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Until recently, the study of plasticity of neural circuits focused almost exclusively on potentiation and depres-
sion at excitatory synapses on principal cells. Other elements in the neural circuitry, such as inhibitory
synapses on principal cells and the synapses recruiting interneurons, were assumed to be relatively inflex-
ible, as befits a role of inhibition in maintaining stable levels and accurate timing of neuronal activity. It is
now evident that inhibition is highly plastic, with multiple underlying cellular mechanisms. This Review
considers these recent developments, focusing mainly on functional and structural changes in GABAergic
inhibition of principal cells and long-term plasticity of glutamateric recruitment of inhibitory interneurons in
the mammalian forebrain. A major challenge is to identify the adaptive roles of these different forms of plas-
ticity, taking into account the roles of inhibition in the regulation of excitability, generation of population oscil-
lations, and precise timing of neuronal firing.
Introduction
Activity-dependent plasticity of neurotransmission is central to

memory encoding and also plays a key role in the development

of the nervous system. Persistent changes in communication

among neurons also probably represent both adaptive and mal-

adaptive responses tomany forms of injury to the CNS. Plasticity

in all its forms is thus inextricably intertwined with almost all

aspects of brain function. Until recently, most efforts to under-

stand the cellular and molecular mechanisms of plasticity of

neurotransmission in the CNS were overwhelmingly directed at

long-term potentiation (LTP) of excitatory synapses on pyramidal

neurons and, to a much lesser extent, long-term depression

(LTD) in pyramidal neurons and at parallel fiber synapses on

cerebellar Purkinje cells. Plasticity of inhibition has received

less attention. Although progress in one or the other aspect of

this topic has recently been reviewed (Castillo et al., 2011; Kull-

mann and Lamsa, 2011; Luscher et al., 2011), this article has

a broader scope: to consider the diversity of inhibitory plasticity

in the context of circuit development and function.

The most obvious impediment to understanding inhibitory

plasticity is the diversity of interneurons, loosely defined as locally

projecting cells that release GABA from their terminals. Even

classifying interneurons as exclusively inhibitory is problematic,

because GABA can depolarize targets early in development

(Ben-Ari et al., 2007), and axo-axonic synapses may even retain

this ability into adulthood (Szabadics et al., 2006). Although a

definitive taxonomy of interneurons is still some way off, recent

advances in identifying the time and birthplace of GABAergic

neurons in theganglionic eminences, and the transcription factors

that are active early on, are helping to classify them (Ascoli et al.,

2008). It remains to be determined to what extent they exist as

discrete nonoverlapping types, as opposed to unique outcomes

of combinatorial transcription factor expression and stochastic

interactions as they migrate through the cortical mantle.

A further obstacle to the study of plasticity of inhibition is that

interneurons themselves are innervated by both excitatory and

inhibitory synapses. Ultimately, changes in inhibitory signaling
must be considered from the point of view of information pro-

cessing and storage. We will start by examining the different

types of plasticity reported at GABAergic synapses on principal

cells and synapses recruiting interneurons before asking how

they might impact on circuit computations and contribute to

disease.

Retrograde Signaling at Inhibitory Synapses
Several robust forms of plasticity of GABAergic signaling are

elicited by postsynaptic activity, imposed experimentally by

current injection or stimulation of excitatory afferents converging

on the target neuron. Direct depolarization of principal cells

elicits a robust, albeit transient depression of GABA release

from a subset of presynaptic interneurons, which has been

named depolarization-mediated suppression of inhibition (DSI).

DSI was first reported in cerebellar Purkinje cells and hippo-

campal pyramidal neurons (Llano et al., 1991; Pitler and Alger,

1992) and has since been observed in many other regions of

the CNS. According to the generally accepted model, the endo-

cannabinoid (eCB) 2-arachidonoylglycerol (2-AG) is synthesized

in principal neurons and diffuses to activate presynaptic G

protein-coupled CB1 receptors, leading to a temporary depres-

sion of evoked and spontaneous GABA release (Kreitzer and

Regehr, 2001; Ohno-Shosaku et al., 2001; Wilson and Nicoll,

2001) (comprehensively reviewed in Kano et al., 2009). Although

postsynaptic Ca2+ entry via voltage-dependent Ca2+ channels

and NMDA receptors is a robust stimulus for the synthesis of

2-AG by diacylglycerol lipase, this can also be stimulated by

activation of phospholipase C by muscarinic M1/M3 or group I

metabotropic glutamate receptors (Figure 1).

Some complexities in the cellular processing of 2-AG continue

to receive attention (Alger, 2012). For example, an alternative

model proposes that, under some conditions, nitric oxide can

act as a retrograde factor triggering eCB production in the

presynaptic terminal itself (Makara et al., 2007).

CB1 receptors are abundantly expressed by a subset of chole-

cystokinin (CCK)-positive cells, including non-fast-spiking
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Figure 1. Endocannabinoid-Mediated Retrograde Signaling at
GABAergic Synapses
Synthesis of the endocannabinoid 2-AG by the phospholipase Cb (PLC)-di-
acylglycerol lipase (DGL) pathway can be triggered by Ca2+ influx via voltage-
gated Ca2+ channels (VGCCs) but also by activation of Gq/11-coupled
muscarinic M1/M3 or group I mGluRs via a cascade involving inositol tri-
sphosphate receptors. 2-AG is thought to depress GABA release by inhibiting
presynaptic VGCCs and is degraded by monoacylglycerol lipase. The alter-
native endocannabinoid anandamide has been implicated in retrograde
signaling at some synapses and is mainly broken down by fatty acid amyl
hydrolase. iLTD can be triggered by activity at nearby excitatory synapses
together with firing of GABAergic terminals. Its effector mechanisms involve
presynaptic RIM1a and calcineurin at GABAergic terminals. Other retrograde
messengers reported at inhibitory synapses include BDNF, nitric oxide, and
glutamate, although most of these trigger an increase in GABA release.
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basket cells (Katona et al., 1999). In the hippocampus, DSI is

robustly elicited at synapses made by these cells on pyramidal

neurons. Synapses made by Schaffer collateral-associated

interneurons, which also express CCK, appear to be less

susceptible to DSI (Lee et al., 2010). CB1 receptor agonists

mimic these effects, suggesting presynaptic differences among

the CCK-positive interneuron types (Lee et al., 2010). The post-

synaptic neuron is also important in DSI induction, with reliable

DSI produced between CCK-positive basket cells in the hippo-

campus (Ali, 2007), but not at CB1 receptor-positive synapses

onto layer 2/3 cortical GABAergic interneurons, despite CB1

receptor agonists depressing GABA release (Lemtiri-Chlieh

and Levine, 2007; Galarreta et al., 2008). This suggests that

some interneurons lack the ability to synthesize eCBs. In the

hypoglossal nucleus, DSI of glycinergic inhibition to principal

cells has been reported, suggesting that it is not confined to

GABAergic synapses (Mukhtarov et al., 2005).

Although DSI generally lasts less than 5 min, eCBs have also

been implicated in LTD of GABAergic inhibitory transmission

(‘‘iLTD’’). In the lateral amygdala, low-frequency stimulation at

1 Hz, designed to release glutamate at synapses on the target

neuron, was followed by a persistent depression of inhibitory

transmission, which was sensitive to blocking either mGluR1 or

CB1 receptors (Marsicano et al., 2002). The effect was potenti-

ated by blocking anandamide degradation, implying that this
952 Neuron 75, September 20, 2012 ª2012 Elsevier Inc.
eCB, rather than 2-AG, is involved (Azad et al., 2004). In contrast,

iLTD in hippocampal pyramidal neurons is sensitive to blocking

diacylglycerol lipase (Chevaleyre and Castillo, 2003), implicating

2-AG. Roles for presynaptic adenylate cyclase, inhibited by the

ai/o limb of the CB1 signaling cascade, and for the active zone

protein RIM1a, discriminate iLTD from DSI (Chevaleyre et al.,

2007).

This brief summary of CB1 receptor-mediated plasticity of

inhibition focuses exclusively on activity-dependent eCB sig-

naling. Signaling by eCBs may also be tonically active. For

example, a CB1 antagonist was shown to increase GABA

release from a subset of hippocampal CCK-positive interneu-

rons (Losonczy et al., 2004), and similar results have been re-

ported in the hypothalamus (Oliet et al., 2007). These reports

raise the possibility that CB1 receptor-mediated control of

GABA release can be modulated up or down. However, most

of the available CB1 antagonists act as inverse agonists (Kirilly

et al., 2012). The observation that these compounds can

increase GABA release could therefore be explained as relief

from constitutive G protein-coupled receptor activity and there-

fore falls short of demonstrating basal occupancy of CB1 recep-

tors by continued synthesis of eCBs.

Several other retrograde factors have been reported to modu-

late GABA release and lead to long-term changes in inhibitory

transmission. In the ventral tegmental area, nitric oxide can be

synthesized in response to high-frequency stimulation of gluta-

matergic afferents innervating dopaminergic cells. Nitric oxide

in this system appears to trigger LTP of GABAergic transmission

(Nugent et al., 2007). This phenomenon coexists with eCB-medi-

ated iLTD in the same dopaminergic neurons (Pan et al., 2008),

and these long-term changes in GABAergic signaling are modu-

lated by drugs of abuse and D2 dopamine receptors (Nugent

et al., 2007; Pan et al., 2008).

In the neonatal hippocampus, high-frequency stimulation

of afferent fibers can lead to a presynaptic form of LTD of

GABAergic transmission (McLean et al., 1996). The induction

of this phenomenon has been attributed to GABAA receptor-

mediated depolarization, leading to NMDA receptor-mediated

Ca2+ influx. Interestingly, the same conditioning stimuli resulted

in LTP when NMDA receptors were blocked (Caillard et al.,

1999), suggesting that different forms of plasticity can coexist.

A possible mediator for LTP induction is BDNF, which can

be released in an activity-dependent manner from dendrites

(Kuczewski et al., 2008) and plays a role in strengthening

GABAergic synapses early in development (Gubellini et al.,

2005; Inagaki et al., 2008; Sivakumaran et al., 2009; Peng

et al., 2010). Chronic application of BDNF to cultured neurons

increases both the size and the number of GABAergic terminals

(Bolton et al., 2000; Palizvan et al., 2004). Later in development,

BDNF has been reported to depress GABA release (Frerking

et al., 1998), and it has also been implicated in postsynaptic plas-

ticity of GABAA receptors (see below).

Fast-spiking (FS) interneurons are thought not to express

CB1 receptors. Nevertheless, trains of backpropagating action

potentials in layer 2/3 pyramidal neurons in the neocortex can

depress GABA release transiently at synapses made by such

interneurons (Zilberter, 2000). It has been suggested that gluta-

mate, packaged into dendritic vesicles by vGLUT3, is released



Figure 2. Mechanisms Underlying Changes in GABAA Receptor
Function
The trafficking, lateral mobility, and phosphorylation of GABAA receptors all
vary with neuronal activity, with multiple kinases implicated, resulting in either
increases or decreases in GABAergic currents. Epilepsy is also associated
with changes in the subunit composition of GABA receptors. The Cl� equi-
librium potential can also be altered in an activity-dependent manner, princi-
pally by changes in function or trafficking of the transporter KCC2.
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in an activity-dependent manner from pyramidal cell dendrites to

act on presynaptic mGluRs (Harkany et al., 2004). Glutamate

also acts as a retrograde factor in the induction of a transient

increase in GABA release from interneuron terminals triggered

by trains of action potentials in Purkinje cells, although in this

case, presynaptic NMDA receptors were implicated on pharma-

cological grounds (Duguid et al., 2007).

Plasticity of GABAA and Glycine Receptors Triggered by
Postsynaptic Ca2+

The postsynaptic elements of inhibitory synapses are dynamic

structures (Kittler et al., 2000; Lévi et al., 2008), and several

signaling cascades involving protein kinases A and C (PKA and

PKC), Ca2+/calmodulin-dependent kinase II (CamKII), and tyro-

sine kinases converge on GABAA receptors to regulate their

splicing, subunit composition, trafficking, and phosphorylation

(recently reviewed by Vithlani et al., 2011; Figure 2). Several of

these cascades are themselves affected by neuronal activity,

accounting, for instance, for a potentiation of GABAergic trans-

mission reported in Purkinje cells (Kano et al., 1992). Either

depression or potentiation of GABAergic synapses in the deep

cerebellar nucleus can be elicited by stimulation of Purkinje

cell afferents, which results in direct or rebound depolarization,

with the change in synaptic strength dependent on both NMDA

receptors and Ca2+ channels (Morishita and Sastry, 1996; Aizen-

man et al., 1998). Similar findings have been reported in the

neocortex, where action potentials in layer 5 pyramidal neurons

lead to either exo- or endocytosis of GABA receptors (and LTP or
LTD of GABAergic signals), with the polarity of plasticity depend-

ing on the relative contributions of L- and R-type Ca2+ channels

(Kurotani et al., 2008).

Ca2+-permeable receptors can also trigger plasticity of GABA

receptors in the absence of postsynaptic spiking. Thus, in hippo-

campal neurons in acute brain slices, GABAA receptor-mediated

signaling can be transiently depressed by activation of a7 nico-

tinic receptors (Wanaverbecq et al., 2007). NMDA receptor acti-

vation also affects GABAA receptor expression in cultured

neurons, with bidirectional effects that depend at least in part

on the degree of activation of calcineurin (Lu et al., 2000; Mars-

den et al., 2007, 2010; Bannai et al., 2009; Muir et al., 2010).

Although BDNF has been implicated in retrograde signaling

(see above), it also modulates GABAA receptors, with several

studies reporting a rapid decrease in GABAergic currents in

cultured neurons (Brünig et al., 2001; Cheng and Yeh, 2003; Jo-

vanovic et al., 2004) or acute brain slices (Tanaka et al., 1997;

Mizoguchi et al., 2003).

Plasticity of Inhibition Dependent on Presynaptic
Spiking
The different forms of plasticity of inhibitory receptors outlined

above are induced by postsynaptic activity. However, induc-

tion of heterosynaptic hippocampal iLTD has been shown to

require activity of target presynaptic GABAergic terminals and

to depend on calcineurin, providing a potential mechanism to

suppress inhibitory inputs coincident with firing of excitatory

afferents (Heifets et al., 2008). Another heterosynaptic interac-

tion requiring near-synchronous activity of excitatory and inhib-

itory afferents was reported in the developing frog optic tectum,

where activation of presynaptic NMDA receptors on GABAergic

terminals leads to LTD (Lien et al., 2006). In the rodent cerebellar

cortex, on the other hand, presynaptic NMDA receptors have

been implicated in a long-lasting increase in GABA release (Liu

and Lachamp, 2006).

In the visual cortex, LTP of inhibitory synaptic potentials in

layer 5 pyramidal neurons can be elicited by high-frequency

stimulus trains (Komatsu, 1994). Pairing 50 Hz trains of action

potentials in individual fast-spiking neurons with subthreshold

depolarization of postsynaptic layer 4 pyramidal neurons elicits

a postsynaptically expressed LTP of GABAergic transmission

(Maffei et al., 2006). This phenomenon is arguably unexpected

because, unlike glutamatergic synapses, GABAergic synapses

are not obviously equipped with a mechanism to detect the

conjunction of pre- and postsynaptic firing: opening of GABAA

receptors does not on its own lead to major changes in

secondary messengers when the reversal potential of the re-

ceptor is relatively negative, and GABAB receptor signaling lacks

the temporal and spatial precision usually associated with

synapse-specific plasticity.

A quite different form of spike-timing-dependent plasticity

(STDP) is mediated by changes in the driving force for Cl�

through GABAA receptors. In both neuronal cultures and in acute

hippocampal slices, the conjunction of presynaptic interneuron

and postsynaptic principal cell firing within a coincidence win-

dow of ±20ms has been shown to depolarize the Cl� equilibrium

potential, effectively reducing the strength of inhibition (Woodin

et al., 2003) (Figure 2). Interestingly, this coexists with a decrease
Neuron 75, September 20, 2012 ª2012 Elsevier Inc. 953
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in conductance mediated by GABAA receptors that emerges

when the temporal difference between pre- and postsynaptic

firing exceeds ±50 ms. The effect on the Cl� driving force

requires postsynaptic Ca2+ influx via L-type channels, although

NMDA receptors have also been implicated in slices from adult

rodents (Ormond and Woodin, 2009). The nature of the signal

contributed by presynaptic firing is however poorly understood.

Indeed, a change in Cl� transport can be elicited by postsynaptic

spiking alone or by activation of NMDA receptors or of the BDNF

receptor TrkB, mediated by downregulation of the Cl� exporter

KCC2 (Wardle and Poo, 2003; Rivera et al., 2004; Fiumelli

et al., 2005; Kitamura et al., 2008). Protein kinase C has been

shown to regulate both the trafficking and the activity of KCC2

(Lee et al., 2007). There is also evidence for activity-dependent

regulation of the Cl� importer NKCC1 by spiking alone (Brum-

back and Staley, 2008) or coincident pre- and postsynaptic

activity at GABAergic synapses (Balena and Woodin, 2008).

These forms of activity-dependent plasticity coexist with the

well-documented developmental shift of Cl� reversal potential

from de- to hyperpolarizing (reviewed by Ben-Ari et al., 2007;

Blaesse et al., 2009).

A further layer of activity-dependentmodulation of Cl� homeo-

stasis in immature neurons involves GABAB receptors (Xu et al.,

2008). And a temporally asymmetric form of spike-timing-depen-

dent plasticity of GABAergic signaling, superficially resembling

that seen at glutamatergic synapses on principal cells, has

also been reported (Haas et al., 2006). Again, the mechanism

of the temporal coincidence detection remains obscure.

A role for astrocytes in potentiating GABAergic signaling has

also been proposed: in one study, trains of action potentials in

interneurons were followed by an enhancement in spontaneous

GABA release from their terminals, and this required intact

GABAB receptors in neighboring atrocytes (Kang et al., 1998).

Finally, evidence exists for activity-dependent plasticity of inhibi-

tion among hippocampal interneurons, but the induction and

expression mechanisms remain to be determined (Patenaude

et al., 2005; Evstratova et al., 2011).

Plasticity of Excitatory Synapses on Interneurons
Early reports of LTP at glutamatergic synapses on interneurons

in vivo (Buzsáki and Eidelberg, 1982; Tomasulo and Steward,

1996) were hampered by indirect methods used to attribute ex-

tracellularly recorded action potentials to unidentified interneu-

rons. Both increases in interneuron excitability and decreases

in GABAergic transmission accompany LTP of glutamatergic

transmission in the hippocampus (Stelzer et al., 1994; Lu et al.,

2000). However, it is not always straightforward to identify

the locus of plasticity if principal cells innervating interneurons

are themselves recruited synaptically (Maccaferri and McBain,

1996). It has even been argued that interneurons are ill equipped

to express conventional forms of synaptic plasticity seen in pyra-

midal neurons (McBain et al., 1999). Their dendrites are generally

devoid of spines, widely assumed to provide biochemical com-

partmentalization to dendritic signaling (Chen and Sabatini,

2012), and they lack Ca2+/calmodulin-dependent kinase type

IIa (CaMKIIa) (Liu and Jones, 1996; Sı́k et al., 1998), which is a

key kinase downstream of NMDA receptor-mediated Ca2+ influx

in pyramidal neurons. However, the evidence that spines are
954 Neuron 75, September 20, 2012 ª2012 Elsevier Inc.
essential for LTP is purely circumstantial, and the dendrites

of many interneurons are not completely smooth. As for the

essential role of CaMKIIa, this does not rule out closely related

kinases or alternative biochemical cascades, which sustain

LTP induction in pyramidal neurons in early postnatal hippo-

campus (Yasuda et al., 2003) and in dentate granule cells of

mice in which CaMKIIa autophosphorylation is prevented

(Cooke et al., 2006).

LTP at Synapses on Hippocampal Interneurons in the
Feedback Circuit
More direct evidence that excitatory synapses on interneurons

could be persistently altered in a use-dependent manner came

from targeted recordings in acute brain slices (Ouardouz and La-

caille, 1995; McMahon and Kauer, 1997; Cowan et al., 1998; Ma-

hanty and Sah, 1998; Alle et al., 2001). Restricting attention to

subsets of interneurons, consistent patterns of plasticity are

beginning to emerge. Thus, LTP can be elicited in a subset of

interneurons in stratum oriens (Ouardouz and Lacaille, 1995;

Perez et al., 2001; Lamsa et al., 2007b; Jia et al., 2010), which

can be recruited by axon collaterals of local pyramidal neurons

and contribute to feedback inhibition. They include bistratified,

basket, and axo-axonic cells, as well as oriens-lacunosum/mo-

leculare (O-LM) cells. Although LTP in many of these cells can

be induced by pairing presynaptic theta-burst stimulation with

postsynaptic depolarization (Perez et al., 2001; Lapointe et al.,

2004), it can also be triggered when the postsynaptic neuron is

kept at resting membrane potential or even hyperpolarized

(Lamsa et al., 2007b; Oren et al., 2009). Both induction protocols

probably converge on a common cascade that depends on

postsynaptic Ca2+ signaling and mGluR1 receptors but not

NMDA receptors. Roles have also been proposed for TRP chan-

nels, Src/ERK, and intracellular Ca2+ release (Topolnik et al.,

2006). LTP can also be induced by applying a group I mGluR

agonist paired with hyperpolarization (Le Duigou and Kullmann,

2011). The preferential induction at relatively negative potentials

is consistent with a role for inward rectifying, Ca2+-permeable

AMPA receptors (Oren et al., 2009). In keeping with an induction

role for such receptors, excitatory postsynaptic currents re-

corded in cells exhibiting this form of plasticity show strong

inward rectification and express low levels of GluA2 (Lamsa

et al., 2007b; Szabo et al., 2012). Because a requirement for

postsynaptic hyperpolarization is diametrically opposite to the

conventional view of NMDA receptor-dependent LTP as a sub-

strate for Hebb’s postulate (Brown et al., 1988), this phenom-

enon has been described as ‘‘anti-Hebbian’’ LTP (Kullmann

and Lamsa, 2007) (Figure 3A).

NMDA receptor-independent LTP in stratum oriens inter-

neurons is associated with changes in trial-to-trial variability,

paired-pulse ratios, failure rates (Alle et al., 2001; Perez et al.,

2001; Lapointe et al., 2004), and susceptibility to a use-depen-

dent blocker of postsynaptic rectifying AMPA receptors (Lamsa

et al., 2007b), suggestive of a persistent increase in release prob-

ability. The putative retrograde messenger has not, however,

been identified.

NMDA receptor-independent LTP occurs at synapses on

O-LM, parvalbumin-positive basket, axo-axonic, and ivy cells,

but not on CCK-positive CB1 receptor-expressing basket cells,



Figure 3. LTP and LTD at Glutamatergic
Synapses on Interneurons
Both NMDAR-independent (A) and NMDAR-
dependent (B) forms of plasticity occur at many
glutamatergic synapses on interneurons.
(A) NMDAR-independent plasticity requires post-
synaptic group I mGluRs and Ca2+-permeable
rectifying AMPARs and, at some synapses, is
preferentially induced when the postsynaptic
neuron is at a relatively negative potential (anti-
Hebbian LTP). Other ion channels (L-type VGCCs,
nicotinic receptors) can influence the balance of
LTP and LTD. Although most studies have re-
ported that expression is presynaptic, the retro-
grade messengers have not been conclusively
identified.
(B) The conjunction of pre- and postsynaptic
depolarization or activity leads to NMDAR-
dependent ‘‘Hebbian’’ LTP at some synapses,
the expression of which is likely to be post-
synaptic. The relative roles of AMPAR trafficking
and phosphorylation are not known. Although
CaMKIIa is absent, a related kinase is likely to play
a role in NMDAR-dependent LTP.
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while synapses on bistratified neurons are persistently de-

pressed by similar induction stimuli (Lamsa et al., 2007b; Nissen

et al., 2010; Szabo et al., 2012). Strikingly, LTP is restricted to the

pathway that was stimulated during the induction protocol, sug-

gesting a role for micron-scale Ca2+ compartmentalization in

relatively aspiny dendrites (Goldberg and Yuste, 2005; Castillo

and Khodakhah, 2006; Topolnik et al., 2009).

Plasticity in Hippocampal Interneurons in the
Feedforward Pathway
Both NMDA receptor-dependent LTP (Figure 3B) and NMDA

receptor-independent LTD occur at synapses made by Schaffer

collaterals on interneurons in stratum radiatum or stratum pyra-

midale (McMahon and Kauer, 1997; Cowan et al., 1998; Wang

and Kelly, 2001; Lamsa et al., 2005). These cells have not, in

general, been classified systematically and probably include

several different types.

The induction and expression properties of LTP at Schaffer

collateral synapses are similar in most respects to those of

LTP in principal cells (Wang and Kelly, 2001; Lamsa et al.,

2005), although CaMKIIb may play the role of the a isoform

(Lamsa et al., 2007a). As for LTD induction, this is insensitive to

the postsynaptic membrane potential and independent of

NMDA receptors but requires intact group I mGluR and postsyn-

aptic Ca2+ signaling and is accompanied by changes in trial-to-

trial variability suggestive of presynaptic expression (McMahon

and Kauer, 1997; Gibson et al., 2008). It has also been reported

to spread to nonstimulated synapses. Presynaptic TRPV1 chan-

nels have been implicated as receptors for a retrograde factor,

mimicked by the endogenous eicosanoid 12-(S)-HPETE (Gibson

et al., 2008). However, TRPV1 is not abundant in intrinsic hippo-

campal neurons (Cavanaugh et al., 2011). Another signaling

cascade coexists, leading from postsynaptic mGluR5s to long-

lasting depression of glutamate release from Schaffer collaterals

independently of either TRPV1 or CB1 receptors (Le Duigou

et al., 2011; Edwards et al., 2012).

Both LTP and LTD also occur at synapses made by mossy

fibers (the axons of dentate granule cells) on dentate basket cells
or interneurons in CA3 (Laezza et al., 1999; Alle et al., 2001; Lei

et al., 2003; Laezza and Dingledine, 2004; Lei and McBain,

2004; Galván et al., 2008; Sambandan et al., 2010). Here too,

either Ca2+-permeable AMPA receptors or NMDA receptors

are required at different synapses, and multiple forms of

plasticity coexist: stimuli that normally induce NMDA receptor-

independent LTP result in LTD when mGluR1 receptors are

blocked (Galván et al., 2008) or when postsynaptic spiking is pre-

vented during tetanic stimulation (Alle et al., 2001). Conversely,

activity-dependent internalization of presynaptic mGluR7 recep-

tors has been suggested to underlie a metaplastic switch from

LTD to LTP (Pelkey et al., 2005). Pre- and postsynaptic intracel-

lular signaling cascades at many glutamatergic synapses inner-

vating interneurons are thus finely balanced and can be tipped

toward one form of plasticity or the other depending on the state

of the neuron and, presumably, the precise conjunction of pre-

and postsynaptic activity.

LTP and LTD in Interneurons of the Amygdala, Striatum,
Neocortex, and Brainstem
Although much of what we know of plasticity of inhibition has

emerged from studies in the hippocampus, related forms of

plasticity have been reported in several other regions of the

mammalian brain.

LTP in interneurons dependent on Ca2+-permeable AMPA

receptors was first described in the amygdala (Mahanty and

Sah, 1998), where it is restricted to interneurons that express

NMDA receptors lacking NR2B subunits, although Ca2+ influx

via these receptors appears not to contribute to plasticity (Pole-

palli et al., 2010). In contrast to NMDA receptor-independent

plasticity in the hippocampus, the locus of expression of LTP

in these cells appears to be postsynaptic.

In the striatum, several interneurons have been shown to

express STDP at synapses made by cortical glutamatergic affer-

ents (summarized in Fino and Venance, 2011). In FS interneu-

rons, for example, NMDA receptor-dependent LTP was elicited

when the presynaptic action potential preceded the postsyn-

aptic spike and LTD when the order was reversed (Fino et al.,
Neuron 75, September 20, 2012 ª2012 Elsevier Inc. 955
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2008). This STDP rule is thus broadly similar to that seen in

neocortical pyramidal cells.

In FS interneurons of the somatosensory cortex, in contrast,

one study reported mGluR-dependent LTD whether the presyn-

aptic spike preceded or followed the postsynaptic spike (Lu

et al., 2007). A similar pattern was observed at intracortical

glutamatergic synapses on regular-spiking interneurons in

barrel cortex (Sun and Zhang, 2011). mGluR5 receptors also

play a central role in NMDA-independent LTP of excitatory

postsynaptic potentials in FS interneurons of the visual cortex

(Sarihi et al., 2008). In contrast, low-threshold spiking cells in

the same cortical area exhibit both NMDA receptor-dependent

LTP with a ‘‘pre before post’’ protocol and mGluR-dependent

LTD when the spike order is reversed. A further form of LTP

induced by theta-burst stimulation has been reported in

somatostatin-positive neocortical interneurons, which is insensi-

tive to manipulation of postsynaptic Ca2+ channels or NMDA

receptors and may therefore not involve postsynaptic signaling

at all (Chen et al., 2009). At synapses made by layer 2/3

pyramidal neurons on bitufted interneurons in rat neocortex,

postsynaptic action potentials have been reported to lead to a

GABAB receptor-dependent persistent depression of glutamate

release (Zilberter et al., 1999). This finding raises the possibility

that GABA released from dendrites could act as a retrograde

messenger.

Another layer of complexity was revealed in the somatosen-

sory cortex where homo- or heterotypic pairs of synaptically

coupled FS and somatostatin-positive interneurons exhibit

distinct short-term plasticity properties (Ma et al., 2012). Further

supporting the principle of circuit-wide plasticity in interneuron

assemblies, LTD has been observed at electrical synapses in

pairs of burst firing interneurons in the thalamic reticular nucleus

(Haas et al., 2011).

Finally, eCB-dependent LTD of EPSCs in GABAergic cells has

been reported in the brainstem, where it coexists with NMDA

receptor-dependent plasticity (Tzounopoulos et al., 2007).

Although the above catalog of synaptic plasticity in interneu-

rons reveals extensive diversity, two important methodological

issues must be borne in mind. First, a consistent classification

of interneuron types has yet to be agreed, and so the data sets

reported in different studies are not necessarily comparable.

And second, there is a wide variability in species and strains,

recording temperatures, stimulation protocols, and electrophys-

iological methods used by different laboratories. Indeed, LTP is

difficult to elicit in some interneurons when recording in whole-

cell mode but can be elicited reliably when recording with the

perforated-patch method that minimizes disruption of the cyto-

plasm (see, for instance, Lamsa et al., 2005).

Other Forms of Plasticity of Inhibition
This Review focuses mainly on activity-dependent changes

in synaptic strength. Much less well understood is plasticity

of intrinsic excitability of interneurons. An example of this

phenomenon has been reported in fast-spiking interneurons

of the somatosensory cortex, whose excitability decreases

after whisker trimming, a model of chronic sensory deprivation

(Sun, 2009). Structural changes in inhibitory pathways have

also been reported. Thus, both fear conditioning and spatial
956 Neuron 75, September 20, 2012 ª2012 Elsevier Inc.
learning are accompanied by extensive changes in the density

of filopodial synapses made by hippocampal mossy fibers on

dentate hilar interneurons, suggesting a role for feedforward

inhibition in some aspects of memory (Ruediger et al., 2011).

Adaptive Roles of Plasticity of Inhibition
Given the diversity of plasticity of inhibition summarized above, it

is difficult to propose a unifying theoretical framework to explain

its adaptive significance. Nevertheless, several roles can be sug-

gested on teleological grounds.

During development, strengthening of GABAergic synapses in

response to postsynaptic activity (McLean et al., 1996; Caillard

et al., 1999; Xu et al., 2008) may represent a tuning of inhibition

to counteract overexcitation of target neurons. In keeping with

this expectation, experimental suppression of activity in neu-

ronal culture results in loss of GABAA receptors (Kilman et al.,

2002). In the developing auditory brainstem, use-dependent

plasticity of inhibition occurs in parallel with a switch from

GABAergic to glycinergic signaling at several synapses (re-

viewed by Sanes and Kotak, 2011). In the visual cortex, rein-

forcement of GABAergic synapses increases lateral inhibition,

which contributes to the formation of ocular dominance columns

(reviewed by Hensch, 2005).

A closer look at the spatiotemporal profile of excitation and

inhibition in the mature neocortex reveals that feedforward inhi-

bition and direct excitation of principal neurons in target struc-

tures are closely matched (Wehr and Zador, 2003; Priebe and

Ferster, 2005;Okun andLampl, 2008). This calls for amechanism

for fine adjustment of inhibition to achieve ‘‘detailed balance’’

(Vogels and Abbott, 2009) (Figure 4). A recent computational

model (Vogels et al., 2011) illustrates how this might be estab-

lished and even store memories when embedded in a recurrent

network. This relies on a symmetrical STDP rule that leads to LTP

of inhibition when a feedforward interneuron fires within ±25 ms

of the postsynaptic cell but LTD at larger intervals, which comes

close to, but does not coincide with, some experimentally deter-

mined forms of plasticity (e.g., Woodin et al., 2003; Maffei et al.,

2006).

Pairing-dependent LTP at GABAergic synapses between fast-

spiking interneurons and star pyramidal cells in the visual cortex

is occluded by monocular visual deprivation (Maffei et al., 2006).

Because these interneurons participate in feedback inhibition,

this may reflect a mechanism to limit local amplification of

activity or to sharpen opponent or lateral inhibition (Maffei and

Turrigiano, 2008; Yazaki-Sugiyama et al., 2009). Indeed, the

modifiability of GABAergic neurons to monocular deprivation

has even been shown to exceed that of excitatory cells in

certain conditions (Kameyama et al., 2010). Excitatory inputs to

GABAergic neurons also undergo rapid structural plasticity after

focal retinal lesions, as does the density of GABAergic boutons

(Keck et al., 2011).

Although equivalent data are not available in the somatosen-

sory cortex, whisker trimming has been shown to facilitate LTD

of glutamatergic synapses elicited by an STDP protocol in

regular-spiking interneurons (Sun and Zhang, 2011). Recent

in vivo imaging has also revealed extensive structural plasticity

of GABAergic synapses affected by whisker trimming (Chen

et al., 2012; van Versendaal et al., 2012).



Figure 4. A Possible Developmental Role of
Plasticity of Inhibition
Plasticity of inhibition is likely to contribute to
the emergence of balanced excitation (blue) and
inhibition (red) observed in many feedforward
projections in the CNS. Maturation of such
circuits is associated with a gradual shift away
from burst firing of principal cells toward a sparse-
firing regime in which excitatory and inhibitory
currents are temporally correlated (indicated
schematically as inward and outward currents, IExc
and IInh). Such a redistribution of inhibition of
principal cells may be achieved by changes in
both glutamatergic synapses on interneurons and
GABAergic synapses on pyramidal neurons (indi-

cated schematically as changes in bouton size). Several other computational roles have been proposed for plasticity of inhibition, including refinement of lateral
inhibition or temporal discrimination, release from inhibition mediated by CCK-positive interneurons, and habituation to sensory inputs.
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If LTP at glutamatergic synapses on principal cells were not

accompanied by an enhancement of inhibition, interneuron-

dependent functions such as the temporal precision of informa-

tion processing should be degraded. A similar rule applies to

the hippocampus, where the ability to detect temporal coinci-

dences depends on feedforward inhibition and can be studied

by measuring action potential generation in CA1 pyramidal

neurons in response to asynchronous stimulation of converging

Schaffer collaterals (Pouille and Scanziani, 2001). When LTPwas

restricted to Schaffer collateral synapses on pyramidal neurons,

a degradation of this ability was confirmed (Lamsa et al., 2005).

The fidelity of temporal coincidence detection was restored

when NMDA receptor-dependent LTP was induced not only

in the pyramidal neuron, but also at synapses on interneurons

in the feedforward pathway. Carvalho and Buonomano (2009)

examined the behavior of a similar feedforward circuit to argue

that while plasticity of monosynaptic excitation of target cells

can only alter gain, plasticity of inhibition could change both

gain and offset, thus increasing computational flexibility.

The possible roles of NMDA receptor-independent plasticity at

principal cell synapses on interneurons are open to wide specu-

lation, not least because of discordant evidence on the need for

postsynaptic depolarization or hyperpolarization for induction.

Nevertheless, with some exceptions, LTP dominates in the feed-

back loop and LTD in the feedforward pathway. Taking into

account the characteristic firing patterns of identified interneu-

rons and pyramidal cells in different brain states, anti-Hebbian

LTP in the feedback loop might play a role in dynamically recon-

figuring cell assemblies participating in oscillations (Kullmann

and Lamsa, 2007). Plasticity at mossy fiber synapses on fast-

spiking interneurons in the dentate gyrus is facilitated by

synchronous afferent input in the perforant path, and so this

form of plasticity is associative, suggesting a role in maintaining

sparse activity of granule cells (Sambandan et al., 2010).

As for DSI, this is most prominently expressed at perisomatic

synapses made by CCK-positive basket cells. These cells

are thought to complement fast-spiking parvalbumin-positive

basket cells, which synchronize principal cells during gamma

rhythms. They express several receptors for neuromodulators

released by subcortical afferents (Freund and Katona, 2007).

DSI may therefore represent a ‘‘release’’ from such modulatory

influences after intense principal cell firing. iLTD has also been

proposed to have a metaplastic role, facilitating the subsequent
induction of LTP at glutamatergic synapses (Chevaleyre and

Castillo, 2004).

In Drosophila, a role for plasticity of feedback inhibition has

been proposed in the habituation to specific odors (Das et al.,

2011; Sudhakaran et al., 2012). Local circuit interneurons in the

antennal lobe regulate the excitation of projection neurons, and

a persistent enhancement of GABA release at a subset of their

terminals differentially modulates the behavioral response to

different odors. NMDA receptors in the projection neurons are

proposed to act as detectors of persistent activity in odorant-

specific glomeruli, leading to the recruitment of synapsin at

GABAergic interneuron synapses via the release of an as-yet-

unknown diffusible factor.

Finally, plasticity of GABAA receptors may play a role in

changes in excitability of layer 5 pyramidal neurons, depending

on arousal state. Different membrane potential excursions as

occur during slow-wave sleep and wakefulness alter the relative

contributions of different Ca2+ channels that bidirectionally

modulate GABAA receptor trafficking (Kurotani et al., 2008).

Possible Maladaptive Roles of Plasticity of Inhibition
Given the involvement of inhibition in all aspects of brain func-

tion, it is not surprising that changes in GABAergic signaling,

and interneuron structure and function, have been reported in

many pathological states, including schizophrenia (Lewis et al.,

2012), autism (Chao et al., 2010; Pizzarelli and Cherubini,

2011), affective disorders (Brambilla et al., 2003; Möhler, 2012),

and fragile X syndrome (Olmos-Serrano et al., 2010). Deficits

in cognitive functions in Down syndrome have also been attrib-

uted in part to altered inhibition, and chronic partial blockade

of GABAA receptors with picrotoxin at subconvulsant doses

ameliorates some behavioral deficits in a mouse model (Fernan-

dez et al., 2007).

GABAA receptor plasticity has an important and potentially

maladaptive role in status epilepticus, in which desensitization

and internalization are thought to contribute to a progressive

loss of effect of benzodiazepine anticonvulsants (Kapur and

Coulter, 1995; Kapur and Macdonald, 1997; Brooks-Kayal

et al., 1998). In the longer term, several GABAA receptor subunits

undergo changes in expression, and a5 subunits in particular

undergo a robust downregulation (Houser and Esclapez, 2003).

This subunit contributes to tonic inhibition at intermediate

ambient GABA concentrations. Although a loss of tonic inhibition
Neuron 75, September 20, 2012 ª2012 Elsevier Inc. 957
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might be expected (and to contribute to epileptogenesis after

severe seizures), compensation by other subunits has been re-

ported (Scimemi et al., 2005). Changes in subunits contributing

to tonic inhibition, as well as in progesterone metabolites acting

on these subunits, also occur during the estrus cycle, possibly

contributing to catamenial dysphoric symptoms and changes

in susceptibility to seizures (Maguire et al., 2005). Several other

forms of plasticity of inhibition in epilepsy have been reviewed

by Fritschy (2008). Altered inhibition has also been reported in

other disorders including pain sensitization (Sivilotti and Woolf,

1994) and opiod addiction (Nugent et al., 2007). In many of these

disorders, however, it is difficult to disentangle a pathogenic role

of the primary alteration in inhibition from a compensatory effect.
Conclusions
Despite the absence of an obvious local coincidence detector at

GABAergic synapses, abundant forms of inhibitory plasticity

have emerged. The computational roles of these phenomena

are likely to go far beyond mere stabilization of brain excitability.

Indeed, the psychotropic effects of recreational CB1 agonists

hint that modifying GABAergic signaling has extensive conse-

quences for many cognitive and vegetative functions. Whether

and how the numerous forms of inhibitory plasticity can be

harnessed for therapeutic purposes represents a challenge for

further work.
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Excitatory effect of GABAergic axo-axonic cells in cortical microcircuits.
Science 311, 233–235.
Neuron 75, September 20, 2012 ª2012 Elsevier Inc. 961



Neuron

Review
Szabo, A., Somogyi, J., Cauli, B., Lambolez, B., Somogyi, P., and Lamsa, K.P.
(2012). Calcium-permeable AMPA receptors provide a common mechanism
for LTP in glutamatergic synapses of distinct hippocampal interneuron types.
J. Neurosci. 32, 6511–6516.

Tanaka, T., Saito, H., and Matsuki, N. (1997). Inhibition of GABAA synaptic
responses by brain-derived neurotrophic factor (BDNF) in rat hippocampus.
J. Neurosci. 17, 2959–2966.

Tomasulo, R.A., and Steward, O. (1996). Homosynaptic and heterosynaptic
changes in driving of dentate gyrus interneurons after brief tetanic stimulation
in vivo. Hippocampus 6, 62–71.

Topolnik, L., Azzi, M., Morin, F., Kougioumoutzakis, A., and Lacaille, J.-C.
(2006). mGluR1/5 subtype-specific calcium signalling and induction of long-
term potentiation in rat hippocampal oriens/alveus interneurones. J. Physiol.
575, 115–131.

Topolnik, L., Chamberland, S., Pelletier, J.-G., Ran, I., and Lacaille, J.-C.
(2009). Activity-dependent compartmentalized regulation of dendritic Ca2+
signaling in hippocampal interneurons. J. Neurosci. 29, 4658–4663.

Tzounopoulos, T., Rubio, M.E., Keen, J.E., and Trussell, L.O. (2007). Coactiva-
tion of pre- and postsynaptic signaling mechanisms determines cell-specific
spike-timing-dependent plasticity. Neuron 54, 291–301.

van Versendaal, D., Rajendran, R., Saiepour, M.H., Klooster, J., Smit-Rigter,
L., Sommeijer, J.-P., De Zeeuw, C.I., Hofer, S.B., Heimel, J.A., and Levelt,
C.N. (2012). Elimination of inhibitory synapses is a major component of adult
ocular dominance plasticity. Neuron 74, 374–383.

Vithlani, M., Terunuma, M., and Moss, S.J. (2011). The dynamic modulation of
GABA(A) receptor trafficking and its role in regulating the plasticity of inhibitory
synapses. Physiol. Rev. 91, 1009–1022.

Vogels, T.P., and Abbott, L.F. (2009). Gating multiple signals through detailed
balance of excitation and inhibition in spiking networks. Nat. Neurosci. 12,
483–491.

Vogels, T.P., Sprekeler, H., Zenke, F., Clopath, C., and Gerstner, W. (2011).
Inhibitory plasticity balances excitation and inhibition in sensory pathways
and memory networks. Science 334, 1569–1573.
962 Neuron 75, September 20, 2012 ª2012 Elsevier Inc.
Wanaverbecq, N., Semyanov, A., Pavlov, I., Walker, M.C., and Kullmann, D.M.
(2007). Cholinergic axons modulate GABAergic signaling among hippocampal
interneurons via postsynaptic alpha 7 nicotinic receptors. J. Neurosci. 27,
5683–5693.

Wang, J.H., and Kelly, P. (2001). Calcium-calmodulin signalling pathway up-
regulates glutamatergic synaptic function in non-pyramidal, fast spiking rat
hippocampal CA1 neurons. J. Physiol. 533, 407–422.

Wardle, R.A., and Poo, M.M. (2003). Brain-derived neurotrophic factor modu-
lation of GABAergic synapses by postsynaptic regulation of chloride transport.
J. Neurosci. 23, 8722–8732.

Wehr, M., and Zador, A.M. (2003). Balanced inhibition underlies tuning and
sharpens spike timing in auditory cortex. Nature 426, 442–446.

Wilson, R.I., and Nicoll, R.A. (2001). Endogenous cannabinoids mediate retro-
grade signalling at hippocampal synapses. Nature 410, 588–592.

Woodin, M.A., Ganguly, K., and Poo, M.M. (2003). Coincident pre- and post-
synaptic activity modifies GABAergic synapses by postsynaptic changes in
Cl- transporter activity. Neuron 39, 807–820.

Xu, C., Zhao, M.X., Poo, M.M., and Zhang, X.H. (2008). GABA(B) receptor acti-
vation mediates frequency-dependent plasticity of developing GABAergic
synapses. Nat. Neurosci. 11, 1410–1418.

Yasuda, H., Barth, A.L., Stellwagen, D., and Malenka, R.C. (2003). A develop-
mental switch in the signaling cascades for LTP induction. Nat. Neurosci. 6,
15–16.

Yazaki-Sugiyama, Y., Kang, S., Câteau, H., Fukai, T., and Hensch, T.K. (2009).
Bidirectional plasticity in fast-spiking GABA circuits by visual experience.
Nature 462, 218–221.

Zilberter, Y. (2000). Dendritic release of glutamate suppresses synaptic inhibi-
tion of pyramidal neurons in rat neocortex. J. Physiol. 528, 489–496.

Zilberter, Y., Kaiser, K.M., and Sakmann, B. (1999). Dendritic GABA release
depresses excitatory transmission between layer 2/3 pyramidal and bitufted
neurons in rat neocortex. Neuron 24, 979–988.


	Plasticity of Inhibition
	Introduction
	Retrograde Signaling at Inhibitory Synapses
	Plasticity of GABAA and Glycine Receptors Triggered by Postsynaptic Ca2+
	Plasticity of Inhibition Dependent on Presynaptic Spiking
	Plasticity of Excitatory Synapses on Interneurons
	LTP at Synapses on Hippocampal Interneurons in the Feedback Circuit
	Plasticity in Hippocampal Interneurons in the Feedforward Pathway
	LTP and LTD in Interneurons of the Amygdala, Striatum, Neocortex, and Brainstem
	Other Forms of Plasticity of Inhibition
	Adaptive Roles of Plasticity of Inhibition
	Possible Maladaptive Roles of Plasticity of Inhibition
	Conclusions
	Acknowledgments
	References


