The ecological impact of oceanic island colonization – a palaeoecological perspective from the Azores

3

4 Connor, S.E., van Leeuwen, J.F.N., Rittenour, T.M., van der Knaap, W.O.,

5 Ammann, B. and Björck, S.

6 7

8 This is a draft version of a manuscript published in *Journal of Biogeography* 39:

9 1007-1023 (2012). Please note that there may be differences between this

version and the final published version. The authors will be happy to provide

11 copies on request.

- 12 Strapline: Original Article
- 13 Running header: Palaeoecology of human colonization of the Azores
- 14

15 The ecological impact of oceanic island colonization – a palaeoecological

16 perspective from the Azores

- 17 Simon E. Connor^{1*}, Jacqueline F.N. van Leeuwen², Tammy M. Rittenour³, Willem O.
- 18 van der Knaap², Brigitta Ammann² and Svante Björck⁴
- 19 ¹Centre for Marine and Environmental Research, University of the Algarve, 8005-139 Faro, Portugal,
- 20 ²Institute for Plant Sciences and Oeschger Centre for Climate Change Research, University of Bern,
- 21 Altenbergrain 21, 3013 Bern, Switzerland, ³Department of Geology, Utah State University, 4505 Old
- 22 Main Hill, Logan, UT 84322, USA, ⁴Department of Earth and Ecosystem Sciences, Division of Geology –
- 23 Quaternary Sciences, Lund University, Sölvegatan 12, 223-62 Lund, Sweden
- 24
- 25 *Correspondence: Simon Connor, CIMA-FCT, Campus de Gambelas, University of the
- 26 Algarve, Faro 8005-139, Portugal. E-mail: sconnor@ualg.pt
- 27

28 ABSTRACT

- 29 **Aim**
- 30 In many cases, human colonization drastically modified the ecosystems of remote
- 31 oceanic islands before scientists arrived to document the changes. Palaeoecological
- 32 records before and after human colonization provide insights into the original
- 33 ecosystems and an assessment of subsequent human impact. We used pollen analysis to
- compare the impact of 15th century colonization of the Azores to that of natural
- 35 disturbances such as volcanic eruptions and climate changes.
- 36 Location
- 37 Azores archipelago, Atlantic Ocean.

38 Methods

Sediment records from three highland sites in the Azores (on the islands of Pico and
Flores) were dated radiometrically and analysed palynologically. Pollen taxa were
classified as native, endemic or introduced based on comparison with flora lists. Data
were statistically zoned and temporal trends identified using detrended correspondence
analysis.

44 Results

45 Human colonization of the Azores resulted in rapid, widespread, persistent vegetation changes on a scale unprecedented in the last 2700 years, detectable through the decline 46 47 of dominant trees, spread of grasses and fire-tolerant species, introduction of exotic plants, evidence for grazing and fire, and changes to soils and moisture availability. 48 49 During the same period, volcanic eruptions appear to have had more localized impacts on the vegetation, lasting 500-1000 years and favouring endemic taxa. The effect of 50 51 late Holocene climatic changes on the highland vegetation of the Azores seems to have 52 been minor. Palaeoecological data indicate that at least two plant species went extinct 53 on Pico after human colonization and that some plants regarded as introduced were almost certainly part of the original flora of the islands. Despite a consistent signal of 54 55 human impact, compositional differences between Juniperus brevifolia communities on Pico and Flores remained after colonization. 56

57 Main conclusions

Human colonization had a greater impact on the pristine vegetation of Pico and Flores
than climatic changes and volcanic activity during recent millennia. The similarity
between post-colonization changes on the Azores and other oceanic islands suggests a
consistent pattern and scale to historical-era human impact on otherwise pristine
ecosystems. These characteristics could be used to further elaborate biogeographical

theory and direct conservation efforts towards species that appear most susceptible tohuman activity.

65

66 Keywords

Atlantic Ocean, conservation, Flores Island, human impact, island biogeography,palaeoecology, palynology, Pico Island, Portugal.

69

70 INTRODUCTION

71 Oceanic islands have provided the basis for much of our theoretical understanding of 72 ecological processes (Whittaker et al., 2008). One of the first to recognize the significance of island biotas was Joseph Hooker (1867), who presented concepts of 73 74 endemism, impoverishment and dispersal, which remain major themes for biogeographical research (Williamson, 1984; Berry, 1992). The relevance of Hooker's 75 76 ideas today is attested by the recent formal incorporation of island age into the theory of 77 island biogeography (Whittaker et al., 2008), the use of Quaternary climatic changes to 78 explain patterns of diversity and endemism (Carine & Schaefer, 2010), and the confirmation that some island plants went extinct through the "catastrophes" of human 79 80 impact even before botanists arrived to document them (Hooker, 1867, p. 7; de Nascimento et al., 2009). Here we address the issue of historical human impact on 81 82 oceanic island ecosystems, a theme of special importance in developing ecological theory (Whittaker et al., 2008) and sound conservation strategies (Fernández-Palacios et 83 al., 2011). 84

Palaeoecological evidence has been used to recognize the first signs of human colonization and to evaluate human impact on islands from many corners of the globe (e.g. Flenley *et al.*, 1991; Lawson *et al.*, 2007, 2008; Prebble & Wilmshurst, 2009;

88	Ljung & Björck, 2011). Just as the peculiar biotas of oceanic islands have led to a
89	greater understanding of dispersal, invasion, endemism, extinction and evolution (to
90	name a few), the effect of human colonization on previously pristine ecosystems may
91	help us better differentiate human impacts from other kinds of disturbance (Prebble &
92	Wilmshurst, 2009). On the continents, such a differentiation is crucial for interpreting
93	past ecological changes, as human impact remains a vague concept incorporating many
94	scales, rates, processes, interactions and outcomes (Head, 2008; Connor, 2009).
95	Oceanic islands, because of their isolation, limited area and often recent colonization,
96	provide distinctive opportunities to examine the ecological changes that accompanied
97	human arrival, and in so doing shed light on human impacts in general.
98	Here we present new palaeoecological data from two islands in the Azores
99	archipelago to address the following questions.
100	1. Has human impact homogenized Azorean vegetation across different islands?
101	2. Were endemic plant species more susceptible to human impact than other native
102	species?
103	3. How did human colonization affect the biodiversity of the islands?
104	4. What was the scale of human impact in comparison to volcanic eruptions and
105	climate changes?
106	
107	MATERIALS AND METHODS
108	Geographical setting
109	The Azores are a group of oceanic islands that straddle the Mid-Atlantic Ridge, roughly
110	1600 km from Portugal and 1900 km from Newfoundland (Fig. 1). The nine islands are

- 111 of volcanic origin, having arisen along sea-floor fracture zones as the Eurasian, African
- and North American tectonic plates rifted apart (Ferreira, 2005; Azevedo & Ferreira,

2006). The oldest rocks in the archipelago are found on the easternmost island, Santa 113 114 Maria, and date to 8.12 million years ago (Azevedo & Ferreira, 2006). The Azores are thus the youngest archipelago in the Macaronesian region, to which the archipelagos of 115 116 Madeira, Canary Islands and Cabo Verde also belong (Fernández-Palacios et al., 2011). 117 Owing to their volcanic origin, the islands of the Azores are pock-marked with craters and calderas. Soils are generally young andisols, formed under the humid 118 119 climate on relatively recent lava flows and pyroclastic deposits (Dias, 1996). Peat 120 deposits occur in depressions, around crater lakes and in vegetation communities where Sphagnum mosses play a prominent role (Dias, 1996). 121 The Azores experience an oceanic climate, with high humidity and cloud cover 122 throughout the year, and an average temperature of 17.5 °C at sea level. The main 123

124 climatic controls over the Azores are the strength and position of the Azores Current, a

branch of the Gulf Stream, and the Azores Anticyclone, a high-pressure cell that moves

islands in summer (Schaefer, 2003). The western islands receive the highest average

seasonally, bringing relatively dry and sunny conditions when it is positioned over the

128 annual rainfall (e.g. Flores: 1716 mm at sea level), whilst the eastern islands have lower

129 precipitation (e.g. Santa Maria: 775 mm) and a more pronounced dry season

130 (CLIMAAT Project, 2007). Rainfall increases dramatically with elevation, such that

the highest parts of Flores and Pico may receive up to 5000 mm annually.

132

126

133 Flora and vegetation

Perhaps because of their isolation, modest age and oceanic climate, the Azores have a relatively small number of native plant species (197), of which about a third (70) are regarded as endemics (Schaefer, 2003). The majority of Azorean plants classified as endemic occur on all the islands, whereas the other archipelagos of Macaronesia are

138	characterized by a large number of single-island endemics (Carine & Schaefer, 2010).
139	Recent genetic studies suggest that the Azores may harbour a considerable number of
140	cryptic endemics, and therefore have rates of endemism similar to those of other
141	Atlantic archipelagos (Schaefer et al., 2011). The Azorean flora comprises species from
142	three main biogeographical lineages (Dias, 1996): a Tertiary Mediterranean element, a
143	Plio-Pleistocene African element, and a Quaternary Euro-Siberian or Atlantic element.
144	Despite the possibility of seed dispersal from the Americas, the Azores flora seems to
145	have arrived primarily from the European and African continents via wind (potentially
146	40% of species) or migrating birds (58%) (Schaefer, 2003).
147	When Portuguese mariners first encountered the Azores, they observed islands
148	covered in impenetrable forests of Laurus azorica, Juniperus brevifolia, Prunus azorica
149	and Morella faya (Costa, 1950), species which also feature prominently as
150	macrobotanical fossils from the archipelago (Fries, 1968; Forjaz et al., 1970).
151	Historical descriptions indicate that each of these species, as well as Frangula azorica,
152	Taxus baccata and Picconia azorica, dominated in different forests across the
153	archipelago and suggest that there was no distinct zonation in relation to elevation
154	(Dias, 1996; Schirone et al., 2010). Only the chronicles of Gaspar Frutuoso, published
155	in 1589, bear witness to herbaceous vegetation on the high plains of Flores (Dias, 1996).
156	By the 16th century, however, these herbaceous communities could have been affected
157	by introduced grazing animals (the Azores have no native land mammals apart from
158	bats).
159	
160	Human colonization

161 It is likely that the Azores were already known to mariners at least 100 years before162 their official discovery by the Portuguese in the 15th century (Johnson, 1994), but there

is no evidence for earlier colonization. The first Portuguese colony appeared on Santa 163 164 Maria in 1439 and was followed by Flemish colonies on Faial in 1466 and Flores in 1472. Portugal later assumed control of the entire archipelago. According to Dias 165 166 (1996), human impact on the vegetation occurred in three phases: (1) a pre-colonization phase in which a wide variety of domestic animals was released on the islands to sustain 167 the anticipated human population; (2) an early, extractive phase in which forests were 168 169 felled for construction, ship-building and charcoal production; and (3) a later, 170 transformative phase in which the Azorean landscape was deforested and turned over to the production of exotic monocultures. As a consequence of these drastic human 171 172 interventions, little native vegetation survives on the islands today and introduced plant species outnumber native species by a factor of three to one (Schaefer, 2003, 2005). 173 174 175 Study sites

176 Three sites were sampled after extensive reconnaissance on all the islands of the 177 archipelago – Lagoa Rasa on the island of Flores, and Lagoa do Caveiro and 'Pico Bog' 178 (field appellation for a mire north-east of Lagoa do Peixinho) on the island of Pico (Table 1; see also Fries, 1968; Azevedo & Ferreira, 1998; Pugin & Girardclos, 1998; 179 180 Björck et al., 2006). The lakes of Rasa and Caveiro were selected to represent past vegetation changes on a relatively large scale, whilst Pico Bog was chosen to reflect 181 182 changes on a more local scale (larger basins receive a greater component of regional pollen relative to smaller sites: see Moore et al., 1991). All three sites are craters 183 184 situated in the highland vegetation zone in which Juniperus brevifolia and Erica azorica are the most important trees (Tutin, 1953). 185 186 Although all the Azores islands share many geographical features, the islands of

187 Flores and Pico differ in key aspects: Flores reaches a maximum elevation of 915 m,

while Pico is the highest mountain on Portuguese territory (2351 m); Flores receives 188 more precipitation than Pico, hence most of Flores' streams are perennial, while Pico's 189 streams tend to be intermittent; Flores' last volcanic eruption occurred some 3000 years 190 191 ago, while the last on Pico was in AD 1718–1720; and, in geological terms, Flores is 192 around 2.15 million years old and situated entirely on the North American Plate, while 193 Pico is the youngest member of the archipelago (0.27 million years) and rises from the 194 Azorean microplate between the African and Eurasian Plates (Zbyszewski et al., 1963, 195 1968; Morrisseau & Traineau, 1985; Dias, 1996; Azevedo & Ferreira, 2006).

196

197 Sampling and analysis

Sediment cores were obtained from the centre of Lagoa Rasa in 1998 using a square-rod 198 piston corer (Wright, 1967) and from the centre of Lagoa do Caveiro and Pico Bog in 199 200 2001 using a Russian corer (Björck et al., 2006). Coring continued until an 201 impenetrable layer (presumably bedrock or thick tephra) was reached; each core 202 therefore represents the sediment accumulated since a major eruption. Pre-eruption sediments were also cored from the margin of Lagoa do Caveiro. Samples of 1 cm³ 203 204 were extracted from the cores and pretreated according to standard palynological 205 methods, including the addition of Lycopodium spore tablets to determine pollen 206 concentrations (Moore et al., 1991). Pollen was identified at 400× magnification with reference to Reille (1992, 1995 & 1998) and reference material held at the Portuguese 207 208 Institute of Archaeology (IPA). Percentage pollen diagrams were created from a sum of 209 all terrestrial pollen taxa, including identifiable fern spores. Monolete fern spores (i.e. Polypodiales spores lacking the perine required for precise identification), Cyperaceae 210 211 and aquatic taxa are excluded from the pollen sum, as are fungal spores indicative of

grazing (van Geel & Aptroot, 2006). Data were plotted using Tilia programmes(Grimm, 2004).

To determine whether human colonization caused the vegetation of the two 214 215 islands to become more similar, we analysed percentage pollen data using detrended correspondence analysis (DCA) in the program PC-ORD 4.25 (McCune & Mefford, 216 217 1999). Because DCA axes can be interpreted in terms of species turnover (Gauch, 218 1982), the analysis forms a basis for assessing ecological responses to both human 219 impact and other 'natural' disturbances, such as volcanic eruptions indicated by tephra 220 layers or climate changes recorded in other proxies (Björck et al., 2006). To assess the effect of human impact on endemics in relation to other species, 221 we classified the identified pollen taxa into 'endemics', 'native' and 'introduced' taxa 222 223 (Table 2) with reference to their pollen morphology and the flora checklist of Silva et al. 224 (2010 – plant taxonomy in this paper follows this checklist). Prior to analysis, taxa 225 listed as 'introduced' occurring frequently prior to colonization were added to the 226 'native' category where their pollen representation suggested it was valid to do so (van 227 Leeuwen et al., 2005). Any taxa that represented plant species that fell into more than 228 one category were removed from the analysis, along with long-distance transported 229 pollen produced by wind-pollinating species widespread on neighbouring continents. We then calculated two pollen sums based on the remaining taxa, one including the 230 231 dominant taxon, Juniperus brevifolia, and one without. We adopted the existing age-depth model for the Lagoa do Caveiro record 232 233 (Björck et al., 2006) and formulated age-depth models (Fig. 2) for the other sites based on the accelerator mass spectrometry (AMS) radiocarbon dates listed in Table 3 and 234

- calibrated using CALIB 6.0.2 (Stuiver & Reimer, 1993) and CALIBOMB (Reimer &
- 236 Reimer, not dated). Pre-impact and post-impact phases were identified independently

through pollen zonation (binary splitting by information content), with statistical
significance of the zones assessed using the 'broken stick' model (Bennett, 2008). We
then calculated pollen accumulation rates for pre-impact and post-impact assemblages
in order to determine pollen diversity using the method described by van der Knaap
(2009). For comparison, percentage-based diversity estimates were produced in
PSIMPOLL 4.26 (Bennett, 2008).

243

244 RESULTS AND INTERPRETATION

245 According to the multiproxy study of Lagoa do Caveiro (Björck et al., 2006), the central core (0-488 cm) covers approximately the last 4900 cal. yr BP (calendar years before AD 246 1950). The marginal core of pre-eruption sediments (to 614 cm) extends this record 247 back to approximately 6000 cal. yr BP (Björck et al., 2006). Both the Pico Bog (570 248 249 cm) and Lagoa Rasa (331 cm) records commence at approximately 2700 cal. yr BP (Fig. 250 2), corresponding to the most recent volcanic activity on Flores (Morriseau & Traineau, 251 1985) and the inferred timing of the Caveiro-1076 volcanic eruption on Pico Island 252 (Björck et al., 2006).

253 As our primary objective is to analyse the changes wrought by island 254 colonization, each of the pollen diagrams has been subdivided into two statistically 255 significant assemblage zones, termed 'pre-impact' and 'post-impact' phases (Figs 3–5). 256 Other statistically significant zone boundaries are indicated on the diagrams, although the reduction in variance associated with these additional zones is lower. The boundary 257 258 between pre-impact and post-impact phases, according to the age-depth models, falls at 259 approximately 490 cal. yr BP for Lagoa Rasa (188 cm), 410 cal. yr BP for Lagoa do 260 Caveiro (137.5 cm) and 385 cal. yr BP for Pico Bog (205 cm). These ages agree with the colonization history of the islands, given the uncertainties in age modelling and the 261

fact that zone boundaries record statistically significant changes rather than the firstsigns of change.

In interpreting pollen records, it is important to bear in mind a number of 264 265 inherent limitations. Pollen data are biased by production (different plant species 266 release different quantities of pollen), taphonomy (some pollen taxa preserve poorly in 267 sediments) and taxonomic resolution (pollen types usually represent several plant 268 species), amongst others (Moore et al., 1991). The pollen production of native angiosperms on oceanic islands may be quite low (Collins & Bush, 2011), perhaps due 269 270 to the prevalence of animal-mediated pollination. Some taxa may only be detected where source plants occur very close to the site of deposition, especially those with 271 specialized pollination mechanisms (e.g. Orchidaceae, Viola). In the case of the Azores, 272 pollen taphonomy is a special problem. Laurus azorica, formerly the dominant tree at 273 274 low to middle elevations, and *Hedychium gardnerianum*, a widespread invasive species, 275 produce pollen that preserve poorly in sediments and tend to disintegrate during 276 laboratory treatment (S. Connor, unpublished data). Laurus azorica pollen also lacks 277 the surface ornamentation characteristic of other Lauraceae pollen (see Reille, 1992, 278 1995 & 1998), complicating its identification in fossil sediments.

279 Problems of pollen-taxonomic resolution are limited on the Azores because of the relatively low number of plant species present on the islands. The likelihood of 280 pollen arriving from the continents is also low, although wind-dispersed pollen types 281 such as Alnus may travel long distances (Collins & Bush, 2011). The level of 282 283 taxonomic precision is indicated by the taxon names adopted in the text and figures. For example, Juniperus brevifolia represents only that plant species as it is the only 284 285 Azorean plant to produce Juniperus pollen, Rumex obtusifolius-type includes all species 286 that produce the same pollen type as R. obtusifolius (i.e. R. obtusifolius subsp.

obtusifolius and *R. crispus* on the Azores), and Asteraceae subfamily Asteroideae
represents Azorean species within that group except for those with morphologically
distinct pollen, such as *Bellis*-type (representing *Bellis azorica* on Pico and Flores) and

290 *Pericallis*-type (representing *Pericallis*, *Senecio* and *Solidago* species).

291

292 The pre-impact phase

293 The most obvious feature of pre-impact assemblages is the prevalence of pollen from the endemic Juniperus brevifolia at all sites (Figs 3-5). Juniper pollen is more abundant 294 295 in the Lagoa Rasa record than the Lagoa do Caveiro record, while Pico Bog records the lowest proportions. The Lagoa do Caveiro juniper curve stands out for its high degree 296 297 of variability. Episodic reductions in Juniperus brevifolia pollen are accompanied by 298 increases in certain herbaceous taxa (e.g. Angelica lignescens, Ranunculus cortusifolius-299 type, Asteraceae subfamily Cichorioideae, and monolete fern spores) and geochemical 300 indicators of lowered lake levels (Björck et al., 2006). We assume that these reductions 301 reflect changes in pollen source-area controlled by water level in this shallow basin, 302 rather than major vegetation changes. This interpretation is supported by the presence 303 of juniper stomata during these phases and the absence of variations of similar 304 magnitude in the Pico Bog record collected nearby.

Lagoa Rasa on Flores records a greater proportion of *Myrsine africana*, *Picconia azorica* and *Viburnum treleasei* in pre-impact assemblages compared to the two Pico records, which contain more *Hedera azorica*, *Ilex perado* ssp. *azorica*, *Morella faya*, Ericaceae and various herbaceous taxa. This may suggest that an open vegetation structure prevailed around the high-elevation sites on Pico, while Lagoa Rasa, situated at a lower elevation, was probably surrounded by denser *Juniperus brevifolia*dominated vegetation. The importance of *Euphorbia stygiana* in this vegetation zone (Tutin, 1953) is indicated by the frequent occurrence of *Euphorbia* pollen. Laurisilva
(*Laurus azorica*-dominated forest) may have also been present, but is not directly
recorded palynologically. Certain plant distribution patterns on the Azores today
apparently existed in the pre-impact phase, including the presence of *Arceuthobium azoricum* and *Daphne laureola* on Pico but not on Flores (see Silva *et al.*, 2010).

317 Each of the pollen records represents vegetation changes since a major eruption 318 or series of eruptions. This makes it possible to infer some characteristics of post-319 disturbance ecological succession in these presumed pristine ecosystems. On Flores, a 320 pioneer community with Juniperus brevifolia, Ericaceae, Poaceae, Asteraceae and Selaginella kraussiana appeared around Lagoa Rasa after the eruption; Culcita 321 macrocarpa and Myrsine africana gradually replaced some of these taxa over a period 322 of 500–1000 years. The indication of juniper as a pioneer agrees with vegetation 323 324 studies of recent lava flows on Terceira (Elias & Dias, 2004). On Pico, the earliest 325 pollen assemblages from Lagoa do Caveiro are dominated by herbs, especially Angelica 326 lignescens, Anagallis, Hypericum foliosum-type and various Asteraceae, with *Ilex* 327 perado ssp. azorica and Juniperus brevifolia peaking prior to a series of major eruptions 328 around 5150–5200 cal. yr BP (Björck et al., 2006). After this event, the record shows a 329 distinct peak in Ericaceae (Erica azorica), Hypericum and Poaceae, succeeded by assemblages like those recorded before the eruptions, and followed by Juniperus 330 brevifolia dominance. A very similar succession appears at the beginning of the Pico 331 Bog record (albeit with more Euphorbia and less Poaceae), indicating a consistent post-332 eruption shift from herb- and shrub-dominated communities to greater forest cover. All 333 three pollen records suggest that Myrsine africana and Culcita macrocarpa are late-334 335 successional species.

Similar vegetation successions might be expected following each of the 336 eruptions that deposited subsequent tephra layers in the sediments of Lagoa do Caveiro 337 and Pico Bog. However, a consistent relationship between these tephras and vegetation 338 339 change is hardly evident. Vegetation succession following major eruptions at the base of each core is clearly picked out by DCA axis 2 (Figs 6 & 7), but nothing similar is 340 observed following each of the tephra layers. Apart from a dilution effect on pollen 341 342 concentrations, the only observable impact of these tephras is a localized spike in 343 endemic taxa at Pico Bog (Fig. 6). There is no indication that the pyroclastic material ejected during these smaller eruptions was sufficient to reset the successional clock. 344

345

346 The post-impact phase

347 The next phase in the vegetation history of the Azores begins around 400 cal. yr BP. 348 Even by this time there were signs of early human interventions, probably as a 349 consequence of the deliberate introduction of exotic mammals. Grasses (Poaceae) and 350 bracken (*Pteridium aquilinum*) seem to have increased the earliest, followed by *Erica* 351 azorica, an endemic that appears to have benefited from the decline of Juniperus 352 brevifolia communities, and Morella faya, a native tree that probably replaced Laurus 353 azorica at lower elevations (Figs 3-5). Previously abundant herbs (represented by 354 Angelica lignescens, Asteraceae subfamily Cichorioideae, Euphorbia and Ranunculus 355 cortusifolius-type) diminished and a suite of introduced taxa appeared (e.g. Castanea sativa, Ligustrum, Vitis, Plantago lanceolata, P. major-type, Cerealia-type and Zea 356 357 mays; Hydrangea macrophylla and Cryptomeria japonica appeared later). As the replacement of native Azorean vegetation by agriculture and invasive introduced 358 359 species such as *Pittosporum undulatum* has been less at higher elevations compared to 360 the lowlands, the full extent of post-colonization plant invasion is probably not

represented in the pollen diagrams. Pastoralism on the islands is attested by the 361 appearance of spores produced by dung-inhabiting fungi (*Podospora* and *Sporormiella*) 362 and the historically documented conflagrations that were used to open these pastures are 363 364 recorded clearly in the charcoal record from Lagoa Rasa (Fig. 3). Fire does not seem to have been prevalent at any time around the high-elevation sites on Pico, perhaps 365 366 because of low plant biomass.

367

369

Has human impact homogenized the vegetation across different islands? 368

The transition from pristine to human-impacted ecosystems is most vividly expressed in Fig. 7. DCA axis 1 is interpreted as representing moisture availability: strong negative 370 correlates include Asteraceae, Apiaceae and Euphorbia; strong positive correlates are 371 372 moisture-loving taxa such as Trichomanes, Viburnum and Frangula. DCA axis 2 is 373 related to forest cover: strong negative correlates include forest taxa such as Juniperus, 374 *Picconia* and *Viburnum*, while positive correlates are light-demanding herb taxa, for 375 example Poaceae, Anagallis and Pteridium.

376 Pre-colonization variations probably relate to available soil moisture (axis 1), which is a limiting factor on the young, high porosity soils of volcanic islands (Mueller-377 378 Dombois, 1975). In the post-impact phase, however, the pattern is distinctly different, 379 indicating a trajectory towards lower forest cover (axis 2) and more available moisture (axis 1). A separate DCA of the pre-impact samples from all sites (not shown) proved 380 that the pattern expressed by the DCA axis 1 is robust (correlation between the two sets 381 of results is r = 0.99, P < 0.001). At least as far as these pollen data are concerned, the 382 hypothesis that human impact has homogenized the vegetation on Pico and Flores is not 383 384 supported. We hasten to add that this conclusion applies only to the highland vegetation of these islands and a very different result could be expected in the coastal lowlands oron the more densely populated parts of the archipelago.

One striking feature of the pollen diagrams is the post-impact explosion of 387 388 Sphagnum spores, which are scarcely recorded before human impact. Sjögren (1973) 389 remarked on how widespread burning and deforestation on the islands has led to the 390 rapid expansion of *Sphagnum* blanket peat, causing edaphic changes that effectively 391 prevent regeneration in remnant plant communities. Blanket mire formation can be initiated when burning forms a layer of fine hydrophobic particles on the soil surface, 392 reducing percolation, and/or when deforestation decreases the leaf-area index, reducing 393 evapotranspiration (Moore, 1975). The palaeoecological data provide support for 394 Sjögren's argument in the post-impact abundance of *Sphagnum* spores, higher charcoal 395 396 concentrations and the suggestion of higher available moisture and lower tree cover. 397 There is a possibility that the role of Sphagnum in Azorean plant communities has 398 increased markedly since human colonization or that human activities have somehow 399 promoted sporulation. Similar post-colonization Sphagnum expansions are also 400 recorded on other oceanic islands (e.g. Faroe and Galápagos) and may constitute a general trend initiated by hydrological changes, fire, deforestation, grazing and loss of 401 402 soil fertility (Lawson et al., 2007).

403

404 Are endemic species more susceptible to human impact?

In theory, human colonization could have a stronger impact on plants endemic to
oceanic islands, because in pristine ecosystems the plants have evolved or persisted in
the absence of novel or exotic disturbances. Hence the proportion of non-endemic
native species may increase relative to endemics in the post-colonization period.
Comparison of pollen from exclusively endemic and native taxa (Fig. 6) shows that

410 human impact caused a crash in the ratio of endemics to natives, consistent with this 411 hypothesis. However, our pollen data are clearly dominated by Juniperus brevifolia, 412 which is both an abundant pollen producer and one of the species worst affected by 413 colonization. If Juniperus is excluded from the calculations, a very different pattern is 414 observed – a slow and gradual decline in the representation of endemic taxa in the 415 pollen records, evident even before human contact. The pattern is less pronounced for 416 the Pico Bog record where responses to local eruptions are also evident, but the rate of 417 decline at all sites is quite similar (Fig. 6).

While human impact changed the relative proportions of taxa within the 418 419 endemics group, the relatively constant rate of decline and its representation at all three sites suggests that a long-term process is at work. Endemics may be better than other 420 421 species at colonizing bare rock in the aftermath of a major volcanic eruption. In other 422 words, "volcanism resulted in superior adaptation of many native species to extreme 423 edaphic conditions existing on volcanic rockland" (Mueller-Dombois, 1975, p. 364). 424 Thus endemics gain the upper hand on skeletal soils formed directly after a major 425 eruption, but subsequent ecological succession and soil formation lead to their gradual 426 replacement by other native species. The slow rate of change and high degree of recent 427 landscape modification on the Azores mean that it may be difficult to detect this process today. 428

429

430 How has biodiversity been affected by human impact?

One way of assessing changes in biodiversity from island colonization is through
estimates of palynological diversity. Such estimates are only indirectly related to
floristic diversity, being biased by pollen taxonomy, pollen representation and
vegetation structure (Odgaard, 1999). Percentage-based diversity estimates are strongly

influenced by evenness (Odgaard, 1999) and in our dataset 72% of the variance in such
estimates is explained by evenness (measured by the 'probability of interspecific
encounter'; see van der Knaap, 2009). We attempted to reduce bias in diversity
estimates by ensuring taxonomic consistency between the two analysts and adopting an
estimation method based on pollen accumulation rates (PAR) instead of percentages.

440 PAR-derived diversity estimates (Fig. 6) are not influenced by palynological 441 evenness, but are susceptible to the adopted age-depth models and variations in pollen 442 concentrations. For example, diversity peaks around 1700–1350 cal. yr BP at Lagoa do Caveiro are probably artefacts related to high sedimentation rates and sediment 443 reworking, which clearly occurred in the Caveiro record (Björck et al., 2006). Despite 444 this, the clear and recent increase in pollen diversity at the two lake sites is likely to 445 represent the introductions of exotic plants to the archipelago since colonization - the 446 'transformative phase' of Dias (1996). Diversity estimates for native taxa alone also 447 448 exhibit a small post-impact increase, which could be attributed to changes in vegetation 449 structure (deforestation), permitting more pollen from longer distances to enter the 450 lakes. Diversity around Pico Bog, which has a smaller pollen source-area, appears to have crashed since island colonization. 451

One conclusion that could be drawn from these estimates is that human impact on the Azores caused diversity to decline in local settings, while on the regional scale represented by the lake records, exotic introductions and deforestation increased the number of taxa detectable palynologically.

Plant extinctions are a feature common to many oceanic islands following
human colonization (Table 4). *Ophioglossum lusitanicum* spores appear in the Lagoa
do Caveiro and Pico Bog records, but this species is not to be found in the recent flora
of Pico (Silva *et al.*, 2010). *Ophioglossum azoricum* is likewise recorded in the Lagoa

do Caveiro sediments, but not in the flora. These ferns produce large, morphologically 460 461 distinct spores, so significant long-distance dispersal is unlikely and identification is assured. Unless these plants have been overlooked by botanists, it is probable that they 462 463 have become locally extinct on Pico at some time since human colonization. Another species that has become extinct from several Azorean islands is Taxus baccata 464 (Schirone et al., 2010). We were unable to find any Taxus pollen in the three pollen 465 466 records, so it is unlikely that T. baccata trees grew around these study sites during the 467 late Holocene.

An important consideration for the study of island biodiversity and conservation is the accurate determination of whether species are introduced or native (van Leeuwen *et al.*, 2008; Kueffer *et al.*, 2010). Fossil evidence is one of the main criteria for assigning native status (Webb, 1985). Palaeoecological evidence for *Selaginella kraussiana*, a plant previously listed as introduced, demonstrated the species to be native to Flores and Pico (van Leeuwen *et al.*, 2005). The plant is now considered native to all the Azorean islands (Schaefer, 2005; Silva *et al.*, 2010).

475 Using the same approach, we can add Illecebrum verticillatum and at least one Persicaria species to the taxa likely to be native to Flores and Pico. Just as some native 476 477 species went extinct from island floras before being recorded (Hooker, 1867; de Nascimento et al., 2009), other native species were incorrectly recorded as introduced, 478 479 perhaps because of their occurrence in disturbed areas or their introduced status on islands in other parts of the world (Schaefer, 2003; van Leeuwen et al., 2008). Three 480 other pollen taxa require further study. Rumex obtusifolius-type pollen in the pre-481 impact sediments from Pico probably indicates that R. azoricus has gone extinct from 482 that island, but could indicate that either *Rumex obtusifolius* or *R. crispus* is native. 483 Pericallis-type probably suggests that a species of Solidago is native, but could indicate 484

that *Pericallis malvifolia* went extinct on Flores. *Myriophyllum alterniflorum* pollen
could indicate that plant's extinction on Pico.

487

488 What was the scale of human impact?

Some idea of the scale of human impact, in ecological terms, can be gauged from the 489 490 ordination results (Fig. 7), as the axes are scaled to represent turnover (Gauch, 1982). 491 Consistent with the islands' colonization histories and distribution of remnant 492 vegetation, human impact on the westernmost island of Flores seems to have been somewhat less than on Pico, which is part of the more populous central group of the 493 archipelago. The two Pico sites record human impact somewhat differently as one 494 would expect of sites with different pollen source-areas (Lawson et al., 2008). Pre-495 496 impact variability also seems to have been higher at the high-elevation sites on Pico, 497 which therefore may also have been more vulnerable to anthropogenic disturbances than 498 middle-elevation vegetation on Flores, remnants of which grow around Lagoa Rasa. 499 The effect of major volcanic eruptions on palaeovegetation succession around

500 the three study sites was significant, as indicated by the earliest pollen assemblage zone 501 in each record (Figs 3-5). In the Lagoa do Caveiro record, this zone encompasses 502 samples from before and after the series of major eruptions around 5150-5200 cal. yr 503 BP. Hence there is no statistical difference between the pre- and post-eruption pollen 504 assemblages until the successional change around 4500 cal. yr BP. The most significant 505 change in the pollen records is associated with human colonization, which, in contrast to 506 the recorded volcanic eruptions, introduced new species, caused local extinctions and resulted in long-term changes in vegetation composition. Although larger eruptions in 507 508 the distant past probably had a catastrophic ecological impact, human colonization seems to have had the most significant impact on the highland vegetation of Flores and 509

510 Pico during the period encompassed by the three palaeoecological records considered511 here.

While it is difficult to directly compare the scale of human impact on the 512 513 Azorean vegetation with that of other islands, Table 4 provides a few details on some previous pollen-based studies of Atlantic oceanic islands before and after human 514 515 colonization. The list is not intended to be complete, but nevertheless a striking 516 similarity can be seen in the taxa that increased following human colonization and that many of the major declines were of Juniperus. The palaeoecological signal of human 517 colonization of islands globally is generally rapid and widespread, accompanied by 518 forest decline, loss of 'keystone' arboreal species, proliferation of grasses and fire-519 tolerant species, appearance of cultivated and ruderal plants, evidence for fire and 520 521 grazing, and changes to soils and effective moisture availability (Table 4; Flenley et al., 522 1991; Kirch, 1996; McGlone & Wilmshurst, 1999; Mann et al., 2008; McWethy et al., 523 2009; Prebble & Wilmshurst, 2009). This footprint of island colonization is vividly expressed in the vegetation history of the Azores, providing further indication that it 524 525 may act as a template for human impacts on terrestrial ecosystems in general.

Island vegetation in equatorial regions appears to be more susceptible to plant 526 527 extinctions and invasions than in higher latitudes, a pattern first alluded to by Hooker (1867; see also Sadler, 1999). Our palaeoecological data from the Azores show that the 528 level of human impact on the vegetation, at least in the highlands, falls somewhere 529 between the drastic modifications evidenced on Tenerife, for example, and the subtle 530 changes recorded on the Faroe Islands (Lawson et al., 2008; de Nascimento et al., 531 2010). More palaeoecological data from different elevations, islands and latitudes are 532 required to better understand this pattern of susceptibility to human impact, which is of 533

obvious value in developing ecological theory and identifying species most at risk ofextinction.

536

537 CONCLUSIONS

538 On the Azores, the local impact of major (or localized) volcanic eruptions is detectable 539 palaeoecologically as a 500- to 1000-year succession from open pioneer communities to 540 greater forest cover. Human impact, on the other hand, took the form of a sudden shift 541 (often over < 100 years) to open vegetation, which was then maintained over centuries 542 through burning, grazing and edaphic changes. Even so, some differences in the 543 composition of highland vegetation on Flores and Pico persisted after colonization.

Human impact on endemic species was generally negative and, in some cases, catastrophic. Some taxa, such as *Morella faya*, appear to have increased following colonization, while *Juniperus brevifolia* communities apparently collapsed and at least two species went extinct on Pico. Over the longer term, pollen of Azorean endemic plants were more prevalent immediately following volcanic eruptions, hinting at a prominent role of certain endemic species within primary succession on skeletal soils.

The scale of human impact, at least in terms of its palaeoecological effects, was 550 551 greater than 'natural' impacts such as volcanic eruptions, climatic changes and 552 landslides during recent millennia. Pre-impact palaeoclimatic variations detected using geochemical proxies (Björck et al., 2006) were not clearly reflected as changes in past 553 554 forest composition or structure, perhaps because of the intensely maritime climate of the 555 archipelago. This observation supports the conclusion that the late Quaternary climate of the Azores was relatively stable in comparison to archipelagos such as the Canary 556 Islands (Ávila et al., 2008; Carine & Schaefer, 2010). 557

558 Our demonstration that several 'introduced' plants are in fact native to the 559 Azores shows the extent to which our picture of the pristine, pre-colonization 560 ecosystems of oceanic islands like the Azores is incomplete. While palaeoecology 561 cannot provide all the missing pieces, it can broaden understanding of the island 562 ecosystems that preceded major human interventions, helping to elaborate 563 biogeographical theory and inform conservation efforts.

564

565 ACKNOWLEDGEMENTS

566 We thank Herb Wright (Minnesota), Ole Bennike (Copenhagen), Bernd Kromer (Heidelberg), Per Möller (Lund) and the Direcção Regional do Ambiente for assisting in 567 the coring campaigns. We gratefully acknowledge Mónica Moura (Acores), Katy Jones 568 (Natural History Museum, London), José Rosa Pinto, João Araújo and Sandra Gomes 569 570 (Algarve), Maurice Reille and the Geneva Herbarium for pollen reference material and 571 thank Tomasz Boski and Ana Gomes (Algarve) for support in the writing of this paper. We express our particular gratitude to Hanno Schaefer (Harvard), an anonymous referee 572 573 and our editors, whose insightful comments contributed substantially to improving the 574 manuscript. Pollen data will be made available within the European Pollen Database. 575

576 **REFERENCES**

577 Ávila, S.P.A., Madeira, P., Mendes, N., Rebelo, A., Medeiros, A., Gomes, C., García-

- 578 Talavera, F., Silva, C.M., Cachão, M., Hilaire-Marcel, C., Martins, A.M.F.
- 579 (2008) Mass extinctions in the Azores during the last glaciation: fact or myth?
- *Journal of Biogeography*, **35**, 1123–1129.

581	Azevedo, J.M.M. & Ferreira, M.R.P. (1998) Condições da ocorrência e funções
582	hidrogeológicas das lagoas em pequenas ilhas vulcânicas: o exemplo da ilha das
583	Flores – Açores. 4º Congresso da Água, Lisbon, 23–27 March 1998.
584	Azevedo, J.M.M. & Ferreira, M.R.P. (2006) The volcanotectonic evolution of Flores
585	Island, Azores (Portugal). Journal of Volcanology and Geothermal Research,
586	156, 90–102.
587	Bennett, K.D. (2008) Psimpoll 4.26. Department of Earth Sciences, Uppsala University,
588	Uppsala.
589	Berry, R.J. (1992) The significance of island biotas. Biological Journal of the Linnean
590	<i>Society</i> , 46 , 3–12.
591	Björck, S., Rittenour, T., Rosén, P., França, Z., Möller, P., Snowball, I., Wastegård, S.,
592	Bennike, O. & Kromer, B. (2006) A Holocene lacustrine record in the central
593	North Atlantic: proxies for volcanic activity, short-term NAO mode variability,
594	and long-term precipitation changes. <i>Quaternary Science Reviews</i> , 25 , 9–32.
595	Carine, M.A. & Schaefer, H. (2010) The Azores diversity enigma: why are there so few
596	Azorean endemic flowering plants and why are they so widespread? Journal of
597	<i>Biogeography</i> , 37 , 77–89.
598	CLIMAAT Project (2007) Clima e meteorología dos arquipélagos atlânticos (Climate
599	and meteorology of the Atlantic archipelagos). Universidade dos Açores, Angra
600	de Heroismo. URL: http://www.climaat.angra.uac.pt/.
601	Collins, A. & Bush, M.B. (2011) An analysis of modern pollen representation and
602	climatic conditions on the Galápagos Islands. The Holocene, 21, 237–250.
603	Connor, S.E. (2009) Human impact – the last nail in the coffin for ancient plants?
604	Journal of Biogeography, 36 , 485–486.

605	Costa, C. (1950) Arvoredos dos Açores: algumas achegas para a sua história. Comissão
606	Reguladora dos Cereais do Arquipélago dos Açores, 11 , 45–60.
607	Dias, E. (1996) Vegetação natural dos Açores: ecologia e sintaxonomia das florestas
608	naturais. Unpublished PhD Thesis, Universidade dos Açores, Angra de
609	Heroismo.
610	Elias R. B. & Dias E. (2004) Primary succession on lava domes on Terceira (Azores).
611	Journal of Vegetation Science, 15, 331–338.
612	Fernández-Palacios, J.M., de Nascimento, L., Otto, R., Delgado, J.D., García-del-Rey,
613	E., Arévalo, J.R. & Whittaker, R.J. (2011) A reconstruction of Palaeo-
614	Macaronesia, with particular reference to the long-term biogeography of the
615	Atlantic island laurel forests. Journal of Biogeography, 38, 226–246.
616	Ferreira, A.B. (2005) Geodinâmica e perigosidade natural nas ilhas dos Açores.
617	<i>Finisterra</i> , 40 , 103–120.
618	Flenley, J.R., King, A.S.M., Jackson, J., Chew, C., Teller, J.T. & Prentice, M.E. (1991)
619	The Late Quaternary vegetational and climatic history of Easter Island. Journal
620	of Quaternary Science, 6, 85–115.
621	Forjaz, V.H, Monjardino, J.L. & Fernandes, N. (1970) Contribuição para o estudo das
622	jazidas fossilíferas das ilhas do Faial, Pico, S. Jorge e Terceira (Açores).
623	Comunicações dos Serviços Geológicos de Portugal, 54, 27–37.
624	Fries, M. (1968) Organic sediment and radiocarbon dates from crater lakes on the
625	Azores. Geologiska Föreningens i Stockholm Förhandlingar, 90, 360–368.
626	Gauch, H.G. (1982) Multivariate analysis in community ecology. Cambridge University
627	Press, Cambridge.
628	van Geel, B. & Aptroot, A. (2006) Fossil ascomycetes in Quaternary deposits. Nova
629	<i>Hedwigia</i> , 82 , 313–329.

630	Grimm, E.C. (2004) TILIA and TGView software, version 2.0.2. Illinois State Museum,
631	Research and Collections Center, Springfield, IL.
632	Hannon, G.E. & Bradshaw, R.H.W. (2000) Impacts and timing of the first human
633	settlement on vegetation of the Faroe Islands. Quaternary Research, 54, 404-
634	413.
635	Head, L. (2008) Is the concept of human impacts past its use-by date? The Holocene,
636	18, 373–377.
637	Hooker, J.D. (1867) Insular floras. Gardener's Chronicle and Agricultural Gazette,
638	January , 6–7, 27, 50–51, 75–76.
639	Johnson, D.S. (1994) Phantom islands of the Atlantic: the legends of seven lands that
640	never were. Souvenir Press, London.
641	Kirch, P.V. (1996) Late Holocene human-induced modifications to a central Polynesian
642	island ecosystem. Proceedings of the National Academy of Sciences, USA, 93,
643	5296–5300.
644	van der Knaap, W.O. (2009) Estimating pollen diversity from pollen accumulation
645	rates: a method to assess taxonomic richness in the landscape. The Holocene, 19,
646	159–163.
647	Kueffer, C., Daehler, C.C., Torres-Santana, C.W., Lavergne, C., Meyer, JY., Otto, R.
648	& Silva, L. (2010) A global comparison of plant invasions on oceanic islands.
649	Perspectives in Plant Ecology, Evolution & Systematics, 12, 145–161.
650	Lawson, I.T., Gathorne-Hardy, F.J., Church, M.J., Newton, A.J., Edwards, K.J.,
651	Dugmore, A.J. & Einarsson, Á. (2007) Environmental impacts of the Norse
652	settlement: palaeoenvironmental data from Mývatnssveit, northern Iceland.
653	<i>Boreas</i> , 36 , 1–19.

654	Lawson, I.T., Edwards, K.J., Church, M.J., Newton, A.J., Cook, G.T., Gathorne-Hardy,
655	F.J. & Dugmore, A.J. (2008) Human impact on an island ecosystem: pollen data
656	from Sandoy, Faroe Islands. Journal of Biogeography, 35, 1130–1152.
657	van Leeuwen, J.F.N., Schaefer, H., van der Knaap, W.O., Rittenour, T., Björck, S. &
658	Ammann, B. (2005) Native or introduced? Fossil pollen and spores may say – an
659	example from the Azores Islands. <i>Neobiota</i> , 6 , 27–34.
660	van Leeuwen, J.F.N., Froyd, C.A., van der Knaap, W.O., Coffey, E.E., Tye, A. &
661	Willis, K.J. (2008) Fossil pollen as a guide to conservation in the Galápagos.
662	Science, 322 , 1206.
663	Ljung, K. & Björck, S. (2011) A pollen record of the last 450 years from a lowland peat
664	bog on Tristan da Cunha, South Atlantic, implying early anthropogenic
665	influence. Journal of Quaternary Science, 26, 688–693.
666	Mann, D., Edwards, J., Chase, J, Beck, W., Reanier, R., Mass, M., Finney, B. & Loret,
667	J. (2008) Drought, vegetation change, and human history on Rapa Nui (Isla de
668	Pascua, Easter Island). Quaternary Research, 69, 16–28.
669	McCune, B. & Mefford, M. J. (1999) PC-ORD: multivariate analysis of ecological
670	data. MjM Software Design, Gleneden Beach, OR.
671	McGlone, M.S. & Wilmshurst, J.M. (1999) Dating intitial Maori environmental impact
672	in New Zealand. Quaternary International, 59, 5–16.
673	McWethy, D.B., Whitlock, C., Wilmshurst, J.M., McGlone, M.S. & Li, X. (2009) Rapid
674	deforestation of South Island, New Zealand, by early Polynesian fires. The
675	Holocene, 19, 883–897.
676	Moore, P.D. (1975) Origin of blanket mires. <i>Nature</i> , 256 , 267–269.
677	Moore, P.D., Webb, J.A. & Collinson, M.E. (1991) Pollen analysis. Blackwell Science
678	Publishers, Oxford.

679	Morriseau, M. & Traineau, H. (1985) Mise en évidence d'une activité hydromagmatique
680	Holocène sur l'Île de Flores (Açores). Comptes Rendus de l'Académie des
681	Sciences Paris, 301 , 1309–1314.
682	Mueller-Dombois, D. (1975) Some aspects of island ecosystem analysis. Tropical
683	ecological systems: trends in aquatic and terrestrial research (ed. by F.B.
684	Golley and E. Medina), pp. 353–366. Springer-Verlag, New York.
685	de Nascimento, L., Willis, K.J., Fernández-Palacios, J.M., Criado, C. & Whittaker, R.J.
686	(2009) The long-term ecology of the lost forests of La Laguna, Tenerife (Canary
687	Islands). Journal of Biogeography, 36, 499–514.
688	Odgaard, B.V. (1999) Fossil pollen as a record of past biodiversity. Journal of
689	<i>Biogeography</i> , 26 , 7–17.
690	Prebble, M. & Wilmshurst, J.M. (2009) Detecting the initial impact of humans and
691	introduced species on island environments in Remote Oceania using
692	palaeoecology. Biological Invasions, 11, 1529–1556.
693	Pugin, A. & Girardclos, S. (1998) Shallow seismic reflection on two Azores volcanic
694	lakes. Unpublished report, University of Geneva, Department of Geology and
695	Paleontology, Geneva.
696	Reille, M. (1992, 1995 & 1998) Pollen et spores d'Europe et d'Afrique du Nord (3
697	vols). Laboratoire de Botanique historique et Palynologie, Marseille.
698	Reimer, P.J. & Reimer, R. (not dated) CALIBomb radiocarbon calibration. Queen's
699	University Belfast, Belfast. URL: <u>http://calib.qub.ac.uk/CALIBomb/</u> (accessed
700	15/8/2011).
701	Rueger, B.F. & von Wallmenich, T.N. (1996) Human impact on the forests of Bermuda:
702	the decline of endemic cedar and palmetto since 1609, recorded in the Holocene
703	pollen record of Devonshire Marsh. Journal of Paleolimnology, 16, 59-66.

704	Sadler, J.P. (1999) Biodiversity on oceanic islands: a palaeoecological assessment.
705	Journal of Biogeography, 26 , 75–87.
706	Schaefer, H. (2003) Chorology and diversity of the Azorean flora. Dissertationes
707	Botanicae, Vol. 374. J. Cramer, Stuttgart.
708	Schaefer, H. (2005) Flora of the Azores: a field guide, 2 nd edn. Margraf Publishers,
709	Weikersheim.
710	Schaefer, H., Moura, M., Belo Maciel, M.G., Silva, L., Rumsey, F.J. & Carine, M.A.
711	(2011) The Linnean shortfall in oceanic island biogeography: a case study in the
712	Azores. Journal of Biogeography, 38, 1345–1355.
713	Schirone, B., Ferreira, R.C., Vessela, F., Schirone, A., Piredda, R. & Simeone, M.C.
714	(2010) Taxus baccata in the Azores: a relict form at risk of imminent extinction.
715	Biodiversity and Conservation, 19, 1547–1565.
716	Silva, L., Moura, M., Schaefer, H., Rumsey, F. & Dias, E.F. (2010) Vascular plants
717	(Tracheobionta). A list of the terrestrial and marine biota from the Azores (ed.
718	by P.A.V. Borges, A. Costa, R. Cunha, R. Gabriel, V. Gonçalves, A.F. Martins,
719	I. Melo, M. Parente, P. Raposeiro, P. Rodrigues, R.S. Santos, L. Silva, P. Vieira
720	and V. Vieira), pp. 117–146. Princípia, Cascais.
721	Sjögren, E. (1973) Conservation of natural plant communities on Madeira and in the
722	Azores. Monographiae Biologicae Canarienses, 4, 148–153.
723	Stuiver, M. & Reimer, P.J. (1993) Extended ¹⁴ C database and revised CALIB
724	radiocarbon calibration program. Radiocarbon, 35, 215–230.
725	Tutin, T.G. (1953) Vegetation of the Azores. Journal of Ecology, 41, 53-61.
726	Webb, D.A. (1985) What are the criteria for presuming native status? Watsonia, 15,
727	231–236.

728	Whittaker, R.J., Triantis, K.A. & Ladle, R.J. (2008) A general dynamic theory of
729	oceanic island biogeography. Journal of Biogeography, 35, 977–994.
730	Williamson, M. (1984) Sir Joseph Hooker's lecture on insular floras. Biological Journal
731	of the Linnean Society, 22 , 55–77.
732	Wright, H.E. (1967) A square-rod piston sampler for lake sediments. Journal of
733	Sedimentary Petrology, 37 , 975–976.
734	Zbyszewski, G., Ferreira, C.R., Ferreira, O.V. & Assunção, C.T. (1963) Carta
735	Geológica de Portugal 1/50000: notícia explicativa da folha 'B' da Ilha do Pico
736	(Açores). Serviços Geológicos de Portugal, Lisbon.
737	Zbyszewski, G., Medeiros, A.C., Ferreira, O.V. & Assunção, C.T. (1968) Carta
738	Geológica de Portugal 1/25000: notícia explicativa da folha da Ilha das Flores
739	(Açores). Serviços Geológicos de Portugal, Lisbon.
740	

742 SUPPORTING INFORMATION

743	Additional Supporting Information may be found in the online version of this article:
744	
745	Appendix S1 Complete pollen diagrams from Lagoa Rasa, Lagoa do Caveiro and Pico
746	Bog.
747	
748	As a service to our authors and readers, this journal provides supporting information
749	supplied by the authors. Such materials are peer-reviewed and may be re-organized for
750	online delivery, but are not copy-edited or typeset. Technical support issues arising
751	from supporting information (other than missing files) should be addressed to the
752	authors.

753

755 BIOSKETCH

- 756 Simon Connor is a researcher in environmental dynamics at the University of the
- 757 Algarve. His research interests include human–environment interactions and the
- 758 biogeography of Tertiary relict species.
- 759
- 760 Author contributions: S.E.C., J.F.N.L., W.O.K. and B.A. developed the ideas; J.F.N.L.
- and T.M.R. analysed the pollen data; B.A. and S.B. initiated the project; S.E.C. and
- 762 W.O.K. made the numerical analyses; and S.E.C. wrote the paper with the help of all
- 763 co-authors.
- 764
- 765 Editor: José María Fernández-Palacios

TABLES

Table 1 Site details for the three coring locations on the Azores.

Site name, island	Elevation a.s.l.	Coordinates	Dimensions (max. water depth)	Site description	Surrounding vegetation
Lagoa Rasa, Flores	530 m	39° 24.50' N, 31° 13.50' W	325 × 425 m (16 m)	Crater lake formed by Strombolian eruption	Moorland with scattered Juniperus brevifolia, Erica azorica and Calluna vulgaris; Sphagnum around lake shores
Lagoa do Caveiro, Pico	903 m	38° 26.10' N, 28° 11.79' W	30 × 40 m (3.5 m)	Crater lake with Potamogeton polygonifolius	Grassland of <i>Festuca</i> <i>francoi</i> ; scattered remnants of <i>Juniperus</i> forest and laurisilva
Pico Bog, Pico	873 m	38° 26.16' N, 28° 10.30' W	20 × 25 m (1.5 m)	<i>Sphagnum</i> bog	Grassland of <i>Festuca</i> <i>francoi</i> ; scattered remnants of <i>Juniperus</i> forest and laurisilva

Table 2 Azorean pollen taxa that could be confidently classified as having endemic, native or introduced status and their occurrence (x) in the
three records, both before (B) and after (A) significant human impact. Status based on Silva *et al.* (2010), except where the pollen evidence
demonstrates native status (taxa in boldface). The † symbol denotes taxa now extinct on Pico. The endemic category also includes
Macaronesian endemics. Single pollen-grain occurrences are indicated by a dot (•) and 49 taxa that could not be categorized for pollen-

taxonomic reasons are omitted (see Appendix S1).

Status	Taxon	Rasa		Caveiro		Pico	
		А	В	А	В	А	В
Endemic	Angelica lignescens	Х	х	х	х	х	Х
	Arceuthobium azoricum			х	х	х	х
	Bellis-type	Х	х	х	х	х	х
	Chaerophyllum azoricum	Х		х	х	•	х
	Daucus carota ssp. azorica	•		х	х		•
	Diphasiastrum madeirense	Х	х	х	х	х	х
	Erica azorica	Х	х				
	Ericaceae	Х	х	х	х	х	х
	Euphrasia	•	х	•	х		
	Frangula azorica	Х	х	х	х	•	•
	Hedera azorica	•	х	х	х		х
	Huperzia dentata	Х	х	х	х	х	х
	Huperzia suberecta			х	х	•	х
	Ilex perado ssp. azorica	Х	х	х	х	х	х
	Juniperus brevifolia	Х	х	х	х	х	х
	Lysimachia azorica	Х	х	х	х	х	х
	Picconia azorica	Х	х	х	х	х	Х
	Polypodium azoricum	Х	х	х	х	х	х
	Prunus azorica			х	х	х	•

	Vaccinium cylindraceum	х	х	х	х	х	х
	Viburnum treleasei	х	х				
Native	Apium			•	х		х
	Athyrium filix-femina	•					
	Blechnum	х					
	Botrychium lunaria			х	х		
	Calluna vulgaris	х	х	х	х	х	х
	cf. Umbilicus	х	х				
	Cheilanthes-type	х	х	х	х	•	х
	Culcita macrocarpa	х	х	х	х	х	х
	Daphne laureola			х	х		х
	Hydrocotyle vulgaris			х		х	х
	Hymenophyllum tunbrigense-type	х	х	х	х		х
	Illecebrum verticillatum		х	х	х	х	•
	Lycopodiella inundata		х		х		
	Lythrum portula			х	х		х
	Morella faya	х	х	х	х	х	х
	Myrsine africana	х	х	х	х	х	х
	Ophioglossum azoricum†	х	х	х	х		
	Ophioglossum lusitanicum†	х	х	х	х		•
	Osmunda regalis	х	х	х	х	х	х
	Persicaria		х		х		х
	Plantago coronopus			х		•	
	Potentilla-type	х	х	х	х	х	х
	Pteridium aquilinum	х	Х	Х	Х	х	х
	Pteris incompleta	х	х	х	х	х	х
	Selaginella kraussiana	х	Х	Х	Х	х	х
	Trichomanes speciosum	х	Х	Х	Х	х	х
Introduced	Castanea sativa		•	х			•
	Cerealia	х					
	Cryptomeria japonica	х		х		•	
	Hydrangea macrophylla	х		х			

Ligustrum	Х		х			
Pinus	х	•	х	•		
Plantago lanceolata	х	•	х	•	х	
Plantago major			х			
Prunella vulgaris						х
Secale	х					
<i>Ulex</i> -type	•					
Verbena officinalis	•					
Vitis			х		•	
Zea mays	•					

Site and depth	¹⁴ C age (yr BP) and	Calendar age (cal.	Lab code
_	error	yr BP)	
Rasa 124 cm	$109.8 \pm 0.3 \text{ pMC}$	-5 or -45–-50	Poz-2095
Rasa 168 cm	220 ± 30	-1-308	Poz-2210
Rasa 176 cm	335 ± 30	309–477	Poz-9890
Rasa 188 cm	505 ± 35	501-625	Poz-2098
Rasa 200 cm	580 ± 30	553-649	Poz-11260
Rasa 210 cm	695 ± 30	563-686	Poz-11261
Rasa 226 cm	705 ± 35	561–699	Poz-2099
Rasa 245 cm	895 ± 35	735–911	Poz-2100
Rasa 280 cm	1290 ± 30	1175-1287	Poz-9926
Rasa 290 cm	1345 ± 30	1182-1309	Poz-11263
Rasa 305 cm	1565 ± 30	1390-1527	Poz-11264
Rasa 315 cm	1710 ± 35	1541-1702	Poz-11467
Rasa 321 cm	2105 ± 30	1996–2149	Poz-9927
Rasa 324 cm	2450 ± 35	2358-2703	Poz-11221
Rasa 328 cm	2370 ± 35	2335-2672	Poz-1222
Rasa 330 cm	2435 ± 41	2353-2702	UtC-8340
Pico 152–153 cm	240 ± 50	-11-470	LuS-5872
Pico 232–233 cm	410 ± 50	310–530	LuS-5870
Pico 262 cm	570 ± 50	510-660	LuS-6103
Pico 292–293 cm	750 ± 50	560-780	LuS-5869
Pico 346–347 cm	860 ± 100	650–970	LuS-5868
Pico 417–418 cm	1140 ± 50	930-1180	LuS-5867
Pico 465–466 cm	1460 ± 50	1280-1520	LuS-5866
Pico 498 cm	1645 ± 50	1410-1700	LuS-6104

probability). The first age post-dates AD 1950 and is therefore expressed as percentage modern carbon (pMC).

Table 3 Radiocarbon ages from dated gyttja (Lagoa Rasa) and peat (Pico Bog) sediments, with calendar ages (calibrated with 2-sigma

Pico 546–548 cm	1892 ± 133	1500-2200	Hd-21645	
Pico 559 cm	2405 ± 50	2340-2710	LuS-6105	
Pico 571–572 cm	2550 ± 50	2460-2770	LuS-5871	

Table 4 Comparison of some palynological studies that record the impact of human colonization of oceanic islands of the Atlantic. Sites are

 784

Site and Timing reference (cal. BP)		Major pollen declines	Major pollen increases	Introduced pollen taxa	Fire and grazing	Soils and moisture	
Iceland (Lawson <i>et al.</i> , 2007)	<i>c</i> . 1080	Betula Juniperus	Poaceae Cyperaceae	Hordeum	Increased charcoal; grazing inferred	Soil acidification; expansion of <i>Sphagnum</i>	
Faroe Islands (Hannon & Bradshaw, 2000)	<i>c</i> . 1400	<i>Juniperus</i> Cyperaceae	Poaceae Cerealia	Recorded in macrofossils	Charcoal peak; grazing inferred	Change in wetland taxa	
Flores & Pico, Azores (this paper)	<i>c</i> . 400	Juniperus	Poaceae Pteridium	Hydrangea Cryptomeria Cerealia etc.	Charcoal and <i>Sporor-</i> <i>miella</i> increase	Expansion of <i>Sphagnum</i>	
Bermuda (Rueger & von Wallmenich, 1996)	c. 350	Juniperus Sabal	<i>Morella</i> Poaceae Cyperaceae	Not shown on pollen diagram	Historical records cited	Transition from swamp forest to marsh	
Tenerife (de Nascimento <i>et</i> <i>al.</i> , 2010)	<i>c</i> . 2000	Quercus† Carpinus†	<i>Morella</i> Poaceae Asteraceae	No mention	Charcoal increase	Lowered lake level	
Tristan da Cunha (Ljung & Bjorck, 2011)	<i>c</i> . 300	Phylica arborea	Plantago Rumex Cyperaceae	Plantago lanceolata Rumex acetosa	Increased charcoal; grazing inferred	Erosion; change to Cyperaceae dominance	

785	listed in north–south order.	\dagger = extinction.	Further details	can be	e found in	the studies	themselves.
-----	------------------------------	-------------------------	-----------------	--------	------------	-------------	-------------

788 FIGURE CAPTIONS

789

Figure 1 Map of the North Atlantic region, showing the location of the Azores
archipelago and other islands (above). Map of the Azores (below) and the study sites
(inset).

Figure 2 Age–depth profiles, for sediment records from Lagoa Rasa on the island of

Flores (black line) and Pico Bog on the island of Pico (grey line), based on the

radiocarbon ages in Table 3. An age-depth curve for the Lagoa do Caveiro record (Pico

799 Island) appears in Björck *et al.* (2006).

800

Figure 3 Pollen diagram from Lagoa Rasa on the island of Flores, showing (left to
right) sample ages, depths, pollen assemblage summary, trees, shrubs, herbs, ferns and
aquatic/wetland pollen types. Non-pollen palynomorphs (NPP) and charcoal are shown
on the right. Open curves are 5× exaggerations of the black percentage curves. The
solid horizontal line is the zone boundary between pre-impact (below) and post-impact
samples (above); dotted lines indicate other significant zone boundaries. See Appendix
S1 for the complete pollen diagram.

Figure 4 Pollen diagram from Lagoa do Caveiro on the island of Pico. See caption of
Fig. 3 for explanation. The horizontal band represents the division between the central
lake core and the marginal core (see Björck *et al.*, 2006). See Appendix S1 for the
complete pollen diagram.

Figure 5 Pollen diagram from Pico Bog on the island of Pico. See caption of Fig. 3 for

819 explanation and Appendix S1 for the complete pollen diagram.

822 **Figure 6** Temporal changes in palynological diversity and endemic species representation in the Lagoa Rasa, Lagoa do Caveiro and Pico Bog records from the 823 824 Azores. Trends are shown in relation to changes in pollen concentrations, tephra layers 825 and ordination scores (detrended correspondence analysis, DCA; Fig. 7). The solid vertical line represents the transition from pre-impact to post-impact (pollen zone 826 boundary) in each record; the dashed vertical lines are other significant zone 827 828 boundaries. Samples from the marginal core from Lagoa do Caveiro were not graphed due to dating uncertainties in the earliest part of the record (Björck et al., 2006). PAR, 829 pollen accumulation rates. 830

Figure 7 Detrended correspondence analysis (DCA) result for the Lagoa Rasa, Lagoa
do Caveiro and Pico Bog pollen records (Figs 3–5), showing the transition from preimpact (filled shapes) to post-colonization impacted palaeovegetation (open shapes).
The lowermost and topmost samples from each record are indicated and samples from
Lagoa do Caveiro prior to a major series of eruptions are also shown. Total inertia
value 1.52; axis 1 eigenvalue = 0.36 (gradient length 2.69); axis 2 eigenvalue = 0.20
(gradient length 2.55).

University Library

A gateway to Melbourne's research publications

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:

Connor, SE; van Leeuwen, JFN; Rittenour, TM; van der Knaap, WO; Ammann, B; Bjorck, S

Title:

The ecological impact of oceanic island colonization - a palaeoecological perspective from the Azores

Date:

2012-06-01

Citation:

Connor, SE; van Leeuwen, JFN; Rittenour, TM; van der Knaap, WO; Ammann, B; Bjorck, S, The ecological impact of oceanic island colonization - a palaeoecological perspective from the Azores, JOURNAL OF BIOGEOGRAPHY, 2012, 39 (6), pp. 1007 - 1023

Persistent Link:

http://hdl.handle.net/11343/55221