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Abstract

Recently, a max-plus dual space fundamental solution semigroup for a class of difference Riccati equation (DRE) has been
developed. This fundamental solution semigroup is represented in terms of the kernel of a specific max-plus linear operator
that plays the role of the dynamic programming evolution operator in a max-plus dual space. In order to fully understand
connections between this dual space fundamental solution semigroup and evolution of the value function of the underlying
optimal control problem, a new max-plus primal space fundamental solution semigroup for the same class of difference Riccati
equations is presented. Connections and commutation results between this new primal space fundamental solution semigroup
and the recently developed dual space fundamental solution semigroup are established.
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1 Introduction

The difference Riccati equation (DRE) is of fundamental
importance in the study and solution of optimal control
and filtering problems formulated in discrete time [1], [2].
In the control context, a solution of the DRE (or of the
corresponding differential Riccati equation in continu-
ous time) characterises the controller that solves the as-
sociated optimal control problem, and the optimal cost
associated with that solution. One of the important top-
ics in the investigation of both difference and differential
Riccati equations is the characterisation and represen-
tation of all solutions via some form of fundamental so-
lution [4], [8]. For example, in the (continuous time) dif-
ferential Riccati equation case, the well-known Davison-
Maki fundamental solution [4] exploits the solution of
the corresponding Hamiltonian differential equation via
a Bernoulli substitution technique. Alternatively, a max-
plus fundamental solution developed in [10] exploits the
linearity of the dynamic programming evolution opera-
tor associated with the attendant optimal control prob-
lem, with respect to the max-plus algebra. It has been
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demonstrated that continuous and discrete time formu-
lations of this max-plus fundamental solution facilitate
efficient solution of the differential and difference Riccati
equations respectively [5], [6], [7], [10], [12]. In the latter
case, this max-plus fundamental solution has also been
recently applied in investigating existence of solutions
and finite escape properties of DRE solutions [13].

In the development of this max-plus fundamental solu-
tion for either continuous [10] or discrete time [12], a
specific duality pairing is employed that uniquely iden-
tifies the value function on a given horizon, which re-
sides in a primal space, with a corresponding element of
a maz-plus dual space, via the Legendre-Fenchel trans-
form. This dual space element is used to define the ker-
nel of a max-plus linear max-plus integral operator in-
dexed with the same time horizon. By virtue of the afore-
mentioned duality pairing, max-plus linearity of the dy-
namic programming evolution operator, and the semi-
group property enjoyed by this dynamic programming
evolution operator, it is shown that the set of all such
time horizon indexed max-plus linear max-plus integral
operators defines a semigroup in the dual space. In par-
ticular, the value function corresponding to any termi-
nal payoff can be evolved to longer time horizons in the
dual space by application of elements of this semigroup
of max-plus linear max-plus integral operators. As evo-
lution of the value function is equivalent to evolution
of the difference or differential Riccati equation solution
from an initial condition specified by the Hessian of the
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terminal payoff, and this terminal payoff may be selected
arbitrarily from a large set of semiconvex functions, the
aforementioned semigroup may be regarded as a maz-
plus dual space fundamental solution semigroup for the
corresponding difference or differential Riccati equation.

In view of the existing max-plus dual space fundamen-
tal solution developed for difference Riccati equations
[12], the aim of this paper is to explore the existence,
and subsequent properties, of a max-plus primal space
fundamental solution semigroup for the same DRE. In
principle, the construction of such a primal space funda-
mental solution semigroup involves the representation of
the dynamic programming evolution operator for each
time horizon in terms of a specific max-plus linear max-
plus integral operator indexed by the same time hori-
zon. The resulting class of time horizon indexed opera-
tors takes the same form as in the dual space case, but
with each element defined entirely on the primal space.
It is shown that the primal and dual space fundamental
solution semigroups are in fact isomorphic.

In terms of organisation, Section 2 introduces the class
of DREs and associated discrete-time linear quadratic
optimal control problem of interest. Section 3 defines the
max-plus primal and dual spaces. Section 4 summarises
the existing max-plus dual space fundamental solution
semigroup [12], followed by an analogous development
of the new max-plus primal space fundamental solution
semigroup in Section 5. Section 6 includes a detailed
analysis of the connection between the max-plus primal
and dual space fundamental solution semigroups.

In terms of notation, R,N,Z>( denote the sets of re-
als, natural numbers, and non-negative integers respec-
tively. Two sets of extended reals are denoted by R™ =
RU{—00} and RT = RU{co}. The set of n x n real, sym-
metric matrices is denoted by M"*" = {P € R"*"|P =
PT}. Given P € M™ " P > 0 (respectively P > 0)
denotes positive (nonnegative) definiteness of P. The
triple (R™,®, ®) denotes a semiring, representing the
max-plus algebra, with addition and multiplication op-
erations defined respectively by a & b = max{a, b} and
a ®b = a+ b The max-plus integral of a function

f:R™ — R~ is defined as fﬂgi f(z)dx = sup,cpn f(2).

2 The difference Riccati equation and optimal
control

Attention is restricted to DREs of the form
Pk+1 = R(Pk), PO S Mnxn, (1)
with the Riccati operator R : M"*™ — M"™*™ defined by

R(P) =&+ ATPA+ ATPB(y*1 — B"PB)"'BT PA.
(2)

Here, A € R"*" B e R"”™™ n>m,dc M & >0
are real matrices, and v € R, v > 0, is fixed. DRE (1) is
an example of the indefinite difference Riccati equation

® 0
0 —21

is indefinite. For k € N, define Ry, iteratively by

[11], [14] as the so-called Popov matrix IT =

Rk+1 =Ro Rkv (3)

so that Ry = RoRo---0oR. A matrix P, € M"*" is
_—
k times

a solution of DRE (1) at step k& € N corresponding to
initial condition Py if 421 — BTR;(Py)B > 0 for i =
0,1,--- ,k — 1. This solution can be expressed as P, =
Ri(Fy). DRE (1) arises in the study of linear quadratic
regulator (LQR) [1], where the underlying linear system
dynamics are given by

Tpy1 = Axp + Bwr, x9=1z. (4)
The value function Wy : R® — R, k € Z>¢ of interest is
defined by

Wi(z) = sup
wo,k—1E€R™)F

Ji (@3 wo k—1) (5)

via the total payoff

k-1
. 1 2 1
Ji (x5 wo 1) = E (isz Dy, — % |wz|2) + gfooxk.
i=0

Here, wo,x—1 € (R™)* denotes an input sequence for sys-
tem (4) on interval [0, k—1]. It is well known [1] that W}, is
a quadratic function of form Wy (z) = 327 Py z,z € R",
in which P, € M™*™ is the solution at time k of the DRE
(1) with initial condition Fy.

Define the (one-step) dynamic programming evolution
operator S by

(S ¢)(z) = sup {%ZCT@,T - l; |w|? + ¢(Ax + Bw)}, (6)

weR™

and k-step dynamic programming evolution operator
Sk, k € N, iteratively by

Spi190 =8 (Sk¢) - (7)

As a matter of convention, define Sg = Z to be the iden-
tity operator. Dynamic programming implies that the
set {Sk, k € Z>o} defines a semigroup of operators, see
[12], and an element Sy propagates the terminal payoff
Wy : R™ — R~ defined by

1
Wo(z) = s2" Pyz,

5 z € R, (8)



to the value function via Wy, = S Wy. A fundamental
property of the operator S is that it is linear over the
max-plus algebra, that is, Sg(a ® ¢1 D ¢2) = a @ Sp1 B
Sk¢2, see [9], [12].

3 Max-plus primal and dual space

In order to introduce the existing max-plus dual space
fundamental solution semigroup [12], and subsequently
develop a new max-plus primal space fundamental so-
lution semigroup, it is necessary to first introduce the
max-plus primal and dual spaces, and the associated du-
ality pairing.

Definition 3.1 (/9], [10]) Given K € M"*™ | a function
¢ R" — R™ is uniformly semiconvexr with respect to
K if the function v — ¢(z) + 227Kz : R" — R™ is
convexr on R™. Analogously, a function ¢ : R™ — R is
uniformly semiconcave with respect to K if the function
x = o(x) — %LL‘TK,T : R™ = R~ s concave on R™.

The spaces of uniformly semiconvex and semiconcave
functions are defined with respect to K € M"*™ by

¢ is uniformly
. ,9)
semiconvex w.r.t. K

SE(R™) = {¢ :R" - R™

¢ is uniformly

SER") ={p:R" - R~ . (10)
semiconcave w.r.t. K

As per [9], [12], define a pair of operators Dy, and Dll
for a given M € M"*™ by

S
Dyd=(Dy9) ()=~ | 0w, @ (~9(x)) de,
(11)
. R ® .
D} 6= (D;'0) )= | w(2)@dz)dz, (12)

R’Vl
where the function ¥ : R™ x R® — R is a quadratic
function defined for all z, z € R™ by

Y(x, z) = %(x—z)TM(x—z). (13)

Assume the following restrictions on M € M"™*"
throughout.

Assumption 3.2 Giveny € Ry and B € R™*™ as per
(2) and (4), the matriz M € M"*"™ in (18) satisfies the
inequalities

v2I - BTR,(M)B >0, Vke Z>o, (14)
R(M) — M >0, (15)

MB(y*I—-B"MB)"'BTM > 0. (16)

Inequality (14) requires that a particular solution P, =
Ri(M) of DRE (1) with initial condition Py = M ex-
ists for all k € N. Inequality (15) implies (see Theorem
3.7) that this particular solution Ry (M) is nondecreas-
ing in k € Z>¢ and satisfies Ry (M) > M for all k € N.
Inequality (16) is useful in deriving the max-plus primal
space fundamental solution semigroup in Section 5.

The following result shows that the operators D, of (11)
and DJI of (12) can be used to define a duality be-
tween the spaces S;M(R”) and S”M(R™) of (9) and
(10), where M € M™*" is as per (13).

Theorem 3.3 The operator Dy, of (11) is a bijection
from STM(R™) to STM(R™) with inverse operator ’D;l
given by (12).

Proof: Tt is first shown that

¢ STMR") = Dyo e STMRY),  (17)
peSMR") =D,'geS;MR").  (18)

For any ¢ € SIM(R"), by Definition 3.1 of uniform
semiconvexity with respect to —M, the function ¢4 :
R" — R~ defined by ¢ () = ¢(z) — 27 Mz is convex
on R™. By convex duality (e.g., [3]), the convex conjugate
¢% : R™ — RY defined by

D
&% (n) = / Wz® (—bi(e)dr  (19)

n

is convex on R™. Hence, by (11),

2]
o)) = = [ 0(e.9)® (~o()da
= — max {—2"Mz+ 32" Mz — ¢(z)} — 32" M=

— T 1. T
__fé%%{_z Mz —¢i(x)} — 32" Mz

=—¢) (—Mz) — %ZTMZ.

Thus, the function ¢ : R” — R~ defined by ¢(z) =
(Dy9)(2) + 32T Mz = —¢7.(—=Mz),z € R", is concave
from (19). That is, Dy¢ € S~ (R") by Definition 3.1.

To show that (18) holds, fix any ¢ € S~M(R"). By
Definition 3.1 of uniform semiconcavity with respect to

—M, the function ¢_ : R" — R* defined by ¢_(z) =
—(¢(2) + 32T Mz),z € R, is convex on R". By convex
duality, the convex conjugate ¢E’i : R™ — R~ defined by

&

P ()= | 2-¢_(2)dz (20)

Rn



is a convex function on R™. Hence, by (12),

@ A
D)) = [ vz @ b6
= max {—:vTMz + 32" Mz+ é(z)} + s2" Mz

— T 7 1,.T
_Zné%:f{—x Mz—(b,(z)}—kix Mzx

= ¢* (—Mz) + 12" M.

Thus, the function ¢ : R* — R~ defined by é(z) =
(qul(b)(:v) — 32" Mz = ¢* (—Mz), z € R, is convex.
That is, qulq; € S7M(R™) by Definition 3.1.

The assertion that the operator ’DJ 1'is the inverse
of Dy is proved in [9, Theorem 2.9]. Thus, for any
¢ € STM(R™), there exists an element ¢ = D;lqg €
STM(R") such that Dy¢ = Dy(D,'¢) = ¢. This,
together with (17), proves that Dy is bijection from
ST M(R™) to STM(R™). [ |

For the purpose of studying solutions of the DRE (1),
the domain of operator D, can be restricted to a space
of quadratic functions specified by

_1.T
QMR = {¢ : R™ —HR‘ ¢(z) = 32" Sz, } (21)
QeM™ ™ Q>M
Givenany ¢ € Q;M, the function ¢ : R — R defined by
o(z) = ¢(z) + 32T (—M)z = $27(Q — M)z, z € R", is
convex on R™. This shows that Q7 (R") ¢ S M (R™).
Define the range of operator D, over the space Q;M (R™)
by ran(Dy) = {Dy¢|¢ € Q7Y (R™)}. In order to ex-

plicitly characterise ran(Dy; ), define a matrix operation
T M™*"™ — M"*"™ by

Y(Q)=MM-Q)*M-M (22)

for Q € M™*"™ such that Q@ > M. It can be verified
directly that the inverse of T is

T =-MM+Q)'M+M=-"(-Q) (23)

for all Q € M"™*" such that Q < —M. Define

= LTy (Q

o ME =g e | O =2 T )
QeM™™™ Q>M

Theorem 3.4 The set Q" ™(R") is the range of
the operator Dy over the space Q;M(R"). That 1s,
Q~M(R™) = ran(Dy).

Proof: For any ¢ € Q;M(R"), let Q € M"*" Q > M, be
such that ¢(z) = 227 Qx for allz € R”. From (11), (22),

S
(Dyo)(z) == | ¥(x,2) @ (=¢(x)) dx

R'Vl
= — max{3(z — 2)IM (z - 2) - %xTQx} = %ZTT(Q)Z.

zER™

Thus, each element in ran(Dy,) corresponds to an element
in Q"M (R"). That is, @~ (R™) = ran(Dy). [ |

The following result is an immediate consequence of The-
orems 3.3 and 3.4.

Corollary 3.5 The operator Dy of (11) is a bijection
from Q;M(R”) to Q"M (R™) with inverse D;l given by

(12).

In view of definitions (11) and (12), Theorem 3.4, and
Corollary 3.5, Q;M (R™) is referred to as a maz-plus pri-

mal space and Q"M (R™) is referred to as a maz-plus
dual space. The dynamic programming evolution oper-
ator Sy of (7) propagates the value function Wy of (5)

in the max-plus primal space Q;M (R™). The domain of
Sk, k € N, is defined by

¢ € O M(R™)

¢(z) = 327 Qz

Q € M"*" such
. (25)

dom(S;;) =
(S) { that Ry (£2) exists

In order to show that the value function Wj stays in
Q;M (R™) for any horizon k € N and any terminal payoff
Wy € Q;M (R™), the following monotonicity property of
the Riccati operator Ry from [13] is useful.

Lemma 3.6 Suppose that solutions P} = Ry(Py), PZ =
Ri(P?) of DRE (1) exist at time k € Z>q corresponding
to initial conditions Py, P§ € M" ™ . Then,

Py < P§ = Py = Ri(Py) < Ri(P5) = P (26)

Theorem 3.7 Suppose that Assumption 8.2 holds.
Fix any k € Z>o, and any initial value function
Wy € dom(Sk) of the form (8), with Py > M. Then, the
value function Wi, = SpyWy satisfies Wy, € Q;M(R").

Proof: From the definition (25) of dom(Sk), the solu-
tion Ry (FPp) exists at time k and the value function
Wi(z) = 33" Ri(Py)x,x € R™. Since Py > M, it fol-
lows that Ry (Py) > Ri(M) from the monotonicity of
the operator Ry from Lemma 3.6. Applying the Riccati
operator R to both sides of the inequality R(M) > M
yields Ro(M) = R(R(M)) > R(M) > M by Assump-
tion 3.2 and Lemma 3.6. Repeating the process yields
Ri(M) > M . Hence, Ry (Py) > Ri(M) > M. Thus,



the value function Wy, (z) = 127 Ry (Py)z, z € R", be-
longs to Q7™ (R™) according to (21). |

Remark 3.8 Theorem 3.7 implies that Wy, € Q;M(R")
at horizon k € Zsg if Wy € dom(S,) C QM (R").
Consequently, Theorem 3.3 implies that the max-plus
dual /V[7;€ = Dy Wy, exists. Theorem 3.4 subsequently
implies that /V[7;€ € 9~M(R") with a representation
Wk(z) = 22TY(Ri(Py))z, for all z € R™, where the
operator T : R™*™ — R™*" ig as defined in (22).

4 Max-plus dual space fundamental solution
semigroup

Inspired by the continuous time analysis of [10], and the
infinite dimensional analysis of [5], [6], [7], a new max-
plus dual space fundamental solution semigroup for the
corresponding discrete time DRE (1) has recently been
developed, see [12]. With the aim of providing context
for the new max-plus primal space fundamental solution
semigroup presented in this paper, the development in
[12] is summarised below.

Define an auxiliary value function S g R"xXR"™ = R by
applying the operator Sy, to the functions (-, 2)

Sk(w, 2) = (Skv(- 2)) (@). (27)

From [12, Theorem 3.1], Sy, is a quadratic of the form

T
§k<x,z>:§ m Qx m (28)

in which the Hessian @ may be expressed in block form

11 12
by Qk [Q; QSQ] € M?"*2" Theorem 3.1 in [12]

shows that the matrices Q; may be generated iteratively
for all k € Z>q by

Qi1 =R(Q1), (29)
Q%1 = ATQ + ATQI'B(T - BTQYB) BT Q)
Qk+l (Qk+1) )

Q¥ = Q2 + QY BT - BTQ'B)T BT Q)2
s - M -M

with initial condition Qy = . From the first

-M M
equation in (29), each element of{Q,C ,k: € Z>o} satisfies
DRE (1) with Q' = M. That is, Q}' = Ry(M) for

any k € Z>o. Inequahty (14) in Assumptlon 3.2 implies
that Q4! exists for all k € N. Hence Qy, exists for all

k € N by (29). As shown in Theorem 3.7, it follows that
> M for k € N, from inequality (15) in Assumption
3.2. This implies that the operator Dy of (11) can be

applied to §k(,z) of (27), for each z € R™, to yield a
function Bg(+, z) : R™ — R defined by

Bi(y, 2) = (DySk(-,2))(y) (30)
D

=— w(w Y) @

~

(—Sk(z, 2)) dx

for all y € R™. In [10], [12], the function By : R* xR —
R is used to define a max-plus linear max-plus integral
operator By by

&
(Bia)(y) = / Bi(y.z) @a(z)dz  (31)

n

for all y € R™. It may be shown [10] that By and S, of
(7) are related by

B, = Dy SﬁD;l (32)

for all £ € N. From Corollary 3.5 and Theorem 3.7, D,
is a bijection from Q7 (R") to Q=" (R") with inverse
qul, and Sy is amap from Q7 (R") to Q7™ (R™). Con-
sequently, (32) implies that By, is a map from QM (R")
to QM (R™). Since {S, k € N} defines a semigroup [12],
it follows that {By, k € Z>0} also defines a semigroup

by inspection of (32). Let Wk = DyWi, k € Z>o, be the
max-plus dual of the value function Wy. Applying (32),

BiWy = By (DyWo) =
= Dy(SkWo)

(Dy Sk D, ) (DyWo)  (33)
= DyWi = Wy

That is, {Bk, k € Z>¢} defines a semigroup of max-plus
linear max-plus integral operators that propagate the
max-plus dual of the value function with respect to the
time horizon k € Zx>(. This provides an alternative way
of propagating any terminal payoff W, € Q7 (R") to
its corresponding value function Wj, at time k € Zx>o.
This is summarised via the commutation diagram of Fig-
ure 1 and the following steps:

a Map the termmal payoff Wy into the dual space
Q-M(R") by Wo = Dy Wo.

O Propagate Wo via By, to Wk = BkWo

O Recover the value function W, = ’Dw Wk via the
inverse dual operator D, Lof (12).

By inspection of (31) and (32), the set of kernels {By, k €
N} defined via (30) also define a semigroup. In this case,



WO Wk
D Dt

2 P

_Z By, L

WO Wk

Fig. 1. Commutation diagram for propagation of Wy by Sk
of (7) or by By of (31).

the associate binary operation used for propagation to
longer time horizons is the max-plus convolution

®
Bk1+k2 (y,z) = /]R Bkl (yup) ®B7€2 (p,z) dp (34)

for any k1,k2 € N and y, z € R". Furthermore, it has
been shown [12] that By is a quadratic of the form

T

o |

z

11y
Bk(yuz) = 5 ) (35)
z

in which the Hessian © may be expressed in block form
oLl o2
o2 o
and (35), the set of Hessians {O, k € N} also defines

a semigroup, with a corresponding associative binary
operation specified by a matrix operation ® defined by

by ©) = € M?"*2n_ By inspection of (34)

@lirkz = ekl ® ®k2 (36)
-1 -1
- 911& - Gllcfn(kl,kz)gﬁ _Gllcfn(kl,kg)e)llcg
2177—1 21 22 2177—1 12 |’
_Gkgn(kl,k2)®k1 91@2 - Gkgn(kl,k2)®k2

for all k1,ks € N, in which H(kl,kg) = @i? + @llci (See
[12]). Conditions that guarantee that Iy, x,) > 0 for all
k1, ko € Nare given in Theorem 4.2 of [12]. Hessian prop-
01! 012
07! 032
where an explicit calculation of By via (30), and an ap-
plication of (35), yields

agation via (36) is initialised with ©; =

)

o' =M(M —-Qi")"'M - M, (37)
612 = (M1 - Q1) Q1.

02 — Q2(M — Q') ~M,
022 — (M — Q)~1Q!2 4 Q2.
1 g2
Here, Q1 = is as per (29), with
o op

W0+ ATMA+ATMB(*I - B"MB) 'BTMA,

1?=—A"M - A"MB(y*I - B"MB)"'B" M,
2= _MA- MB(2I—-B"MB)"'BTMA, (398
22 = M+ MB(y*I - B"MB) BT M.

The semigroup {Og, k € N} defined via (36) is referred
to here as the max-plus dual space fundamental solution
semigroup for the DRE (1).

From Remark 3.8, the max-plus dual of the value func-
tion W}, is a quadratic W (z) = $27Y(P)z,2 € R",

o~

where P, = Ry (Fo). Denote the Hessian of Wy by Oy =
T(Py). Applying (31) and (33) yields

—~ @ —~
Wi(2) = 3270k2 = / By (z, p) @ Wo(p) dp

/691[2
"2

1
= ST (6} — Of(0s + 67) 67

T 11 12
Gk Gk

21 22
ek ek

z

1
@ 5p" Oopdp

p

for all z € R™ and k£ € N. Thus, the Hessian Oy of

the max-plus dual Wk can be computed for any k£ € N
via the max-plus dual space fundamental solution semi-
group {Oy, k € N} by

Ok = Ui (Oy), (39)

where the operation W¢ : M"*" — M"*" for each k € N
is defined by

Q) =01l —02(Q+062)1ezl (40)

Note that Op + ©%2 < 0 is necessary for the represen-
tation (39), see [13]. From Remark 3.8, Oy, and P are
related by the operation Y of (22) and T~! of (23) via
Ok = Y(Py) and P, = Y71(Oy), respectively. The rep-
resentation of solution P, = Ry (Py) of DRE (1) via the
max-plus dual space fundamental solution semigroup
{O, k € N} is then given by

Oo = T(Py), O = V(0y), P, =Y"10) (41)

for all k£ € N. The max-plus dual space fundamental solu-
tion semigroup {Oy, k € N} can be computed using the
propagation rule (36) initialised with ©; given in (37).
After {Oy, k € N} is computed, a solution P, = Ry (FPp)
of DRE (1) corresponding to any allowable initial con-
dition Py > M can be obtained directly using formula
(41). Note that {Oy, k € N} only needs to be computed
once, and its computation is independent of the initial
condition Fy.



5 Max-plus primal space fundamental solution
semigroup

Equation (41) provides a representation of solutions
P = Ri(Py) of DRE (1) via the max-plus dual space
fundamental solution semigroup {O,k € N}. In this
section, a new max-plus fundamental solution semi-
group is developed that allows a simpler representation
of the solution P, = Ry (F).

From (29), matrices Q3, k € Z>o, satisfy the iteration
£, QF + Q1B BQE) BTG

with initial condition QZ? = M. Since Q}' = Ry (M), k €
Z>y, it follows that v2 I — BTQ}'B > 0 by inequality

(15) for all k € Z>o. Thus, Q72 , > Q32, for all k € Z>o.

Inequality (14) implies that
2 O + QI B( - BTQYB) BTQ)
=M+ MB(W1-B"MB")'BT"M  (42)
> M.

Here, Q3! = Q%> = —M is used, as per (29). Thus,
22 > M for all k € N. Consequently, the operator Dy,

of (11) can be applied to the function Sk (z,) of (27), for
each z € R"™, to yield a new function Si(z,-) : R™ - R

Sk(@.y) = (DuSi(a,)) v) (43)
@ —~
= | ¥y e (S 2) e

for all z,y € R™ and k € N. Applying the inverse dual
operator DJI of (12) to Sk (z,-) yields a representation

of §k in terms of Sy, with

. 3]
Sk(@,2) = (Dy'S(@.)) (=) = | (z,9) © Su(w,) dy.

R™
(44)

Define a max-plus integral operator by

52

(&@mi/’&mw®ww@ (45)

n

for all z € R,k € N, and ¢ € Q7™ (R") such that
the max-plus integral in (45) is finite. The next theorem

shows that Sy, coincides with the dynamic programming
evolution operator Sy, of (7) on dom(Sg), see (25).

Theorem 5.1 Suppose that dom(Sy) # () at horizon k €
N. Then, for any ¢ € dom(Sg),

Skd = Sio. (46)

Proof: It is shown first that

69/\ ~
. Sk(z,2) ® ¢(2)dz (47)

(gké) (CL‘) =
for any z € R", k € N, and ¢ € Q~M(R") such that
qulé € dom(Sy,). By max-plus linearity of the operator
Skv

(Ed)(x) = (5D )(x)
@ ~

_@k wmA®wwwym
Rn

@ A~
:/<&ww»m®¢ww

®A ~
= Sk(z,2) ® ¢(2)dz.
Rn

Then, for any = € R", ¢ € dom(S),) € Q7™ (R"), (43),
(44), and (47) imply that

(Sko) (x) = (SkDy ") (Dyo) ()

®A
-/ Sk(z,2) ® (Dy)(2) dz

_/@<f%ﬂﬁw®wam@)®wwmww

n n

n R

[$] D

_/’amw®< ¢mA®wwmm§dy
69 ~

= Sk(z,y) ® ¢(y) dy = (Sko)(x),

R

where the third equality uses the fact that ¢ (z,2) =
Y(z,x) for all x, 2 € R™. |

Theorem 5.1 and (45) show that the dynamic program-
ming evolution operator Sy is a max-plus linear max-
plus integral operator with kernel Sy, defined by (43).

Corollary 5.2 For any ¢ € dom(Sx) € 97 (R™), k €
N, the dynamic programming evolution operator Si of

(7) satisfies

@
(&@m:/’&mm®wm@ (48)

n

for allz € R™.

Using (48), the value function Wi, = S W, defined with
respect to Wy € dom(Sy) can be expressed by

D
Wi() = ]f Sk(r.y) © Woly)dy  (49)

n



for all € R™ and k € N. Analogous to By, of (30), the
function Sg, k € N, is a quadratic function of the form

T
x
“l
Y
for all z,y € R™, in which the Hessian Ay, is defined in
ALL A
A2 A2
to the propagation rules for By and its Hessian ©, speci-

fied in (34) and (36), Sy and its Hessian Ay, follow similar
propagation rules.

X

m@w=§[ (50)

Y

block form by Ay = € M?"*2n Analogous

Theorem 5.3 Foranyki, ks € N, the functions S, , Sk,
defined by (43) satisfy

D
Ski+ks (2,Y) = o Sky (%, p) ® Sk, (p, y) dp (51)
forallx,y € R™ and the matrices Ak, , Ay, of (50) satisfy
Apytky = Aiy @ Ay, (52)
where the ® operation is defined as per (36).

Proof: For any © € R™, k1, ke € Nand ¢ € dom(Sk, +£,),
from (46),

D

& Sk1+7€2 (xu y) ® ¢(y) dy

(Sk1+7€2 ¢) (JJ) =
52

:wmammw:/smLm®@mwmp

n

= /}j Sty (2,0) ® (/R@ Ska (0, y) ® d(y) dy) dp
- /ia ( nj Sk, (z, ) ® Sk, (p,v) dp) @ ¢(y) dy.

Since ¢ € dom(Sk, +k,) is arbitrary, (51) follows. Apply-
ing the quadratic form (50) of Sk, +#,, Sk, , and Sg,, and
evaluating the quadratic maximisation with respect to
p € R™ in (51) explicitly yields (52). |

Similar to ©; in (37), the initial condition A; =
ATt A2

51 rop | CBN e obtained from definition (43), with
AT A

A= QM - Q)13 + Q1

A = QEOL - @) M,

AT = MO - QPR )
AP = MM - Q)M = M

where @) is as per (38).

Recalling that the set {S, k € N}, along with operator
composition, defines a semigroup of operators, the sets
{Sk,k € N} and {Aj, k € N} define semigroups, with
respective associative binary operations defined by the
max-plus convolution (51) and the ® operation (52). The
semigroup {Ay, k € N} is referred to here as the max-
plus primal space fundamental solution for the DRE (1).
Using representation (49), the semigroup {Ag, k € N}
can be used to derive a new representation of the solution
P, = Ry (FPy) of the DRE (1).

Theorem 5.4 Given the semigroup {Ax, k € N} of (50)
and (52), for any Py € M™ "™ such that A3? + Py < 0,
the solution P, = Ry(Fo) at horizon k € N of the DRE
(1) is given by

P = W(Ry), (54)
where UF - M"*™ — M"™ ™ is defined by

PP(Q) = Ayt = AZ(Q+ AP TIATY (55)
for any Q € M™ ™ satisfying Q + A2% < 0.

Proof: Fix k € N and an arbitrary Py € M"*" such that
Py + A?? < 0. The solution P, = Ry(Fp) of the DRE
(1) is the Hessian of the value function Wj, of (5) with
terminal payoff Wy(z) = %ZCTPO,T, x € R™ Applying
(49) yields for any x € R™,

%xTka = Wk(ilf) = (SkW())(I)
D
= / Sk(z,y) ® $y" Poy dy

1|z ALl Al2
max § — k k
veR 1 2 Ly | (AR AR Ly
= 32T (A = AP (P + AF) T A .

T

1
+ §ZJTPOZ/

T

Since this holds for all z € R™, (54) follows. |

Remark 5.5 It has been shown [13] that the condition
A?2 + Py < 0 is a necessary and sufficient condition for
the existence of the solution P, = Ry (P) of DRE (1)
at time k € N.

The commutation diagram for computation of P, =
Ri(Py) via the max-plus primal and dual fundamental
solution semigroup is shown in Figure 2.

Comparing (41) and (54), the representation of the DRE
solution P, = Ry (P) in terms of the max-plus primal
space fundamental solution semigroup {Ag, k € N} via
(54) has a simpler form than the representation of (41)
via the max-plus dual space fundamental solution semi-
group {Oy, k € N}. Here, {Ag, k € N} is developed di-
rectly in the max-plus primal space, and avoids trans-
formation Y and Y~! between the max-plus primal and
dual spaces.



\Ifd
0o b

Oy,

Fig. 2. The commutation diagram for computation of
P, = R (Py) via max-plus dual and primal space fundamen-
tal solution semigroups.

6 Connections between the max-plus dual space
and primal space fundamental solution semi-
groups

A solution P, = Ry (FPo) of the DRE (1) can be repre-
sented either by the max-plus dual space fundamental
solution semigroup {O, k € N} via (41) or by the primal
space fundamental solution semigroup {Ag, k € N} via
(54). This suggests that there exists a correspondence
between elements of these two semigroups. This section
explores the relationship between these two semigroups.

Note that functions By, Sy of (30), (43) are derived from

Sk of (27) via the operator D, of (11). Thus, both Oy
and Ay, the Hessians of By, and S, are related to Qy, the

Hessian of §;€ In order to find the connection between

O, and Ay, the connections between © and @, and

connections between A, and Q) are established first. To

this end, define an operator I' : M2"*27 — M2 X2n Ly
Qll Ql2

r(Q) = I‘< g1 g2 ) (56)

M -MM+YTIM MM 40O
QQl(M_,’_Qll)flM QQ2 _ 921 (M+Qll)71912

for Q € M?™*2" such that Q'+ M < 0. It can be verified
directly that the inverse of T is

r-t@Q=r < )

MM—-QM'M-M  M(M-Q')~1Q!2
Q21(M_Qll)—1M Q21(M_Qll)—1912+922
=-T(-9) (57)

Qll Ql2
Q21 QQ2

for Q € M?7%2" guch that M — Q' < 0. It has been
shown in Theorem 3.8 of [12] that ©; and @ are con-
nected by

Qr=T(0k), O =T""(Qw) (58)
for any k € N. Note that Q}' = Rx(M) > M and
Ol = M(M — QY)~'M — M < —M by (29). Thus,

both operations I'(©y) and T'~1(Qy,) are well defined. To
establish the connection between Ay and Qf, define an
operator A : M2n*2n s M[2nx2n by

>i

for any Q € M?"*?" and a second operation II :
M?2mx27 s M27X27 via the composition

Q1 Qo
Qo1 Qoo

Qoo Qo1

(59)
QIQ Qll

A(Q)iA<

Il = ATA, (60)

where I', A are as per (56) and (59). By inspection of
(59), A1 = A. Consequently, for any Q € M?"*2" guch
that M — Q22 <0,

() = (ATA) (@) = (A7'T A7) (Q)  (61)
— A(-D(~A(Q)) = —(ATA)(-9) = ~II(~).

The matrix operations IT and II™! characterise the con-
nection between @y, of (28) and Ay, of (50) for any k € N.

Theorem 6.1 The matrices Q. of (28) and Ay of (50)
satisfy

Qe =T(Ax), Ap=T1""(Qx) (62)

for any k € N.

Proof: From (29), (42), Q3?2 is strictly increasing with
respect to k with Q3% = M. Consequently, Q3% > M for
all k € N. Thus, II7(Qg) is well defined for all k € N.
Fix any z,y € R", k € N. From the definition (60) of II,

sk(:v,y)_% ; A B = (DuSit) )
(&)
= . V(z,y) ® (—Sk(x,2))dz
T
1 T Qll Q12 T
R {W’y)‘ 2 H [le Q%] H
T
:_?é%é {1/)(2,(7;)4-% z‘| A(-Qr) [z‘|
T
:_%B F(A(—Qk))m
T
- l (~APA)(-Qx) M
Y Yy
T
1|z _ x
= 5 y IT I(Qk) [y‘|




That is, Ay = II71(Qy). Since II is an invertible opera-
tor, it follows that Qj = II(Ay). |

Combining (58) and (62) yields a correspondence be-

tween Ay and Oy for any k € N. Define a matrix opera-

tion = : M2nx2n _ 2nx2n 1y
E=1'T. (63)

The inverse 21 is given b
y

(1]

Q) = (') THQ) = (PTHI)(Q) = ~T(-11(Q)

for all € M?7*2" such that Q2? + M < 0.

Theorem 6.2 Elements Ar and Oy of the maz-plus

primal and dual space fundamental solution semigroups

{Ak, k € N} and {Oy, k € N} (respectively) satisfy

Ap = E(O%) (64)

for any k € N.

Proof: Fix any k € N. From (58) and (62),

Ap =117 Q) = T H(T'(B)) = (II7'T)(O) = E(Ox).
|

Connections among matrices Ay, Qr, O follow (58), (62)

and (64) and are shown by the commutation diagram
Figure 3.

Ay

Imjjm!

Qr

O

Fig. 3. Commutation diagram describes connections between
matrices Qk, O, and Ay of (28), (35), and (50).

7 Conclusions

A new max-plus fundamental solution semigroup is
developed for a class of difference Riccati equations
(DREs). This max-plus fundamental solution semi-
group admits computation of all solutions of a DRE in
a specified class, without invocation of duality via the
Legendre-Fenchel transform. Connections between this
new primal space fundamental solution semigroup, and
the previously known dual space fundamental solution
semigroup, are established.
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