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Abstract

Recently, a max-plus dual space fundamental solution semigroup for a class of difference Riccati equation (DRE) has been
developed. This fundamental solution semigroup is represented in terms of the kernel of a specific max-plus linear operator
that plays the role of the dynamic programming evolution operator in a max-plus dual space. In order to fully understand
connections between this dual space fundamental solution semigroup and evolution of the value function of the underlying
optimal control problem, a new max-plus primal space fundamental solution semigroup for the same class of difference Riccati
equations is presented. Connections and commutation results between this new primal space fundamental solution semigroup
and the recently developed dual space fundamental solution semigroup are established.
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1 Introduction

The difference Riccati equation (DRE) is of fundamental
importance in the study and solution of optimal control
and filtering problems formulated in discrete time [1], [2].
In the control context, a solution of the DRE (or of the
corresponding differential Riccati equation in continu-
ous time) characterises the controller that solves the as-
sociated optimal control problem, and the optimal cost
associated with that solution. One of the important top-
ics in the investigation of both difference and differential
Riccati equations is the characterisation and represen-
tation of all solutions via some form of fundamental so-
lution [4], [8]. For example, in the (continuous time) dif-
ferential Riccati equation case, the well-known Davison-
Maki fundamental solution [4] exploits the solution of
the corresponding Hamiltonian differential equation via
a Bernoulli substitution technique. Alternatively, a max-
plus fundamental solution developed in [10] exploits the
linearity of the dynamic programming evolution opera-
tor associated with the attendant optimal control prob-
lem, with respect to the max-plus algebra. It has been
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demonstrated that continuous and discrete time formu-
lations of this max-plus fundamental solution facilitate
efficient solution of the differential and difference Riccati
equations respectively [5], [6], [7], [10], [12]. In the latter
case, this max-plus fundamental solution has also been
recently applied in investigating existence of solutions
and finite escape properties of DRE solutions [13].

In the development of this max-plus fundamental solu-
tion for either continuous [10] or discrete time [12], a
specific duality pairing is employed that uniquely iden-
tifies the value function on a given horizon, which re-
sides in a primal space, with a corresponding element of
a max-plus dual space, via the Legendre-Fenchel trans-
form. This dual space element is used to define the ker-
nel of a max-plus linear max-plus integral operator in-
dexed with the same time horizon. By virtue of the afore-
mentioned duality pairing, max-plus linearity of the dy-
namic programming evolution operator, and the semi-
group property enjoyed by this dynamic programming
evolution operator, it is shown that the set of all such
time horizon indexed max-plus linear max-plus integral
operators defines a semigroup in the dual space. In par-
ticular, the value function corresponding to any termi-
nal payoff can be evolved to longer time horizons in the
dual space by application of elements of this semigroup
of max-plus linear max-plus integral operators. As evo-
lution of the value function is equivalent to evolution
of the difference or differential Riccati equation solution
from an initial condition specified by the Hessian of the
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terminal payoff, and this terminal payoffmay be selected
arbitrarily from a large set of semiconvex functions, the
aforementioned semigroup may be regarded as a max-
plus dual space fundamental solution semigroup for the
corresponding difference or differential Riccati equation.

In view of the existing max-plus dual space fundamen-
tal solution developed for difference Riccati equations
[12], the aim of this paper is to explore the existence,
and subsequent properties, of a max-plus primal space
fundamental solution semigroup for the same DRE. In
principle, the construction of such a primal space funda-
mental solution semigroup involves the representation of
the dynamic programming evolution operator for each
time horizon in terms of a specific max-plus linear max-
plus integral operator indexed by the same time hori-
zon. The resulting class of time horizon indexed opera-
tors takes the same form as in the dual space case, but
with each element defined entirely on the primal space.
It is shown that the primal and dual space fundamental
solution semigroups are in fact isomorphic.

In terms of organisation, Section 2 introduces the class
of DREs and associated discrete-time linear quadratic
optimal control problem of interest. Section 3 defines the
max-plus primal and dual spaces. Section 4 summarises
the existing max-plus dual space fundamental solution
semigroup [12], followed by an analogous development
of the new max-plus primal space fundamental solution
semigroup in Section 5. Section 6 includes a detailed
analysis of the connection between the max-plus primal
and dual space fundamental solution semigroups.

In terms of notation, R,N,Z≥0 denote the sets of re-
als, natural numbers, and non-negative integers respec-
tively. Two sets of extended reals are denoted by R

− .
=

R∪{−∞} andR
+ .
= R∪{∞}. The set of n×n real, sym-

metric matrices is denoted by M
n×n .

= {P ∈ R
n×n|P =

PT }. Given P ∈ M
n×n, P > 0 (respectively P ≥ 0)

denotes positive (nonnegative) definiteness of P . The
triple (R−,⊕,⊗) denotes a semiring, representing the
max-plus algebra, with addition and multiplication op-
erations defined respectively by a ⊕ b

.
= max{a, b} and

a ⊗ b
.
= a + b. The max-plus integral of a function

f : Rn → R
− is defined as

∫ ⊕

Rn f(x) dx
.
= supx∈Rn f(x).

2 The difference Riccati equation and optimal
control

Attention is restricted to DREs of the form

Pk+1 = R(Pk), P0 ∈ M
n×n, (1)

with the Riccati operatorR : Mn×n → M
n×n defined by

R(P )
.
= Φ+ATPA+ATPB(γ2 I −BTPB)−1BTPA.

(2)

Here, A ∈ R
n×n, B ∈ R

n×m, n ≥ m, Φ ∈ M
n×n,Φ > 0

are real matrices, and γ ∈ R, γ > 0, is fixed. DRE (1) is
an example of the indefinite difference Riccati equation

[11], [14] as the so-called Popov matrix Π =

[
Φ 0

0 −γ2 I

]

is indefinite. For k ∈ N, define Rk iteratively by

Rk+1 = R ◦Rk, (3)

so that Rk = R ◦R ◦ · · · ◦ R︸ ︷︷ ︸
k times

. A matrix Pk ∈ M
n×n is

a solution of DRE (1) at step k ∈ N corresponding to
initial condition P0 if γ2 I − BTRi(P0)B > 0 for i =
0, 1, · · · , k − 1. This solution can be expressed as Pk =
Rk(P0). DRE (1) arises in the study of linear quadratic
regulator (LQR) [1], where the underlying linear system
dynamics are given by

xk+1 = Axk +Bwk , x0 = x. (4)

The value function Wk : Rn → R, k ∈ Z≥0 of interest is
defined by

Wk(x)
.
= sup

w0,k−1∈(Rm)k
Jk(x; w0,k−1) (5)

via the total payoff

Jk(x;w0,k−1)
.
=
k−1∑

i=0

(
1

2
xTi Φxi −

γ2

2
|wi|

2

)
+

1

2
xTk P0xk .

Here,w0,k−1 ∈ (Rm)k denotes an input sequence for sys-
tem (4) on interval [0, k−1]. It is well known [1] thatWk is
a quadratic function of formWk(x) =

1
2x

T Pk x, x ∈ R
n,

in which Pk ∈ M
n×n is the solution at time k of the DRE

(1) with initial condition P0.

Define the (one-step) dynamic programming evolution
operator S by

(S φ)(x)
.
= sup
w∈Rm

{ 1
2x

TΦx− γ2

2 |w|2 + φ(Ax +Bw)}, (6)

and k-step dynamic programming evolution operator
Sk, k ∈ N, iteratively by

Sk+1 φ
.
= S (Sk φ) . (7)

As a matter of convention, define S0
.
= I to be the iden-

tity operator. Dynamic programming implies that the
set {Sk, k ∈ Z≥0} defines a semigroup of operators, see
[12], and an element Sk propagates the terminal payoff
W0 : Rn → R

− defined by

W0(x) =
1

2
xTP0x, x ∈ R

n, (8)
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to the value function via Wk = SkW0. A fundamental
property of the operator Sk is that it is linear over the
max-plus algebra, that is, Sk(a⊗φ1 ⊕φ2) = a⊗Skφ1 ⊕
Skφ2, see [9], [12].

3 Max-plus primal and dual space

In order to introduce the existing max-plus dual space
fundamental solution semigroup [12], and subsequently
develop a new max-plus primal space fundamental so-
lution semigroup, it is necessary to first introduce the
max-plus primal and dual spaces, and the associated du-
ality pairing.

Definition 3.1 ([9], [10]) GivenK ∈ M
n×n, a function

φ : Rn → R
− is uniformly semiconvex with respect to

K if the function x 7→ φ(x) + 1
2x

TKx : Rn → R
− is

convex on R
n. Analogously, a function φ : Rn → R

− is
uniformly semiconcave with respect to K if the function
x 7→ φ(x) − 1

2x
TKx : Rn → R

− is concave on R
n.

The spaces of uniformly semiconvex and semiconcave
functions are defined with respect to K ∈ M

n×n by

SK+ (Rn)
.
=

{
φ : Rn → R

−

∣∣∣∣
φ is uniformly

semiconvex w.r.t. K

}
, (9)

SK− (Rn)
.
=

{
φ : Rn → R

−

∣∣∣∣
φ is uniformly

semiconcave w.r.t. K

}
. (10)

As per [9], [12], define a pair of operators Dψ and D−1
ψ

for a given M ∈ M
n×n by

Dψ φ = (Dψ φ) (·)
.
= −

∫ ⊕

Rn

ψ(x, ·) ⊗ (−φ(x)) dx ,

(11)

D−1
ψ φ̂ =

(
D−1
ψ φ̂

)
(·)

.
=

∫ ⊕

Rn

ψ(·, z)⊗ φ̂(z) dz , (12)

where the function ψ : R
n × R

n → R is a quadratic
function defined for all x, z ∈ R

n by

ψ(x, z)
.
=

1

2
(x− z)T M (x − z). (13)

Assume the following restrictions on M ∈ M
n×n

throughout.

Assumption 3.2 Given γ ∈ R>0 andB ∈ R
n×m as per

(2) and (4), the matrix M ∈ M
n×n in (13) satisfies the

inequalities

γ2 I −BTRk(M)B > 0, ∀ k ∈ Z≥0, (14)

R(M)−M > 0, (15)

MB(γ2 I −BTMB)−1BTM > 0. (16)

Inequality (14) requires that a particular solution Pk =
Rk(M) of DRE (1) with initial condition P0 = M ex-
ists for all k ∈ N. Inequality (15) implies (see Theorem
3.7) that this particular solution Rk(M) is nondecreas-
ing in k ∈ Z≥0 and satisfies Rk(M) > M for all k ∈ N.
Inequality (16) is useful in deriving the max-plus primal
space fundamental solution semigroup in Section 5.

The following result shows that the operatorsDψ of (11)

and D−1
ψ of (12) can be used to define a duality be-

tween the spaces S−M
+ (Rn) and S−M

− (Rn) of (9) and
(10), where M ∈ M

n×n is as per (13).

Theorem 3.3 The operator Dψ of (11) is a bijection

from S−M
+ (Rn) to S−M

− (Rn) with inverse operator D−1
ψ

given by (12).

Proof: It is first shown that

φ ∈ S−M
+ (Rn) =⇒ Dψφ ∈ S−M

− (Rn), (17)

φ̂ ∈ S−M
− (Rn) =⇒ D−1

ψ φ̂ ∈ S−M
+ (Rn). (18)

For any φ ∈ S−M
+ (Rn), by Definition 3.1 of uniform

semiconvexity with respect to −M , the function φ+ :
R
n → R

− defined by φ+(x)
.
= φ(x)− 1

2x
TMx is convex

onRn. By convex duality (e.g., [3]), the convex conjugate
φ∗+ : Rn → R

+ defined by

φ∗+(η) =

∫ ⊕

Rn

ηTx⊗ (−φ+(x)) dx (19)

is convex on R
n. Hence, by (11),

(Dψφ)(z) = −

∫ ⊕

Rn

ψ(x, z)⊗ (−φ(x)) dx

= −max
x∈Rn

{
−zTMx+ 1

2x
TMx− φ(x)

}
− 1

2z
TMz

= −max
x∈Rn

{
−zTMx− φ+(x)

}
− 1

2z
TMz

= −φ∗+(−Mz)− 1
2z
TMz.

Thus, the function φ̃ : R
n → R

− defined by φ̃(z)
.
=

(Dψφ)(z) +
1
2z
TMz = −φ∗+(−Mz), z ∈ R

n, is concave

from (19). That is, Dψφ ∈ S−M
− (Rn) by Definition 3.1.

To show that (18) holds, fix any φ̂ ∈ S−M
− (Rn). By

Definition 3.1 of uniform semiconcavity with respect to

−M , the function φ̂− : Rn → R
+ defined by φ̂−(z)

.
=

−(φ̂(z) + 1
2z
TMz), z ∈ R

n, is convex on R
n. By convex

duality, the convex conjugate φ̂∗− : Rn → R
− defined by

φ̂∗−(ξ)
.
=

∫ ⊕

Rn

ξT z − φ̂−(z) dz (20)
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is a convex function on R
n. Hence, by (12),

(D−1
ψ φ̂)(x) =

∫ ⊕

Rn

ψ(x, z)⊗ φ̂(z) dz

= max
z∈Rn

{
−xTMz + 1

2z
TMz + φ̂(z)

}
+ 1

2x
TMx

= max
z∈Rn

{
−xTMz − φ̂−(z)

}
+ 1

2x
TMx

= φ̂∗−(−Mx) + 1
2x

TMx.

Thus, the function φ̄ : R
n → R

− defined by φ̄(x)
.
=

(D−1
ψ φ̂)(x) − 1

2x
TMx = φ̂∗−(−Mx), x ∈ R

n, is convex.

That is, D−1
ψ φ̂ ∈ S−M

+ (Rn) by Definition 3.1.

The assertion that the operator D−1
ψ is the inverse

of Dψ is proved in [9, Theorem 2.9]. Thus, for any

φ̂ ∈ S−M
− (Rn), there exists an element φ

.
= D−1

ψ φ̂ ∈

S−M
+ (Rn) such that Dψφ = Dψ(D

−1
ψ φ̂) = φ̂. This,

together with (17), proves that Dψ is bijection from

S−M
+ (Rn) to S−M

− (Rn). �

For the purpose of studying solutions of the DRE (1),
the domain of operator Dψ can be restricted to a space
of quadratic functions specified by

Q−M
+ (Rn)

.
=

{
φ : Rn → R

∣∣∣∣
φ(x) = 1

2x
TΩx,

Ω ∈ M
n×n,Ω > M

}
. (21)

Given any φ ∈ Q−M
+ , the function φ̌ : Rn → R defined by

φ̌(x)
.
= φ(x) + 1

2x
T (−M)x = 1

2x
T (Ω −M)x, x ∈ R

n, is

convex on R
n. This shows that Q−M

+ (Rn) ⊂ S−M
+ (Rn).

Define the range of operatorDψ over the spaceQ−M
+ (Rn)

by ran(Dψ)
.
=
{
Dψφ |φ ∈ Q−M

+ (Rn)
}
. In order to ex-

plicitly characterise ran(Dψ), define a matrix operation
Υ : Mn×n → M

n×n by

Υ(Ω)
.
=M(M − Ω)−1M −M (22)

for Ω ∈ M
n×n such that Ω > M . It can be verified

directly that the inverse of Υ is

Υ−1(Ω)
.
= −M(M +Ω)−1M +M = −Υ(−Ω) (23)

for all Ω ∈ M
n×n such that Ω < −M . Define

Q−M
− (Rn)

.
=

{
φ : Rn → R

∣∣∣∣
φ(x) = 1

2x
TΥ(Ω)x

Ω ∈ M
n×n,Ω > M

}
. (24)

Theorem 3.4 The set Q−M
− (Rn) is the range of

the operator Dψ over the space Q−M
+ (Rn). That is,

Q−M
− (Rn) = ran(Dψ).

Proof: For any φ ∈ Q−M
+ (Rn), let Ω ∈ M

n×n,Ω > M , be

such that φ(x) = 1
2x

TΩx for all x ∈ R
n. From (11), (22),

(Dψφ)(z) = −

∫ ⊕

Rn

ψ(x, z)⊗ (−φ(x)) dx

= −max
x∈Rn

{ 1
2 (x− z)TM(x− z)− 1

2x
TΩx} = 1

2z
TΥ(Ω)z.

Thus, each element in ran(Dψ) corresponds to an element

in Q−M
− (Rn). That is, Q−M

− (Rn) = ran(Dψ). �

The following result is an immediate consequence of The-
orems 3.3 and 3.4.

Corollary 3.5 The operator Dψ of (11) is a bijection

from Q−M
+ (Rn) to Q−M

− (Rn) with inverse D−1
ψ given by

(12).

In view of definitions (11) and (12), Theorem 3.4, and

Corollary 3.5,Q−M
+ (Rn) is referred to as a max-plus pri-

mal space and Q−M
− (Rn) is referred to as a max-plus

dual space. The dynamic programming evolution oper-
ator Sk of (7) propagates the value function Wk of (5)

in the max-plus primal space Q−M
+ (Rn). The domain of

Sk, k ∈ N, is defined by

dom(Sk)
.
=

{
φ ∈ Q−M

+ (Rn)

φ(x) = 1
2x

TΩx

∣∣∣∣
Ω ∈ M

n×n such

that Rk(Ω) exists

}
. (25)

In order to show that the value function Wk stays in
Q−M

+ (Rn) for any horizon k ∈ N and any terminal payoff

W0 ∈ Q−M
+ (Rn), the following monotonicity property of

the Riccati operator Rk from [13] is useful.

Lemma 3.6 Suppose that solutionsP 1
k

.
= Rk(P

1
0 ), P

2
k

.
=

Rk(P
2
0 ) of DRE (1) exist at time k ∈ Z≥0 corresponding

to initial conditions P 1
0 , P

2
0 ∈ M

n×n . Then,

P 1
0 ≤ P 2

0 =⇒ P 1
k = Rk(P

1
0 ) ≤ Rk(P

2
0 ) = P 2

k . (26)

Theorem 3.7 Suppose that Assumption 3.2 holds.
Fix any k ∈ Z≥0, and any initial value function
W0 ∈ dom(Sk) of the form (8), with P0 > M . Then, the

value function Wk = SkW0 satisfies Wk ∈ Q−M
+ (Rn).

Proof: From the definition (25) of dom(Sk), the solu-
tion Rk(P0) exists at time k and the value function
Wk(x) = 1

2x
TRk(P0)x, x ∈ R

n. Since P0 > M , it fol-
lows that Rk(P0) ≥ Rk(M) from the monotonicity of
the operator Rk from Lemma 3.6. Applying the Riccati
operator R to both sides of the inequality R(M) > M
yields R2(M) = R(R(M)) ≥ R(M) > M by Assump-
tion 3.2 and Lemma 3.6. Repeating the process yields
Rk(M) > M . Hence, Rk(P0) ≥ Rk(M) > M . Thus,
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the value function Wk(x) = 1
2x

TRk(P0)x, x ∈ R
n, be-

longs to Q−M
+ (Rn) according to (21). �

Remark 3.8 Theorem3.7 implies thatWk ∈ Q−M
+ (Rn)

at horizon k ∈ Z≥0 if W0 ∈ dom(Sk) ⊂ Q−M
+ (Rn).

Consequently, Theorem 3.3 implies that the max-plus

dual Ŵk
.
= DψWk exists. Theorem 3.4 subsequently

implies that Ŵk ∈ Q−M
− (Rn) with a representation

Ŵk(z) = 1
2z
TΥ(Rk(P0))z, for all z ∈ R

n, where the
operator Υ : Rn×n → R

n×n is as defined in (22).

4 Max-plus dual space fundamental solution
semigroup

Inspired by the continuous time analysis of [10], and the
infinite dimensional analysis of [5], [6], [7], a new max-
plus dual space fundamental solution semigroup for the
corresponding discrete time DRE (1) has recently been
developed, see [12]. With the aim of providing context
for the new max-plus primal space fundamental solution
semigroup presented in this paper, the development in
[12] is summarised below.

Define an auxiliary value function Ŝk : Rn×R
n → R by

applying the operator Sk to the functions ψ(·, z)

Ŝk(x, z)
.
= (Skψ(·, z)) (x). (27)

From [12, Theorem 3.1], Ŝk is a quadratic of the form

Ŝk(x, z) =
1

2

[
x

z

]T
Qk

[
x

z

]
, (28)

in which the HessianQk may be expressed in block form

by Qk =

[
Q11
k Q12

k

Q21
k Q22

k

]
∈ M

2n×2n. Theorem 3.1 in [12]

shows that the matricesQk may be generated iteratively
for all k ∈ Z≥0 by

Q11
k+1 = R(Q11

k ), (29)

Q12
k+1 = ATQ12

k +ATQ11
k B(γ2I −BTQ11

k B)−1BTQ12
k ,

Q21
k+1 = (Q12

k+1)
T ,

Q22
k+1 = Q22

k +Q21
k B(γ2I −BTQ11

k B)−1BTQ12
k ,

with initial conditionQ0 =

[
M −M

−M M

]
. From the first

equation in (29), each element of {Q11
k , k ∈ Z≥0} satisfies

DRE (1) with Q11
0 = M . That is, Q11

k = Rk(M) for
any k ∈ Z≥0. Inequality (14) in Assumption 3.2 implies
that Q11

k exists for all k ∈ N. Hence Qk exists for all

k ∈ N by (29). As shown in Theorem 3.7, it follows that
Q11
k > M for k ∈ N, from inequality (15) in Assumption

3.2. This implies that the operator Dψ of (11) can be

applied to Ŝk(·, z) of (27), for each z ∈ R
n, to yield a

function Bk(·, z) : Rn → R defined by

Bk(y, z)
.
= (DψŜk(·, z))(y) (30)

= −

∫ ⊕

Rn

ψ(x, y)⊗ (−Ŝk(x, z)) dx

for all y ∈ R
n. In [10], [12], the function Bk : Rn×R

n →
R is used to define a max-plus linear max-plus integral
operator Bk by

(Bk a)(y)
.
=

∫ ⊕

Rn

Bk(y, z)⊗ a(z) dz (31)

for all y ∈ R
n. It may be shown [10] that Bk and Sk of

(7) are related by

Bk = Dψ SkD
−1
ψ (32)

for all k ∈ N. From Corollary 3.5 and Theorem 3.7, Dψ
is a bijection from Q−M

+ (Rn) to Q−M
− (Rn) with inverse

D−1
ψ , and Sk is a map fromQ−M

+ (Rn) toQ−M
+ (Rn). Con-

sequently, (32) implies that Bk is a map from Q−M
− (Rn)

toQ−M
− (Rn). Since {Sk, k ∈ N} defines a semigroup [12],

it follows that {Bk, k ∈ Z≥0} also defines a semigroup

by inspection of (32). Let Ŵk = DψWk, k ∈ Z≥0, be the
max-plus dual of the value function Wk. Applying (32),

BkŴ0 = Bk(DψW0) = (Dψ SkD
−1
ψ )(DψW0) (33)

= Dψ(SkW0) = DψWk = Ŵk.

That is, {Bk, k ∈ Z≥0} defines a semigroup of max-plus
linear max-plus integral operators that propagate the
max-plus dual of the value function with respect to the
time horizon k ∈ Z≥0. This provides an alternative way

of propagating any terminal payoff W0 ∈ Q−M
+ (Rn) to

its corresponding value function Wk at time k ∈ Z≥0.
This is summarised via the commutation diagram of Fig-
ure 1 and the following steps:

❶ Map the terminal payoff W0 into the dual space

Q−M
− (Rn) by Ŵ0 = DψW0.

❷ Propagate Ŵ0 via Bk to Ŵk = BkŴ0.

❸ Recover the value function Wk = D−1
ψ Ŵk via the

inverse dual operator D−1
ψ of (12).

By inspection of (31) and (32), the set of kernels {Bk, k ∈
N} defined via (30) also define a semigroup. In this case,
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W0 Wk

Ŵ0 Ŵk

Dψ

Sk

Bk

D−1
ψ

Fig. 1. Commutation diagram for propagation of Wk by Sk

of (7) or by Bk of (31).

the associate binary operation used for propagation to
longer time horizons is the max-plus convolution

Bk1+k2(y, z) =

∫ ⊕

Rn

Bk1(y, ρ)⊗ Bk2(ρ, z) dρ (34)

for any k1, k2 ∈ N and y, z ∈ R
n. Furthermore, it has

been shown [12] that Bk is a quadratic of the form

Bk(y, z) =
1

2

[
y

z

]T
Θk

[
y

z

]
, (35)

in which the Hessian Θk may be expressed in block form

by Θk =

[
Θ11
k Θ12

k

Θ21
k Θ22

k

]
∈ M

2n×2n. By inspection of (34)

and (35), the set of Hessians {Θk, k ∈ N} also defines
a semigroup, with a corresponding associative binary
operation specified by a matrix operation ⊛ defined by

Θk1+k2 = Θk1 ⊛Θk2 (36)

.
=


Θ11

k1
−Θ12

k1
Π−1

(k1,k2)
Θ21
k1

−Θ12
k1
Π−1

(k1,k2)
Θ12
k2

−Θ21
k2
Π−1

(k1,k2)
Θ21
k1

Θ22
k2

−Θ21
k2
Π−1

(k1,k2)
Θ12
k2


 ,

for all k1, k2 ∈ N, in which Π(k1,k2)
.
= Θ22

k1
+ Θ11

k2
(see

[12]). Conditions that guarantee that Π(k1,k2) > 0 for all
k1, k2 ∈ N are given in Theorem 4.2 of [12]. Hessian prop-

agation via (36) is initialised with Θ1 =

[
Θ11

1 Θ12
1

Θ21
1 Θ22

1

]
,

where an explicit calculation of B1 via (30), and an ap-
plication of (35), yields

Θ11
1 =M(M −Q11

1 )−1M −M, (37)

Θ12
1 =M(M −Q11

1 )−1Q12
1 ,

Θ21
1 = Q21

1 (M −Q11
1 )−1M,

Θ22
1 = Q21

1 (M −Q11
1 )−1Q12

1 +Q22
1 .

Here, Q1 =

[
Q11

1 Q12
1

Q21
1 Q22

1

]
is as per (29), with

Q11
1 = Φ +ATMA+ATMB(γ2 I − BTMB)−1BTMA,

Q12
1 = −ATM −ATMB(γ2 I −BTMB)−1BTM,

Q21
1 = −MA−MB(γ2 I −BTMB)−1BTMA, (38)

Q22
1 =M +MB(γ2 I −BTMB)−1BTM.

The semigroup {Θk, k ∈ N} defined via (36) is referred
to here as the max-plus dual space fundamental solution
semigroup for the DRE (1).

From Remark 3.8, the max-plus dual of the value func-

tion Ŵk is a quadratic Ŵk(z) = 1
2z
TΥ(Pk)z, z ∈ R

n,

where Pk = Rk(P0). Denote the Hessian of Ŵk by Ok
.
=

Υ(Pk). Applying (31) and (33) yields

Ŵk(z) =
1
2z
TOkz =

∫ ⊕

Rn

Bk(z, ρ)⊗ Ŵ0(ρ) dρ

=

∫ ⊕

Rn

1

2

[
z

ρ

]T [
Θ11
k Θ12

k

Θ21
k Θ22

k

][
z

ρ

]
⊗

1

2
ρTO0ρ dρ

=
1

2
zT (Θ11

k −Θ12
k (O0 +Θ22

k )−1Θ21
k )z

for all z ∈ R
n and k ∈ N. Thus, the Hessian Ok of

the max-plus dual Ŵk can be computed for any k ∈ N

via the max-plus dual space fundamental solution semi-
group {Θk, k ∈ N} by

Ok = Ψdk(O0), (39)

where the operation Ψdk : Mn×n → M
n×n for each k ∈ N

is defined by

Ψdk(Ω)
.
= Θ11

k −Θ12
k (Ω + Θ22

k )−1Θ21
k . (40)

Note that O0 + Θ22
k < 0 is necessary for the represen-

tation (39), see [13]. From Remark 3.8, Ok and Pk are
related by the operation Υ of (22) and Υ−1 of (23) via
Ok = Υ(Pk) and Pk = Υ−1(Ok), respectively. The rep-
resentation of solution Pk = Rk(P0) of DRE (1) via the
max-plus dual space fundamental solution semigroup
{Θk, k ∈ N} is then given by

O0 = Υ(P0), Ok = Ψdk(O0), Pk = Υ−1(Ok) (41)

for all k ∈ N. Themax-plus dual space fundamental solu-
tion semigroup {Θk, k ∈ N} can be computed using the
propagation rule (36) initialised with Θ1 given in (37).
After {Θk, k ∈ N} is computed, a solution Pk = Rk(P0)
of DRE (1) corresponding to any allowable initial con-
dition P0 > M can be obtained directly using formula
(41). Note that {Θk, k ∈ N} only needs to be computed
once, and its computation is independent of the initial
condition P0.
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5 Max-plus primal space fundamental solution
semigroup

Equation (41) provides a representation of solutions
Pk = Rk(P0) of DRE (1) via the max-plus dual space
fundamental solution semigroup {Θk, k ∈ N}. In this
section, a new max-plus fundamental solution semi-
group is developed that allows a simpler representation
of the solution Pk = Rk(P0).

From (29), matrices Q22
k , k ∈ Z≥0, satisfy the iteration

Q22
k+1 = Q22

k +Q21
k B(γ2I −BTQ11

k B)−1BTQ12
k

with initial conditionQ22
0 =M . SinceQ11

k = Rk(M), k ∈
Z≥0, it follows that γ2 I − BTQ11

k B > 0 by inequality
(15) for all k ∈ Z≥0. Thus, Q

22
k+1 ≥ Q22

k , for all k ∈ Z≥0.
Inequality (14) implies that

Q22
1 = Q22

0 +Q21
0 B(γ2I −BTQ11

0 B)−1BTQ12
0

=M +MB(γ2 I −BTMBT )−1BTM (42)

> M.

Here, Q21
0 = Q12

0 = −M is used, as per (29). Thus,
Q22
k > M for all k ∈ N. Consequently, the operator Dψ

of (11) can be applied to the function Ŝk(x, ·) of (27), for
each x ∈ R

n, to yield a new function Sk(x, ·) : Rn → R

Sk(x, y)
.
=
(
Dψ Ŝk(x, ·)

)
(y) (43)

= −

∫ ⊕

Rn

ψ(z, y)⊗ (−Ŝk(x, z)) dz

for all x, y ∈ R
n and k ∈ N. Applying the inverse dual

operator D−1
ψ of (12) to Sk(x, ·) yields a representation

of Ŝk in terms of Sk, with

Ŝk(x, z) =
(
D−1
ψ Sk(x, ·)

)
(z) =

∫ ⊕

Rn

ψ(z, y)⊗ Sk(x, y) dy.

(44)

Define a max-plus integral operator by

(S̃kφ)(x)
.
=

∫ ⊕

Rn

Sk(x, y)⊗ φ(y) dy (45)

for all x ∈ R
n, k ∈ N, and φ ∈ Q−M

+ (Rn) such that
the max-plus integral in (45) is finite. The next theorem

shows that S̃k coincides with the dynamic programming
evolution operator Sk of (7) on dom(Sk), see (25).

Theorem 5.1 Suppose that dom(Sk) 6= ∅ at horizon k ∈
N. Then, for any φ ∈ dom(Sk),

Skφ = S̃kφ. (46)

Proof: It is shown first that

(
Ŝkφ̂

)
(x) =

∫ ⊕

Rn

Ŝk(x, z)⊗ φ̂(z) dz (47)

for any x ∈ R
n, k ∈ N, and φ̂ ∈ Q−M

− (Rn) such that

D−1
ψ φ̂ ∈ dom(Sk). By max-plus linearity of the operator

Sk,

(Ŝkφ̂)(x) = (SkD
−1
ψ φ̂)(x)

=

(
Sk

∫ ⊕

Rn

ψ(·, z)⊗ φ̂(z) dz

)
(x)

=

∫ ⊕

Rn

(Skψ(·, z)) (x) ⊗ φ̂(z) dz

=

∫ ⊕

Rn

Ŝk(x, z)⊗ φ̂(z) dz.

Then, for any x ∈ R
n, φ ∈ dom(Sk) ⊂ Q−M

+ (Rn), (43),
(44), and (47) imply that

(Skφ) (x) = (SkD
−1
ψ )(Dψφ)(x)

=

∫ ⊕

Rn

Ŝk(x, z)⊗ (Dψφ)(z) dz

=

∫ ⊕

Rn

(∫ ⊕

Rn

Sk(x, y)⊗ ψ(z, y) dy

)
⊗ (Dψφ)(z) dz

=

∫ ⊕

Rn

Sk(x, y)⊗

(∫ ⊕

Rn

ψ(y, z)⊗ (Dψφ)(z) dz

)
dy

=

∫ ⊕

Rn

Sk(x, y)⊗ φ(y) dy = (S̃kφ)(x),

where the third equality uses the fact that ψ(x, z) =
ψ(z, x) for all x, z ∈ R

n. �

Theorem 5.1 and (45) show that the dynamic program-
ming evolution operator Sk is a max-plus linear max-
plus integral operator with kernel Sk defined by (43).

Corollary 5.2 For any φ ∈ dom(Sk) ⊂ Q−M
+ (Rn), k ∈

N, the dynamic programming evolution operator Sk of
(7) satisfies

(Skφ)(x) =

∫ ⊕

Rn

Sk(x, y)⊗ φ(y) dy (48)

for all x ∈ R
n.

Using (48), the value functionWk = SkW0 defined with
respect to W0 ∈ dom(Sk) can be expressed by

Wk(x) =

∫ ⊕

Rn

Sk(x, y)⊗W0(y) dy (49)
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for all x ∈ R
n and k ∈ N. Analogous to Bk of (30), the

function Sk, k ∈ N, is a quadratic function of the form

Sk(x, y) =
1

2

[
x

y

]T
Λk

[
x

y

]
(50)

for all x, y ∈ R
n, in which the Hessian Λk is defined in

block form by Λk =

[
Λ11
k Λ12

k

Λ21
k Λ22

k

]
∈ M

2n×2n. Analogous

to the propagation rules for Bk and its Hessian Θk speci-
fied in (34) and (36), Sk and its Hessian Λk follow similar
propagation rules.

Theorem 5.3 For any k1, k2 ∈ N, the functions Sk1 , Sk2
defined by (43) satisfy

Sk1+k2(x, y) =

∫ ⊕

Rn

Sk1(x, ρ)⊗ Sk2(ρ, y) dρ (51)

for all x, y ∈ R
n and the matrices Λk1 ,Λk2 of (50) satisfy

Λk1+k2 = Λk1 ⊛ Λk2 , (52)

where the ⊛ operation is defined as per (36).

Proof: For any x ∈ R
n, k1, k2 ∈ N and φ ∈ dom(Sk1+k2),

from (46),

(Sk1+k2φ)(x) =

∫ ⊕

Rn

Sk1+k2(x, y)⊗ φ(y) dy

= (Sk1(Sk2φ))(x) =

∫ ⊕

Rn

Sk1(x, ρ)⊗ (Sk2φ)(ρ) dρ

=

∫ ⊕

Rn

Sk1(x, ρ)⊗

(∫ ⊕

Rn

Sk2(ρ, y)⊗ φ(y) dy

)
dρ

=

∫ ⊕

Rn

(∫ ⊕

Rn

Sk1(x, ρ)⊗ Sk2(ρ, y) dρ

)
⊗ φ(y) dy.

Since φ ∈ dom(Sk1+k2) is arbitrary, (51) follows. Apply-
ing the quadratic form (50) of Sk1+k2 , Sk1 , and Sk2 , and
evaluating the quadratic maximisation with respect to
ρ ∈ R

n in (51) explicitly yields (52). �

Similar to Θ1 in (37), the initial condition Λ1 =[
Λ11
1 Λ12

1

Λ21
1 Λ22

1

]
can be obtained from definition (43), with

Λ11
1 = Q12

1 (M −Q22
1 )−1Q21

1 +Q11
1 ,

Λ12
1 = Q12

1 (M −Q22
1 )−1M,

Λ21
1 =M(M −Q22

1 )−1Q21
1 , (53)

Λ22
1 =M(M −Q22

1 )−1M −M,

where Q1 is as per (38).

Recalling that the set {Sk, k ∈ N}, along with operator
composition, defines a semigroup of operators, the sets
{Sk, k ∈ N} and {Λk, k ∈ N} define semigroups, with
respective associative binary operations defined by the
max-plus convolution (51) and the⊛ operation (52). The
semigroup {Λk, k ∈ N} is referred to here as the max-
plus primal space fundamental solution for the DRE (1).
Using representation (49), the semigroup {Λk, k ∈ N}
can be used to derive a new representation of the solution
Pk = Rk(P0) of the DRE (1).

Theorem 5.4 Given the semigroup {Λk, k ∈ N} of (50)
and (52), for any P0 ∈ M

n×n such that Λ22
k + P0 < 0,

the solution Pk = Rk(P0) at horizon k ∈ N of the DRE
(1) is given by

Pk = Ψpk(P0), (54)

where Ψpk : Mn×n → M
n×n is defined by

Ψpk(Ω)
.
= Λ11

k − Λ12
k (Ω + Λ22

k )−1Λ21
k , (55)

for any Ω ∈ M
n×n satisfying Ω+ Λ22

k < 0.

Proof: Fix k ∈ N and an arbitrary P0 ∈ M
n×n such that

P0 + Λ22
k < 0. The solution Pk = Rk(P0) of the DRE

(1) is the Hessian of the value function Wk of (5) with
terminal payoff W0(x) = 1

2x
TP0x, x ∈ R

n. Applying
(49) yields for any x ∈ R

n,

1
2x

TPkx =Wk(x) = (SkW0)(x)

=

∫ ⊕

Rn

Sk(x, y)⊗
1
2y
TP0y dy

= max
y∈Rn




1

2

[
x

y

]T [
Λ11
k Λ12

k

Λ21
k Λ22

k

][
x

y

]
+

1

2
yTP0y





= 1
2x

T (Λ11
k − Λ12

k (P0 + Λ22
k )−1Λ21

k )x.

Since this holds for all x ∈ R
n, (54) follows. �

Remark 5.5 It has been shown [13] that the condition
Λ22
k + P0 < 0 is a necessary and sufficient condition for

the existence of the solution Pk = Rk(P0) of DRE (1)
at time k ∈ N.

The commutation diagram for computation of Pk =
Rk(P0) via the max-plus primal and dual fundamental
solution semigroup is shown in Figure 2.

Comparing (41) and (54), the representation of the DRE
solution Pk = Rk(P0) in terms of the max-plus primal
space fundamental solution semigroup {Λk, k ∈ N} via
(54) has a simpler form than the representation of (41)
via the max-plus dual space fundamental solution semi-
group {Θk, k ∈ N}. Here, {Λk, k ∈ N} is developed di-
rectly in the max-plus primal space, and avoids trans-
formation Υ and Υ−1 between the max-plus primal and
dual spaces.
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P0 Pk

O0 Ok

Υ

Ψpk

Ψdk

Υ−1

Fig. 2. The commutation diagram for computation of
Pk = Rk(P0) via max-plus dual and primal space fundamen-
tal solution semigroups.

6 Connections between themax-plus dual space
and primal space fundamental solution semi-
groups

A solution Pk = Rk(P0) of the DRE (1) can be repre-
sented either by the max-plus dual space fundamental
solution semigroup {Θk, k ∈ N} via (41) or by the primal
space fundamental solution semigroup {Λk, k ∈ N} via
(54). This suggests that there exists a correspondence
between elements of these two semigroups. This section
explores the relationship between these two semigroups.

Note that functions Bk, Sk of (30), (43) are derived from

Ŝk of (27) via the operator Dψ of (11). Thus, both Θk
and Λk, the Hessians of Bk and Sk, are related toQk, the

Hessian of Ŝk. In order to find the connection between
Θk and Λk, the connections between Θk and Qk, and
connections between Λk and Qk are established first. To
this end, define an operator Γ : M2n×2n → M

2n×2n by

Γ(Ω)
.
= Γ

([
Ω11 Ω12

Ω21 Ω22

])
(56)

=

[
M −M(M+Ω11)−1M M(M+Ω11)−1Ω12

Ω21(M+Ω11)−1M Ω22 − Ω21(M+Ω11)−1Ω12

]

for Ω ∈ M
2n×2n such that Ω11+M < 0. It can be verified

directly that the inverse of Γ is

Γ−1(Ω)
.
= Γ−1

([
Ω11 Ω12

Ω21 Ω22

])

=

[
M(M−Ω11)−1M−M M(M − Ω11)−1Ω12

Ω21(M−Ω11)−1M Ω21(M−Ω11)−1Ω12 +Ω22

]

= −Γ(−Ω) (57)

for Ω ∈ M
2n×2n such that M − Ω11 < 0. It has been

shown in Theorem 3.8 of [12] that Θk and Qk are con-
nected by

Qk = Γ(Θk), Θk = Γ−1(Qk), (58)

for any k ∈ N. Note that Q11
k = Rk(M) > M and

Θ11
k = M(M − Q11

k )−1M −M < −M by (29). Thus,

both operations Γ(Θk) and Γ−1(Qk) are well defined. To
establish the connection between Λk and Qk, define an
operator ∆ : M2n×2n → M

2n×2n by

∆(Ω)
.
= ∆

([
Ω11 Ω12

Ω21 Ω22

])
.
=

[
Ω22 Ω21

Ω12 Ω11

]
(59)

for any Ω ∈ M
2n×2n, and a second operation Π :

M
2n×2n → M

2n×2n via the composition

Π
.
= ∆Γ∆, (60)

where Γ,∆ are as per (56) and (59). By inspection of
(59), ∆−1 = ∆. Consequently, for any Ω ∈ M

2n×2n such
that M − Ω22 < 0,

Π−1(Ω) = (∆Γ∆)−1(Ω) = (∆−1Γ−1∆−1)(Ω) (61)

= ∆(−Γ(−∆(Ω))) = −(∆Γ∆)(−Ω) = −Π(−Ω).

The matrix operations Π and Π−1 characterise the con-
nection betweenQk of (28) and Λk of (50) for any k ∈ N.

Theorem 6.1 The matrices Qk of (28) and Λk of (50)
satisfy

Qk = Π(Λk), Λk = Π−1(Qk) (62)

for any k ∈ N.

Proof: From (29), (42), Q22
k is strictly increasing with

respect to k with Q22
0 =M . Consequently, Q22

k > M for
all k ∈ N. Thus, Π−1(Qk) is well defined for all k ∈ N.
Fix any x, y ∈ R

n, k ∈ N. From the definition (60) of Π,

Sk(x, y) =
1

2

[
x

y

]T
Λk

[
x

y

]
=
(
DψŜk(x, ·)

)
(y)

= −

∫ ⊕

Rn

ψ(z, y)⊗ (−Ŝk(x, z)) dz

= −max
z∈Rn



ψ(z, y)−

1

2

[
x

z

]T [
Q11
k Q12

k

Q21
k Q22

k

][
x

z

]


= −max
z∈Rn



ψ(z, y) +

1

2

[
z

x

]T
∆(−Qk)

[
z

x

]


= −
1

2

[
y

x

]T
Γ(∆(−Qk))

[
y

x

]

=
1

2

[
x

y

]T
(−∆Γ∆)(−Qk)

[
x

y

]

=
1

2

[
x

y

]T
Π−1(Qk)

[
x

y

]
.

9



That is, Λk = Π−1(Qk). Since Π is an invertible opera-
tor, it follows that Qk = Π(Λk). �

Combining (58) and (62) yields a correspondence be-
tween Λk and Θk for any k ∈ N. Define a matrix opera-
tion Ξ : M2n×2n → M

2n×2n by

Ξ
.
= Π−1Γ. (63)

The inverse Ξ−1 is given by

Ξ−1(Ω) = (Π−1Γ)−1(Ω) = (Γ−1Π)(Ω) = −Γ(−Π(Ω))

for all Ω ∈ M
2n×2n such that Ω22 +M < 0.

Theorem 6.2 Elements Λk and Θk of the max-plus
primal and dual space fundamental solution semigroups
{Λk, k ∈ N} and {Θk, k ∈ N} (respectively) satisfy

Λk = Ξ(Θk) (64)

for any k ∈ N.

Proof: Fix any k ∈ N. From (58) and (62),

Λk = Π−1(Qk) = Π−1(Γ(Θk)) = (Π−1Γ)(Θk) = Ξ(Θk).

�

Connections amongmatrices Λk, Qk,Θk follow (58), (62)
and (64) and are shown by the commutation diagram
Figure 3.

Λk

Qk Θk

Ξ

Ξ−1

Π Π−1

Γ−1

Γ

Fig. 3. Commutation diagram describes connections between
matrices Qk,Θk, and Λk of (28), (35), and (50).

7 Conclusions

A new max-plus fundamental solution semigroup is
developed for a class of difference Riccati equations
(DREs). This max-plus fundamental solution semi-
group admits computation of all solutions of a DRE in
a specified class, without invocation of duality via the
Legendre-Fenchel transform. Connections between this
new primal space fundamental solution semigroup, and
the previously known dual space fundamental solution
semigroup, are established.
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