in diabetic patients 

with renal hypertrophy. 

 

These findings raise the tantalizing prospect that selective Pol I inhibitors being 

developed to treat cancer[22](see section 4) may be efficacious in treating 

cardiac and renal hypertrophy. This hypothesis must now be tested in animal 
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models of these diseases. Encouragingly, mice treated with these inhibitors, 

during the course of cancer studies, do not exhibit any renal or cardiac 

dysfunction nor muscular atrophy (R. Hannan, M. Bywater and D. Drygin; 

unpublished data) consistent with the idea that only cells with abnormal growth 

are preferentially sensitive to the modulation of Pol I activity. 

 

3.1.4 Atrophy  

In contrast to the heart where hypertrophy is the major clinical issue, in skeletal 

muscle atrophy is an important pathophysiological feature of disease and aging. 

Muscular atrophy is broadly defined as a decrease in muscle mass due to the 

process of reabsorbing and breaking down tissues via apoptosis[123]. 

Consequently, the hallmarks of atrophy include reduced cell number and size of 

the myofibers and often a switch from type II fast to slow fibres. This leads to 

reduced muscle contractile function and critically, the loss of more than 40% of 

the body cellular mass can be fatal[123, 124]. 

 

As with hypertrophy, at a cellular level atrophy is caused by an imbalance 

between proteins synthesis and degradation. To date only one publication has 

addressed the association between skeletal muscle atrophy and reduced protein 

synthesis[125] and one other investigated skeletal muscle hypertrophy[126]. 

Using a denervated muscle model in which myostatin levels were reduced, 

activation of the mTOR signaling pathway was observed. The PI3K/AKT/mTOR 

pathway has already been established as essential for correct muscle growth, 

both by positively regulating protein synthesis via increased ribosome 

biogenesis or via AKT phosphorylation of forkhead transcription factor (FOXO) 
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driving the transcription of ubiquitin ligases and autophagy-related genes to 

promote protein degradation[123, 125]. Intriguingly, a recent study 

demonstrated that denervation induced skeletal muscle atrophy was associated 

with dramatic decreases in de novo rRNA synthesis however, activation of mTOR 

failed to rescue muscle cell growth and rDNA transcription[125]. While the 

mRNA levels for UBF, and SL-1 subunits Tata binding protein (TBP) and TBP-

associated factor (TAF) 1B were all elevated in response to mTOR activation, 

there was a significant decrease in the level of the SL-1 subunit TAF1A suggesting 

that SL-1 may be functionally limiting for muscle growth in this model[125]. This 

study supports the hypothesis that dysregulation of rRNA synthesis triggers 

atrophy even in the presence of positive growth signals, such as activated mTOR 

pathway.  Thus one of the ongoing challenges for the development of therapeutic 

approaches to combat diseases associated with atrophy will be to define the 

signaling pathways that mediate the mTOR independent down regulation of 

rDNA transcription. 

  

In the converse situation, skeletal muscle hypertrophy induced by mechanical 

loading, the increased skeletal muscle growth was shown to be associated with 

increased rDNA transcription and rRNA content [126]. The skeletal muscle 

hypertrophy was preceded by an increase in c-MYC expression and c-MYC 

dependent increased expression of Pol I components[126] previously termed the 

Pol I regulon[127]. Similarly, factors involved in rDNA chromatin remodeling, 

such as the Williams syndrome transcription factor, were enriched at the rDNA 

promoter by mechanical loading.  Since the two examples above used different 

skeletal muscle systems it is not clear whether the factors required to activate 
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ribosome biogenesis during skeletal muscle hypertrophy are the same pathways 

defective during diseases associated with skeletal muscle atrophy. Clearly 

further studies in this area are required to resolve these outstanding questions.  

  

3.2 Cancer 

Over 100 years ago, well before the function of the nucleolus in ribosome 

biogenesis was understood, it was recognized that the size of the nucleoli were 

increased in tumour cells. Indeed, pathologists have used abnormal nucleolar 

size as an indicator of particularly aggressive tumours and in some cases, such as 

malignant melanocarcinoma, nucleolar size is an accurate clinical marker for 

disease[128]. As the nucleolus is the site of Pol I transcription and its size 

correlates with the rate of rRNA synthesis, this data suggests that overactive Pol 

I transcription is a frequent occurrence during malignant transformation[3, 128]. 

Indeed, using comparative expressed sequence hybridization, which identifies 

chromosomal regions corresponding to differential gene expression, Williamson 

et al.[129] demonstrated consistently abnormally high levels of rRNA in all six 

tumour types tested and these increased with cancer stage. This was supported 

by a recent study which demonstrated that 45S, 28S, 18S and 5.8S rRNA were 

increased in human primary prostate cancers[130]. In particular, c-MYC driven 

cancers are almost universally associated with hyperactivated Pol I 

transcription[1].  These findings have led to two major questions; i) How is Pol I 

transcription accelerated in cancer; and ii) Is the dysregulated transcription 

required for the malignant phenotype? 
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With respect to the former, the initial clues for how Pol I transcription might be 

dysregulated in cancer came from the unexpected finding that the tumour 

suppressor protein, pRb, directly repressed rDNA transcription[131].  

Subsequent evidence came from studies demonstrating that mammalian rDNA 

transcription is not simply a slow and indirect consequence of altered nutrient 

signaling, but dynamically regulated by the mitogen activated kinase 

ERK1/2[98]. This opened the door for a flurry of studies demonstrating that 

pathways typically associated with malignancy via signaling to Pol II also co-

regulated Pol I transcription (reviewed in [1, 132]). It is now recognized that 

elevated Pol I transcription during cancer progression and tumour maintance is 

typically mediated by either overactivation of oncogenes or an oncogenic 

signaling pathway, or release from inhibition by tumour suppressors and tumour 

suppressor signaling (Figures 2 and 3). In both cases, dysregulated signaling 

converges to modulate formation of the core pre-initiation complex and or alter 

the transcriptional activity of Pol I including elongation. With respect to the 

contribution of dysregulated Pol I transcription to cancer, very recent data has 

shown unequivocally that dysregulated Pol I transcription is required for the 

maintenance of the malignant phenotype of certain hematologic cancers and can 

be target to therapeutically treat cancer in vivo (discussed in more detail in 

section 4 [22]).  

 

3.2.1 Oncogenes and Tumour Suppressors 

A number of oncogenes and tumour suppressors have been demonstrated as 

bona fide direct regulators of Pol I transcription (Figure 2): including the 

oncogenes c-MYC and AML1-ETO and the tumour suppressors p53, pRb, and 
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p14ARF. In addition, an increasing list of other factors with oncogenic or tumor 

suppressor-like activity including nucleophosmin (NPM), RUNX2, 

ZNF545/ZFP82 and JHDM1B have been shown to play direct roles in modulating 

Pol I transcription during malignancy  (reviewed in [1, 2, 92]).  

 

3.2.1.1 c-MYC 

c-MYC is a potent oncoprotein and transcription factor which is overexpressed in 

~50% of all cancers[3, 133], notably leukemia, sarcoma, lymphoma and its gene 

is frequently translocated in multiple myeloma[134], Burkitt lymphoma, 

neuroblastoma and colon carcinomas. Moreover, its dysregulated expression 

correlates with poor prognosis[134]. As a transcription factor, c-MYC forms a 

heterodimer with Max to bind site-specific sequences in the genome termed 

Enhancer Box sequences (E-boxes). This leads to the recruitment of factors such 

as histone acetyltransferases, acetylation or methylation of the nucleosomal 

histones and the modulation of chromatin structure making it permissive for 

transcription by all three RNA Polymerases[133, 135, 136]. c-MYC-mediated 

global changes in the chromatin allows for coordinate transcriptional regulation 

of ~15% of all the genes in the genome[137, 138]. Predominant amongst this 

cohort of c-MYC-transcriptional gene targets are those essential for cell growth, 

including regulators of ribosome biogenesis, protein synthesis and 

metabolism[133, 139]. 

Of specific relevance for this review, c-MYC stimulates Pol I transcription via at 

least two mechanisms (Figure 2). Firstly, c-MYC coordinates the increased 

expression of a cohort of Pol II transcribed genes termed the "Pol I regulon" 

which comprises over 90% of the core Pol I transcription factor complex 
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including UBF, RRN3 and Pol I subunits[127, 140]. The net result is two fold: i) 

an increase in the abundance of the Pol I transcription apparatus; and ii) an 

increase in the number of transcriptionally active rDNA repeats mediated via the 

increased abundance of the cytoarchitectural transcription factor UBF[127, 141, 

142]. Consistent with this mechanism, components of the Pol I transcription 

apparatus are highly overexpressed in c-MYC driven malignancies and 

normalisation of their expression leads to selective apoptotic death of c-MYC 

driven malignancy, thus their elevated expression is necessary for the c-MYC-

driven malignant phenotype[22]. Numerous other malignancies also 

demonstrate overexpression of Pol I components[90, 143] although it is less 

clear if this is related to dysregulated c-MYC expression.  

Secondly, c-MYC has been reported to function in Pol I transcription by directly 

binding to the rDNA. This leads to recruitment of its co-factor 

transformation/transcription domain-associated protein (TRRAP) and 

eventually Pol I. It is believed that the binding of c-MYC mediates the looping of 

the rDNA resulting in elevated rRNA synthesis[144-146]. More recently it was 

also demonstrated that c-MYC binds SL-1 to stabilise the SL-1/UBF complex, thus 

increasing UBF recruitment to the rDNA promoter and leading to upregulated 

Pol I transcription[2]. Interestingly, c-MYC can also function in a non-DNA 

binding manner at Pol III promoters via recruitment of TRRAP and the histone 

acetyltransferase GCN5 to the tRNA and 5S promoters, thus enhancing TFIIIB 

binding and histone H3 acetylation to elevate Pol III transcription rate[147]. 

Overall c-MYC functions as a regulator of all three RNA polymerases, a role that 

may underlie its potency as an oncogenic transcription factor.  Indeed as 
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outlined below, recent studies have demonstrated at least part of the oncogenic 

activity of c-MYC is dependent on its ability to modulate Pol I transcription[22].  

 

3.2.1.2 AML1-ETO 

The oncoprotein AML1-ETO is the most frequent chromosomal translocation 

associated with acute myeloid leukemias and encodes a fusion protein between 

the Runt-related transcription factor 1/acute myeloid leukemia 1 

(RUNX1/AML1) and Myeloid transforming gene on chromosome 8/Eight-

Twenty-One  (MTG8/ETO)[148]. The fusion protein AML1-ETO retains the DNA 

binding ability of AML1, but not its transactivation or nuclear matrix target 

signaling. AML1 binds DNA via its runt domain and together with core-binding 

factor  (CBF ) forms part of the CBF that binds enhancers and promoters to 

alter Pol II transcription. Typical targets of CBF include genes involved in cell 

cycle, hematopoietic-specific genes and proliferation. On the other hand, ETO is 

an auxiliary protein that interacts with transcription factors, recruits a range of 

corepressors such as histone deacetylases (HDACS), and modulates Pol II 

transcription repression[148].  Both AML1 and AML1-ETO can bind to the rDNA 

repeats and associate with UBF. AML1 predominantly associates with 

hypermethylated rDNA whereas AMLl-ETO binds where the H3K4 methylation is 

highest (i.e., transcriptionally active rDNA). Thus AML-1 antagonises, where as 

AML1-ETO promotes Pol I transcription[149]. This suggests that AML-1 

mediated down regulation of rRNA synthesis may be integral in the process of 

myeloid differentiation while activation of Pol I transcription may be essential 

for AML1-ETO oncogenicity associated with a global block in cellular 

differentiation (M. Bywater personal communication).  
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3.2.1.3 Nucleophosmin  

Nucleophosmin (NPM: B23, NOR38) belongs to the nucleoplasmin family of 

chaperones and has been strongly implicated in the pathogenesis of numerous 

malignancies. Paradoxically, it has been described both as an oncogene and a 

tumor suppressor, depending on cell type and abundance. While NPM 

overexpression is associated with different types of solid tumors, mutations or 

translocations that impair NPM function or reduce functional levels, are 

observed in 30% of acute myeloid leukemias[2, 150-153]. NPM is predominantly 

localized to the nucleolus, but it can shuttle to the cytoplasm and nucleoplasm in 

response to its phosphorylation at particular sites[154]. NPM has been shown to 

play a role in pre-mRNA processing, the response to genotoxic stress, apoptosis, 

control of ploidy, DNA repair, cellular transport and maintenance of chromatin 

structure.  

 

With respect to its predominant role in the nucleolus, NPM is typically described 

as a nucleolar endoribonuclease. However, more recently NPM was shown to 

associate with the rDNA chromatin[150], and promote increased recruitment of 

TAF148 to the rDNA promoter (Figure 2), thus stimulating rDNA transcription[1, 

155]. Nucleophosmin also modulates rDNA transcription indirectly through the 

c-MYC-ARF-MDM2 axis[156]. For example, NPM interacts with the E3 ligase 

MDM2 (HDM2 in humans) to control p53 levels in response to nucleolar 

stress[157, 158]. NPM also targets the tumour suppressor p14ARF to the nucleoli 

which in turn inhibits Pol I transcription (section 3.2.1.5)[159]. Finally, 

overexpression of NPM has been shown to enhance c-MYC nucleolar localization 
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(Figure 2) and promote c-MYC-driven rDNA transcription[150]. Despite the slew 

of studies described above linking NPM and cancer, definitive evidence 

demonstrating that dysregulation of the nucleolar related functions of NPM, as 

opposed to its other chaperone related functions, are responsible for its 

contribution to malignant transformation, are not yet available [151]. 

 

3.2.1.4 RUNX2  

Runt-related transcription factor 2 (RUNX2) is a transcription factor, which 

predominantly plays a role in osteoblast proliferation and differentiation, and 

drives bone specific gene expression. RUNX2 was first shown to be 

overexpressed in c-MYC driven T cell lymphoma, with more recent publications 

suggesting it plays a positive role in promoting invasive breast cancer and 

prostate cancer (reviewed in [160]). RUNX2 acts with its cofactors to remodel 

chromatin and either activates or suppresses Pol II transcription depending on 

the cellular context. In what seems to be a recurring theme, recently RUNX2 was 

also shown to localize to the nucleolus. Paradoxically, RUNX2 is associated with 

open chromatin and when complexed with UBF and SL-1 inhibits rDNA 

transcription (Figure 2)[161] by complexing with HDAC1 and inducing 

deaceylation of both UBF and the histone proteins[162].  How inhibition of rRNA 

synthesis by RUNX2 contributes to cancer, or whether RUNX2 can activate rDNA 

transcription in other contexts, remains to be established. 

 

3.2.1.5 pRB, p53 and p14ARF 

The concept that tumour suppressors can directly repress Pol I transcription and 

their inactivation during cancer would facilitate upregulation of Pol I 
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transcription, first came to fruition with the demonstration that the tumour 

suppressor pRb directly inhibited Pol I transcription in experiments using 

cultured cells and purified rDNA transcription components[131]. This 

observation provided a paradigm shift in our understanding of how rDNA 

transcription was modulated and immediately highlighted the potential 

importance of dysregulated Pol I activity in cancer biology. pRb functions to 

mediate G1-S phase arrest in response to cellular insults such as DNA damage, 

and this is effected primarily by binding E2F transcription factors[163-166]. The 

relationship between pRb and E2F is also important for the cellular processes of 

DNA repair, differentiation, metabolism and cancer[2, 167, 168]. pRb can also 

affect genomic stability by modulating chromosome condensation and E2F 

transcriptional targets critical for spindle assembly checkpoint (SAC) 

function[164]. Although pRb is deleted in all retinoblastomas, activating 

mutations in the gene in other cancers are rare, rather it is dysregulation of its 

key modulators, including E1A, CDK-cyclin complexes and the caspase 

dependent proteolytic pathway, which promotes elimination of pRb function 

that is typical in all cancers[163]. As highlighted above, pRb can directly repress 

Pol I transcription, as can its related pocket protein p130[131, 169]. One 

publication suggested pRb blocked the ability of SL-1 to bind the rDNA[170], 

however, other studies suggest the mechanism is due to pRb interfering with the 

binding of UBF to SL-1 (Figure 2)[131, 169, 171]. Subsequently it has been 

shown that pRb can also repress 5S synthesis by Pol III[172-174] leading to the 

general paradigm that some of the most potent tumour suppressors and 

oncogenes mediate their potent effects on cancer via controlling all three RNA 

polymerases[3]. 
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p53 has been coined the guardian of the genome[175], and its loss of activity 

through mutation or deletion is associated with accelerated proliferation and 

genomic instability. Consequently, p53 is inactivated in the majority of human 

cancers, with over 50% of tumours characterized by either mutated or deleted 

p53 and it has been suggested the rest have impaired p53 signaling[176]. p53 

protein expression is tightly regulated by targeted degradation via the 26S 

proteasome and E3 ligase MDM2 (HDM2 in humans) which itself is over 

expressed in 5-10% of all human cancers[176]. p53 is stabilized via two 

mechanisms: i) checkpoint homology 1 (CHK1), CHK2 or ataxia telangiectasia 

mutated (ATM) phosphorylation[176]; and ii) oncogenic activation of p14ARF 

which blocks p53 interaction with MDM2[177]. p53 activity is also modified by 

acetylation and methylation, the result of which is varied transcription of p53-

dependent targets. While p53 typically mediates transcriptional activation of its 

targets[176], in the context of Pol I it represses transcription by binding to the 

TBP and TAF1110 subunits of SL-1, thus preventing SL-1 from interacting with 

UBF and forming the Pol I pre-initiation complex (PIC) (Figure 2)[2, 178]. Thus 

p53 promotes a feed forward repression loop in which the inhibition of Pol I 

transcription causes activation of p53 via the nucleolar stress pathway (section 

2.7) which in turn further represses Pol I transcription. This concept is 

important as it suggests that a major function of Pol I transcription and nucleolar 

integrity is to titrate p53 levels, further underlining the importance of Pol I 

transcription in malignancy. Thus, in normal cells there is a break in this positive 

feedback loop, where p53 induces MDM2 expression leading to downregulation 

of p53 activity. Perhaps not unexpectedly, cancers with both dysregulated pRb 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 41 

and mutated p53 are the most aggressive and also have the highest rate of rRNA 

synthesis[1]. 

 

The 9p21 gene cluster, harboring the tumour suppressive genes p14ARF and 

p16INK4a, is a major mutation hotspot in human cancers. p14ARF is produced 

from the same gene that encodes p16INK4A. The two transcripts arise through 

the utilisation of alternative promoters and an alternate reading frame for 

translation[179-182]. As described above, p14ARF restrains cell growth by 

binding and abrogating MDM2 inhibition of p53 activity, and therefore facilitates 

p53 mediated cell cycle arrest and apoptosis[177]. p14ARF is also a central 

regulator of ribosome biogenesis; modulating rDNA transcription by both 

indirect and direct mechanisms. For example, p14ARF indirectly modulates rDNA 

transcription via interactions with NPM (section 3.2.1.3 and [183]). In addition, 

p14ARF directly functions as a repressor of rDNA transcription via at least two 

separate mechanisms: i) interfering with UBF phosphorylation inhibiting PIC 

formation[184]; and ii) inhibiting nucleolar import of TTF-I by binding to this 

nucleolar localization sequence and causing TTF-1 to accumulate in the 

nucleoplasm (Figure 2). p14ARF also binds MDM2 thus preventing MDM2 binding 

and ubiquitinylation of TTF-I. The overall result is that p14ARF inhibits both rRNA 

synthesis and processing[185, 186]. 

 

3.2.1.6 ZNF545/ZFP82 and JHDM1B 

Over the last few years a number of other proteins implicated in the etiology of 

cancer have also been shown to modulate Pol I transcription. For many of these 

factors our knowledge on their role in cancer is insuffient to confidently ascribe 
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them functions as bone fide tumour suppressors or oncogenes. These include the 

nuclear 19q13 KRAB domain-containing zinc finger protein ZNF545/ZFP82 and 

the nucleolar histone demethylase JHDM1B. When sequestered to the nucleoli, 

ZNF545/ZFP82 represses NF- B and AP-1 pathway dependent ribosome 

biogenesis specifically by inhibiting Pol I transcription[187, 188]. However, the 

mechanism of action was not determined. ZNF545/ZFP82 is ubiquitously 

expressed in cells and downregulated in primary tumours such as 

nasopharyngeal carcinoma, esophageal squamous cell carcinoma, gastric colon 

carcinomas and infrequently reduced in hepatocellular, lung, breast, renal, 

prostate and cervical cancer cell lines[188]. This pattern of expression and action 

on Pol I transcription suggests it may be a tumour suppressor.  

JHDM1B interacts with the rDNA genes to repress transcription, in this case by 

demethylating Lys4 of histone H3 causing dissociation of UBF from the rDNA 

(Figure 2).  Although JHDM1B represses Pol I transcription its expression was 

increased in aggressive primary glioblastomas[3, 189]. Thus it is unclear if it acts 

as an oncogene or tumour suppressor. Formal experiments demonstrating a 

causative role for ZNF545/ZFP82 and JHDM1B in the initiation or progression of 

human cancer are ongoing. It may be some time until the consequences of their 

control of Pol I transcription for malignant transformation is entirely clear.  

 

3.2.2 Oncogenic signaling  

Overactivation of oncogenic signaling pathways are a primary and pervasive 

mechanism by which Pol I transcription is hyperactivated during malignant 

transformation (Figure 3). These pathways converge primarily on the Pol I 

transcription factor RRN3, UBF and to a lesser extent SL-1. Two of the major 
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growth regulatory pathways known to modulate Pol I transcription include the 

RAS/RAF/MEK/ERK and PI3K/AKT/mTOR signaling cascades[132]. However, 

other signaling molecules have also been implicated in cancer-associated 

regulation of Pol I transcription, including casein kinase 2 (CK2), Cyclin-

dependent kinase 2 and 4 (CDK2, CDK4) and AMP-activated protein kinase 

(AMPK). 

 

3.2.2.1 RAS/RAF/ERK pathway 

The RAS/RAF/MEK/ERK pathway is hyperactivated by mutations in RAS or RAF. 

RAS mutations have been reported in up to 30% of all cancers (range of 10-90% 

depending on disease site) especially in lung, pancreatic and colon cancer. RAF 

mutations have been identified in 6-7% of human cancers with an increased 

prevalence in melanomas and thyroid cancers[190].  

To date, published data suggests that the RAS/RAF/MEK/ERK pathway can 

regulate Pol I transcription specifically through the activities of ERK (Figure 3). 

ERK has been shown to phosphorylate, and thus activate both: i) UBF resulting in 

an increased rate of Pol I transcription elongation[98, 191]; and ii) RRN3 

promoting Pol I initiation[192]. ERK also phosphorylates c-MYC promoting its 

stabilization[193], which may result in increased Pol I transcription. 

Interestingly MAPK activity was shown to induce TBP expression[194], which 

may lead to increased levels of functional SL-1 and thus promotes Pol I 

transcription. This may be functionally relevant to cancer since increased TBP 

expression has been observed in a subset of colon carcinomas[194].  

 

3.2.2.2 PI3K/AKT/mTOR pathway  
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Common PI3K/AKT/mTOR pathway mutations or amplifications found in cancer 

include those of the PIK3CA catalytic subunit for PI3K, which are more prevalent 

in breast, colorectal, glioblastoma, ovarian and prostate cancer[195, 196]. 

Alternatively PTEN, which negatively affects the pathway, expression is reduced 

in a broad range of cancer types, including breast, prostate, renal cancer and 

approximately 30-50% of melanomas[195]. Furthermore, the pathway is 

constitutively activated in cells transformed by dysregulation of receptor 

tyrosine kinases. AKT, 4EBP1, eIF4E, Rheb and S6K1 have all been reported as 

overexpressed in a subset of cancers. Surprisingly there are few reported cases 

of mTOR mutations[195, 197, 198].  

 

The PI3K/AKT/mTOR pathway, like ERK, modulates the phosphorylation and 

activity of critical Pol I components (Figure 3). For example S6K1, downstream 

of mTOR, was shown to indirectly regulate phosphorylation of the UBF acidic tail 

thus enhancing its ability to activate Pol I transcription[199]. mTORC1/S6K 

signaling may also phosphorylate, and thus activate, RRN3 on residue serine 

44[200]. Increased expression of PTEN was shown to repress Pol I transcription 

by selectively dissociating the SL-1 complex, thus reducing SL-1 occupancy on 

the rDNA promoter[201]. More recently AKT was shown to potently activate Pol 

I transcription at multiple stages, including transcription initiation, elongation 

and cotranscriptional processing[202]. Moreover, AKT activity cooperates with 

c-MYC to promote Pol I transcription. AKT inhibition in a model of Burkitt 

lymphoma promoted apoptosis[202], suggesting that decreased ribosome 

biogenesis is likely to be a fundamental component of the therapeutic response 

to AKT inhibitors in cancer. The direct Pol I dependent targets of AKT are not 
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known but intriguingly at least part of its effect on rRNA synthesis is 

independent of mTORC1[202].   

 

3.2.2.3 Co-regulation by the RAS and PI3K pathways 

In some cases, signaling down the RAS/RAF/MEK/ERK and PI3K/AKT/mTOR 

cascades converge to regulate Pol I transcription leading to cancer. The HER2 

and EGF receptors themselves are also subject to amplification and activating 

mutation in cancer[190, 195, 197, 203].  The overactivity of these receptors can 

"hyperactivate" the RAS and PI3K pathways resulting in the stimulation of rDNA 

transcription.   

 

Both the ERK and PI3K signaling cascades can also signal to ribosomal S6 kinase 

2 (RSK2) and c-jun N-terminal kinase (JNK), which have also been implicated in 

cancer development although their specific role requires further verification. 

RSK2 was shown to increase proliferation and anchorage independent 

transformation in mouse skin epidermal cells[204] and to play a role in 

mediating FGFR-3 dependent transformation of hemopoietic cells[205] 

(reviewed in [206]). JNK is downstream of MAPK (MKK4/7) and PI3K/RAS/RAC 

and is predominantly activated by stress. JNK plays a role in development, 

apoptosis, growth, inflammatory and immune responses, which are all processes 

regulated in cancer development and progression. JNK expression or activity has 

been shown to be upregulated in retinoblastoma, melanoma, breast carcinoma, 

invasive ovarian cancer and downregulated in colorectal cancer although the 

mechanism of action mediating this phenotype is not clear (reviewed in [207]). 

With respect to Pol I transcription, RSK2 phosphorylation and activation of 
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RRN3 stimulated Pol I activity[192]. In contrast, JNK dependent phosphorylation 

at threonine 200 inhibited RRN3 activity by impairing the interaction between 

RRN3, Pol I and SL-1[2] (Figure 3).  

 

3.2.2.4 Other cancer associated signaling pathways 

In addition to the RAS and PI3K pathways, signaling cascades involving CK2, 

CDK2, CDK4, AMPK and ATM are also consistently dysregulated in cancer and 

regulate Pol I transcription control.  

CK2 is a heterotetramer composed of two catalytic and one regulatory subunit, 

which mediates phosphorylation of over 300 substrates[208]. Signaling 

pathways modulated by CK2 include PI3K, NF B, Wnt, PTEN[209] and more 

recently the Hh/Gli signaling pathways[210]. These pathways are involved in the 

regulation of cellular proliferation, survival and the DNA damage response[208]. 

The level of CK2 in normal tissues is tightly regulated[211, 212], however, its 

overexpression or increased activity has been reported in many cancers, 

including leukemia and solid tumours such as prostate and colorectal cancer[1, 

208]. Moreover, CK2 expression/activity was shown to correlate positively with 

malignant transformation and aggressive tumour behavior. A number of CK2 

inhibitors have demonstrated a therapeutic activity in a wide range of human 

cancer cell lines[213]. The highly selective, small-molecule inhibitor, CX-4945, 

has shown positive results in Phase I trials targeting multiple cancer types[214, 

215]. CK2 regulates Pol I transcription via two mechanisms (Figure 3): i) CK2 

copurifies with and phosphorylates Pol I subunits; and ii) CK2 phosphorylates 

Pol I associated proteins including UBF, RRN3, SL-1, Topoisomerase IIa, 

nucleolin and NPM[1, 216, 217]. CK2 phosphorylation of the transcription 
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initiation factor RRN3 at serines 170 and 172 inactivates RRN3, and triggers the 

release of RRN3 from Pol I after transcription initiation, which, in mammals is 

thought to be essential for transcription elongation[218], although studies from 

yeast suggest that dissociation of RRN3 from the Pol I holoenzyme is not 

required for efficient rDNA transcription[219].  

 

The CDKs, cyclins and CDK inhibitors are key elements in the regulation of the 

cell cycle and thus the control of cell fate and differentiation[168, 220]. For 

example, G1 to S transition requires CDK2 and CDK4 with their cyclin partners, E 

and D1 respectively. One role for these kinases is the phosphorylation and 

inactivation of pRb, thus permitting E2F-mediated transcription which is 

essential for DNA replication[220]. This process is highly regulated by the CDK 

inhibitors p16INK4, p21CIP1 and p27KIP1[220]. With respect to cancer, CDK2 

expression is frequently upregulated in a wide array of cancers in particular 

melanoma, head and neck cancer and cervical cancer[90]. Moreover, 

overexpression of CDK4 has been reported in liposarcomas, oral squamous cell 

carcinoma, pancreatic, lung and nasopharyngeal cancer[221-224].  

 

Both CDK2-cyclin E and CDK4-cyclin D phosphorylate UBF at serine 388 and 484 

respectively, both phosphorylations are believed to be required to maintain UBF 

activity (Figure 3) during cell cycle progression[225, 226]. CDK2-Cyclin E was 

also reported to phosphorylate RRN3 at serine 44[2].  Despite these 

observations, the specific contribution of CDK2 and CDK4 regulation of Pol I to 

malignancy has not been defined. However, a recent study demonstrated that 

selective ablation of CDK2 activity disrupted the growth of nontransformed 
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mouse embryonic fibroblast (MEFS) and human colon cancer cells. Consquently 

the authors proposed that CDK2 is not dispensable for proliferation in normal or 

malignant cells as previous suggested[227]. Although not formally demonstrated, 

it is possible that the control of Pol I is critical for CDK2 regulation of cell survival. 

 

AMP-activated protein kinase (AMPK) is a master regulator of energy 

homeostasis, which modulates heavily energy-dependent processes such as 

ribosome biogenesis. Thus AMPK is activated by energy deficiency and as a 

result shuts down high-energy dependent pathways (reviewed in [228-230]). 

AMPK is overepressed in ovarian carcinomas[231] and endocrine related 

cancers[228]. The involvement of AMPK in cancer is controversial, some studies 

suggest that it acts as a tumour suppressor or as an oncogene depending on the 

cellular context[232, 233]. In terms of Pol I transcription, phosphorylation of 

RRN3 at residue serine 635 by AMPK impaired the interaction of RRN3 with SL-1 

(Figure 3)[234]. Thus, AMPK adapts rRNA synthesis to nutrient availability and 

the cellular energy status, two processes integral to tumor development and 

survival. 

  

Finally there are links emerging between the DNA damage response and Pol I 

transcription mediated via ATM signaling[235]. Genomic instability is a 

persistent feature of cancer cells, driving the accumulation of oncogenic 

mutations (reviewed in [236]). Conversely radiation and diverse genotoxic 

agents, which activate DNA damage pathways are still therapeutic mainstays of 

many cancer treatment regimens. The response to DNA damage is regulated 

predominantly by two distinct kinase signaling cascades, the ataxia 
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telangiectasia and Rad3 related (ATR)-CHK1 and ATM-CHK2 pathways, which 

are activated by single-stranded DNA and DNA double-strand breaks (DSB) 

respectively (reviewed in [235, [237]).  In response to DSBs, ATM functions to 

initiate DNA repair via homologous recombination by promoting formation of 

single-stranded DNA at sites of damage through nucleolytic resection[237]. 

Mutations in ATM cause Ataxia-telangiectasia, a rare autosomal recessive 

disorder characterized by progressive cerebellar ataxia, oculocutaneous 

telangiectasias, and variable degrees of immunodeficiency. Moreover somatic 

mutations in ATM lead to genomic instability and cancer predisposition[239]. Of 

the DNA damage response genes that function upstream of p53, ATM (which 

phosphorylates p53 in response to DNA damage) is the most frequently mutated 

in human cancers, particularly in lung adenocarcinomas, pancreatic cancer and 

certain hematological malignancies[235, 238-241]. With respect to Pol I, 

induction of DNA breaks leads to a transient repression in Pol I transcription 

mediated by ATM kinase activity and the repair factor proteins nijmegen 

breakage syndrome 1 (NBS1) and mediator of DNA damage checkpoint protein 1 

(MDC1). Specifically, DNA lesions interfere with the assembly of the Pol I 

initiation complex thus leading to a premature displacement of the elongating 

holoenzymes from the rDNA[234]. What is less clear is the target(s) in the Pol I 

apparatus modulated by the ATM/NBS1/MDC1-dependent pathways.  Similarly, 

to what extent repression of Pol I activity in cancer is associated with mutated 

ATM or Ataxia-telangiectasia and the extent to which this contributes to the 

disease etiologies[1, 242-244].  
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To further complicate the situation, some of the key regulators of Pol I 

transcription are also subjected to postranslational modifications other than 

phosphorylation, such as acetylation (Figure 3), mediated by factors also 

implicated in malignant transformation. For example, UBF is acetylated by the 

CREB-binding protein and p300 leading to increased rDNA transcription[245, 

246]. Conversely, UBF deacetylation by HDAC1 inhibits the ability of UBF to 

interact with PAF53, thus preventing the efficient assembly of functional Pol I 

transcription complexes[162, 247]. A further study suggested histone acetyl-

transferase (hALP) acetylates UBF and increased its association with PAF53 thus 

promoting rDNA transcription[248, 249]. The TAFI68 subunit of SL-1 is also 

acetylated, in this case, by PCAF and deacetlyated by SIRT1/mSir2 resulting in 

enhancement and repression of transcription respectively[250]. 

 

The above list of factors dysregulated in cancer and reported to modulate Pol I 

transcription is not exhaustive. A host of other factors have been implicated in 

regulating Pol I transcription and malignancy, including the proline, glutamate 

and leucine rich protein 1 (PELP1)[251], the histone methyltransferase G9a[52], 

nuclear actin, myosin (NM1)[244], PAF1C involved in Pol I and Pol II 

elongation[252, 253], components of the DNA repair and replication 

process[216]such as Topoisomerase I and II , Ku70/80, PCNA, TFIIH and CSB. 

Indeed, as our knowledge of the components and modulators of Pol I 

transcription increases so will the number of targets dysregulated in cancer. The 

major challenge will be to determine the extent to which Pol I regulation by 

these pathways contributes to their oncogenic signaling ability and whether any 
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Pol I components specifically modulated by these pathways might serve as 

targets for novel therapeutics to treat cancer. 

 

4. Targeting Pol I transcription as a therapy for disease 

 

The previous sections have summarized the plethora of data demonstrating that 

Pol I transcription of the rRNA genes is aberrantly regulated in a broad range of 

diseases associated with dysregulation of cellular growth, most notable muscle 

hypertrophy and cancer. This dysregulation is achieved either through direct 

mutations in components of the Pol I transcription apparatus, as found in 

ribosomopathies, or more commonly through direct or indirect effects of 

oncogenic and tumour suppressor signaling. With respect to the 

ribosomopathies, it is highly likely that, at least in some cases, lesions in the Pol I 

apparatus may be directly causative in the disease pathology[10, 29]. 

Unfortunately, in terms of therapy for ribosomopathies, short of gene therapy 

approaches to correct these lesions, there are no current treatments for these 

diseases. 

 

In contrast to ribosomopathies, to date, there is no direct evidence that the 

accelerated rDNA transcription associated with cancer is sufficient to initiate 

malignant transformation.  Demonstrating this has remained elusive as in the 

experimental setting it is difficult, if not impossible, to selectively drive ribosome 

biogenesis through the over-activation of a single rDNA transcription component.  

This is most likely because rDNA transcription is tightly coupled to downstream 

processes, such as rRNA processing, ribosome assembly and transport. Thus 
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“gain of function” at any single step simply leads to a further downstream step 

becoming rate limiting. The only factors that can affect a robust increase in Pol I 

activity and cause accelerated ribosome synthesis are broad regulators of cell 

growth, such as c-MYC and AKT. c-MYC and AKT activate multiple targets of the 

Pol I transcription system and also regulate downstream processes such as 

processing[133, 202]. However, these factors are also transforming due to their 

pleiotropic effects on many aspects of malignant transformation, in addition to 

their role in ribosome biogenesis.  

 

However, this does not mean that tumour cells cannot become ”addicted" to 

accelerated ribosome biogenesis and therefore selectively vulnerable to 

therapeutics that block or inhibit rRNA synthesis.  Indeed, historically there have 

been numerous clinically approved drugs whose therapeutic affect is, at least in 

part, mediated through disrupting ribosome biogenesis including actinomycin D, 

cisplatin, ironotican/topotican, mitomycin C, 5-Fluorouracil and temsirolimus 

(reviewed in [1]). Actinoymcin D intercalates GC-rich duplex DNA in the rDNA 

repeats.  Cisplatin crosslinks DNA with a high affinity for HMG-proteins, thus 

hijacking UBF from its site of action and inhibiting Pol I activity. There is also a 

tight correlation between UBF level and cisplatin sensitivity. Irinotican and 

topotican function by trapping Topoisomerase I to the rDNA resulting in DNA 

strand breaks thus mechanically prevents Pol I transcription. Mitomycin C 

alkylates guanosines thus inducing crosslinking in the rDNA while 5-Fluorouracil 

incorporates into the 47S pre-RNA thus inhibits processing. Further examples 

are rapamycin/temsirolimus, which inhibit rRNA synthesis by interfering with 

mTORC1 activity[199]. However, none of these drugs are selective enough for 
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Pol I transcription to allow definitive conclusions on how much their therapeutic 

effect is mediated via Pol I.  

 

An important recent advance in this respect has been the emergence of the first 

small molecule inhibitors, which preferentially target Pol I transcription. The 

first of these was CX-3543 (quarfloxin), which disrupts nucleolin/rDNA G-

quadruplex complexes thus inhibiting Pol I transcription and inducing apoptotic 

death of cancer cells[254]. The next generation of these targeted inhibitors 

includes the small molecule, CX-5461, which specifically prevents SL-1 binding 

to the rDNA promoter resulting in potent inhibition of Pol I transcription[23]. 

Building on this data, the same group used CX-5461 and genetic approaches to 

provide unequivocal evidence that accelerated rDNA transcription and nucleolar 

integrity are necessary for oncogenic activity in hematologic tumor cells[22]. 

Furthermore, they demonstrated that Pol I transcription could be selectively 

targeted in vivo to therapeutically treat tumors in both genetically engineered 

and xenograft models of lymphoma and leukemia through the activation of p53-

dependent apoptosis, while sparing normal cells[22]. Intriguingly, the induction 

of p53 mediated apoptotic death of the tumor cells was rapid, occurring within 

hours of treatment as a result of nucleolar stress and was independent of 

changes in total ribosome levels or protein translation. This later observation is 

important as it demonstrates that Pol I transcription and nucleolar integrity are 

required for the survival of certain tumour cells, independent of their function in 

regulating ribosome levels, protein translation and proliferative growth. These 

findings lend strong support for the evolving paradigm of the nucleolus being a 

key regulator of the biology of the cancer cells distinct from its role in 
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determining the abundance of ribosomes[255].  

 

A number of important questions about the concept of targeting Pol I in disease 

arise from the Pol I inhibitor studies. Firstly, what predicts sensitivity to 

selective Pol I inhibition? The malignant B cells underwent apoptosis in response 

to Pol I inhibition, but normal B cells did not; Why?[22]. In the same vein, while 

hematologic malignancies appear to be universally sensitive to Pol I inhibition, 

which is dependent on a functional p53 pathway, the sensitivity of solid tumours 

to CX-5461, is more variable and not p53 dependent[23]. One possibility is that 

hematologic malignancies have a unique nucleolar biology that makes them 

extremely sensitive to induction of p53-mediated apoptosis following inhibition 

of Pol I transcription. This is consistent with the observation that mutations in 

genes encoding Rps mediate reduced ribosome biogenesis and activation of p53 

which is a common theme among bone marrow failure syndromes such as 

Diamond Blackfan Anemia and the acquired 5q-myelodysplastic syndrome 

which also exhibit increased cancer susceptibility (Table 1).  

 

An equally interesting question is what confers the pre-existing or acquired 

resistance to Pol I inhibitors. Prolonged dosing of CX-5461 in mice bearing E -

MYC lymphomas resulted in a period of disease remission but the mice 

eventually relapse due to acquired resistance[22]. Understanding the 

mechanism behind such resistance should allow for the prediction of which 

cancers might respond to Pol I inhibition and aid in the rational design of 

combination therapies.  

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 55 

Currently data from murine models and xenograft studies in cancer suggest that 

patients with hematologic malignancies might represent a highly sensitive 

population for the first trial of CX-5461 in humans. Indeed, one of the most 

exciting developments for the Pol I transcription field with respect to human 

disease is the initiation of the first clinical trial of CX-5461 in lymphoma and 

leukaemia patients in Melbourne, Australia by the Peter MacCallum Cancer 

Centre in collaboration with Cylene Pharmaceuticals (RD Hannan, personal 

communication). The trial consists of a dose escalation phase and an expansion 

cohort at the maximum tolerated dose that will more robustly examine proof-of-

mechanism and predictive biomarkers. Optimistically, this may represent the 

dawn of a new age for targeting Pol I transcription in human malignancies.  

 

5. Summary and Perspectives  

Ribosome biogenesis is fundamental for cell growth, proliferation and survival. 

However, it is now becoming clear that deranged ribosome synthesis and 

function underlies a growing list of ribosomopathies that often result in 

catastrophic outcomes for patients. These syndromes are due to germline and/or 

somatic mutations, and include Treacher Collins and Shwachman-Diamond 

syndrome. While deranged rDNA transcription almost certainly drives Treacher 

Collins syndrome, the diverse phenotypes observed with other ribosomopathies 

specifically associated with defective Pol I transcription, and potentially 

additional extra-ribosomal effects of the mutated genes involved, means that the 

direct role of the altered Pol I transcription remains to be elucidated. Strikingly 

however, ribosomopathies share a number of common symptoms including bone 

marrow failure, hematological dysfunction, immune abnormalities, cranio-facial 
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defects, premature aging and cancer predisposition[4, 24]. This commonality of 

symptoms is highly supportive of the importance ribosome dysfunction plays in 

these diseases. While the underlying mechanisms remain elusive, it seems likely 

that they are associated with cell type specific effects on nucleolar surveillance 

pathways and changes in translational profiles. Intensive efforts are being made 

to define these mechanisms and hopefully these will provide at least partial 

treatment options for these severe disease syndromes.  

 

It is also clear that Pol I transcription is consistently dysregulated in a wide 

range of diseases associated with maladaptive growth including pathological 

muscle hypertrophy and cancer.  In these diseases altered Pol I transcription is 

achieved through direct modulation by oncogenes, tumor suppressors (eg., c-

MYC, p53 and pRb) or via altered tumour signaling pathways.  While tumour 

signaling has been the focus of considerable attention by pharmaceutical 

companies, due to their broad effects on a multitude of cellular processes it has 

not been possible to determine the precise contribution, if any, that deranged Pol 

I transcription makes to the disease phenotype. However, the recent discovery of 

selective, small molecule inhibitors of Pol I provides an unheralded opportunity 

to probe the relationship between deranged Pol I transcription and disease. In 

particular the demonstration that inhibitors of Pol I can selectively kill cancer 

cells provides an exciting new class of anti-neoplastic drugs that may 

significantly advance cancer treatment[22]. In particular, hematologic cancers 

driven by oncogenes, such as c-MYC, that are addicted to dysregulated ribosome 

biogenesis are often associated with poor prognosis, represent therapeutic 

opportunities for inhibitors of Pol I transcription. 
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Of particular relevance to understating the role of Pol I in human disease is the 

accumulating evidence supporting an evolving paradigm of the nucleolus being a 

key regulator of cellular biology, distinct from its role in determining the 

abundance of the ribosomes[255]. These functions notably include titration of 

oncogenes and tumor suppressors (eg., pRb-MDM2-p53: the nucleolar 

surveillance pathway), and also the sequestration and regulation of numerous 

other factors with critical roles in cellular homeostasis [256-259]. Thus it follows 

that as the assembly of the nucleolus is dependent on ongoing rDNA 

transcription, any perturbations in Pol I transcription associated with disease, 

has the potential to directly contribute to the disease pathology through the 

disruption of extra-ribosomal functions of the nucleolus[128]. Defining precisely 

the relationship between nucleolar homeostasis in normal and diseased cells is a 

major challenge for the future. Importantly, recent advances in defining the 

nucleolar proteome in response to various stresses will facilitate the 

advancement of this area of research (reviewed in [260]).  

 

It is evident from the application of deep sequencing to specific disease genomes, 

that the list of factors directly implicated in Pol I transcription and are 

dysregulated or subject to mutation in disease is going to increase. In particular, 

it is becoming increasingly apparent that genetic lesions in factors which 

mediate chromatin reading, writing or assembly, plays significant roles in the 

etiology and maintenance of a wide variety of hematologic and solid cancers, 

plus genetically inherited disease[261]. Along with chromatin modifiers that 

seem to preferential associate with Pol I[236, 262, 263], there is an expanding 
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list of  Pol II related chromatin modifiers that also directly interact with, and 

control the epigenetic status of the Pol I transcription apparatus[236, 262, 263]. 

Indeed, the observations in yeast and Drosophila that the level of epigenetic 

rDNA silencing has profound effects on genome wide heterochromatin, genomic 

stability and aging (reviewed in [69, 259, 264, 265]) suggests that deranged Pol I 

transcription may contribute in a much broader sense to disease and function at 

multiple levels including: rDNA transcription and proliferative capacity; extra-

ribosomal functions of the nucleolus; and genome wide effects on the 

heterochromatin.  

 

In summary, with a few exceptions, the last two decades of study into Pol I 

transcription have largely focused on purified in vitro systems and cultured cells 

to dissect the molecular mechanisms by which rDNA transcription is regulated.   

These studies have been essential to lay a basic framework for understanding 

Pol I transcription in eukaryotic cells. However, the challenge for the future is to 

translate this fundamental knowledge into cell and tissue biology based 

approaches to understand the role PoI I transcription plays in cellular 

homeostasis and the consequences when it is perturbed during diseases such as 

cancer.  To achieve this will require increased efforts in the design and 

application of selective inhibitors and conditional genetic approaches that allow 

specific steps in Pol I transcription and ribosome biogenesis to be manipulated in 

model systems that faithfully recapitulate their human disease counterparts.   
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Table 1 
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Highlights 
 dysregulation of RNA Polymerase I transcription and ribosome biogenesis is 

linked to a broad range of human diseases 

 ribosomopathies, hypertrophy, atrophy and cancer are all associated with 

dysregulation of RNA polymerase I transcription 

 possible therapeutic approaches to treat patients with dysregulated RNA 

Polymerase I transcription. 
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