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Promoting Truthful Behaviour in
Participatory-Sensing Mechanisms

Farhad Farokhi, Iman Shames, Michael Cantoni

Abstract—In this paper, the interplay between a class of
nonlinear estimators and strategic sensors is studied in several
participatory-sensing scenarios. It is shown that for the class
of estimators, if the strategic sensors have access to noiseless
measurements of the to-be-estimated-variable, truth-telling is an
equilibrium of the game that models the interplay between the
sensors and the estimator. Furthermore, performance of the
proposed estimators is examined in the case that the strategic
sensors form coalitions and in the presence of noise.

I. INTRODUCTION

With a yearly expansion rate of 30% for mobile broad-
band subscriptions and smartphones accounting for 65-70%
of all the sold mobile phones [1], we are truly living in a
connected world. This constant state of connectedness has
enabled new technologies, such as participatory- and/or crowd-
sensing applications, in which consented participants, with
their smartphones, act as sensing units to estimate a variable1.
Examples of commercial products using participatory-sensing
schemes are Waze (for traffic estimation), Sensorly (for mobile
coverage), Amazon review (for quality of service or prod-
uct), or Mobile Water Management (for user data collection
in control of irrigation canals) [2], [3]. These systems, so
far, have mainly relied on the benevolence of participants.
However, due to various reasons, participants might provide
false data. For instance, smartphones can be hacked or fake
bots can be created by a hacker to feed false measurements
to a sensing scheme [4]. Another reason could be that the
individual participants might want to change the outcome of
participatory-sensing schemes for their benefit. For instance,
in crowd-sensing applications for traffic estimation, such as
Waze, people inevitably realize that their reports change the
traffic estimates which, in turn, diverts vehicles to and from
their neighbourhoods [5]. Finally, it could also be that the
participants wish to retain their privacy. For instance, people
might provide inaccurate and misleading reports to a polling
organization (one of the oldest forms of crowd-sensing appli-
cations) to avoid revealing private and/or sensitive information
to governments or for-profit organizations. Therefore, we are
interested in designing robust participatory-sensing schemes
that can work reliably in the face of strategic false-data
injection.

An earlier study in estimation with strategic sensors showed
that, counter-intuitively, the performance of linear estimators

The authors are with the Department of Electrical and Electronic Engineer-
ing, the University of Melbourne, Parkville, Victoria 3010, Australia. This
work is supported by a McKenzie Fellowship and the Australian Research
Council (LP130100605).
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degrades as the number of sensors increases [6]. Further, it was
shown that when the sensors are herding, i.e., they are imitat-
ing each other’s policies, the quality of the estimation improves
with the summoning of more sensors. Herding behaviour
could be caused by the bounded rationality of the sensors.
However, it can be also induced by designing an appropriate
estimator that pushes each sensor to “behave the same as the
rest”. Here, to utilize this observation, we design nonlinear
estimators that can reject outlier reports and, hence, induce
a herding behaviour among the sensors. A median estimator
is an example of such an estimator. The fact that median is
robust in the presence of noisy and corrupted data is well
known, e.g. see [7]. However, to the best of our knowledge,
the benefits of using a median estimator in the presence of
strategic sensors and in a game-theoretic framework has not
been formalized in the literature.

The main contributions of the paper are as follows. First,
two linear estimators are considered and it is shown that
sensors engaging in a truth-telling behaviour, i.e. reporting the
correct variable that the participatory-sensing scheme wishes
to estimate, does not correspond to an equilibrium of the
game modelling the interaction between the sensors and the
estimator. Next, it is demonstrated that for a class of nonlinear
estimators truth-telling is in fact an equilibrium of this game.
Third, the scenarios where strategic sensors might be colluding
and form coalitions is studied. Particularly, the link between
the size of the coalitions and the performance of the estimators
in the aforementioned class is established. Fourth, the case
where the measurements carried out by the sensors are noisy
is studied.

Many participatory-sensing mechanisms adopt quality as-
sessment procedures and provide appropriate incentives to
extract useful data. In this paper, however, we show that
even if the participatory-sensing services do not adopt quality-
assessment procedures or provide incentives, they can shape
the behaviour of strategic sensors to elicit a truthful message.
This is certainly a favourable approach as (i) there is no need
for incentives (in either monetary or psychological forms)
in the often large groups of recruited participants and (ii) it
further reduces the complexity of the employed estimators.

The rest of the paper is as follows. In Section II, we
investigate the interplay between the strategic sensors and the
linear as well as nonlinear estimators. Section III extends these
results to the case where the sensors can form coalitions. In
Section IV, we study nonlinear estimators when the sensors
are noisy. Finally, we conclude the paper in Section V.
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II. NOISELESS MEASUREMENTS

Let us consider the case where a receiver is interested in
measuring the variable x ∈ R. Hence, it employs n > 1
sensors to measure this variable and report it back. Each
sensor transmits a measurement yi ∈ R. We assume that the
transmissions occur simultaneously and, thus, the sensors do
not have access to the messages communicated by each other.
The receiver subsequently uses these messages to construct
an estimate of x, denoted by x̂ ∈ R. The receiver wants
to guarantee that the estimation error E{‖x − x̂‖2} is small,
where E{·} denotes the expectation of its argument. In this
section, we assume that the sensors have access to the noiseless
measurements of x. However, their interests are not aligned
with that of the receiver and each other, that is, sensor i ∈ JnK
wishes to minimize the cost E{‖(x+θi)−x̂‖2}, where θi ∈ R
is its private information (i.e., it is not known by the other
sensors and the receiver). Here, JnK denotes the set {1, . . . , n}.

ASSUMPTION 2.1: x and (θi)i∈JnK are jointly distributed
Gaussian random variables with zero mean.

We are interested in large groups of homogeneous sensors
to mimic the behaviour of large crowds. Therefore, we make
the following assumption.

ASSUMPTION 2.2: (θi)i∈JnK are identically and indepen-
dently distributed random variables. Moreover, x and θi are
independent for all i ∈ JnK.

Let gi(·|x, θi) denote the conditional distribution that sen-
sor i uses for generating its message yi (i.e., its policy).
Therefore, for any Lebesgue-measurable set Yi ⊆ R, we get

P{yi ∈ Yi} =
∫
ξ∈Yi

gi(ξ|x, θi)dξ.

We use the notation Gi to denote the set of all such conditional
distributions for each sensor i. Moreover, since the dimension
of the messages for all the sensors is the same, G1 = · · · =
Gn = G. Let us define a cost for sensor i ∈ JnK as

Vi((gi)i∈JnK;π) = E{‖(x+ θi)− π((yi)i∈JnK)‖2}

=

∫ ∞
−∞
· · ·

∫ ∞
−∞
‖(x+ θi)− π((yi)i∈JnK)‖2

×
∏
j∈JnK

[gj(yj |x, θj)dyj ]
∏
j∈JnK

[pθ(θj)dθj ]px(x)dx,

where (gi)i∈JnK ∈ Gn is the policy of all the sensors, π :
Rn → R is the policy of the receiver, i.e., x̂ = π((yi)i∈JnK),
and px and pθ are probability density functions. Note that this
is an ex ante cost function as the sensors do not wait until they
receive their private information and the state measurement in
forming the cost function (it leads to a setup in which the
sensors select their policies before entering the game). Hence,
at the equilibrium induced by this cost function, the parameters
of the policy are not a function of the private information and
the state measurement, however, the transmitted message can
be a function of these measurements2. Alternatively, we can

2Using an ex ante optimal policy can be motivated by the lack of enough
computational resources for online calculation of the policy based on the
realization of the private information and the state.

form an ex post cost function

Ui((gi)i∈JnK;π) = E{‖(x+ θi)− π((yi)i∈JnK)‖2|θi, x}

=

∫ ∞
−∞
· · ·

∫ ∞
−∞
‖(x+ θi)− π((yi)i∈JnK)‖2

×
∏
j∈JnK

[gj(yj |x, θj)dyj ]
n∏

j∈JnK\{i}

[pθ(θj)dθj ].

DEFINITION 1 (π-STACKELBERG EQUILIBRIUM): A tuple
of conditional distributions (g∗i )i∈JnK ∈ Gn constitutes an
ex ante π-Stackelberg equilibrium if

g∗j ∈ argmin
gj∈G

Vj(gj , (g
∗
i )i∈JnK\{j};π), ∀j ∈ JnK.

The tuple constitutes an ex post π-Stackelberg equilibrium if

g∗j ∈ argmin
gj∈G

Uj(gj , (g
∗
i )i∈JnK\{j};π), ∀j ∈ JnK.

In statements where we do not distinguish between ex ante
and ex post equilibria, the statement holds in both senses.

Note that π, in π-Stackelberg equilibrium, is a generic
place-holder for an arbitrary policy π and indicates that the
equilibrium corresponds to this policy.

In this paper, our interest is to find an estimator π that
can extract useful information from strategic sensors. This
is motivated by the observation that, for linear estimators,
the quality of the estimation degrades as the number of
participating sensors increases [6]. Let us start with a simple,
yet widely used, linear estimator to illustrate the problem.

DEFINITION 2 (AVERAGING ESTIMATOR): The receiver
employs the estimator

x̂ = ψ((yi)i∈JnK) := (y1 + · · ·+ yn)/n.

A tuple of conditional distributions ((g∗i )i∈JnK) ∈ Gn consti-
tutes an ex ante (ex post) equilibrium for the averaging esti-
mator if it is an ex ante (ex post) ψ-Stackelberg equilibrium.

DEFINITION 3 (TRUTH-TELLING PORTFOLIO): Sensor i
follows the truth-telling strategy if3 gi(yi|x, θi) = δ(yi − x),
where δ is the Dirac delta distribution4. The truth-telling
portfolio is a tuple of conditional distributions such that all
the sensors are employing the truth-telling strategy.

Now, we can prove the following negative result regarding
the averaging estimator.

THEOREM 4: The truth-telling portfolio is not an equilib-
rium for the averaging estimator.

Proof: Let all the players except player i ∈ JnK employ
the truth-telling strategy. Therefore, yj = x for all j ∈ JnK \
{i}. Hence, we have x̂ = (1− 1/n)x+ (1/n)yi. Now, sensor
i using the policy yi = x + nθi results in E{‖(x + θi) −
x̂‖2|θi, x} = 0 and E{‖(x+ θi)− x̂‖2} = 0, which is strictly
less than, respectively, substitution of the truth-telling strategy
in both ex post and ex ante cost functions.

Even with the optimal linear estimator E{x | y1, . . . , yn}, it
was observed in [6] that the truth-telling is not an equilibrium
of the game and that, at the equilibrium, the quality of the

3This is the same as saying P{yi = x} = 1.
4The Dirac delta distribution is a mapping δ : R→ R ∪ {±∞} such that

δ(t) = 0 for all t ∈ R \ {0} and
∫∞
−∞ δ(t)dt = 1.
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estimation degrades as the number of sensors increases. In
limit, no information can be recovered from the transmitted
messages. This observation, together with Theorem 4, moti-
vates us to find estimators for which the truth-telling portfolio
is an equilibrium. We address this concern in the remainder
of this section.

DEFINITION 5 (2`-REJECTION AVERAGING ESTIMATOR):
Assume that n ≥ 2` + 1. Let (ij)j∈JnK be given such that
yi1 ≤ yi2 ≤ · · · ≤ yin . The receiver employs the estimator

x̂ = ψ`((yi)i∈JnK) :=
1

n− 2`

n−∑̀
j=`+1

yij .

A tuple of conditional distributions ((g∗i )i∈JnK) ∈ Gn con-
stitutes an ex ante (ex post) equilibrium for the 2`-rejection
averaging estimator if it is an ex ante (ex post) ψ`-Stackelberg
equilibrium.

REMARK 2.1: In the statistics literature (e.g., [8, p. 16]),
2`-rejection averaging estimators are alternatively known as
trimmed averaging estimators (since they are derived from an
averaging estimator by excluding the extreme values). Here,
we use the name 2`-rejection averaging estimator because
of our desire to work with integer values of ` rather than
percentages of rejection `/n.

THEOREM 6: The truth-telling is an equilibrium for the 2`-
rejection averaging estimator for all ` ∈ Jb(n− 1)/2cK.

Proof: Let all the players except player i ∈ JnK employ
the truth-telling strategy. Therefore, yj = x, ∀j ∈ JnK \ {i}.
Hence, we have x̂ = x irrespective of yi (as it will be rejected).
Thus, truth-telling (among all the other policies) minimizes the
cost of sensor i in both ex ante and ex post senses.

DEFINITION 7 (MEDIAN ESTIMATOR): Let (ij)j∈JnK be
given such that yi1 ≤ yi2 ≤ · · · ≤ yin . The receiver employs
the estimator

x̂ = φ((yi)i∈JnK) :=

{
(yin/2

+ yin/2+1
)/2, n ∈ E,

yi(n+1)/2
, n ∈ O,

where E and O represent the sets of even and odd integers,
respectively. A tuple of conditional distributions ((g∗i )i∈JnK) ∈
Gn constitutes an ex ante (ex post) equilibrium for the median
estimator if it is an ex ante (ex post) φ-Stackelberg equilibrium.

LEMMA 8: The median estimator is equivalent to the 2`-
rejection averaging estimator if ` = (n− 2)/2 for n ∈ E and
` = (n− 1)/2 for n ∈ O.

Proof: The proof follows from simple algebraic manipu-
lations and is hence omitted.

COROLLARY 9: The truth-telling is an equilibrium for the
median estimator.

So far, we have assumed that the sensors do not form
coalitions to deceive the receiver. In the next section, we define
a different game in which sensors can act together.

III. EXTENSION TO COALITIONS

Assume that sensor i ∈ JnK can submit ci ∈ N messages
instead of one. This setup has two interpretations. First, each
sensor represents a coalition of size ci instead of a single sen-
sor. Alternatively, we can assume that each sensor represents
an array of sensors introduced by a single hacker. Therefore,

the receiver has access to (yi)i∈JcK where c =
∑
j∈JnK cj . The

receiver does not know (cj)j∈JnK. Here, the definition of the
2`-rejection averaging estimator is the same as in Definition 5
with c denoting the number of messages instead of n.

Examples of participatory-sensing services that admit coali-
tions are legislative bodies, e.g. the U.S. congress, and truth-
finding committees, e.g. royal commissions in most of the
Commonwealth countries. Here, the coalitions are political
parties because their members most often, persuaded by the
party whip, vote on party lines. Therefore, it would be nice
to construct estimators that can recover the truth despite the
ever-growing partisanship.

THEOREM 10: Let
∑
j∈JnK\{i} cj ≥ ci + 1 for all i ∈ JnK.

The truth-telling is an equilibrium for the 2`-rejection averag-
ing estimator if maxi∈JnK ci ≤ ` ≤ b(

∑
j∈JnK cj − 1)/2c.

Proof: The proof is similar to the proof of Theorem 6
and is hence omitted.

REMARK 3.1: Theorem 10 shows that, for a given `, the
estimator is robust to admitting a coalition of sensors with the
size of, at most, ` assuming that no coalition has more sensors
than the sum of the size of all other coalitions minus one (i.e.,
there is a balance of power between the competing coalitions).

COROLLARY 11: Let

min
i∈JnK

 ∑
j∈JnK\{i}

cj

− ci
 ≥ {

1,
∑
j∈JnK cj ∈ O,

2,
∑
j∈JnK cj ∈ E.

The truth-telling portfolio is an equilibrium for the median
estimator.

REMARK 3.2: Corollary 11 shows that the truth-telling
portfolio is an equilibrium if no individual coalition has the
majority. Thus, the median estimator is extremely robust to
manipulation by strategic entities even if they cooperate. This
observation has interesting implications in politics, that is, any
truth finding committee, as a whole, can only recover the truth
so long as no single party has the majority because, in such
case, they can silence the voice of the others.

IV. EXTENSION TO NOISY MEASUREMENTS

Consider the case where sensor i ∈ JnK has access to
noisy measurements of the state denoted by zi = x + wi,
where (wi)i∈JnK are independent zero-mean Gaussian random
variables. Similarly, sensor i uses the conditional distribution
gi(·|zi, θi) to generate its message yi. In this case, we say that
sensor i follows the truth-telling strategy if gi(yi|zi, θi) =
δ(yi − zi). Unfortunately, access to noisy measurements de-
stroys the truth-telling property of the median estimator.

THEOREM 12: The truth-telling portfolio is not an equilib-
rium for the 2`-rejection estimator in the presence of noise.

Proof: Let us pick a sensor k ∈ JnK. Set yj = zj for
all j ∈ JnK \ {k}. Assume that yk = (n − 2`)θk + zk.
Let (ij)

n−1
j=1 be given such that ij 6= k for all 1 ≤

j ≤ n − 1 and yi1 ≤ yi2 ≤ · · · ≤ yin−1
. Note that

k ∈ {` + 1, . . . , n − `} with a positive probability. In that
case, we have x̂ = 1/(n − 2`)

∑n−`
j=`+1 yij . This results in

a cost equal to E{‖(x + θk) − x̂‖2|zk, θk, y1, . . . , yn} =
E{‖x − 1/(n − 2`)

∑n−`
j=`+1 zij‖2|zk, θk, y1, . . . , yn} which

is strictly smaller than sensor k’s cost had it been truthful:
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E{‖(x + θk) − 1/(n − 2`)
∑n−`
j=`+1 zij‖2|zk, θk, y1, . . . , yn}.

Hence, by taking expectation of these terms over y1, . . . , yn,
we can show that the cost of sensor k can be reduced by not
acting truthfully. This concludes the proof.

A similar result can be proved for the median estimator.
THEOREM 13: The truth-telling portfolio is not an equilib-

rium for the median estimator in the presence of noise.
Proof: Let n ∈ O as, with a similar idea, we can prove

the result for n ∈ E. Pick a sensor k ∈ JnK. Let (ij)n−1j=1 be
given such that ij 6= k for all 1 ≤ j ≤ n− 1 and yi1 ≤ yi2 ≤
· · · ≤ yin−1

. Hence, we have

x̂ =


yi(n−1)/2

, yk < yi(n−1)/2
,

yk, yi(n−1)/2
≤ yk ≤ yi(n+1)/2

,

yi(n+1)/2
, yk > yi(n+1)/2

,

This gives

E{‖(x+ θk)− x̂‖2|y1, . . . , yn}

=


E{‖(x+θk)−yi(n−1)/2

‖2}, yk < yi(n−1)/2
,

E{‖(x+θk)−yk‖2}, yi(n−1)/2
≤ yk ≤ yi(n+1)/2

,

E{‖(x+θk)−yi(n+1)/2
‖2}, yk > yi(n+1)/2

.

Selecting yk = E{x+θk|θk, zk} = zk+θk minimizes E{‖(x+
θk)− yk‖2}. This results in a strictly smaller cost than using
a truthful strategy since yi(n−1)/2

≤ zk+θk ≤ yi(n+1)/2
occurs

with a positive probability. This concludes the proof.
Although truth-telling is no longer an equilibrium, we

can characterize another equilibrium that can reveal some
information about the to-be-estimated-variable.

REMARK 4.1: Notice that, without loss of generality, we
can consider an odd number of measurements because we can
always transform an even number of measurements into an
odd number by either discarding a measurement randomly or
by introducing a very large or a very small measurement (that
always gets discarded).

THEOREM 14: Let n ∈ O. The tuple (g∗i )i∈JnK ∈ Gn
defined as g∗i (yi|zi, θi) = δ(yi − (zi + θi)), i ∈ JnK, is an
equilibrium for the median estimator in the presence of noise.

Proof: Following the same line of reasoning as in the
proof of Theorem 13, selecting yk = zk + θk is the best
response of each sensor irrespective of the others in both ex
ante and ex post senses.

REMARK 4.2: It is interesting to note that reporting yk =
zk+θk is a dominant strategy, i.e., it is in the benefit of players
irrespective of other reports (when the players do not form
collations). Therefore, even if some sensors are randomly-
behaving or faulty, the rational ones report zk + θk.

REMARK 4.3: The captured equilibrium in Theorem 14
is not unique. This can be observed from the fact that the
sensors can employ any stochastic or deterministic mappings
for constructing their messages yk when it is very large or very
small, since the message will be discarded regardless and has
no impact on the outcome of the estimation.

PROPOSITION 15: The equilibrium in Theorem 14 results
in limm→∞,n=2m+1 E{‖x− φ((yi)i∈JnK)‖2} = 0.

Proof: At the equilibrium, we have yk = zk + θk =
x+wk+θk. Therefore, x̂ = φ((x+wi+θi)i∈JnK) = x+φ((wi+
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Fig. 1. Estimation error variance for median (blue) and mean (red) estimators
at the equilibrium captured in Theorem 14.

θi)i∈JnK). From [9], we know that limm→∞,n=2m+1 φ((wi +
θi)i∈JnK) = 0, a.s. This concludes the proof.

EXAMPLE 1: Consider an estimation problem in which
Vxx = 1, Vθiθi = 1, and Vwiwi

= 0.1 for all i where Vxx,
Vθiθi , and Vwiwi are the variances of x, θi, and wi, respec-
tively. When using the median estimator, at the equilibrium in
Theorem 14, the sensors report yi = zi+θi,∀i. The blue curve
in Fig. 1 shows the estimation error E{‖x− φ((yi)i∈JnK)‖2}
approximated using 10000 random samples. If, for the signals
transmitted at this specific equilibrium, we were to use the
averaging estimator, the estimation error would follow the red
curve in Fig. 1, which is certainly smaller. This degradation
in the performance is the price of robustness. One way to
capitalize on this difference is to lie to the players that the
utilized estimator is the median one but use an averaging
policy and, hence, nudge them towards a good behaviour
(from the perspective of the estimator) [10]. Note that this is
applicable if the players cannot infer the correct mechanism
by experimenting, e.g., when the players interact with a given
participatory-sensing scheme very infrequently. ♦

V. CONCLUSIONS

In this paper, the problem of designing participatory-sensing
mechanisms is considered. Particularly, it is shown that for a
class of nonlinear estimators, truth telling is an equilibrium of
game modelling the interaction between the sensors and the
estimator. Later, it is established, for the case where the sensors
collude and form coalitions that are no lager than half of the
total participants, that there is always an estimator, specifically
the median estimator, which results in truth telling being an
equilibrium. Future research can focus on dynamic estimation
problems.
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