Particle-antiparticle asymmetries from annihilations

Iason Baldes, ${ }^{1,}{ }^{,}$* Nicole F. Bell, ${ }^{1}$ Kalliopi Petraki, ${ }^{2}$ and Raymond R. Volkas ${ }^{1}$
${ }^{1}$ ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, The University of Melbourne, Victoria 3010, Australia
${ }^{2}$ Nikhef, Science Park 105, 1098 XG Amsterdam, The Netherlands

(Dated: July 17, 2014)

Abstract

An extensively studied mechanism to create particle-antiparticle asymmetries is the out-ofequilibrium and CP violating decay of a heavy particle. Here we instead examine how asymmetries can arise purely from $2 \rightarrow 2$ annihilations rather than from the usual $1 \rightarrow 2$ decays and inverse decays. We review the general conditions on the reaction rates that arise from S-matrix unitarity and CPT invariance, and show how these are implemented in the context of a simple toy model. We formulate the Boltzmann equations for this model, and present an example solution.

PACS numbers: 95.35.+d, 11.30.Er, 11.30.Fs, 12.60.-i

Introduction. - Cosmological observations have shown $\Omega_{D M} \approx 5 \Omega_{B} \approx 0.24$, where $\Omega_{D M(B)}$ is the dark matter (baryon) density divided by the critical density [1, 2]. However, current physics cannot explain what makes up $\Omega_{D M}$, why the baryon asymmetry of the universe (BAU) and hence Ω_{B} is non-negligible [3], or indeed why $\Omega_{B} \sim \Omega_{D M}$. A baryogenesis mechanism satisfying the Sakharov conditions - violation of the baryon number, violation of charge conjugation (C) and charge parity (CP) symmetries, and a departure from thermal equilibrium is required to explain the BAU [4]. A similar asymmetry may also exist in the DM sector. In fact, asymmetric DM (ADM) scenarios seek to explain $\Omega_{B} \sim \Omega_{D M}$ as resulting from $n_{B} \sim\left|n_{X}-n_{\bar{X}}\right|$, where n_{B} is the baryon number density and $n_{X}\left(n_{\bar{X}}\right)$ is the DM particle (antiparticle) density [5-8]. Understanding possible mechanisms for creating particle-antiparticle asymmetries is therefore crucial if we are to understand the cosmological history of the universe at the earliest times.

In well known scenarios of baryogenesis, a matterantimatter asymmetry is created by the out-ofequilibrium decay of a heavy particle $9 \sqrt{12}$. Similar mechanisms have been applied to ADM scenarios [13]. The decays must be CP violating for a preference of matter to be created over antimatter. Furthermore, the asymmetry can only be created once the decaying particle has departed from thermal equilibrium, because S matrix unitarity ensures no net preference for particle over antiparticle states can occur in equilibrium. Such scenarios have been studied extensively.

In contrast there has been much less focus on asymmetries created from annihilations. Again, due to the unitarity, one or more of the particles involved in the annihilation must go out of thermal equilibrium for an asymmetry to be generated [14-16]. This is the case in WIMPy baryogenesis, for example, in which heavy neutral particles freeze out and become the DM density and at the same time create the BAU through their annihilations [17 21 . The effect of $2 \leftrightarrow 2$ annihilations has also been investigated in the context of leptogenesis [22, 26].

In this case, it was found that the annihilations change the asymmetry at high temperature but have only a negligible effect on the final asymmetry [22. However, there is no reason to expect this feature to hold for baryogenesis in general.

The effect of annihilations is therefore interesting from - at least - the perspective of baryogenesis. The WIMPy baryogenesis mechanism also explains the DM density, but with no asymmetry between DM particles and antiparticles. However, it may be possible to construct an ADM model in which such annihilations play a role: this paper is a first step towards such a goal $\|^{12}$

The purpose of this paper is to provide a general framework for models which seek to create particle-antiparticle asymmetries from annihilations. While certain aspects of such mechanisms are necessarily model dependent, other considerations, such as the unitarity relations and construction of the Boltzmann equations are generic. Our focus in this paper is on examining asymmetries from annihilations alone; in accompanying work we examine scenarios in which decays and annihilations compete in creating the final asymmetry 31.

The structure of the paper is as follows. In the next section we review S-matrix unitarity and its implications for the CP violating reaction rates of annihilations. We then study a toy model involving the interaction between four fermions. We outline the Boltzmann equations for the model and show a non-zero source term develops when one or more of the species depart from equilibrium. We calculate the relevant thermally averaged cross sections and solve the Boltzmann equations numerically.

S-Matrix Unitarity and Time Reversal. - Unitarity of the S-matrix $\left(S^{\dagger} S=S S^{\dagger}=1\right)$ together with invariance

[^0]under charge parity time (CPT) implies for the usual invariant matrix elements:
\[

$$
\begin{align*}
& \sum_{\beta}|\mathcal{M}(\alpha \rightarrow \beta)|^{2}=\sum_{\beta}|\mathcal{M}(\beta \rightarrow \alpha)|^{2} \\
= & \sum_{\beta}|\mathcal{M}(\bar{\beta} \rightarrow \bar{\alpha})|^{2}=\sum_{\beta}|\mathcal{M}(\bar{\alpha} \rightarrow \bar{\beta})|^{2}, \tag{1}
\end{align*}
$$
\]

where α is an arbitrary state, $\bar{\alpha}$ its CP conjugate and the sum runs over all possible states β. Consider the collision term in the Boltzmann equations for the transition of a set of particles α_{i} where $i=1, \ldots, n$ to and from a set of particles β_{j} where $j=1, \ldots, m$. Let us denote the integrated collision term for transitions $\alpha \rightarrow \beta$ in chemical equilibrium as $W(\alpha \rightarrow \beta)$. Approximated using Maxwell-Boltzmann statistics the net collision term is related to the matrix elements by [32]:

$$
\begin{align*}
& W(\beta \rightarrow \alpha)-W(\alpha \rightarrow \beta)= \\
& \int \ldots \int d \Pi_{\alpha 1} \ldots d \Pi_{\alpha n} d \Pi_{\beta 1} \ldots d \Pi_{\beta m} \delta^{4}\left(\sum p_{i}-\sum p_{j}\right)(2 \pi)^{4} \\
& \times\left\{f_{\beta 1 \ldots} \ldots f_{\beta m}|\mathcal{M}(\beta \rightarrow \alpha)|^{2}-f_{\alpha 1} \ldots f_{\alpha n}|\mathcal{M}(\alpha \rightarrow \beta)|^{2}\right\} \tag{2}
\end{align*}
$$

where $f_{\psi}=\operatorname{Exp}\left[\left(\mu_{\psi}-E_{\psi}\right) / T\right]$ is the phase space density of species ψ with chemical potential μ_{ψ} at energy E_{ψ},

$$
\begin{equation*}
d \Pi_{\psi}=\frac{g_{\psi} d^{3} p_{\psi}}{2 E_{\psi}(2 \pi)^{3}} \tag{3}
\end{equation*}
$$

is the normalized volume element of the three momenta, g_{ψ} are the degrees of freedom, and we assume throughout kinetic equilibrium so that the temperature (T) of each species is identical. Under chemical equilibrium we have in addition,

$$
\begin{equation*}
\sum_{i} \mu_{\alpha i}=\sum_{j} \mu_{\beta j} \tag{4}
\end{equation*}
$$

Chemical equilibrium and the delta function enforcing four momentum conservation allows the replacement:

$$
\begin{equation*}
f_{\beta 1 \ldots} f_{\beta m} \rightarrow f_{\alpha 1 \ldots} f_{\alpha n} \tag{5}
\end{equation*}
$$

under the integral sign in Eq. (2). Using the replacement in Eq. (5) and taking the sum over all possible final states one finds [33]:

$$
\begin{align*}
& \sum_{\beta} W(\alpha \rightarrow \beta)=\sum_{\beta} W(\beta \rightarrow \alpha) \\
= & \sum_{\beta} W(\bar{\beta} \rightarrow \bar{\alpha})=\sum_{\beta} W(\bar{\alpha} \rightarrow \bar{\beta}), \tag{6}
\end{align*}
$$

where the second line follows from CPT invariance. Equation (6) means there must be a departure from thermal equilibrium for a baryon asymmetry to be produced

FIG. 1. Tree and one-loop diagrams for the annhilation $\Psi_{1} \Psi_{1} \rightarrow \overline{f f}$.
(the third Sakharov condition) $\sqrt{3}^{4}$ We will apply this unitarity constraint below so as to correctly relate the CP violation in the reaction rates which enter the Boltzmann equations [36, 37].

Toy model. - Consider the interaction Lagrangian:

$$
\begin{align*}
\mathcal{L} & =\frac{1}{4} \kappa_{1} \overline{\Psi_{1}^{c}} \Psi_{1} \overline{f^{c}} f+\frac{1}{4} \kappa_{2} \overline{\Psi_{2}^{c}} \Psi_{2} \overline{f^{c}} f+\frac{1}{2} \kappa_{3} \overline{\Psi_{2}^{c}} \Psi_{1} \overline{f^{c}} f \\
& +\frac{1}{2} \lambda_{1} \overline{\Psi_{2}^{c}} \Psi_{1} \overline{\Psi_{1}} \Psi_{1}^{c}+\frac{1}{4} \lambda_{2} \overline{\Psi_{2}^{c}} \Psi_{2} \overline{\Psi_{1}} \Psi_{1}^{c}+\frac{1}{2} \lambda_{3} \overline{\Psi_{2}^{c}} \Psi_{2} \overline{\Psi_{2}} \Psi_{1}^{c} \\
& +H . c . \tag{7}
\end{align*}
$$

where the Ψ and f are Dirac fermions and the κ_{i} and λ_{i} are effective couplings with mass dimension -2 .

The above Lagrangian violates the particle numbers associated with Ψ_{1}, Ψ_{2} and f but preserves the linear combination $\Delta\left(\Psi_{1}+\Psi_{2}-f\right)$. We will show how these interactions will generate an asymmetry in the f sector and a related asymmetry in the Ψ sector, $\Delta(f)=\Delta\left(\Psi_{1}+\Psi_{2}\right)$, through $2 \leftrightarrow 2$ processes. The last three interaction terms break the particle numbers associated with Ψ_{1} and Ψ_{2} individually but preserve $\Delta\left(\Psi_{1}+\Psi_{2}\right)$. These latter interactions must be included to allow CP violation to arise in the interference between tree and loop level diagrams. Majorana masses are prohibited by the global symmetry of the Lagrangian $\Delta\left(\Psi_{1}+\Psi_{2}-f\right)=0$.

We assume f are in thermal equilibrium with the radiation bath and that Ψ_{1} and Ψ_{2} are coupled to the radiation bath only through their interactions in the above

[^1]Lagrangian. The asymmetries are generated during the time when the Ψ particles are going out-of-equilibrium. We take the Ψ_{2} mass greater than the Ψ_{1} mass ($M_{2}>$ M_{1}) and also consider the decays of Ψ_{2} below.

The above Lagrangian includes four physical phases in the couplings. CP violation arises in Ψ number changing interactions of the form $\Psi_{i} \Psi_{j} \rightarrow \overline{f f}$ in the interference between the tree level and one loop level diagrams such as those depicted in Fig. 1.

We define the equilibrium reaction rate density - which will enter as a collision term in the Boltzmann equation - for the annihilation $\Psi_{1} \Psi_{1} \rightarrow \overline{f f}$ as:

$$
\begin{align*}
\left(1+a_{1}\right) A_{1} & \equiv W\left(\Psi_{1} \Psi_{1} \rightarrow \overline{f f}\right) \tag{8}\\
& =n_{\Psi 1}^{e q} n_{\Psi 1}^{e q}\left\langle v \sigma\left(\Psi_{1} \Psi_{1} \rightarrow \overline{f f}\right)\right\rangle \tag{9}
\end{align*}
$$

where the thermally averaged cross section comes from integrating over the phase space densities:

$$
\begin{align*}
& n_{\alpha 1}^{e q} n_{\alpha 2}^{e q}\left\langle v \sigma\left(\alpha_{1} \alpha_{2} \rightarrow \beta_{1} \beta_{2}\right)\right\rangle \tag{10}\\
& \equiv \int \ldots \int d \Pi_{\alpha 1} d \Pi_{\alpha 2} d \Pi_{\beta 1} d \Pi_{\beta 2} \delta^{4}\left(\sum p_{i}-\sum p_{j}\right)(2 \pi)^{4} \\
& \times f_{\alpha 1}^{e q} f_{\alpha 2}^{e q}\left|\mathcal{M}\left(\alpha_{1} \alpha_{2} \rightarrow \beta_{1} \beta_{2}\right)\right|^{2}
\end{align*}
$$

where $n_{\alpha i}^{e q}\left(f_{\alpha i}^{e q}\right)$ is the number (phase space) density in the absence of a chemical potential. We have parametrized the CP violation in the following way:

$$
\begin{equation*}
a_{1} \equiv \frac{W\left(\Psi_{1} \Psi_{1} \rightarrow \overline{f f}\right)-W\left(\overline{\Psi_{1} \Psi_{1}} \rightarrow f f\right)}{W\left(\Psi_{1} \Psi_{1} \rightarrow \overline{f f}\right)+W\left(\overline{\Psi_{1} \Psi_{1}} \rightarrow f f\right)} \tag{11}
\end{equation*}
$$

hence the time reversed rate can be found by making the substitution: $a_{1} \rightarrow-a_{1}$. The other CP violating interactions are denoted:

$$
\begin{align*}
W\left(\Psi_{2} \Psi_{2} \rightarrow \overline{f f}\right) & \equiv\left(1+a_{2}\right) A_{2}, \tag{12}\\
W\left(\Psi_{1} \Psi_{2} \rightarrow \overline{f f}\right) & \equiv\left(1+a_{3}\right) A_{3}, \tag{13}\\
W\left(\Psi_{1} \Psi_{1} \rightarrow \Psi_{1} \Psi_{2}\right) & \equiv\left(1+a_{4}\right) A_{4}, \tag{14}\\
W\left(\Psi_{1} \Psi_{1} \rightarrow \Psi_{2} \Psi_{2}\right) & \equiv\left(1+a_{5}\right) A_{5}, \tag{15}\\
W\left(\Psi_{2} \Psi_{2} \rightarrow \Psi_{2} \Psi_{1}\right) & \equiv\left(1+a_{6}\right) A_{6} . \tag{16}
\end{align*}
$$

CP conjugate rates can again be found by substituting $a_{i} \rightarrow-a_{i}$. The unitarity conditions yield:

$$
\begin{align*}
& a_{1} A_{1}+a_{4} A_{4}+a_{5} A_{5}=0 \tag{17}\\
& a_{2} A_{2}+a_{6} A_{6}-a_{5} A_{5}=0 \tag{18}\\
& a_{3} A_{3}-a_{4} A_{4}-a_{6} A_{6}=0 \tag{19}
\end{align*}
$$

We have checked that the CP violating rates calculated in terms of the underlying parameters of the Lagrangian do indeed respect these unitarity conditions. Note for $\kappa_{i}=\lambda_{i} \equiv \kappa$ the CP violation scales as $a_{i} \sim \kappa T^{2}$ for $T \gg M_{2}$ and $a_{i} \sim \kappa M_{2}^{2} /(8 \pi)$ for $T \lesssim M_{2}$ except for a_{1} which becomes kinematically suppressed at low T (as $M_{2}>M_{1}$).

Washout interactions of the form $\Psi_{i} f \rightarrow \overline{\Psi_{j} f}$ must also be taken into account. Furthermore sufficiently rapid interactions of the form $\overline{\Psi_{i}} \Psi_{j} \leftrightarrow \overline{\Psi_{k}} \Psi_{l}$ relate the chemical potentials of Ψ_{1} and Ψ_{2}, these are also included in our numerical solutions below. These rates are denoted as:

$$
\begin{aligned}
& W\left(\Psi_{1} f \rightarrow \overline{\Psi_{1} f}\right)=W_{1}, \\
& W\left(\Psi_{1} f \rightarrow \overline{\Psi_{2}} f\right)=W_{3}, \\
& W\left(\Psi_{2} f \rightarrow \overline{\Psi_{2} f}\right)=W_{2} \\
& \left.\Psi_{1}, \overline{\Psi_{2}} \rightarrow \Psi_{2} \overline{\Psi_{1}}\right)=Z_{2}, \\
& \left.\Psi_{2} \overline{\Psi_{1}}\right)=Z_{1} \\
&
\end{aligned}
$$

A priori Ψ_{2} may have two decay channels:

$$
\begin{align*}
\Gamma\left(\Psi_{2} \rightarrow \overline{\Psi_{1}} \overline{f f}\right) & =\left(1+\gamma_{a}\right) \Gamma_{2 a} \tag{20}\\
\Gamma\left(\Psi_{2} \rightarrow \overline{\Psi_{1}} \Psi_{1} \Psi_{1}\right) & =\left(1+\gamma_{b}\right) \Gamma_{2 b} \tag{21}
\end{align*}
$$

where the γ_{i} denote the CP odd component. Unitarity implies $\gamma_{a} \Gamma_{2 a}=-\gamma_{b} \Gamma_{2 b}$. Here we kinematically forbid the second decay channel, ensuring no CP violation is possible in the Ψ_{2} decays. The remaining decay width is given by:

$$
\begin{equation*}
\Gamma_{2 a}=\frac{\left|\kappa_{3}\right|^{2}\left(M_{2}\right)^{5}}{3072 \pi^{3}} \tag{22}
\end{equation*}
$$

where we have ignored the final state masses. (We include the final state masses and the Lorentz factor suppression resulting from the thermal average in our numerical solutions.)

Boltzmann equations. - We can now write down the Boltzmann equations using the usual approximation of Maxwell-Boltzmann statistics. The use of MaxwellBoltzmann statistics allows one to factor out the chemical potential of a species from the collision term. The nonequilibrium rate is then simply the equilibrium rate multiplied by the ratio of the number density to the equilibrium number density of the incoming particles. For notational clarity we define the ratio of the number density to the equilibrium number density as:

$$
\begin{equation*}
r_{i} \equiv \frac{n_{i}}{n_{i}^{e q}}, \quad \quad \overline{r_{i}} \equiv \frac{n_{\bar{i}}}{n_{i}^{e q}} \tag{23}
\end{equation*}
$$

We assume f and \bar{f} are in thermal equilibrium with the radiation bath so $\mu_{f}=-\mu_{\bar{f}}$. We find the Boltzmann equations for n_{1}, n_{2}, and the asymmetries $n_{\Delta 1} \equiv n_{1}-n_{\overline{1}}$ and $n_{\Delta 2} \equiv n_{2}-n_{\overline{2}}$ in terms of the CP even and odd interaction rates. This results in a system of four coupled first order ordinary differential equations. The equations take the form:

$$
\begin{equation*}
\frac{d n}{d t}+3 H n=(\text { source terms })+(\text { washout terms }) \tag{24}
\end{equation*}
$$

where H is the Hubble rate, the source terms can create an asymmetry once one or more species depart from equilibrium and the washout terms drive towards equilibrium and washout any asymmetries present. For example, the
equation for $n_{\Delta 1}$ has washout terms:

$$
\begin{align*}
& n_{2}^{e q} \Gamma_{2 a}\left[\overline{r_{2}}-r_{2}+\overline{r_{1} r_{f} r_{f}}-r_{1} r_{f} r_{f}\right] \\
& +2 W_{1}\left[\overline{r_{1} r_{f}}-r_{1} r_{f}\right]+W_{3}\left[\overline{r_{2} r_{f}}-r_{2} r_{f}+\overline{r_{1} r_{f}}-r_{1} r_{f}\right] \\
& +Z_{1}\left[r_{2} \overline{r_{1}}-\overline{r_{2}} r_{1}\right]+2 Z_{2}\left[r_{2} \overline{r_{1}}-r_{1} \overline{r_{2}}\right]+Z_{3}\left[r_{2} \overline{r_{1}}-r_{1} \overline{r_{2}}\right] \\
& +2 A_{1}\left[\overline{r_{f} r_{f}}-r_{f} r_{f}+\overline{r_{1} r_{1}}-r_{1} r_{1}\right] \\
& +A_{3}\left[\overline{r_{f} r_{f}}-r_{f} r_{f}+\overline{r_{2} r_{1}}-r_{2} r_{1}\right] \\
& +A_{4}\left[r_{2} r_{1}-\overline{r_{2} r_{1}}+\overline{r_{1} r_{1}}-r_{1} r_{1}\right] \\
& +2 A_{5}\left[r_{2} r_{2}-\overline{r_{2} r_{2}}+\overline{r_{1} r_{1}}-r_{1} r_{1}\right] \\
& +A_{6}\left[r_{2} r_{2}-\overline{r_{2} r_{2}}+\overline{r_{1} r_{2}}-r_{1} r_{2}\right] \tag{25}
\end{align*}
$$

The source terms for $n_{\Delta 1}$ are:

$$
\begin{align*}
& -2 a_{1} A_{1}\left[\overline{r_{f} r_{f}}+r_{f} r_{f}+\overline{r_{1} r_{1}}+r_{1} r_{1}\right] \\
& -a_{3} A_{3}\left[\overline{r_{f} r_{f}}+r_{f} r_{f}+\overline{r_{2} r_{1}}+r_{2} r_{1}\right] \\
& -a_{4} A_{4}\left[\overline{r_{1} r_{1}}+r_{1} r_{1}+\overline{r_{2} r_{1}}+r_{2} r_{1}\right] \\
& -2 a_{5} A_{5}\left[\overline{r_{2} r_{2}}+r_{2} r_{2}+\overline{r_{1} r_{1}}+r_{1} r_{1}\right] \\
& +a_{6} A_{6}\left[\overline{r_{2} r_{2}}+r_{2} r_{2}+\overline{r_{2} r_{1}}+r_{2} r_{1}\right] \tag{26}
\end{align*}
$$

By the application of the unitarity conditions 17,19 these terms can only generate asymmetries, $n_{\Delta 1} \neq 0$, when the distribution of Ψ particles depart from equilibrium: $r_{i} \neq 1$.

We proceed to solve the Boltzmann equations numerically. The standard change of variable is made to express the equations in terms temperature rather than time. We calculate the relevant cross sections and find the thermal averaged cross sections numerically by making use of the single integral formula [38:

$$
\begin{align*}
& \langle v \sigma(i j \rightarrow \text { final })\rangle \tag{27}\\
& \quad=\frac{g_{i} g_{j} T}{8 \pi^{4} n_{i}^{e q} n_{j}^{e q}} \int_{\left(m_{j}+m_{i}\right)^{2}}^{\Lambda^{2}} p_{i j} E_{i} E_{j} v_{r e l} \sigma K_{1}\left(\frac{\sqrt{s}}{T}\right) d s
\end{align*}
$$

where s is the centre-of-mass energy squared, $p_{i j}$ is the initial centre-of-mass momentum, $K_{1}(x)$ is the modified Bessel function of the second kind of order one and Λ is the effective theory cut-off. Having calculated the reaction rates and CP violation, we then solve the system of coupled Boltzmann equations using Mathematica 39]. An example solution is shown in Fig. 2 .

The thermal history proceeds as follows. At high temperatures the $2 \leftrightarrow 2$ annihilations keep Ψ_{1} and Ψ_{2} close to thermal equilibrium and only a small asymmetry can develop (due to the expansion term the particles are never exactly in equilibrium). The departure from

FIG. 2. Example solution to the system of coupled Boltzmann equations with densities normalized to the entropy density $Y_{\psi} \equiv n_{\psi} / s$ and shown evolving with temperature T, time proceeds right to left. Parameters are set to $M_{f}=100 \mathrm{GeV}$, $M_{1}=800 \mathrm{GeV}, M_{2}=2 \mathrm{TeV},\left|\kappa_{i}\right|=\left|\lambda_{i}\right|=5 \times 10^{-13} \mathrm{GeV}^{-2}$, $\kappa_{3}=e^{-i 3 \pi / 4}\left|\kappa_{3}\right|, \quad \lambda_{1}=e^{i \pi / 3}\left|\lambda_{1}\right|, \quad \lambda_{2}=e^{-i \pi / 6}\left|\lambda_{2}\right|, \quad \lambda_{3}=$ $e^{-i \pi / 4}\left|\lambda_{3}\right|$.
equilibrium and hence the asymmetries increase as T decreases and the reactions become less effective. At some point the Ψ_{i} effectively decouple and the overall asymmetry remains constant. In Fig. 2 this occurs around $T \approx 400 \mathrm{GeV}$. Crucial to obtaining an asymmetry (with a common T between sectors) is that at least some of the particles involved are massive: the decoupling of massless particles does not lead to $r_{i} \neq 0$. Numerically we find the maximum asymmetry is generated for decoupling at $T \sim M_{i}$.

Eventually the heavier Ψ_{2} decay into Ψ_{1} and the final $\Delta(\Psi)$ asymmetry is stored in Ψ_{1}. Due to the different masses, couplings and phases, the asymmetries created in Ψ_{2} and Ψ_{1} are different and hence the eventual $\Delta(\Psi)$ decays of Ψ_{2} do not washout the overall asymmetry.

Note that a large symmetric component of Ψ_{1} is still present: $\left|Y_{\Delta 1}\right| \ll Y_{1}$. In a realistic model, so as to not overclose the universe, the symmetric component should be annihilated away. This can be achieved by introducing an interaction of the form $\overline{\Psi_{1}} \Psi_{1} \rightarrow \bar{f} f$. Alternatively Ψ_{1} and $\overline{\Psi_{1}}$ could eventually decay. The asymmetry can then be stored in the decay products. These could be regular baryons or if they make up the DM, and have a sufficiently large annihilation cross section to annihilate away the symmetric component, form asymmetric DM 40 42].

We have assumed kinetic equilibrium for the Ψ_{i} throughout. At high T this is a good approximation as the $2 \leftrightarrow 2$ interactions effectively transfer momentum between the Ψ_{i} and f. As we approach the decoupling point this approximation begins to breaks down 43-46]. This calculation can be further refined through the inclu-
sion of departures from kinetic equilibrium, full quantum statistics and thermal masses which could give $\mathcal{O}(1)$ corrections to the final asymmetry.

Conclusion. - We have presented a generic setup for the generation of particle-antiparticle asymmetries from $2 \leftrightarrow 2$ processes, such as annihilations or scatterings. This is to be contrasted with the more well known scenario in which such asymmetries are generated via $1 \rightarrow 2$ out-of-equilibrium decays. We have explicitly outlined how the Boltzmann equations should be formulated, taking S-matrix unitarity and CPT invariance into account. We have also presented an example numerical solution to the Boltzmann equations in the context of a simple toy model. Such techniques can be applied in calculation of particle-antiparticle asymmetries in models of baryogenesis and ADM, as will be the focus of our future work.

Acknowledgments. - IB was supported by the Commonwealth of Australia. NFB and RRV were supported in part by the Australian Research Council. KP was supported by the Netherlands Foundation for Fundamental Research of Matter (FOM) and the Netherlands Organisation for Scientific Research (NWO). IB would like to thank P. Cox and A. Millar for clarifying discussions. Feynman diagrams drawn using Jaxodraw 47].

[^2][16] S. M. Barr, Phys. Rev. D 19, 3803 (Jun 1979), http: //link.aps.org/doi/10.1103/PhysRevD.19.3803
[17] Y. Cui, L. Randall, and B. Shuve, JHEP 1204, 075 (2012), arXiv:1112.2704 [hep-ph]
[18] N. Bernal, F.-X. Josse-Michaux, and L. Ubaldi, JCAP 1301, 034 (2013), arXiv:1210.0094 [hep-ph]
[19] N. Bernal, S. Colucci, F.-X. Josse-Michaux, J. Racker, and L. Ubaldi, JCAP 1310, 035 (2013), arXiv:1307.6878
[20] J. Kumar and P. Stengel, Phys. Rev. D 89, 055016 (2014), arXiv:1309.1145 [hep-ph]
[21] J. Racker and N. Rius(2014), arXiv:1406.6105 [hep-ph]
[22] A. Pilaftsis and T. E. J. Underwood, Nucl. Phys. B 692, 303 (2004), arXiv:hep-ph/0309342 [hep-ph]
[23] A. Pilaftsis and T. E. J. Underwood, Phys.Rev. D72, 113001 (2005), arXiv:hep-ph/0506107 [hep-ph]
[24] E. Nardi, J. Racker, and E. Roulet, JHEP 0709, 090 (2007), arXiv:0707.0378 [hep-ph]
[25] S. Davidson, E. Nardi, and Y. Nir, Phys. Rept. 466, 105 (2008), arXiv:0802.2962 [hep-ph]
[26] C. S. Fong, M. Gonzalez-Garcia, and J. Racker, Phys. Lett. B 697, 463 (2011), arXiv:1010.2209 [hep-ph]
[27] G. R. Farrar and G. Zaharijas, Phys. Rev. Lett. 96, 041302 (2006), arXiv:hep-ph/0510079 [hep-ph]
[28] L. Bento and Z. Berezhiani, Phys. Rev. Lett. 87, 231304 (2001), arXiv:hep-ph/0107281 [hep-ph]
[29] A. Hook, Phys. Rev. D 84, 055003 (2011), arXiv:1105.3728 [hep-ph]
[30] J. Unwin(2014), arXiv:1406.3027 [hep-ph]
[31] I. Baldes, N. F. Bell, A. Millar, K. Petraki, and R. R. Volkas (2014), arXiv:1410.0108 [hep-ph]
[32] E. W. Kolb and M. S. Turner, The Early Universe (Westview Press, 1990)
[33] A. Dolgov, Pisma Zh. Eksp. Teor. Fiz. 29, 254 (1979)
[34] A. G. Cohen and D. B. Kaplan, Phys. Lett. B 199, 251 (1987)
[35] A. G. Cohen and D. B. Kaplan, Nucl. Phys. B 308, 913 (1988)
[36] D. Toussaint, S. B. Treiman, F. Wilczek, and A. Zee, Phys. Rev. D 19, 1036 (1979)
[37] A. Bhattacharya, R. Gandhi, and S. Mukhopadhyay, Phys. Rev. D 89, 116014 (2014), arXiv:1109.1832 [hep$\mathrm{ph}]$
[38] J. Edsjo and P. Gondolo, Phys. Rev. D 56, 1879 (1997), arXiv:hep-ph/9704361 [hep-ph]
[39] Wolfram Research, Inc., Mathematica Edition: Version 8.0 (2010)
[40] M. L. Graesser, I. M. Shoemaker, and L. Vecchi, JHEP 1110, 110 (2011), arXiv:1103.2771 [hep-ph]
[41] H. Iminniyaz, M. Drees, and X. Chen, JCAP 1107, 003 (2011), arXiv:1104.5548 [hep-ph]
[42] T. Lin, H.-B. Yu, and K. M. Zurek, Phys. Rev. D 85, 063503 (2012), arXiv:1111.0293 [hep-ph]
[43] S. Hannestad, New Astron. 4, 207 (1999), arXiv:astroph/9903034 [astro-ph]
[44] A. Basboll and S. Hannestad, JCAP 0701, 003 (2007), arXiv:hep-ph/0609025 [hep-ph]
[45] J. Garayoa, S. Pastor, T. Pinto, N. Rius, and O. Vives, JCAP 0909, 035 (2009), arXiv:0905.4834 [hep-ph]
[46] F. Hahn-Woernle, M. Plumacher, and Y. Y. Y. Wong, JCAP 0908, 028 (2009), arXiv:0907.0205 [hep-ph]
[47] D. Binosi and L. Theussl, Comput. Phys. Commun. 161, 76 (2004), arXiv:hep-ph/0309015 [hep-ph]

University Library

A gateway to Melbourne's research publications

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Baldes, I; Bell, NF; Petraki, K; Volkas, RR

Title:
Particle-Antiparticle Asymmetries from Annihilations

Date:

2014-10-30

Citation:

Baldes, I; Bell, NF; Petraki, K; Volkas, RR, Particle-Antiparticle Asymmetries from Annihilations, PHYSICAL REVIEW LETTERS, 2014, 113 (18)

Persistent Link:

http://hdl.handle.net/11343/52409

[^0]: ${ }^{1}$ Such a model was constructed previously, however we find the unitarity constraint was not properly taken into account 27].
 2 Asymmetry creation during freeze-in has also been considered 2830 . We are instead concerned with freeze-out.

[^1]: ${ }^{3}$ An exception is the spontaneous baryogenesis scenario, in which CPT is violated spontaneously by the expansion of the universe, but the particles themselves remain in thermal equilibrium 34 35.
 ${ }^{4}$ The same result holds for full quantum statistics. The collision term and phase space densities are modified to take into account quantum statistics [32, but the unitarity condition is also modified (9, 10, 29.

[^2]: * Corresponding author: ibaldes@student.unimelb.edu.au
 [1] G. Hinshaw et al. (WMAP), Astrophys. J. Suppl. 208, 19 (2013), arXiv:1212.5226 [astro-ph.CO]
 [2] P. Ade et al. (Planck Collaboration)(2013), arXiv:1303.5076 [astro-ph.CO]
 [3] H.-Y. Chiu, Phys. Rev. Lett. 17, 712 (Sep 1966), http: //link.aps.org/doi/10.1103/PhysRevLett.17.712
 [4] A. Sakharov, Pisma Zh. Eksp. Teor. Fiz. 5, 32 (1967)
 [5] S. Nussinov, Phys. Lett. B 165, 55 (1985)
 [6] H. Davoudiasl and R. N. Mohapatra, New J. Phys. 14, 095011 (2012), arXiv:1203.1247 [hep-ph]
 [7] K. Petraki and R. R. Volkas, Int. J. Mod. Phys. A 28, 1330028 (2013), arXiv:1305.4939 [hep-ph]
 [8] K. M. Zurek, Phys. Rept. 537, 91 (2014), arXiv:1308.0338 [hep-ph]
 [9] S. Weinberg, Phys. Rev. Lett. 42, 850 (1979)
 [10] E. W. Kolb and S. Wolfram, Nucl. Phys. B 172, 224 (1980)
 [11] J. N. Fry, K. A. Olive, and M. S. Turner, Phys. Rev. Lett. 45, 2074 (Dec 1980)
 [12] M. Fukugita and T. Yanagida, Phys. Lett. B 174, 45 (1986)
 [13] H. Davoudiasl, D. E. Morrissey, K. Sigurdson, and S. Tulin, Phys. Rev. Lett. 105, 211304 (2010), arXiv:1008.2399 [hep-ph]
 [14] M. Yoshimura, Phys. Rev. Lett. 41, 281 (Jul 1978), http: //link.aps.org/doi/10.1103/PhysRevLett.41.281
 [15] M. Yoshimura, Phys. Rev. Lett. 42, 746 (Mar 1979), http://link.aps.org/doi/10.1103/PhysRevLett. 42. 746

