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An extensively studied mechanism to create particle-antiparticle asymmetries is the out-of-
equilibrium and CP violating decay of a heavy particle. Here we instead examine how asymmetries
can arise purely from 2 → 2 annihilations rather than from the usual 1 → 2 decays and inverse
decays. We review the general conditions on the reaction rates that arise from S-matrix unitarity
and CPT invariance, and show how these are implemented in the context of a simple toy model.
We formulate the Boltzmann equations for this model, and present an example solution.

PACS numbers: 95.35.+d, 11.30.Er, 11.30.Fs, 12.60.-i

Introduction. – Cosmological observations have shown
ΩDM ≈ 5ΩB ≈ 0.24, where ΩDM(B) is the dark matter
(baryon) density divided by the critical density [1, 2].
However, current physics cannot explain what makes
up ΩDM , why the baryon asymmetry of the universe
(BAU) and hence ΩB is non-negligible [3], or indeed why
ΩB ∼ ΩDM . A baryogenesis mechanism satisfying the
Sakharov conditions – violation of the baryon number, vi-
olation of charge conjugation (C) and charge parity (CP)
symmetries, and a departure from thermal equilibrium –
is required to explain the BAU [4]. A similar asymmetry
may also exist in the DM sector. In fact, asymmetric
DM (ADM) scenarios seek to explain ΩB ∼ ΩDM as re-
sulting from nB ∼ |nX − nX |, where nB is the baryon
number density and nX(nX) is the DM particle (antipar-
ticle) density [5–8]. Understanding possible mechanisms
for creating particle-antiparticle asymmetries is therefore
crucial if we are to understand the cosmological history
of the universe at the earliest times.

In well known scenarios of baryogenesis, a matter-
antimatter asymmetry is created by the out-of-
equilibrium decay of a heavy particle [9–12]. Similar
mechanisms have been applied to ADM scenarios [13].
The decays must be CP violating for a preference of
matter to be created over antimatter. Furthermore, the
asymmetry can only be created once the decaying par-
ticle has departed from thermal equilibrium, because S-
matrix unitarity ensures no net preference for particle
over antiparticle states can occur in equilibrium. Such
scenarios have been studied extensively.

In contrast there has been much less focus on asym-
metries created from annihilations. Again, due to the
unitarity, one or more of the particles involved in the
annihilation must go out of thermal equilibrium for an
asymmetry to be generated [14–16]. This is the case in
WIMPy baryogenesis, for example, in which heavy neu-
tral particles freeze out and become the DM density and
at the same time create the BAU through their annihila-
tions [17–21]. The effect of 2 ↔ 2 annihilations has also
been investigated in the context of leptogenesis [22–26].

In this case, it was found that the annihilations change
the asymmetry at high temperature but have only a neg-
ligible effect on the final asymmetry [22]. However, there
is no reason to expect this feature to hold for baryogen-
esis in general.

The effect of annihilations is therefore interesting from
– at least – the perspective of baryogenesis. The WIMPy
baryogenesis mechanism also explains the DM density,
but with no asymmetry between DM particles and an-
tiparticles. However, it may be possible to construct an
ADM model in which such annihilations play a role: this
paper is a first step towards such a goal.1,2

The purpose of this paper is to provide a general frame-
work for models which seek to create particle-antiparticle
asymmetries from annihilations. While certain aspects of
such mechanisms are necessarily model dependent, other
considerations, such as the unitarity relations and con-
struction of the Boltzmann equations are generic. Our
focus in this paper is on examining asymmetries from
annihilations alone; in accompanying work we examine
scenarios in which decays and annihilations compete in
creating the final asymmetry [31].

The structure of the paper is as follows. In the next
section we review S−matrix unitarity and its implica-
tions for the CP violating reaction rates of annihilations.
We then study a toy model involving the interaction be-
tween four fermions. We outline the Boltzmann equa-
tions for the model and show a non-zero source term
develops when one or more of the species depart from
equilibrium. We calculate the relevant thermally aver-
aged cross sections and solve the Boltzmann equations
numerically.
S−Matrix Unitarity and Time Reversal. – Unitarity of

the S-matrix (S†S = SS† = 1) together with invariance

1 Such a model was constructed previously, however we find the
unitarity constraint was not properly taken into account [27].

2 Asymmetry creation during freeze-in has also been consid-
ered [28–30]. We are instead concerned with freeze-out.
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under charge parity time (CPT) implies for the usual
invariant matrix elements:∑

β

|M(α→ β)|2 =
∑
β

|M(β → α)|2

=
∑
β

|M(β → α)|2 =
∑
β

|M(α→ β)|2, (1)

where α is an arbitrary state, α its CP conjugate and the
sum runs over all possible states β. Consider the collision
term in the Boltzmann equations for the transition of
a set of particles αi where i = 1, ..., n to and from a
set of particles βj where j = 1, ...,m. Let us denote
the integrated collision term for transitions α → β in
chemical equilibrium as W (α→ β). Approximated using
Maxwell-Boltzmann statistics the net collision term is
related to the matrix elements by [32]:

W (β → α)−W (α→ β) =∫
...

∫
dΠα1...dΠαndΠβ1...dΠβmδ

4
(∑

pi −
∑

pj

)
(2π)4

×
{
fβ1...fβm|M(β → α)|2 − fα1...fαn|M(α→ β)|2

}
,

(2)

where fψ = Exp[(µψ−Eψ)/T ] is the phase space density
of species ψ with chemical potential µψ at energy Eψ,

dΠψ =
gψd

3pψ
2Eψ(2π)3

(3)

is the normalized volume element of the three momenta,
gψ are the degrees of freedom, and we assume throughout
kinetic equilibrium so that the temperature (T ) of each
species is identical. Under chemical equilibrium we have
in addition, ∑

i

µαi =
∑
j

µβj . (4)

Chemical equilibrium and the delta function enforcing
four momentum conservation allows the replacement:

fβ1...fβm → fα1...fαn, (5)

under the integral sign in Eq. (2). Using the replacement
in Eq. (5) and taking the sum over all possible final states
one finds [33]:∑

β

W (α→ β) =
∑
β

W (β → α)

=
∑
β

W (β → α) =
∑
β

W (α→ β), (6)

where the second line follows from CPT invariance.
Equation (6) means there must be a departure from ther-
mal equilibrium for a baryon asymmetry to be produced

f

f

Ψ1

Ψ1

κ1

FIG. 1. Tree and one-loop diagrams for the annhilation
Ψ1Ψ1 → ff .

(the third Sakharov condition).3,4 We will apply this uni-
tarity constraint below so as to correctly relate the CP
violation in the reaction rates which enter the Boltzmann
equations [36, 37].
Toy model. – Consider the interaction Lagrangian:

L =
1

4
κ1Ψc

1Ψ1f cf +
1

4
κ2Ψc

2Ψ2f cf +
1

2
κ3Ψc

2Ψ1f cf

+
1

2
λ1Ψc

2Ψ1Ψ1Ψc
1 +

1

4
λ2Ψc

2Ψ2Ψ1Ψc
1 +

1

2
λ3Ψc

2Ψ2Ψ2Ψc
1

+H.c. (7)

where the Ψ and f are Dirac fermions and the κi and λi
are effective couplings with mass dimension -2.

The above Lagrangian violates the particle numbers
associated with Ψ1, Ψ2 and f but preserves the linear
combination ∆(Ψ1 +Ψ2−f). We will show how these in-
teractions will generate an asymmetry in the f sector and
a related asymmetry in the Ψ sector, ∆(f) = ∆(Ψ1+Ψ2),
through 2 ↔ 2 processes. The last three interaction
terms break the particle numbers associated with Ψ1 and
Ψ2 individually but preserve ∆(Ψ1 + Ψ2). These latter
interactions must be included to allow CP violation to
arise in the interference between tree and loop level di-
agrams. Majorana masses are prohibited by the global
symmetry of the Lagrangian ∆(Ψ1 + Ψ2 − f) = 0.

We assume f are in thermal equilibrium with the ra-
diation bath and that Ψ1 and Ψ2 are coupled to the ra-
diation bath only through their interactions in the above

3 An exception is the spontaneous baryogenesis scenario, in which
CPT is violated spontaneously by the expansion of the universe,
but the particles themselves remain in thermal equilibrium [34,
35].

4 The same result holds for full quantum statistics. The collision
term and phase space densities are modified to take into account
quantum statistics [32], but the unitarity condition is also mod-
ified [9, 10, 29].
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Lagrangian. The asymmetries are generated during the
time when the Ψ particles are going out-of-equilibrium.
We take the Ψ2 mass greater than the Ψ1 mass (M2 >
M1) and also consider the decays of Ψ2 below.

The above Lagrangian includes four physical phases in
the couplings. CP violation arises in Ψ number changing
interactions of the form ΨiΨj → ff in the interference
between the tree level and one loop level diagrams such
as those depicted in Fig. 1.

We define the equilibrium reaction rate density – which
will enter as a collision term in the Boltzmann equation
– for the annihilation Ψ1Ψ1 → ff as:

(1 + a1)A1 ≡W (Ψ1Ψ1 → ff) (8)

= neqΨ1n
eq
Ψ1〈vσ(Ψ1Ψ1 → ff)〉, (9)

where the thermally averaged cross section comes from
integrating over the phase space densities:

neqα1n
eq
α2〈vσ(α1α2 → β1β2)〉 (10)

≡
∫
...

∫
dΠα1dΠα2dΠβ1dΠβ2δ

4
(∑

pi −
∑

pj

)
(2π)4

× feqα1f
eq
α2|M(α1α2 → β1β2)|2,

where neqαi (feqαi ) is the number (phase space) den-
sity in the absence of a chemical potential. We have
parametrized the CP violation in the following way:

a1 ≡
W (Ψ1Ψ1 → ff)−W (Ψ1Ψ1 → ff)

W (Ψ1Ψ1 → ff) +W (Ψ1Ψ1 → ff)
, (11)

hence the time reversed rate can be found by making
the substitution: a1 → −a1. The other CP violating
interactions are denoted:

W (Ψ2Ψ2 → ff) ≡ (1 + a2)A2, (12)

W (Ψ1Ψ2 → ff) ≡ (1 + a3)A3, (13)

W (Ψ1Ψ1 → Ψ1Ψ2) ≡ (1 + a4)A4, (14)

W (Ψ1Ψ1 → Ψ2Ψ2) ≡ (1 + a5)A5, (15)

W (Ψ2Ψ2 → Ψ2Ψ1) ≡ (1 + a6)A6. (16)

CP conjugate rates can again be found by substituting
ai → −ai. The unitarity conditions yield:

a1A1 + a4A4 + a5A5 = 0, (17)

a2A2 + a6A6 − a5A5 = 0, (18)

a3A3 − a4A4 − a6A6 = 0. (19)

We have checked that the CP violating rates calculated
in terms of the underlying parameters of the Lagrangian
do indeed respect these unitarity conditions. Note for
κi = λi ≡ κ the CP violation scales as ai ∼ κT 2 for
T � M2 and ai ∼ κM2

2 /(8π) for T . M2 except for
a1 which becomes kinematically suppressed at low T (as
M2 > M1).

Washout interactions of the form Ψif → Ψjf must also
be taken into account. Furthermore sufficiently rapid in-
teractions of the form ΨiΨj ↔ ΨkΨl relate the chemical
potentials of Ψ1 and Ψ2, these are also included in our
numerical solutions below. These rates are denoted as:

W (Ψ1f → Ψ1f) = W1, W (Ψ2f → Ψ2f) = W2,

W (Ψ1f → Ψ2f) = W3, W (Ψ1Ψ1 → Ψ2Ψ1) = Z1,

W (Ψ1Ψ2 → Ψ2Ψ1) = Z2, W (Ψ2Ψ2 → Ψ1Ψ2) = Z3.

A priori Ψ2 may have two decay channels:

Γ(Ψ2 → Ψ1ff) = (1 + γa)Γ2a, (20)

Γ(Ψ2 → Ψ1Ψ1Ψ1) = (1 + γb)Γ2b, (21)

where the γi denote the CP odd component. Unitarity
implies γaΓ2a = −γbΓ2b. Here we kinematically forbid
the second decay channel, ensuring no CP violation is
possible in the Ψ2 decays. The remaining decay width is
given by:

Γ2a =
|κ3|2(M2)5

3072π3
, (22)

where we have ignored the final state masses. (We in-
clude the final state masses and the Lorentz factor sup-
pression resulting from the thermal average in our nu-
merical solutions.)
Boltzmann equations. – We can now write down

the Boltzmann equations using the usual approximation
of Maxwell-Boltzmann statistics. The use of Maxwell-
Boltzmann statistics allows one to factor out the chem-
ical potential of a species from the collision term. The
nonequilibrium rate is then simply the equilibrium rate
multiplied by the ratio of the number density to the equi-
librium number density of the incoming particles. For no-
tational clarity we define the ratio of the number density
to the equilibrium number density as:

ri ≡
ni
neqi

, ri ≡
ni
neqi

. (23)

We assume f and f are in thermal equilibrium with the
radiation bath so µf = −µf . We find the Boltzmann
equations for n1, n2, and the asymmetries n∆1 ≡ n1−n1

and n∆2 ≡ n2 − n2 in terms of the CP even and odd
interaction rates. This results in a system of four coupled
first order ordinary differential equations. The equations
take the form:

dn

dt
+ 3Hn = (source terms) + (washout terms), (24)

where H is the Hubble rate, the source terms can create
an asymmetry once one or more species depart from equi-
librium and the washout terms drive towards equilibrium
and washout any asymmetries present. For example, the
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equation for n∆1 has washout terms:

neq2 Γ2a

[
r2 − r2 + r1rfrf − r1rfrf

]
+ 2W1

[
r1rf − r1rf

]
+W3

[
r2rf − r2rf + r1rf − r1rf

]
+ Z1

[
r2r1 − r2r1

]
+ 2Z2

[
r2r1 − r1r2

]
+ Z3

[
r2r1 − r1r2

]
+ 2A1

[
rfrf − rfrf + r1r1 − r1r1

]
+A3

[
rfrf − rfrf + r2r1 − r2r1

]
+A4

[
r2r1 − r2r1 + r1r1 − r1r1

]
+ 2A5

[
r2r2 − r2r2 + r1r1 − r1r1

]
+A6

[
r2r2 − r2r2 + r1r2 − r1r2

]
. (25)

The source terms for n∆1 are:

− 2a1A1

[
rfrf + rfrf + r1r1 + r1r1

]
− a3A3

[
rfrf + rfrf + r2r1 + r2r1

]
− a4A4

[
r1r1 + r1r1 + r2r1 + r2r1

]
− 2a5A5

[
r2r2 + r2r2 + r1r1 + r1r1

]
+ a6A6

[
r2r2 + r2r2 + r2r1 + r2r1

]
. (26)

By the application of the unitarity conditions (17-19)
these terms can only generate asymmetries, n∆1 6= 0,
when the distribution of Ψ particles depart from equilib-
rium: ri 6= 1.

We proceed to solve the Boltzmann equations numeri-
cally. The standard change of variable is made to express
the equations in terms temperature rather than time. We
calculate the relevant cross sections and find the thermal
averaged cross sections numerically by making use of the
single integral formula [38]:

〈vσ(ij → final)〉 (27)

=
gigjT

8π4neqi n
eq
j

∫ Λ2

(mj+mi)2
pijEiEjvrelσK1

(√
s

T

)
ds,

where s is the centre-of-mass energy squared, pij is the
initial centre-of-mass momentum, K1(x) is the modified
Bessel function of the second kind of order one and Λ
is the effective theory cut-off. Having calculated the re-
action rates and CP violation, we then solve the system
of coupled Boltzmann equations using Mathematica [39].
An example solution is shown in Fig. 2.

The thermal history proceeds as follows. At high
temperatures the 2 ↔ 2 annihilations keep Ψ1 and Ψ2

close to thermal equilibrium and only a small asymme-
try can develop (due to the expansion term the particles
are never exactly in equilibrium). The departure from

FIG. 2. Example solution to the system of coupled Boltzmann
equations with densities normalized to the entropy density
Yψ ≡ nψ/s and shown evolving with temperature T , time
proceeds right to left. Parameters are set to Mf = 100 GeV,
M1 = 800 GeV, M2 = 2 TeV, |κi| = |λi| = 5× 10−13 GeV−2,

κ3 = e−i3π/4|κ3|, λ1 = eiπ/3|λ1|, λ2 = e−iπ/6|λ2|, λ3 =

e−iπ/4|λ3|.

equilibrium and hence the asymmetries increase as T de-
creases and the reactions become less effective. At some
point the Ψi effectively decouple and the overall asym-
metry remains constant. In Fig. 2 this occurs around
T ≈ 400 GeV. Crucial to obtaining an asymmetry (with
a common T between sectors) is that at least some of the
particles involved are massive: the decoupling of mass-
less particles does not lead to ri 6= 0. Numerically we find
the maximum asymmetry is generated for decoupling at
T ∼Mi.

Eventually the heavier Ψ2 decay into Ψ1 and the final
∆(Ψ) asymmetry is stored in Ψ1. Due to the different
masses, couplings and phases, the asymmetries created
in Ψ2 and Ψ1 are different and hence the eventual ∆(Ψ)
decays of Ψ2 do not washout the overall asymmetry.

Note that a large symmetric component of Ψ1 is still
present: |Y∆1| � Y1. In a realistic model, so as to not
overclose the universe, the symmetric component should
be annihilated away. This can be achieved by introducing
an interaction of the form Ψ1Ψ1 → ff . Alternatively
Ψ1 and Ψ1 could eventually decay. The asymmetry can
then be stored in the decay products. These could be
regular baryons or if they make up the DM, and have a
sufficiently large annihilation cross section to annihilate
away the symmetric component, form asymmetric DM
[40–42].

We have assumed kinetic equilibrium for the Ψi

throughout. At high T this is a good approximation as
the 2 ↔ 2 interactions effectively transfer momentum
between the Ψi and f . As we approach the decoupling
point this approximation begins to breaks down [43–46].
This calculation can be further refined through the inclu-
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sion of departures from kinetic equilibrium, full quantum
statistics and thermal masses which could give O(1) cor-
rections to the final asymmetry.

Conclusion. – We have presented a generic setup for
the generation of particle-antiparticle asymmetries from
2 ↔ 2 processes, such as annihilations or scatterings.
This is to be contrasted with the more well known sce-
nario in which such asymmetries are generated via 1→ 2
out-of-equilibrium decays. We have explicitly outlined
how the Boltzmann equations should be formulated, tak-
ing S-matrix unitarity and CPT invariance into account.
We have also presented an example numerical solution to
the Boltzmann equations in the context of a simple toy
model. Such techniques can be applied in calculation of
particle-antiparticle asymmetries in models of baryogen-
esis and ADM, as will be the focus of our future work.
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