Culture Environment Regulates Amino Acid Turnover and Glucose Utilisation in Human ES Cells

Joy Rathjen^{1,2}, Christine Yeo¹, Charlotte Yap¹, Boon Siang Nicholas Tan¹, Peter D. Rathjen^{1,2} and David K. Gardner^{1*}

¹Department of Zoology, University of Melbourne, 3010, Victoria, Australia, ² Menzies Research Institute Tasmania, University of Tasmania, 17 Liverpool Street, Hobart, 7000, Tasmania, Australia.

*Address correspondence to Prof. David Gardner, Department of Zoology, University of Melbourne, Parkville, VIC 3010, Australia +613 8344 6259. Email: david.gardner@unimelb.edu.au

Running title: Culture environment regulates human ES cells

Keywords: human embryonic stem cells, metabolomics, amino acid turnover, carbohydrate use, pluripotency

1 Abstract

2

2 Human embryonic stem (ES) cells have been proposed as a renewable source of 3 pluripotent cells that can be differentiated into various cell types for use in research, drug 4 discovery and in the emerging area of regenerative medicine. Exploitation of this 5 potential will require the development of ES cell culture conditions that promote 6 pluripotency and a normal cell metabolism, and quality control parameters that measure 7 these outcomes. There is, however, relatively little known about the metabolism of 8 pluripotent cells or the impact of culture environment and differentiation on their 9 metabolic pathways. We have examined the effect of two commonly used medium 10 supplements and cell differentiation on metabolic indicators in human ES cells. Medium 11 modifications and differentiation were compared in a chemically defined and feeder 12 independent culture system. Adding serum increased glucose utilisation and altered 13 amino acid turnover by the cells, as well as inducing a small proportion of the cells to 14 differentiate. Cell differentiation could be mitigated by inhibiting p38 MAPK activity. The addition of Knock Out Serum Replacer[®] also increased glucose uptake and changed 15 16 amino acid turnover by the cells. These changes were distinct from those induced by 17 serum and occurred in the absence of detectable differentiation. Induction of 18 differentiation by BMP4, in contrast, did not alter metabolite turnover. Deviations from 19 metabolite turnover by ES cells in fully defined medium demonstrated that culture 20 environment can alter metabolite use. The challenge remains to understand the impact of 21 metabolic changes on long-term cell maintenance and the functionality of derived cell 22 populations.

23 Introduction

24 Pluripotent cell lines derived from the human blastocyst, human embryonic stem (ES) 25 cells, were first described in 1998 (Thomson et al. 1998; Reubinoff et al. 2000). In the 26 intervening years the isolation of more than 200 individual human ES cell lines has been 27 reported (reviewed in (Adewumi et al. 2007)). Despite the varied genetic background of 28 these isolates, and the diversity of clinics and laboratory conditions involved in their 29 isolation, these cells show a remarkable consistency with regards to pluripotent cell 30 marker expression (Adewumi et al. 2007). They retain a broad differentiation potential in 31 culture, capable of generating cell populations consistent with derivatives of the three 32 primary germ lineages and the extraembryonic endoderm. The cells can be propagated 33 indefinitely while maintaining a normal karyotype and express genetic markers and cell 34 surface antigens correlated with pluripotency, including OCT4, NANOG, TDGF, GDF, 35 DNMT3B, FGF4, GCTM2 and TRA1-60/TRA1-81 (Adewumi et al. 2007). To date, the 36 evaluation of human ES cell lines has focused on assessing parameters that are associated 37 with cell function, or pluripotency. In contrast, little emphasis has been placed on 38 characterizing the physiology of these cells. Given that appropriately regulated 39 metabolism is fundamental to cell function and viability, it is paramount that a greater 40 understanding of metabolic events that occur during stem cell derivation, culture and 41 differentiation is developed. Application of this knowledge will underpin the 42 development of propagation media and protocols that ensure maintenance of cell state 43 and cell physiology. Cell physiology markers are not currently employed for the appraisal 44 of human ES cells in culture or in the development of human ES cell culture medium.

45	The physiology of the early embryo, from which ES cells are routinely derived, has been
46	extensively characterized. Perturbation of the metabolism of the preimplantation embryo
47	significantly impairs subsequent embryo implantation and development (Lane and
48	Gardner 1996; Gardner 1998). Embryonic metabolism is sensitive to the composition of
49	culture medium. Serum, a common addition to culture media, has been shown to damage
50	blastomere ultrastructure, specifically affecting mitochondrial state and function
51	(Thompson et al. 1995). As a consequence, oxidative function is compromised, gene
52	expression and imprinting affected and embryo development impaired (Khosla et al.
53	2001). Subsequent fetal development in laboratory and domestic animals is associated
54	with compromised outcomes, demonstrating that altered physiology at the
55	preimplantation embryo stage, induced by the culture medium, has significant
56	downstream effects (Thompson et al. 1995; Gardner 1998; Lane and Gardner 2005).
57	Early alterations in physiology likely impact later developmental through interaction with
58	the epigenetic programming that occurs at this stage in development and causing the
59	establishment of epigenetic marks that impinge on later life (Donohoe and Bultman
60	2012). The development of culture media designed to maintain normal embryo
61	physiology and function, coupled with the development of metabolic markers of
62	embryonic viability (Gardner 1998; Sakkas and Gardner 2005; Gardner 2011) has
63	resulted in improvements in embryo quality in culture and concomitant improvements in
64	outcomes from assisted reproductive technologies in laboratory and domestic animals and
65	in humans (Oddens 2006).

66 Understanding the environmental requirements for the optimal maintenance of human ES

67 cells in culture will require knowledge not only of the signaling pathways that regulate

4

68	pluripotency and differentiation but also, and of equal significance, of the specific
69	nutrient requirements of the cell and how the metabolome is affected by different
70	environmental conditions and states of differentiation. One of the limitations of
71	characterizing human ES cell physiology is the diversity of medium and supplements that
72	are routinely used in the culture of these cells coupled with a lack of systematic
73	assessment of how human ES cells respond to the culture environment. Here we
74	characterize glucose use and amino acid turnover in human ES cells in culture; both of
75	these parameters have been used to assess embryo quality and can be correlated with
76	improved embryo outcome (Lane and Gardner 1996; Houghton et al. 2002; Brison et al.
77	2004; Gardner 2011; Gardner et al. 2011). The addition of serum (20%), or Knockout
78	Serum Replacer (Knockout [™] SR; Life Technologies; 20%), to a chemically-defined
79	human ES cell culture system resulted in altered amino acid turnover, increased uptake
80	and metabolism of glucose and increased cell loss from the population. These changes
81	did not correlate with the level of pluripotency, extent of differentiation in the cultures or
82	with changes in cell proliferation. In contrast, induction of differentiation by BMP4 in
83	this system had little effect on glucose uptake and metabolism or amino acid turnover.
84	These data demonstrate that in human ES cells metabolic indicators can be affected
85	significantly by the culture environment and suggest that the cells can experience stress in
86	response to sub-optimal culture conditions. Before the full realization of the clinical and
87	commercial potential of human ES cells can be achieved the impact of altering cell
88	metabolism on viability and function needs to be understood.

5

90 Materials and Methods

6

91 Human ES cell culture

The human ES cell line, MEL-2 (Australian Stem Cell Centre), was cultured in mTeSR1
medium (STEMCELL Technologies) (Ludwig *et al.* 2006a; Ludwig *et al.* 2006b), on
human ES cell-qualified MatrigelTM (BD Biosciences), as per the manufacturer's
instructions. Cells were passaged every 7 days using Dispase (STEMCELL

96 Technologies) at 37°C. Cell clumps were resuspended in mTeSR1 medium and plated at

97 a ratio of 1:6 to 1:10 in 6 or 12 well cluster dishes (Falcon, Becton, Dickinson and

98 Company). Cells were cultured at 37°C in 5% CO₂ in ambient air in a Galaxy R incubator

99 (RS Biotech). Foetal calf sera (sourced from Invitrogen and Hyclone) and Knock-out

100 Serum Replacer (Knockout[™] SR; Invitrogen) were added after 72 hours (FCS and

101 Knockout[™] SR) or 144 hours (FCS) and replaced daily until day 7, or 168 hours.

102 SB203580 (Sigma Aldrich) was added after 72 hours to a concentration of 10 μ M; a

103 commensurate volume of diluent (DMSO) was added to controls. Medium was replaced

104 at a similar time each day. Each experiment was set up in triplicate and triplicate wells

105 were treated as a covariate in statistical analysis. On completion of cell culture and after

106 medium collection cells were incubated with TrypLE Select (Life Technologies) for 8

107 minutes at 37°C, triturated to a single cell suspension and counted on a haemocytometer.

108 Images of human ES cells were captured on an Olympus IX50 inverted microscope.

109 Real-time Reverse Transcription-Polymerase Chain Reaction (RT-PCR)

110 Total RNA was extracted from human ES cells with an RNAqueous-4PCR Kit (Ambion)

111 according to the manufacturer's instructions. RNA was DNaseI treated (Ambion) and

112 cDNA was synthesized with M-MLV Reverse Transcriptase (Promega) and oligo(dT)

113	primers (Promega). Real-time PCR reactions were set up in triplicate using ABsolute
114	Blue QPCR SYBR Green Mix (Thermo Fisher Scientific) and run on an MJ research
115	thermocycler with a Chromo4 Continuous Fluorescence Detection System (MJ Research)
116	in the following sequence: 95°C for 15 minutes, followed by 40 cycles of denaturation at
117	95°C for 15 seconds, annealing at 60°C for 30 seconds and extension at 72°C for 30
118	seconds. The sequences of primers are listed in Table S1. The relative concentration of
119	each gene was normalized to β -ACTIN and analysed using Q-Gene software package
120	(Simon 2003).
121	Analysis of metabolic activity
122	Media, collected from human ES cells 96 or 24 hours after addition of FCS or
123	Knockout TM SR and 24 hours after the culture medium was renewed, were snap-frozen in
124	liquid nitrogen and stored at -80°C. Media only controls comprised media that had been
125	incubated for 24 hours at 37°C in a well pre-coated with Matrigel [™] . Nutrient
126	consumption and metabolite production rates, expressed as fmol/cell/hour, were
127	calculated using the following formula: Consumption or production rate = $C_0 - C_1 / \#$ of
128	cells X $\#$ of hours where C_0 is the nutrient or metabolite concentration in control media
129	and C_1 is the nutrient or metabolite concentration in the experimental media. Cell refers
130	to the final cell number in each well. Final cell number in mTeSR1 + serum and mTeSR1
131	+ KOSR was adjusted to reflect the cell loss seen in these conditions, estimated to be a
132	total of 11% over a 24 hour period.
133	Measurement of carbohydrate consumption and production
134	Glucose concentration in the media was estimated using an enzymatic assay linked to

135 NADPH production. One µL of medium, previously diluted 1:10 in water, was added to

7

10 µL of glucose reagent (3.7 mM MgSO₄.7H₂O, 0.6 mM NADP⁺, 0.5 mM ATP, 0.5 mM 136 137 dithiothreitol, 12 U hexokinase/mL, and 6 U G6PDH/mL in EPPS buffer with pH 8.0) 138 (Gardner and Leese 1990). Similarly, lactate concentration in the media was estimated 139 using an enzymatic assay linked to NADH production. Two μ L of medium, previously 140 diluted 1:10 with water, were added to 10 μ L of lactate reagent (4.76 mM NAD⁺, 100 U 141 LDH/mL, and 2.6 mM EDTA in glycine-hydrazine buffer with pH 9.4) (Gardner and 142 Leese 1990). Fluorescence was measured using a Nanodrop 3300 Fluorospectrometer 143 (Thermo Fisher Scientific). 144 The percentage of glycolysis was calculated based on one mole of glucose yields two 145 moles of lactate (% of glycolysis = # of moles of lactate / (# of moles of glucose x 2)). 146 Measurement of amino consumption and production with Liquid Chromotography-Mass 147 Spectrometry (LC-MS) 148 The concentration of amino acids in the culture media was measured by LC-MS. All 149 materials used for derivatisation of amino acids in the media and amino acid standards 150 were from Sigma-Aldrich. To derivatise amino acids, $10 \,\mu\text{L}$ of medium, diluted 1:30 in 151 water, was added to 70 μ L of borate buffer (200 mM, pH = 8.8), followed by the addition 152 of 20 µL of 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) solution (3 mg of 153 AQC dissolved in 1 mL of dry acetonitrile). Reactions were shaken at 55°C for 10 154 minutes before LC-MS analysis on an Agilent 6410 LC-ESI-QQQ equipped with an 155 Agilent 1200 Series LC system (Agilent Technologies). A Multiple Reaction Monitor 156 was developed for each individual amino acid. Conditions were capillary temperature 157 300°C, capillary voltage 4000V, and gas flow rate 10 L/minute. The concentration of 158 each amino acid was obtained in every sample.

159 Determination of amino acid turnover:

160 The measurement of turnover was adapted from the approach of Houghton et al.

- 161 (Houghton et al. 2002), and represents the sum, in fmol/cell/hour of amino acids
- 162 consumed or released into the culture medium. Total amino acid turnover was the sum of
- amino acid change in fmol/cell/hour.
- 164 Immunofluorescence

165 Human ES cells were cultured on MatrigelTM-treated glass coverslips in mTeSR1 and

supplements as described in the text. Cells were washed with PBS and fixed with 4%

- 167 PFA. Fixed monolayers were made permeable with PBS/0.25% TritonX, blocked with
- 168 1% BSA or donkey serum. Antigens were detected with antibodies directed against
- 169 NANOG (R&D Systems) or phospho-histone H3 (Ser10) (Cell Signaling Technologies)
- 170 in combination with an Alexa-Fluor 488 conjugated anti-goat antibody (NANOG; Life
- 171 Technologies) or an Alexa-Fluor 568 conjugated anti-rabbit antibody (Phospho-Histone
- 172 H3 (Ser10); Life Technologies); DNA was detected with DAPI. Images were taken on an
- 173 Olympus BX50 microscope with an Olympus F-viewII digital camera (NANOG) or a
- 174 confocal microscope (Phospho-Histone H3 (Ser10). Percentage of mitotic cells was
- 175 calculated as the percentage of DAPI nuclei positive for phospho-histone H3 (Ser10) in
- 176 randomly captured fields.

177 Statistical analysis

178 Gene expression and carbohydrate use were analysed by Student's two-tailed t-test.

- 179 Analysis of the variance in amino acid use in control samples was performed using
- 180 ANOVA. Analysis of amino acid use in experimental samples, in comparison with the
- 181 controls, was performed using the R statistical software package with in-house

182	customized scripts. A logarithm transformation was applied to all metabolite
183	concentration measurements to minimize heteroscedastic noise to ensure a Gaussian data
184	distribution prior to analysis. A two-tailed paired Student's t-test was used to calculate
185	significant differences between the means of metabolite concentration responses.
186	Manhattan Hierarchical Cluster Analysis was undertaken to confirm reproducibility of
187	sample replicates and to determine the relationships between metabolites based on a
188	measure of distance similarity. Pearson Correlation Analysis was conducted on the
189	logarithm transformed metabolite measurements to confirm relationships of metabolite
190	consumption. For all analyses, a <i>P</i> -value of less than 0.05 was considered statistically
191	significant.

192 **Results**

193 Serum induces sporadic differentiation of human ES cells.

- 194 The human ES cell line MEL2 (Australian Stem Cell Centre) was cultured in mTeSR1
- 195 for 72 hours followed by 96 hours in mTeSR1 supplemented with one of two foetal calf
- 196 sera at a concentration of 20%. The sera used in this experiment had been selected for use
- 197 with mouse ES cells and shown to elicit low levels of cell differentiation (Rathjen and
- 198 Rathjen 2003) (Dr Jeff Mann, Murdoch Childrens Research Institute, Parkville, Victoria;
- unpublished). In mTeSR1, human ES cells grew in tightly-packed colonies with smooth
- 200 edges (Figure 1A)(Ludwig et al. 2006b). The addition of serum resulted in a loosening of
- 201 the cells at the edge of the colonies and formation of a border region comprising
- 202 fibroblast-like cells (Figure 1B). Comparable alterations in morphology were observed

203 with both sera tested (Figure 1B, C).

Expression levels of the pluripotent markers *OCT4* and *NANOG* in cells cultured in
serum remained high and similar to cells cultured in mTeSR1 alone, although a small but
consistent reduction in *NANOG* expression was observed with both sources of sera
(Figure 1D). This reflected the substantial pool of pluripotent cells in cultures, as shown
by immunocytochemistry (Figure 1E). Only cells at the edge of the colonies had reduced *NANOG* protein levels, while the majority of the cells within the colonies remained

- 210 *NANOG* positive. Markers of differentiation, *BRACHYURY* and *GATA4*, were elevated in
- 211 cells cultured in serum. The fold increase of these markers was variable between
- 212 experimental repeats suggesting that the proportion of differentiated cells in populations
- 213 cultured in serum was unpredictable. The reduction in NANOG expression, expression of
- 214 differentiation markers and morphology changes, however, suggested a heterogeneous

215	population of cells in serum in which the frequency of differentiated cells was increased.
216	A similar heterogeneity has been seen in mouse ES cells cultured in serum-supplemented
217	medium when compared to those cultured in defined medium (Marks et al. 2012).
218	Differentiation of mouse ES cells in response to serum requires p38 MAPK activity (CY
219	and JR unpublished). P38 MAPK activity can be inhibited pharmacologically with
220	SB203580 (4-(4'-fluorophenyl)-2-(4'-methylsulfinylphenyl)-5-(4'-pyridyl)-imidazole),
221	which inhibits $p38\alpha$, $p38\beta$ and $p38\beta2$ homologues by competing for ATP binding pockets
222	(Cuenda et al. 1995). The expression of pluripotent and differentiated markers were
223	analysed in cells cultured in mTeSR1 + FCS and compared to expression in cells cultured
224	in mTeSR1 + FCS + SB203580. Expression of OCT4 was significantly increased, and
225	BRACHYURY and GATA4 significantly decreased, in cells cultured in mTeSR1 + serum
226	+ SB203580 (Figure 1F). These data confirm an increase in differentiation in cells
227	cultured in serum and suggest a requirement for p38 MAPK in the process.
228	Serum induces alterations in the metabolic activity of human ES cells in culture.
229	Carbohydrate use by human ES cells cultured in mTeSR1 was compared to that of cells
230	exposed to serum for 24 and 96 hours. The measured concentration of glucose and lactate
231	in mTeSR1 and mTeSR1 + serum can be found in Table S2. Cells cultured in serum
232	consumed more glucose and produced more lactate than controls (Table 1). Glucose
233	consumption approximately doubled with 96 hours of exposure to serum. Although more

- 234 glucose was being metabolised by cell cultures exposed to serum, the percentage of
- 235 glucose metabolised glycolytically in these cells was not altered when compared to cells
- cultured in mTeSR1 (Table 1).

237	In the published formulation of mTeSR the medium includes amino acids in a range of
238	concentrations standard for tissue culture maintenance. Repeated measurement of mTeSR
239	confirmed the presence and the concentration of amino acids in the medium, and
240	provided confidence that the technology used could reliably measure amino acids within
241	medium samples (Figure S1). In mTeSR1 + serum the concentrations of alanine, glutamic
242	acid and glycine were significantly increased when compared to mTeSR (Table S3). The
243	concentration of amino acids in medium used for culturing human ES cells was
244	determined and compared to unused medium. Cells cultured in mTeSR1 or mTeSR1 +
245	serum produced alanine, glutamic acid, proline and ornithine (Figure 2A). The production
246	of glutamic acid was significantly higher from cells cultured in serum (Figure 2A).
247	Human ES cells consumed arginine, cysteine, glutamine, glycine, isoleucine, leucine,
248	lysine, methionine, phenylalanine, serine, threonine, tryptophan, tyrosine, valine and γ -
249	aminobutyric acid (GABA) (Figure 2A). The addition of serum to the culture medium
250	significantly increased the consumption of the majority of these amino acids (Figure 2A).
251	Overall, the addition of serum increased the total turnover of amino acids by the cells 1.9-
252	fold to 106 fmol/cell/hour (Figure 2B), comprised of a 1.7-fold increase in amino acid
253	production and a 1.9-fold increase in amino acid consumption.

Differentiation of human ES cells in response to BMP4 does not alter the carbohydrate
usage or amino acid metabolism.

256 Metabolism in pluripotent cells and somatic cells differs, suggesting that the changes in

257 glucose use and amino acid turnover in serum could arise from differentiated cells in the

- 258 population. Alternatively, changes in metabolomic activity could result from serum-
- induced changes in the activity of all cells. The differentiation of human ES cells was

13

induced by the addition of BMP4 to mTeSR1 for 4 days (Hughes *et al.* 2009) and
carbohydrate usage and amino acid metabolism were measured. Like serum, BMP4
induces expression of *Brachyury* and *Gata4* (Kobayashi *et al.* 2008; Hughes *et al.*2009)(CY and JR unpublished) and is likely to result in a repertoire of cells that overlaps
those formed in serum.

As expected, the addition of BMP4 resulted in an overtly differentiated colony

266 morphology with each colony consisting of a small core of pluripotent, NANOG positive,

267 cells surrounded by cells of an overtly differentiated phenotype (Figure 3A,B and data

not shown). Previous analysis has demonstrated the decreased expression of *NANOG* and

269 increased expression of differentiation markers in human ES cells exposed to BMP4

270 (Hughes et al. 2009). The analysis of spent medium from these cultures did not show any

changes in the consumption of glucose, production of lactate or percentage glycolysis

when compared to cells cultured in mTeSR1 (Table 1). Similarly, the addition of BMP4

273 had little effect on production or consumption of the amino acids tested, with differences

274 detected only in consumption of tryptophan and production of glutamic acid and proline,

and no overall change in amino acid turnover (Figure 3C, D).

276 KnockoutTM SR induces metabolic changes in human ES cells.

Knock-out serum replacer (Knockout[™] SR; Life Technologies) is commonly used as a
medium supplement for the growth and differentiation of human ES cells (Adewumi *et al.* 2007). Knockout[™] SR was added to mTeSR1 and the effects on human ES cell
growth and metabolism were measured. Addition of 20% Knockout[™] SR to mTeSR1
resulted in minor alterations in colony morphology, with some fibroblast-like cells

282	appearing at the edge of the colonies (Figure 4A, B). The change in colony morphology
283	was, however, much reduced in comparison to cells exposed to serum or BMP4.
284	Similarly, gene expression analysis of these cells did not detect any reduction in NANOG
285	expression or increase in the expression of the differentiation markers (Figure 4C).
286	Carbohydrate use by cells exposed to Knockout [™] SR for 96 hours was compared to use
287	by cells cultured in mTeSR1 (Table 1). Knockout TM SR increased the consumption of
288	glucose and production of the lactate by approximately 1.4 fold. These changes were not
289	accompanied by a change in the percentage of glucose metabolised glycolytically.
290	The measurement of amino acid concentrations in medium containing Knockout [™] SR
291	showed several amino acids, isoleucine, phenylalanine, proline, serine, threonine,
292	tryptophan and valine, to be present at unusually high concentrations when compared to
293	mTeSR1 (Table S4). These concentrations were not, however, unexpected when the
294	preferred embodiment of the medium contained within the patent describing the
295	formulation of Knockout TM SR is considered (Price 1998). The profile of amino acids
296	produced and consumed from cells exposed to Knockout TM SR was significantly different
297	from that of cells cultured in mTeSR1, and from cells exposed to serum or BMP4. Cells
298	in Knockout [™] SR produced glycine, isoleucine, phenylalanine, threonine, valine and
299	GABA (Figure 5A). In contrast, cells cultured in mTeSR, mTeSR + serum and mTeSR +
300	BMP4 consumed these amino acids. The production of alanine, glutamic acid, and
301	proline, and the consumption of lysine and serine, was significantly increased by the
302	addition of Knockout TM SR (Figure 5A). Overall turnover of amino acids by cells
303	cultured in Knockout [™] SR was increased 1.9-fold, to 109 fmol/cell/hour (Figure 5B).
304	Although this value was similar to the increase in amino acid turnover seen from cells

cultured in serum, the changes in production and consumption contributing to this were
different, with a 4.6 fold increase in amino acid production and 12% reduction in amino
acids consumed.

308 Cell proliferation is not affected by the addition of serum or KnockoutTM SR.

309 The addition of serum or Knockout[™] SR potentially alters the growth characteristics of

310 human ES cells and affects the requirement of these cells for nutrients. The proportion of

311 cells in mitosis, identified by staining for phospho-histone H3 (Ser10), in human ES cells

312 cultured in mTeSR1 or mTeSR1 supplemented with serum or KnockoutTM SR was

313 measured. No significant difference in cell proliferation was detected (Table 2). The

addition of serum or KnockoutTM SR, however, did reduce the number of cells in culture

315 by approximately 50% at the time of assay (Table 3).

316 **Discussion**

317 The establishment of human ES cells by Thomson and colleagues in 1998 has resulted in 318 a dramatic increase in publications analysing the genetics, epigenetics and differentiation 319 of these cell lines, including multiparticipant studies that compared these characteristics 320 across multiple human ES cell lines (Adewumi et al. 2007; Akopian et al. 2010; Amps et 321 al. 2011). In contrast, there has been relatively little investigation of the physiology of 322 these cells, even when the suitability of medium formulations for human ES cell culture 323 is being tested (Akopian et al. 2010). Cellular metabolism is fundamental to embryo 324 viability and cell function (Gardner 1998; Lane and Gardner 2005), and has been shown 325 to be adapted in cells as they acquire characteristics of cancer and disease (Fritz and Fajas 326 2010; Chang and Wei 2011). If the clinical and commercial potential of human ES cells 327 is to be realized, a greater understanding of metabolic activity and regulation of metabolic 328 processes during stem cell derivation and differentiation will need to be acquired and 329 media formulations that support an appropriate metabolic state developed. Physiological 330 markers of pluripotency will find future applications in the validation and accreditation of 331 existing and newly isolated human ES cell lines.

In this study mTeSR1 was chosen as a standard human ES cell culture system against which to compare the effect of supplements and differentiation on metabolism. mTeSR1 supports the growth of human ES cells in the absence of a feeder layer that would otherwise complicate analysis (Ludwig *et al.* 2006a; Akopian *et al.* 2010). mTeSR1 has been disclosed, which allows experimental measurements to be compared with the published formulation (Ludwig *et al.* 2006a). The medium is based on a widely used medium, DMEM:F12 mix, and provides salts, nutrients and amino acids at concentrations

339	previously determined to be sufficient for the culture of mammalian cells in culture and
340	extensively used for the culture of mouse pluripotent cells and human ES cells. The
341	medium contains a high concentration (13.7 mM) of glucose as an energy source. After
342	24 hours of culture in wells containing near confluent cell colonies the medium contained
343	approximately one third of starting glucose, a final concentration of between 4 and 5 mM.
344	The osmolality of supplemented medium remained within the normal range (data not
345	shown). Medium supplementation will, however, have modified the composition of the
346	medium and altered the concentration of growth factors in the formulation. Adding 20%
347	F12 to mTeSR1 did not alter cell proliferation, cell viability, or induce signs of
348	differentiation (Figure S2; Table S5), suggesting that diluted mTeSR maintained human
349	ES cells over the time course of this experiment.
350	The addition of serum or Knockout [™] SR did not alter the rate of ES cell division, a
351	surprising result given the well-established role of serum in stimulating cell proliferation
352	in culture (Shodell and Rubin 1970). The cell cycle of mouse (Stead et al. 2002) and
353	human (Kapinas et al. 2013) ES cells is rapid, characterized by truncated gap phases and
354	distinct in structure from the cell cycle of somatic cells. In mouse, Cdk2, cyclin A and
355	cyclin E kinases are active throughout the cell cycle and lack the cell cycle periodicity
356	that is seen in somatic cells (Stead et al. 2002). The inability of serum to stimulate

357 pluripotent cell proliferation is likely a consequence of the unique characteristics of the

358 pluripotent cell cycle structure. The addition of the supplements did alter cell viability

and resulted in fewer cells surviving the period of treatment when compared to the

360 controls.

361 Glucose uptake and energy use are increased by serum and KnockoutTM SR

Culture environment regulates human ES cells

362 In mTeSR medium human ES cells used glucose as an energy source, with an estimated 363 50% of the glucose metabolized to lactate through glycolysis. The high contribution of 364 glycolysis to the energy needs of human ES cells is consistent with previous reports 365 (Prigione et al. 2010; Varum et al. 2011; Zhang et al. 2011). The use of glycolysis when 366 cultured in high oxygen tension $(20\% O_2)$, known as aerobic glycolysis, is a feature 367 shared with cancer cells and other rapidly proliferating cells in culture, and may reflect 368 the continual proliferation, or self-renewal, of human ES cells (Warburg 1956; Morgan 369 and Faik 1981; Brand et al. 1988; Fox et al. 2005; Lopez-Lazaro 2008; Gardner and Wale 370 2013; Harvey et al. In press). 371 The addition of serum or KnockoutTM SR increased the amount of glucose used by the 372 cells but did not appear to alter the percentage of the glucose metabolized to lactate, 373 indicating that these supplements increased the energy requirements of the cells. 374 Carbohydrate use by mouse ES cells has been shown to be sensitive to medium 375 composition, with increased glucose uptake from serum-containing medium when 376 compared to medium supplemented with Knockout[™] SR (Fernandes et al. 2010b). 377 Increased glucose uptake in cells cultured in serum could result from a higher flux of 378 glucose in differentiated cells within the population or from increased glucose flux in 379 human ES cells. Increased glucose flux in cells cultured in Knockout[™] SR cannot be 380 explained by differentiation, and increasing the proportion of differentiated cells in the human ES cell population, by inducing differentiation with BMP4, did not affect 381 382 carbohydrate use. These data suggest that the effect of serum and serum replacement on 383 glucose uptake was a consequence of the effect of medium composition. It cannot be 384 excluded that this effect was driven, in part, by dilution of mTeSR1 with the supplements.

385 Amino acid turnover by human ES cells increases in response to serum and

386 KnockoutTM SR

387 The analysis of amino acid turnover during culture was used as a second indicator of 388 metabolite flux in human ES cells. Cells cultured in serum-supplemented mTeSR1 389 exhibited a 1.9-fold increased turnover of amino acids when compared to cells cultured in 390 mTeSR1; this increase was a consequence of an approximately 1.9-fold increase in the 391 use and production of amino acids by the population. As with glucose consumption, 392 increased amino acid turnover could be a consequence of the increase in differentiated 393 cells within the population. The addition of BMP4 to mTeSR increased cell 394 differentiation but had little effect on the consumption or production of amino acids, with amino acid turnover similar between cells cultured in mTeSR and BMP4 and mTeSR 395 396 alone and only minor variations in the turnover of tryptophan, glutamic acid and proline 397 observed.

398

399 Cells cultured in mTeSR + KnockoutTM SR also showed a 1.9-fold increase in amino acid 400 turnover. Unlike the increased turnover in serum, which affected all amino acids to a 401 similar degree, the increased turnover in cells cultured in KnockoutTM SR comprised a 402 prodigious 4.6-fold increase in amino production coupled with a modest 12% decrease in 403 amino acid consumption. These changes occur without any overt differentiation in the 404 population suggesting they arise from a direct effect of KnockoutTM SR on the human ES 405 cell. Collectively, these data demonstrate that the interaction of serum and KnockoutTM 406 SR with human ES cells resulted in a considerable up regulation of amino acid turnover.

407 Although similar in scale, increases in turnover resulted from specific cell responses to408 the medium composition.

409 *Differentiation and metabolic change are not coincident.*

410 The metabolism of pluripotent cells and somatic cells are different, which suggests that 411 differentiation will be accompanied by changes in metabolic activity and metabolic 412 pathway use. The differentiation of mouse ES cells has been shown to change 413 carbohydrate use (Kondoh et al. 2007; Fernandes et al. 2010a), and the differentiation of 414 human ES cells in response to retinoic acid (RA) has been shown to decrease glycolysis 415 (Zhang et al. 2011). In contrast, inducing differentiation of human ES cells with BMP4 in 416 mTeSR1 did not change carbohydrate use or glycolytic flux. The timing and regulation 417 of the metabolic changes that accompany differentiation are largely unexplored but 418 changes in metabolism occurred gradually when human ES cells were differentiated with 419 RA (Zhang et al. 2011). The unchanged carbohydrate use in BMP4-treated human ES 420 cells after 4 days potentially reflects the gradual nature of change, but may also be 421 impacted by the cell population formed and the medium used. Amino acid turnover was 422 also largely unaffected by human ES cell differentiation. Measuring the intracellular 423 metabolites present in mouse ES cells as they differentiate has shown no change in amino 424 acid concentrations, with the exception of an increase in threonine, and few changes in 425 other metabolites that were measured (Wang *et al.* 2009). These data suggest that in the 426 early stages of pluripotent cell differentiation, as examined here, changes in metabolism 427 lag behind the loss of pluripotence.

428 Changes in the turnover of individual amino acids can be used as indicators of

429 changes in cell metabolism

430 Cells cultured in serum supplemented medium consumed significantly more glutamine 431 than those cultured in control medium or mTeSR medium supplemented with BMP4 or 432 Knockout[™] SR. Several proliferating cell types, including cancer cells (DeBerardinis *et* 433 al. 2007), metabolise glutamine to α -ketoglutarate via the formation of glutamate 434 (glutaminolysis), a process that liberates ammonium. The increased glutamine 435 consumption by human ES cells cultured in serum is consistent with increased 436 glutaminolysis and potentially reflects an increased flux of glutamine metabolites through 437 the tricarboxylic acid cycle (TCA) cycle. The increased production of glutamic acid and 438 alanine from cells could be a defensive strategy to alleviate the toxicity of the ammonium 439 formed as a consequence of serum exposure (Morgan and Faik 1981; Weinberg and 440 Chandel 2009). Glutamine consumption was not increased in mTeSR + Knockout[™] SR 441 or mTeSR + BMP4 suggesting that neither of these conditions induced increases in 442 glutaminolysis.

443 The maintenance of pluripotency, and stable glutamine consumption, by Knockout[™] SR 444 is consistent with this supplement being more compatible with the physiological needs of 445 human ES cells than serum. The addition of Knockout[™] SR to mTeSR, however, 446 significantly altered the concentration of specific amino acids in the medium, increasing 447 their concentration by as much as 30-fold, as is the case for proline (Table S4). The 448 inclusion of KnockoutTM SR resulted in profound changes in the way that amino acids 449 were utilized by the cells. In general, amino acids with increased concentrations in 450 Knockout[™] SR supplemented medium were produced by cells cultured in Knockout[™]

Culture environment regulates human ES cells

451	SR but consumed by cells cultured in control medium; this was seen for glycine,
452	histidine, isoleucine, phenylalanine, threonine, tryptophan and valine. This was the only
453	medium formulation analysed that elicited changes from the consumption to production
454	of amino acids by the cells. The consumption of serine and production of proline, in
455	contrast, did not change to production and consumption, respectively, despite these amino
456	acids being increased with the addition of Knockout TM SR to mTeSR. For both of these
457	amino acids, however, the magnitude of amino acid turnover was significantly increased.
458	Finally, significant changes were seen in the turnover of alanine, lysine and glutamic acid
459	by cells cultured in Knockout [™] SR. The concentrations of these amino acids did not
460	differ between supplemented medium and the control.
461	The changes in amino acid production detected in cells cultured in Knockout TM SR
462	indicated that multiple biosynthetic pathways were affected , which suggests a model in
463	which a general control process, such as those mediated by mTOR or GCN2 (Bruhat et
464	al. 2000; Kim 2009; Sancak et al. 2010), regulated biosynthetic activation across a
465	number of pathways. Counter intuitively, cells may perceive an amino acid limitation in
466	medium in which amino acid concentrations are not balanced. Elevated concentrations of
467	one amino acid can compromise the ability of a cell surface transporter of amino acids to
468	function and limit uptake of other amino acids. For example, the level of L-proline in
469	Knockout [™] SR-supplemented medium is sufficient to inhibit SNAT2 uptake of a number
470	of amino acids, including glycine, alanine, serine, cysteine, glutamic acid, asparagine,
471	histidine and methionine (Tan et al. 2011), and may limit transport of these amino acids
472	into the cell, starving the cell of required nutrients and activating the amino acid sensing
473	pathways. Transporter-mediated amino acid limitation has been shown to regulate mTOR

3 April 2013

474	signaling and activate the GCN2 pathway in vivo (Broer et al. 2011; Pinilla et al. 2011).
475	Activation of the amino acid sensing pathways, and downstream regulation of
476	biosynthetic pathways, could explain the changes in amino acids production in cells
477	cultured in Knockout [™] SR. Although these changes to biosynthesis do not appear to alter
478	the pluripotency of the cells, it is likely changes of this magnitude will impact on other
479	aspects of cell function, including an increase in energy requirements. More analysis will
480	be required before the impact of Knockout [™] SR on amino acid biosynthesis in human
481	ES cells can be understood but these data question the suitability of Knockout TM SR in its
482	current formulation for human ES cells culture.
102	Aming goids can be used by calls for biggynthesis, energy production and as signaling
403	Amino acids can be used by cens for biosynthesis, energy production and as signating
484	molecules. Recently, a role for proline as a signaling molecule in pluripotent cell
485	differentiation in culture has been described (Washington et al. 2010; Tan et al. 2011).
486	Human ES cells cultured in mTeSR produced proline and production by cells cultured in
487	mTeSR + serum and mTeSR + Knockout TM SR was significantly increased; in
488	Knockout [™] SR proline production was increased approximately10-fold. Proline
489	production was significantly reduced with BMP4-induced differentiation suggesting that
490	the production of proline is a feature of the pluripotent cells. The elevated concentrations
491	of proline within the medium, either as a consequence of the elevated production of
492	proline by the cells or the addition of proline to the medium, could potentially alter the
493	pluripotent cell state or affect the stability of human ES cells in culture (Pera and Tam
494	2010; Washington et al. 2010; Tan et al. 2011).

495 The maintenance of high levels of pluripotency and inhibition of differentiation are the496 key indicators that have been used to date to drive the development of culture conditions

24

497	for human ES cells. Although important these indicators do not reflect the physiology of
498	the cells; it is clear that the interaction of human ES cells with the medium can induce
499	significant alterations in carbohydrate use and amino acid turnover without necessarily
500	impacting on pluripotency. Addition of the supplements also affected cell growth, with
501	no change in the proliferation rate but significant cell loss from the populations during the
502	assay potentially reflecting a reduction in cell viability as a result of cell stress. The effect
503	of altered physiology on human ES cells and their differentiated derivatives is not known
504	but a wealth of studies of the early embryo suggest that the impact of sub-optimal culture
505	conditions and altered metabolism can be far reaching and affect long-term development
506	outcomes, potentially through interaction with the epigenome (Donohoe and Bultman
507	2012). The work reported here provides baseline measurements of carbohydrate use and
508	amino acid turnover in human ES cells cultured without feeders and in a fully described,
509	serum-free medium and establishes a model system that can be used to assess the effects
510	of environmental modulation on human ES cell metabolism, signaling pathway activity,
511	transcriptome and epigenome. Further studies are underway to characterise the fluxome
512	of human ES cells under these conditions, extending the observations reported here to a
513	more comprehensive range of metabolic pathways and processes.

514 Like serum, oxygen has been negatively associated with embryo metabolism and

515 outcome (Wale and Gardner 2012). There is a growing literature describing the effects of

ambient and reduced oxygen tensions on embryonic stem cells in culture. A number of

517 reports have shown increased pluripotency marker expression (Prasad *et al.* 2009;

518 Forristal et al. 2010), improved chromosomal stability (Forsyth et al. 2006), decreased

519 differentiation (Ezashi et al. 2005; Prasad et al. 2009; Zachar et al. 2010), increased

520	glycolysis (Kondoh et al. 2007), altered oxygen uptake rates (Abaci et al. 2010),
521	enhanced derivation of mouse (Gibbons et al. 2006) and human (Peura et al. 2007) ES
522	cells, and improved generation of iPS cells from mouse embryonic fibroblasts (Yoshida
523	et al. 2009) in lower oxygen tensions. There are, however, reports that have failed to
524	demonstrate significant differences between cells cultured in ambient and reduced
525	oxygen tensions (Ezashi et al. 2005; Forsyth et al. 2006; Prasad et al. 2009; Zachar et al.
526	2010). Comparison of these studies is hampered by the lack of consistency in other
527	components of the culture system, which could mask or accentuate the potentially subtle
528	effects elicited by oxygen, and the variable use of metabolic indicators, some of which
529	may be insensitive to oxygen tension. To achieve medium optimization we envisage that
530	the analysis of individual components of the culture environment, like amino acid
531	concentrations, protein supplements and oxygen tension, will need to be followed by
532	multifactorial and high-throughput approaches assessing combinations of selected
533	conditions and a range of sensitive and robust metabolic markers.

26

535 Acknowledgements

- 536 The authors would like to thank Dr. John Sheedy (University of Melbourne) for
- 537 assistance with the data analysis, Ms. Natasha Dodge, Ms. Mai Truong and Ms. Jackie
- 538 Yu for technical assistance and Dr. Jeff Mann for the ES cell-tested serum. This work
- 539 was supported by a Linkage grant from the Australian Research Council and Molecular
- 540 Biometrics Pty. Ltd. (Conneticut, USA).

542 **References**

543 Abaci, H.E., Truitt, R., Luong, E., Drazer, G., and Gerecht, S. (2010) Adaptation to

- 544 oxygen deprivation in cultures of human pluripotent stem cells, endothelial progenitor
- cells, and umbilical vein endothelial cells. *Am J Physiol Cell Physiol* **298**(6), C1527-37
- 546
- 547 Adewumi, O., Aflatoonian, B., Ahrlund-Richter, L., Amit, M., Andrews, P.W., Beighton,
- 548 G., Bello, P.A., Benvenisty, N., Berry, L.S., Bevan, S., Blum, B., Brooking, J., Chen,
- 549 K.G., Choo, A.B., Churchill, G.A., Corbel, M., Damjanov, I., Draper, J.S., Dvorak, P.,
- 550 Emanuelsson, K., Fleck, R.A., Ford, A., Gertow, K., Gertsenstein, M., Gokhale, P.J.,
- 551 Hamilton, R.S., Hampl, A., Healy, L.E., Hovatta, O., Hyllner, J., Imreh, M.P., Itskovitz-
- 552 Eldor, J., Jackson, J., Johnson, J.L., Jones, M., Kee, K., King, B.L., Knowles, B.B., Lako,
- 553 M., Lebrin, F., Mallon, B.S., Manning, D., Mayshar, Y., McKay, R.D., Michalska, A.E.,
- 554 Mikkola, M., Mileikovsky, M., Minger, S.L., Moore, H.D., Mummery, C.L., Nagy, A.,
- 555 Nakatsuji, N., O'Brien, C.M., Oh, S.K., Olsson, C., Otonkoski, T., Park, K.Y., Passier, R.,
- 556 Patel, H., Patel, M., Pedersen, R., Pera, M.F., Piekarczyk, M.S., Pera, R.A., Reubinoff,
- 557 B.E., Robins, A.J., Rossant, J., Rugg-Gunn, P., Schulz, T.C., Semb, H., Sherrer, E.S., 558 Siemen, H., Stacey, G.N., Stojkovic, M., Suemori, H., Szatkiewicz, J., Turetsky, T.,
- 559 Tuuri, T., van den Brink, S., Vintersten, K., Vuoristo, S., Ward, D., Weaver, T.A.,
- 560 Young, L.A., and Zhang, W. (2007) Characterization of human embryonic stem cell lines
- 561 by the International Stem Cell Initiative. *Nat Biotechnol* **25**(7), 803-16
- 562

563 Akopian, V., Andrews, P.W., Beil, S., Benvenisty, N., Brehm, J., Christie, M., Ford, A.,

- 564 Fox, V., Gokhale, P.J., Healy, L., Holm, F., Hovatta, O., Knowles, B.B., Ludwig, T.E.,
- 565 McKay, R.D., Miyazaki, T., Nakatsuji, N., Oh, S.K., Pera, M.F., Rossant, J., Stacey,
- 566 G.N., and Suemori, H. (2010) Comparison of defined culture systems for feeder cell free 567 propagation of human embryonic stem cells. *In Vitro Cell Dev Biol Anim* **46**(3-4), 247-58
- 568
- 569 Amps, K., Andrews, P.W., Anyfantis, G., Armstrong, L., Avery, S., Baharvand, H.,
- 570 Baker, J., Baker, D., Munoz, M.B., Beil, S., Benvenisty, N., Ben-Yosef, D., Biancotti,
- 571 J.C., Bosman, A., Brena, R.M., Brison, D., Caisander, G., Camarasa, M.V., Chen, J.,
- 572 Chiao, E., Choi, Y.M., Choo, A.B., Collins, D., Colman, A., Crook, J.M., Daley, G.Q.,
- 573 Dalton, A., De Sousa, P.A., Denning, C., Downie, J., Dvorak, P., Montgomery, K.D.,
- 574 Feki, A., Ford, A., Fox, V., Fraga, A.M., Frumkin, T., Ge, L., Gokhale, P.J., Golan-Lev,
- 575 T., Gourabi, H., Gropp, M., Lu, G., Hampl, A., Harron, K., Healy, L., Herath, W., Holm,
- 576 F., Hovatta, O., Hyllner, J., Inamdar, M.S., Irwanto, A.K., Ishii, T., Jaconi, M., Jin, Y.,
- 577 Kimber, S., Kiselev, S., Knowles, B.B., Kopper, O., Kukharenko, V., Kuliev, A.,
- 578 Lagarkova, M.A., Laird, P.W., Lako, M., Laslett, A.L., Lavon, N., Lee, D.R., Lee, J.E.,
- 579 Li, C., Lim, L.S., Ludwig, T.E., Ma, Y., Maltby, E., Mateizel, I., Mayshar, Y.,
- 580 Mileikovsky, M., Minger, S.L., Miyazaki, T., Moon, S.Y., Moore, H., Mummery, C.,
- 581 Nagy, A., Nakatsuji, N., Narwani, K., Oh, S.K., Olson, C., Otonkoski, T., Pan, F., Park,
- 582 I.H., Pells, S., Pera, M.F., Pereira, L.V., Qi, O., Raj, G.S., Reubinoff, B., Robins, A.,
- 583 Robson, P., Rossant, J., Salekdeh, G.H., Schulz, T.C., Sermon, K., Sheik Mohamed, J.,
- 584 Shen, H., Sherrer, E., Sidhu, K., Sivarajah, S., Skottman, H., Spits, C., Stacey, G.N.,

585 586 587 588 589	Strehl, R., Strelchenko, N., Suemori, H., Sun, B., Suuronen, R., Takahashi, K., Tuuri, T., Venu, P., Verlinsky, Y., Ward-van Oostwaard, D., Weisenberger, D.J., Wu, Y., Yamanaka, S., Young, L., and Zhou, Q. (2011) Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. <i>Nat Biotechnol</i> 29 (12), 1132-44
590 591 592 593	Brand, K., Aichinger, S., Forster, S., Kupper, S., Neumann, B., Nurnberg, W., and Ohrisch, G. (1988) Cell-cycle-related metabolic and enzymatic events in proliferating rat thymocytes. <i>Eur J Biochem</i> 172 (3), 695-702
594 595 596 597 598	Brison, D.R., Houghton, F.D., Falconer, D., Roberts, S.A., Hawkhead, J., Humpherson, P.G., Lieberman, B.A., and Leese, H.J. (2004) Identification of viable embryos in IVF by non-invasive measurement of amino acid turnover. <i>Hum Reprod</i> 19 (10), 2319-24
599 600 601 602	Broer, A., Juelich, T., Vanslambrouck, J.M., Tietze, N., Solomon, P.S., Holst, J., Bailey, C.G., Rasko, J.E., and Broer, S. (2011) Impaired nutrient signaling and body weight control in a Na+ neutral amino acid cotransporter (Slc6a19)-deficient mouse. <i>J Biol Chem</i> 286 (30), 26638-51
603 604 605 606 607	Bruhat, A., Jousse, C., Carraro, V., Reimold, A.M., Ferrara, M., and Fafournoux, P. (2000) Amino acids control mammalian gene transcription: activating transcription factor 2 is essential for the amino acid responsiveness of the CHOP promoter. <i>Mol Cell Biol</i> 20 (19), 7192-204
608 609 610	Chang, X., and Wei, C. (2011) Glycolysis and rheumatoid arthritis. <i>Int J Rheum Dis</i> 14 (3), 217-22
612 613 614	Cuenda, A., Rouse, J., Doza, Y., Meier, R., Cohen, P., Gallagher, T., Young, P., and Lee, J. (1995) SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. <i>FEBS letters</i> 364 (2), 229-233
615 616 617 618 619	DeBerardinis, R.J., Mancuso, A., Daikhin, E., Nissim, I., Yudkoff, M., Wehrli, S., and Thompson, C.B. (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. <i>Proc Natl Acad Sci U S A</i> 104 (49), 19345-50
620 621 622 623 624	Donohoe, D.R., and Bultman, S.J. (2012) Metaboloepigenetics: interrelationships between energy metabolism and epigenetic control of gene expression. <i>J Cell Physiol</i> 227 (9), 3169-77
625 626	Ezashi, T., Das, P., and Roberts, R.M. (2005) Low O2 tensions and the prevention of differentiation of hES cells. <i>Proc Natl Acad Sci U S A</i> 102 (13), 4783-8
628 629	Fernandes, T.G., Diogo, M.M., Fernandes-Platzgummer, A., da Silva, C.L., and Cabral, J.M. (2010a) Different stages of pluripotency determine distinct patterns of proliferation,

631 *Res* 5(1), 76-89 632 633 Fernandes, T.G., Fernandes-Platzgummer, A.M., da Silva, C.L., Diogo, M.M., and 634 Cabral, J.M. (2010b) Kinetic and metabolic analysis of mouse embryonic stem cell 635 expansion under serum-free conditions. Biotechnol Lett 32(1), 171-9 636 637 Forristal, C.E., Wright, K.L., Hanley, N.A., Oreffo, R.O., and Houghton, F.D. (2010) 638 Hypoxia inducible factors regulate pluripotency and proliferation in human embryonic 639 stem cells cultured at reduced oxygen tensions. Reproduction 139(1), 85-97 640 641 Forsyth, N.R., Musio, A., Vezzoni, P., Simpson, A.H., Noble, B.S., and McWhir, J. 642 (2006) Physiologic oxygen enhances human embryonic stem cell clonal recovery and 643 reduces chromosomal abnormalities. Cloning Stem Cells 8(1), 16-23 644 645 Fox, C.J., Hammerman, P.S., and Thompson, C.B. (2005) Fuel feeds function: energy 646 metabolism and the T-cell response. Nat Rev Immunol 5(11), 844-52 647 648 Fritz, V., and Fajas, L. (2010) Metabolism and proliferation share common regulatory 649 pathways in cancer cells. Oncogene 29(31), 4369-77 650 651 Gardner, D.K. (1998) Changes in requirements and utilization of nutrients during 652 mammalian preimplantation embryo development and their significance in embryo 653 culture. Theriogenology 49(1), 83-102 654 655 Gardner, D.K. (2011) Analysis of embryo metabolism and the metabolome to identify the 656 most viable embryo within a cohort. In 'Human Assisted Reproductive Technology.' (Eds. 657 DK Gardner, BRMB Rizk and T Falcone) pp. 301-312. (Cambridge University Press: 658 New York) 659 Gardner, D.K., and Leese, H.J. (1990) Concentrations of nutrients in mouse oviduct fluid 660 661 and their effects on embryo development and metabolism in vitro. J Reprod Fertil 88(1), 662 361-8 663 664 Gardner, D.K., and Wale, P.L. (2013) Analysis of metabolism to select viable human 665 embryos. Fertil Steril In Press

metabolism, and lineage commitment of embryonic stem cells under hypoxia. Stem Cell

- 666
- 667 Gardner, D.K., Wale, P.L., Collins, R., and Lane, M. (2011) Glucose consumption of 668 single post-compaction human embryos is predictive of embryo sex and live birth 669 outcome. *Hum Reprod* **26**(8), 1981-6
- 670
- Gibbons, J., Hewitt, E., and Gardner, D.K. (2006) Effects of oxygen tension on the
- establishment and lactate dehydrogenase activity of murine embryonic stem cells.
- 673 Cloning Stem Cells 8(2), 117-22
- 674

675 676 677 678 679	Harvey, A.J., Rathjen, J., and Gardner, D.K. (<i>In press</i>) The metabolic framework of pluripotent stem cells and potential mechanisms of regulation. In 'Stem Cells in Reproductive Medicine. Vol. 3rd edition.' (Eds. C Simon, A Pellicer and R Reijo-Pera). (Cambridge University Press: Cambridge)
680 681 682 683	Houghton, F.D., Hawkhead, J.A., Humpherson, P.G., Hogg, J.E., Balen, A.H., Rutherford, A.J., and Leese, H.J. (2002) Non-invasive amino acid turnover predicts human embryo developmental capacity. <i>Hum Reprod</i> 17 (4), 999-1005
684 685 686 687	Hughes, J.N., Dodge, N., Rathjen, P.D., and Rathjen, J. (2009) A novel role for gamma- secretase in the formation of primitive streak-like intermediates from ES cells in culture. <i>Stem Cells</i> 27 (12), 2941-51
688 689 690	Kapinas, K., Grandy, R., Ghule, P., Medina, R., Becker, K., Pardee, A., Zaidi, S.K., Lian, J., Stein, J., van Wijnen, A., and Stein, G. (2013) The abbreviated pluripotent cell cycle. <i>J Cell Physiol</i> 228 (1), 9-20
692 693 694	Khosla, S., Dean, W., Reik, W., and Feil, R. (2001) Culture of preimplantation embryos and its long-term effects on gene expression and phenotype. <i>Hum Reprod Update</i> 7 (4), 419-27
695 696 697 698	Kim, E. (2009) Mechanisms of amino acid sensing in mTOR signaling pathway. <i>Nutr Res Pract</i> 3 (1), 64-71
699 700 701 702	Kobayashi, M., Takada, T., Takahashi, K., Noda, Y., and Torii, R. (2008) BMP4 induces primitive endoderm but not trophectoderm in monkey embryonic stem cells. <i>Cloning Stem Cells</i> 10 (4), 495-502
702 703 704 705 706	Kondoh, H., Lleonart, M.E., Nakashima, Y., Yokode, M., Tanaka, M., Bernard, D., Gil, J., and Beach, D. (2007) A high glycolytic flux supports the proliferative potential of murine embryonic stem cells. <i>Antioxid Redox Signal</i> 9 (3), 293-9
700 707 708 709	Lane, M., and Gardner, D.K. (1996) Selection of viable mouse blastocysts prior to transfer using a metabolic criterion. <i>Hum Reprod</i> 11 (9), 1975-8
710 711 712 713	Lane, M., and Gardner, D.K. (2005) Understanding cellular disruptions during early embryo development that perturb viability and fetal development. <i>Reprod Fertil Dev</i> 17 (3), 371-8
714 715 716	Lopez-Lazaro, M. (2008) The warburg effect: why and how do cancer cells activate glycolysis in the presence of oxygen? <i>Anticancer Agents Med Chem</i> 8 (3), 305-12
717 718 719 720	Ludwig, T.E., Bergendahl, V., Levenstein, M.E., Yu, J., Probasco, M.D., and Thomson, J.A. (2006a) Feeder-independent culture of human embryonic stem cells. <i>Nat Methods</i> 3 (8), 637-46

721 722 723	Ludwig, T.E., Levenstein, M.E., Jones, J.M., Berggren, W.T., Mitchen, E.R., Frane, J.L., Crandall, L.J., Daigh, C.A., Conard, K.R., Piekarczyk, M.S., Llanas, R.A., and Thomson, J.A. (2006b) Derivation of human embryonic stem cells in defined conditions. <i>Nat</i>
724	<i>Biotechnol</i> 24 (2), 185-7
725 726 727 728	Marks, H., Kalkan, T., Menafra, R., Denissov, S., Jones, K., Hofemeister, H., Nichols, J., Kranz, A., Stewart, A.F., Smith, A., and Stunnenberg, H.G. (2012) The transcriptional and epigenomic foundations of ground state pluripotency. <i>Cell</i> 149 (3), 590-604
729	
730 731	Morgan, M.J., and Faik, P. (1981) Carbohydrate metabolism in cultured animal cells. <i>Biosci Rep</i> 1 (9), 669-86
732 733 724	Oddens, B.a.L., B. (2006) 'A decade of success in ART.' (Elsevier: Amsterdam)
734 735 736	Pera, M.F., and Tam, P.P. (2010) Extrinsic regulation of pluripotent stem cells. <i>Nature</i> 465 (7299), 713-20
737	
738	Peura, T.T., Bosman, A., and Stojanov, T. (2007) Derivation of human embryonic stem
739	cell lines. <i>Theriogenology</i> 67(1), 32-42
740	
741	Pinilla, J., Aledo, J.C., Cwiklinski, E., Hyde, R., Taylor, P.M., and Hundal, H.S. (2011)
742 743	SNAT2 transceptor signalling via mTOR: a role in cell growth and proliferation? <i>Front Biosci (Elite Ed)</i> 3 , 1289-99
744 745 746 747 748 749 750	Prasad, S.M., Czepiel, M., Cetinkaya, C., Smigielska, K., Weli, S.C., Lysdahl, H., Gabrielsen, A., Petersen, K., Ehlers, N., Fink, T., Minger, S.L., and Zachar, V. (2009) Continuous hypoxic culturing maintains activation of Notch and allows long-term propagation of human embryonic stem cells without spontaneous differentiation. <i>Cell Prolif</i> 42 (1), 63-74
751 752 753	Price, P.J., Goldsborough, M.D., Tilkins, M.L. International Patent Application WO 98/30679. (1998) Embryonic stem cell serum replacement. <i>International Patent Application WO 98/30679</i> .
754 755 756 757 757	Prigione, A., Fauler, B., Lurz, R., Lehrach, H., and Adjaye, J. (2010) The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. <i>Stem Cells</i> 28 (4), 721-33
759 760 761	Rathjen, J., and Rathjen, P.D. (2003) Lineage specific differentiation of mouse ES cells: formation and differentiation of early primitive ectoderm-like (EPL) cells. <i>Methods Enzymol</i> 365 , 3-25
762	Poulinoff P.E. Dara M.E. Eong C.V. Troumson A and Donggo A (2000)
763 764 765	Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. <i>Nat Biotechnol</i> 18 (4), 399-404
766	

Culture environment regulates human ES cells

767 Sakkas, D., and Gardner, D.K. (2005) Noninvasive methods to assess embryo quality. 768 Curr Opin Obstet Gynecol 17(3), 283-8 769 770 Sancak, Y., Bar-Peled, L., Zoncu, R., Markhard, A.L., Nada, S., and Sabatini, D.M. 771 (2010) Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is 772 necessary for its activation by amino acids. Cell 141(2), 290-303 773 774 Shodell, M., and Rubin, H. (1970) Studies on the nature of serum stimulation of 775 proliferation in cell culture. In Vitro 6(1), 66-74 776 777 Simon, P. (2003) Q-Gene: processing quantitative real-time RT-PCR data. *Bioinformatics* **19**(11), 1439-40 778 779 780 Stead, E., White, J., Faast, R., Conn, S., Goldstone, S., Rathjen, J., Dhingra, U., Rathjen, 781 P., Walker, D., and Dalton, S. (2002) Pluripotent cell division cycles are driven by 782 ectopic Cdk2, cyclin A/E and E2F activities. Oncogene 21(54), 8320-33 783 784 Tan, B.S., Lonic, A., Morris, M.B., Rathjen, P.D., and Rathjen, J. (2011) The amino acid 785 transporter SNAT2 mediates L-proline-induced differentiation of ES cells. Am J Physiol 786 *Cell Physiol* **300**(6), C1270-9 787 788 Thompson, J.G., Gardner, D.K., Pugh, P.A., McMillan, W.H., and Tervit, H.R. (1995) 789 Lamb birth weight is affected by culture system utilized during in vitro pre-elongation 790 development of ovine embryos. Biol Reprod 53(6), 1385-91 791 792 Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., 793 Marshall, V.S., and Jones, J.M. (1998) Embryonic stem cell lines derived from human 794 blastocysts. Science 282(5391), 1145-7 795 796 Varum, S., Rodrigues, A.S., Moura, M.B., Momcilovic, O., Easley, C.A.t., Ramalho-797 Santos, J., Van Houten, B., and Schatten, G. (2011) Energy metabolism in human 798 pluripotent stem cells and their differentiated counterparts. PLoS One 6(6), e20914 799 800 Wale, P.L., and Gardner, D.K. (2012) Oxygen regulates amino acid turnover and 801 carbohydrate uptake during the preimplantation period of mouse embryo development. 802 Biol Reprod 87(1), 24, 1-8 803 804 Wang, J., Alexander, P., Wu, L., Hammer, R., Cleaver, O., and McKnight, S.L. (2009) 805 Dependence of mouse embryonic stem cells on threonine catabolism. *Science* **325**(5939), 806 435-9 807 808 Warburg, O. (1956) On the origin of cancer cells. Science 123(3191), 309-14 809 810 Washington, J.M., Rathjen, J., Felguer, F., Lonic, A., Bettess, M.D., Hamra, N., 811 Semendric, L., Tan, B.S., Lake, J.A., Keough, R.A., Morris, M.B., and Rathjen, P.D.

- 812 (2010) L-Proline Induces Differentiation of Es Cells: A Novel Role for an Amino Acid in
- 813 the Regulation of Pluripotent Cells in Culture. *Am J Physiol Cell Physiol*
- 814
- 815 Weinberg, F., and Chandel, N.S. (2009) Mitochondrial Metabolism and Cancer. *Hypoxia* 816 and Consequences from Molecule to Malady **1177**, 66-73
- 817
- Yoshida, Y., Takahashi, K., Okita, K., Ichisaka, T., and Yamanaka, S. (2009) Hypoxia
 enhances the generation of induced pluripotent stem cells. *Cell Stem Cell* 5(3), 237-41
- 820

Zachar, V., Prasad, S.M., Weli, S.C., Gabrielsen, A., Petersen, K., Petersen, M.B., and
 Fink, T. (2010) The effect of human embryonic stem cells (hESCs) long-term normoxic

and hypoxic cultures on the maintenance of pluripotency. *In Vitro Cell Dev Biol Anim*46(3-4), 276-83

825

Zhang, J., Khvorostov, I., Hong, J.S., Oktay, Y., Vergnes, L., Nuebel, E., Wahjudi, P.N.,

- 827 Setoguchi, K., Wang, G., Do, A., Jung, H.J., McCaffery, J.M., Kurland, I.J., Reue, K.,
- 828 Lee, W.N., Koehler, C.M., and Teitell, M.A. (2011) UCP2 regulates energy metabolism
- and differentiation potential of human pluripotent stem cells. *EMBO J* **30**(24), 4860-73
- 830
- 831
- 832

0	2	2
0	3	3

834 Figure Legends

835 Figure 1: Serum induces differentiation from human ES cells. A-C. MEL2 human ES 836 cells were cultured in mTeSR1 for 7 days (A) or mTeSR1 for 72 hours followed by 837 mTeSR1 with 20% added FCS for 96 hours (B, C). Serum was from Life Technologies 838 (B) or Hyclone (C). Size bars represent 500µm. **D.** Human ES cells were collected on day 839 7 and analysed for the expression of OCT4, NANOG, GATA4 and BRACHYURY by RT-840 qPCR. n=8 independent repeats. Error bars represent SEM. Data was analysed using a 841 two-tailed Student's t-test * p < 0.05. E. Human ES cells exposed to Life Technologies 842 FCS for 96 hours were analysed by immunocytochemistry for the presence of NANOG. 843 Nuclei were detected by DAPI. Arrows highlight examples of cells that have lost 844 NANOG expression. F. Human ES cells on day 3 of culture were transferred to 845 mTeSR1+FCS+SB203580 (SB) and cultured for a further 4 days. Cells were collected 846 and analysed for the expression of OCT4, NANOG, SOX2, GATA4 and BRACHYURY by 847 RT-qPCR. Gene expression was normalized to mTeSR1+FCS+DMSO controls. n=3 848 independent repeats. Error bars represent SEM. Data was analysed using a two-tailed 849 Student's t-test # p < 0.01.

850 Figure 2: Exposure to serum changes the use of amino acids in human ES cell

851 *cultures.* A. Spent medium from the final 24 hours of culture of human ES cells in

- mTeSR1 for 7 days (D), or mTeSR1 for 72 hours followed by mTeSR1 with 20% Life
- 853 Technologies FCS for 96 hours (**■**), was analysed for the presence and concentration of
- amino acids. Amino acid production (positive values) or consumption (negative values)
- has been normalised to cell number and is expressed as fmol/cell/hour. n=8 independent

repeats. Error bars represent SEM. Data were analysed using a two-tailed Student's t-test,
*p<0.05; **p<0.01. B. Total amino acid production, consumption and turnover by cells
cultured in medium supplemented with serum.

859 Figure 3: Differentiation of human ES cells with BMP4 does not result in changes in

- amino acid usage. A,B. Human ES cells were cultured in mTeSR1 for 5 days (A) or
- 861 mTeSR1 for 72 hours followed by 48 hours in mTeSR1 with 30 ng/mL BMP4 (B). Size
- bars represent 500µm. C. Human ES cells were cultured in mTeSR1 for 7 days or
- mTeSR1 for 72 hours followed by 96 hours in mTeSR1 with 30 ng/mL BMP4. Spent
- 864 medium from the final 24 hours of culture was analysed for the presence and
- 865 concentration of amino acids. Amino acid production (positive values) or consumption
- 866 (negative values) has been normalised to cell number and is expressed as fmol/cell/hour.
- 867 n=6 independent repeats. Error bars represent SEM. Data were analysed statistically
- using a two-tailed Student's t-test; *p<0.05. **D**. Total amino acid production,
- 869 consumption and turnover by cells cultured in medium supplemented with BMP4.

870 Figure 4: The addition of 20% KnockoutTM SR does not induce detectable

- 871 *differentiation in human ES cells cultures.* A,B. Human ES cells were cultured in
- mTeSR1 for 7 days (A) or mTeSR1 for 72 hours followed by 96 hours in mTeSR1 with
- 873 20% KnockoutTM SR (B). Size bars represent 500μm. C. Cells were collected on day 7
- and analysed for the expression of OCT4, NANOG, GATA4 and BRACHYURY by RT-
- qPCR. n=8 independent repeats. Error bars represent SEM. Data was analysed using a
- two-tailed Student's t-test; no differences were detected.

877	Figure 5: Exposure to Knockout [™] SR changes amino acid metabolism in human ES
878	cells. A. Spent medium from the final 24 hours of culture of human ES cells in mTeSR1
879	for 7 days (□), or mTeSR1 for 72 hours followed by mTeSR1 with 20% Knockout [™] SR
880	for 96 hours (•), was analysed for the presence and concentration of amino acids. Amino
881	acid production (positive values) or consumption (negative values) has been normalised
882	to cell number and is expressed as fmol/cell/hour. n=12 (6 independent repeats with
883	duplicate wells for each experiment). Error bars represent SEM. Data were analysed
884	using a two-tailed Student's t-test, *p<0.05; **p<0.01. B . Total amino acid production,
885	consumption and turnover by cells cultured in medium supplemented with Knockout [™]
886	SR.

	Glucose consumption (fmol/cell/hour)	Lactate Production (fmol/cell/hour)	%Glycolysis
mTeSR	160 ± 9	162 ± 12	50.5 ± 2.1
mTeSR + FCS ^a ; 24 hours ^b	181 ± 24	187 ± 24	52.3 ± 3.3
mTeSR + FCS ^a ; 96 hours	$357 \pm 38**$	$359\pm40{\color{red}**}$	50.5 ± 3.4
mTeSR	162 ± 12	171 ± 14	53.7 ± 1.4
mTeSR + BMP4 ^c ; 96 hours	163 ± 10	182 ± 14	55.1 ± 3.3
mTeSR	171 ± 20	179 ± 11	52.1 ± 1.6
mTeSR + KOSR ^d ; 96 hours	$242 \pm 16^{**}$	251 ± 15**	52.1 ± 2.5

Table 1. Carbohydrate use by human ES cells cultured in mTeSR1 with and without supplementation. ^a 20% FCS from Life Technologies. ^b All measurements were made on medium taken after the final 24 hours of culture; time in the conditions indicates the length of exposure of the cells to the supplement. ^cBMP4 at 30 ng/ml. ^d 20% KOSR from Life Technologies.

	% cells in mitosis +/- s.e.m.	<i>p</i> -value
mTeSR	3.6 ± .3	
mTeSR + FCS ^a	$4.3 \pm .5$.26
mTeSR + KOSR ^b	$3.0 \pm .5$.27

Table 2: Proliferation of human ES cells, shown as the % of cells positive for phosphorylated histone H3. ^a20% FCS from Life Technologies. ^b20% Knockout Serum Replacer from Life Technologies. *P*-value determined by Student's t-test when compared to cells cultured in mTeSR. Analysis was of 20 fields from two independent replicates.

	Average cell number	<i>p</i> -value	% mTeSR
mTeSR mTeSR + FCS ^a	$\begin{array}{c} 1.92 \text{ x } 10^6 \pm 1.43 \text{ x } 10^5 \\ 9.60 \text{ x } 10^5 \pm 1.83 \text{ x } 10^5 \end{array}$	2.00 x 10 ⁻³	49.8 ± 8.1
mTeSR mTeSR + KOSR ^b	$\begin{array}{c} 2.09 \text{ x } 10^6 \pm 8.90 \text{ x } 10^4 \\ 1.24 \text{ x } 10^6 \pm 8.40 \text{ x } 10^4 \end{array}$	9.57 x 10 ⁻¹²	61.0 ± 2.5

Table 3: Cell numbers after 4 days of supplement addition. ^a 20% FCS from Life Technologies. ^b 20% Knockout Serum Replacer from Life Technologies. Statistical comparison of raw cell numbers was performed using a paired Student's t-test, and of cell numbers relative to mTeSR with an unpaired Student's t-test.

NANOG ⊮

Figure 1

Figure 2_Rathjen et al.,

Figure 3_Rathjen et al.

Figure 5_Rathjen

Gene	Forward primer	Reverse primer
	5'-3'	5'-3'
B-ACTIN	CGCACCACTGGCATTGTC	TCCTCCTTGATGTCACGCAC
BRACHYURY	GTGCTGTCCCAGGTGGCTTACAGATG	CCTTAACAGCTCAACTCTAACTACTTG
GATA4	CTAGACCGTGGGTTTTGCAT	TGGGTTAAGTGCCCCTGTAG
NANOG	CAAAGGCAAACAACCCACTT	TCTGCTGGAGGCTGAGGT
OCT4	AGCGAACCAGTATCGAGAAC	TTACAGAACCACACTCGCAC
SOX2	ATGCACCGCTACGACGTGA	CTTTTGCACCCCTCCCATTT

Table S1: Primer sequences used for qPCR analysis of gene expression.

	Expected glucose concentration (mM)	Measured glucose concentration (mM)	Expected lactate concentration (mM)	Measured lactate concentration (mM)
mTeSR	13.7	15.2 ± .4	0	0
mTeSR + FCS		$13.4 \pm .5$		$2.4 \pm .1$
mTeSR + BMP4	13.7	$14.5 \pm .3$	0	0
mTeSR + KOSR		13.7 ± .4		0

 Table S2: Measured concentrations of glucose and lactate in control media.

	mTeSR formulation (µM)	mTeSR (μM)	mTeSR + FCS (µM)
Ala	137	158 ± 3.54	$326 \pm 4.6^{**}$
Arg	548	459 ± 8.5	328 ± 5.6
Asn	137	129 ± 2.1	103 ± 1.5
Asp	137	157 ± 3.4	144 ± 2.8
Glu	137	157 ± 2.9	$301 \pm 3.6^{**}$
Gln	2940	2362 ± 38.1	1973 ± 38
Gly	294	269 ± 7.9	$336 \pm 10.7 **$
His	118	151 ± 1.9	145 ± 2.5
Ile	326	318 ± 6.1	291 ± 3.5
Leu	354	352 ± 7.1	333 ± 3.8
Lys	391	358 ± 5.5	331 ± 3.2
Met	90.6	89 ± 1.9	76 ± 1.2
Phe	169	187 ± 3.5	182 ± 2.1
Pro	216	233 ± 2.8	237 ± 2.1
Ser	294	304 ± 8.9	300 ± 8.1
Thr	352	343 ± 6.4	301 ± 3.2
Trp	34.6	68 ± 1.2	71 ± 1.3
Tyr	168	174 ± 3.1	160 ± 1.7
Val	355	355 ± 6.4	355 ± 3.8

Table S3: Measured concentrations of amino acids in mTeSR and mTeSR supplemented with 20% Life Technologies FCS, compared to the expected concentrations from the published formulation of the medium ¹⁸. ** p<0.01; significance was tested for those amino acids showing an increased concentration in serum containing medium.

	mTeSR formulation (μM)	mTeSR (µM)	mTeSR + KOSR formulation (µM)	mTeSR + KOSR (µM)
Ala	137	144 ± 2.5	109.6	123 ± 4.9
Arg	548	581 ± 4.9	438.4	463 ± 16.1
Asn	137	142 ± 2.2	109.6	113 ± 2.7
Asp	137	139 ± 8.8	109.6	106 ± 4
Glu	137	138 ± 6.2	109.6	105 ± 6
Gln	2940	2614 ± 29.5	2352	2065 ± 46.5
Gly	294	296 ± 4.5	1176.4	621 ± 19.1
His	118	116 ± 7.6	1667	925 ± 36.3
Ile	326	332 ± 6.4	6512	4957 ± 118.8
Leu	354	358 ± 6.8	283.2	369 ± 9.4
Lys	391	393 ± 10.7	312.8	308 ± 8.3
Met	90.6	81.6 ± 4.3	465.68	172 ± 4.4
Phe	169	188 ± 4.1	2847.2	2129 ± 55.6
Pro	216	242 ± 5.9	7111.2	6445 ± 144.5
Ser	294	281 ± 4.7	2290.6	1635 ± 46.5
Thr	352	353 ± 9	5038.2	$3452\pm\ 82$
Trp	34.6	47 ± 2.9	812	455 ± 13
Tyr	168	226 ± 4.9	752	225 ± 4.9
Val	355	370 ± 7.4	5450	3977 ± 92.6

Table S4: Measured concentrations of amino acids in mTeSR and mTeSR supplemented with 20% Life Technologies KOSR, compared to the expected concentrations from the published formulation of mTeSR ¹⁸ and mTeSR + KOSR. Expected concentrations for amino acids in KOSR were taken from the preferred embodiment of the supplement ²⁰.

	% cells in mitosis ± s.e.m.	<i>p</i> -value	Fluorescent intensity (relative units) ± s.e.m.	<i>p</i> -value
mTeSR	$3.6 \pm .3$		$2.95 \pm .3$	
mTeSR + F12	$3.6 \pm .3$.86	$2.76 \pm .2$.65

Table S5: Proliferation of human ES cells, shown as the % of cells positive for phosphorylated histone H3, in medium conditions used, and final live cell density, estimated be Alamar Blue staining, shown as fluorescent intensity. *P*-value determined by Student's t-test when compared to cells cultured in mTeSR. Analysis was of 20 fields from two independent replicates (proliferation rate) and 6 replicate wells (final live cell density).

Figure S2: Comparison of amino acid use in human ES cell cultures across experimental procedures. A. Spent medium from the final 24 hours of culture of human ES cells in mTeSR1 for 7 days was analysed for the presence and concentration of amino acids. Amino acid production or consumption was normalised to cell number and is expressed as fmol/cell/hour. n=8 (Control 1); n=6 (Control 2); n=12 (Control 3). Error bars represent SEM. Data were analysed using ANOVA, *p<0.05. B. Total amino acid production, consumption and turnover by cells cultured in mTeSR1.

Supplementary figure 1_Rathjen et al.

Supplementary Figure 2: Morphology of human ES cells cultured in mTeSR1 supplemented with 20% Hams F12 medium. Human ES cells were cultured for 3 days in mTeSR1 before being changed into mTeSR1 (A,C) or mTeSR1 supplemented with 20% Hams F12 (B,D) and maintained for a further 4 days. Images of colony morphology were captured in phase contrast at 4 x magnification (A,B) or with fluorescence microscopy after staining for DNA with DAPI (C,D; 20 x magnification). n=3; representative images are shown.

Supplementary figure 2_Rathjen et al.

University Library

A gateway to Melbourne's research publications

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:

Rathjen, J; Yeo, C; Yap, C; Tan, BSN; Rathjen, PD; Gardner, DK

Title:

Culture environment regulates amino acid turnover and glucose utilisation in human ES cells

Date:

2014-01-01

Citation:

Rathjen, J., Yeo, C., Yap, C., Tan, B. S. N., Rathjen, P. D. & Gardner, D. K. (2014). Culture environment regulates amino acid turnover and glucose utilisation in human ES cells. REPRODUCTION FERTILITY AND DEVELOPMENT, 26 (5), pp.703-716. https://doi.org/10.1071/RD12276.

Persistent Link:

http://hdl.handle.net/11343/51028