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Abstract

In a recent paper, Welsh, Lindenmayer and Donnelly (WLD) question the usefulness of models that estimate species
occupancy while accounting for detectability. WLD claim that these models are difficult to fit and argue that disregarding
detectability can be better than trying to adjust for it. We think that this conclusion and subsequent recommendations are
not well founded and may negatively impact the quality of statistical inference in ecology and related management
decisions. Here we respond to WLD’s claims, evaluating in detail their arguments, using simulations and/or theory to
support our points. In particular, WLD argue that both disregarding and accounting for imperfect detection lead to the
same estimator performance regardless of sample size when detectability is a function of abundance. We show that this, the
key result of their paper, only holds for cases of extreme heterogeneity like the single scenario they considered. Our results
illustrate the dangers of disregarding imperfect detection. When ignored, occupancy and detection are confounded: the
same naı̈ve occupancy estimates can be obtained for very different true levels of occupancy so the size of the bias is
unknowable. Hierarchical occupancy models separate occupancy and detection, and imprecise estimates simply indicate
that more data are required for robust inference about the system in question. As for any statistical method, when
underlying assumptions of simple hierarchical models are violated, their reliability is reduced. Resorting in those instances
where hierarchical occupancy models do no perform well to the naı̈ve occupancy estimator does not provide a satisfactory
solution. The aim should instead be to achieve better estimation, by minimizing the effect of these issues during design,
data collection and analysis, ensuring that the right amount of data is collected and model assumptions are met,
considering model extensions where appropriate.
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Introduction

Species occupancy is a state variable widely used in ecology. It

can be defined as the proportion of sites where the target species is

present (or in terms of the underlying probability), and is relevant

to monitoring programs and the study of species distributions.

Models that allow its estimation while simultaneously accounting

for imperfect detection are available and have become increasingly

used over the past decade [1–4]. The key to these models is

describing the data as the result of two linked processes: the state

process (where the species occurs) and the detection process (how

the species is detected at sites where present). Given this structure,

models of this type are often referred to as ‘state-space models’ or

‘hierarchical models’ [5], a terminology that we adopt here.

Imperfect detection is a widely recognized problem in ecological

surveys [6], including those for sessile species [7,8]. If not

accounted for, imperfect detection can bias estimators of

occupancy and habitat relationships [3,9–11] and the underlying

processes driving occupancy dynamics [1,12,13].

In a paper in this journal [14], Welsh, Lindenmayer and

Donnelly (hereafter WLD) question the usefulness of hierarchical

occupancy models after reporting results of simulations and

theoretical calculations using the basic model in [2]. While

assessing the performance of such models is important, we feel that

WLD do not provide a representative assessment of the limitations

and benefits of hierarchical occupancy models, and we note that

some of their analyses appear to contain errors that have

implications for some of their statements regarding estimator

quality. In particular, we believe that WLD’s key conclusion that

‘ignoring detection can actually be better than trying to adjust for

it’ is incorrect and may encourage poor practice in ecological data

analysis. Here we present our view on the issues raised by WLD

and re-examine their results.

WLD support their criticisms of hierarchical occupancy

modelling by stating that these models lead to boundary estimates,

‘‘multiple solutions’’ and imprecise estimators of occupancy and

detectability if the sample size is small. While we agree that

estimator quality deteriorates with decreasing sample size, which is
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true for any type of statistical model, this does not justify general

claims about lack of utility of hierarchical occupancy models.

WLD select a few scenarios to justify their argument that

disregarding detectability can be a better approach than explicitly

modelling it. Using a more comprehensive analysis, including

additional parameter values and methods of assessing the

performance of the two approaches, we will demonstrate the true

value of hierarchical occupancy models and how they outperform

estimators that ignore detectability.

Despite suggestions by WLD to the contrary, the performance

of single-species single-season occupancy models has been

previously evaluated in the literature. For instance, in presenting

the model, [2] assessed the models via simulations; [15–20]

consider the precision of the estimators to address survey design,

how to allocate survey effort optimally, and how to determine the

sample size required to obtain meaningful results; [21] explores

the problems of identifiability when detectability is heterogeneous;

[22] considers the value of sampling with replacement in studies

based on spatial replication within sites. Hierarchical occupancy

models can lead to estimates at the boundary of the parameter

space (occupancy estimates equal to one) when the sample size is

small. WLD find these boundary estimates surprising, however

such estimates were already mentioned in [2], while [17], who

evaluate model performance under small sample size, derive the

conditions fulfilled by data sets that lead to boundary estimates

under the constant model. The references above demonstrate that

there has been performance evaluation of these methods in the

literature, although we acknowledge that further work in this area

can be valuable.

Before moving to more specific comments in the next section,

we clarify that, contrary to the assertion by WLD, [1] do not

recommend studying changes in occupancy instead of abundance

as a general rule. They note that occupancy and abundance are

alternative state variables, the choice of which depends on

ensuring that the results of monitoring are meaningful and hence

on the objectives of the program (see also [6]). Occupancy is a

reduced version of abundance (i.e. occupancy probability is the

probability that abundance is greater than zero). While species

occupancy might sometimes be sufficiently informative [23], we

agree that this is not necessarily always the case. If one truly desires

abundance estimates, then one should not use occupancy

estimation methods. However, we note that issues of detectability

and the requirement that suitable data are collected are just as

relevant when estimating abundance (e.g., see [24–26]). Here we

do not enter into the discussion of state variable choice any further,

which, although interesting, is a different topic. Our focus in this

paper is on addressing the criticisms regarding ‘fitting and

interpreting occupancy models’ raised by WLD. Hence our

premise is that species occupancy is the state variable of interest.

Methods

We make five main points, which are supported by evidence

from simulation results and mathematical derivations. Following

WLD, we ran simulations for a scenario (hereafter Scenario A1)

where occupancy was y~0:4 for all sites and detection probability

was logit(pi)~{0:533z0:22xi, with covariate xi[ 1,2,3,4,5f g,
which corresponds to detection probabilities ranging 0.422–0.638

(in WLD the covariate represents years since plantation in

surrounding habitat and the target species are woodland birds).

We assumed the same number of sites for each value of the

covariate xi. For comparison, we added a second scenario

(hereafter Scenario A2) with higher occupancy and lower

detectability: y~0:8 and logit(pi)~{2:0z0:20xi (i.e. pi ranging

0.142–0.269). WLD also considered the case y~0:1 (with

detection probability as for A1) but re-analysing that scenario

does not change the main points we make subsequently, so we do

not consider those analyses further; given sparse observations in

this case, the models will perform poorly unless the sample size is

relatively large [17].

We simulated 5000 data sets per scenario, and fitted hierarchi-

cal occupancy models with the package unmarked v0.9–9 [27] in

R [28], which obtains maximum-likelihood estimates via numer-

ical optimization. Unmarked differs from the R package VGAM used

by WLD [29] in that it has been specifically developed for fitting

hierarchical occupancy models (among others) rather than a more

general family of models. Following WLD, we fitted the model

with the covariate in both the occupancy and detection

components, i.e. y(x)p(x), although more generally we suggest

that one should consider some form of model selection technique

to identify which covariates provide the best description of the

available data. We also fitted standard logistic regression models

(i.e. occupancy models assuming perfect detection, hereafter ‘naı̈ve

occupancy models’) using the R function glm. We again allowed

occupancy to be a function of the covariate, i.e. ynaive(x). We fitted

the naı̈ve models to two sorts of data sets: first only considering a

single replicate survey per site, then considering the same sampling

effort as in the corresponding hierarchical model, but collapsing

the data to a single detection/non-detection record per site (i.e.

considering the species detected at a site if it was detected in any of

the surveys). Regarding sample size, we evaluated all combinations

of S = 55, 110 or 165 sites and K = 2, 3, 4 or 5 replicate surveys per

site. Note that, despite mentioning four sample size cases, WLD

only report results for the smallest sample size they assessed (i.e.

S = 55 and K = 2). Following WLD, we treated fitted values greater

than 0.9999 as one, and those smaller than 0.0001 as zero. We

include an additional set of simulations that explores the entire

parameter space, assuming constant occupancy and detectability

(details in Appendix S2).

Following WLD, we ran a set of simulations in which

detectability at each site within a covariate category was a random

variable rather than constant (but the hierarchical model fitted still

assumed that detectability was constant within each category,

following a logistic regression as above, i.e. logit(pi)~c0zc1xi).

WLD present this as a scenario where detectability is a function of

abundance but it can be interpreted more generally as any

scenario where detectability is heterogeneous amongst sites. We

ran this set of ‘‘abundance’’ simulations using both the same and

different parameters as WLD (details are given in the relevant

section below; we will refer to these simulations as Scenarios B1,

B2 and B3). See Table 1 for a summary of all simulated scenarios.

To corroborate our simulations, we further assessed these three

scenarios by solving the expected estimating equations (as in

WLD’s ‘theoretical results’; details in Appendix S3). This method

provides information about the asymptotic bias of the estimators,

which we also explored in detail for a wide range of heterogeneity

scenarios (from none to extreme), assuming a single covariate

category for simplicity.

Message 1: Boundary estimates and multiple
solutions are not as great a problem as implied by
WLD

WLD state that hierarchical occupancy models often lead to

boundary estimates (i.e. estimates that take value 0 or 1) and suffer

from multiple solutions. Boundary estimates are only a problem

when the sample size is small (relative to the sparseness of the data)

and occupancy estimates of 1 can be obtained even if the true
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underlying occupancy is low [17]. When the sample size is large,

occupancy estimates on or close to 1 can still be obtained, but

these are likely to faithfully correspond to a true high level in

species occupancy. Although there is no doubt that the perfor-

mance of the estimators worsens as the sample size decreases, we

believe that the claims made by WLD regarding boundary

estimates and multiple solutions are overstated for the following

reasons:

1-1) ‘All one’ occupancy estimates are not a general
problem

WLD present the system of equations that the maximum-

likelihood estimates (MLEs) satisfy and support their claim that

boundary estimates are often a problem in hierarchical occupancy

models by observing that all sites being occupied (ŷyi~1 for all sites

i) is always a solution for one of the equations in the system (eq (4) in

[14]). It is, however, important to note that such a solution by itself

does not represent a stationary point in the likelihood function (i.e.,

a point where all partial derivatives are zero, that is, where the

surface is locally flat). For the point to be stationary, all the

equations in the system need to be satisfied. Even then, the

solution does not necessarily correspond to the maximum-

likelihood estimate (and may in fact be a much less likely solution).

Consider for simplicity the model without covariates. Let

p�~1{ 1{pð ÞK be the probability of detecting the species at least

once at a site that is occupied, Sd the total number of sites where

the species is detected and dT the total number of detections across

all sites. The system of equations, which is obtained by

differentiating the log-likelihood with respect to the parameters

and equating to zero, indeed has a solution at y~1 and

p~dT= SKð Þ. However, it can be shown that this solution

corresponds to the maximum in the likelihood (and hence is the

MLE) only when the following condition holds [17]:

S{Sd

S

� �
v 1{

dT

SK

� �K

: ð1Þ

When (1) does not hold, the solution above is a saddle point in

the likelihood function, and not a maximum (Figure 1). The

optimization algorithm used to obtain the estimates should not

have particular problems locating the true maximum of the

function, which is at ŷy~Sd= Sp̂p�ð Þ and p̂p=p̂p�~dT= KSdð Þ, even if

there is another stationary point (see more about dealing with

multiple solutions in point 1-3 below). In our analysis, none of the

5000 simulations led to ‘all-one’ occupancy estimates in Scenario

A1 when S = 55 and K = 2, or for larger sample sizes (Table 2b),

while WLD only encountered 12 cases for the same scenario

(Table 2a).

1-2) ‘All zero’ occupancy estimates are not possible
unless there are no detections

The simulation results presented by WLD for Scenario A1 show

occupancy estimates ŷyi~0 (for all sites i) in data sets with

detections (120 out of 5000 simulations; Table 2a). WLD state that

this ‘seems strange’. Indeed, such results cannot be maximum-

likelihood estimates, and must be errors. This can be immediately

seen by looking at the first of the estimating equations (eq (4) in

Table 1. Simulated scenarios (marked with asterisk * those also tested by WLD).

Occupancy probability Detection probability

Scenario A1* y~0:4 logit(pi)~{0:533z0:22xi (i.e. pi in 0.422–0.638)

Scenario A2 y~0:8 logit(pi)~{2:0z0:20xi (i.e. pi in 0.142–0.269)

Scenario B1* y~0:4 pi ~Beta(0:5,1)forxi[ 1,2f g,
pi ~Beta(1,1)forxi~3,

pi ~Beta(10,2)forx[ 4,5f g:

Scenario B2 y~0:4 pi ~Beta(3,6)forxi[ 1,2f g,
pi ~Beta(5,5)forxi~3,

pi ~Beta(10,2)forx[ 4,5f g:

Scenario B3 y~0:8 pi ~Beta(3,6)forxi[ 1,2f g,
pi ~Beta(5,5)forxi~3,

pi ~Beta(10,2)forx[ 4,5f g:

For all scenarios we tested all the combinations of the following sampling sizes: S~55,110or165 sites and K~2,3,4or5 replicate surveys per site. The beta distributions
below are plotted in Figure 4.
doi:10.1371/journal.pone.0099571.t001

Figure 1. Log-likelihood surface displaying the maximum-
likelihood estimate (P1) and a saddle point at the boundary
y~1 (P2). This example corresponds to a constant hierarchical
occupancy model and a data set where S = 200 sites, K = 2 replicate
visits, Sd = 80 sites with detection and dT = 134 detections. P1 is located
at {y = 0.416, p = 0.806} and P2 at {y = 1, p = 0.335}.
doi:10.1371/journal.pone.0099571.g001
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[14]), which is only equal to zero when ŷyi~0 (for all sites i) if there

are no detections at any site (i.e. di~0 for all sites i). As expected,

we did not obtain such estimates (Table 2b). In all of our

simulations, the species was detected at $4 sites, and at least one

of the occupancy estimates was greater than 0.16; that is, there was

always at least one estimate that was well above zero. We verified

that very similar results are obtained with program PRESENCE

[30]. The results presented by WLD, which contradict theory,

point to problems either with their data simulation or with the R

package they used for model fitting (VGAM). We believe it was most

likely the latter given the difficulties to achieve convergence that

we experienced when testing the VGAM package in a subset of our

simulations with K = 2.

1-3) Difficulties of dealing with multiple solutions are
overstated

WLD claim that obtaining multiple solutions to the system of

likelihood equations is a problem in hierarchical occupancy

models. To evaluate the extent to which multiple solutions are

indeed a problem for model fitting, we reran our Scenario 1

simulations for the smaller sample size (S = 55 and K = 2), fitting

each data set multiple times (20 each) with different randomly

chosen starting values and examined the estimates obtained with

each of them.

In 98.5% of the simulations, unmarked found the maximum-

likelihood estimates at the first attempt using its default values.

Note that WLD also acknowledge that their fitting procedure

usually returned the MLE with its default settings. This confirms

that the difficulties of dealing with multiple solutions are not as

great as conveyed by some of the statements made by WLD.

The optimization algorithm used by unmarked tended to

consistently find the MLE (98.7% of the attempts) as long as the

initial values given for the regression coefficients were kept within

reasonable values (e.g. choosing values in [20.5,0.5]). The

optimization algorithm was more prone to stop at an estimate

that was at the boundary (i.e. with at least one value ŷyi~1) and

that was not the MLE (i.e. had smaller likelihood) only when we

allowed for large initial values for the regression coefficients (e.g.

choosing values in [23,3]). Hence, to reduce the chances of

ending at a point different from the MLE, one should avoid using

extreme starting values, which may make the optimization

algorithm start (and get stuck) at the boundary. In any case,

fitting the model with multiple starting values is always recom-

mended to ensure that the MLE has been located (and not a local

maximum). Using multiple starting values is good practice that is

not unique to hierarchical occupancy models, but rather should be

routinely considered whenever estimating parameters by numer-

ical maximum-likelihood techniques.

Message 2: By ignoring imperfect detection, a
different metric is estimated. This metric can be
derived from the hierarchical model

When imperfect detection is disregarded, the metric being

estimated is no longer species occupancy (yi). Occupancy and

detection are confounded so the model estimates instead the product

yip
�
i , where p�i is the probability of detecting the species at a site

where present given the total survey effort. Rather than estimating

Table 2. Counts of different estimation results obtained when fitting hierarchical occupancy models to simulated data from
Scenario A1.

(a) Results from WLD

y

all 0 some 0 some 0&1 some 1 all 1 interior total

p all 0 0 0 0 0 0 0 0

some 0 0 0 0 0 0 0 0

some 0&1 0 0 9 0 0 0 9

some 1 48 1 11 0 0 0 60

all 1 62 0 0 0 0 0 62

interior 10 0 21 57 12 4769 4869

Total 120 1 41 57 12 4769 5000

(b) Our results

y

all 0 some 0 some 0&1 some 1 all 1 interior total

p all 0 0 0 0 0 0 0 0

some 0 0 0 0 0 0 0 0

some 0&1 0 0 0 0 0 0 0

some 1 0 0 0 0 0 0 0

all 1 0 0 0 0 0 0 0

interior 0 0 4 104 0 4892 5000

total 0 0 4 104 0 4892 5000

In (a) results obtained by [14], in (b) results obtained in this study. In both cases estimates were categorized as 0 or 1 based on thresholds 0.0001 and 0.9999
respectively. Sample size S = 55 sites and K = 2 replicate surveys. Model fitted y(x)p(x).
doi:10.1371/journal.pone.0099571.t002
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Figure 2. Simulation results of fitting hierarchical and naı̈ve occupancy models to 5000 data sets from Scenario A1 with 55 sites. The
first three columns correspond to the hierarchical model: in column 1 estimates of occupancy probability y (‘psi-hat’), in column 2 estimates of the
conditional single-survey detection probability p (‘p-hat’) and in column 3 estimates of the unconditional detection probability after K surveys yp�

(‘pdet-hat’). Column 4 presents the estimates for the naı̈ve model that assumes perfect detection. Rows represent increasing number of replicate
surveys per site, from K = 1 to K = 5. Where K§2 the naı̈ve model was fitted to data collapsed to a single record per site (1 if species detected at least
once, 0 otherwise). In this particular scenario (also presented by [14]) the imprecision in the hierarchical model is large compared to the bias in the
naı̈ve model. The true occupancy was 0.4, and the true detection probability increased with the value of the x-variable. In each figure a solid line
represents true values. For reference, in columns 3 and 4 a dashed line represents the true occupancy probability.
doi:10.1371/journal.pone.0099571.g002
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Figure 3. Simulation results of fitting hierarchical and naı̈ve occupancy models to 5000 data sets from Scenario A2 with 55 sites. For
details in figure arrangement see Figure 2; here the true occupancy was 0.8. In this example the hierarchical model clearly outperforms the naı̈ve
model, which is greatly biased. A comparison of the estimates for K = 2 illustrates with those in Figure 2 illustrates how the naı̈ve model can produce
the same estimates for very different scenarios.
doi:10.1371/journal.pone.0099571.g003
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where the species is more or less likely to occur, the model

estimates where the species is more or less likely to be detected

(with the methods and effort employed). This is a problem of

parameter identifiability, where the model cannot tease apart the

state process and the observation process, and can also be

interpreted as a situation where the estimation of species

occupancy is biased by an unknown amount. It is worth noting

that the hierarchical occupancy model can also estimate this

metric (ŷyi p̂p
�
i ) based on its estimates of occupancy ŷyi and detection

p̂pi, with p̂p�i ~1{ 1{p̂pið ÞK . Figures 2 and 3 show how the estimates

derived for this quantity with the hierarchical occupancy model

(third column) are essentially the same as the estimates obtained

when fitting the naı̈ve model (fourth column).

Message 3: Accounting for imperfect detection
provides a more reliable estimator of occupancy,
which honestly captures the uncertainty

When interpreted as an estimator of species occupancy, the

naı̈ve model is biased whenever overall detection is imperfect (i.e.

p�v1; see column 4 in Figures 2 and 3; also Figures S1.1–S1.6 in

Appendix S1) [2,3,9,10]. The hierarchical occupancy model

provides instead an asymptotically unbiased occupancy estimator

when model assumptions are met (column 1 in the same figures).

However, its estimator is less precise. This is expected given that

there is an additional source of uncertainty once imperfect

detection is admitted [1,15]. Hence, for small sample sizes and

depending on the scenario, the hierarchical occupancy model may

lead to an estimator with a mean square error (MSE) that is larger

than that in the naı̈ve estimator (see Table S2.1 in Appendix S2).

However, as we show below, one cannot tell from the data

whether one is in such a scenario, or in one where ignoring

detectability implies a large bias (and hence MSE).

As we increase the number of survey sites S, the performance of

the hierarchical model improves because its estimator becomes

more precise. The naı̈ve model also becomes more precise but,

since it remains biased, its performance does not appreciably

improve unless the bias is small. The naı̈ve model provides an

estimator that is not consistent, i.e., its MSE does not tend to zero

as sample size S increases. The superiority of the hierarchical

model in terms of MSE is thus more apparent as S increases (see

Table S2.1 and MSE ratios in Table 3). In the naı̈ve model,

increasing the number of surveyed sites can in fact be detrimental:

the confidence interval narrows around an incorrect estimate

(since the estimator is biased). Apart from small MSE, a desirable

property of estimators is to provide confidence intervals that have

good coverage, that is, confidence intervals that tend to contain

the true parameter value (e.g. 95% of the time when working with

95% confidence intervals). Due to the fact that the naı̈ve estimator

is biased, its coverage can be very poor (see Table S2.2 in

Appendix S2). Hence the naı̈ve model can provide misleadingly

precise estimates that are far from the true occupancy value.

WLD present Scenario A1 (S = 55 and K = 2) in making the case

that modelling detectability is unnecessary because the bias

induced by assuming perfect detection is relatively small compared

to the reduced precision in the hierarchical model. Indeed, this

particular scenario is one where the MSE for the estimator of the

naı̈ve model is smaller (Table 3a). However, it is crucial to

remember that the naı̈ve model could provide identical estimates

to those arising from Scenario A1 for other occupancy scenarios

that imply a much greater bias, where the hierarchical model

clearly outperforms the naı̈ve model. For instance, the estimates

obtained when fitting the naı̈ve model to Scenario A1 are

essentially the same as those obtained in Scenario A2 when K = 2

(compare the corresponding plots in Figures 2 and 3; also Figures

S1.2–S1.3 with Figures S1.5–1.6 in the Appendix S1 for larger

sample size), but in the latter the true occupancy probability is 0.8

and hence the naı̈ve estimator is substantially biased and has a

much greater MSE (Table 3b). By looking at the naı̈ve occupancy

estimates alone we cannot tell how good or bad these estimates

are, as the occupancy and detection processes are confounded

(e.g., if the naı̈ve occupancy is 0.24, is that because yi~0:4 and

Table 3. Mean square error (MSE) for the occupancy estimator in the hierarchical/naı̈ve models, and their ratio, obtained from
simulations of (a) Scenario A1 and (b) Scenario A2 (see Table 1 for details).

(a) Scenario A1

S = 55 S = 110 S = 165

K = 1 NA/0.042 NA/0.039 NA/0.038

K = 2 0.047/0.017 = 2.82 0.019/0.013 = 1.44 0.011/0.011 = 0.94

K = 3 0.017/0.011 = 1.62 0.007/0.007 = 1.08 0.004/0.005 = 0.84

K = 4 0.011/0.009 = 1.22 0.005/0.005 = 1.04 0.003/0.004 = 0.97

K = 5 0.010/0.009 = 1.10 0.005/0.005 = 1.04 0.003/0.003 = 1.02

(b) Scenario A2

S = 55 S = 110 S = 165

K = 1 NA/0.413 NA/0.411 NA/0.411

K = 2 0.075/0.271 = 0.28 0.052/0.267 = 0.19 0.043/0.268 = 0.16

K = 3 0.052/0.182 = 0.28 0.034/0.177 = 0.19 0.027/0.177 = 0.16

K = 4 0.038/0.124 = 0.31 0.025/0.119 = 0.21 0.019/0.118 = 0.16

K = 5 0.030/0.085 = 0.36 0.019/0.081 = 0.24 0.014/0.080 = 0.18

Simulations were run for a range of sample sizes, with S sites and K replicate surveys per site (5000 simulations per case). When K§2, the naı̈ve model was fitted to the
data resulting from collapsing the detection/non-detection history into a single record per site (1 if species detected at least once, 0 otherwise). In the majority of these
cases the performance of the hierarchical model was either comparable or considerably superior to that of the naı̈ve model. A ratio ,1 indicates that the MSE of the
hierarchical model is smaller than in the naı̈ve model.
doi:10.1371/journal.pone.0099571.t003
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pi~0:6 or yi~0:8 and pi~0:3?). It is only when we partition

these processes that we can understand whether imperfect

detection is or is not an issue, and we can be confident that we

are estimating species occupancy reliably. The naı̈ve model

estimator has poor coverage when detection is imperfect, that is,

confidence intervals around estimates are unlikely to include the

true occupancy value. We argue that it is better to be openly

uncertain, than to be report a result that may be precise but

wrong. Hence we believe that the hierarchical model provides an

estimator more suitable to rely on.

Message 4: Accounting for imperfect detection
does not imply a need for increased sampling
effort. Imperfect detection does.

Accounting for imperfect detection does not necessarily require

increased survey effort. However, it is necessary to collect survey

data in such a way that the detection process can be modelled

[10]. This can be done for instance by recording the observations

gathered in multiple visits (as assumed here), the detections of

multiple independent observers [1] or the detection times within a

single visit [7,31]. Another matter is that, for a given level of

sampling effort per site, more sampling sites are needed to obtain

good occupancy estimates when detectability is low. Simply put:

poor detectability makes disentangling occupancy and detection

processes harder. On the other hand, increasing the amount of

survey effort per site (e.g. the number of replicate visits per site)

reduces the problem of imperfect detection as the chances of

missing the species at occupied sites decrease. For a given survey

budget, there is a trade-off between visiting more sites and

spending more survey effort per site [15–20], with the optimal

effort allocation corresponding to relatively high levels of overall

detection p� (around 0.85-0.95).

WLD present as a difficulty the need for ‘‘extra data collection

[…] to adjust for non-detection’’. However, inconsistently, when

fitting the naı̈ve logistic model in their simulations, WLD use the

data corresponding to the full sampling effort (collapsing the

replicate records as we do). If WLD choose to associate the

additional replicate surveys as a complication introduced by

modelling detectability, then a fair comparison would have fitted

the naı̈ve model to the data from a single replicate survey per site.

We include these results (denoted ‘‘K = 1’’) as the first row in

Table 3 and in our simulation results (Figures 2 and 3, and figures

in Appendix S1) to illustrate the increased gap in performance

between the naı̈ve and hierarchical models when this approach is

taken to fitting the naı̈ve model. If the models are instead

compared to data derived from the same sampling effort (as done

by WLD), then the amount of sampling effort should not be used

as an argument against the use of hierarchical models.

Message 5: Hierarchical models are less biased
than naı̈ve models even if detection is a function
of abundance

WLD’s stated key result is that ‘‘when the detection process

depends on abundance, the bias in the fitted probabilities can be of

similar magnitude to the bias when the detection process is

ignored, and this is very difficult to overcome’’. They also point

Figure 4. Beta distributions used to generate detectability in the ‘‘abundance’’ scenarios for the different covariate categories. Lines
correspond to xi~1,2 (solid), xi~3 (dashed) and xi~4,5 (dotted). Panel (a) displays the probability density functions (pdf) for the distributions used
by WLD (Scenario B1) and panel (b) for the distributions used in our Scenarios B2 and B3. The distribution that WLD used for xi~1,2has considerable
mass for detectability very close to zero: Pr piƒ0:05ð Þ~0:22. Panels (c-d) display the pdf of the probability of detecting the species in at least one of K

surveys (p�~1{ 1{pð ÞK ) at sites xi~1,2 (from darker to lighter, lines correspond to K~1,2,5,10).
doi:10.1371/journal.pone.0099571.g004
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out that increasing the sample size (S or K) does not resolve the

issue but instead makes estimates worse. The evidence for their

conclusion comes from considering a single scenario using

simulation and theoretical results. However, we have seen above

that the hierarchical occupancy model behaves better than the

naı̈ve model in scenarios where detectability varies, and that could

likewise be interpreted as cases in which detectability depends on

abundance. So, what is the cause of this incongruence? And how

can we explain the counterintuitive result that increasing sample

size makes things worse?

A close inspection of the scenario simulated by WLD (hereafter

Scenario B1) reveals the root of this contradiction. As in the

previous example, occupancy was set constant for all sites (yi~0:4
for all site i) and detectability varied for each covariate category xi,

but here detectability values were generated as random variables

from different distributions for each covariate category, hence

introducing variation in the detection probability among sites

(making the pi’s vary). For their example, WLD chose the

following distributions

pi~Beta(0:5,1)forxi[ 1,2f g,

pi~Beta(1,1)forxi~3,

pi~Beta(10,2)forx[ 4,5f g:

These distributions (Figure 4 a,b) represent a case in which

detectability is relatively high for the two last covariate categories

(90% of the mass in [0.636–0.967]; mean p~0.833 for xi[ 4,5f g)
and can take any value for the other three category covariates,

although it is more likely to be lower for xi[ 1,2f g ([0.002–0.902];

mean p~0.333) than for xi~3 ([0.050–0.950]; mean p~0.5).

Importantly, for xi[ 1,2f g much of the probability mass is very

close to zero (.22% of the ‘‘occupied’’ sites having detection

probability ,0.05: Figure 4a), while there is also a considerable

chance that detection probability is high (i.e., approximately 22%

of the distribution is .0.61). The distribution for the probability of

at least one detection from the two surveys (p�) has a ‘bathtub’

shape with peaks near both 0 and 1 (Figure 4c). This rather

extreme distribution implies that, at some occupied sites, the

species is practically invisible to the survey methods, while at

others its detection is almost guaranteed. When applying a model

that does not allow for such heterogeneity, occupied sites with low

detection probabilities are more likely to be regarded as

unoccupied if the species goes undetected, particularly with only

two surveys and if other sites have very high detection

probabilities. This causes the negative bias observed by WLD in

the estimation of occupancy for those two covariate categories,

and hence the positive bias in the estimation of the slope in the

occupancy regression. One cannot expect a model that assumes no

heterogeneity to provide reliable inference about a species in the

face of such extreme heterogeneity, even if the sample size is large.

This is related to why WLD wrongly conclude that increasing the

sample size (S or K) does not improve the performance of the

hierarchical model. WLD observe that for this particular example

the slope estimates ‘‘get slightly worse’’ as K increases, and ‘‘much

Table 4. Mean square error (MSE) for the occupancy estimator in the hierarchical/naı̈ve models, and their ratio, obtained from
simulations of three ‘‘abundance’’ scenarios: (a) Scenario B1 from [14], (b) Scenario B2 and (c) Scenario B3.

(a) Scenario B1

S = 55 S = 110 S = 165

K = 1 NA/0.046 NA/0.040 NA/0.038

K = 2 0.028/0.032 = 0.87 0.018/0.025 = 0.72 0.017/0.023 = 0.73

K = 3 0.021/0.026 = 0.82 0.016/0.020 = 0.82 0.015/0.017 = 0.84

K = 4 0.019/0.023 = 0.86 0.015/0.017 = 0.88 0.013/0.014 = 0.90

K = 5 0.018/0.020 = 0.89 0.013/0.015 = 0.92 0.012/0.013 = 0.93

(b) Scenario B2

S = 55 S = 110 S = 165

K = 1 NA/0.041 NA/0.041 NA/0.041

K = 2 0.022/0.022 = 0.97 0.013/0.021 = 0.60 0.009/0.020 = 0.44

K = 3 0.014/0.016 = 0.93 0.008/0.013 = 0.63 0.006/0.012 = 0.51

K = 4 0.012/0.012 = 0.96 0.007/0.009 = 0.71 0.005/0.008 = 0.61

K = 5 0.011/0.011 = 0.98 0.006/0.007 = 0.80 0.004/0.006 = 0.70

(c) Scenario B3

S = 55 S = 110 S = 165

K = 1 NA/0.148 NA/0.156 NA/0.158

K = 2 0.029/0.068 = 0.42 0.024/0.072 = 0.34 0.020/0.071 = 0.28

K = 3 0.019/0.038 = 0.49 0.016/0.040 = 0.39 0.013/0.038 = 0.34

K = 4 0.014/0.025 = 0.58 0.011/0.024 = 0.46 0.009/0.023 = 0.40

K = 5 0.011/0.017 = 0.66 0.009/0.016 = 0.54 0.007/0.015 = 0.46

Simulations were run for a range of sample sizes, with S sites and K replicate surveys per site (5000 simulations per case). When K§2, the naı̈ve model was fitted to the
data resulting from collapsing the detection/non-detection history into a single record per site (1 if species detected at least once, 0 otherwise). The hierarchical model
outperforms the naı̈ve model, being clearly superior in the third example.
doi:10.1371/journal.pone.0099571.t004
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Figure 5. Simulation results of fitting hierarchical and naı̈ve occupancy models to 5000 data sets from Scenario B2 with 165 sites.
For details in figure arrangement see Figure 2. This example shows that, even if detectability is heterogeneous, the hierarchical model has smaller bias
and that this bias is reduced with the sample size.
doi:10.1371/journal.pone.0099571.g005
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worse’’ as S increases, by relating the quality of the estimator to the

proportion of simulations that lead to a non-positive estimated

slope. Indeed, since in these simulations the performance is

dominated by the bias caused by having extremely low detect-

ability at some sites in xi[ 1,2f g, the improvement in precision due

to an increase in the amount of data can lead to a greater

proportion of simulations having positive slopes. However, WLD

overlook that the bias itself also decreases (albeit slowly), and that

therefore the quality of the estimator (measured in terms of MSE)

indeed improves (Table 4). Estimator quality improves with K,

which is intuitive as the model is ultimately unbiased when K is

large enough so that the species is detected at all sites where

present (unless p is exactly 0). Estimator quality also improves with

S although some bias remains even for large S given that we are

fitting a different detection structure than that which is used to

generate the data. Our results also show that, even in this scenario,

the hierarchical model outperforms the naı̈ve model in terms of

MSE (Table 4). The improvement is modest because the scenario

is dominated by the fact that the species is virtually undetectable in

a large fraction of the lower covariate category sites. As we show

below, it is not surprising that WLD found that the biases were

very similar in both the hierarchical and the naive model given the

extreme fluctuations in detectability in the scenario evaluated,

which we believe represents an unusual case.

So, what would happen if we consider a different and plausible

scenario? Let us consider an example where

pi~Beta(3,6)forxi[ 1,2f g,

pi~Beta(5,5)forxi~3,

pi~Beta(10,2)forx[ 4,5f g:

These distributions have the same mean for each covariate

category as in the previous scenario (p~0.333, 0.5 and 0.833,

respectively) and, although substantial, have less extreme levels of

heterogeneity (Figure 4 b,d). Simulations with these detectability

distributions and occupancy probability y~0:4 (Scenario B2) or

Figure 6. Asymptotic bias of the naı̈ve and hierarchical occupancy estimators as a function of heterogeneity in detectability. In the
data-generating model, occupancy is constant and detectability at each site is drawn from a single distribution pi

~BetaBeta(c,d). In the fitted model both
occupancy and detectability are assumed constant across sites (i.e. heterogeneity is not modelled). Heterogeneity is expressed in the x-axis as the
coefficient of variation of the distribution (CV). Black thick lines represent the hierarchical model and red thin lines the naı̈ve model (solid lines for
K = 2 and dashed lines for K = 5; horizontal grey lines correspond to a naı̈ve model where K = 1). In extreme heterogeneity conditions (high CV such
that detectability switches between 0 and 1) both models lead to the same bias. For more realistic scenarios, where heterogeneity is still substantial,
the hierarchical model has lower asymptotic bias. The hierarchical model is asymptotically unbiased in the absence of heterogeneity (i.e. CV = 0). Plots
in the lower row (A–C) illustrate the heterogeneity in detectability represented by three different CVs when mean detectability is 0.33. Note that the
relative asymptotic bias is independent of occupancy probability.
doi:10.1371/journal.pone.0099571.g006
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y~0:8 (Scenario B3) show that the hierarchical model clearly

outperforms the naı̈ve model in these examples (Table 4), even

given that the linear model fitted to the detection component is

misspecified relative to what was actually used for data generation.

Although there is some residual bias in the hierarchical model

(induced by small sample size and the fact that the model is

asymptotically biased due to the misspecification of the detection

component), the bias is noticeably reduced (Figure 5; see other

figures in Appendix S1). The naı̈ve model continues to be

substantially biased due to its ignorance of imperfect detection.

Our simulation results are corroborated by our theoretical

evaluation (Appendix S3). WLD restricted their theoretical results

to a single scenario (Scenario B1), but our extended evaluation

shows that the asymptotic bias can indeed be substantially larger in

the naı̈ve model than in the hierarchical model even when

detectability is heterogeneous (Table S3.1 and Figure S3.1).

The same conclusions can be drawn from our detailed

exploration of a wide range of heterogeneity scenarios (from none

to extreme), assuming a single covariate category (Figure 6). We

derived the corresponding analytical expressions for the relative

asymptotic bias of the occupancy estimator in the naı̈ve and

hierarchical models, which are

naive model :� 1{E(p�)ð Þ,

hierarchical model :� 1{
E(p�)

p̂p�

� �
,where

p̂p

p̂p�
~

p

E(p�)
,
ð2Þ

with hats (‘) indicating estimates. We observe that, under extreme

heterogeneity (i.e. detectability switching only between values 0 or

1), the asymptotic bias for both models is {(1{p). As

heterogeneity decreases, the bias of the naı̈ve model reduces but

remains at {(1{p�) in the absence of heterogeneity. The bias of

the hierarchical model decreases faster, reaching zero for the case

without heterogeneity, and can be substantially lower that the bias

in the naı̈ve model for realistic heterogeneity scenarios. The bias

expression in (2) shows that, as expected, the amount of bias in the

hierarchical model depends on how well the perceived detectabil-

ity captures the actual likelihood of detecting/missing the species

at occupied sites.

In summary, based on our simulations and theoretical results,

we can conclude that the hierarchical model is also less biased than

the naı̈ve model when detectability varies across sites, for instance

as a result of variation in abundance. We also note that there are

extensions of the hierarchical occupancy model that explicitly

allow heterogeneous detection probabilities [21,32]. These should

be considered when modelling variation in detection probability as

a function of environmental variables is not possible and it is likely

that one of the assumptions of the basic model has been violated.

Discussion

WLD present an overly negative picture of the performance of

hierarchical occupancy models, questioning their value to the

extent of suggesting that in general ‘‘ignoring non-detection can

actually be better than trying to adjust for it’’. Disregarding

detectability implies modelling ‘where the species is detected’ rather

than ‘where the species occurs’, a quantity that can also be derived

from the hierarchical model estimates. WLD implicitly suggest

resorting to this alternative metric, but we expect that focusing on

a metric that represents a mix of biological and sampling processes

will not be satisfactory for most applications. For instance, [10]

illustrate how disregarding imperfect detection can crucially

compromise the identification of optimal habitat for a species,

and hence misguide any spatial prioritization based on those

results. When the target is to estimate occupancy probabilities,

ignoring detectability is a problem even if it is constant. Ignoring

imperfect detection is even more problematic when detectability is

a function of covariates, as occupancy trends (spatial or temporal)

can then also be biased. When wishing to reliably infer where a

species is (instead of where is likely to be observed), then the

necessary steps should be taken during design, collection and

analysis of the data to minimize the effects of the sampling process

(e.g., detectability).

WLD claim that ‘‘the extra data collection and modelling effort

to try to adjust for non-detection is simply not worthwhile’’.

However, modelling detectability is not as hard as WLD would

have readers believe. One does not necessarily need more

sampling effort; instead the data need simply be collected and

recorded in a way that is informative about the detection process

[10]. Furthermore, the analysis is facilitated by a range of freely

available software tools developed for hierarchical occupancy

model fitting, comparison and prediction [27,30,33,34]. As in

WLD, we used maximum-likelihood for inference, but note that

hierarchical occupancy models can also be easily fitted in the

Bayesian framework using free tools such as WinBUGs/OpenBUGS

[35] or JAGS [36]; for examples of code see [37]. Given WLD’s

and our difficulties in obtaining reliable parameter estimates with

VGAM, we tentatively caution against its use for these applications,

particularly with few repeat surveys.

WLD partly support their argument by pointing out that

hierarchical occupancy models can produce estimates that are

imprecise or at the boundary of the parameter space and that they

can have problems with multiple solutions when the sample size is

small. We have shown why we believe that WLD have overstated

the severity of these issues. It is undeniable that, as with any type of

statistical model, estimator performance will degrade as the sample

size decreases, but in itself this does not justify discarding a method

(this would suggest abandoning all statistical inference). Sample

sizes can be too small to robustly infer species occupancy but

disregarding detectability does not solve this situation.

We believe that accounting for detectability is important as

otherwise it is impossible to know whether the ‘‘occupancy’’

estimates (even if precise) are accurate or not. In the naı̈ve model,

the occupancy and detection processes are confounded. One can

find examples where disregarding detectability leads to estimators

with better properties (in terms of MSE) but, since the same data

can be produced by very different occupancy-detection scenarios,

as shown in our simulations, we can never be confident that the

naı̈ve estimates reflect true occupancy unless detection is known to

be perfect.

In contrast, the hierarchical occupancy model separates the

occupancy and detection processes. If overall detection is nearly

perfect (i.e., at occupied sites the probability of at least one

detection for K repeat surveys, p�i , is practically 1), this partition is

not detrimental: we will simply obtain the same estimates as in the

naı̈ve model. The benefit comes when overall detection is

imperfect; then the estimates of occupancy yi and naı̈ve

occupancy yip
�
i differ. WLD are concerned with the fact that

the occupancy estimates can be imprecise. However, this

imprecision should not be interpreted as a failure of the model,

but rather a problem of insufficient data; it honestly represents the

uncertainty. The model is indicating that there are alternative

ways to explain the observed detections that involve very different

occupancy probabilities. It is telling us all that can be reliably said

about species occupancy with the available data. Being realistic

about the uncertainty in estimates is fundamentally important,

especially where estimates are to be used in any form of decision-
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making. Where estimates are too uncertain, the take-home

message should be that more data may be required to make

robust inference about the system in question, rather than turning

to (naı̈ve) estimators that can be arbitrarily biased.

WLD’s key result is that hierarchical occupancy models do not

perform any better than the naı̈ve model when detectability

depends on abundance, regardless of the amount of survey data,

and that this ‘‘undermines the rationale for occupancy modelling’’.

We have shown that their result arises from a particular choice and

limited interpretation of a specific scenario, which involves

occupied sites in which the species is virtually undetectable while

detectability is relatively large for other sites. We have demon-

strated how the hierarchical model clearly outperforms the naı̈ve

model in other scenarios where heterogeneity is still substantial.

We also show how this difference in performance is more apparent

as the number of sites increases even if some bias remains when

the number of sites is large. The basic hierarchical model is

asymptotically biased when there is unaccounted heterogeneity in

detection, as already pointed out by [21]. However, the fact that

breaking a model assumption (no heterogeneity in p) may induce

bias does not justify violating an additional assumption (perfect

detection). The aim should instead be to achieve better estimation,

minimizing the effect of these issues during design, data collection

and analysis, for instance by considering model extensions that

explicitly account for heterogeneous detection probabilities

[21,32]. This issue links with the problem of identifiability in

mixture models for heterogeneous detectability raised by [38] in

the context of capture/recapture abundance estimation methods,

and which [21] re-examines for occupancy models. Alternative

detection structures can fit the data equally well while providing

different abundance or occupancy estimates. However, this

problem is greatly reduced when the mass of the distribution

describing detectability is moved away from zero [21]. This

suggests that for reliable inference, our sampling methods must

ensure non-negligible chances of detection when the species is

present [1,39].

In conclusion, although we fully agree with WLD about the

need to be honest about the limitations of statistical procedures, we

do not share their opinion that accounting for detectability is ‘‘very

difficult’’ in general and that it is better to disregard the fact that

detection can, and usually will, be imperfect. The difficulty is not

so much in the modelling of detectability, but in imperfect

detection itself. We do not claim that the modelling stage is

straightforward. Indeed coming up with useful models for real data

can be highly challenging. There will be cases for which

meaningful parameter estimates cannot be obtained with the

available data regardless of one’s statistical skills. Unfortunately,

and as much as one may desire it, naı̈ve estimates are not a

solution to this problem.
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