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Abstract

Background

N-methyl-d-aspartate receptors (NMDARs) are ionotropic channels gated
by the excitatory amino acid, glutamate. They play an essential role in synaptic
plasticity, enhancing synaptic signal strength through long-term potentiation
(LTP), a process thought to underlie learning and memory. At the synapse,
NMDARs mediate neuroprotective signaling pathways including the regulation of
calcineurin activity and inhibition of glycogen synthase kinase (GSK3). Under
pathological conditions the prolonged and enhanced exposure of NMDARs to
glutamate results in an excessive flux of calcium (Ca*") into the cell. This triggers
a range of responses resulting in cell death, including increased oxidative stress,
inappropriate activation of proteases such as calpain, dysregulation of Ca*'-
related pathways, mitochondrial damage and an apoptotic cascade. This process,
termed excitotoxicity, contributes significantly to the acute neurodegeneration
in ischemia and traumatic brain injury (TBI) and is believed to underlie the
chronic neurodegeneration in Huntington’s disease (HD) and more recently,
Alzheimer’s disease (AD).

Alzheimer’s disease (AD) is characterised by progressive cognitive
impairment resulting from synaptic degeneration and neuronal loss. A proposed
key event in its aetiology is the formation of oligomeric species of the beta
amyloid (AB) peptide. Recent work has demonstrated that the soluble AB
oligomers induce excessive calcium influx across the cell membrane resulting in
neuronal death by excitotoxicity. It is believed these toxic species of AP
oligmomerise in the synaptic cleft between neurons in the hippocampus due to
high levels of zinc and copper. These metals are released upon NMDAR activity
from the pre- and post-synapse, respectively and can bind AR, increasing its rate
of oligomerisation. Subsequent excitotoxic interactions between AB and
NMDARs are copper (Cu**)-dependent. In contrast, Cu** is also neuroprotective
against excitotoxicity demonstrating the crucial role of metal homeostasis in

specific regions of the brain affected by neurodegenerative diseases.




Objectives

This PhD project has sought to determine the contribution of metals in
excitotoxicity and whether modulating their levels could provide a mechanism to
protect against this form of cell death. As excitotoxicity is strongly implicated in
the aetiology of Alzheimer’s disease subsequent research aimed to describe the
involvement of excitotoxicity in AB-mediated cell death in cortical neural model
and to establish whether metals played a necessary role in this process. The final
goal of the research presented here was the development of a neural-based
assay, which could be employed to screen various forms of AB to detect more

toxic forms of the peptide.

Results

In experiments with the metal chaperone PBT2, a therapeutic in clinical
trials for chronic neurodegenerative diseases, neurons were protected against
excitotoxic cell death by pretreatment with the drug. Subsequent experiments
demonstrated that this was a metal-mediated effect that required zinc.
Pretreatment with this drug induced preconditioning in neurons by moderate
increases in intracellular levels of calcium that activated survival pathways and
inhibited activation of calcineurin and GSK3 preventing cell death.

In further investigations the parameters for AB-induced excitotoxicity in
cortical neurons were determined. In the presence of non-toxic levels of
glutamate, AR induced significant toxicity that was dependent on the presence of
metals, as demonstrated by metal chelation. These findings translated to the
development of a calcium flux assay, which provided a functional readout of AB
toxicity. Finally, this assay was validated by screening species of AB with varied

degrees of toxicity to neurons.

Conclusions

This work highlights the importance of metals in neurodegenerative
disease and demonstrates modulation of both Cu®* and zZn** levels in
hippocampal synapses provide valid targets for future therapeutic approaches by

preventing the formation of toxic oligomeric species. A concurrent finding has




been the identification of the parameters required for AB-induced excitotoxicity,
which provides the tools to screen an array of both in vivo and in vitro AP species
to determine their toxicity. This knowledge will enable targeted clearance of
these forms of the AB peptide, which, along with therapies preventing oligomer
formation, will show significant therapeutic affects in the treatment of

Alzheimer’s disease.
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1 INTRODUCTION

1.1 Clinical Presentation of Alzheimer’s Disease

1.1.1 Epidemiology of Alzheimer’s disease

Alzheimer’s disease (AD) is the leading cause of dementia with the
number of people affected doubling every 5-year interval beyond 65 years of age
(Ferri et al., 2006). It is estimated that as of 2013 there were 44.4 million cases
worldwide in 2013 and this number increasing to 75.6 million in 2030, and 135.5
million in 2050 due to longer life expectancies and demographic changes. The
dramatic increases in AD cases will have significant financial ramifications with
the resulting costs associated with disease estimated at USS604 billion per year
(World Alzheimer Report 2013). Recent data from the UK has emphasized the
significant cost to society of AD, when considering the costs of healthcare, social
care and the significant proportion of unpaid work by carers the average cost is
£32,250 per person or £26.3 billion per year (Prince et al., 2014). To this end the
research and development of greatly improved diagnostic tools and therapeutics

for AD is of upmost importance.

1.1.2 Symptoms, stages and detection of Alzheimer’s disease

Historically AD was defined by the three progressive stages; mild AD (lasts
2 - 4 years), moderate AD (lasts 2 - 10 years) and severe AD (1 - 3+ years). Since
the early 1980s the progression of AD has also been described in seven stages by
the Global Deterioration Scale (Reisberg et al., 1982). Both these classifications
and the criteria for the clinical diagnosis of AD (McKhann et al.,, 1984) have
remained until recently when the National Institute of Aging and Alzhiemer’s
Associations (U.S.) sought their revision to account for the advances in research

over the preceding three decades (McKhann et al., 2011). Results from



biomarkers discovered in the interim as well as genetic mutations leading to
early onset familial AD were now included in diagnosis. Today AD is classified by
the categories of preclinical (Sperling et al., 2011), mild cognitive impairment
(MCI) due to AD (Albert et al.,, 2011), mild, moderate and severe AD. In both
preclinical and MCI stages of AD symptoms do not or only differ slightly from the
slower mental processing and mild memory impairment accompanying normal
aging. Biomarkers detected in the cerebrospinal fluid (CSF), or by Positron
Emission Tomography (PET) scans and structural MRI are highly correlated with
the neuropathological markers of AD (Clark et al., 2003; Strozyk et al., 2003;
Tapiola et al., 2009) and allow the detection of these prodromal AD stages (MD
et al., 2010) (Figure 1-1) In the most current research, data has been presented
demonstrating the ability to predict phenoconversion to amnestic MCl or AD in
normal older adults with greater than 90% accuracy using a panel of 10 lipid
biomarkers in the peripheral blood, all involved in cell membrane integrity
(Mapstone et al., 2014). Following this work a larger study has also identified a
panel of 10 biomarkers that correlated strongly with disease severity present in
the blood. This panel predicted conversion of MCl to AD with 87% accuracy (Hye
et al., 2014). As the present accuracies of both screens is approximately 90% and
the prevalence of AD in the population is considerably lower than this error, it
could actually lead to more false positives than real ones. It may be that the
significant impact these findings have is in the selection of candidates for clinical
trials where the population already has presented with memory complaints and
therefore prevalence of conversion from MCI to AD is significantly increased.

A common profile of people with mild AD is impaired episodic memory
and the ability to retain new information (Welsh et al.,, 1991). As the disease
progresses to moderate AD other cognitive, behavioural, and neuropsychiatric
deficits develop and difficulties performing activities of daily living occur.
Although moderate AD patients can be physically well their inability to perform
complex activities such as cooking, coupled with their aggressiveness and

agitation means they are reliant on caregivers during this stage. In the final
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Abnormal

—— Amyloid-B (CSF/PET)

—— Synaptic dysfunction (FDG-PET/MRI)
—— Tau-mediated neuronal injury (CSF)
= Brain structure (volumetric MRI)
= Cognition

= Clinical function

Normal Preclinical MCI Dementia

Clinical Disease Stage

Figure 1-1 A hypothetical model of biomarkers in preclinical stage of AD. It parallels the
hypothetical pathophysiological sequence of AD. Biomarkers change from maximally normal (y
axis) to maximally abnormal as a function of disease stage (x axis). The two key clinical indicators
of disease, cognition and clinical function, are also illustrated. Adapted originally from Cliff Jack
(Sperling et al., 2011).

severe stage of AD nearly all cognitive functions are impaired, patients lose the
ability to communicate, recognize family and basic motor skills. At the end stage
impairment of swallowing can result in pneumonia due to food and beverage in
the lungs and is the most common cause of death along with urinary tract

infections and falls (Staff, 2013).

1.1.3 Risk factors for Alzheimer’s disease

With the distinct lack of drugs that alter the progression of AD, modifying
risk factors provides an effective strategy to minimize the effects of the disease.
To delay the onset by one year could decrease AD prevalence by nearly 12
million in 2050 based on projections by Brookmeyer et al. and revised numbers
of AD cases as of 2013 (Brookmeyer et al., 2007). At present a person’s age is the
strongest correlate with AD but there also exists an extensive field of research in
to modifiable risk factors and their association with the disease. From metadata
analysis of factors that increase the risk of AD it can be seen that those involved
with cardiovascular disease including diabetes, midlife hypertension and midlife

obesity all have significant effects (Whitmer et al., 2005; Beydoun et al., 2008; Lu



et al., 2009). Lifestyle factors including physical inactivity and smoking have also
been found to increase the risk of AD (Peters et al., 2008). This is despite initial
contrary findings for smoking and AD that were in line with the known effects of
nicotine on enhancing learning and memory (Couey et al., 2007). The risk of AD
can also be affected by cognitive factors with both depression and a low
education significantly increasing the risk of AD. Meta analysis of traumatic brain
injury (TBI) patients has established an increased risk of AD, which is higher
among men and supported by increased levels in key phenotypes of AD in the
post-mortem brain (Fleminger et al., 2003; Magnoni and Brody, 2010). Protective
factors have been also observed with diet, physical activity and enhancing
cognition through a Mediterranean diet, exercise and stimulating leisure
activities, respectively, leading to a decreased risk of AD (reviewed by (Mayeux
and Stern, 2012). If modifiable risk factors are to have an impact on the financial
burden of disease it is essential that their individual prevalence in the population

are accounted for to maximize effect (Barnes and Yaffe, 2011).

1.2 The Hallmarks of Alzheimer’s Disease

To date, a definitive diagnosis of AD requires post-mortem
histopathological confirmation of two cerebral markers; intracellular
neurofibrillary tangles (NFTs) and extracellular amyloid plagques (McKhann et al.,
1984), although the recent discovery of biomarkers involving PET imaging and

cognitive tests has allowed diagnosis of probable AD.

1.2.1 Neurofibrillary tangles of Tau

NFTs were first described as intraneuronal, lamentous aggregates in the
perikarya and processes of neurons (Alzheimer et al., 1995). NFTs were later
found to consist of Tau, a microtubule-associated protein, highly expressed in
the nervous system, that is converted in to paired helical filaments that self
assemble as a result of abnormal phosphorylation (Figure 1-2). This

hyperphosphorylation of Tau, by kinases, such as GSK3, leads to destabilized
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microtubules that impair axonal transport and neuronal function (Lee and
Trojanowski, 1992). Unlike the widely varied AR plaque distribution in AD, NFT
displays characteristic distribution patterns that correlate more closely with
disease severity and are used in the diagnosis and staging of AD (Braak and

Braak, 1991).

Figure 1-2 Amyloid plaques and neurofibrillary tangles. Extracellular plaques of amyloid,
consisting mainly of the AP peptide and intracellular neurofibrillary tangles of Tau as visualised by
immunohistochemistry and silver staining, respectively.

1.2.2 Beta amyloid

In Alois Alzheimer’s seminal paper in 1906 he first described the “milary
bodies” in the post mortem brain of the patient Auguste D. which is now
considered one of the two key phenotypes of AD (Figure 1-2) Isolation and
purification of the major subunit of amyloid plaque cores and blood vessel
deposits followed by amino acid sequencing led to the discovery of a highly
aggregating peptide of 4.5 kDa initially named Amyloid A4 protein (Glenner and
Wong, 1984; Masters et al., 1985a; 1985b) and now referred to as beta amyloid
(AB) due to its partial B-pleated sheet structure. Plaques in the AD brain are

primarily composed of AB between 38 and 43 residues long. The two major



forms of AB present in the neuritic plaques are the longer AB1-42 (AB42) species
that is the major and more toxic product and AB1-40 (AB40). The AB42 peptide
has a higher propensity to aggregate which is attributed to the two additional
hydrophobic residues an the C-terminal end (Li et al., 1999; Kim and Hecht,
2005). Currently PET imaging of these plaques is possible by the use of a
radioactive analog of Thioflavin T, called the Pittsburgh B compound (Klunk et al.,
2004), which distinguishes neuritic from diffuse plaques based on their forming

beta-sheet structures (Figure 1-3).

6% CR @-ﬁ%

MCI- MCI+ MCI++ AD

Figure 1-3 PET images in the transaxial and sagittal planes of Logan distribution volumes (DVR) of
[11C]PiB in a normal control (NC), a [11C]PiB—positive NC (NC+), a [MC]PiB—negative MCI subject
(McCl-), [MC]PiB—positive (MCI+) and highly positive (MCl++) subjects and a [MC]PiB—positive AD
subject (AD). Adapted from (Mathis et al., 2007). Longitudinal studies with [11C]PiB PET scans as
well as MRI and neuropsychological examination have demonstrated a protracted preclinical
phase of AD of 17 years and as AD progresses, AR deposition slowed towards a plateau with
increasing AB burden (Villemagne et al., 2013).

This secondary structure of AR gives rise to the rapid aggregation of the peptide;
inhibition of the beta sheet structures reduces preformed amyloid fibrils and

their formation which prevents fibril-induced neuronal death (Soto et al., 1998).

1.2.3 The Amyloid precursor protein

In purification and identification of amyloid plaques it was noted that the
same pathology was present in aged individuals with Downs syndrome (Masters
et al., 1985b). Support for the argument that AB was a cleavage product of a
larger precursor protein of neuronal origin came when the amyloid precursor

protein (APP) gene was cloned from a cDNA library constructed from brain tissue
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with Downs syndrome (Kang et al., 1987). Concurrent genetic mapping linked
the AP peptide to chromosome 21 which explained the overexpression observed
in the tissue which was caused by the increased gene dosage from the
chromosome trisomy (Tanzi et al., 1987).

APP is an integral type | transmembrane protein with a single
transmembrane domain, a large extracellular domain, and a short cytoplasmic
tail (Figure 1-4). It has three isoforms from alternate splicing; APP695, APP751
and APP770 (Kang et al., 1987; Tanzi et al., 1988; Goate et al., 1991) that are
ubiquitously expressed in embryonic development and adult tissue (Lorent et al.,
1995). APP695 is major isoform in the brain with its expression mainly in
neurons, the highest levels of these are seen in regions that correlate with those
affected in AD, namely the hippocampus, cortices and cerebellum (Sola et al.,
1993). APP is a member of an evolutionary conserved gene family in mammals
that also includes the amyloid precursor-like proteins, APLP1 and APLP2 (Wasco
et al., 1992; 1993). Within this family a functional redundancy has been observed
with APLP2 and the remaining members. Studies of single knockout mice of each
gene and double knockout mice of APP/APLP1 exhibit only subtle phenotypes
compared with the lethality observed shortly after birth in the APLP2/APLP1 and
APLP2/APP double knockout mice (Koch et al., 1997; Heber et al., 2000). A
normal physiological role is yet to be fully elucidated for APP but it has been
implicated in a variety of cellular processes including synaptic adhesion, trophic
functions, axon remodeling, intracellular signaling and apoptosis (reviewed in
Muller and Zheng, 2012). An essential role in synaptic function has been
suggested by studies in APP knockout mice where impaired LTP and age-related
cognition were observed (Dawson et al., 1999). Finally a neuroprotective
function of APP was observed by its ability to protect against glutamate-induced
excitotoxicity in neurons (Mattson et al., 1993b), recent work has proposed that
this excitoprotective effect may result from the ability of APP to regulate

intracellular iron homeostasis (Duce et al., 2010).



1.2.4 Amyloidogenic APP processing

In the amyloidogenic pathway cleavage of APP occurs at the amino
terminus of AB by the PB-site APP-cleaving Enzyme (BACE), a [B-secretase
identified independently by four groups in the late nineties (Hussain et al., 1999;
Sinha et al., 1999; Vassar et al., 1999; Yan et al., 1999). The site of cleavage
appears to occur in specific cholesterol and sphingomyelin-enriched regions of
the outer leaflet of the lipid bilayer, termed lipid rafts with a separate pool of
APP outside of these rafts undergoing a-secretase cleavage (Ehehalt et al., 2003).
Following the production of a soluble amino terminal ectodomain (sAPPB) and a
membrane bound c-terminal fragment (C99) by BACE, subsequent
intramembrane processing by y-secretase of C99 produces AB and the AICD
(Haass, 2004) (Figure 1-4). Subsequently it has been shown that y-secretase is a
complex of four proteins; Presenilin (PS1 & PS2), presenilin enhancer-2 (PEN-2),
anterior pharynx defective 1 (APH1) and Nicastrin (NCT) with all component
proteins being required for proteolytic activity (Edbauer et al., 2003; Kimberly et
al., 2003; Takasugi et al., 2003). In non neuronal cell lines the a-secretase
pathway is dominant but due to high level expression of BACE, the products of
the amyloidogenic pathway are favoured in neurons (Simons et al., 1996; Kuhn

et al., 2010).

1.2.5 Non-amyloidogenic APP processing

The pathways believed be the non-toxic, physiological processing that
prevents AR formation, involves the cell surface cleavage of APP by a-secretases,
members of the ADAM family of zinc metalloproteases (Kuhn et al., 2010),
within the AB region (Sisodia et al., 1990), leading to a large soluble ectodomain,
termed soluble APP alpha (sAPPa) and a c-terminal fragment (C83) (Sisodia,
1992). Subsequent processing of the carboxy-terminal fragment by y-secretase

results in the production of p3, and the APP intracellular domain
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Figure 1-4 The Amyloid Precursor Protein processing and mutations associated with AD (A) APP amino acid sequence containing the AP peptide. The sequential
proteolysis of amyloid precursor protein (APP) by B-secretase rather an a-secretase followed by y-secretase generates AB, thought to be the underlying cause of
toxicity in AD. (B) Genetic mutations associated with familial AD (FAD). Mutations near the B and y-secretase cleavage sites increase AB production where those near
the a-secretase site inhibit a-cleavage or increase AB aggregation (Van Dam and De Deyn, 2006) with the exception of a rare protective Icelandic mutation at 673
(Jonsson et al., 2012).




(AICD) (Figure 1-4). The AICD has been proposed to act on transcriptional
regulation by analogy with the Notch protein and its intracellular domain, which
is known to translocate to the nucleus and affect gene transcription

(Selkoe and Kopan, 2003). Most recently the AICD has been linked to AB levels
through epigenetic regulation of two AB degrading enzymes, neprilysin and

transthyretin (Belyaev et al., 2010; Kerridge et al., 2014).

1.3 Genetics in AD

AD can be divided in to two major forms; familial (FAD) occurring prior to
65 years of age and sporadic for older patients. Whilst FAD can have a Mendelian
pattern of inheritance non genetic factors play a significantly more important

role in sporadic forms of AD.

1.3.1 Familial Alzheimer’s disease

Early onset or FAD accounts for up to 6% of AD cases and may include non
dominant forms of AD such as the apolipoprotein E4 allele or sporadic AD (see
section 1.3.2) unlike autosomal dominant forms of AD (ADAD) that make up less
than 1% of all AD cases (Bateman et al, 2011). In ADAD mutations occur in one of
three genes; PSN1, PSN2 and APP on chromosomes 1, 14 and 21, respectively
(Goate et al., 1991; Schellenberg et al., 1992; St George-Hyslop et al., 1992; Levy-
Lahad et al., 1995; Sherrington et al., 1995; 1996). APP mutations account for 10
- 16% of the mutations described with the majority of these mutations located
adjacent to the B and y-secretase cleavage sites and resulting in increased
production of AB. Internal mutations have also been described which result in
decreased a-cleavage and can increase AP aggregation, a process thought to
increase toxicity of the peptide (see Section 1.4.3) (Figure 1-4). Recently, a rare
protective mutation was discovered in a genetic screen of nearly 2000
Icelanders. The mutation, adjacent to the [-secretase site, causes an
approximate 40% reduction in AB levels (Jonsson et al., 2012)(Figure 1-4). PS1
mutations account for 30-70% of ADAD cases with PS2 mutations make up

approximately 5% of cases (Schellenberg et al., 1992; Raux et al., 2005; Ferri et
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al., 2006). Unlike APP these mutations are found throughout the presenilin genes
and result in an increase in the ratio of AB42 to AB40 which increases the
formation of toxic oligomeric species (Kuperstein et al., 2010) (see section 1.4.3).
The prognosis of a child with an affected parent is poor with a 50% chance of

inheriting the mutation and in doing so almost certainly developing the disease.

1.3.2 Sporadic Alzheimer’s disease

Also referred to as late onset AD (LOAD), the majority of sporadic AD
cases are patients over 65 years of age. Apolipoprotein E (ApoE) is by far the
strongest genetic risk factor associated with sporadic AD and was implicated in
AD through an association with AB and an overrepresentation of the ApoE4
allele, one of three ApoE alleles, when compared with control subjects (Corder et
al.,, 1993; Strittmatter et al., 1993). The increase in risk of AD is three to eight
times greater with one or two copies, respectively, when compared with a
homozygous ApoE3 carrier (Farrer et al., 1997). Of the remaining two isoforms;
ApoE2 and ApoE3, a genetic correlation has implicated ApoE2 as a protective
isoform in AD (Corder et al., 1994; Royston et al., 1994). As well as the ApoE
gene, large genome-wide association studies (GWAS) have identified nine other
candidate genes that contribute to AD risk; CR1, BIN1, CLU (previously APO)J),
PICALM, MS4A4/MS4A6E, CD2AP, CD33, EPHA1, SorLA and ABCA7 (Harold et al.,
2009; Lambert et al., 2009; Seshadri et al., 2010; Hollingworth et al., 2011; Naj et
al.,, 2011). Studies of genetics and environmental effects on AD in monozygotic
and dizygotic twins have predicted the genetic contribution to AD risk to be as
high as 79% (Gatz et al., 2006). Given that the collective contribution to the
genetic variance in AD of the genes described above is only 50% further research

is still required to identify the additional genes involved (Kamboh et al., 2012).
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1.4 The Role of Beta Amyloid in Alzheimer’s Disease

1.4.1 A functional role of A

Amyloid burden is only weakly related to cognitive decline (Villemagne et
al., 2011) and although AD patients with low burden are rare, plaques are found
in healthy controls without any overt cognitive impairments (Villemagne et al.,
2013). These discoveries are central in alternate explanations for a physiological
role of AB. One such example proposes that the formation of plaques is not the
initiating pathogenic event but instead a secondary protective response to cell
death (Lee et al., 2007). A less controversial hypothesis, with strong support in
the literature, contends that toxicity is observed when AB is in excess but it
demonstrates neurotrophic effects at low concentrations. Supporting this were
findings that inhibition of endogenous AB by B and vy-inhibitors and
immunodepletion resulted in toxicity. Moreover, this toxicity could be rescued
by co-treatment with picomolar AB concentrations (Plant et al., 2003). Other
physiological roles attributed to AP have included effects on cholesterol
transport (Igbavboa et al., 2009), antimicrobial effects (Soscia et al., 2010) and
modulating synaptic activity. In the latter it has been proposed that an activity-
dependent AB production results in synaptic depression and provides a negative
feedback on neuronal hyperactivity (Kamenetz et al.,, 2003). A causal link
between synaptic activity and AB production is supported by brain imaging
studies that demonstrated a correlation between the metabolic activity in young

adults and amyloid deposition in elderly patients with AD (Buckner, 2005).

1.4.2 AB clearance

Along with overproduction of AR, an inability to clear the physiological
levels of AB resulting from APP processing from the interstitial fluid surrounding
neurons has also been strongly implicated in AD. In the first in vivo studies of AB
production and clearance rates in the central nervous system (CNS) it was
estimated the production rate of 7.6% per hour was exceeded by the clearance
rate of 8.3% per hour (Bateman et al., 2006). Subsequent research from the

same group found the clearance rate to be impaired for both AB42 and AB40 in

12
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CSF in Alzheimer’s disease compared to controls with no observable difference in
production between the two groups (Mawuenyega et al., 2010).

Evidence that the inhibition of AP clearance may be receptor-mediated
across the blood brain barrier (BBB) was provided by research implicating the
low-density lipoprotein receptor-related protein (LRP) and the receptor for
advanced glycation end products (RAGE). These receptors are the major
transporters from brain to blood and blood to brain, respectively (reviewed in
Deane et al., 2009; 2009). LRP binds AP directly and preferentially effluxes AB42
over AB40 due to high beta-sheet composition in its secondary structure. Ap42
also promotes LRP degradation at pathological levels (>1 uM) (Deane et al.,
2004). As described previously, risk factor genes associated with AD risk are not
all linked to AB but those that have the highest associated risk and have been
shown to affect clearance. As is the case for the ApoE and ABCA7 genes with
ApoE also being linked to inhibition of LRP1 and subsequent decrease of
receptor-driven clearance of AB (Jiang et al., 2008; Kline, 2012).

Proteolytic degradation provides another mechanism in which AR is
removed from the brain. Key amyloid clearing proteases involved in this process
include insulin degrading enzyme, neprysilin and transthyretin and all been
implicated in AD (reviewed in Nalivaeva et al., 2014; 2014).

A third mechanism, recently described by Nedergaard and colleagues,
could have a substantial impact on the progression of disease. It has been
understood for some time that the brain clears AB to the CSF from the
parenchyma by bulk flow along the perivascular interstitial (ISF) drainage
pathway. A failure of this pathway has been implicated in AD as well as Cerebral
Amyloid angiopathy (Weller et al., 2007). This recent pivotal research has utilised
two-photon microscopy of fluorescent tracers allowing real-time three-
dimensional imaging of AB clearance through a paravascular pathway (lliff et al.,
2012). In this and subsequent work, a system has been described in which
interstitial solutes are cleared by para-arterial influx of CSF in to the parenchymal
space resulting in efflux of ISF along paravenous drainage s. This system has been
termed the ‘Glymphatic system’, due to the requirement for astrocyte-mediated

water movement between the influx to efflux pathways. The activity of the
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system is far greater during sleep where the brain’s interstitial space is increased
60% allowing a substantial increase in the CSF-ISF exchange. This exchange has
been shown to result in two-fold increase in the ability of the brain to clear Ap.
This is not due to circadian rhythm as anesthesia increases glymphatic activity to
the same extent as sleep but involves adrenergic signaling as in peripheral
tissues (Xie et al., 2013).

Given that age remains the strongest correlate with disease and the
ability to fall asleep and remain so decreases significantly after the age of 60
(Ohayon et al., 2004) suggests a potential role for sleep in AD and is supported
by the diurnal characteristics of the glymphatic system. A review of multiple
cross sectional studies indicates that sleep disruption can result in impaired
cognition providing support of a link between the activity of the glymphatic
system and AD (Lucey and Bateman, 2014) but sleep disturbances have also been
implicated as a symptom of AD as opposed to initiating the disease. Levels of ISF
AB are regulated by neuronal activity and sleep/wake cycle. Studies in AB over-
expressing mice showed marked deterioration of their normal sleep cycle
following Abeta plaque formation and loss of diurnal fluctuations of AB levels in
the ISF that was rescued by active immunisation. This effect on the sleep-wake
cycle was also seen in the CSF of young adults with presenilin mutations and
together suggests that in the prodromal stage of AD, AP aggregation affects the
sleep pattern which in turn results in impaired clearance of AR accelerating the

disease. (Roh et al., 2012).

1.4.3 Soluble AB Oligomers

As discussed previously AP is generated from normal physiological
processing of APP. In familial AD the mutations described all have the effect of
increased production of toxic AB, described above and also highlighted by
research in ADAD cases with PSN mutations. Measurement of CSF showed
increases in AB42 to AB40 production and turnover correlates with plaque
formation and reduced A in the CSF compared with healthy controls (Bateman

et al., 2012; Potter et al., 2013). Whether it is evidence of overproduction of AB
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or diminished ability to clear the peptide that underlies the aetiology of AD is still
not fully understood but together they both strongly support the role of AB in
the toxicity of AD.

In the Alzheimer’s research field today a wide array of AP species have
been studied in both in vitro and in vivo models of AD and in the last fifteen
years it has become evident that it is the soluble oligomeric species and not the
fibrillar form found in plaques is most likely responsible for its toxicity. This is
supported not only by the fact that soluble oligomers better correlate with
disease than insoluble fibrils and plaques (Lue et al., 1999; McLean et al., 1999)
but also that they’re more toxic (Deshpande, 2006; Lesné et al., 2008). Although
the exact mechanism of how AB causes toxicity is not entirely understood it has
been shown that AB’s toxicity is dependent upon its aggregation state. Soluble
oligomers are defined as AP assemblies that are not pelleted from physiological
fluids by high speed centrifugation (Haass and Selkoe, 2007). Early work on AB
analogues determined that only peptides that include part of the
transmembrane sequence form stable aggregates at pH 7.4 that are SDS-
resistant (Burdick et al., 1992). Structural-activity studies refined the region
required for stable aggregates to the highly hydrophobic 29 — 35 amino acid
region of AB and demonstrated that toxicity in neuronal cultures was dependent
on the formation of aggregates (Pike et al., 1993). Subsequent experiments with
synthetic AB peptides demonstrated that neurotoxicity is due to soluble,
prefibrillar forms of AB (Roher et al., 1996; Lambert et al., 1998; Hartley et al.,
1999). Further agreement that oligomeric species of AB are the toxic form in AD
comes from research showing levels of soluble AR and not plaques, consisting of
fibrillar AB in the human AD brain, strongly correlate with the severity of
dementia (McLean et al.,, 1999; Wang et al.,, 1999). Of the synthetic peptide
preparations APB-derived diffusible ligands (ADDLs) have been the most
extensively studied (Lambert et al., 1998). The molecular weights of these
preparations are consistent with oligomers ranging from trimers through to
24mers (Lambert et al., 1998; Gong et al., 2003). Memory loss is thought to be a
failure of the synapse caused by soluble AB (Lacor, 2004), by modelling synaptic

plasticity in vitro with hippocampal cells from rodents, it has been shown that
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ADDLs can inhibit long term potentiation (LTP), a model system for synaptic
strengthening and memory (Lambert et al., 1998; Walsh et al., 2002). Several
other soluble AB preparations have been described, these include prefibrillar
oligomers of approximately 80 kDa and generally termed ABOs (Kayed et al.,
2007). AB*56 (AP star 56) oligomers, named after their apparent size, were
purified from brains of transgenic mice and were shown to induce memory

impairment in young rodents (Lesné et al., 2006). Annular Protofibrils
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natively " o &
unfolded 499 ...
S ohomen o Toxicity in AD
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@ | low-n 6mer 12mer ADDLs
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Figure 1-5 AP Aggregation Pathways. Monomeric forms of AR, themselves non toxic or
neuroprotective (Giuffrida et al., 2009), undergo conformational changes leading to either
protofibrils then insoluble fibrils which deposit in plaques or to toxic soluble oligomers. Theses
oligomeric species include; low-n oligomers such as dimers, trimers and tetramers, hexameric
and dodecameric (AB*56) forms, AB-derived diffusible ligands (ADDLs) and annular protofibrils
(APFs). In the brain there exists a dynamic equilibrium between insoluble and soluble pools of AR
with plaques contributing to toxic soluble forms of AP in the ISF (Hong et al., 2011). Adapted
from (Rushworth and Hooper, 2011).

(APFs) are circularized non-fibrillar AR species over 90 kDa that resemble a class
of pore-forming bacterial toxins (Lashuel et al., 2002; Kayed et al., 2009). Their
morphology is consistent with a membrane-permeabilising activity previously
proposed for AP (Glabe and Kayed, 2006). Finally Globulomers, a 60 kDa AP
species, can be prepared synthetically and antibodies raised against them were

shown to stain AP deposits in the brains of AD patients transgenic and AD mice
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(Barghorn et al.,, 2005). These globulomers were shown to bind neuronal

processes specifically and block LTP in rat hippocampal slices (Figure 1-5).

1.4.4 AB and Oxidative Stress

Oxidative stress has been widely described in the literature as a major
feature of AD. Resulting from an imbalance in pro-oxidant and anti-oxidant
homeostasis, oxidative stress leads to the upregulation of reactive oxygen
species (ROS) such as hydrogen peroxide, nitric oxide, superoxide and highly
reactive hydroxyl radicals. The oxidative stress observed in the AD brain results
from increased levels of protein carbonyls, nitration of tyrosine residues, lipid
peroxidation and nucleic acid oxidation (Butterfield et al., 2006). As the brain is
the most aerobically active organ, utilising 20% of total oxygen in an individual,
perturbations to the tightly regulated oxidative metabolism as seen in the AD
brain has serious implications. The formation of ROS comes from the reaction of
molecular oxygen with the redox metals, Copper (Cu**) and Iron (Fe*) (Halliwell
and Gutteridge, 2007). AB through its redox activity can reduce Cu**or Fe*'
directly producing hydrogen peroxide (H,0;) setting up conditions for Fenton-
type chemistry. A biological electron donor is required in H,0, production and its
production can be attenuated by metal chelation (Opazo, 2002; Barnham et al.,
2003; Ciccotosto et al.,, 2004; Puglielli et al., 2005). In vitro studies have
confirmed the ability of AB to generate ROS with AB 1-42,yman generating more
than AB 1-40nyman Which in turn generates more than AB 1-40,,, this correlates
with the involvement of these peptides in amyloid toxicity (Huang et al., 1999).
Oxidation of AB can also result from its coordination and reduction of Cu**. One
site of this oxidation is the sulfur atom of Methionine-35 (Met-35) as determined
by mass spectrometry (Nishino and Nishida, 2001), and initial cell based assays
with synthetic AR mutants of Met-35, that increased cell binding, showed
increased toxicity (Barnham et al., 2003; Ciccotosto et al., 2004). Interestingly,
recent in vivo studies with transgenic mouse models have shown the
requirement for Met-35 of AB for oxidative stress but that this is neither

required nor sufficient for memory abnormalities (Butterfield et al., 2010). Of the
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other adducts that can be formed tyrosine at position 10 on the AP is of
particular interest as its conjugated aromatic ring makes it susceptible to free
radical attack. Reacting AB42 in the presence of Cu®* and H,0, forms dityrosine
cross-linked oligomers (Atwood et al., 2004). These oligomers are resistant to
proteolytic degradation and the dityrosine linkage facilitates further aggregation
resulting in higher order oligomers (Barnham et al., 2004a) (Barnham et al.,

2004b; Jomova et al., 2010).

1.4.5 AB Toxicity and Metals

The toxicity and aggregation state of AB is modulated to varying degrees
by the metal ions Zinc (zn**), Cu®* and Fe*. These transition metals are highly
concentrated in the AD brain and concentrated further in amyloid plaques (Lovell
et al.,, 1998). Studies by Bush et al. in the nineties demonstrated that these
metals rapidly precipitate AB in a pH-dependent manner. Initially Zn®* was shown
to induce formation of protease-resistant aggregates at low micromolar
concentrations (Bush et al., 1994a; 1994b). This effect was not observed with
peptides with the rodent’s sequence and was found to be due to changes in the
peptide's physiochemical properties bought on by substitutions at positions 5
(Arg to Gly), 10 (Tyr to Phe) and 13 (His to Arg) of the sequence (Bush et al.,
1994a). Zinc’s binding to AB in humans is mediated by histidine at position 13
and this substitution most likely confers resistance to aggregation seen in
rodents (Bush et al., 1993; Liu et al., 1999). Cu and Fe, normally exist in biology
bound to proteins such as ceruloplasmin and ferritin but under mildly acidic
conditions, as is observed in AD or head injury they are released from
metalloproteins and cause aggregation of AP (Atwood et al., 2000). Metal
chelation reverses this aggregation in vitro (Huang et al., 1997; Atwood et al.,
1998) and in vivo (Cherny et al., 2001) and increases solubilization of the
aggregates in human AD brain tissue compared with age-matched controls
(Cherny et al., 1999).

With the clear role that metals have in modulating AB aggregation

defining the metal binding site on Af was of particular interest. It was initially
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shown that there are 2.5 metal binding sites on Af (Atwood et al., 2000) and
nitrogen ligands from the three histidines at position 6, 13 and 14 and an oxygen
ligand mediate Cu®* and Zn** binding (Curtain, 2001; Curtain et al., 2003).
Subsequent spectroscopic studies proposed conflicting structures for the metal
binding site(s) which electron paramagnetic resonance (EPR) experiments have
now resolved. These indicated that there is not a single structure of coordination
to AP but instead a interconverting ensemble of structures (Drew et al., 2009a;

2009b).

1.4.6 Receptor-mediated AR Toxicity

It is unclear how AP induces neuronal degeneration at present. In support
of a specific membrane interaction as opposed to indiscriminate pore-formation
in the membrane (Glabe and Kayed, 2006), is recent research that has identified
several receptors as binding partners implicating receptor-mediated toxicity in
AD.

One such receptor that has been shown to bind AB is Alpha 7 nicotinic
Acetylcholine receptor (a7nAchR). Pyramidal cells in the cerebrocortex have an
abundant expression of a7nAChR, which is reduced in the AD-affected brain
(Burghaus et al., 2000) and bind with exceptionally high affinity to AB42 (Wang
et al.,, 2000). In cell culture this binding has been shown to facilitate
internalization and accumulation of exogenous AB1-42 but not AB1-40 (Nagele et
al.,, 2002). In a transgenic model of AD (3xTg-AD mice), that exhibits robust
plagues and tangles, treatment with an a7nAChR agonist had no effect on the
pathology in the mice but completely restored cognition to the same level of
their age-matched controls (Medeiros et al., 2014).

The actions of advanced glycation endproducts (AGEs) through their
receptor, RAGE, can explain many of the pathological features of AD such as
protein cross-linking and oxidative stress. Accumulation of these AGEs is
accelerated in AD compared with normal aging (Luth, 2004) and experiments

with increased expression of RAGE suggested its involvement in mediating AR
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toxicity on neurons and microglia (Yan et al.,, 1996) (Takeuchi and Yamagishi,
2008; reviewed in Srikanth et al., 2009; 2009).

The pan neurotrophin receptor, p75NTR has been shown to be another
candidate as it has been reported to directly bind AR and mediates its toxicity by
inducing apoptosis in cell lines (Yaar et al., 1997) (Coulson, 2006; Coulson et al.,
2009). Along with p75NTR the TrkA receptor is concomitantly activated with
increased protein expression and phosphorylation in the early stages of Ap42
treatment (Bulbarelli et al.,, 2009). These primary rat hippocampal cells

underwent apoptosis and resulted in activation of the Akt/ GSK-3B pathway.

1.4.6.1 PrP and A8

Over the last two decades research has strongly implicated the role of
Prion protein (PrP) in synaptic toxicity. PrP knockout mice showed impaired
spatial learning (Criado et al., 2005), increased LTP and increased excitability
(Collinge et al., 1994). They also displayed an elevated susceptibility to neuronal
damage that was reduced by the NMDA antagonist, MK801 (Rangel et al., 2007)
suggesting a role in excitotoxicity (refer to 1.6). More recently and extending on
this research, experiments with PrP-ablated mice exhibited enhanced and
prolonged NMDA-evoked currents due to upregulation of NMDA receptors. This
resulted in an increase in neuronal excitability and enhanced excitotoxicity in
vitro and in vivo (Khosravani et al., 2008).

Evidence of direct interaction between PrP and AR was provided the
following year by library screens against AB42 in which the two positive clones
isolated were both full-length PrP clones (Laurén et al., 2009). Interestingly it was
demonstrated in this research that other cell surface molecules bind AB42 as
immunofluorescence measurements showed only a 50% reduction to punctate
binding of AB42 in PrP-ablated mice. By, antibodies directed against PrP to block
AB42 binding and rescue synaptic plasticity further evidence was provided to
support the role of PrP. This has been demonstrated with both ADDL
preparations of AB42 (Laurén et al., 2009; Freir et al., 2011) and with SDS-stable

AB42 dimers isolated from water-soluble extracts from human AD brains (Freir et
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al.,, 2011). These dimers from AD brains were also injected in to rat brains
demonstrating an in vivo rather than in vitro effect on LTP that could be
prevented by immunodepletion of PrP (Barry et al., 2011).

Two recent publications propose mechanisms in which AB42, PrP and the
NMDA receptor (NMDAR) are required for toxicity. Resenberger and colleagues
show cell surface localized PrP® can mediate toxic signaling of B-sheet-rich
conformers of completely different origin in a structural rather than sequence
specific manner. The toxic signaling is dependent on the GPl-anchor of PrP and
can be inhibited by the NMDAR antagonist, Memantine (Resenberger et al.,
2011). Another mechanism by which NMDAR is linked to both PrP and AB42 is
implied by experiments using neurons with an inactivated form of PrP, mice with
high levels of natural AB42 due to over-expressing five familial mutations in APP
(5XFAD), synthetic AB42 or Cu®* chelation. In each of these cases an increase in
glycine affinity for the NR1 subunit of NMDARs was observed. This in turn
resulted in excitotoxicity by the slowing of NMDA desensitization. In their
proposed model, under normal conditions, Cu**-bound PrP reduces glycine
affinity to the NMDA receptor complex, enhancing desensitization and reducing
toxic influx of calcium (You et al., 2012).

Lastly, research to further elucidate the involvement of PrP and AB has
demonstrated a requirement for the low-density lipoprotein receptor-related
protein 1 (LRP1), an important transmembrane protein required for Cu**-
mediated PrP internalization, in the toxicity of AB oligomers. This work also
demonstrated the necessity for lipid rafts in the binding of AB oligomers to PrP

(Rushworth et al., 2013).

All of the preceding AB binding partners have strong evidence suggesting
a potential role in the toxicity observed in AD but for over a decade now there
has been extensive evidence accumulating supporting the role of the
glutamatergic system and more specifically, the N-methyl-D-aspartic acid
(NMDA) receptor, as the principle target for toxic forms of AB. Supporting this
role are findings that AB inhibits LTP (Lambert et al., 1998; Walsh et al., 2002)
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and that this inhibition is NMDA-receptor (NMD-R) dependent (Cullen et al.,
1997; Hsia et al., 1999; Raymond et al., 2003).

1.5 The Glutamatergic System

Glutamate is the primary excitatory neurotransmitter and is present at
around 0.6 uM in the synaptic cleft at resting conditions (Bouvier et al., 1992).
Synaptic transmission occurs when localised concentrations of L-Glu are
increased to greater than 10 uM for 1 — 2 ms (Clements et al., 1992). Glutamate
uptake by synaptic and post-synaptic cells terminates this excitatory action
(Danbolt, 2001). Glutamate acts on two types of receptors in the synaptic cleft;
metabotropic glutamate receptors (mGIluRs), a G-protein coupled receptor type
and ionotropic receptors. The latter are ligand-gated ion channels located at the
post synapse. Named after their agonists that bind them preferentially, they are
kainate, a-amino-3-hydroxy-5-methyl-4 isoxazolepropionic acid (AMPA) and N-

methyl-D-aspartate (NMDA) (Alzheimer, 2003).

1.5.1 Metabotropic Glutamate Receptors

mGluRs are dimeric complexes and members of the G-protein-coupled
receptor (GPCR) family that mediate intracellular signaling, upon interactions
with glutamate, by activation of heterotrimeric G-proteins. They are divided in to
three groups based on sequence homology and intracellular signaling
mechanisms. Group 1 comprise of mGIuR1 and 5 that are positively coupled to
phospholipase C (PLC) and primarily located post synaptically in the
hippocampus. Group Il (mGIuR2 and 3) and group Ill (mGIuR4, 6, 7 and 8)
receptors are negatively coupled to andenylate cyclase, inhibit cyclic AMP
(cAMP) with Group Il receptors localised mainly to the presynapse (Manahan-
Vaughan, 1997). Targeting group Il mGluRs has been suggested as a potential
therapeutic approach based on an observed increase in production of the more
amyloidogenic form of AB, AB42 following activation (Thathiah and De Strooper,
2011). mGIluR1 and 5 appear to play a more significant role in AD and this is

believed to be due to the Ca**-mediated intracellular signaling cascades that are

22



Chapter 1

B
utilized upon activation of both receptor subtypes. Selective antagonism has
implicated both mGIuR1 and 5 receptors in LTP and spatial memory (Naie and
Manahan-Vaughan, 2004; 2005). Furthermore recent research has indicated a
co-receptor role of the mGIuR5 receptor providing a link to AB and downstream

toxic events at the postsynaptic density (Um et al., 2012).

1.5.2 Kainate receptors

Often grouped together with AMPA as non-NMDA inotropic receptor
family members, kainate receptors (KARs) were initially implicated in
epileptogenesis (Meldrum and Garthwaite, 1990). The subsequent development
of AMPAR-selective antagonists and knockout mice has provided a better
understanding of their functional role. As with its fellow inotropic family
members, KARs exists as homo- or hetero-tetrameric complexes comprised of
the subunits; GluK1 to 3 and 4 or 5. They’re expressed ubiquitously throughout
the brain and are located at both the pre and postsynapse. Currently functional
roles that are attributed to KARs involve mediating synaptic transmission at the
postsynapse and presynaptically, the modulation of neurotransmitter release,
both of which contribute to a role for the receptors in established forms of
plasticity such as non-NMDA LTP in the hippocampus (reviewed in Sihra et al.,
2014). Research in to the involvement of KARs, specifically in AD, is relatively
sparse. A review of the literature indicates that in AD patients there is reduced
expression of KARs in the hippocampus and this is increased in the cerebral

cortex, suggesting their possible involvement (Matute, 2010).

1.5.3 LTP

The importance of the glutamatergic system in AD is highlighted by the
critical role it has in modulating the induction of long-term potentiation of
synaptic transmission in neurons (Figure 1-6). In 1949 Hebb postulated that
“When an axon of cell A is near enough to excite cell B or repeatedly or

persistently takes part in firing it, some growth process or metabolic change
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takes place in one or both cells such that A's efficiency, as one of the cells firing
B, is increased” (Hebb, 1949). Experimental proof of this was published in 1973

(Bliss and Lomo, 1973). Today this process of long-lasting enhancement in signal
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Figure 1-6 Long Term Potentiation — Strengthening of Synaptic Transmission. Glutamate is
released in to the synaptic cleft where it binds the post-synaptic receptor, AMPA and along with
the co-agonist, glycine, it binds the NMDA receptor. Given a pre-synaptic electrical signal of
sufficient strength and frequency the corresponding prolonged activation of the AMPA receptor
by glutamate results in depolarization of the post-synaptic neuron. The magnesium then
withdraws from the NMDA receptors and allows large numbers of calcium ions (Ca2+) to enter the
cell that activate downstream proteins. This leads to enhanced transmission by the promotion of
AMPA receptors in to the post-synaptic membrane.

transmission between two neurons that results from stimulating them
synchronously is known as Long Term Potentiation (LTP) (Cooke, 2006) and has
been strongly implicated in the neuronal functions of memory and learning

(Riedel, 2003).

1.5.4 AMPA receptors

The ionotropic a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid-
type glutamate receptors (AMPARs) are mainly found as tetrameric complexes
containing a dimer of dimers of GluA2 and GluA1l, GIluA3 or GluA4 (also termed

GluR1-4) (Derkach et al., 2007). These receptors are involved in the majority of
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fast excitatory synaptic transmission in the CNS and their modulation, along with
NMDARs, is believed to be the crucial in neuronal plasticity. This can be seen in
the pivotal role they play in the enhancement of signal transmission observed in
LTP. An action potential travels along the axon and causes the release of
glutamate from the presynapse. Upon glutamate activation at the postsynapse
AMPA receptors open to allow intracellular flux of sodium (Na*). LTP will result
when there is sufficient depolarization due to glutamate concentration and Na*
influx to depolarize the cell and remove the magnesium block of the NMDA
receptor by electrostatic repulsion allowing a large influx of Ca** (Figure 1-6). The
connection between the neurons is further strengthened by a Ca**-mediated
increase in trafficking of AMPARs from an adjacent non-synaptic pool to the
synaptic membrane in early phase LTP. In late phase LTP there is a Ca**-mediated
increase in gene transcription and protein expression of AMPARs in the
postsynapse (Frey and Morris, 1997; Malenka and Bear, 2004). It has also been
demonstrated that the increase in synaptic transmission in LTP results from
increasing the single channel conductance of AMPARs (Benke et al., 1998).
Subsequent research has demonstrated that both forms of modification to
AMPAR function is achieved by the insertion of Ca’*-permeable AMPARs
resulting with increased insertion leading to an increase in overall conductance
(Plant et al., 2006).

The subunit composition of AMPARs has been implicated in AD through
early experiments that sought to detect differences in AMPAR subunit
expression in the hippocampus and entorhinal cortex of normal controls and AD
brains. Collectively they showed a marked reduction in GIuR1 and GIluR2/3
(Armstrong et al., 1993; Garcia-Ladona et al., 1994). Regions of the hippocampus
considered “vulnerable” to AD pathology (CA1 and subiculum) were found to
have lower levels of GIuR1 and GIuR2/3 subunits in AD patients which was not
observed in regions that are “resistant” (CA2/3 and dentate gyrus) (lkonomovic
et al., 1995). In these experiments total levels of AMPARs were analysed which
do not account for cellular localisation and therefore receptor functionality as
seen in LTP. This is a possible explanation for earlier experiments which found no

significant differences in mRNA expression in the hippocampus of normal and AD
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brains (Pellegrini-Giampietro et al., 1993). The importance of the AMPAR subunit
composition was highlighted in preceding experiments that demonstrated
expression of an edited form of the GIuR2 subunit confers Ca**-impermeability.
(Hollmann et al., 1991; Hume et al., 1991). The edited form of GIuR2 is the only
form present in the mature brain and therefore its expression could play a
significant role in the cells ability to gate calcium and maintain intracellular Ca**
homeostasis and also confer protection against glutamate-induced excitotoxicity
(Burnashev et al., 1992). Later research has provided evidence for a role for
AMPARs in AD through its down regulation through endocytosis. AMPARs have
been shown to be down regulated by endocytosis resulting from AB-induced
long-term depression (LTD) (Hsieh et al., 2006). The early-expression activity-
regulated cytoskeletal (Arc) gene has also been shown to reduce the activity of

neuronal networks by mediating AMPAR endocytosis (Wu et al., 2011).

1.5.5 The NMDA receptor

The NMDARs are a subclass of ionotropic receptors gated by glutamate
with high calcium (Ca**) permeability. Along with AMPARs they are the major
receptors required for LTP induction, and therefore play an essential role in
memory, learning and synaptic transmission (Bear and Kirkwood, 1993; Bliss and
Collingridge, 1993). NMDARs consist of obligatory NR1 subunits and
combinations of two to three NR2A-D or NR3A-B subunits (reviewed in Paoletti
et al., 2013; 2013). In the hippocampus and cortex, complexes composed of
NR1/NR2A or NR1/NR2B subunits are the predominant form and indicate the
importance of these subunits in synaptic plasticity (Monyer et al., 1994). The
function of the NMDARs is tightly regulated with evidence of several
mechanisms contributing to the levels of calcium entering the cell.
Phosphorylation/ dephosphorylation of serine/ threonine and tyrosine residues
of NMDAR subunits is well documented and effects the gating, permeability to
Ca’* and cell surface expression of NMDARs reviewed in (Van Dongen et al.,,
2009). The expression, trafficking and subunit composition of NMDARs provides

a central mechanism in the control of NMDAR function. With neuronal
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development NMDARs are increasingly localised synaptically to postsynaptic

densities (PSDs) and consist predominantly of NR2A subunits but a significant
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Figure 1-7 The NMDA receptor complex. A tetrameric complex consisting of obligatory NR1
subunits and varying expression of NR2A-D subunits or, to a lesser extent, NR3A-B subunits.
Multiple binding sites on the complex include glutamate, glycine, polyamine, Mgz+ and zn*.
The antagonists, Dizocilpine (MK-801) and Memantine have a non-competitive action with
binding sites within the ion channel where as Ifenprodil has NR2B-selectiove action. At higher
concentrations Zn>* no longer acts as an agonist through its n-terminal binding site on NR2A
subunits but can inhibit NMDAR activity (see section 1.6.2). Adapted from (Ghasemi and
Schachter, 2011).

population remain located extrasynaptically (Tovar and Westbrook, 1999) and
are NR2B-containing NMDAR complexes (Wittmann et al., 2004). Up to 65% of
these complexes located in the synapse are not anchored but can move laterally
in to the extrasynaptic pools (Tovar and Westbrook, 2002). Subsequent research
showed that these dynamic receptor complexes were largely composed of NR2B
subunits which are highly mobile and move in and out of extrasynaptic pools
unlike NR2A subunits, which are stable in the synapse (Groc et al., 2006). The
movement of the NR2B receptor complexes from extrasynaptic pools specifies
one way in which NMDAR levels are regulated in the post synaptic membrane.

Another form of NMDA regulation was demonstrated by research utilising
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NMDAR antagonists, which showed NMDAR activation to highly regulate NMDAR
levels in the membrane and this to be NR2A subunit-specific effect with NR2B
complexes unaffected. Taken together these results describe a cellular
environment in which NR2B subunits are the main components found
extrasynaptically and the NR2A subunits remain located at the synapse and are

regulated by NMDAR activity.

1.6 Excitotoxicity

NMDARs are dichotomous in nature and preceding their involvement in
cell survival was research in to the toxicity resulting from their excessive
activation. It was first identified in the inner layers of retinal neurons in 1957
(Lucas and Newhouse, 1957), this receptor-mediated form of cell death was
termed excitoxicity and found to occur throughout the brain and was not just
limited to the retina as initially described (Olney, 1969). By definition,

excitotoxicity is
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Figure 1-8 Model of opposing effects on neuronal survival mediated by synaptic and
extrasynaptic NMDAR activity. Increased synaptic NMDAR activity leads to activation of
neuroprotective pathways and cell survival, the opposite is observed due to increased activation
of extrasynaptic receptors. Reduced activity of synaptic receptors is neurotoxic but survival is not
effected by low level activation of extrasynaptic NMDARs. Adapted from (Kleckner and
Dingledine, 1988; Hardingham and Bading, 2010).
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the prolonged and enhanced activation of NMDARs by an excitatory amino acid
EAA), that results in an excessive influx of Ca** and neuronal injury or death. In
neuronal excitotoxicity this EAA is glutamate, as it is the major neurotransmitter
of the central nervous system (Choi et al., 1988; Dong et al., 2009). It was the
formative work by Choi et al. that established the intracellular flux of Ca** to be
the key mediator of the glutamate-induced neurotoxicity in the late 1980s (Choi,
1985; 1987; Choi et al.,, 1987; Johnson and Ascher, 1987). Subsequent
experiments demonstrated Ca’* flux was mediated by NMDARs by the use of
specific ionotropic antagonists (Choi et al., 1988; Hirai et al., 1996). The excessive
influx of Ca** triggers a range of intracellular responses resulting in cell death,
including increased oxidative stress, inappropriate activation of proteases,
dysregulation of Ca’*-related pathways, mitochondrial damage and an apoptotic

cascade.

1.6.1 Excitotoxicity and Glycine

Using primary mouse cortical neurons it was shown that glycine
potentiates the NMDAR response (Johnson and Ascher, 1987; Mayer et al., 1989)
and further studies using Xenopus oocytes expressing NMDARs observed that it
is a requirement for NMDAR activation (Kleckner and Dingledine, 1988; Mayer et
al., 1989). Subsequent site-directed mutagenesis studies by Hirai and colleagues
identified the glycine recognition site located on NR1 subunit with the glutamate
recognition site on subunit NR2 (Hirai et al., 1996; You et al., 2012). It acts as a
co-agonist with glutamate and regulates the NMDA receptor in a concentration-
dependent manner by increasing peak current amplitude and slowing the
uncoupling or desensitization (Mayer et al., 1989; Frederickson et al., 2006). This
is an intrinsic mechanism to protect neurons against prolonged agonist activation
and subsequent toxic influx of Ca**. Of important note for experimental design is
that this effect can be masked in vitro by Ca** influx which can trigger secondary
mechanisms leading to glycine-resistant desensitization (Pérez-Clausell and

Danscher, 1985; Mayer et al., 1989).
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More recently the ability of glycine to regulate NMDAR activity by its
desensitization has been shown to be involved in AB toxicity. In this work You et
al. demonstrated the ability of soluble AB, decreased Cu*" and the inactivation of
PrP° to induce non-desensitising NMDAR currents. By using low and normal
physiological glycine concentrations (0.1 & 0.3 uM), as opposed to the higher
concentrations (10 — 50 uM) used in most investigations of NMDAR activity, they
have observed a potential physiological role for Cu®** and PrP° in neuronal
protection under excitotoxic conditions (Peters et al., 1987; Westbrook and

Mayer, 1987; You et al., 2012).

1.6.2 Excitotoxicity and Zinc

Presently Zn*"is known to be abundant in synaptic boutons and its levels
rise to high micromolar concentrations in the synaptic cleft during activity (Choi
and Lipton, 1999; Fayyazuddin et al., 2000; Paoletti et al., 2000; Frederickson et
al., 2006) indicating a strong link to synaptic transmission. Initially this link was
determined through ultrastructural studies localising Zn** to synaptic vesicles
(Pérez-Clausell and Danscher, 1985; Frederickson et al., 2005). Experiments that
followed in cortical and hippocampal neurons found low micromolar
concentrations of Zn* act as a voltage-independent, non-competitive agonist of
NMDA responses unlike Mg**, which acts a channel blocker. These results
provided the first evidence of a direct receptor-mediated action (Peters et al.,
1987; Westbrook and Mayer, 1987; Lee et al., 2000). Following cloning of the
NMDAR and its subunits a high affinity Zn>* binding domain was mapped the to
the N-terminal domain (NTD) of NR2A preceding the glutamate binding domain.
Zn**inhibition of the binding site is only partial at saturating concentrations in a
potential mechanism that would allow excessive NMDA activity in a high zZn**
environment. Another paradoxical effect of Zn** is a delayed increase in agonist
activation of NMDARs through tyrosine phosphorylation of NR2A and NR2B. The
NTD of NR2B but not NR2C and NR2D, also forms a Zn* binding site, albeit of
much lower affinity (Choi and Lipton, 1999; Fayyazuddin et al., 2000; Paoletti et

al., 2000; Cote et al., 2005). Zn*" has been implicated in excitotoxicity but the

30



Chapter 1

B
role it plays is not clearly understood. It has been proposed that Zn®* released
from presynaptic vesicles to post synaptic neurons contributes to zinc-induced
cell injury in excitotoxicity in several models of brain injury (Frederickson et al.,
2005; Deshpande et al., 2009). Studies in ZnT; knockout mice suggested this not
to be the case as these mice completely lacked Zn** in synaptic vesicles indicating
that it had originated from other sources (Trombley and Shepherd, 1996; Lee et
al., 2000). A more likely explanation is that it is Zn** levels that determines
whether its effect is neurotoxic or neuroprotective. Research by Cote et al.
demonstrated that the action of intracellular Zn* is cell-type specific and
concentration-dependent with low levels providing protection and high levels
causing cell death (Vlachova et al., 1996; Cote et al., 2005). Following this work,
research by Desphande et al. proposed an alternative mechanism that links Zn**
with the NMDAR through APB42 oligomers to the toxicity in AD.
Immunofluorescence experiments in rat and mouse hippocampal slices and
primary human cortical neurons found that synaptic activity enhanced oligomer
formation and localization at synaptic sites. This targeting was reduced upon
treatment with Clioquinol, a member of the quinoline class of drugs with Zn**
chelating properties, and in mice deficient in the zinc vesicular transporter ZnT3.
In their work Desphande et al. (2009) propose that increased levels of Zn** as a
result of synaptic activity increased AB42 oligomerization due to the peptide’s
metal binding properties, which results in increased toxicity mediated by the
NMDAR by multiple mechanisms. These included direct interaction between AR
oligomers and the receptor, altering permeability of neuronal membranes or the
activation of the mitochondrial death pathway (Schlief, 2005; Deshpande et al.,
2009).

1.6.3 Excitotoxicity and copper

Cu®* plays a vital role in the central nervous system as illustrated in
Menkes disease, a fatal disease characterised by a loss of hippocampal neurons
resulting from the loss of function of mutations in a Cu-transporting ATPase

required for cellular Cu** homeostasis. Several groups have published evidence
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of Cu® involvement in synaptic signaling regulated by the NMDAR through
varying mechanisms of interaction. Whole cell recordings of rat olfactory bulb
neurons, a region with high concentrations of Cu®*, demonstrated for the first
time that Cu** has an inhibitory effect on NMDAR and importantly that this was
masked by desensitising concentrations of glycine (>30 uM) (Trombley and
Shepherd, 1996; Hardingham et al., 2002). Published the following month was
work with free Cu** that showed it to act as a non-competitive antagonist that
preferentially binds glutamate/glycine-bound NMDARs. Using whole cell
recordings of hippocampal neurons they demonstrated that Cu* has no effect
when complexed to either glutamate or glycine (Vlachova et al., 1996; Schlief et
al., 2006). Schlief, Gittlin and colleagues in 2005-6 provided a better
understanding of the cellular mechanisms involved in Cu** homeostasis in two
publications focusing on Menkes ATPase (Atp7a). In their first publication they
provided evidence of a mechanism for control of Atp7a trafficking by the
activation of NMDAR and subsequent exocytic efflux of cu®. They suggest that
Atp7a gathers Cu®* in readily available intracellular pools for exocytosis upon
NMDAR activation and the resulting Ca®" influx (Gibson and Peterson, 1987;
Schlief, 2005). Atp7a trafficking was induced only by synaptic or total cellular and
not extrasynaptic NMDARs which suggested the possibility that it was acting
through a pro-survival pathway, referred to earlier, involving synaptic NMDARs
and CREB (Koh et al.,, 1990; Hardingham et al., 2002). In their subsequent
publication Schlief et al. went on to demonstrate the neuroprotective capability
of Cu®* (Schlief et al., 2006). In hippocampal neurons under glutamate/glycine-
induced excitotoxic conditions, co-treatment with Cu?** showed total rescue of
cell death. Experiments with the addition of zinc chloride (ZnCl,), nickel chloride
(NiCl,) and the depletion of Fe** by a metal chelator showed the protection to be
Cu®*-specific and inhibition by I-nitroarginine demonstrated the necessity for
nitric oxide production for the Cu**-mediated protection. In order to observe the
protective effects of Cu®" in vivo, functionally null Atp7a mice were used. These
mice showed impaired trafficking of Cu®* upon NMDAR activation and an
increased sensitivity to excitotoxic conditions that could be ablated by treatment

with Cu** prior to, or during the insult. In these experiments intracellular, rather
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than extracellular, Cu®* is neuroprotective and the findings provide a direct link
between NMDAR-mediated excitotoxicity and impaired Cu®* homeostasis

(Mattson et al., 1992; Schlief et al., 2006).

1.6.4 AB-mediated Excitotoxicity in Alzheimer’s disease

The involvement of calcium homeostasis and NMDA signaling in AD was
first recognized in the late 1980s (Gibson and Peterson, 1987; Walsh et al., 2002)
and was followed by work in mouse cortical neurons which demonstrated the
enhancing effects of pretreatment with AB on both glutamate and NMDA-
induced excitotoxicity. This effect of AB was dependent on both concentration
and the duration of exposure (Koh et al., 1990; Snyder et al., 2005). To overcome
the limitation of the rodent model that does not develop symptoms of AD,
Mattson and colleagues performed extensive studies with human cerebral
cortical neurons at 14 — 16 week gestation. Their work using the 1-38 and 25-35
synthetic AR peptides confirmed the effect of AB on glutamate-induced
excitotoxicity. Experiments monitoring intracellular Ca** levels with the
fluorescent dye, Fura-2 and depleting media of Ca®* demonstrated that calcium
flux was required for the neuronal damage elicited by the co-treatment with
glutamate and AP peptides (Mattson et al., 1992; De Felice et al., 2007).

It remains unclear as to whether NMDARs are activated by the direct or
indirect action of AB. Contrasting research has demonstrated that AB binds to or
in close proximity to NMDARs (De Felice et al., 2007), requires NMDARs for
binding to neurons with no direct interaction (Decker et al., 2010) and can have a
secondary effect on NMDAR activity through altered synaptic composition
(Roselli, 2005). Research to date has proposed various mechanisms in which AB
exerts its effect on the NMDA receptor. Supporting an indirect effect is research
showing AB promoted endocytosis of NMDA receptors causing toxicity by
inhibiting normal signaling through the receptor. Exposing primary neurons to
cultured media from an over-expressing N2A cell line similar to previous work by
Walsh and Selkoe (Walsh et al., 2002; Snyder et al., 2005), demonstrated a time-

dependent decrease in surface receptor expression of NR1. Treatment with a y-
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secretase inhibitor to decrease AR levels was able to restore surface expression
(Roche et al., 2001; Snyder et al., 2005). In contrast, research using ADDLs to
treat hippocampal neurons induced excessive formation of reactive oxygen
species (ROS). This effect was could be blocked by anti-ADDLs and anti-NR1
antibodies and the NMDAR antagonist, Memantine, but did not impact on
NMDAR-induced ROS generation. Results from co-immunoprecipitations suggest
that the induction of ROS by ADDLs is due to an increase in intracellular calcium
(De Felice et al., 2007; Ittner et al., 2010).

Phosphorylation of the NR2B subunit is another mechanism implicated in
mediating AB excitotoxicity. STEP, a tyrosine phosphatase that has been shown
to regulate NMDAR, is dephosphorylated and activated by AB treatment which
subsequently increases dephosphorylation of tyrosine 1472 (Y1472) on the NR2B
receptor (Snyder et al., 2005; Li et al., 2011). This is of particular importance as it
resides in a region involved in NMDAR endocytosis and binding to the synaptic
scaffolding protein (PSD95) (Roche et al., 2001). Further evidence for the role of
NR2B in AB-mediated excitotoxicity is described in research involving the Src
kinase, Fyn. In this work a mechanistic link between Tau and AP toxicity was
established by demonstrating an uncoupling of the NMDAR/PSD95 complex with
normal phosphorylation due to a disruption to targeting of Fyn in Tau mutant
and knockout mice (lttner et al., 2010). The uncoupling of the NMDAR/PSD95
complex by both the Tau mice and peptide-targeted perturbation was shown to
reduce excitotoxic seizures and AP toxicity, respectively. In subsequent work this
pathway was further elucidated by research that detailed AB activation of Fyn
mediated through PrP binding. Oligomeric AB isolated from AD brains resulted in
neurotoxic signaling through the phosphorylation of the NR2B subunit. This
activation led to a transient excitotoxic increase in cell surface NR2B followed by
dendritic loss, decreased surface receptors and increased cell death (Um et al.,
2012). The role of extrasynaptic NR2B-containing NMDARs is given more support
by research showing that oligomers of AB inhibit LTP. In this work toxicity occurs
due to a glutamate “spill-over” from the synapse to the extrasynaptic receptors
that results from AP oligomers inhibiting the astrocytic reuptake of glutamate (Li

et al., 2011). Supporting this work was the finding that AR acts on astrocytic
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a7nAchRs to stimulate excessive glutamate release resulting in increased
intracellular calcium and nitric oxide levels. This in turn led to dendritic spine loss
which could be prevented by the NMDAR-antagonist, Memantine (Talantova et
al., 2013).

1.7 Preventing Excitotoxicity in AD

Currently only two types of drugs have been approved for the treatment
of AD. Acetylcholinesterase inhibitors were the first of these to be prescribed
and treat mild to moderate AD with varying degrees of efficacy. Clinical trials
with the current acetylcholinesterase inhibitors; Aricept (donepezil), Razadyne
(galantamine) and Exelon (rivastigmine) have demonstrated significant but
marginal improvement in cognition (Birks, 2005; Raina et al., 2008). One meta
data analysis has questioned the scientific basis for their use in treating AD at all,
arguing the methodology used in available trials was poor and the level of
improvement in patients, although significant, fell well below the minimum level
proposed by the FDA as a clinically important effect (Kaduszkiewicz et al., 2005).

NMDA antagonists are the second class of drugs for the treatment of AD
of which Namenda (memantine) is the only member with current approval.
Memantine is indicated for the treatment of moderate to severe AD but often
incorrectly prescribed for patients with mild AD (Schneider et al., 2011). NMDARs
have become an appealing therapeutic target over the last two decades as the
body of evidence supporting their role in neurodegeneration has increased. Prior
to testing in AD, clinical trials of NMDAR antagonists had been performed in the
acute neurodegenerative diseases of stroke and traumatic brain injury (TBI), with
antagonists to the glutamate site (selfotel), the glycine site (gavestinel), the ion
channel site (aptiganel) and the NR2B subunit (traxoprodil). Each of these trials
failed to demonstrate a therapeutic effect with the trials of selfotel and
aptigangel being ended prematurely due to trends toward high mortality (Muir,
2006; Kalia et al., 2008 for review; 2008). Memantine was originally designed as
an antidiabetic by Eli Lily in 1963 but was ineffective at lowering blood sugar.

Merck later showed efficacy in Parkinson’s disease (PD) but it was in 1989 that it
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was shown to act as NMDA antagonist (Kornhuber et al., 1989). It is believed that
memantine avoids the significant side effects of other NMDA antagonists due to
being a low-affinity, uncompetitive antagonist that avoids blocking normal
physiological activity of NMDARs necessary for normal function. In the proposed
mechanism of action for memantine, the drug is described as open-channel
blocker with a fast off rate and this property enables the drug to be cleared from
the receptor ion channel following excessive glutamate activation so as to not
block critical normal function of the receptor (Lipton, 2005; 2006). In the years to
date further research has provided better understanding of how the drug can be
well tolerated yet still act to block NMDA-mediated excitotoxicity. It has now
been demonstrated that memantine acts specifically on extrasynaptic NMDARs,
the NR2B-containing receptors, preventing excitotoxic cell death (Hardingham et

al., 2002; Xia et al., 2010; Talantova et al., 2013).
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1.8 Hypothesis, Aims and Research Questions

1.8.1 Hypothesis

That beta amyloid peptide underlies the aetiology in Alzheimer’s disease and
causes gradual cell death through excitotoxicity, which results from increased
concentrations of the peptide and metals in the synapse and subsequent
dysregulation of the neurotransmitter, glutamate. The regulation of metal levels
in the synapse could therefore provide a novel therapeutic target in the

treatment of Alzheimer’s disease.

1.8.2 Aim 1: Describe the role of metals in protection against
excitotoxicity

* Does PBT2 treatment affect glutamate-induced excitotoxicity?

* Is this a metal-mediated event?

* How can metals affect excitotoxicity?
To answer these questions mouse primary cortical neurons will be employed to
establish an in vitro model of excitotoxicity. Subsequent questions will
investigated by using metal chelators and the reintroduction of specific divalent

cations known to be at high concentrations in the synapse.

1.8.3 Aim 2: Characterise the Parameters Required for AB Toxicity in
Cortical Neurons
* Does AB Aggregation time or protein expression resulting from
the number of days in vitro (DIV) of the neurons contribute more
to toxicity?
* What type of toxicity results from AB treatment?

* Are metals involved in this toxicity?
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Mouse primary cortical neurons will be employed and the effects of DIV and AB
Aggregation on toxicity will be observed by cell viability assays and compared
with the expression of key proteins implicated in AB toxicity. Subsequent
questions will investigated by the use of antagonists to determine receptor
involvement and metal chelators against specific divalent cations known to be at

high concentrations in the synapse.

1.8.4 Aim 3: Develop a Neural Assay to Screen Varying AB Peptides

* Robust and reproducible.

* Sensitive — can detect varying levels of toxicity.

* Short lag time — rapid AB42 oligomerization.
This assay will be developed in mouse primary cortical neurons taking advantage
of their functioning synapses in order to better replicate neurodegeneration in
the human brain. It will hope to be a medium to high throughput assay with an
immediate readout of AB toxicity, which once validated on wild-type AB42 can

be used to screen different forms of the peptide associated with AD.
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2 Materials and Methods

2.1 Materials

2.1.1 Chemicals

PBT2 was a gift provided by Prana Biotechnology Limited. 6-cyano-7-
nitroquinozaline-2,3-dione (CNQX), Dizocilpine (MK-801) and Memantine
Hydrochloride were purchased from Sigma Aldrich (Australia) and dissolved in
H,0. Zinc Chloride (ZnCl,) (Sigma Aldrich, Australia) was used dissolved in H,0.
Diamsar, (1,8-diamino-3,6,10,13,16,19-hexaaza-bicyclo(6,6,6)eicosane)  was

prepared as described previously (Bottomley et al., 1994).

2.1.2 Primary culture

Poly-D-lysine stock (100X) (Sigma P-0899):

Dissolve 25 mg poly-D-lysine in 50 mL ddH,O0. Filter sterilised (F/S) through 0.22
um filter and stored in 5 mL aliquots at -20°C. A working stock of 0.5 mg/mL (in

ddH,0) final concentration was then made.

AraC (Cytosine B-D-arabinofuranoside, C1768 Sigma):
0.5 mg/mL stock. F/S through 0.22 um filter and stored in 50 ul aliquots at -20°C.

Trypsin (20x) (Sigma T-4665) (~7500 units/mg):
25 mg in 10 mL 1x Krebs, F/S through 0.22 um filter and stored in 0.75 aliquots at
-20°C.

DNasel/SBTI (10x) (Sigma D-5025; Sigma T-9003):

8 mg DNasel, 26 mg SBTI, dissolved in 10 mL 1x Krebs, F/S through 0.22 um filter

and stored in 0.5 mL aliquots at -20°C.
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10 x Kreb’s stock (500 mL):

36.25 g NaCl 2.0 g KCI; 0.7 g NaH,P04.H,0; 13.0 g D-glucose; 0.05 g phenol red;
29.7 g HEPES acid (Sigma-Aldrich). Dissolved in 450 mL ddH,0. Adjusted pH to
7.4, made up to 500 mL, F/S through 0.22 um filter, stored at 4°C.

1X Kreb’s stock (500 mL):
50 mL 10x Krebs stock; 446 mL dH20; 1.5 g BSA; 4 mL 3.85% MgSO, (Sigma-
Aldrich). Adjusted pH to 7.4; F/S through 0.22 um, stored at 4°C.

Hanks Balanced salt solution (HBSS) (500 mL):
10 mL 10x HBSS; 88 mL ddH20; 1 ml 0.3 M Hepes. 100 puL gentamycin (10
mg/mL). pH to 7.4; F/S 0.22 um, at 4°C.

Plating Media (500 mL)
345 mL ddH,0; 50 mL 10 x MEM; 5 mL 200 mM glutamax; 14.7 mL 7.5% NaHCOs;
0.5 mL gentamycin (10 mg/mL); F/S (0.22 um); Add filtered and heat inactivated

50 mL FCS, 25 mL Horse Serum, stored at 4°C.

NB Culture Media (#1 and #2) (50 mL):

NB#1: 50 mL Neurobasal media; 1 mL B27 supplement; 50 pl Gentamicin (10
mg/mL); 125 puL 200mM glutamax; Stored unused media at 4°C. Discarded if not
used within 14 days.

NB#2: (Following at least 4 DIV): 50 mL Neurobasal media; 1 mL B27 supplement
(+/- Antioxidants); 50 pL Gentamicin (10 mg/mL); 50 uL 2mM AraC; Stored

unused media at 4°C. Discarded if not used within 14 days.

All cell culture reagents from Life Technologies unless otherwise stated
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2.2 Methods

2.2.1 Preparation of A

Human AP peptides were synthesised by the W. M. Keck Laboratory (Yale
University, New Haven, CT) unless otherwise stated. Aliquots of lyophilised AR
peptides were weighed in N,-purged microfuge tubes under zero-static
conditions by use of an anti-static gun (Zerostat 3, Milty). AB stock solutions
were prepared by dissolving lyophilised peptide to 1 mM in HFIP (10 mg/ 2.217
mL) and incubating at room temperature for 30 min in 1.5 mL microfuge tubes
with the lids closed. At 30 min the peptide solutions had become clarified and
the lids were then opened to air-dry overnight in a fume-hood; a cover was
placed above the tubes to prevent aerosolised particulates from entering the
tubes. The following day the peptide films were further dried by vacuum
centrifugation on a low heat for 20 min and stored at -80°C until use.

For AP treated with NH,OH, peptides were dissolved directly in to 10%
w/v NH;OH at 0.5 mg/mL and lyophilised following 10 min at RT, 5 min
sonication in 1. 5 mL microfuge tubes and as with HFIP-treated AP, stored at -
80°C until used

For fresh, HFIP or NH4;OH AP the lyophilised peptides were dissolved to 5
mg/mL in NaOH (20 mM) and incubated at RT for 5 min to break down
aggregated material. The solution was then diluted to 1 mg/mL in ddH,0 and 10
x PBS (PBS is defined as 50 mM sodium phosphates, 2.7 mM KCI, 137 mM NacCl)
at a v/v/v ratio of 2:7:1. The preparation was sonicated for 10 min in a ice water
bath and then centrifuged at 16,500 x g for 10 min at 4 °C. Supernatants (upper
90 % of solution) were taken and kept on ice for immediate use. Peptide
concentrations were determined by measuring the UV spectrometry absorbance
values (at 214 nm) and calculated with molar extinction -coefficients
predetermined by amino acid analysis (AB40 91,462; AB42 94,526; AB3-42 91462
and AB3pE42 90925) (McColl et al., 2009) and using the Beer-Lambert Law (A =
€.b.c, where A = absorbance, € = molar extinction coefficient, b = path-length of

light and ¢ = concentration).

42



Chapter 1

2.2.2 Primary neuronal culture

Mouse primary cortical neuronal cultures were prepared under sterile
conditions. On the day prior to isolations (or 2 h at 37°C) plates were coated with
poly-D-lysine to enable adherence of neurons. 15 min before plating neurons,

poly-D-lysine was removed and plates air-dried with lids partially removed.

2.2.2.1 Hippocampal isolation

On the day of isolation embryonic day 17 C57BL/6J mouse cortices were
removed, dissected free of meninges in Krebs buffer and dissociated in 0.025%
trypsin (w/v) (Sigma) in HBSS. The dissociated cells were triturated using a
pipette tip, allowed to settle at the bottom of the tube, aspirated and
resuspended in HBSS containing trypsin inhibitor and DNase I. The cells were
then allowed to again settle to the bottom before aspirating off buffer and
resuspending in plating media resuspended in plating medium (minimum Eagle's
medium, 10% fetal calf serum, 5% horse serum), and counted. Hippocampal
neuronal cells were plated into poly-D-lysine coated 48-well at a density of
150,000 cells/well in 200 uL plating medium/well in the inner 24 wells of the

plate and ddH,0 in the outer wells to avoid evaporation.

2.2.2.2 Cortical isolation

Embryonic day 14 C57BL/6J mouse cortices were removed, dissected free
of meninges, and dissociated in 0.025% trypsin (w/v) (Sigma) in Krebs buffer (124
mM NaCl, 5.1 mM KCl, 1.0 mM NaH2P04.H20, 14.4 mM D-glucose, 0.001% phenol
red (w/v), 25 mM HEPES (4-(2 Hydroxyethyl)piperazine-1-ethanesulfonic acid),
0.3% BSA (w/v), 2.6 mM MgS0a, pH 7.4). The dissociated cells were triturated
using a pipette tip, pelleted, resuspended in plating medium (minimum Eagle's
medium, 10% fetal calf serum, 5% horse serum), and counted. Cortical neuronal
cells were plated into either poly-D-lysine coated 48-well or 96-well plates. In 48-
well plates cells were at a density of 150,000 cells/well in 200 uL plating
medium/well in the inner 24 wells of the plate and ddH,0 in the outer wells to

avoid evaporation. In 96-well plates cells were at a density of 225,000 cells/ well
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in 100 uL plating medium/well in wells in rows B — G of the plate and ddH,0 in
the outer wells of rows A and H. All cultures were maintained in an incubator set
at 37°C with 5% COa2. After 2 hours, the plating medium was replaced with fresh
Neurobasal medium containing B-27 supplements, gentamicin, and 0.125 mM
glutamax (NB#1) (all tissue culture reagents were purchased from Life
Technologies unless otherwise stated). Following 6 days in vitro (DIV) media was
replaced with medium containing B-27 supplements minus antioxidants,
gentamicin and cytosine-B-D-arabinofuranoside (to halt glial growth) (NB#2).
This method resulted in cultures highly enriched for neurons (>95% purity) with

minimal astrocyte and microglial contamination (Ciccotosto et al., 2004).

2.2.3 Cell Viability Assays

Cell survival was monitored by phase contrast microscopy, and cell
viability was quantitated using the Cell Counting Kit-8 (CCK8; Dojindo Molecular
Technologies Inc.). The CCK8 is a colourimetric assay that uses the water soluble
tetrazolium salt, WST-8 (2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-
disulfophenyl)-2H-tetrazolium) which has a higher detection sensitivity than
competing tetrazolium salts; MTT, XTT, MTS or WST-1. WSTs form an orange
formazon end product following extracellular reduction directly dependent on
NAD(P)H-dependent oxidoreductase enzymes in the cytosol and therefore is a
measure of mitochondrial activity. It is advantageous to MTT as the formazon
product is formed extracellularly and therefore less toxic to cells (Berridge et al.,
2005).

In performing the assay, the medium on neurons was replaced with fresh
Neurobasal medium (NB#2) supplemented with B27 lacking antioxidants, and
10% v/v CCK-8 was added to each well and incubated for 3 hours at 37 °C in a 5%
CO:incubator. Plates were gently shaken, and a 150-ul aliquot from each well
was transferred to separate wells of a 96-well plate. The colour change of each
well was determined by measuring the absorbance at 450 nm using a FLUOstar
OPTIMA plate reader (BMG Laboratories), and background readings of CCK8

incubated in cell-free medium were subtracted from each value before
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calculations. The data were normalized and calculated as a percentage of
untreated vehicle control values. Data are represented as mean + standard error

means.

2.2.4 Toxicity assays

Neurons were cultured between 6 to 15 days in vitro (DIV) in NB#1 (Life
Technologies) with media changes at 6 days. To observe AP toxicity, freshly
prepared synthetic AP peptide stock solutions (200 puM, see 2.2.1) and were
diluted to the final concentration in the neurobasal medium (Life Technologies).

Cell viability was measured using Cell Counting Kit 8 (Dojindo, Japan).

2.2.5 Caspase Assays

Neurons were cultured for 9 DIV as described above (see 2.2.2). In order to
determine caspase activity as a readout of apoptosis the Caspase-Glo® 3/7 Assay
was employed (Promega). This is a luminescent reagent, which lyses cells
releasing intracellular caspases. The reagent contains a substrate that upon
caspase cleavage releases aminoluciferin, a substrate for luciferase, which results

in the production of light through the two-step luciferase reaction.

(i) Luciferin + ATP - luciferyl andenylate + PP;

(ii) luciferyl andenylate + O, = oxyluciferin + AMP + light
Light is emitted because the reaction forms oxyluciferin in an electronically
excited state. The reaction releases a photon of light as oxyluciferin returns to
the ground state (Gould and Subramani, 1988).
In the experiments performed here, cell lysates were harvested as described
below (see 2.2.9) from samples treated for 48 h, unless otherwise stated, with
vehicle, AB40 or AB42 (10uM). Staurosporine treatment for 4h prior to
harvesting was used as a positive caspase 3 activity control (2 uM). Then 50 ul of
Caspase-Glo 3, 7 reagent, made fresh or at 4°C, as per manufacturer’s

instructions, added to 50 ul of lysate per well of a 96-well, white-walled, clear
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bottom T/C plate with or without 5 uM caspase 3 inhibitor, Z-DEVD-FMK
(Calcbiochem). White-walled plates were necessary to avoid cross-talk between
wells and maximize luminescence. The lysate/ reagent solution is then agitated
for 5 min at RT to ensure thorough mixing and then incubated at RT for a further
30 - 40min to allow luminescence to reach a maximum. A FLUOstar OPTIMA
plate reader (BMG Laboratories) was used to measure then luminescence with

no filter set chosen.

2.2.6 Excitotoxicity assays

Neurons were cultured for 9 DIV as described above (see 2.2.2). All drugs
and glutamate were diluted in water. Neuronal cultures were pretreated with
PBT2 (3 uM) or Memantine (10 uM) for 6 h and (MK-801) (10 uM) for 20 min
prior to 1 h excitotoxic exposure to glutamate (50 uM). Cell viability was
measured using Cell Counting Kit 8 (Dojindo, Japan) following 18 h in fresh
neurobasal media. Metals were depleted by addition of Diamsar (10 uM), a cell
impermeable metal chelator, to neurobasal media > 1 h prior to treatments.

ZnCl, and CuCl, were dissolved in water and added to neurons with PBT2.

2.2.7 Calcium flux assays

Neurons were cultured as described above (see 2.2.2) and then loaded
with Fluo4-NW dye (Life Technologies) according to the manufacture’s
recommendations. Briefly, cells were incubated for 30 min in complete Fluo-4
loading solution (containing HBSS loading buffer, Fluo-4 dye reagent and
probenecid) at 37°C followed by a 30 min incubation at RT. To measure
fluorescence the inner 72 wells of 96-well plates were measured taking 19s for
each cycle. To establish background (Fy) measurements were averaged for the 10
cycles preceding injection of glutamate. The 11" cycle, the first post injection,
was used for fluorescence (F;), which was measured by a FLUOstar OPTIMA plate
reader (excitation at 490 nm, emission at 520 nm) (BMG Laboratories) with

values expressed as the difference in fluorescence over initial fluorescence
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(AF1/Fp). In PBT2 assays neurons were pretreated with the drug at 3uM for 6h
prior to injection of 100 uM Glu/10 uM Glycine. Treatment with Diamsar at 10

uM to remove metals was performed for 1 h prior to PBT2 treatment

2.2.8 Fluorometric analysis of in vitro AB aggregation

Analysis of self-aggregation of the AB peptide a modified protocol was
employed (Hortschansky et al., 2005). Solutions of 5 um AB peptide in PBS, pH
7.4, were incubated at 37 °C in a 96-well black-walled microtitre plate (Greiner)
with 20 puM thioflavin-T (ThT, Sigma) at a volume of 150 uL for 40 h.
Measurements of ThT binding to aggregated AP were obtained using a FLUOstar
OPTIMA plate reader (BMG Laboratories) and measuring fluorescence at 482 nm
(excitation = 450 nm) with a 475 nm emission cut-off filter. Data points were
collected in 5-min intervals via bottom reading, with each cycle consisting of 5 s
of orbital shaking immediately followed by the fluorescence measurement.
Plates were sealed with acetate adhesive seals (MP Biomedicals) to minimize
evaporative loss. ThT binding was represented as the mean relative fluorescent
units from n = 6 replicate wells following subtraction of the vehicle background

fluorescence.

2.2.9 Protein harvesting and quantitation

Following treatments, cultures in 6 or 48-well plates (Nunc) at 150,000
neurons/mL were washed three times with ice cold 1 x PBS and then lysed by
adding 120 ulL (48-well) or 200 pL (6-well) lysis buffer (50 mM Tris, pH 7.4, 5 mM
EDTA, 50 mM NaCl, 0.1% Triton-X) and 1% protease inhibitor mix set 1
(Calbiochem) to each well. After 20 min ice shaking protein was harvested by
scraping with either a pipette tip (48-wells) or cell scraper/rubber policeman (6-
wells).

Protein concentrations of proteins were performed in duplicate or
triplicate by using a BCA protein assay kit (Pierce, Thermo Scientific). This

colourimetric assay employs the biuret reaction where Cu* forms a complex
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with proteins in an alkaline environment and is reduced to Cu®. The reagent,
bicinchoninic acid (BCA) reacts with Cu® to form a purple-colored end product
that absorbs strongly at 562 nm in a linear fashion with increasing protein.
Standard curve were generated for each assay with 2 mg/mL bovine serum
albumin (BSA) with concentrations of 0 (blank), 31.75, 62.5, 125, 250, 500 and
1000 ug/mL. Samples and protein, in 25 ulL cell lysis buffer, were made up to 200
uL with BCA assay reagent made up at 1:49 as per manufacturer’s instructions.
Absorbances of samples were read at 562 nm following 1 h at RT. Concentration
was determined from the slope of the graph from the standard absorbances

after taking in to account dilution factors.

2.2.10 Biotinylation assay of cell surface receptor expression

Cortical mouse neurons were cultured as described above (see 2.2.2) for
9 DIV in 6-well plates at 2.25 x 10° cells/ well. Treatments with PBT2 (3 uM),
PBT2 (3 uM) + Diamsar (10 uM) and PBT2 (3 uM) + Diamsar (10 uM) + Zn**
(7uM) were performed for 0, 1, 3 and 6 h in fresh NB#2 media. Diamsar was
added 1 h prior to and during PBT2 and/ or Zn** treatments where indicated.
Following treatments, cells were washed twice with ice-cold PBS (+ Ca®*, Mg®*)
and incubated with 1 mL sulfo-NHS-SS-biotin at 1 mg/mL (Pierce, Thermo
Scientific). This performed at 4°C to prevent internalization and trafficking of
receptors at the cell surface. Unreacted biotinylation reagent was quenched and
removed with two washes with ice-cold TBS followed by two ice-cold PBS washes
and then harvested as described above (see 2.2.9)

Protein concentrations for each samples were determined by BSA assays
and 50 ug of protein (from soluble lysates), made up to same volume as most
dilute sample with 1 x PBS, were mixed with 50 ul of streptavidin beads (BcMag)
at 4°C rocking for O/N. Samples were placed into magnetic separator for 2-3
mins to separate supernatants containing the nonbiotinylated proteins. The
remaining pellets containing streptavidin conjugated beads were washed five
times with ice-cold 1 x PBS (+ Ca®*, Mg**). Biotinylated (surface) proteins were

eluted from the beads with 50 uL 4 x Laemmli buffer containing 50 mM
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DTT (i.e. 25 uL 1M DTT + 125 uL 4 x Laemmli buffer, 350 uL 1 x PBS)
and heated at 56°C for 30 min to reduce disulphide bonds. Surface (Surf)
and total (Tot) proteins were analysed using anti-AMPA (GIluR2/3/4) and
NMDA (NR1, NR2A and NR2B) antibodies (adapted from De Felice et al.,
2009; 2009).

2.2.11 Poly-acrylamide gel electrophoresis (PAGE) and western
blotting

Cell lysates were separated by SDS-PAGE using 4-12% Bis-Tris gels
(Criterion, Bio-rad and NuPage, Life Technologies) according to the
manufacturer’s instructions. Western blots were performed on total cell extracts
(20 pg/lane) harvested from mouse cortical neuronal cultures described above
(see 2.2.2). Briefly, samples were heated to 90 °C for 5 min in NuPage LDS sample
buffer (Life Technologies) and 2% beta-mercaptoethanol (v/v), is added to
reduce disulfide bonds, then electrophoresed at 150 V for 60 min. The gels were
transferred to pre-assembled nitrocellulose membrane stacks using a Trans-
Blot® semi-dry transfer apparatus (Bio-rad). Blots were blocked in TBST (10 mM
Tris-HCl pH 8.0, 50 mM NaCl, 0.1% Tween-20) containing 5% skim milk. Primary
antibodies were incubated on blots overnight at 4 °C. HRP-conjugated rabbit
anti-mouse (Dako) was diluted 1:10,000 in TBST and incubated for 1 -2 h at room
temperature. All antibodies were diluted in TBST containing 0.05% sodium azide
as a preservative. Blots were washed 3 x 5 min in TBST after each primary and
secondary antibody-binding step, and ECL (Immobilon, Millipore) was used to
detect the chemiluminescence signal. The images were captured and analysed by
densitometry using a ChemiDoc MP imagining system (Bio-Rad). Stain free gels
(Bio-Rad) were used and in-gel activation allowed for protein normalization to
control for loading. Comparisons to housekeeping proteins commonly used as
loading controls; beta actin and GAPDH, produced unchanged results and the
stain-free technology is thought to be a more robust and reliable control method

(Gartler et al., 2013).
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2.2.12 Antibodies

Primary antibodies were as follows: polyclonal rabbit anti-GluR2/3/4
(2460), polyclonal anti-GSK3a (9338), monoclonal mouse anti-phospho (Ser21) -
GSK-3a (9337), monoclonal rabbit anti-GSK3B (9315), polyclonal rabbit anti-
phospho(Ser21/Ser9) GSK3a/B (9331) (all at 1:5000 dilution, Cell Signaling
Technology); polyclonal rabbit anti-Calcineurin A (ab3673) (1:1000 dilution,
Abcam); rabbit polyclonal anti-NR1 (G8913) and anti-NR2A (G9038) (1:2000
dilution, Sigma); rabbit polyclonal anti-NR2B (06-600) (1:2000 dilution,
Millipore). Secondary antibodies were from mouse or rabbit and conjugated to
Horseradish Peroxidase (GE Healthcare, UK). Proteins were visualized using
Immobilon chemiluminescent HRP substrate (Millipore, Australia) on Amersham
Hyperfilm XP (GE Healthcare UK). Western blot data were quantified by

densitometric analysis of at least three different blots per experiment.

2.3 Multielectrode Array Experiments

Neocortex was dissected from C57BL/6 pups (postnatal days 1-3) under
sterile conditions. Cortices were cut into pieces of about 1 mm?, prior to
dissociation using papain and trituration. Cells were plated at 5000 cells/mm? on
standard 8 x 8 titanium arrayed MEAs (Multi Channel Systems, Reutlingen,
Germany) coated with poly-ethylene-imine (PEI) and laminin. Cultures were
maintained for 2-3 weeks prior to recording, in the following medium: high
glucose DMEM with 10% Horse Serum, 0.5 mM GlutaMax, 1 mM sodium
pyruvate, and 2.5 pg/ml insulin (All from Life Technologies, Australia). Cultures
were kept for 21 days in an incubator at 37 °C, 65% relative humidity, 5% CO,,
and 9% O,.

The MC_RACK software and the MEA-2100-60-System (Multi Channel
Systems, Reutlingen, Germany) were used to record and analyse data. The
MC_RACK software was used to detect and record unit activity. Data was
gathered from neuronal cultures pre-treated with or without PBT2 (3 uM) for 5
min pre and post exposure to glutamate (100 uM) and glycine (10 uM). A

-20 uV threshold was set for the detection of spike and an inter spike interval
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detection threshold set to greater than 10 ms to avoid contamination with burst
firing. Channels that had a baseline greater than -10 uV were denoted as noisy

channels, and were excluded from the data set.

2.4 Data Analysis

Densitometric analysis was performed using Image) software (Rasband,
1997). All data was normalised to an internal control (vehicle or glutamate only)
set at 100%. Differences between groups were evaluated using either one-way,
two-way or repeated measures analysis of variance (ANOVA). These analyses
were followed by Dunnett’s multiple comparisons posthoc tests, paired t-tests or
unpaired t-tests, as indicated against data not used for normalising to ensure
error is not lost. All statistical calculations were performed using GraphPad Prism
(v5.0; GraphPad Software, Inc.) Data are presented as mean = standard error of

the mean (SEM).
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3 The Role of Zinc in a Glutamate-induced

Model of Excitotoxicity

Preface
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All remaining figures in this chapter have been produced solely from the

research conducted by Timothy Johanssen.



3.1 Introduction

In the search for an AD therapeutic, the majority of research since the
1990s has focused on decreasing the amyloid load in the brain by targeting
plaques that are comprised of aggregated beta-amyloid (AB) peptides found
extracellularly in the post mortem brain of patients. The plaques are initially
deposited in the neocortex and subsequently in the entorhinal cortex and
hippocampus (Braak and Braak, 1991). It is believed that the progressive memory
deficits associated with AD result from pathological changes in the entorhinal-
hippocampal system, a region of the brain crucial for memory formation and the
most severely affected in the disease (Hyman et al., 1984). Cu** and Zn** levels
are increased in this region in AD and found at exceptionally high concentrations
in amyloid plaques (Lovell et al., 1998; Dong et al., 2003). Both Cu®" and zZn**
induce the rapid aggregation of AB (Bush et al., 1994a) causing fibrillisation and
precipitation of the peptide. By exploiting this property Cherny et al. were able
to solubilize AR extracted from AD brains using metal chelators (Cherny et al.,
1999). This led to the screening and selection of the quinoline and quinolone
class of drugs from the US Pharmacopoeia that, although not termed metal
chelators, displayed chelating properties. As proof of concept an example of
these drugs, clioquinol (CQ), was used in transgenic mice experiments resulted in
a significant and rapid decrease in AR deposition of nearly 50% (Cherny et al.,
2001). A subsequent phase Il clinical trial with clioquinol exhibited a significant
decrease in plasma AP (Ritchie et al., 2003). These findings validated the
therapeutic targeting of Cu** and Zn**in AD and from this the second-generation
guinoline compound, PBT2 was developed.

As the mechanism of action of PBT2 was further refined it was
hypothesised that the drug prevented the oligomerisation and precipitation of
AB and therefore the formation of toxic soluble oligomers that had just been
described by Walsh and Selkoe et al. (Walsh et al., 2002). It was proposed that
PBT2 prevented AP aggregation by reducing the high concentrations of Zn**and
Cu®* previously reported to be released in to the synaptic cleft from the pre and

postsynapse, respectively (Schlief, 2005; Frederickson et al., 2006) through its
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moderate affinity for both the metals. This return to metal equilibrium in the
synapse was possible due to the ability of PBT2 to increase intracellular levels of
Zn**and Cu®* through its ionophoric capabilities (Adlard et al., 2008). The effect
of the drug in the glutamatergic system was first implicated in this research by
Adlard et al. (2008), which demonstrated the ability of PBT2 to rescue ApB-
induced inhibition of long-term potentiation (LTP), a cellular model of memory
and learning (Riedel, 2003). The inhibition of LTP, by so-called soluble AB
oligomers (Lambert et al., 1998; Walsh et al., 2002; Wang et al., 2002; Shankar et
al., 2008) provides significant evidence that AP toxicity in AD is mediated through
the NMDA receptor (NMDAR). The receptor-specificity of the inhibition of LTP by
AB was further supported by the peptides failure to also inhibit NMDAR-
independent LTP (Raymond et al., 2003).

The normal activation of NMDARs, through regulated moderate influx of
calcium, is essential for synaptic transmission and initiating an array of cell
signaling pathways. Evidence of this has been the failure of NMDAR antagonists
in clinical trials of stroke and traumatic brain injury, particularly those of selfotel
and aptiganel which were ceased due to safety concerns as both trials trended
towards higher mortality rates (Muir, 2006; Kalia et al., 2008). These severe
clinical side effects are most likely due to the drugs’ near complete block of the
NMDAR and subsequent inhibition of the prosurvival pathways reliant on
NMDAR activity (Lipton, 2004). The phosphoinositide-3-kinase (PI3) - Akt kinase
cascade is one such pathway by which NMDARs are reported to mediate
neuroprotective activity. Ca2+—dependent activation of PI3 leads to activation by
phosphorylation of Akt which in turn inhibits the activity of GSK3pB as well as the
pro-apoptotic protein BAD and p53 (Hardingham, 2009). Synaptic NMDAR
activity has also been shown to induce activity-dependent gene expression and
cell survival through activation of the transcription factor, CREB and increased
BDNF gene expression in a key finding by Hardingham et al. (2002). In this work
Ca”* influx through synaptic NMDARs, led to activation of neuroprotective
pathways, whereas Ca** entry through extrasynaptic NMDARs acted to inhibit

the same gene expression involved in cell survival (Hardingham et al., 2002).
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An alternative mechanism by which NMDAR signaling through calcium
mediates neuroprotection is through induced tolerance. Also referred to as
preconditioning, it can be obtained by oxygen-glucose deprivation, chemical
induction or electrical stimulus and is a mechanism in which a sublethal
concentration or mild stimulation provides a window of protection against a
subsequent severe insult. This tolerance is dependent on both concentration and
time with the latter indicating that secondary or indirect responses such as gene
expression may be required to precondition the cell and provide
neuroprotection. Preconditioning was first observed in the canine heart where a
series of brief ischaemic episodes protected against a subsequent extended
exposure (Murry et al., 1986). The role of calcium in preconditioning was first
alluded to in experiments with verapamil, a non-specific Ca** channel antagonist
(Nishi and Berg, 1981) blocked enhanced survival. Importantly the removal of
extracellular Ca** did not alter the effect of the agonist whereas it was negated
following chelation of [Ca™); indicating the requirement of internal Ca’* stores
(Koike et al., 1989). The involvement of moderate increases in [Ca2+]i mediated
by NMDARs was later described in models of ischaemic and NMDA-stimulated
preconditioning in cultured primary neurons (Chuang et al., 1992; Grabb and
Choi, 1999). The moderate increase in [Ca**]; by synaptic NMDAR activity
(Soriano et al., 2006) or by a Ca” -selective ionophore (Bickler and Fahlman,
2004) resulted in the activation of shared neuroprotective signaling pathway. In
both instances this was through activation of the PI3K-Akt pathway, previously
shown to promote neuroprotection against apoptotic insults via activation of the
(Papadia, 2005). These significant findings present the modulation of [Ca®*];as a
novel mechanism in which to target in therapeutic design.

The key intracellular calcium sensors; Calpain, a Ca**-dependent cysteine
protease, and calcineurin, a Ca2+/calmodulin—dependent protein phosphatase
play vital roles in normal cellular signaling but also are strongly implicated in
Ca’"-mediated neuronal death (reviewed in the introduction and (Wu et al.,
2007)). Under excitotoxic conditions calpain cleavage generates a constitutively
active form of calcineurin which acts through the PI3-Akt kinase pathway and

GSK3 to induce caspase activity and neuronal death (Wu et al., 2003; Shioda et
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al., 2006; Park et al., 2008). Deregulation leading to increased activity of GSK3, a
serine/threonine kinase, plays an important role in facilitating this excitotoxic cell
death and is strongly implicated in both sporadic and familial forms of AD
(reviewed in (Hooper et al., 2007)). Calcineurin has been shown to activate GSK3
by dephosphorylation at the inhibitory site, Serine 9, and therefore has the
potential to disrupt the cellular responses of GSK3 which include targeted
protein degradation by phosphorylation of proteins including the key AD protein,
Tau (Kim et al., 2009). Calcineurin has also been reported to inhibit the cell
survival pathway mediated by the transcription factor, CREB (Lin et al., 2003).

The deregulation of synaptic zinc (Zn**), as with Ca**, has been observed
in acute and chronic neurodegeneration (reviewed in (Corona et al., 2011; Vogler
and Busciglio, 2014)) and its modulation has been investigated as a therapeutic
target for the treatment of both AD and HD. To this end PBT2 has recently been
shown to induce Ca**-mediated neuroprotective signaling cascades involving
calcineurin, CREB and GSK3 inhibition by chaperoning zinc from extracellular
pools into cells (Crouch et al., 2011a; Adlard et al., 2013). PBT2 has been shown
to rescue disease phenotypes in transgenic mouse models of both AD (Adlard et
al.,, 2008) and HD, and is currently undergoing clinical evaluation for HD. This
finding suggests an alternate underlying mechanism of the drug other than
directly reducing AP load. To this end excitotoxicity has been implicated in the
pathogenesis of both diseases raising the question as to whether protection
against excitotoxicity is a common mechanism of action resulting in these
therapeutic benefits.

The work presented in this chapter investigates the ability of PBT2 to
ameliorate glutamate-induced excitotoxicity in cortical neuronal cultures and
delineate a mechanism by which PBT2 elicits its neuroprotective effects. To that
end | have focused on the ability of the drug to affect NMDAR-mediated changes
in the cell. Ca** flux-based assays and multielectrode array experiments have
been employed as a functional readout of PBT2 treatment on Ca®* signaling. In
conjunction with this the activation of key proteins in the neuroprotective
pathways have been analysed and together they have demonstrated a novel

mechanism by which PBT2 can protect neurons from cell death.
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3.2 Results

3.21 The metal chaperone activity of PBT2 is required for its
protection against excitotoxicity

Previous research has demonstrated that metals can protect against
glutamate-induced excitotoxicity (Schlief et al., 2006) and have either neurotoxic
or neuroprotective actions depending on concentration and cell type (Cote et al.,
2005). As PBT2 acts as a metal chaperone to significantly increase intracellular
levels Zn** (Crouch et al., 2011a) we sought to further elucidate the drug’s
mechanism of action investigating whether PBT2 protected primary mouse
cortical neurons from glutamate-induced excitotoxicity. Experimental conditions
were optimized to induce approximately 50% cell death upon 1-hour treatment
with glutamate (40 puM), as neurons at this cell viability showed maximal
protection. Following 6 hours pretreatment of neurons with increasing
concentrations of PBT2 (1, 3 and 7.5 uM), its maximum protection against
excitotoxicity was conferred where no effect on excitotoxicity by PBT2 was
observed at 1 h. This was in contrast to MK-801 and Memantine, both direct
NMDAR channel blockers, that demonstrated full protection in 1 hour (Fig. 1, A
and B). Pre-treatment with PBT2 protected against excitotoxic insults restoring
cell viability of glutamate-treated neurons (56 + 6%) in a dose-dependent
manner (glutamate + PBT2 at 0, 3 and 7.5 uM =59 + 6%, 87 + 5% and 88 + 2%,
respectively, n = 6, p < 0.001) (Fig. 1B). These levels were comparable to the non-
competitive NMDA antagonists, MK-801 and Memantine (89 + 4% and 90 + 2%, n
=6, p < 0.001) (Fig. 1A). To test whether the protective effect of PBT2 against
excitotoxicity was dependent on its metal chaperone activity, metals were
depleted from the cell culture media by 1-hour treatment with (NH,),sar
(Diamsar) (10 uM) prior to incubation with PBT2 and then glutamate (Fig. 1C).
Diamsar is a high affinity metal chelator, unable to permeate the cell membrane
(Crouch et al., 2011a). Upon sequestration of metals by Diamsar, glutamate-

treated cells (44 + 6%)were no longer protected by PBT2 (1 uM, 49 + 9%, 3 uM,
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49 + 9% and 7.5 uM, 53 + 8%) demonstrating the requirement of metals as co-

factors for PBT2 to mediate protection. As expected the NMDA antagonists have
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Figure 3-1. PBT2 protects against glutamate-induced excitotoxicity by its metal chaperone
activity. Mouse primary cortical neurons were treated with the NMDA-specific antagonists, MK-
801 (dark grey) and Memantine (light grey) for 1 h and PBT2 at increasing concentrations for 6 h
prior to exposure to glutamate (40 uM). Cell viability was measured and results were normalized
to the untreated vehicle. A, The non-competitive antagonists, MK-801 and Memantine prevent
excitotoxicity where as 1 h pre-treatment with PBT2 is not sufficient to effect cell viability. B, 6 h
pre-treatment with PBT2 prevents excitotoxicity in a concentration-dependent manner
equivalent to the levels of the non-competitive antagonists, MK-801 and Memantine. C, Removal
of metals from neuronal media by pre-treatment with the chelator, Diamsar abolishes PBT2
protection against excitotoxicity. D, Titrating zinc in to metal-depleted media restores PBT2
protection against excitotoxicity. Data represent mean + SE; n = 3 - 6; **p < 0.01, ***p < 0.001;
ns, not significant compared to glutamate treated values by one-way ANOVA using Dunnett’s
post hoc test.
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no requirement of metals to mediate their effect (MK-801, 86 + 12% and
Memantine, 86 £ 5%, n = 4, p < 0.01, p < 0.001, respectively) (Fig 1C). To further
illustrate the role of metals in PBT2 protection Zn** was titrated back in to the
metal-depleted media and restoration of protection by PBT2 against
excitotoxicity was observed (Zn** at 7 uM, 50 + 7% to 72 + 8%, n = 5, p < 0.05)
(Fig 1D). Given that previous ICP-MS analysis had detected 3 = 5 uM Zn** in
neurobasal media, the 7 uM Zn®* supplemented back in to the metal-depleted

media was sufficient to overcome chelation by 10uM Diamsar.

3.2.2 PBT2 significantly reduces NMDAR-mediated Ca** flux.

MK-801 protects against excitotoxicity by directly acting on NMDA receptors
preventing the excessive influx of Ca®* required for NMDA-mediated cell death
(Stout et al., 1998). To investigate whether PBT2 protects by this mechanism we
measured intracellular Ca** ([Ca*'];) flux in cultured mouse cortical neurons using
the Fluo-4 dye. Neurons were pre-treated with vehicle, MK-801 (10 uM), PBT2
(10 uM) for 1 hour (Figure 3-2A) and 6 hours (Figure 3-2B) prior to dye loading
and treatment of cells with a concentration of glutamate and the co-agonist,
glycine (100 pM/ 10 pM) to ensure maximum Ca®" flux (light grey line).
Background levels of fluorescence were established prior to the injection of
glutamate/glycine treatment. By treating for 1 hour we sought to determine
whether PBT2 immediately antagonized the NMDA receptor as with MK-801.
Upon 1-hour treatment with MK-801, glutamate-induced Ca®* flux was
significantly attenuate by 48.5% (51.5 £ 7.5%, n =4, p < 0.001). The remaining
Ca* flux can be attributed to recovery from MK-801 blockade during extended
agonist exposure (McKay et al., 2013) and to a lesser extent, extrasynaptic
NMDRs, non-NMDA ionotropic receptors and metabotropic receptors.
Treatment for the same duration with PBT2 however resulted in a reduction in
Ca”* flux of only 16% (84 + 4.5%, n = 4, p < 0.001) (Figure 3-2A). In previous

excitotoxicity experiments it was observed that PBT2 required 6 hours for
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maximal protection with no effect seen at 1 hour, indicating a second messenger

mediated event. When neurons were pre-treated for 6 hours with MK-801,
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Figure 3-2. The time-dependent effect of PBT2 on ca” flux through the NMDA receptor.
Intracellular Ca** levels in cortical neurons preloaded with the Ca” indicator Fluo4, were
measured upon stimulation by glutamate/glycine (100 uM/10 uM) and reading fluorescence at
490 nm excitation and 520 nm emission. The top panels of A and B show representative traces
with measurements taken at t = 209 s (F;) and the average background fluorescence measured
from t=0- 190 s (Fy), data is expressed in bottom panels as bar graphs where AF = F;-F,. A, Prior
to Fluo4 dye loading neurons were treated for 1 h with PBT2 or a non-competitive NMDA
antagonist, MK-801. B, Neurons were also pre-treated with PBT2 for 6 h, the time required for
PBT2 to protect against glutamate induced excitotoxicity, and MK-801 for 1 h. Data represent
mean * SE; n = 4; ***p < 0.001; ns, not significant compared to MK-801 treated values by one-
way ANOVA using Dunnett’s post hoc test.
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glutamate-induced Ca’* flux remained significantly attenuated (65.3 + 3.3%, n =
4, p < 0.001) however the longer treatment with PBT2 resulted in a significant
reduction in Ca** flux of 31.2% (68.8£5.6%, n=5, p<0.001) compared with the

1-hour treatment (Figure 3-2B).

3.2.3 PBT2 requires zinc to reduce NMDAR-mediated Ca®* flux.

The results obtained from the excitotoxicity experiments clearly
demonstrated a requirement of metal for the protective effect of PBT2 on cell
viability of neurons. To determine whether metals were also a requirement for
the observed effect of PBT2 on Ca®* flux, experiments were performed in the
presence and absence of metals by using the metal chelator, Diamsar. The
reduction in Ca®" flux previously seen following a 6-hour treatment with PBT2
(Figure 3-2B) is ablated by the removal of metals (87.3 £ 9.3%, n = 4, p < 0.001)
(Figure 3-3A). Although experiments performed in the 1990s with ionotropic
receptor agonists support the role of NMDAR mediating glutamate-induced
excitotoxic cell death (Choi, 1992), glutamate activation of AMPA and Kainate
receptors could still contribute to Ca’* flux. To ensure the effects of PBT2 were
mediated solely by NMDARs neurons were concomitantly treated with the
AMPA/Kainate receptor antagonist, CNQX (Figure 3-3, B and C). We then tested
whether the reintroduction of zinc to metal-depleted neurons would restore the
ability of PBT2 to block Ca®* flux. A concentration of Zn®* shown to rescue
glutamate excitotoxicity (7 uM) (Figure 3-1C) in metal-depleted media was used
during PBT2 pretreatment of cells (Figure 3-3C). The presence of Zn* fully
restored the ability of PBT2 to block Ca®* flux and this was shown to be an

NMDAR-mediated event by concomitant treatment with CNQX.
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Figure 3-3. Zinc is required for the inhibition of ca” flux by PBT2. Intracellular ca” levels in
cortical neurons preloaded with the Ca” indicator Fluo4, were measured upon stimulation by
glutamate (100 uM)/ glycine (10 uM) and reading fluorescence at 490 nm excitation and 520 nm
emission. Measurements were taken at t = 209 s (F;) and background fluorescence measured
from t =0 - 190 s (Fo), data is expressed as bar graphs where AF = F;-Fq. A, Prior to Fluo4 loading
neurons were treated with PBT2 (3 uM) or the non-competitive NMDA antagonist, MK-801 (10
UM) for 6 h in media depleted of metals by Diamsar (10 uM). B, To demonstrate NMDA-
specificity neurons were co-treated with the competitive AMPA/Kainate antagonist, CNQX (10
UM). C, Neurons were treated with CNQX (10 uM) and PBT2 (3 uM) or MK-801 (10 uM) for 6 h in
media depleted of metals by Diamsar (10 uM) then exogenous Zn2+(7uM) added. Data represent
mean + SE; n =4 - 6; ***p < 0.001; ns, not significant compared to MK-801 treated values by one-
way ANOVA using Dunnett’s post hoc test.
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3.2.4 The reduction of calcium flux by PBT2 is not mediated by
glutamatergic cell surface expression.

Excitatory  glutamatergic  synapses are involved in  most
neurotransmission in the central nervous system and as such the activity through
the glutamatergic receptors is tightly regulated. As well as altering function of
the receptor complexes by changes in subunit composition, activity through the
glutamatergic receptors, namely; AMPA, NMDA-NR1, NMDA-NR2A and NMDA-
NR2B can be upregulated by increased expression at the cell surface. Conversely,
a reduction of these receptors at the postsynaptic membrane by cycling to
intracellular or extrasynaptic pools as with AMPAR and NMDA-NR2B,
respectively, or by endocytosis as with synaptic NMDARs can significantly
attenuate activity (Groc et al., 2006; Wang et al., 2010b). In order to determine
whether PBT2 attenuated Ca®' flux by affecting the cell surface expression of
these receptors, surface biotinylation experiments were performed on cortical
neurons. Cells were treated with PBT2 (3 uM), then biotin and streptavidin
magnetic beads were used to separate cell surface expressed proteins from total
protein. As PBT2’s ability to reduce Ca** flux was shown to be time-dependent
(Fig 3.2) these conditions were tested by treating neurons for 0, 1, 3 & 6 h with
PBT2. In order to observe the zinc-dependent nature of PBT2 on Ca”* flux,
neurons were treated with PBT2 in the presence of metals (Figure 3-3A), absence
of metals (Figure 3-3B) or with metals removed and Zn** (7 uM, from Figure 3-
1C) reintroduced back in to the media (Figure 3-3C). Protein levels were probed
with antibodies for the key ionotropic glutamate receptors, AMPAR and NMDAR
and the NMDAR subunits; NR1, NR2A and NR2B. In addition, biotinylation was
controlled for by probing for beta actin (B-actin). In each case there was no
consistent observable change in cell surface expression or total expression of the
proteins during the 6 h treatment whether metal were present or not (Figure 3-
3). This finding provides evidence that PBT2 must reduce Ca* flux and protect
against excitotoxicity by a mechanism other than modulating glutamatergic

receptor expression.
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Figure 3-4. PBT2 treatment does not effect cell surface glutamatergic receptor expression.
Cortical neurons (DIV 9) were treated with PBT2 (3 uM) for 0, 1, 3 and 6 h in media containing
metals (A) media pretreated with 10 uM Diamsar to deplete metals (B) or metal-depleted media
with Zn2+(7 uM) reintroduced (C). Proteins were separated in to surface (Surf) and total (Tot)
protein (see materials methods, Chp. 2) and cell surface expression of the key glutamatergic
receptors; AMPAR, NMDA-NR1 (NR1), NMDA-NR2A (NR2A) and NMDA-NR2B (NR2B) and the
biotinylation control protein, beta actin (B-actin) observed by immunoblot analysis. PBT2
treatment at no time point showed any effect on the expression of the receptors tested at the
cell surface or on their total protein levels. Results in A, B and C show representative blots from 3
to 6 independent experiments.
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3.2.5 Preconditioning by PBT2 treatment is neuroprotective against
excitotoxicity.

The phenomenon of neuroprotection by preconditioning has been well
documented in ischemic models (Murry et al., 1986; Kirino et al., 1991; Katsura
et al., 2001) in which glutamate-induced excitotoxicity underlies neuronal death.
Additionally, sublethal levels of intracellular zinc have been shown to be
neuroprotective in rats (Lee et al., 2008) and to increase [Ca®]; by release from
the endoplasmic reticulum (Qin et al., 2011). Given that moderate increases in
[Ca*]; can precondition neurons (Bickler and Fahlman, 2004) and the strong
ionophore action of PBT2 on Zn** we sought to determine whether PBT2
treatment would have a metal-dependent effect on [Ca2+]i levels in our neuronal
model. These data were obtained from observing the [Ca®*];levels in the Ca®* flux
experiments (Figure 3-2 and 3) prior to treatment with glutamate/glycine. A
significant increase (113.0 + 3.9%, n = 5, p < 0.001) in [Ca?']; was observed in
neurons pretreated with PBT2 but not in vehicle-treated (99.05 + 1.5%, n = 5) or
neurons treated with the NMDAR antagonists; MK-801 (97.8 + 2.2%, n = 5) and
Memantine (97.7 £ 3.2%, n = 5) (Figure 3-5A). The metal-dependent effect of
PBT2 was again demonstrated by depletion of metals by supplementing media
with Diamsar prior to and during drug treatment which ablated the increase in
[Ca2+]i levels due to PBT2 (Figure3-5B). Zn** was supplemented back in to metal-
depleted media at 7 upM, the concentration shown to protect against
excitotoxicity in Figure 3-1C. Following treatment with PBT2 under these
conditions [Ca**]; levels were significantly increased (120.6 + 4.6%, n = 4, p <
0.001) compared with neurons treated with; vehicle (99.13 + 1.4%, n = 4), MK-

801 (99.42 + 1.8%, n = 4) and Memantine (100.4 + 3.7%, n = 5) (Figure 3-5C).

3.2.6 Effect of PBT2-induced Preconditioning on Network Activity

To further investigate PBT2 treatment 64-channel MEAs were employed
to observe network-wide extracellular activity. Results were obtained by

measuring spike activity of three separate cortical neuron preparations cultured
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Figure 3-5. PBT2 preconditioning protects against excitotoxicity by increasing intracellular ca*
levels. A, Following pre-treatment with PBT2 (3 uM), the non-competitive NMDA antagonists;
MK-801 (10 uM) or Memantine (10 uM for 6 h) cortical neurons were loaded with the ca”
indicator Fluo4 for 1 h and fluorescence measured at 490 nm excitation and 520 nm emission.
Mean fluorescence was expressed as a bar graph with values normalised to untreated vehicle. B,
Metals were depleted from neuronal media by pre and co-treatment with Diamsar (10 uM). C,
Exogenous Zn2+(7 uM) was supplemented in to Diamsar-treated neurons during treatment. Data
represent mean = SE; n = 4 - 6; ***p < 0.001; ns, not significant compared to MK-801 treated
values by one-way ANOVA using Dunnett’s post hoc test.
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Figure 3-6. PBT2 induces moderate synaptic activity and reduces excitotoxic network excitation
following glutamate exposure. A, Example of Raster plots of a single MEA experiment with
cortical neurons treated with vehicle, excitotoxic levels of glutamate (100 uM)/ glycine (10 uM)
(glut) or pre-treated for 6 h with PBT2 (3 uM) prior to treatment with glutamate/glycine (glut +
PBT2). The raster plots show neural activity by recording spikes at each of the 60 electrodes (blue
dots) as a function of time with each dot representing a single action potential. B, Graphical
representation of data obtained from the above MEA experiments. The number of spikes was
recorded over the period of 5 mins pre and post application of glutamate/ glycine for each
treatment. Data represent mean + SE; n = 3; ***p < 0.001 compared to vehicle and glutamate
treated values, respectively, by one-way ANOVA using Dunnett’s post hoc test.
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on MEAs and correlate directly with data from the Ca®* flux assays (Figure 3-2
and 3-3).The data shows a significant decrease in excitotoxic network activity
induced by glutamate/ glycine following pretreatment with PBT2 for 6 h (Figure
3-6, A and B). In further support of PBT2 preconditioning neurons, a moderate
but significant increase in synaptic activity was observed in neurons treated with
PBT2 alone compared with vehicle, as measured by the number of spikes (Figure
3-6B). This increase in spontaneous synaptic activity corroborates the increases
in [Ca®']levels that were observed previously (Figure 3-5, A and C) and also past
findings demonstrating the requirement of prolonged and marked elevation of
electrical activity for preconditioning in an ischemic model (Tauskela et al.,

2008).

3.2.7 PBT2 restores normal levels of protein expression and
phosphorylation under excitotoxic conditions

Calcineurin, a Ca*dependent protein phosphatase, and glycogen
synthase kinase 3 (GSK3) both mediate survival in primary neurons from rodents
(Endo et al., 2006; Wu et al., 2007). Previous work by colleagues in cultured SH-
SY5Y cells has demonstrated that an increase of GSK3 phosphorylation by PBT2 is
a result of inhibition of calcineurin (Crouch et al., 2011b). To determine whether
PBT2 activates cell survival pathways by preventing the cleavage of calcineurin
and inhibiting of GSK3a and GSK3f activity by phosphorylation, we analysed
their respective protein expression following pre-treatment with drugs and
exposure to excitotoxic glutamate in mouse cortical neurons. PBT2 pretreatment
inhibited activation/cleavage of calcineurin significantly increasing protein levels
in glutamate treated neurons when normalized to vehicle (from 21 + 7% to 81 +
9%, n = 3, p < 0.05, p < 0.01 for PBT2) (Figure 3-6A). Further evidence of
neuroprotection by PBT2 mediated by GSK3 was seen by its ability to increase
phosphorylation of both GSK3a (from 8 + 4% to 85 + 19%, n = 3, p < 0.01 for
PBT2) and GSK3B (from 55 + 9% to 92 + 8%, n = 3, p < 0.001 for PBT2,
respectively) (Figure 3-6, B and C).
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Figure 3-7. PBT2 inhibits calcineurin and GSK3 activation. A, Western blot analysis of calcineurin,
p-GSK3a/pB, total GSK3a/f3, and the control protein, B-actin in cortical mouse neurons (D.L.V. 9).
Neurons were pre-treated with PBT2 (3 puM) and with the NMDA-specific antagonists;
Memantine (10 uM) for 6 h and MK-801 (3uM) for 1 h prior to treatment with glutamate (glut, 40
UM)) for 1 h. Protein was harvested after an 18 h incubation in fresh media. B-D, Densitometry
analysis of western blot data shown in panel A, PBT2 treatment inhibited calcineurin activity by
preventing its calpain-mediated cleavage demonstrated by restored protein levels (B). PBT2-
treated neurons showed significantly increased levels of inactive phosphorylated GSK-3a (C), to a
lesser extent GSK-3B (D) compared with glutamate-treated samples. All samples were normalized
to the B-actin to control for loading. Western blots are representative of 3 or more separate
experiments. Data represent mean + SE; **p < 0.01, ***p < 0.001 compared to glutamate treated
values.
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3.3 Discussion

Currently the underlying aetiologies of the neurodegenerative diseases,
AD and HD are not yet fully understood. Although protein aggregation and
deposition are a common feature in the diseases emerging evidence has
implicated the dysregulation of Ca** flux through the NMDA receptors and the
resulting excitotoxic cell death as a shared mechanism and more probable cause
of the neurodegeneration underlying both indications (Milnerwood and
Raymond, 2010; Um et al., 2012).

The involvement of the glutamatergic system in the neurodegeneration
underlying AD is well documented. Toxic soluble forms of the peptide
responsible for plaques in the AD brain, AB that have been isolated from cell
lines, rodents or human diseased brains have been shown to inhibit LTP
mediated through NMDARs. (Lambert et al., 1998; Walsh et al., 2002; Shankar et
al., 2007; 2008). PBT2 acts on this key phenotype of AD, reducing levels of AB
oligomers and also decreasing phosphorylated Tau (Crouch et al., 2011a). A role
for the drug’s action in glutamatergic signaling was indicated by its ability to
inhibit the AB-induced inhibition of LTP in rodents (Adlard et al., 2008). PBT2 was
originally identified by compound screens for its ability to inhibit toxic
extracellular AP-metal interactions, a mechanism thought to involve the
sequestration Zn®* from the extracellular AR aggregates and drug-mediated
intracellular metal delivery (Adlard et al., 2008). However in the work presented
here we provide evidence of an alternative mechanism action of the drug, one
that supports the findings in which PBT2 has shown efficacy in both AD and HD.

The initial experiments in this the ability of PBT2 to protect against
glutamate-induced excitotoxicity and that this protection is metal dependent. As
evidence of this, the protective effect of PBT2 was ablated when the metal
chelator, Diamsar, removed metals in the cell culture media. The removal of
metals had no effect on the actions of NMDA-specific antagonists, MK-801 and
Memantine (Figure 3-1).

NMDA receptors play a vital role in the normal function of the nervous

system including their role in cognition, learning and memory through LTP.
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Clinical trials of NMDA antagonists such as MK-801 in stroke, Huntington’s
disease and traumatic brain injury failed to show safety resulting in
psychotomimetic effects including hallucinations, agitation, sensory disturbance
and catatonia (Lees et al., 2000; Muir, 2006). These severe side effects have been
attributed to the slow “off-rates” of the drugs leading to prolonged blockage of
the normal signaling by NMDA receptors. Memantine is an NMDA antagonist
that has EU and FDA approval for moderate to severe AD. The drug is clinically
tolerated reportedly due to a faster “off rate’ (Lipton, 2006) Unlike MK-801,
Memantine has been shown to act selectively through extrasynaptic NMDARs
(Talantova et al., 2013). This mechanism is supported by our findings in which
glutamate-induced Ca’* flux, mediated through NMDARs at the post synapse, is
not altered in neurons pretreated with Memantine (Figure 3-2 and 3-3).

To further understand the phenomenon of excitotoxic protection by PBT2
an intracellular Ca** flux assay was employed and demonstrated that an
extended 6 h, as opposed to 1 h, pre-treatment of neurons with PBT2 is required
to block NMDA receptor-mediated flux to the extent seen in neurons pretreated
with MK-801 (Figure 3-2, A and B). This was also the case in the initial
optimisation of the excitoxicity assays where 6 h pretreatment with PBT2 was
required for protection. Such a requirement of PBT2 suggested it was acting
primarily on downstream components in the Ca’*-signaling pathway to protect
against excitotoxicity, discussed below, rather than directly antagonising the
NMDAR as with 1 h MK-801 treatment.

The subsequent Ca** flux assays demonstrated a significant metal-
dependent reduction in Ca’* flux by PBT2 to levels seen in neurons treated with
NMDAR antagonist, MK-801 (Figure 3-3A). In these experiments metals were
chelated using Diamsar, which has a high affinity for Zn** and showed negligible
effects on Ca”" levels. Analysis of raw fluorescence data established that co-
treatment with Diamsar had no effect on Ca** levels and therefore had no effect
on the observed changes in Ca** flux between samples (Figure 3-2B and 3-3A).
Non-specific effects of PBT2 on Ca®*in this experiment were also negated by the
observation that when metals were removed Ca”* flux was not significantly

different to vehicle (Figure 3-3, A and B). It was also important to determine
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whether the intracellular flux of Ca** was mediated solely by NMDARs or also by
the two remaining classes of glutamatergic receptors; AMPA and Kainate
receptors. Co-administration with the competitive AMPA/ Kainate receptor
antagonist, CNQX, demonstrated no effect on Ca’" flux in untreated and treated
neurons indicating the Ca®* flux to be NMDAR-mediated (Figure 3-3, A and B). In
the initial drug screens PBT2 was selected based on its action as an ionophore to
restore levels of intracellular Zn** and Cu®* in a neuronal cell line (Adlard et al.,
2008). PBT2 is believed to work in AD through its ability to remove zinc bound to
AB in doing so prevent a rapid induction of AB fibril formation (Adlard et al.,
2008) and transport the metal into cells and activate neuroprotective signaling
cascades (Crouch et al., 2011a). In the initial excitoxicity experiments (Figure 3-
1C) reintroduction of 7 pM Zn®* was sufficient to overcome the chelation of
exchangeable metals in the cell culture media by 10 uM Diamsar and significantly
restore protection by PBT2 against glutamate. The same concentration of Zn**
completely restored the reduction in Ca®* flux by PBT2 in metal-depleted
neuronal culture. Given PBT2 has also been shown to markedly promote the
uptake of Cu?** by cells we also tested whether it was required for reduction of
Ca** flux by PBT2, however cortical neurons were not viable due cu® toxicity. .

It is possible that PBT2 is mediating its effect on Ca** flux by various
mechanisms; including by altering either the activity or expression of NMDARs.
The NMDARs mediate the majority of intracellular Ca®* flux across the cell
membrane upon glutamate exposure as well as during synaptic activation
(Rogers and Dani, 1995). The modulation of this receptor through one of its
subunits would therefore account for the substantial reduction in Ca** flux
observed following PBT2 treatment (Figure 3-2, B and 3-3, B). Zinc is known to
antagonize NMDARs by two independent mechanisms; a voltage-dependent
mechanism and a voltage-independent mechanism with the latter being
dependent on NMDAR subunit composition with Zn** acting on the amino-
terminal domain of NR2A with far greater affinity than the NR2B subunit (Choi
and Lipton, 1999; Paoletti et al., 2000). Given PBT2’s action on Zn** as an
ionophore it would be expected treatment with the drug would reduce

extracellular Zn®* in the synaptic cleft and cause reduction of any voltage
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dependent-inhibition of NMDAR activity which in turn would lead to an increase
in [Ca®*].. In the work presented here a converse effect was observed upon PBT2
treatment with [Caz+]isignificantly decreased (Figure 3-2, B and 3-3, B). Further
investigation of PBT2’s action on Ca’* flux was undertaken with biotinylation
experiments which observed the changes in cell surface expression of the key
receptors mediating intracellular flux, namely; AMPAR and NMDAR. Given that
the subunit composition can affect NMDA receptor function, the expression of
NR1, NR2A and NR2B were also studied (Paoletti et al., 2013). These experiments
clearly demonstrated that PBT2 was not mediating its effect at the cell surface or
by altering total expression of the receptors (Figure 3-4) and that PBT2 was not
acting via an NMDA-mediated mechanism.

Preconditioning by pre-exposure to subtoxic levels of glutamate and
NMDA (Chuang et al., 1992; Rocha et al., 1999) or brief ischemic insults (Murry et
al.,, 1986; Kirino et al., 1991) is neuroprotective against excitotoxic trauma.
Further work describing this phenomenon has demonstrated the involvement of
cellular pathways mediated by NMDARs. Preconditioning with low doses of
NMDA induces key proteins in neuroprotective pathways including the
phosphatidylinositol 3 kinase-protein kinase B (Akt) signaling to GSK3p inhibition
(Soriano et al., 2006). These survival signals can also be activated by using Ca**
ionophores to moderately increase [Ca™]; conferring long-term tolerance of
ischemia or other stresses and this occurs independently of NMDAR-mediated
Ca’" flux (Bickler and Fahlman, 2004). A central finding of this work is that PBT2
causes a moderate but significant increase in [Ca¥];i levels following treatment
(Figure 3-5). In this data PBT2 treatment did not protect against excitotoxicity by
attenuating total [Ca**]imediated by NMDARs as with MK-801 (Figure 3-2 and 3-
3), rather it reduced flux by increasing initial levels of [Caz+]i and in turn
preconditioned neurons against excitotoxic exposure to glutamate (discussed
below). This is because it is the total net flux of Ca’"in to the cell rather than
total levels of ([Ca*'];) that correlates with the extent of excitotoxic cell death
(Abdel-Hamid and Baimbridge, 1997; Dugan and Choi, 1999; Soriano et al.,
2006).
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There are several potential mechanisms by which PBT2 could result in the
zinc-dependent increase in [Ca¥]i. It can rise by crossing the cell membrane
through NMDARs, AMPAR, store-operated Ca’" channels (SOCCs), voltage-gated
Ca’* channels (VGCCs), ionotropic glutamate receptors (NMDARs and AMPARs)
or it can be released from intracellular stores in the endoplasmic reticulum
(Corona et al., 2011). Another obvious candidate recently described involves the
post synaptic Zn’*-sensing receptor (Zn’'R)/G-protein coupled receptor (GPR39)
and as with many metabotropic receptors, the resulting increase [Ca¥]; is
mediated through phospholipase C and subsequent generation of inositol 1,4,5
triphosphate (IP3) (Hershfinkel et al., 2001; Chorin et al., 2011). In our work we
did not see an increase in [Ca2+]i in neurons other than those treated with PBT2
in normal, metal-depleted and metal-depleted/Zn** conditions (Figure 3-5). This
observation in conjunction with the metal-dependent nature of the drug’s action
makes it is less likely that PBT2 acts directly on an extracellular receptor to
increase [Ca®*]; but instead acting through its ionophoric ability to increase
intracellular zinc triggering the release of Ca** from the ER via the inositol 1,4,5-
trisphosphate (IP3R) and the ryanodine (RyR) receptors. In support of this
mechanism cytosolic levels of Zn** have been shown to modulate ER Ca®* stores
(Qin et al., 2011).

In work delineating the effects mediated through synaptic and
extrasynaptic NMDARs by Hardingham and colleagues, elevated levels of
electrical activity were shown to precondition neurons against apoptosis from
serum deprivation, excitoxicity or oxidative stress (Hardingham et al., 2002;
Papadia et al., 2008; Tauskela et al., 2008). My results demonstrating an increase
in [Ca™]; indicate that PBT2 is effecting synaptic activity to a moderate extent
(Fig 3-5). In subsequent experiments studying the effect of PBT2 on network
activity with MEAs it was confirmed that PBT2 indeed can reduce excitotoxic
electrical signaling due to glutamate/ glycine as was originally hypothesised. An
important finding that provided further evidence of preconditioning as a
mechanism of action of PBT2 was a moderate but significant increase in

electrical activity across the MEAs due to PBT2 treatment (Figure 3-6).
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As discussed prior moderate increases in [Ca®']; (Bickler and Fahlman, 2004)
result in preconditioning of neurons by activation of the neuroprotective
pathways involving Akt, CMK, & GSK3 and previous research has demonstrated
the capability of structurally diverse metal chaperone compounds to activate
neuroprotective signaling pathways (White et al., 2006; Adlard et al., 2008;
Donnelly et al., 2008; Crouch et al., 2009; 2011b). The restoration of normal
calcineurin levels indicates that PBT2 acts on a key pathway associated with
neurodegeneration involving the Ca®'-activated cysteine protease, calpain
((Bradley et al., 2012)). The cleavage and subsequent constitutive unregulated
activation of one of its downstream targets, calcineurin, has been shown to
induce dephosphorylation and activation of GSK3a and B. GSK3 dysregulation
has been implicated in AD (Avila et al., 2004) and other relevant
neurodegenerative diseases including HD (Carmichael et al.,, 2002) and
frontotemporal dementia with parkinsonism (Engel et al., 2006). In this study we
have shown that PBT2, in protecting against glutamate-induced excitotoxicity by
increasing [Ca”"];, inhibited cleavage and therefore activation of calcineurin and
restored its normal protein levels (Figure. 3-7, B). Further evidence of the drug
acting to inhibit neurotoxic signaling was observed by the increase of
phosphorylation of both GSK3 isomers (Figure 3-7, Cand D).

In summary the metal chaperone PBT2 can protect against excitotoxic
insults by inducing preconditioning in neurons. PBT2 acts by transporting Zn**
into cells, increasing [Ca®']; and activating neuroprotective pathways involving
Calcineurin and GSK-3 and this process does not block the channels of the
glutamatergic system that are required for normal synaptic function. Given that
excitotoxicity is implicated in a number of neurodegenerative diseases this work
suggests that metal chaperones have the potential to be effective therapeutic

agents across the spectrum of these disease.
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4 Describing the Necessary Conditions of

Beta Amyloid Toxicity in Neurons.

4.1 Introduction

In Alzheimer’s disease of the varied hypotheses for its cause, a large body
of work has centered on the involvement of AB in attempts to determine
whether it is its overproduction or failure to clear AB from the brain that
underlies neuronal loss initially in the hippocampus and cerebral neocortex. This
is highlighted in a recent review collating the number of publications each year
that focused on AR as opposed to the remaining significant markers of
Alzheimer’s, Tau and apoE4. Between the years 2010 - 2013 there was an
average of 1750 AB publications (Michaelson, 2014). An array of transient and
intermediate AP species, which exist in a dynamic equilibrium on the pathway to
fibril and extracellular amyloid plaques formation, have previously been
described and demonstrated to cause synaptic dysfunction and neurotoxicity
(Lambert et al., 1998; Lashuel et al., 2002; Walsh et al., 2002; Barghorn et al.,
2005; Lesné et al., 2006; Shankar et al., 2008; Kayed et al., 2009). Evidence
indicates that the neurotoxicity from AB can result from many varied
mechanisms and through either a direct or indirect action results in the neuronal
loss observed in AD. The main neurotoxic effects that have been described for AB
include; neuroinflammation, oxidative and nitrosative stress, synaptic
dysfunction, mitochondrial damage, impaired autophagy and disturbances to
glutamatergic neurotransmission, with the latter leading to excitotoxicity (Walsh
et al., 2002; Nixon and Yang, 2011; Garcia-Escudero et al., 2013; Carrillo-Mora et
al., 2014; Macchi et al., 2014). Subsequently cell death then occurs by either of
two distinct processes, apoptosis or necrosis. Characteristic of classical apoptosis
is the activation of cysteine-dependent, aspartate-directed proteases called

caspases, which lead to phagocytosis of the cell following DNA condensation and
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fragmentation. Necrosis is an accidental or pathological form of cell death that
results from significant ion influx, mitochondrial swelling and plasma membrane
rupture (Majno and Joris, 1995; Martin, 2001). One specific pathway is still to be
proven solely responsible for the toxicity observed in AD, it is more likely that cell
death is multifactorial involving several different mechanisms. In support of such
mechanistic complexity are findings that different conformations of oligomeric
AB namely, ADDLs (Lambert et al., 1998), ABOs and fibrils (Demuro et al., 2005)
act via distinct pathways and different time-courses to affect toxicity in human
cortical neurons (Deshpande, 2006).

The current assays that are routinely employed globally to screen AB-
induced cytotoxicity are unable to distinguish specific signaling pathways or
conformational changes to AB that play a role in toxicity. Instead they indirectly
measure total cell viability or death through the reduction of colorimetric dyes or
by way of loss of membrane integrity, as is the case for MTT/MTS/CCK-8 and
LDH/Calcein assays, respectively. The former assays are based on the reduction
of the tetrazolium salts; 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT), 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-
sulfophenyl)-2H-tetrazolium (MTS) and the subsequent, more sensitive analog,
2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-
tetrazolium (WST-8 or CCK-8). They act as indicators of intracellular redox activity
and therefore are used as a measure of cell viability.

Assaying AP cytotoxicity by measuring cell viability of cultured neurons
has been one of the most commonly used assays in many laboratories and as
been used in AD research internationally for more than two decades (Yankner et
al., 1990; Walsh et al., 1999; Chromy et al., 2003; Wogulis, 2005; Sakono et al.,
2008; Noh et al., 2009; Zhang et al., 2010). Primary cultured neurons provide a
relatively simple and fast option to investigate the role of AB aggregation state
and the mechanism by which AB mediates its toxicity as well as providing
valuable tools for therapeutic inhibitors of AR toxicity. Despite these positive
attributes, the time frame necessary to observe statistically significant decreases
in cell viability assays is substantial limitation to the assays. Publications have

described AB toxicity in neurons in as short as 5 h (Walsh et al., 1999; Song et al.,
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2008) but treatment times ranging from 24 h to 96 h are more representative of
the norm (Ferreira et al., 2012; Mozes et al., 2012; Ryan et al., 2013; Giordano et
al.,, 2014). In the standard toxicity assays performed in our laboratory primary
mouse cortical neurons are treated with 10 - 15 uM synthetic AB for 96 h (Smith
et al.,, 2007; Barnham et al., 2008; Hung et al., 2008; Ciccotosto et al., 2011).
Such a protracted treatment time in this standard AP assay makes it near
impossible to correlate aggregation state with its cytotoxicity. After 96 h the
majority of AB would have formed fibrils, whereas to study the toxic oligomeric
species will require an instant toxicity readout instead.

Measurement of apoptotic cell death provides a possible alternative to
overcome the shortfalls of cell viability assays in response to AB treatment.
Apoptosis, rather than necrotic cell death has been strongly implicated in AB
toxicity (Mattson, 2000; Yuan and Yankner, 2000). In support of this were
experiments in which the knockout of either caspases 2 or 12 in mice afforded
resistance to AP toxicity (Nakagawa et al., 2000; Troy et al., 2000) These are two
key caspases that regulate the extrinsic (receptor-mediated) and intrinsic
(mitochondrial) pathways, respectively. Both pathways converge at the
proteolytic activation of the executor protease, caspase 3 from the inactive
procaspase 3. The outcome of this is regulation of caspase 3 activation and
therefore apoptotic cell death (Porter, 2006). The measurement of this activation
provides an indirect readout of AP toxicity as has been demonstrated in
experiments in human cortical neurons (Deshpande, 2006).

In order to understand the necessary parameters for AB toxicity it was
necessary to further characterise the standard cell viability assay employed in
our laboratory. The requirement of 96 h treatment with AB to observe toxicity
hinders the ability to determine whether the aggregation state of the peptide or
the maturation stage of the primary cortical cultures, or both, are necessary for
toxicity. Together with the investigation of alternative assays for toxicity the aim
of the subsequent research presented in this chapter has been to test these
parameters by comparing the days in vitro (DIV) of the primary neuronal cultures
with the duration of treatment. Additionally, to investigate whether
excitotoxicity underlies this cell death as has been proposed by several
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significant publications recently (Ittner and G6tz, 2010; Um et al., 2012; You et
al., 2012; Tackenberg et al., 2013) (For review see Introduction, 1.6), the

expression profiles of the key glutamatergic proteins were studied.

4.2 Results

4.2.1 The standard AB42 Toxicity Assay

In the standard cell culture method employed by our laboratory, primary
mouse cortical neurons cultured for 6 days in vitro (DIV) and exposed to
synthetic AR peptide at 10 and 15 puM that has previously been treated with
hexafluoro-2-propanol (HFIP) to monomerise the peptide. This preparation is
added immediately and mainly monomeric (De Felice et al., 2007) (see chapter 2
for preparation). This results in a significant decrease in cell viability by 72 h and
a more substantial decrease of approximately 35 — 40% at 96 h (Figure 4-1A). It
has been necessary to use both 10 and 15 uM concentrations of AB peptide to
ensure toxicity due to frequently observed interbatch variations in peptide
quality from our provider, Keck (Yale University, New Haven). The considerable
lag time of this assay of 72 — 96 h means it is not possible to correlate toxicity to
a specific oligomeric form of AR due to its propensity to rapidly aggregate. The
aggregation profile of synthetic AB was observed by the binding of Thioflavin T
(ThT) to PB-sheet rich structures formed during AB aggregation, enhancing
fluorescence. It can be seen that the ThT fluorescence, indicating peptide
aggregation, reaches a plateau by 24 h with freshly prepared Ap and by 30 h with
HFIP-treated AP, as measured by the binding of ThT fluorescence (Figure 4-1B).
In the ThT assays AP was prepared in a buffered saline solution, with phosphate
to 3 mM unlike in Neurobasal media. The presence of salts increase AR
aggregation therefore it would be predicted that the aggregation of AB on cells
would be reduced but not sufficient to halt the peptides aggregation so that a

specific oligomeric species of AB associated with toxicity can be detected.
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Figure 4-1. Our standard AB42 cell viability assay cannot detect specific oligomeric species
associated with toxicity. A, In this AB42 toxicity assay cortical neurons are cultured for 6 DIV and
then treated with 10 uM or 15 uM of synthetic AB42 with the latter often required due to lower
purity in the preparation of peptide by the provider. Cell viability is assessed by CCK8 assay to
determine toxicity and a significant decrease relative to time-matched vehicles is not observed
until at least 72h (9 DIV) and consistently by 96h (10 DIV). B, Rapid aggregation of the AB42
peptide was measured by Thioflavin T (ThT) fluorescence, which increases proportionally with
aggregation. The aggregation rate of AB42 was reduced in the presence of HFIP. ThT binding was
represented as the mean relative fluorescent units from n = 6 replicate wells, + SE following
subtraction of the vehicle background fluorescence. Cell viability is expressed as the mean of *
SE; n=3-6; **p < 0.01, ***p < 0.001; ns, not significant compared to glutamate treated values
by one-way ANOVA using Dunnett’s post hoc test.
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|
4.2.2 ApB-induced caspase 3 activity

Apoptosis has been widely implicated as a process that underlies
neuronal cell death in neurodegenerative disease (Mattson, 2000; Deshpande,
2006; Eimer and Vassar, 2013). To determine whether caspase 3 activity could be
used to assay AP toxicity, primary hippocampal neurons were exposed to the
AB40 and AB42 peptides as well as vehicle and the positive apoptotic control,
Staurosporine (STS), for 48h. Samples were also treated with a caspase 3
inhibitor to demonstrate specificity. Treatment with vehicle and AB40 showed no
statistically significant increase of caspase 3 activity whereas AB42 induced a
substantially significant increase in caspase 3 activity to the levels comparable to
the STS positive control (Figure 4-1A). To make this assay more amenable to
screening larger numbers of samples the AB42-induced activity was measured in
primary mouse cortical, rather than hippocampal, neurons that provided a ten-
fold increase in the number of cells from each embryonic isolation. Subsequent
time-course experiments exhibited a significant AB42 increase in caspase 3
activity at 4 and 6 h post treatment compared with vehicle treated controls
(Figure 4-2B). Despite the considerable reduction in time for an observable AB42-
induced effect from 72-96 h to 4-6 h, this duration still affords enough time for
considerable AB42 aggregation that prevents the identification of specific
oligomeric forms. More importantly the toxicity induced by treatment with Ap42
did not correlate with the levels of caspase 3 activity. Treatment of hippocampal
and cortical neurons with 10 uM AB42 results in between 20 - 40% decrease in
cell viability whereas treatment with STS kills all neurons, yet both activate
caspase 3 to similar levels. This indicates the caspase activity assay is not suitable
for the purposes of screening AB42 toxicity. It also suggests that the cell death is

not due to apoptosis.
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Figure 4-2. Effect of AB on caspase 3 activity in primary mouse neurons. A, A significant increase
in caspase 3 activation was observed following treatment with AB42 (10 uM) or the positive
caspase control, Staurosporine (STS) (2 uM) for 48 h. Treatment with the non-toxic AB40 peptide
(10 uM) showed no significant increase in caspase activation relative to vehicle. The caspase 3
inhibitor, Z-DEVD-FMK (5 uM), was used to demonstrate caspase-specific activation. B, It was
also possible to observe a significant increase in caspase 3 activity in cortical neurons. Cells
treated for 4 h and 6 h with AB42 followed by an 18 h incubation in fresh media showed
significant increases in activity relative to time matched vehicle. Data represent mean + SE; n = 3
- 4; **p < 0.01, ***p < 0.001; ns, not significant compared to vehicle- treated values by one-way
ANOVA using Dunnett’s post hoc test.
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4.2.3 AB-induced Ca* flux through the NMDAR

To identify an instant readout of functional change resulting from AP treatment
that paralleled its toxicity, a Ca** flux assay was employed as previously
described (Section 3.2.2). In attempts to induce a specific Ca®* flux, varied
preparations of synthetic AP that have previously been described as the major
components of the peptide’s toxicity were screened. The oligomeric state was
first compared by preparing the peptide either by dissolving directly in to NaOH
or by pretreatment with hexafluoro-2-propanol (HFIP) to monomerise the AB
(Chromy et al., 2003; De Felice et al., 2007). A time-course over 4 h was
performed with both preparations of AB42 without any of the treatments
affecting a significant change to the calcium flux when the data of 3 independent
experiments were combined with the results normalised to glutamate-treated
neurons and compared to vehicle treated neurons (Figure 4-3A). Along with
these several preparations of AB that have been implicated as the toxic species
underlying the aetiology of AD were tested for their ability to affect Ca®* flux.
Firstly, the AP dimer, thought to be a potent toxic species (Walsh et al.,
2002),(Shankar et al., 2008), was tested by using dityrosine linked AB40 dimers
synthesized in our laboratory (Smith et al., 2007; Kok et al., 2013). Following this
AB-derived diffuse ligand (ADDLs) preparations, a stable preparation of soluble
oligomeric AB42 (Lambert et al., 1998) was tested. Also screened was a stable
oligomeric form of AB42 of approximately 60 kDa, which was detected in the
brain and mice and termed globulomers (Barghorn et al., 2005). The AB42Y10A
mutant, which prevents the dityrosine cross linkage and therefore dimer
formation (Barnham et al., 2004a) was tested as a negative control. The
AB42M35V mutant was also tested, again acting as a negative control by
changing the methionine to a valine at position 35, which has been implicated in
oxidative stress, one of the mechanisms believed to underlie AB42 toxicity
(Ciccotosto et al., 2003). As was observed in Figure 4-3A, no Ca** flux was
observed, however, to control for these experiments, ADDLs prepared in Ham’s
F12 (Lambert et al., 1998) media were compared to ADDLs in Neurobasal (NB

media). These experiments revealed the increased Ca** flux not to be specific
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Figure 4-3. AB42 preparations, in isolation, are not sufficient to induce Ca”* flux in neurons. A,
AB42 peptides prepared with HFIP, to increase proportion of monomers, or fresh by dissolving
directly in to NaOH were tested over 4 h for their ability to induce Ca” flux. Results were
expressed normalised to neurons treated with 100 uM glutamate. No statistically significant
changes were observed with either of the AB42 preparations at any of the time points (light and
dark blue bars) compared to vehicle (grey). B, A significant increase in Ca” flux due to treatment
with ADDLs (10 uM) was not specific and due to the F12 media used in their preparation. This is
indicated by the substantial increase in Ca” flux in neurons treated with F12 media only (dark
grey bar) which is not significantly different to the ADDLs treated neurons (dark blue bar. ADDLs
prepared in NB media have no effect on ca” flux compared with their vehicle control (light blue
and grey bars, respectively). Data is expressed normalised to glutamate treated neurons (black
bar) as the mean of * SE; n = 3; ns, not significant compared to glutamate treated values by one-
way ANOVA using Dunnett’s post hoc test.
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AB42 effect but an artefact resulting from the media used (Figure 4-3C).

4.2.4 AB-induced cell death through activation of glutamatergic
receptors.

To investigate whether AP42 toxicity were mediated through the
glutamatergic system, the effects on cell survival were studied following AB42
treatment. Several key publications had recently implicated the NMDAR in the
cell death associated with AB42 (Ittner and Gotz, 2010; Um et al., 2012; You et
al., 2012). This had also been clearly demonstrated in the recent publication by
Alberdi et al., (Alberdi et al., 2010) who had employed a cortical neuron model
and the stable preparation of AB42, ADDLs. In their manuscript, together with
describing an effect on Ca®* flux (section 4.2.3), they demonstrated NMDAR-
mediated toxicity in cortical neurons induced by ADDLs. In my attempts to
induce a specific toxicity due to AB42 conditions identical to those used in their
experiments my experimental conditions were identical to those employed in
their manuscript. In agreement with the findings in their work, the ADDLs
preparations of AB induced cell death following 24 h treatment in cortical
neurons as measured by cell viability (Figure 4-4A) However when the vehicle
was treated identically according to the preparation of ADDLs (described in
Lambert et al., 1998) it too decreased cell viability to the same extent as the
AB42 preparations. Moreover this toxicity was completely prevented by
pretreatment with the NMDAR-antagonist, MK-801. This NMDAR-mediated
toxicity was also observed in neurons exposed to the ADDLs preparations with
specificity demonstrated by pretreatment with MK-801 (Figure 4-4B). These
findings demonstrate that the ADDLs-AB42 preparations did not cause NMDAR-
mediated cell death, instead this effect was due to the vehicle rather than the
ADDLs in contrast to what was concluded in the research by Alberdi and

colleagues.

86



Chapter 4

= Il Vedia

£ 1004 Vehicl
_é‘ S enicle
= 0 ADDL
8o oz, M ADDLs
=8 504
o £
O W

o

S ol

5.0 yM 10 uM 15 uM
Concentration (uM)

~ I i 1 T *k

S 1004 —x* '
£ 5
S O
S ®©
> T 504
3¢
O«

o

S

Vehicle - + + + + +

MK-801 (10 M) - - + -

ADDLs (M) - - - 10 10

Figure 4-4. The toxicity of ADDLs A in primary cortical neurons is attributed to it’s vehicle. A,
Treatment with increasing concentrations (5 - 15 uM) of ADDLs or the corresponding volumes of
vehicle results in a significant reduction in cell viability. As there was no significant difference
between ADDLs-treated neurons and its F12 media vehicle cell death cannot be attributed to the
ADDLs AB42. B, Further experiments in neurons demonstrate that the observed toxicity of ADDLs
was mediated by the NMDAR as cell viability was significantly prevented by pre-treatment with
the uncompetitive NMDAR antagonist, MK-801 (10 uM) for 1 h. The toxicity observed in F12
media vehicle-treated neurons was also significantly inhibited by pre-treatment with MK-801.
Data represent mean + SE; n = 3 - 6; **p < 0.01; ns, not significant by unpaired, two-tailed
Students t-test (A) or one-way ANOVA using Dunnett’s post hoc test (B).

87



4.2.5 The effect of the number of days in vitro (DIV) on toxicity in
cortical neurons.

In concurrent experiments to those with the ADDLs-AB42 preparations,
the parameters for AB42 toxicity in the standard toxicity assay (section 4.2.1)
were investigated to determine whether the duration of AB42 treatment or the
number of days cortical neurons were cultured (DIV) contributed more
significantly to AB42 toxicity. The aim of these experiments was to resolve which
parameter/s of the standard toxicity assay, following optimisation, could
significantly reduce the AB42 treatment time. Three parameters were examined
in these experiments; AB42 treatment time (blue arrows, Figure 4-5A), the effect
of aggregation by incubating AB42 in media prior to treatment of neurons (red
arrows, Figure 4-5A) and the DIV of cortical neurons in the standard assay (6 -10
DIV) (Figure 4-5A). Treatment of cortical neurons in cultures fewer than DIV 9
with AB42 (10 uM) had no significant effect on cell viability. In cells treated at
DIV 9, significant toxicity was observed which increased with the number of days
the AP preparation had been incubated for prior. In these experiments the
vehicle control was added at DIV 6 and treatment was for 4 days, which had no
observable effect on cell viability. Importantly, subsequent attempts with these
newly optimised conditions, that is AB42 added to neurons at DIV 9 without pre-
aggregation, failed to induce specific AB42 toxicity above that of the vehicle
(Figure 4-5B). The vehicle control was in fact responsible for the toxicity as was
observed by its significant decrease in cell viability compared with neurons
treated only with Neurobasal media (Figure 4-5B). Interestingly, DIV influenced
the extent of this toxicity indicating that necessary components of the toxic

pathway may not be fully expressed in immature cultures such as those < DIVS.
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Figure 4-5. Toxicity observed in cortical neurons is dependent on DIV. A, Cortical neurons were
treated at DIV6 with vehicle and at DIV 6 and 9 with fresh AB42 (10 uM) (blue arrows). To test
the effect of aggregation AB42 was pre-incubated for 24, 48 and 72 h (red arrows) and then
added to cells from DIV 7 — 10 (blue arrows). The cell viability in neurons treated at DIV 6, 7 and
8 with AB42 aggregated for 0, 24 and 48 h, respectively were not significantly different to vehicle
demonstrating a greater requirement of DIV compared with aggregation in AB42 toxicity. The
effect of DIV on toxicity was confirmed in neurons treated with fresh AB42 or AB42 aggregated
for 24, 48 or 72 h at DIV 9. B, Subsequent experiments with AB42 & vehicle added to neurons at
DIV 9 without pre-aggregation (same as in A, blue arrow, third from top) demonstrated the
toxicity was not specific to AB42 treatment when compared with neurons treated with media
only. Data represent mean * SE; n = 3; *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant;
compared by one-way ANOVA using Dunnett’s post hoc test.
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4.2.6 The effects of the developmental age of cultures and the
duration of AB42 treatment on cell viability in the standard toxicity
assay.

The maturity of cortical cultures has been shown to significantly affect A
toxicity (Figure 4-5) and in the standard toxicity assay 72 h to 96 h treatment was
necessary for an AP42-induced effect. The next set of experiments aimed to
determine whether the DIV or treatment time affected AP42 toxicity more
significantly as was previously attempted (section 4.2.5). Cortical neurons were
cultured for 6, 8, 10 and 12 DIV and then for each of the 4 differently aged
cultures, treated with AB42 (10 uM) for 24, 48, 72 and 96 h (Figure 4-6, A-D). The
AB42 batch (Keck, Harvard, USA) used in these experiments demonstrated lower
toxicity than expected as seen in neurons at 6 DIV treated for 96 h (Figure 4-6D),
which were not affected by treatment, unlike the previously described decrease
in cell viability to 86% with the same concentration of AB42 (Figure 4-1A). The
effect of DIV on AB42 toxicity was clearly demonstrated in neurons DIV > 8 and
treated for just 24h (Figure 4-6A) With exception to DIV 10 neurons, which
required 48 h AB42 treatment to show significant toxicity (Figure 4-6B), the 8 and
12 DIV cultures had a significant reduction in cell viability compared with the
neurons at 6 DIV (Figure 4-6A). Interestingly, no significant increase was
observed due to treatment time in neurons at DIV12. Statistical comparisons
show no difference between cultures that were the equivalent to 12 DIV or
greater (for example; DIV 10 neurons treated for 96 h = DIV 14) when the cell
viability was measured, with the exception of neurons treated for 96 at DIV 10.
In all comparisons cell viabilities were expressed normalised to the vehicle
control and statistical analysis compared treatments with neurons at 6 DIV for

each treatment time (Figure 4-6, A-D).
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Figure 4-6. AB42 Aggregation versus DIV of cortical neurons. A — D, Aggregation-dependent
AB42 toxicity was observed by treating cortical neurons for 24, 48, 72 and 96 h with 10 uM Ap42
as in the standard AP42 toxicity assay. To observe the effect of DIV on toxicity, the time-course
experiments were performed on neurons previously cultured for 6 to 12 DIV. The toxicity of the
synthetic AB42 batch used in these experiments was significantly lower than normally observed
in our standard toxicity assays as seen in D where neurons initially at 6 DIV were treated with
AB42 for 96 h but showed not significant decrease in cell viability. Despite the decreased toxicity
of the AB42, significant toxicity occurred in all neurons 8 DIV or more (equivalent to 9 DIV or
more in total when taking in to account duration of AB42 treatment) with the exception of
neurons at 10 DIV treated for 24h. There was no significant difference between neurons at DIV12
treated for 24 - 96 h (A-D) Cell viability is expressed normalised to time-matched vehicles (not
shown on graphs). . Data represent mean * SE; n = 4-5; *p < 0.05; **p < 0.01; ***p < 0.001; ns,
not significant; compared by one-way ANOVA using Dunnett’s post hoc test.
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4.2.7 The effect of DIV on the expression of key glutamatergic
receptors.

Following the finding that toxicity was affected by the age of the mouse
cortical cultures and given the involvement of excitotoxicity in AB-mediated cell
death, expression levels of receptors changed with DIV were investigated. In
doing so the protein expression profiles of the glutamatergic receptors; AMPAR
and the NMDAR subunits; NR1, NR2A and NR2B from DIV6 — DIV14 were
determined. Recent research lends significant support to the involvement of
excitotoxicity in AP42-induced cell death. This pathway is mediated through
NMDARs and importantly, through NR1/NR2B receptor complexes with
NR1/NR2A complexes believed to mediate cell survival signaling (Hardingham,
2009). Expression levels of the obligatory NR1 subunit and the NR2A and B
subunits in these experiments were consistent with those previously described in
rat cortical neurons (Ferreira et al., 2012). Apart from an anomaly observed in
DIV12 neurons, NR1 total protein expression remained consistent with
maturation time points (Figure 4-7A) In keeping with observations in rat cortical
neurons, the expression of NR2A is relatively low at DIV6 — 10 before levels are
significantly increased from DIV12 (Li et al., 1998). This was also the case for
AMPAR expression with mature levels not being reached until DIV 12. The
relatively low levels of both NR2A and AMPAR at DIV 9 supports the proposition
that the previously observed toxicity is not mediated through these receptors.
The expression profile of NR2B subunit, in contrast to NR2A, indicates total
protein levels begin to increase at DIV 9 and are significantly increased by DIV11.
This profile associated closely with AB toxicity indicating that it may be NR2B-

mediated.

4.2.8 An equivalent developmental age of cultures is required for
excitotoxicity and AB42-induced toxicity.

To determine whether development of cortical neuronal cultures

affected glutamate-induced excitotoxicity to the extent it affected AB toxicity,
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Figure 4-7. Protein expression levels of key glutamatergic receptors in cortical neurons. A - D,
Time-dependent total expression levels of the obligatory NMDAR subunit NR1 (120 kDa), AMPAR
(100 kDa) and the NMDAR subunits NR2A (170 kDa) and NR2B (180 kDa) in cultured cortical cells
for 6 to 13 days. Proteins were analysed by western blot with values obtained for DIV 6, 7, 9, 11
and 13 expressed as arbitrary units normalised to total protein transferred to membrane used for
antibody detection (see methods, chapter 2). Representative blots of protein levels at DIV 6 to 14
are shown in panels above graphs. Data represent mean + SE; n = 3; *p < 0.05, **p < 0.01, ***p <
0.001; compared to DIV 6 neurons values by one-way ANOVA using Dunnett’s post hoc test.

cell death that was mediated by the NMDAR in the cultures, was examined.

Neurons were grown in culture for 6, 7, 8, and 9 DIV and then exposed to
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excitotoxic levels of glutamate (50 uM). NMDA-specific cell death was
determined by the use of the NMDAR-specific antagonist, MK-801 (Figure 4-8).
The decrease in cell viability observed in vehicle-treated neurons compared with
MK-801-treated neurons (black and grey bars, respectively, Figure 4-8) indicated
cell death mediated through pathways other than the NMDARs. A small but
significant decrease in cell viability is observed at DIV6 and 7 but as was
observed in the protein expression profiles, it is not until DIV9 that substantial
excitotoxicity is induced by glutamate exposure. This observation parallels the
effect of DIV on AB42-induced toxicity (Figure 4-6) and strongly suggests that

excitoxicity underlies the cell death observed in this model.
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Figure 4-8. The effect of Days in vitro (DIV) on excitotoxic cell death in primary cortical neurons.
Glutamate (50 uM, 1 h) (blue bars) was used to induce excitotoxicity and the effect of DIV was
observed. Cortical neurons were pre-treated with the NMDAR specific antagonist, MK-801 (10
uM, 1 h) (grey bars) to demonstrate glutamate-induced cell death was entirely NMDAR-mediated
and therefore excitotoxic. Significant decreases in cell viability are observed at DIV 6 and 7 but it
is only at DIV 9 that a marked toxicity that is fully prevented by MK-801. Data represent mean *
SE; n = 3; *p < 0.05, ***p < 0.001; ns, not significant by unpaired, two-tailed Students t-test.
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4.3 Discussion

To date cell culture-based screens have been employed in parallel with
biophysical assays to detect AP aggregation in efforts to characterise the
oligomeric species of AB underlying the toxicity observed in AD. Such assays have
been performed routinely in our laboratory using primary mouse cortical
neurons and measuring cell viability with the tetrazolium salt, WST-8. In
conjunction, aggregation of AP, prepared fresh or treated with HFIP to
monomerise the peptides, has been determined by fluorometric analysis of ThT
binding (Figure 4-1, A and B). It has been reported that coupling these cell
biology and biophysical techniques with Transmission electron microscopy (TEM)
and cytotoxicity assays measuring LDH release provides necessary secondary
controls but also allows investigators to correlate AP cytotoxicity with its
aggregation (Jan and Lashuel, 2012). Another analytical technique, which has
been used to observe molecular species of AP is surface-enhanced laser
desorption/ ionization — time of flight (SELDI-TOF) mass spectrometry. This
technique overcame possible artefacts that may have arisen from gel based
anaylsis such SDS-induced dimers as reported recently (Watt et al., 2013).
Despite this the propensity of the AB42 peptide to aggregate has meant that
each one of these techniques, either independently or in conjunction with
others, were unable to immediately assign a particular assembly form of AB to
the corresponding neurophysiological effects.

The development of an assay to screen caspase activity as a readout of
AB toxicity initially appeared to be a superior alternative to our current method.
Caspase 3 activation specifically by the AB42 form, as opposed the less toxic
AB40, in hippocampal neurons was potent and observed in the much shorter
time frame of 48 h (Figure 4-2A). This finding could be reproduced in cortical
cultures affording a 10-fold higher throughput due to increased cell numbers. In
these neurons a significant effect on caspase 3 activity could be observed in as
little as 4 hours post AB42 treatment (Figure 4-2B). Despite the apparent
increased sensitivity and reduced lag time, the assay was unable to demonstrate

correlation between caspase activation and AB42 toxicity. Staurosporine (STS)
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was used in these experiments to positively control for apoptotic cell death
mediated by caspase 3 (Chae, 2000; Belmokhtar et al., 2001). In my previous
work and in published research STS (= 0.5 uM) treatment of neurons, as
described in figure 4-2A, has been shown to induce as near to total cell death as
possible to measure by cell viability assays (Prehn et al., 2002). AB42 (10 uM),
despite activating caspase 3 to comparable levels (Figure 4-2A), decreased cell
viability by no more than 20% under the similar conditions (Figure 4-1A). In
support of non toxic activation of caspase 3 by A is the discovery of a role of
caspase 3 in a non-apoptotic pathway involving the BAD-BAX cascade that
mediates long-term depression (LTD) by the NMDAR (Li et al., 2010; Jiao and Li,
2011). This alternate function, although quite interesting as it raises novel
mechanistic pathways for AB, excluded the detection of caspase 3 activity as an
assay for AP toxicity.

In search of an assay with very little or no lag time between the
preparation of fresh AB42 until detecting its toxic effect research concentrated
on the glutamatergic system and its role in AD. The body of evidence asserting
the involvement of NMDARs in mediating AB42 toxicity had been increasing
significantly with an array of publications describing an effect of AB42 on the
intracellular flux of Ca** (reviewed in Introduction, 1.6). A substantial majority of
the research has reported increases in intracellular Ca** flux following treatment
with AB42 (De Felice et al., 2007; Alberdi et al., 2010; Texidé et al., 2011; Ferreira
et al., 2012). One publication contradicts these findings, in this work the authors
propose that dendritic spine loss follows partial NMDAR inhibition by AB42
treatment (Shankar et al., 2007). Inhibition of the NMDAR was subsequently
shown to occur and the resulting reduction in Ca** flux was specific to AB42
oligomers with monomeric AB42 and controls remaining unchanged (Shankar et
al., 2007). A potential explanation for these contrary findings may arise from a
recent and publication from the same group, which describes the major
constituent of their naturally secreted oligomeric preparations were, in fact,
extended AB42-containing APP fragments rather than dimeric and trimeric forms
of AB42 (Welzel et al.,, 2014). These fragments were also found to be toxic,
significantly inhibiting LTP, as with AB42. Despite their apparent toxicity these
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APP-containing fragments may have protective affects on intracellular calcium as
was observed in previous experiments with soluble APP alpha that would explain
their opposing results (Mattson et al., 1993a; Duce and Bush, 2010)

Attempts to replicate the findings that AB specifically induces Ca** flux
with the Dimeric, ADDLs and globulomer synthetic preparations of AB42, each
reported to have different effects on toxicity, (Figure 4-3, A - C) and show effects
on intracellular calcium levels, were unsuccessful. Time-course experiments,
designed to test the effect of increased AB42 aggregation, were also unable to
affect changes in Ca** flux in this model (Figure 4-3A). Research that has reported
effects of AB on Ca** flux revealed in each case have used ADDLs preparations in
Ham’s F12 media as originally described by Lambert et al. (1998). The
significance of the media the ADDLs was prepared in was seen in Ca** flux (Figure
4-3C) and cell viability experiments (Figure 4-4). In both sets of experiments the
F12 media vehicle demonstrated a significant effect on the readout of the assay
and these effects were not significantly different to the ADDLs preparations.
When the formulation of the Ham’s F12 media was compared to the normal NB
media used in all my experiments the important difference between the two
culture media was observed. The Ham’s F12 media contains 1 mM glutamine and
100 puM glutamate (see Supplementary chapter, 7.1). Two of the four
publications (De Felice et al.,, 2007; Ferreira et al., 2012) have indicated that
Ham’s F12 without glutamine was used but according to the suppliers they have
cited, the formulations show the media still contains 100 uM glutamate. In these
experiments they have used between 300 nM (De Felice et al., 2007) and 5 uM
ADDLs (TexidA® et al., 2011). As the concentration of glutamate in Ham’ F12
media, with or without glutamine, is the same as the initial concentration the
ADDLs added to cells in each of the publications, they are adding the same
concentration of glutamate as they are ADDLs. Given the sensitivity of the assay
systems they have described glutamate at 300 nM would most likely affect their
results. Taking into account the presence of glutamate in the media does not
explain the discrepancy between my results (Figure 4-3C and Figure 4-4, A and B)
and those publications where ADDLs treatment was adequately controlled in

Ca’" flux assays (De Felice et al., 2007) and neural toxicity assays (Alberdi et al.,
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2010). To speculate, one explanation may be that the F12 vehicle in both
instances has not been treated identically to the ADDLs and not incubated for 24
h at 4°C then centrifuged to remove insoluble aggregates. Instead it may have
been added the same day as the experiment is performed, particularly as ADDLs
preparations are often stored for some time at 4°C prior to their use.

Such an example of non-specific toxicity due to AP pre-incubation was
observed in subsequent cell viability experiments. These experiments aimed to
determine the contribution of the aggregation state of Ap and the DIV of the
cortical cultures to AP toxicity (Figure 4-5A). Initially it appeared that the DIV of
the cultures had a potent effect on AB toxicity and the number of days the AB
was aggregated also having a significant effect. This toxicity was subsequently
determined to be an artefact of the vehicle (Figure 4-5B) but the cell death
increased with the number of days the samples were incubated, emphasizing the
effect of time on the toxicity resulting from the media. Along with these
observations the maturation of the cultures demonstrated a potent impact on
cell death from the media and indicated a requirement of receptor expression to
mediate this toxicity (Figure 4-5A).

Further indications that receptor expression may be involved in
mediating AP toxicity was seen in the subsequent, appropriately controlled
experiments investigating the effects of DIV and A incubation time in cortical
neurons (Figure 4-6). Despite AB42 toxicity being less than normal, significant
toxicity is still observed in neurons that have been cultured for 8 DIV or more
when compared to those at 6DIV, strongly implicating the maturation of the
culture in mediating toxicity (Figure 4-6). One of the major biophysical properties
of AB42 is attributed to the two hydrophobic amino acids at its c-terminus.
These additional amino acids dramatically increase the aggregation rate of AB42
compared to AB40 as well as its toxicity to neurons (Yan and Wang, 2007). To
test the effects of AB42 aggregation on toxicity, the neurons were also treated
for 24, 48 and 96 h and normalised to vehicle-treated neurons (Figure 4-6, A-D).
Assessment of the data shows significant time-dependent increases in toxicity

for DIV 8 and 10 when compared to 24 h. The significant finding from these
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experiments however can be seen in neurons at DIV 12 where there is no
significant increase in AB42 toxicity due to the duration of treatment. This result
provides evidence that the toxicity of AB42 is due to the DIV of the culture and
not the treatment time. The significant increases observed in the less mature
neurons (DIV 8 and 10) treated for 24 — 96 h are therefore attributed to the
increasing age of culture during the treatment, in this comparison DIV 8 cultures
treated for 96 are equivalent to DIV 10 treated for 48h etc. Given neurons
treated for the same time at DIV 12 it is also concluded that the necessary time
for aggregation of AB42 is less than 24 h given no further increase to toxicity at
cultures at DIV12 or greater.

The strong correlation between AB toxicity and DIV of culture led to an
investigation of the glutamatergic receptor expression profiles in cortical
neurons at the same stages of maturation in the previous AP toxicity
experiments (Figure 4-7, A-D). The expression profile of NR2B subunit of NMDAR
not only directly parallels AB toxicity but also the non-specific toxicity observed
in F12 vehicle-treated neurons (Figure 4-5) implicating the involvement of
excitotoxicity mediated through this receptor. Of the remaining glutamatergic
receptors studied all maintained were expressed at normal basal levels during
this timeframe. Both the AMPA and NR2A receptor profiles required extended
culturing of > DIV12 before protein levels rose above basal expression. Given
significant toxicity was observed following 24 h treatment of neurons at DIV 8
(DIV 9 equivalent) it is improbable they mediate toxicity. The same conclusion
can be drawn for the NMDAR-NR1 (Figure 4-7A) which shows no change in
expression as would be expected given its obligatory role in NMDA complex. In
further support of the ionotropic NMDARSs’ involvement in AB-induced cell death
in this cortical neuronal model is seen in published expression profiles, in
neurons, of two other key receptors implicated in AB toxicity; a7nAchR (Oz et al.,
2013), mGLuR1 and 5 (Renner et al., 2010). Protein levels of both of these
receptors demonstrated significant increases although they occurred at a
considerably earlier time (DIV 5-7) than what corresponds with AP toxicity

(Voulalas et al., 2005; Mielke and Mealing, 2009). It is important to note that due
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to differences between cell type, age and species of animal it is not possible to
draw any conclusions with regard to their involvement in AB toxicity.

In experiments to optimise the conditions for glutamate-induced
excitotoxicity presented here it can be clearly seen that neuronal vulnerability is
significantly enhanced during development (Figure 4-8). This is in agreement
with comparable research in the last 25 years, both in vivo and in vitro (Peterson
et al., 1989; Liu et al,, 1996; Mizuta et al., 1998). In these data a non-NMDAR
mediated component of cell death was observed at earlier time points which
could not be prevented by the use of the NMDAR antagonist, MK-801. However
by DIV9 the significant excitotoxic cell death resulting from glutamate treatment
was entirely NMDAR-mediated and, more importantly, this corresponded with
both the expression profile for the NMDAR-NR1 subunit expression and AP
toxicity.

The work presented in this chapter has sought to elucidate the crucial
components in a cortical neuronal model for mediating AB toxicity. As a result a
developmental relationship between the NMDARs and neuronal cell death in
cortical cell cultures treated with AR has been demonstrated. The significant
impact of these findings will be realized in subsequent research, which can now

focus on the glutamatergic system and the role of AB in excitotoxic cell death.
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5 A Glutamate-induced Calcium Flux Assay

to Screen Toxicity of AB Preparations

5.1 Introduction

Dysregulation of Ca** has been implicated in aging and AD for several
decades. The Ca** hypothesis of AD and aging was first postulated by
Khachaturian in the early eighties and further revised a decade later
(Khachaturian, 1994). The main principle of the hypothesis is that sustained
alterations to intracellular Ca®* [Ca’*]; homeostasis accounts for both the
cognitive impairment and increase in neuronal cell death in AD. Supporting
evidence was initially provided in previous work by Landfield and colleagues
during the late 1980s and early 1990s, which proposed that calcium flux through
voltage sensitive channels could be increased due to aging or AD (Landfield et al.,
1989; 1990; 1992). During this period Mattson et al. published an extensive
body of work that strengthened the Ca** hypothesis and underlies many research
perspectives in the field of AD today. In their initial investigations they described
the involvement of Ca** in the molecular mechanisms that regulate the neuronal
architecture and proposed the loss of this function resulted in impaired dendritic
arborization, pruning or complete elimination and neuronal loss in AD (reviewed
in Kater et al.,, 1989; Mattson and Rychlik, 1989a). In their early research to
explain how these findings pertained to AD they demonstrated that Ca®* influx,
induced by the excitatory amino acid glutamate, led to sustained elevations of
intracellular Ca**. This caused similar cytoskeletal changes as NFTs in AD
(Mattson and Rychlik, 1989b; Mattson et al., 1991). It was the discovery from
their subsequent research into the effects of AB on glutamate-induced cell death
in human neurons that has been of considerable importance to the research
presented in this chapter. Building upon the recent discovery that AR was

neurotoxic to hippocampal neurons (Yankner et al., 1990) Mattson et al., used
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primary human cortical neurons to demonstrate the ability of AB to render cells
more susceptible to calcium influx and glutamate toxicity (Mattson et al., 1992).
This AB-specific effect on excitotoxicity occurred in neurons co-treated with non-
toxic levels of glutamate and resulted in a significant increase in [Ca™]; compared
to neurons treated only with glutamate.

When considering the effects of AB on glutamate induced signaling, the
microenvironment of the synaptic cleft, where glutamate diffuses from pre to
post synapse, must be considered. Membrane-bound AB oligomers accumulate
in the cleft and have been reported to exert their effects through a variety of
mechanisms including the inhibition of glutamate reuptake (Li et al., 2011) and
altering [Ca®']; by affecting glutamergic receptors at the post synapse (Ittner et
al., 2010; Renner et al., 2010; Um et al., 2012). The targeting to the synapse and
rapid aggregation of AR has shown to be dramatically enhanced by the presence
of the transition metals, Cu®** and Zn®" (Bush et al., 1994a; Atwood et al., 1998;
Deshpande et al., 2009). Zn*" is released in to the presynapse during neuronal
excitation at concentrations between 10 and 100 uM (Watt et al., 2010). It has
also be established that upon a neuron firing the resulting NMDAR activation
causes a rapid efflux of Cu®" in to the synapse (Schlief, 2005). The concentration
of Cu**in the cleft has been estimated at 15 uM (Hartter and Barnea, 1988) and
also at much higher levels of 100 - 250 uM (Kardos et al., 1988). Both Zn** and
Cu®* bind AP at the same histidine residues located within the first 16 residues of
the N-terminus (reviewed in Faller, 2009). However under physiological
conditions Cu** has been reported to have between nanomolar and picomolar
dissociation constants compared with the micromolar dissociation constants
reported for Zn** (Faller, 2009; Sarell et al., 2009). The significantly higher affinity
of A for Cu**, suggests it is more likely to be the metal involved in pathological
interactions with AB in the synapse.

Following on from my previous efforts to design an assay to screen for AB
toxicity in cortical neurons (Chapter 4), | now sought to determine what role if
any there was for glutamate in A toxicity and further describe the conditions of

this toxicity in a neuronal model. In doing so | aimed to incorporate both
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glutamate and Cu® in to my assays, as described in preceding paragraphs.
Finally, upon the successful development of the assay | sought to evaluate the
toxicities of three well-described forms of AB, each reported to have differing
mechanisms mediating their toxicity.

Firstly, | aimed to test dityrosine-linked dimers of AB. These dimers are
believed to play a significant role in AD. Initial evidence of their involvement
came from experiments in which oligomeric forms of AB were isolated from AD
brains by size exclusion chromatography. It was found that the inhibition of LTP,
enhanced LTD and reduced spine density in rodents was specific to the dimeric
fractions, not monomeric (Shankar et al., 2008). Inherent problems with these
preparations were subsequently encountered in attempts by colleagues and
other laboratories to confirm the sequence identity of this 8 kDa oligomeric
species that was immunoreacitve to both AB40 and 42-specific antibodies. To
overcome the uncertainty of the AB species, synthetic alkyl- and disulfide-linked
AB40 dimers have been previously studied but do not represent physiologically
relevant dimer in the AD brain (Shankar et al., 2008; Kok et al., 2009). To this end
colleagues synthesized dityrosine-linked AB40 dimer, based on results showing
the AB42 dimers to be elevated in blood from AD subjects (Villemagne et al.,
2010). A recent publication studying synthetic dityrosine-linked dimers has
demonstrated increased stable bioactive aggregates relative to monomer, which
confirms a preceding publication by colleagues also demonstrating an increase in
stable aggregates which, in turn results in increased toxicity (Kok et al., 2013;
O’Malley et al., 2014b).

The second peptide of interest has a mutation in the AP sequence that
has been reported to act by increasing production rather than toxicity and
therefore provides an ideal control for the assay. In 2009 Di Fede and colleagues
described an alanine to valine substitution at position 673 in APP (A673V)
causing a very early onset AD in a single Italian patient and MCI in their sibling.
The recessive mutation only caused disease when homozygous with
heterozygous family members unaffected (Di Fede et al., 2009). Following this
discovery an A673T mutation was detected from in an Icelandic cohort of 1795
individuals, providing the first evidence of a protective mutation in AD (Jonsson
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et al., 2012). The importance of mutations at this location was the subsequent
consequences to APP processing. The mutation site is located immediately
adjacent to B-cleavage site of APP by BACE, which results in reduced AB
production by approximately 2.5-fold in the Icelandic A673T mutation and a
comparable increase in AB levels in the plasma in patients with the Italian A673V
mutation. Importantly, these findings taken together provide substantial genetic
support to the involvement of AB in AD.

The final peptide to be investigated was the amino-terminally truncated,
pyroglutamate-modified (AB3pE-42) form of AB, which was strongly associated
with Alzheimer’s disease and has been reported to exhibit equivalent (Tekirian et
al., 1999; Shirotani et al.,, 2002; Youssef et al., 2008) or even greater toxicity
(Schlenzig et al., 2009; Galante et al., 2012; Nussbaum et al., 2013) than full-
length AB1-42 (AB42). Altered Cu® binding and increased AP oligomerisation
have been attributed to the pyroglutamate modification of the glutamate at
position 3 of the AB sequence (D’Arrigo et al., 2009; Drew et al., 2010). In recent
unpublished findings by colleagues, AB3pE-42 has been shown to increase
reactive oxygen species at the cell membrane in primary neurons above that of
the full-length AB42 (personal communication, Dr. Adam Gunn). The subsequent
findings in this work that ABP42 caused greater cytosolic reactive oxygen species
compared to AB3pE-42 indicated that the two isoforms caused oxidative stress
by different mechanisms. Following on from this observation, | sought to
determine if the effect of these peptides on Ca’* flux differed from full-length

AB42.
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5.2 Results

5.2.1 Optimisation of glutamate toxicity in cortical neurons

Resting concentrations of glutamate in the extracellular fluid of the brain
and cerebrospinal fluid in rabbits are normally around 3 - 4 uM and 10 uM,
respectively (Hamberger and Nystrém, 1984). Levels of glutamate in the rodent
brain are similar with these concentrations and have been determined to be
between 3 — 6 uM (Reisi et al., 2009; Hascup et al., 2011). In establishing the
parameters to investigate an AB-specific effect on cell death in the presence of
glutamate and Cu®, | needed to determine what are sub toxic levels of
glutamate that would be physiologically relevant (Figure 5-1) In these
experiments mouse cortical neurons, cultured for 9 DIV to ensure necessary
NMDAR expression, were exposed to increasing concentrations of glutamate for
48 h. Cell viability assays demonstrated significant toxicity was caused in neurons
exposed to the two highest concentrations tested, 7.5 and 10 uM glutamate.
Based on these findings it was decided to proceed with the lowest and highest
non-toxic concentrations of glutamate; i.e. 1 and 5 uM, which provided a

concentration range to test with AB.

5.2.2 AB42, glutamate or Cu?* in combination are toxic to neurons

As was demonstrated in chapter 4 (section 4.2.1), AB treatment of
cortical neurons required 72 - 96 h to induce significant toxicity, as measured by
cell viability assays. In the subsequent experiments | investigated the effect of
AB, glutamate and/or Cu®, either independently or in combination, following
treatment of cortical neurons for 48 h. In determining the concentrations of Cu**
to be tested the stoichiometric relationship with Ap was considered. The ratio of
AB: Cu®" of greater than 0.6:1 has been shown to form histine-bridged dimers by
EPR spectroscopy and this markedly affects toxicity at equimolar or super-

stoichiometric concentrations of copper (Smith et al., 2006). Each of the 48 h
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Figure 5-1. Determining non-toxic levels of glutamate to cortical neurons. Mouse primary
cortical neurons were cultured for 9 DIV and then exposed to increasing levels of glutamate (O -
10 uM) for 48 h. Cell viability was subsequently determined by CCK-8 assay with results
expressed normalised to vehicle treated neurons (0 uM). 1 uM and 5 uM glutamate were
selected for subsequent experiments as the lowest and highest concentrations, respectively, that
did not significantly decrease cell viability (red bars). Data is expressed as the mean of + SE; n =
3, **p < 0.01, ***p < 0.001 compared to vehicle treated values by one-way ANOVA using
Dunnett’s post hoc test.
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Figure 5-2. Non-toxic levels of AB42, glutamate and/or Cu2+, in combination, induce cell death
in cortical neurons. Treatment with combinations of AB42, glutamate and cu®* resulted in
significant reduction in cell viability in cortical neurons treated for 48 h compared with neurons
exposed to individual treatments. Cell viability was measured by CCK8 assay and values
expressed normalised to an untreated vehicle control. Data represent mean + SE; n = 7; ***p <

0.001; compared to glutamate-treated neurons.
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treatments, in isolation, had no effect on cell viability relative to the vehicle-
treated controls but when they were added in combination; AB/ glutamate,
glutamate/Cu®, AB/Cu®* and AP/glutamate/Cu** were significantly toxic to
neurons, decreasing cell viability to 77, 80, 74 and 76%, respectively (p < 0.001, n
= 7) (Figure 5-2B). In experiments performed for the shorter 24h period
significant toxicity was also seen in AP/ glutamate, glutamate/Cu** and
AB/glutamate/Cu®* treatments (Figure 5-2A) but not for AB/Cu** treated
neurons. The toxicity in neurons that were not treated with either Cu** or
glutamate most likely results from the resting concentration of 5 uM glutamate
in neurons and an estimated Cu®* concentration of 15 uM in the synaptic cleft
(Hartter and Barnea, 1988). Colleagues have also detected Cu®* concentrations of
1.92 uM % 0.33 in the cortical neuronal media (White et al., 2004) and ICP-MS
anaylsis of cell lysates performed on cell lysates from my experiments detected

Cu®*at 2.29 uM + 0.04 (n = 35).

5.2.3 Toxicity induced by AB42, glutamate and Cu®** is an NMDAR-
mediated event.

The newly discovered increase in AB toxicity appeared to be dependent
on glutamate, which raised the question, whether the cell death is mediated
through the glutamatergic system and more specifically the NMDAR, implicating
an excitotoxic mechanism in the observed cell death. To test this hypothesis
cortical neurons were exposed to the same treatments described in section 5.2.2
but in the presence or absence of the NMDAR antagonist, MK-801 to
demonstrate  specificity  (Figure 5-3) AR/ glutamate, AB/Cu** and
AB/glutamate/Cu** were all significantly toxic to neurons, decreasing cell viability
to 65, 77 and 76%, respectively (p < 0.01, n = 3 - 4). In each instance the cell
viability of neurons pretreated with MK-801 were not significantly different to
vehicle or AB-only treated neurons. In the experiments testing glutamate and AB

(Figure 5-3A), neurons were more susceptible to glutamate-induced toxicity than
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Figure 5-3. Toxicity resulting from treatment with combination of AB, glutamate and/or cu®is
NMDAR-mediated. Cortical neurons were treated with AB (10 uM), glutamate (5 uM) and/or cu’
(10 uM) in isolation or in combination with or without the NMDAR-antagonist, MK-801 (10 uM)
(A and B). The resulting cell death was NMDAR-mediated as was demonstrated by its prevention
with MK-801 to . No significant difference was observed between MK-801 treated neurons and
those treated with AR, glutamate or Cu2+, in isolation. Cell viability was measured by CCK8 assay
and values expressed normalised to an untreated vehicle control. Data represent mean + SE; n =
4 (A) and 3 (B); **p < 0.01, ***p < 0.001; compared to MK-801-treated values by unpaired t-
tests.
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previously observed (Figure 5-2). The combination of glutamate and AR,
however, still induced significant toxicity beyond that of glutamate-only treated

neurons (Figure 5-3A).

5.2.4 Activation of toxic signalling pathways in neurons by AB42,
glutamate and Cu®'.

Previously | have shown that acute glutamate-induced excitotoxicity acts
through a protein-signaling cascade mediated by calcium (section 3.2.7). This
pathway begins with the activation and uncontrolled constitutive expression of
calcineurin upon cleavage by calpain, a calcium-dependent cysteine protease.
This in turn results in activation of GSK3 alpha and beta by dephosphorylation,
with the latter known to mediate cell death through the hyperphosphorylation
of Tau (Hooper et al., 2007). In these experiments | studied the total protein and/
or the phosphorylation levels of calcineurin, Tau, GSK3 alpha and beta in order to
determine whether the toxicity due to glutamate, Cu®* and AB acted through this
pathway. Western analysis showed activation of Calcineurin (Figure 5-4), which
agreed with cell viability experiments previously performed, in which combined
treatments with AR, glutamate and Cu®* were toxic to neurons (Figure 5-3).
Levels of calcineurin were reduced due to its activation following treatment with
glutamate, AB/glutamate and AR/ Cu®*, respectively. There was also observed a
significant decrease in calcineurin levels in neurons treated with
AB/glutamate/Cu®*. In studying the consequences of toxic signaling by western
blots | did not detect a statistically significant AB-specific decrease in calcineurin
levels, in agreement with previous experiments using cell viability as a readout
(Figure 5-2). Subsequent western blot analysis was unable to demonstrate the
involvement of Tau, GSK3 alpha and beta, in the toxic signaling by independent
or combined treatment with AP, glutamate and Cu®. This would have been
observed if a reduction in the phosphorylated form of the proteins were

detected (Figure 5-4, B-E).
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Figure 5-4 Expression levels of proteins involved in excitotoxic signalling in neurons.

A-F, Western blots (top panels) of calcineurin, phosphorylated Tau (pTau), phosphorylated
GSK3a/p (pGSK3a/f), total GSK3a/B respectively, normalised to loading controls (middle panels)
by in gel staining (Glrtler et al., 2013). Cortical mouse neurons (D.L.V. 9) were treated with AB42
(10 uM), glutamate (5 uM) and Cu2+(10 UM) for 24 h prior to protein analysis. Analysis of western
blots from 5 independent experiments was performed and displayed as bar graphs (A-F, bottom).
Data represent mean + SE; n = 5, *p < 0.05, **p < 0.01 compared to vehicle treated samples.
Protein levels in all remaining samples were not significantly different to the vehicle treated
samples.
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5.2.5 Ca®*Flux as a Functional Readout of Excitotoxicity.

In sections 4.2.3 and 4.2.4 of chapter 4, the assay employed was unable to detect
a specific AB-induced effect on Ca®* flux. However, the subsequent discovery that
AB-induced toxicity is increased in the presence of physiological levels of
glutamate and Cu®, led to the following experiments which tested whether
these findings could be recapitulated in a Ca** flux assay. This assay could not
only provide a higher throughput of samples, as it’s performed in a 96-well
rather than a 48-well format, but more importantly, it is highly sensitive and
performed in real time. As in the toxicity assays (Figure 5-3) cortical neurons
were cultured for 9 DIV to ensure expression of NMDARs. Prior to exposure to AR
treatments, neurons were preloaded with Fluo4 dye (Life Technologies)
containing probenecid, which is used to prevent extrusion of the dye by
inhibiting organic anion transporters in the cell membrane (Di Virgilio et al.,
1990). Treatments were brought to RT immediately before addition to avoid
temperature-induced flux in the neurons. To establish base line levels of
fluorescence in the cortical neurons, 10 reads were taken before addition of
samples and 10 reads immediately following. The Ca®* flux was calculated by
subtracting the average of the first 10 baseline reads (Fo) from the first read
immediately after treatment (F;) and then divided by the average baseline reads
(Fo). To observe AB-specific effects on Ca®" flux, data was expressed normalised
to glutamate—only treated cells (Figure 5-5). There was no observable effect on
Ca®* flux above the vehicle control in neurons treated with AB and Cu®', in
isolation. The effects of AR on Ca”* flux, in the presence of non-toxic levels of
glutamate and Cu®*, were in direct agreement with the cell viability assays
(Figure 5-3) Treatment with AR and AB/Cu®' caused a significant increase to
glutamate-induced Ca** flux that was not attributed to an additive effect of the
individual components. Ca®* flux in neurons exposed to AB/glutamate was
increased to 119% + 2.5 (n = 9) and AB/glutamate/Cu® to 123% + 3.5 (n = 7)
whereas the relative flux for AB was 6.9% + 3.1 (n =9) and Cu* was 0.6% + 3.5 (n

= 9). These results demonstrate for the first time that | was able to detect an AB-
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specific effect on Ca** flux in neurons and that this increase parallels the results

of the toxicity assays.
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Figure 5-5. AB specifically increases glutamate-induced ca® flux +/- cu®. Primary cortical
neurons were treated with AB (10 uM), glutamate (5 uM) and cu® (10 uM) independently or in
combination after cells were preloaded with Fluo4 dye for 1 h. The resulting effect on ca” flux
was measured before and immediately after the addition of samples to neurons by detecting the
increase in intracellular fluorescence (AF) relative to background fluorescence (Fy). AB causes a
significant increase in Ca”™ flux when neurons were treated with glutamate in the presence of
AB42 alone (red bars) or AB42 and cu® (blue bars). Contaminating cu® in culture media most
likely accounts for the significant increases in glutamate and AB. Values were normalised to
glutamate and represent mean + SE; n =7 - 9; *** p < 0.001 compared to glutamate-treated
samples; one-way ANOVA using Dunnett’s post hoc test.
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5.2.6 AB42 increases glutamate-induced Ca®>* flux in a
concentration- dependent manner

Additional support of a specific Ap effect on Ca®* flux in cortical neurons
was observed when further experiments to optimise AB concentrations were
performed. These experiments aimed to determine the minimum concentration
of AB required to induce a detectable increase of Ca** flux in glutamate-treated
neurons (Figure 5-6) As in the preceding experiments (section 5.2.5), cortical
neurons, preloaded with Fluo4 dye, were exposed to treatments once baseline
fluorescence readings had been taken. Calcium flux was measured in neurons
following treatment with AB concentrations of 1, 5 and 10 uM (red bars). The
effects of additional Cu** (10 uM) to this Ca** flux were also observed (blue bars).
A concentration-dependent effect of AB was observed as neurons only
demonstrated a significant increase in Ca** flux when treated with 5 pM AP
(123% + 4.4, n = 4) and 10 pM AB (125 % + 7.0, n = 4) or with 5 uM AB/Cu®*
(122% + 10.6, n = 3) and 10 pM AB/Cu®* (120 % + 3.2, n = 3). Again this data
indicated that additional Cu** was not required for the increase in Ca** flux when
added in conjunction with AP. This may indicate there is sufficient
concentrations of Cu®* present in the synaptic cleft where glutamatergic Ca** flux
occurs from background Cu?* in the media, as previously discussed (section 5.2.2)
or that Cu®*is not involved in the increase in Ca** flux mediated by glutamate and
AB. When the concentration of AR was reduced to 1 uM there was no longer an
observable change in Ca®* flux to glutamate treated cells (98% + 2.6, n = 3) as

was also observed when additional Cu®* was present (101% + 3.4, n = 4).

5.2.7 The AB42-specific increase in Ca?* flux is metal-dependent
Previously it has been shown that Cu** and Zn** affects the
oligomerisation of AB (Bush et al., 1994a; Atwood et al., 1998; 2000) and recent
findings have implicated Cu®* in the increased production and decreased
clearance of AB (Singh et al., 2013). These features of AB, together with research
that has described a role for Cu® in the NMDAR-mediated toxicity of AB (You et

al., 2012)
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Figure 5-6. The specific AB42 increase in glutamate-induced Ca® flux is concentration-
dependent. Primary cortical neurons were treated with AB (1, 5 and 10 uM), glutamate (5 uM)
and cu® (10 uM) independently or in combination after cells were preloaded with Fluo4 dye for
1 h. The resulting effect on Ca”™ flux was measured before and immediately after addition of
samples to neurons by detecting the increase in intracellular fluorescence (AF) relative to
background fluorescence (Fp). Treatment with 5 & 10 uM AR, but not 1 uM significantly increases
ca® flux in conjunction with glutamate (red bars) or glutamate and cu® (blue bars).
Contaminating cu® in culture media most likely accounts for the significant increases in
glutamate and AP treated neurons (red bars) without additional cu®* added. Values were
normalised to glutamate and data represent mean + SE; n = 3 - 5; **p < 0.01; ***p < 0.001;
compared to AB42 (1 uM)/glutamate (red) or AB42 (1 uM)/qutamate/Cu2+(que) samples by
one-way ANOVA using Dunnett’s post hoc test.
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formed the basis of the next experiments. To determine the contribution of
metals in the observed increases in Ca** flux, namely Cu** and Zn** given their
high abundance in the brain and synaptic clefts (Brown et al., 1997; Smart, 2004),
the non discriminant divalent cation chelator, Diamsar, was employed. Cortical
neurons were exposed to AP at 1 and 10 uM, concentrations that do not affect
flux and significantly increase flux, respectively (Figure 5-6). As observed in the
preceding section, Ap and AB/Cu®* induced significant increases in glutamate-
treated neurons when metals were present (111% * 4.3 and 114% + 3.6,
respectively)(Figure 5-7A). In corresponding neurons metals were depleted by
treatment with Diamsar for 1 h prior to dye loading and then the addition of the
treatments (Figure 5-7B). The depletion of metals from the neuronal media had a
significant effect on Ca®* flux in glutamate-treated neurons exposed to AB or
AB/Cu**. Whether with or without Cu®*, treatment of 10 uM AP was no longer
sufficient to induce a significant increase in Ca’* flux (Figure 5-7B). Although the
flux in neurons depleted of metals and then treated with glutamate and Ap/Cu**
were not significantly increased compared to glutamate only, it is a trend toward
an increase (110% + 6.4, n =3). This suggests the involvement of Cu2+, as this
trend is not observed when glutamate-treated neurons were exposed to AB-only
(98% * 3.6, n = 3). As cuis only added back on to the neurons for a matter of
seconds before measurements were taken these samples cannot be considered
to have Cu® reintroduced as would be case if it was added to media prior. This
could potentially explain why a significant increase is not reintroduced in the
AB/Cu** treatments. This raises the possibility that it is the levels of Cu** present
in the cultures and not the additional Cu** supplemented in at 10 uM, which are
required for the AB-induced Ca®* flux of glutamate-treated neurons. As described
in Chapter 3, in these experiments using the metal chelator there was no
observable difference between Ca®* flux in neurons treated with Diamsar

compared with untreated neurons.
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Figure 5-7. The AB-specific increase in ca” flux is metal-dependent. Primary cortical neurons
were treated with AB (1 and 10 uM), glutamate (5 uM) and cu® (10 uM) independently or in
combination after cells were preloaded with Fluo4 dye for 1 h. The resulting effect on ca” flux
was measured before and immediately after addition of samples to neurons by detecting the
increase in intracellular fluorescence (AF) relative to background fluorescence (Fo). A, Treatment
with 10 uM AB, but not 1 uM significantly increases ca” flux in conjunction with glutamate (red
bars) or glutamate and cu® (blue bars). B, Metals were removed from neurons by treatment for
1 h with the metal chelator, Diamsar (10 uM) before dye loading. In the absence of metals, AB no
longer significantly increased glutamate-induced ca”™ flux in neurons, with or without cu®.
Values were normalised to glutamate and data represent mean + SE; n = 3; *p < 0.05; **p < 0.01;
n.s. not significant compared to AB42 (1 uM)/glutamate (red bar) or AB42 (1 uM)/qutamate/CuB
samples (blue bar) and also compared to glutamate-only samples (black bar) by one-way ANOVA
using Dunnett’s post hoc test.
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Figure 5-8. The dimeric form of AB40 potently increases Ca”* flux. The monomeric AB40 was
compared to monomeric AB42 and the dityrosine cross-linked dimeric form of AB40 for their
effect on glutamate-induced Ca™ flux. As in the preceding figures, Ca” flux in neurons was
measured by way of fluorescence immediately following addition of AR (10 uM) or glutamate (5
MM), in isolation or combination and expressed as the change in fluorescence (AF) relative to
background fluorescence (Fy). Data represent mean = SE; n = 3 - 4; *p < 0.05; ***p < 0.001; ns,
not significant; compared by one-way ANOVA using Dunnett’s post hoc test.
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5.2.8 The Dimeric form of A

As a first demonstration of the Ca®* flux assay’s uitlity for screening AB
toxicity, the glutamate-induced Ca** flux in cortical neurons was measured for
the effects of synthetic AB40 and AB42 monomers and the dityrosine-linked
dimers (Figure 5-8). Results from AB40 monomer-treated neurons agreed with
its relative low toxicity (Yan and Wang, 2007) as no significant effect on
glutamate-induced Ca’" flux was observed (108.6% t+ 7.4, n= 3) whereas
treatment with AB42 caused a significant increase (126% * 4.0, n = 3) compared
with glutamate treated neurons. A potent and significant increase was detected
by treatment with the dityrosine-linked AB40 dimer above the glutamate alone

treated neurons (150.3% + 7.9, n = 4).

5.2.9 AB42-A2V: The Italian Mutation

The aggregation experiments by Di Fede et al. (2009), describing the
recessive A673V mutation in APP (position 2 of AB42) showed significantly faster
aggregation kinetics compared to wild type AB as well as causing increased
toxicity in vitro. This indicated the mutation may result in biophysical
modifications to the peptide that affects toxicity of AR (Di Fede et al., 2009). To
test this hypothesis the effect of the AB42-A673V peptide on Ca** flux was
compared to wild-type AB42 (Figure 5-9). Treatment of neurons with the
peptides alone did not significantly affect Ca®>* flux compared to vehicle but in
conjunction with glutamate both peptides caused a significant increase
compared with glutamate-only treated neurons (AB42; 123% + 5.4, n = 4 and
125% + 6.6, n = 5). The finding that the A673V mutation had no further effect on
Ca®* flux above that of the AB42 wild-type peptide suggested the significant
effects observed in vivo may not due to an increase of the intrinsic toxic

properties of the peptide.
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5.2.10 Pyroglutamate modified AB3-42

In my final experiments the toxicity of AB and the effects of the AB3pE-42

peptide were tested for their effects on Ca** flux in an effort to identify a causal
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Figure 5-9. The effects of the AB42-A673V mutation on ca” flux. As in preceding figures, ca”
flux in neurons was measured by way of fluorescence immediately following addition of AB42 (10
uM) or glutamate (5 uM), in isolation or combination and expressed as the change in
fluorescence (AF) relative to background fluorescence (Fy). No significant difference to the
increase in Ca”* flux was detected specific to the recessive mutation (light grey bar) when
compared to wild type AB42. Data represent mean = SE; n = 4 - 5; **p < 0.01; ns, not significant
by one-way ANOVA using Dunnett’s post hoc test.
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Figure 5-10. The effects of the Pyroglutamate-modified AB3-42 on Ca”* flux with or without
glutamate. A, As in preceding figures, Ca”" flux in neurons was measured by way of fluorescence
immediately following addition of AB42 (10 uM) or glutamate (5 puM), in isolation or combination
and expressed as the change in fluorescence (AF) relative to background fluorescence (Fg). Both
the AB3-42 (light grey bar) and AB3pE-42 (dark grey bar) significantly increase Ca”" flux above
neurons treated only with glutamate (grey bar) but not AB1-42. B, AB3pE-42 induced a significant
Ca” flux in the absence of glutamate (dark grey bar) in contrast to AB1-42 and APB3-42. Values
from independent experiments were normalised to neurons treated with glutamate (1 uM). Data
represent mean + SE; n =3 -7; *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant; compared
by one-way ANOVA to vehicle treated neurons using Dunnett’s post hoc test.
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link between the specific properties of the peptide and its cellular toxicity. To
control for the pyroglutamate modification to this truncated form of AB the AB3-
42 peptide was tested in parallel (Figure 5-10). In the presence of glutamate both
APB3-42 and its pyroglutamylated form significantly increased Ca** flux relative to
glutamate-only treated neurons (171% + 30.0, n = 3 and 172% + 23.9, n = 5,
respectively) (Figure 5-10A). Despite the substantial increase in flux the
considerable standard error between the samples prohibits any significant
increase above the flux from the wild-type AB1-42 in glutamate-treated neurons
(120% + 14.0, n = 6). The more significant finding from these experiments was
observed when | tested these peptides in the absence of glutamate (Figure 5-
10B). Unlike any preparation of AB examined previously (chapter 4, section 4.2.3
and section chapter 5, sections 5.2.8 and 5.2.9), the AB3pE-42 peptide induced a
substantial increase in Ca** flux when treated alone (116% + 15.6, n = 7)
compared to vehicle (10% * 4.8, n = 7) after results were normalised to neurons
treated with glutamate (1 uwM). This was in contrast to the AB1-42 and AB3-42
form, which did not affect Ca** flux by itself (27% + 8.3, n =7 and 35% + 10.5, n =
3).

5.3 Discussion

The experiments presented here demonstrate further characterization of
AB toxicity in primary mouse neurons. These results were in agreement with the
findings of Mattson et al., that AB induced specific cell death in the presence of
physiological, non-toxic levels of glutamate (Mattson et al., 1992). In addition
they describe the requirement of metals in this NMDAR-mediated pathway. As
discussed in the preceding chapter (section 4.1) a significant shortcoming of
currents assays employed to study AP toxicity is the duration required for a
significant effect following treatment. This is overcome with LTP assays, which
are generally considered the gold standard, but efforts to screen different AB
preparations are severely hampered by the considerably low throughput nature

of the assay. In exploiting the increased toxicity of AB in glutamate-treated cells |
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have developed a high-throughput assay measuring Ca** flux in primary cortical
neurons in a 96-well format. This assay provides a rapid functional readout that
parallels the AB-specific toxicity observed in corresponding cell viability assays.

The discovery of AB-specific toxicity in the presence of glutamate has
significant implications for the field of AB research and in particular research
investigating the ADDLs preparations. As previously discussed (section 4.3) the
Ham’s F12 media with or without glutamine contains 100 uM glutamate (section
7.1), consequently upon treatment with ADDLs, an equivalent concentration of
glutamate is being added to the cells. In published research demonstrating the
effects of ADDLs on Ca** flux this concentration of ADDLs and therefore
glutamate, has ranged from 500 nM (De Felice et al., 2007) to 5 uM (Alberdi et
al., 2010). This range of glutamate concentrations was shown to be at sub toxic
levels to primary neurons (Figure 5-1). In agreement with my findings, the
presence of glutamate during this treatment is sufficient for AB to induce
significant toxicity as measured by cell viability assays (Figure 5-2) and this
specific effect could be observed through the measurement of Ca** flux (Figure
5-5).

It has been reported that AB can impair synaptic plasticity by affecting
LTD mediated by either mGIuR or NMDAR activity (Li et al., 2009). It was
concluded that this effect was due to a “toxic spill over” of synaptically released
glutamate acting on extrasynaptic NR2B-containing NMDARs (Li et al., 2011). The
results from the experiments undertaken here provide evidence that this is not
the mechanism by which AB is mediating its toxicity in cortical cultures. The
toxicity observed, following treatment with AP in the presence of glutamate, was
entirely inhibited by the NMDAR antagonist, MK-801 (Figure 5-3). Not only does
this negate the involvement of mGIuRs but also extrasynaptic receptors, which
are not inhibited by MK-801. The NMDAR antagonist is an open channel blocker
(Huettner and Bean, 1988) that is routinely used to isolate extrasynaptic
receptors by acting on active receptors at the synapse by acting as a ‘pre-block’
(Tovar and Westbrook, 1999; Hardingham et al., 2002).

Supporting evidence that the toxicity is mediated through the NMDARs
was shown by western blot analysis. A significant decrease, and therefore
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activation, of calcineurin was observed following independent or combined
treatment with A, glutamate and/or Cu**. | have previously shown calcineurin
to be involved in excitotoxicity resulting from acute exposure to glutamate
(section 3.2.7) and this data was in agreement with these findings. Activation of
the GSK3 alpha and beta, as well as phosphorylation of Tau was studied being
key proteins | previously identified in excitotoxic signaling upon acute glutamate
exposure (section 3.2.7). Contrary to the findings from these experiments no
significant changes to GSK3 activation and Tau phosphorylation were observed
under the chronic conditions with the low glutamate used in these experiments
with AB, glutamate and Cu®, i.e. 10 uM for 24 h as opposed to 40 pM for 1 h.
The inherent variability of western blotting, which significantly affects
reproducibility and therefore sensitivity of the assay, has meant that under these
substantially reduced excitotoxic conditions it was not possible to detect subtle
changes in this signaling pathway. To overcome this limitation my research
subsequently employed a more sensitive readout, Ca** flux.

Further evidence supporting AB toxicity being mediated through the
synaptic NMDARs was demonstrated in my subsequent experiments. These
demonstrated that the same conditions that caused toxicity in primary neurons,
as measured by cell viability assays (Figure 5-2), also induced an appreciable
effect on Ca** flux specific to AR (Figure 5-5). The Ca** flux being mediated by
NMDAR as demonstrated by early experiments by Koh and Choi et al. describing
excitotoxicity (reviewed in Choi, 1992). This research showed the majority of cell
death associated with brief glutamate exposure to be NMDAR-mediated.

In additional experiments to characterise the effects on ca* flux, AB was
shown to act in a concentration-dependent manner (Figure 5-6). In previous
publications the oligomeric species of AR preparations has been estimated at 1%
of total AB (Laurén et al., 2009) and subsequent concentrations were expressed
accordingly, i.e. 1 uM was expressed as 10 nM AB (Um et al.,, 2012). As
preparations in these experiments were tested immediately and were not
allowed to aggregate, 1% oligomeric AR would be a conservative estimate of the
concentrations used in my experiments. In taking these broad estimates into

consideration it can be inferred that a concentration of 50 nM AB or greater was

126



Chapter 5

required to significantly affect Ca** flux. Although expressing AB concentrations
in such a manner is somewhat dubious, these concentrations fall more inline
with those previously described in LTP experiments with ADDLs (Lambert et al.,
1998; Walsh et al., 2002).

Along with the effect of AB concentration on Ca flux, a role of metals was
also demonstrated. In the microenvironment of the synaptic cleft AR peptides
are secreted along with Zn** from the presynapse and Cu®* from the post synapse
during neuronal excitation (Kamenetz et al., 2003; Schlief, 2005; Paoletti et al.,
2009). These increased AB levels in the synapse, whether due to overproduction
or decreased clearance, are thought to result in pathological consequences
(reviewed in Bush, 2013). In the experiments presented here | have
demonstrated that the increase in glutamate-induced Ca** flux due to AB can be
inhibited by the use of the transition metal chelator, Diamsar (Figure 5-7). This
finding is contrary to previous findings demonstrating AB-induced toxicity in the
absence of Cu®* (You et al., 2012). It is important to note the considerably
stronger binding affinities of Cu®* than Zn*" indicate it to be a more favorable
candidate in binding AB and affecting Ca®* flux. The strong binding affinities of
Cu®" mean its concentrations present in neurobasal media are sufficient for Ap
binding and almost certainly explain the absence of effect when additional cu*
was introduced in to the Ca®* flux assays (Figures 5-5, 5-6 and 5-7).

Having described key parameters of the Ca** flux required for AB-specific
toxicity in the cortical cultures the subsequent experiments with the AB40
monomer and a synthetic dityrosine linked dimer form provided the first
validation of the assay. Previous experimental evidence with these peptides has
demonstrated AB40 monomers to be relatively inert (Dahlgren, 2002; Yan and
Wang, 2007) and the dimer to induce potent effects on LTP (Shankar et al., 2008;
O’Malley et al., 2014a) and significantly increase toxicity (O'nuallain et al., 2010;
Kok et al., 2013). The two additional c-terminal amino acids in AB42 increase the
peptide’s hydrophobicity, which has been attributed to its propensity to rapidly
aggregate and dramatically increase toxicity, up to 40-fold that of the monomer
(Dahlgren, 2002). Structural analysis of c-terminus of AB42 has concluded these

two amino acids stabilize the neurotoxic oligomers in a non—B-sheet secondary
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structure thus prolonging its toxic oligomeric form (Ahmed et al., 2010). Recent
findings with the dityrosine-linked dimeric form of AB40 are in agreement with
this and attribute the increased toxicity of this form of AB to its delayed
aggregation to fibrils (Kok et al., 2013; O’Malley et al., 2014a). The potent effect
of these dimeric forms of AB40 on Ca®* flux assays indicates significant
pathological consequences of chronic exposure to these oligomeric species of AB
(Figure 5-8). A substantial increase in the flux caused by the AB40 dimer relative
to AP42 was also observed and is indicative of the relative concentrations of the
toxic species in the respective AP preparations.

Genetic mutations in AR can affect toxicity in vivo by modifications to the
peptide’s biophysical properties that lead to increased AB production,
degradation or aggregation. In a comparable mechanism to the AB40 dimers,
described above, a mutation at position 22 of AR (APPE693A) has been reported
that significantly increases oligomerisation but not fibrillisation (Tomiyama et al.,
2008). As previously described (section 5.1) another genetic mutation in AB
resulting in AD, the A673V mutation in APP, was discovered in one ltalian family.
This mutation, rather than altering the toxic properties of the peptide,
significantly increased processing of APP resulting in the early onset of AD. The
pathogenic effects of this mutation most likely result from the overproduction of
AB. Results obtained from Ca®* flux assays were in agreement with this
conclusion, as the AB-A673V mutation significantly increased Ca* flux but this
increase did not significantly differ from the wild type AB42 peptide (Figure 5-9).

The final experiments utilising the Ca** flux assay resulted in the
unexpected finding that a form of A peptide could induce flux in the absence of
glutamate. Data from testing the AB3pE-42 demonstrated a significant increase
in Ca®* flux in the presence of glutamate but this effect was not specific, with the
unmodified AB3-42 causing similar increases (Figure 5-10). As the effect of the
truncated peptides did not differ significantly to the effect of the wild type AB1-
42, it suggested a related glutamatergic-mediated mechanism. However, when
the effect of AB3pE-42 was tested in isolation, a potent increase was observed
compared with neurons treated with vehicle and the unmodified AR peptides.

This indicated an action at the membrane that was not mediated through active

128



Chapter 5

glutamatergic receptors. One such mechanism in which AB3pE-42 could affect
these changes is through perturbations of the lipid membranes (Kayed et al.,
2004; Demuro et al., 2005). In this work the AB-specific increase in [Caz+]i was
shown to be immediate, precluding second messenger-mediated events and
showed no evidenced of pore formation. Taken together this research supported
increased membrane permeability as the more likely mechanism by which [Ca™];
was increased. Such a mechanism for AB3pE-42 is further supported by recent
findings that this modified AB peptide disrupts lysosomal membrane integrity in
neurons (De Kimpe et al.,, 2012) and generates higher levels of membrane
leakage in astrocytes relative to AB1-42 (Russo et al., 2002). In my findings, the
data also favours perturbation of the cell membrane as its mechanism, as the
Ca”* flux observed was considerable and immediate and is most likely a result of
the peptide’s increased neuronal binding and lipid peroxidation demonstrated in
colleagues’ recent work (personal communication, Dr. Gunn).

Glutamate-induced Ca®* signaling plays a vital role in neural development;
function and plasticity and as such activation of this pathway is strictly regulated.
The NMDAR is a key receptor in this process, accommodating cell survival
signaling and maintaining physiological concentrations of intracellular Ca*.
Under pathological conditions, chronic exposure or excessive concentrations of
glutamate results in excitotoxic cell death. In the work | have presented here |
have described conditions in which normal levels of glutamate and metals
become toxic in the presence of AB. The increases in Ca’* flux resulting from this
combination with glutamate, standard AP preparations and metals, although not
potent, were sufficient to cause moderate neuronal death indicating a time
course more in accordance with the degenerative nature of AD. When
considered as a whole these findings strongly implicate dysregulation of
glutamatergic signaling through NMDARS as a mechanism by which AR peptides
cause the synaptic loss and neuronal death associated with AD. In addition, these
experiments have described the conditions for a high-throughput primary
neuron-based assay that will aid in the identification of distinct toxic species of

AB responsible for neurodegeneration in AD.
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6 Discussion

In this final chapter | will address the findings from the research presented in
the thesis in a therapeutic context. Initially, the neuroprotective mechanisms of
intracellular calcium and the role of metals in modulating Ca** are discussed. In
describing a novel mechanism for the treatment of acute and chronic
neurodegeneration by the use of metal ionophores, namely PBT2, the findings of
each chapter are discussed as a whole to demonstrate the potential benefits
from this work. The chapter concludes with a proposed model encompassing

these findings.

6.1 Modulating Intracellular Calcium Levels to Protect
Against Excitotoxicity.

In the neuron the concentration of intracellular Ca** controls a wide array
of vital functions through allosteric interactions affecting such processes as
neurotransmitter release, gene expression and protein activity. Ca”* can mediate
signal transduction from activation of ionotropic receptors such as NMDARs or
acting as a second messenger. Pathological increases in intracellular calcium
levels result in reduced function and neuronal viability observed in both acute
(Dugan and Choi, 1999; Pohl et al., 1999) and chronic (Ferrante et al., 1993;
Zhang et al., 2008; Ittner et al., 2010; Um et al.,, 2012; You et al., 2012)
neurodegenerative diseases. Under physiological conditions this toxicity is
prevented though the strict regulation of intracellular Ca®* concentrations with
receptors located on the cell membrane controlling Ca** influx and intracellular
stores being mediated by receptors on cellular organelles such as the
endoplasmic reticulum (Figure 6-1). Many of these receptors have been
implicated in neurodegenerative diseases, which have made them appealing
targets for therapeutic intervention. To this end antagonists have been designed

to attenuate flux of Ca** from the millimolar levels in the synaptic cleft in to the
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cytosol, where Ca®* is at a resting concentration in the nanomolar range (Figure
6-1). Intracellular stores also play a significant role in resting levels of
intracellular Ca** and given the micromolar concentrations in the endoplasmic
reticulum, have been targeted. Results from trials with these therapeutics have
been varied showing efficacy in mouse models (Horn et al., 2001; Anekonda et
al,, 2011; Peng et al.,, 2012) but being largely ineffective in clinical trials of
ischemia and AD (Lipton, 2004; Ginsberg, 2008).

The data presented in this thesis support a novel mechanism to protect

against the excitotoxic cell death resulting from such significant increases in

[Ca?**]=1.8 mM

G protein-coupled

receptor Ca?* Caz Caz
Synapse

Ptdins(4,5)P, |

Store-operated lon/ voltage-gated Plasma membrane
Q calcium channel calcium channel calcium ATPase pump
Ins(1,4,5)P3 [Ca®] = 100 nM
\ Ca2+ Cal+

Mitochodria

[Ca?] = 100 - 500 uM

Endoplasmic reticulum

Figure 6-1 Cellular mechanisms for intracellular calcium homoeostasis. Neurons can regulate
the entry of calcium (Cap) from millimolar levels in the synaptic cleft by store-operated channels,
voltage-gated channels following depolarisation and through the ion-gated channels such as
NMDARs. At rest cytosolic concentrations of Ca”" are maintained between 50 and 300 nM.
Synaptic activity can raise cytosolic Ca” to micromolar levels through activation of the cell
surface receptors or by release of intracellular Ca”" stores from endoplasmic reticulum (ER) stores
by activation of the inositol-1,4,5-trisphosphate (Ins(1,4,5)Ps) receptors (InsP3Rs) and ryanodine
receptors (RyRs). The excitotoxic cell death that has been the focus of this thesis occurs by
dramatic increases in the intracellular Ca®* levels following chronic stimulation of NMDARs by
excessive levels of glutamate in the synapse (Adapted from LaFerla, 2002)
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Chapter 6

intracellular Ca®*. The model employed in this work has demonstrated the ability
of transitional metals, namely Zn**, to protect against acute excitotoxicity
induced by maximal concentrations of glutamate in cortical neurons. Using the
zinc ionophore PBT2, a therapeutic currently in clinical trials to prevent chronic
neurodegeneration, it was possible to prevent cell death by moderately
increasing intracellular Ca** levels (Figure 6-2). This represents a key finding in
this thesis and strongly suggests the potential efficacy in treatment of acute
neurodegeneration in diseases such as ischaemic stroke and traumatic brain
injury by protecting against further excitotoxicity resulting from a positive
feedback mechanism (Lipton and Rosenberg, 1994). In further support of such a
role are the favourable results obtained from animal models and clinical trials
with therapeutics sharing similarly moderate chelating properties as PBT2

(Diener et al., 2008; BarKalifa et al., 2009; Wang et al., 2010a).

6.2 Slow Excitotoxicity in Chronic Neurodegeneration

PBT2 has shown success in phase Il clinical trials in the chronic
neurodegenerative diseases; HD and AD with cognitive improvement in both
instances. The mechanisms of action of initially proposed for PBT2 have included
disaggregation of AP fibrils and inhibiting reactive oxygen species formed by
AB:Cu and more recently stabilizing non toxic forms of AB (Cherny et al., 2001;
Adlard et al., 2008; Bush, 2008; Ryan et al., 2015). The data | have presented
demonstrates not only a mechanism for its use in acute neurodegeneration but
also a novel mechanism for its therapeutic efficacy in both HD and AD. The
proposed mechanism by which PBT2 could protect against the onset of both of
these chronic neurodegenerative diseases is by preventing the gradual neuronal
loss resulting from ‘slow’ excitotoxicity.

In attempts to explain the gradual neuronal loss associated with these
chronic diseases two distinct forms of excitotoxicity were proposed (Beal,
1992a). The two forms of excitotoxicity are accordingly named; acute and slow,
directly reflecting the progression of the diseases in which they've been

implicated. It is believed that acute neurodegenerative diseases such as
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ischaemic stroke and TBI result from excess glutamate in the synaptic cleft. This
is caused by either excessive release of glutamate from the presynapse, defects
in its catabolism or in its reuptake by glutamate transporters on supporting
astrocytes (Albin and Greenamyre, 1992; Lipton and Rosenberg, 1994; Bridges et
al., 2012). However in slow excitotoxicity two possibilities have been suggested
to account for the gradual onset of symptoms; either abnormalities in signaling
by glutamatergic receptors or impaired cellular energy metabolism (Albin and
Greenamyre, 1992; Beal, 1992b). The data presented in the final results section
of this thesis provides evidence of the former possibility by demonstrating
increased intracellular Ca** following exposure to AB. Unlike the neuroprotective
increase in Ca** resulting from pretreatment with PBT2, this chronic exposure to
increased levels of Ca** was toxic and resulted in gradual cell death. This effect
was only observed in the presence of glutamate indicating the involvement of
excitatory neurons. This is in agreement with findings that AB enhances
excitatory activity in glutamatergic networks but does not increase intracellular
Ca’* in inhibitory synapses (Brorson et al., 1995). The enhanced neuronal
sensitivity to non toxic levels of glutamate caused by AB is perpetuated through
positive feedback, which shifts APP processing to favour B-secretase production

and increase AB in the synaptic cleft (Lesné, 2005).

6.3 Proposed model for metals and AB in
neurodegeneration

In healthy neurons, upon stimulation, ZnTs and ATP7A release Zn** and
Cu® in to the synaptic cleft, respectively where they can achieve micro to
millimolar concentrations. In conjunction, low nanomolar levels of AB are
constitutively expressed in to the synaptic cleft following B-secretase cleavage of
APP. Despite their high concentrations, in normal signaling free metal levels in
the synaptic cleft remain low by buffering and reuptake mechanisms that involve
astrocytes and metallothionein proteins. In this environment physiological levels
of extracellular AR are removed by the protease action of neprilysin and insulin

degrading enzymes. Following activation of NMDARs cell survival mechanisms
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are triggered that involve the phosphoinositide-3-kinase (PI3-K) - Akt kinase
pathway. Continued activation of NMDARs in the hippocampal region of the
brain leads to learning and memory formation through the process of long-term
potentiation. These protective pathways can be activated by moderate increases
in intracellular levels of Ca**, which can be brought about by increasing zinc
levels in the cytosol, for example, by using a class of metal chaperones called
metal protein attenuated compounds (MPACs), of which PBT2 is a lead
compound (Figure 6-2). Under acute excitotoxic conditions such as in ischaemic
stroke or traumatic brain injury increase glutamate release and/or a failure to
clear or catabolise glutamate results in overactivation of the NMDAR. This results

in massive Ca®" influx to the cytosol, which causes overactivation of the Ca®" -

Pro-survival signaling & Acute Excitotoxicity (Ischaemia, TBI) &
PBT2 Treatment ‘Slow’ Excitotoxicity in AD
Gluta.mate _ Glutamate Synaptic cleft
IR Ve %% U

Copper
e 00

0@°%000

&9
e
\ Active
Calcineurin

D
@4L& ® @
.

[e]
Q

Post synapse

Figure 6-2 Prevention of excitotoxicity in neurodegenerative diseases. Under physiological
conditions NMDAR activity at the post synapse is involved in synaptic formation underlying long
term potentiation (LTP) and pro-survival signalling mediated by phosphoinositide-3-kinase (PI3-K)
- Akt kinase cascade and inhibition of GSK-3 activity by its phosphorylation. Under acute
excitotoxic conditions thought to underlie ischaemia and traumatic brain injury (TBI), exposure to
excessive levels of glutamate activates the ca™ -dependent protease, calpain that in turn causes
the unregulated phosphatase activity of calcineurin by cleavage. Cell death follows through the
resulting modifications to GSK-3 and Tau. Pre-treatment with PBT2, a therapeutic that acts as a
zinc ionophore, protects against this acute excitotoxicity by moderately increasing intracellular
Ca” levels that activate survival pathways and inhibit calcineurin-mediated cell death. In AD
overproduction of AP or its reduced clearance causes increased sensitivity to non-toxic levels of
glutamate. This effect is dependent on Cu, which exists at millimolar concentrations in the cleft
of active synapses, and on the presence of oligomeric forms of AR that are increased in the
presence of Zn*" and Cu”. Pre-treatment of prodromal AD patients with PBT2 may prevent the
subsequent neuronal loss through the same mechanism it is effective in acute excitotoxicity.
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dependent protease, calpain and the unregulated constitutive activation of
calcineurin upon its cleavage. This results in cell death mediated by GSK3
activation and Tau phosphorylation. This process is inhibited by pretreatment
with PBT2, which prevents calpain-cleavage and the activation of calcineurin and
subsequent GSK activation through its dephosphorylation. PBT2 treatment also
activates cell survival pathways preconditioning neurons to subsequent
glutamate-induced excitotoxic insults.

In Alzheimer’s disease genetic or environmental risk factors result in
increased levels of AR due to its overproduction or impaired clearance. In the
synaptic cleft the stable AB oligomers are formed due to the presence of high
levels of Cu®*/zn®*. The oligomeric species of AP are more resistant to
degradation than their monomeric counterparts and cause toxic glutamate
activation of NMDARs, potentially by the formation of ternary complexes with
Cu®* and glutamate. This results in moderate neuronal loss by increased
glutamate-facilitated Ca®* flux in to the neuron and is mediated through calpain
and calcineurin activation as described previously. Unlike acute excitotoxicity the
levels of neuronal death are significantly less in accordance with the gradual
onset of the disease. PBT2 treatment potentially acts through two mechanisms;
firstly it binds to the high levels of zinc and copper in the synaptic cleft
preventing metal-induced aggregation and, in conjunction, removes bound
metals from AB. This facilitates the dissolution of AR from toxic oligomers to
monomers making them more susceptible to clearance. Secondly, in the novel
mechanism proposed in this thesis, PBT2 preconditions neurons through its
ionophoric increase in intracellular zinc that causes moderate increases in
intracellular Ca**. As in acute neurodegeneration PBT2 inhibits calcineurin-
mediated cell death and activates pro-survival signaling through the PIP3 — Akt
pathway (Figure 6-2). In order to obtain the full efficacy of the both of these
mechanisms for the drug’s actions the selection criteria for patient’s in future
clinical trials would require revision. To exploit the drugs’ preconditioning against
excitotoxicity rather than studying the effects of PBT2 in people with early to
moderate AD, these future trials should be targeted at patients presenting with

prodromal AD with the prospect of realising significant prevention of the disease.
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7 Supplementary Information

7.1 F12 media, not neurobasal media, contains glutamine/

glutamate.

* Ham’s F12 media contains 1 mM glutamine and 100 uM contaminating

glutamate (L-Glutamic acid).

Ham’s F12 media without glutamine from Life technologies (previously Gibco
and Biosources), PromoCell and Sigma still contains 100 mM glutamate (14.7

mg/mL).

Life Technologies Media Formulation for Ham’s F12 Media used for ADDLs

preparations of AB;

11765 - Ham's F-12 Nutrient Mix

Catalog Number(s)

11765047 , 11765054 , 11765062 , 11765070

Components Molecular Weight Concentration (mg/L) mM

Amino Acids

Glycine 75.0 75 0.1
L-Alanine 89.0 89 0.099999994
L-Arginine hydrochloride 211.0 211.0 1.0
L-Asparagine-H20 150.0 15.01 0.10006667
L-Aspartic acid 133.0 13.3 0.1
L-Cysteine hydrochloride-H20 176.0 35.12 0.19954544
L-Glutamic Acid 147.0 14.7 0.1
L-Glutamine 146.0 146.0 1.0
L-Histidine hydrochloride-H20 210.0 21.0 0.1
L-Isoleucine 131.0 4.0 0.030534351
L-Leucine 131.0 13.1 0.1

L-Lysine hydrochloride 183.0 36.5 0.19945355
L-Methionine 149.0 45 0.030201342
L-Phenylalanine 165.0 5.0 0.030303031
L-Proline 115.0 345 0.3

L-Serine 105.0 10.5 0.1
L-Threonine 119.0 1.9 0.099999994
L-Tryptophan 204.0 2.04 0.01
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Life Technologies Media Formulation for Neurobasal Media used for

preparations of all AB other than ADDLs in this thesis;

* Neurobasal media does not contain glutamine or glutamate.

NEUROBASAL™ Medium (1X) liquid

Neurobasal™ Media are basal media formulated to meet the neuronal cells
special requirements.

They allow for long-term maintenance of the normal phenotype and growth of
neuronal cells, and maintain pure populations of neuronal cells without the need
of an astrocyte feeder layer.

Catalog Number(s)

21103049

Components Molecular Weight Concentration (mg/L) mM

Amino Acids

Glycine 75.0 30.0 0.4
L-Alanine 89.0 20 0.02247191
L-Arginine hydrochloride 211.0 84.0 0.39810428
L-Asparagine-H20 150.0 0.83 0.0055333334
L-Cysteine 1210 315 0.2603306
L-Histidine hydrochloride-H20 2100 420 0.2
L-Isoleucine 131.0 105.0 0.8015267
L-Leucine 131.0 105.0 0.8015267
L-Lysine hydrochloride 183.0 146.0 0.7978142
L-Methionine 149.0 30.0 0.20134228
L-Phenylalanine 165.0 66.0 0.4

L-Proline 115.0 7.76 0.06747826
L-Serine 105.0 420 0.4
L-Threonine 119.0 95.0 0.79831934
L-Tryptophan 204.0 16.0 0.078431375
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Excitotoxicity is the pathological process by which neuronal death occurs as a result of excessive stimulation of
receptors at the excitatory synapse such as the NMDA receptor (NMDAR). Excitotoxicity has been implicated
in the acute neurological damage fromischemia and traumatic brain injury and in the chronic neurodegeneration
in Alzheimer's disease (AD) and Huntington's disease (HD). As a result NMDAR antagonists have become an at-
tractive therapeutic strategy for the potential treatment of multiple neurodegenerative diseases. However
Keywords: NMDAR signaling is dichotomous in nature, with excessive increases in neurenal intracellular calcium through
Excitotoxicity excessive NMDAR activity being lethal but moderate increases to intracellular calcium levels during normal syn-
Zine aptic function providing neuroprotection. Subsequently indiscriminant inhibition of this receptor is best avoided
Calcium flux as was concluded from previous clinical trials of NMDAR antagonists. We show that the metal chaperone, PBT2,
Huntington's disease (HD) currently in clinical trials for HD, is able to protect against glutamate-induced excitotoxicity mediated through
Alzheimer's disease (AD) NMDARs. This was achieved by PBT2 inducing Zn? "-dependent increases in intracellular Ca? levels resulting
in preconditioning of neurons and inhibition of Ca? “-induced neurotoxic signaling cascade involving calpain-
activated cleavage of calcineurin. Our study demonstrates that modulating intracellular Ca®* levels by a zinc ion-
ophore is avalid therapeutic strategy to protect against the effects of excitotoxicity thought to underlie both acute
and chronic neurodegenerative diseases.

© 2015 Elsevier Inc. All rights reserved.

Introduction

N-methyl-p-aspartate receptors (NMDARs) are ionotropic channels
gated by the excitatory amino acid, glutamate. They play an essential
role in synaptic plasticity, enhancing synaptic signal strength through
long term potentiation (LTP), a process thought to underlie learning
and memory (Bliss and Collingridge, 1993). At the synapse, NMDARs
mediate neuroprotective-signaling pathways including the regulation
of calcineurin activity and inhibition of glycogen synthase kinase
(GSK3). Under pathological conditions the prolonged and enhanced
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of Melbourne, Parkville, Victoria 3010, Australia.
** Correspondence to: K. Barnham, Bio21 Institute, 30 Flemington Road, The University
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(KJ. Barnham).
Available online on ScienceDirect (www.sciencedirect.com).

http://dx.doi.org/10.1016/j.nbd.2015.02.008
0969-9961/© 2015 Elsevier Inc. All rights reserved.

exposure of NMDARs to glutamate results in an excessive flux of calci-
um (Ca*™") into the cell. This triggers a range of responses resulting in
cell death, including increased oxidative stress, inappropriate activation
of proteases such as calpain, dysregulation of Ca?*-related pathways,
mitochondrial damage and an apoptotic cascade. This process, termed
excitotoxicity (Olney, 1969), contributes significantly to the acute neu-
rodegeneration in ischemia and traumatic brain injury (TBI) (Dugan
and Choi, 1999; Pohl et al., 1999) and to the chronic neurodegeneration
in Huntington's disease (HD) (Ferrante et al., 1993; Zhang et al., 2008)
and Alzheimer's disease (AD) (Ittner et al.,, 2010; Um et al., 2012; You
etal., 2012).

A significant body of research has been dedicated to devising strate-
gies to inhibit excitotoxicity, either by blocking the channels through
which Ca?* enters the cell or by inhibiting the degenerative cell signal-
ing pathways that arise as a consequence of excessive Ca™* influx
(reviewed in Pivovarova and Andrews, 2010). However, there is a
fundamental limitation of NMDAR antagonists as therapeutic agents,
as indiscriminate blocking of Ca®* flux through the NMDAR can also

Please cite this article as: Johanssen, T., et al., PBT2 inhibits glutamate-induced excitotoxicity in neurons through metal-mediated
preconditioning, Neurobiol. Dis. (2015), http://dx.doi.org/10.1016/j.nbd.2015.02.008
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inhibit activity of the receptor that is necessary for normal synaptic
function. In order to avoid the negative effects of NMDAR antagonists
a strategy must be employed whereby excitotoxic Ca®* flux is
prevented while maintaining synaptic signaling.

The deregulation of synaptic zinc (Zn®*), as with Ca? ¥, has been ob-
served in acute and chronic neurodegeneration (reviewed in Corona
etal, 2011; Vogler and Busciglio, 2014) and its modulation has been in-
vestigated as a therapeutic target for the treatment of both AD and HD.
To this end a metal chaperone (PBT2; Prana Biotechnology, Australia}
has recently been shown to induce Ca®*-mediated neuroprotective sig-
naling cascades involving calcineurin, the calcineurin substrates cAMP
response element binding (CREB) protein and Ca’*/calmodulin-
dependent protein kinase (CaMK} and GSK3 inhibition by chaperoning
zinc from extracellular pools into cells (Adlard etal,, 2013; Crouchetal,
2011). PBT2 has been shown to rescue disease phenotypes in transgenic
mouse models of both HD and AD (Adlard et al., 2008}, and is currently
undergoing clinical evaluation in HD. Excitotoxicity has been implicated
in the pathogenesis of both HD and AD raising the question as to wheth-
er protection against excitotoxicity is a common mechanism of action
resulting in these therapeutic benefits. Here, we evaluate the ability
of PBT2 to ameliorate glutamate-induced excitotoxicity in cortical
neuronal cultures and provide data supporting a novel neuroprotective
action of the drug. PBT2 pretreatment induces a moderate increase in
intracellular calcium, which preconditions the neurons to subsequent
excitotoxic exposure.

Materials and methods
Materials

PBT2 was provided by Prana Biotechnology Limited. 6-Cyano-7-
nitroquinozaline-2,3-dione (CNQX), Dizocilpine (MK-801) and
Memantine Hydrochloride were purchased from Sigma Aldrich
(Australia) and dissolved in H,0. Zinc Chloride (ZnCl,) (Sigma Al-
drich, Australia) was used dissolved in H,O. Diamsar, (1,8-diamino-
3,6,10,13,16,19-hexaaza-bicyclo(6,6,6)eicosane) was prepared as
described previously (Bottomley et al., 1994).

Primary neuronal cultures

Mouse cortical neuronal cultures were prepared as previously
described (Barnham et al., 2003). Briefly, embryonic day 14 (E14)
C57BL/6 mouse cortices were removed, dissected free of meninges,
and dissociated in 0.025% (w/v) trypsin in Krebs’ buffer. The dissociated
cells were triturated using a fine pipette tip, pelleted, resuspended in
plating medium (minimum Eagle’s medium, 10% fetal calf serum, 5%
horse serum}), and counted. Cortical neuronal cells were plated
into poly-D-lysine-coated 48-well plates for excitotoxicity assays and
96-well plates for Ca®>* flux assays at a density of 150,000 cells/well in
plating medium. Following 2 h at 37 *Cwith 5% CO, the plating medium
was replaced with fresh neurobasal medium containing B27 supple-
ments, gentamicin, and 0.5 mM Glutamax (all tissue culture reagents
were purchased from Invitrogen unless otherwise stated).

Excitotoxicity assays

Neurons were cultured for 9 days in vitro (DIV) in neurobasal medi-
um plus B27 supplements (Life Technologies) with media changes at
6 days before commencing treatment. All drugs and glutamate were
diluted in water. Neuronal cultures were pretreated with PBT2 (3 puM)
or Memantine (10 uM) for 6 h and (MK-801) (10 uM} for 20 min prior
to 1 h excitotoxic exposure to glutamate (40 uM). Cell viability was
measured using a Cell Counting Kit 8 (Dojindo, Japan) following 18 h
in fresh neurobasal media. Specificity was investigated by depleting
metals by the addition of Diamsar (10 uM}, a cell impermeable metal
chelator, to neurobasal media >1 h prior to treatments. ZnCl, was

dissolved in water and added to cells with all treatments including
PBT2, after the depletion of metals by treatment with Diamsar-
containing neurobasal media (1 h).

Calcium flux assays

Neurons were cultured as described above and then loaded with
Fluo4 dye (Life Technologies) according to the manufacturer’s recom-
mendations. Briefly, cells were incubated for 30 min in complete Fluo-
4 loading solution (containing loading buffer, Fluo-4 dye reagent and
probenecid) at 37 °C followed by a 30 min incubation at RT. To measure
fluorescence the inner 72 wells of 96-well plates were measured taking
19 s for each cycle. To establish background (Fp) measurements were
averaged for the 10 cycles preceding injection of glutamate/glycine
(100 uM/10 uM). The 11th cycle, the first post-injection, was used for
fluorescence (F;}, which was measured by a Fluostar plate reader (exci-
tation at 490 nm, emission at 520 nm) with values expressed as the
difference in fluorescence over initial fluorescence (AF,/Fy). As with
the excitotoxicity assays all drug treatments in the calcium flux assays
were performed in an identical manner. To investigate specificity,
metals were depleted by the addition of Diamsar (10 uM} to neurobasal
media >1 h prior to treatments. ZnCl, was dissolved in water and added
to cells with all treatments including PBT2, after the depletion of metals
by treatment with Diamsar-containing neurobasal media (1 h).

Multielectrode array experiments

Neocortex was dissected from C57BL/6 pups (postnatal days 1-3)
under sterile conditions. Cortices were cut into pieces of about 1 mm?,
prior to dissociation using papain and trituration. Cells were plated at
5000 cells/mm? on standard 8 x 8 titanium arrayed MEAs (Multi Chan-
nel Systems, Reutlingen, Germany) coated with poly-ethylene-imine
(PEI} and laminin. Cultures were maintained for 2-3 weeks prior to re-
cording, in the following medium: high glucose DMEM with 10% Horse
Serum, 0.5 mM Glutamax, 1 mM sodium pyruvate, and 2.5 pg/ml insulin
(All from Life Technologies, Australia}. Cultures were kept for 21 days in
an incubator at 37 °C, 65% relative humidity, 5% CO,, and 9% O,.

The MC_RACK software and the MEA-2100-60-System (Multi Chan-
nel Systems, Reutlingen, Germany) were used to record and analyze
data. The MC_RACK software was used to detectand record unit activity.
Data was gathered from neuronal cultures pre-treated with or without
PBT2 (3 uM) for 5 min pre- and post-exposure to glutamate (100 uM)
and glycine (10 uM). A — 20 uV threshold was set for the detection of
spike and an inter spike interval detection threshold set to greater
than 10 ms to avoid contamination with burst firing. Data was analyzed
using GraphPad Prism 6 (GraphPad Software, La Jolla, CA). Channels
that had a baseline greater than — 10 uV were denoted as noisy chan-
nels, and were excluded from the data set.

Western blot analysis

Western blots were performed on total cell extracts (20 pg/lane)
from mouse cortical neuronal cultures described above. Cultures in
48-well plates (Nunc) were lysed in 120 ul/well of lysis buffer
(50 mM Tris, pH 7.4, 5 mM EDTA, 50 mM Nadl, 0.1% Triton-X) and 1%
protease inhibitor mix set 1 (Calbiochem). Primary antibodies were
as follows: polyclonal rabbit anti-GSK3«, monoclonal mouse anti-
phospho (Ser21)-GSK-3«, monoclonal rabbit anti-GSK3p, polyclonal
rabbit anti-phospho (Ser21/Ser9) GSK3a/B (all at 1:5000 dilution,
Cell Signaling Technology) and polyclonal rabbit anti-Calcineurin A
(1:1000 dilution, Sapphire Bioscience). Secondary antibodies were
from mouse or rabbit and conjugated to Horseradish Peroxidase (GE
Healthcare, UK). Proteins were visualized using Immobilon chemilumi-
nescent HRP substrate (Millipore, Australia) on Amersham Hyperfilm
XP (GE Healthcare, UK). Western blot data were quantified by densito-
metric analysis in three different blots per experiment.
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Statistical analysis

Densitometric analysis was performed using Image] software
(Rasband, 1997). Cell viability, Ca®* flux, MEA and densitometry results
are expressed as =+ standard error mean (SEM). Prism data analysis soft-
ware (GraphPad} was used to compare treatments by one-way analysis
of variance (ANOVA} with Dunnett’s post hoc test.

Results

The metal chaperone activity of PBI2 is required for its protection against
glutamate-induced excitotoxicity

Based on previous work demonstrating PBT2’s efficacy in preventing
AP42 inhibition of LTP (Adlard et al.,, 2008} and recent findings implicat-
ing excitotoxicity in both AD & HD (Fan and Raymond, 2007; Um et al,
2012) our initial experiments tested the capability of the drug to confer
protection against glutamate-induced toxicity in cortical neurons. To
achieve this, experimental conditions were optimized to induce approx-
imately 50% cell death upon a 1-hour treatment with glutamate
(40 uM), as neurons at this cell viability showed maximal protection.
Following a 6 hour pretreatment of neurons with increasing concentra-
tions of PBT2 (1, 3 and 7.5 uM), its maximum protection against
excitotoxicity was conferred where no effect on excitotoxicity by PBT2
was observed at 1 h. This was in contrast to MK-801 and Memantine,
both direct NMDAR channel blockers, that demonstrated full protection
in 1 h (Figs. 1A and B). Pre-treatment with PBT2 protected against
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exdtotoxic insult restoring cell viability of glutamate-treated neurons
(56 & 6%) in a dose-dependent manner (glutamate + PBT2 at 0, 3
and 7.5 uM = 59 + 6%, 87 + 5% and 88 + 2%, respectively, n = 6,
p < 0.001) (Fig. 1B). These levels were comparable to the non-
competitive NMDA antagonists, MK-801 and Memantine (89 + 4%
and 90 + 2%, n = 6, p<0.001) (Fig. 1A). To test whether the protective
effect of PBT2 against excitotoxicity was dependent on its metal chaper-
one activity, metals were depleted from the cell culture media by a
1-hour treatment with (NH;),sar (Diamsar) (10 uM) prior to incuba-
tion with PBT2 and then glutamate (Fig. 1C). Diamsar is a high affinity
metal chelator, unable to permeate the cell membrane (Crouch et al.,
2011). Upon sequestration of metals by Diamsar, glutamate-treated
cells (44 + 6%) were no longer protected by PBT2 (1 uM, 49 + 9%,
3 UM, 49 + 9% and 7.5 uM, 53 + 8%} demonstrating the requirement
of metals as co-factors for PBT2 to mediate protection. As expected
the NMDA antagonists have no requirement of metals to mediate
their effect (MK-801, 86 + 12% and Memantine, 86 + 5%, n = 4,
p < 0.01, p < 0.001, respectively) (Fig. 1C). To further illustrate the
role of metals in PBT2 protection Zn>* was titrated back into
the metal-depleted media and restoration of protection by PBT2 against
excitotoxicity was observed (Zn®* at 7 uM, 50 & 7%to 72 & 8%,n =5,
p <0.05) (Fig. 1D). Given that previous ICP-MS analysis had detected
3-5uM Zn®™ in neurobasal media, the 7 uM Zn>* supplemented back
into the metal-depleted media was sufficient to overcome chelation by
10 uM Diamsar. In these experiments PBT2 coordinates the extracellular
metals, namely Zn®* and increases its ability to cross cellular mem-
branes, therefore acting as an ionophore or metal chaperone. Once
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Fig. 1. PBT2 protects against glutamate-induced excitotoxicity by its metal chaperone activity. Mouse primary cortical neurons were treated with the NMDA-specific antagonists, MK-801
(dark gray) and Memantine (light gray) for 1 h and PBT2 at increasing concentrations for 6 h prior to exposure to glutamate (40 uM). Cell viability was measured and results were
normalized to the untreated vehicle. (A) The non-competitive antagonists, MK-801 and Memantine prevent excitotoxicity where as 1 h pre-treatment with PBT2 is not sufficient to effect
cell viability. (B) 6 h pre-treatment with PBT2 prevents excitotoxicity in a concentration-dependent manner equivalent to the levels of the non-competitive antagonists, MK-801
and Memantine. (C) Removal of metals from neuronal media by pre-treatment with the chelator, Diamsar abolishes PBT2 protection against excitotoxicity. (D) Titrating zinc into
metal-depleted media restores PBT2 protection against excitotoxicity. Data represent mean + SE; n = 3-6; **p < 0.01, ***p < 0.001; ns, not significant compared to glutamate treated

values by one-way ANOVA using Dunnett's post hoc test.
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inside the cell the metal/drug complex dissociates making the metal
bioavailable and able to activate neuroprotective signaling cascades
(Adlard et al, 2008; Crouch et al., 2011}). In this work we have demon-
strated a Zn>* requirement for this effect by depleting the metals with
Diamsar and reintroducing only Zn™*.

PBT2 significantly reduces NMDAR-mediated Ca®* flux

MK-801 protects against excitotoxicity by directly acting on NMDA
receptors preventing the excessive influx of Ca®* required for NMDA-
mediated cell death (Stout et al,, 1998). To investigate whether PBT2
protects by this mechanism we measured intracellular Ca>* ([Ca®*];)
flux in cultured mouse cortical neurons using the Fluo-4 dye. Neurons
were pre-treated with vehicle, MK-801 (10 uM}, and PBT2 (10 uM} for
1 h (Fig. 2A) and 6 h (Fig. 2B) prior to dye loading and treatment of
cells with a concentration of glutamate and the co-agonist, glycine
(100 WM/10 uM) to ensure maximum Ca®* flux (light gray line). Back-
ground levels of fluorescence were established prior to the injection of
glutamate/glycine treatment. By treating for 1 h we sought to determine
whether PBT2 immediately antagonized the NMDA receptor in a similar
mechanism to MK-801. Upon a 1-hour treatment with MK-801,
glutamate-induced Ca®™* flux was significantly attenuated to 48.5%
(51.5 & 7.5% n = 4, p< 0.001). The remaining Ca®* flux can be attrib-
uted to recovery from MK-801 blockade during extended agonist expo-
sure (McKay et al., 2013} and to a lesser extent, extrasynaptic NMDARs,
non-NMDA ionotropic receptors and metabotropic receptors. Treat-
ment for the same duration with PBT2 however resulted in a
reduction in Ca®* flux of only 16% (84 + 4.5%, n = 4, p < 0.001)
(Fig. 2A). When neurons were pre-treated for 6 h with MK-801,
glutamate-induced Ca®* flux remained significantly attenuated
(65.3 + 3.3%,n = 4, p < 0.001) however the longer treatment with
PBT2 resulted in a significant reduction in Ca®* flux of 31.2% (68.8 +
5.6%,n = 5, p <0.001) (Fig. 2B). In these experiments a 6 h pretreat-
ment with PBT2 was required for maximal attenuation of Ca®* flux
with little effect at 1 h (Figs. 2A and B, respectively).
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PBT2 requires zinc to reduce NMDAR-mediated Ca® * flux

The results obtained from the excitotoxicity experiments demon-
strated a requirement of metal for the protective effect of PBT2 on cell
viability of neurons. To determine whether metals present in the
media were also a requirement for the observed effect of PBT2 on
Ca®* flux, experiments were performed in the presence and absence
of metals by using the metal chelator, Diamsar. The reduction in Ca®*
flux previously seen following a 6-hour treatment with PBT2 (Fig. 2B)
is ablated by the removal of metals (87.3 + 9.3%, n = 4, p < 0.001)
(Fig. 3A). Although experiments with ionotropic receptor agonists sup-
port the role of NMDAR mediating glutamate-induced excitotoxic cell
death (Choi, 1992} glutamate activation of AMPA and Kainate receptors
could still contribute to Ca®* flux. To ensure that the effects of PBT2
were mediated solely by NMDARs, neurons were concomitantly treated
with the AMPA/Kainate receptor antagonist, CNQX, which showed
no effect on the action of PBT2 (Figs. 3B and C). We then tested whether
the reintroduction of zinc to metal-depleted neurons would restore the
ability of PBT2 to modulate Ca®* flux. The concentration of Zn®* shown
to restore PBT2's ability to rescue glutamate-induced excitotoxicity
(7 uM) (Fig. 1C) in metal-depleted media was used during PBT2 pre-
treatment of cells (Fig. 3C). The additional Zn®~ in conjunction with
Zn?* in the Neurobasal media (3-5 WM by ICP-MS, data not shown)
was sufficient to overcome chelation by 10 uM Diamsar and fully
restored the ability of PBT2 to modulate Ca®* flux. The relative Ca>+
flux in PBT2-treated neurons, in the absence of metals (94 + 5%,
n = 6, p <0.001; Fig. 3B}, was significantly inhibited to 52 + 8%,
respectively, n = 4, p < 0.001 (Fig. 3C}. This was shown to be an
NMDAR-mediated event by blocking AMPA & Kainate receptors with
concomitant treatment with CNQX (Figs. 3B and C).

Preconditioning by PBT2 treatment is neuroprotective against excitotoxicity
The phenomenon of neuroprotection by preconditioning has

been well documented in ischemic models (Katsura et al., 2001;
Kirino et al, 1991; Murry et al, 1986) in which glutamate-induced
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Fig. 2. The time-dependent effect of PBT2 on Ca®* flux through the NMDA receptor. Intracellular Ca®* levels in cortical neurons preloaded with the Ca®* indicator Fluod, were measured
upon stimulation by glutamate/glycine (100 uM/10 uM) (black) and reading fluorescence at 450 nm excitation and 520 nm emission. The top panels of (A) and (B) show representative
traces with measurements taken at cycle number 11, t = 209 s (Fy) and the average background fluorescence measured from cycles 1-10, t = 0-190 s (Fp), data is expressed in bottom
panels as bar graphs where AF = Fy — Fy. (A) Prior to Fluo4 dye loading neurons were treated for 1 h with PBT2 (red) or a non-competitive NMDA antagonist, MK-801 (dark gray).
(B) Neurons were also pre-treated with PBT2 for 6 h, the time required for PBT2 to protect against glutamate induced excitotoxicity, and MK-801 for 1 h. Data represent mean -+ SE;
n = 4; **p < 0.001; ns, not significant compared to MK-801 treated values by one-way ANOVA using Dunnett's post hoc test.
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Fig. 3. Zinc is required for the inhibition of Ca®* flux by PBT2. Intracellular Ca®* levels in cortical neurons preloaded with the Ca®* indicator Fluo4, were measured upon stimulation by
glutamate (100 pM/10 pM) (black) and reading fluorescence at 450 nm excitation and 520 nm emission. Measurements were taken at cycle number 11, t = 209 s (F;) and background
fluorescence averaged from cycles 1-10, t = 0-190s, (Fy), datais expressed as bar graphs where AF = F; — Fy, (A) Prior to Fluo4 loading neurons were treated with PBT2 (3 uM) (red) or
the non-competitive NMDA antagonist, MK-801 (10 uM) (dark gray) for 6 h in media depleted of metals by Diamsar (10 uM). (B) To demonstrate NMDA-specificity neurons were co-treated
with the competitive AMPA/Kainate antagonist, CNQX (10 uM). (C) Neurons were treated with CNQX (10 M) and PBT2 (3 pM) or MK-801 (10 M) for 6 h in media depleted of metals by
Diamsar (10 jM) then exogenous Zn>*+ (7 uM) was added. Data represent mean =+ SE; n = 4-6; **p < 0.001; ns, not significant compared to MK-801 treated values by one-way ANOVA

using Dunnett's post hoc test.

exdtotoxicity underlies neuronal death. Additionally, sublethal levels of
intracellular zinc have been shown to be neuroprotective in rats (Lee
et al., 2008) and cause an increase in [Ca?*]; by release from the endo-
plasmic reticulum (ER) (Qinetal,, 2011). Given that moderate increases
in [Ca®*]; can precondition neurons (Bickler and Fahlman, 2004; Bliss
and Collingridge, 1993} and the strong chaperone action of PBT2 on
Zn?* we sought to determine whether PBT2 treatment would have a
metal-dependent effect on [Ca®*]; levels in our neuronal model. These
data were obtained from observing the [Ca® " ; levels in the Ca* flux
experiments (Figs. 2 and 3} prior to treatment with glutamate/glycine.
A significant increase (113.0 + 3.9%,n = 5, p < 0.001) in [Ca®*]; was
observed in neurons pretreated with PBT2 for 6 h but not in vehicle-
treated (99.05 4+ 1.5%, n = 5) or neurons treated with the NMDAR
antagonists; MK-801 for 1 h (97.8 + 2.2%, n = 5) and Memantine for
6 h(97.7 & 3.2% n = 5} (Fig. 4A). The metal-dependent effect of PBT2
was again demonstrated by the depletion of metals by supplementing
media with Diamsar at an excess concentration of 10 uM. Levels of
7n>™ in neurobasal media have been determined to be between 3 and
5 uM by ICP-MS (data not shown) and therefore chelated by treatment
with 10 pM Diamsar prior to and during drug treatment. The metal
chelation ablated the increase in [Ca®*]; levels due to PBT2 (Fig. 4B).
When Zn?* was supplemented back into metal-depleted media treated
with PBT2 it was necessary to use 7 UM to overcome chelation by 10 uM
Diamsar. This resulted in an approximate concentration of Zn>* up to
2 uM, despite these levels being lower than in Neurobasal media not
treated with the chelator, it was still sufficient to significantly increase

[Ca®]; levels (120.6 & 4.6%, n = 4, p < 0.001) compared with neurons
treated with vehicle (99.13 & 1.4%, n = 4), MK-801 (9942 + 1.8%,n=
4} and Memantine (100.4 £ 3.7%, n = 5} (Fig. 4C). In experiments that
tested the effect of treatment time, neurons treated with PBT2 for 1 h did
show a small but significant increase in [Ca®*]; levels (103.9 + 3.4%,
n = 6, p < 0.05). This significant difference was ablated by prior metal
depletion of the media as was observed in the longer 6 h treatment
with PBT2.

The effect of PBT2-induced preconditioning on network activity

To further investigate PBT2 treatment we employed 60-channel
MEAs to observe network-wide extracellular activity. Results were ob-
tained by measuring the spike activity of three separate cortical neuron
preparations cultured on MEAs. The results showed a significant de-
crease in excitotoxic network activity induced by glutamate/glycine fol-
lowing pretreatment with PBT2 for 6 h (Figs. 5A and B). In further
support of PBT2 preconditioning neurons, a small but significant in-
crease in network activity was observed in neurons treated with PBT2
alone compared with vehicle, as measured by the number of spikes
(Fig. 5B). This increase in activity corroborates the increases in [Ca®*];
levels that were observed previously (Figs. 4A and C} and also past find-
ings demonstrating the requirement of prolonged and marked elevation
of electrical activity for preconditioning (Olney, 1969; Tauskela et al.,
2008).
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Fig. 4. PBT2 preconditioning protects against excitotoxicity by increasing intracellular Ca?* levels. (A) Following pre-treatment with PBT2 (3 uM) (red), the non-competitive NMDA
antagonists; MK-801 (10 uM) (dark gray) or Memantine (10 uM for 6 h) (light gray) cortical neurons were loaded with the Ca?* indicator Fluo4 for 1 h and fluorescence was measured
ar490 nm excitation and 520 nm emission. Mean fluorescence was expressed as a bar graph with values normalized to untreated vehicle. (B) Metals were depleted from neuronal media
by pre- and co-treatment with Diamsar (106 uM). (C) Exogenous Zn®* (7 uM) was supplemented into Diamsar-treated neurons during treatment. Data represent mean =+ SE; n = 4-6;
***p < 0.001; ns, not significant compared to MK-801 treated values by one-way ANOVA using Dunnett's post hoc test.

PBT2 restores normal levels of protein expression and phosphorylation un-
der excitotoxic conditions

Calcineurin, a Ca®*-dependent protein phosphatase, and glyco-
gen synthase kinase 3 (GSK3) both mediate survival in primary
neurons from rodents (Dugan and Choi, 1999; Endo et al., 2006;
Pohl et al., 1999; Wu et al., 2007 ). Phosphorylation of GSK3 at its
N-terminus (Ser-21 for GSK3a and Ser-9 for GSK3p) prevents phos-
phorylation of downstream microtubule-associated proteins, name-
ly Tau and subsequent apoptosis (Ferrante et al., 1993; Li et al., 2000;
Zhang et al., 2008). The calcineurin-mediated signaling pathway is
regulated by calpain, a Ca®*-dependent cysteine protease, and this
protease is up-regulated during glutamate-induced excitotoxicity
in which it irreversibly activates calcineurin by cleavage (Ittner et al,,
2010; Um et al,, 2012; Wu et al., 2007; You et al.,, 2012). Previous
work in cultured SH-SY5Y human neuroblastoma cells has demonstrat-
ed that an increase of GSK3 phosphorylation by PBT2 is a result of inhi-
bition of calcineurin (Crouch et al., 2011; Pivovarova and Andrews,
2010). To determine whether PBT2 activates cell survival pathways by
preventing the cleavage of calcineurin and inhibiting GSK3a and
GSK3p activity by phosphorylation, we analyzed their respective pro-
tein expression following pre-treatment with drugs and exposure to
excitotoxic glutamate in mouse cortical neurons. PBT2 pre-treatment
inhibited activation/cleavage of calcineurin significantly increasing pro-
tein levels in glutamate treated neurons when normalized to vehicle
(from 21 4+ 7% to 81 4+ 9% n = 3, p < 0.05, p < 0.01 for PBT2)
(Fig. 6A). Further evidence of neuroprotection by PBT2 mediated by
GSK3 was seen by its ability to increase phosphorylation of both
GSK3a (from 8 £ 4% to 85 &+ 19%, n = 3, p < 0.01 for PBT2) and
GSK3 (from 55 + 9% to 92 + 8%, n = 3, p < 0.001 for PBT2, respective-
ly) (Figs. 6B and C).

Discussion

A role for PBT2’s action in glutamatergic signaling has previously
been indicated by its ability to inhibit the AR-induced inhibition of LTP
in rodents (Adlard et al., 2008; Bottomley et al., 1994). PBT2 was origi-
nally identified by compound screens for its ability to inhibit toxic extra-
cellular Ap-metal interactions, a mechanism thought to involve the
sequestration of Zn from the extracellular AP aggregates and drug-
mediated intracellular metal delivery (Adlard et al., 2008; Barnham
et al,, 2003 ). However in the work presented here we provide evidence
of an alternative mechanism of action of the drug, one that supports the
findings in which PBT2 has shown efficacy in animal models of AD and
clinical trials of HD.

The data we present here demonstrate a novel mechanism of action
of PBT2; namely the ability to protect against glutamate-induced
excitotoxicity in a metal-dependent manner. As evidence of this, the
protective effect of PBT2 was ablated when the metal chelator, Diamsar,
removed metals in the cell culture media. The removal of metals had no
effect on the actions of NMDA-specific antagonists, MK-801 and
Memantine (Fig. 1). NMDA receptors play a vital role in the normal
function of the nervous system including their role in cognition, learn-
ing and memory through LTP. Clinical trials of NMDA antagonists such
as MK-801 in stroke, Huntington’s disease and traumatic brain injury
failed to show safety resulting in psychotomimetic effects incdluding hal-
lucinations, agitation, sensory disturbance and catatonia (Lees et al.,
2000; Muir, 2006; Rasband, 1997). These severe side effects have been
attributed to the slow “off-rates” of the drugs leading to prolonged
blockage of the normal signaling by NMDA receptors. Memantine is an
NMDA antagonist that has EU and FDA approval for moderate to severe
AD. The drug is clinically tolerated reportedly due to a faster “off-rate”
(Adlard et al., 2008; Lipton, 2006) Unlike MK-801, Memantine has
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Fig. 5. PBT2 induces moderate synaptic activity and reduces excitotoxic network excitation following glutamate exposure. (A) Example of Raster plots of a single MEA experiment with
cortical neurons treated with vehicle, glutamate/glycine {100 pM/10 pM) (glut) or pre-treated for 6 h with PBT2 (3 M) prior to treatment with glutamate/glycine {glut 4+ PBT2). The raster
plots show neural activity by recording spikes at each of the 60 electrodes (blue dots) as a function of time with each dot representing a single action potential. (B) Graphical representation
of data obtained from the above MEA experiments. The number of spikes was recorded over the period of 5 min pre- and post-application of glutamate/glycine for each treatment. Data
represent mean + SE; n = 3; ***p < 0.001 compared to vehicle and glutamate treated values, respectively, by one-way ANOVA using Dunnett's post hoc test.

been shown to act selectively through extrasynaptic NMDARs (Stout
et al., 1998; Talantova et al., 2013). This mechanism is supported by
our findings in which glutamate-induced Ca?* flux, mediated through
NMDARs at the post-synapse, is not altered in neurons pretreated
with Memantine (Figs. 2 and 3).

In the subsequent calcium flux assays we demonstrated a significant
metal-dependent reduction in calcium flux by PBT2 to levels seen in
neurons treated with NMDAR antagonist, MK-801 (Fig. 3A). In these
experiments metals were chelated using Diamsar, which has a high af-
finity for Zn but could potentially bind Ca?* albeit with much lower af-
finity. To control for this, analysis of fluorescence data established that
co-treatment with Diamsar had no effect on [Ca?*]; levels and subse-
quently no effect on the observed changes in Ca>* flux between sam-
ples (Figs. 2B and 3A). Non-specific effects of PBT2 on Ca®* in this
experiment were also negated by the observation that when metals
were removed Ca?" flux was not significantly different to vehicle
(Figs. 3A and B). It was also important to determine whether the intra-
cellular flux of calcium was mediated solely by NMDARs or also by the
two remaining classes of glutamatergic receptors; AMPA and Kainate
receptors. Co-administration with the competitive AMPA/Kainate
receptor antagonist, CNQX, demonstrated no effect on calcium flux in
untreated and treated neurons indicating the Ca®* flux to be NMDAR-
mediated (Figs. 3A and B).

Preconditioning by pre-exposure to subtoxic levels of glutamate and
NMDA (Chuang et al., 1992; Lee et al., 2008; Rocha et al., 1999) or brief
ischemic insults (Kirino et al., 1991; Murry et al,, 1986; Qin et al., 2011) is
neuroprotective against excitotoxic trauma and has been well document-
ed in the literature. Further work describing this phenomenon has dem-
onstrated the involvement of cellular pathways mediated by NMDARs.
Preconditioning with low doses of NMDA induces key proteins in

neuroprotective pathways including the phosphatidylinositol 3 kinase-
protein kinase B (Akt) signaling to GSK3p inhibition (Soriano et al.,
2006). These survival signals can also be activated by using Ca?* iono-
phores to moderately increase [Ca®*]; conferring long-term tolerance of
ischemia or other stresses and this occurs independently of NMDAR-
mediated Ca®™* flux (Bickler and Fahlman, 2004). A central finding of
this work is that PBT2 causes a moderate but significant increase in
[Ca? | levels following treatment (Fig. 4). In this data PBT2 treatment
did not protect against excitotoxicity by attenuating total [Ca® " |; mediat-
ed by NMDARs as with MK-801 (Figs. 2 and 3), rather it reduced flux by
increasing initial levels of [Ca?*]; and in turn preconditioned neurons
against excitotoxic exposure to glutamate (discussed below). This is
because it is the total net flux of Ca** into the cell rather than total
levels of intracellular Ca?* ([Ca®*];) that correlates with the extent of
excitotoxic cell death {Abdel-Hamid and Baimbridge, 1997; Dugan and
Choi, 1999; Soriano et al., 2006).

There are several potential mechanisms by which PBT2 could result
in the zinc-dependent increase in [Ca®*];. It can rise by crossing the cell
membrane through NMDARs, AMPAR, store-operated Ca>* channels
(SOCCs), voltage-gated Ca®* channels (VGCCs), and ionotropic gluta-
mate receptors {N-methyl-p-aspartate receptors, NMDARs; a-amino-
3-hydroxyl-5-methyl-4-isoxazole-propionate, AMPARS) or it can be re-
leased from intracellular stores in the endoplasmic reticulum {Corona
et al., 2011). Another obvious candidate recently described involves
the post-synaptic Zn?*-sensing receptor (ZnR)/G-protein coupled re-
ceptor (GPR39) and as with many metabotropic receptors the resulting
increase [Ca?*|; is mediated through phospholipase C and subsequent
generation of inositol 1,4,5 triphosphate (IP3) (Chorin et al., 2011;
Hershfinkel et al., 2001). In our work we did not see an increase in
[Ca?*); in neurons other than those treated with PBT2 in normal,
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Fig. 6. PBT2 inhibits calcineurin and GSK3 activation. A. Western blot analysis of calcineurin, p-GSK3a/B, total GSK3ay/f> and the control protein B-actin in cortical mouse neurons (D.LV.9).
Neurons were pre-treated with PBT2 (3 pM) (red ) and with the NMDA-specific antagonists; Memantine (10 uM) for 6 h or MK-801 (3 uM) for 1h prior to treatment with glutamate (glut)
(black) for 1 h. Protein was harvested after an 18 h incubation in fresh media. (B-D) Densitometry analysis of western blot data is shown in panel (A), and PBT2 treatment inhibited cal-
cineurin activity by preventing its calpain-mediated cleavage demonstrated by restored protein levels (B). PBT2-treated neurons (red) showed significantly increased levels of inactive
phosphorylated GSK-3at (C), to a lesser extent GSK-3p (D) compared with glutamate-treated samples (black). All samples were normalized to the 3-actin to control for loading. Western
blots are representative of 3 or more separate experiments. Data represent mean + SE; **p < 0.01, ***p < 0.001 compared to glutamate treated values.

metal-depleted and metal-depleted/Zn** conditions (Fig. 4). This ob-
servation in conjunction with the metal-dependent nature of the drug's
action makes it is less likely that PBT2 acts directly on an extracellular
receptor to increase [Ca®*); instead acting through its ionophoric ability
to increase intracellular zinc triggering the release of Ca* from the ER
via the inositol 1,4,5-trisphosphate (IP3R) and ryanodine (RyR) recep-
tors. In support of this mechanism cytosolic levels of Zn>* have been
shown to modulate ER Ca®™ stores (Qin et al., 2011).

In work delineating the effects mediated through synaptic and
extrasynaptic NMDARs by Hardingham and colleagues, elevated levels
of electrical activity were shown to precondition neurons against
apoptosis from serum deprivation, excitotoxicity or oxidative stress
(Hardingham et al., 2002; Papadia et al., 2008; Tauskela et al., 2008).
Our results demonstrating an increase in [Ca?*]; indicate that PBT2 is
effecting synaptic activity to a moderate extent (Fig. 4). In our subse-
quent experiments studying the effect of PBT2 on network activity
with MEAs we confirmed that PBT2 indeed can reduce excitotoxic elec-
trical signaling due to glutamate/glycine as was originally hypothesized.
An important finding that provided further evidence of preconditioning

as a mechanism of action of PBT2 was a moderate but significant
increase in electrical activity across the MEAs due to PBT2 treatment.
As discussed prior, moderate increases in [Ca®*]; (Bickler and
Fahlman, 2004) result in preconditioning of neurons by activation of
the neuroprotective pathways involving Akt, CMK, & GSK3. Previous re-
search has demonstrated the capability of structurally diverse metal
chaperone compounds to activate neuroprotective signaling pathways
(Adlard et al., 2008; Crouch et al., 2009, 2011; Donnelly et al., 2008;
White et al., 2006). The restoration of normal calcineurin levels indi-
cates that PBT2 acts on a key pathway associated with neurodegenera-
tion involving the calcium-activated cysteine protease, calpain (Bradley
et al., 2012). The cleavage and subsequent constitutive unregulated
activation of one of calpain’s downstream targets, calcineurin, has been
shown to induce dephosphorylation and activation of GSK3 o and p.
GSK3 dysregulation has been implicated in AD (Avila et al., 2004) and
other relevant neurodegenerative diseases including HD (Carmichael
et al,, 2002) and frontotemporal dementia with parkinsonism (Engel
et al,, 2006). In this study we have shown that PBT2 protects against
glutamate-induced excitotoxicity by increasing [Ca®*];, inhibiting
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cleavage and therefore activating calcineurin and restored its normal pro-
tein levels (Fig. 6B). Further evidence of the drug acting to inhibit neuro-
toxic signaling was observed by the increase of phosphorylation of both
GSK3 isomers (Figs. 6C and D).

Conclusions

In this work we report a new mode of action for the metal chaper-
one, PBT2. Our data shows that PBT2 is able to protect against
excitotoxic insults through a zinc-dependent increase in intracellular
Ca®™. This inhibition of excitotoxicity may explain the drug’s ability to
improve cognition in early clinical trials of AD (Lannfelt et al., 2008}
and HD.

Abbreviations
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MK-801 Dizocilpine

Akt protein kinase B

GSK3 glycogen synthase kinase 3
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