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Abstract

The estimation of the probability of occupancy of a site by a species is used to

monitor the distribution of that species. Occupancy models have been widely

applied and several limitations have been identified. In this thesis we resolve

some of these. In particular we focus on limitations of maximum likelihood es-

timators and the associated interval estimators, and the difficulties associated

with the extension from linear to generalised additive models for the relation-

ship between occupancy and covariates. Initially we consider in detail the basic

occupancy model which includes two parameters: ψ and p. Our primary con-

cern is the probability that the species occupies a particular site, ψ. The other

parameter, the detection probability p, is a nuisance parameter. We first de-

rive the joint probability mass function for the sufficient statistics of occupancy

which allows the exact evaluation of its mean and variance, and hence its bias.

We show that estimation near the boundaries of the parameter space is dif-

ficult. For small values of detection, we show that estimation of occupancy

is not possible and specify the region of the parameter space where maximum

likelihood estimators exist, and give the equations for the MLEs in this region.

We next demonstrate that the asymptotic variance of the estimated occupancy

is underestimated, yielding interval estimators that are too narrow. Methods

for constructing interval estimators are then explored. We evaluate several

bootstrap-based interval estimators for occupancy. Finally, instead of the full

likelihood we consider a partial likelihood approach. This gives simple closed

form estimators in a basic model with only a small loss of efficiency. It greatly

simplifies the inclusion of linear and nonlinear covariates by allowing the use

of standard statistical software for GLM and GAM frameworks and in our

simulation study there is little loss of efficiency compared to the full likelihood.
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Chapter 1

Introduction

1.1 Overview

Statistical inference on abundance and dispersion, the distribution of an animal

or plant population, has been identified as critical for the protection of animal

populations and for ecosystems, in general (Hoffman et al., 2010). Historically,

statistical methods have focussed on estimating abundance of species, for ex-

ample, the body of work including Burnham and Overton (1978), Burnham

and Overton (1979), Burnham et al. (1987), Pollock (2002), etc. A com-

prehensive review is given in Chao (2001). Methods for estimating abundance

generally involve intensive sampling plans, such as capture-recapture sampling,

which are usually possible only on small areas owing to the high costs involved.

Furthermore, these studies are time consuming and labour intensive. As a re-

sult, there has been a shift in focus from estimating the abundance of a species

to monitoring the dispersion of populations, possibly on larger scales (Pollock,

2002).

Often it is the dispersion of a species rather than its abundance that is of

interest and this shift has led to the development of alternative statistical

methods that meet changed objectives, such as monitoring various population

characteristics.

Monitoring the dispersion of populations provides insights into the behaviour

of species and how they interact with their environment. To this end, large-

scale studies, which may assist in conservation planning, are often conducted.

These studies can yield habitat suitability maps, which assist in the under-

standing of biogeographical issues, such as invasive species biology, and trends

1
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in population dispersion; they can give the ecological community insights into

the preferences that a species displays for a particular habitat and add to the

broader understanding of ecosystems (Hoffman et al., 2010; MacKenzie et al.,

2011). Sound management of wildlife populations is an important considera-

tion in monitoring species. Inaccurate assessments and inferences about the

species population and their habitat could lead to detrimental decision mak-

ing practices. The misclassification of occupancy status is an example which

will result in such errors (Binns et al., 2000; Lindenmayer and Burgman, 2005;

Miller et al., 2011).

In contrast to abundance estimation, which was developed from capture, mark

then recapture of individual animals, studies for dispersion require only the ob-

servance of the presence and absence of the species. Thus, studies of dispersion

are less intensive, which means they are less time consuming, and therefore less

costly (MacKenzie et al., 2002; Royle and Nichols, 2003; Wintle et al., 2005).

The remainder of this chapter is laid out as follows. Section 1.2 contains a

description of data that lend themselves to occupancy models and introduces

the data that will be used in applications throughout this thesis. This is

followed by section 1.3, where methods for occupancy models are reviewed.

A description of relevant methods is provided together with their historical

accounts. Finally, in Section 1.4, the chapter ends with a summary of known

problems and how these will be addressed in this thesis.

1.2 Data

Presence-absence data are collected by recording detections and non-detections

on the sampling units (or sites). When a site is visited the species is either

seen or it is not and the event is recorded with, for example, 1 (seen) or 0 (not

seen) for each site on every survey occasion, i.e., for each site-occasion.

In the homogeneous case it is assumed that there is no migration, deaths or

births, at the site level. That is, it is assumed that the population is closed at

the site level, but closure is not assumed at the species level. So if the species

is detected on any visit (=1), then the site is considered occupied at all visits

i.e. the species is said to inhabit that site, irrespective of whether or not a

detection is recorded on other visits. However, the occupancy status of the

site will be inconclusive if the species has not been detected over any of the

survey occasions. Two possibilities exist in this case, either the species does
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not inhabit that site, or the species does inhabit that site but was not detected

on the survey occasion. In many instances the data that are collected contain

a high number of zeros.

In addition to recording detections of a species, it is common to record spatial

and temporal characteristics. These may be used as covariates in the fitted

models, although doing so is not always straightforward, particularly when

fitting covariates nonparametrically.

We will analyse presence-absence data collected on a frog population from

Victoria, and examine publicly available data about two fish populations. The

complexities of the structures of these data motivate extensions to existing

methods we present for the basic occupancy model; this is the homogenous

case of the full likelihood function.

1.2.1 Frogs

We now describe the data about the endangered growling grass frog (Litoria

raniformis). The study area encompassed the Merri Creek Corridor and ad-

jacent catchments of Yuroke and Darebin Creeks on the northern outskirts of

the Melbourne metropolitan area, around 350km2. A detailed description is

given in Heard et al. (2006).

Here we use diurnal presence-absence data that was collected on the adult frog

population during the 2002-2003 season. Specifically there were 27 sites, each

visited on 4 occasions with complete data i.e. no missing data for presences or

absences.

Covariate information was also collected during the study. We consider water

and land vegetation of sites in our models.

1.2.2 Crossbills

The methods presented in this thesis are demonstrated on data from the Eu-

ropean crossbill (Loxia curvirostra) collected in 267 1 km2 sample quadrats in

Switzerland, 1999 (Schmidt, 2004). We analyse the data from the example

presented in Fiske and Chandler (2011) that involves the site covariates eleva-

tion and forest. The models are fitted to detections from the first year of the

study, in 1999, which comprise three survey occasions (or visits to each site).
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1.2.3 Fish

We use publicly available data on two fish populations, although these data

have not been published. James Peterson presents data on Coosa bass collected

via electrofishing from four 50-80 m sections in streams at 54 sites in the Upper

Coosa River basin, USA1. Covariates were the stream link magnitude and the

coefficient of variation of streamflow during the spring and summer proceeding

the sampling. For our purposes we considered presence of under one year old

fish as presence of the species to reduce the data to a single state.

Another data set concerns detections of Brook trout collected via electrofishing

in three 50 m sections of streams at 57 sites in the Upper Chattachochee River

basin, USA. Information was recorded for covariates on elevation and stream

mean cross-sectional area at each sample section. These smaller data sets are

convenient for the evaluation of the methods developed here.

[Note: These data were collected in preparation of a senior thesis at the Uni-

versity of Georgia (Athens, USA) they have not been published but are publicly

available and we have obtained these with written consent from Jim Peterson2.]

1.3 Methods

The estimation of dispersion of a species is based on aggregated population

measures. One such measure involves estimating the probability that a species

occupies a discrete sampling unit, such as a patch of habitat. Simply put, we

want to estimate occupancy of a species. However, estimation of occupancy is

complicated by unreliable detection. The problem then becomes one of jointly

estimating the probability of occupation (or occupancy), ψ, also referred to as

the probability of presence, and the probability of detection or detectability,

p. In this context, the detection probability can be treated as a nuisance

parameter: it is not itself of primary interest, but it must be estimated in

order to estimate the probability of occupancy.

Related studies have developed methods which may be readily adapted for si-

multaneously estimating the probabilities of detectability and occupancy (see,

e.g., Geissler and Fuller, 1987; Azuma et al., 1990; Pereira and Itami, 1991;

Hall, 2000; Hanski, 1994; Bayley and Peterson, 2001; MacKenzie et al., 2002;

1http://people.oregonstate.edu/~peterjam/occupancy_workshop/hands_on.html
2http://people.oregonstate.edu/~peterjam/

http://people.oregonstate.edu/~peterjam/occupancy_workshop/hands_on.html
http://people.oregonstate.edu/~peterjam/
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Nichols and Karanth, 2002; Tyre et al., 2003). A class of these methods has

come to be known commonly as occupancy models (Hall, 2000; MacKenzie

et al., 2002; Tyre et al., 2003). These models may be described by a likelihood

function. The likelihood is constructed from the number of detections and

nondetections made at the sites of the study. The model differs from that used

by conventional capture-recapture methods in that the capture of an individ-

ual is defined as the sighting (or detection) of the species at a site (for example

Cormack, 1964; Jolly, 1965; Seber, 1965; Pollock, 2002; Huggins, 1989; Hug-

gins and Hwang, 2007). Specifically, the site constitutes the individual, and

the capture corresponds with the sighting of the species at that site. The anal-

ogy with capture-recapture models is not perfect because the individuals that

are never captured do not contribute to the likelihood, whereas information is

included for sites at which the species was never detected.

As mentioned earlier, the data that are collected may present a high num-

ber of zeros. The zero-inflated-binomial (ZIB) distribution which underpins

occupancy likelihood models is suitable for binary data with increased zeros.

The zero-inflated Poisson (ZIP) likelihood (Lambert, 1992; Welsh et al., 1996;

Ridout et al., 1998) is the basis of the ZIB likelihood; it is a direct adaptation

of the ZIP likelihood framework for two parameters. Some examples for the

ZIB likelihood constructed in a way appropriate for occupancy models were

first seen in Hanski (1994); Hall (2000); MacKenzie et al. (2002); and Tyre

et al. (2003), etc. The basis for the ZIB formulation found in the MacKenzie

et al. (2002) likelihood, is that there are two classes of sites, namely those

that are occupied and those that are not. Royle and Nichols (2003) adopt this

same basis to formulate a mixture of binomial random variables with different

values of p, and mixing proportion ψ, similar to Lambert (1992) and Welsh

et al. (1996). They show that for a closed population with constant detection

and survey occasions, this formulation is equivalent to the MacKenzie et al.

(2002) construction as a mixture of a binomial random variable conditional

on occupancy, and a point mass at 0. This construction is related to the way

that Huggins (1989) partitioned the full likelihood of a capture-recapture ex-

periment into two parts: the first describes nondetections, for occupied and

unoccupied sites; and the second describes detections made at sites that di-

rectly form a binomial function.

Since the basic occupancy model, in which the ‘world’ was viewed as static,

and estimation was focussed on occupancy and detectability, the model has

been extended to allow for the estimation of parameters such as colonisation
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and local extinction, as well as to allow for changes in the relationship between

the species population and its environment via covariates (MacKenzie et al.,

2003; Royle, 2006; Nichols et al., 2007; MacKenzie et al., 2009, 2011; Guillera-

Arroita et al., 2011; Welsh et al., 2013). In particular, Welsh et al. (1996) and

Welsh et al. (2013) develop models for the inclusion of covariates and derive

approximate standard errors, and the latter study identifies major limitations

with the full likelihood function which is based on the ZIB formulation. See

also Guillera-Arroita et al. (2014) who refute some of these limitations.

Here, we focus on models that estimate occupancy ψ and detection p. For

example, we consider models in which the parameters are constrained so that

0 6 ψ 6 1 and 0 6 p 6 1.

Bayesian methods maybe be developed directly, or easily adapted, for estimat-

ing occupancy and detectability, and their standard errors, is commonplace, for

example Milne et al. (1989); Lunn et al. (2000); Wintle et al. (2003); MacKen-

zie et al. (2006); Gimenez et al. (2007); Royle and Dorazio (2008); Gimenez

et al. (2009); MacKenzie et al. (2009); Fiske and Chandler (2011); Martin et al.

(2011); Aing et al. (2011); Hui et al. (2011). This approach helps to overcome

known restrictions with the full likelihood approach, for example to constrain

probabilities to between 0 and 1, particularly when covariates are included in

models. However there are other limitations with these approaches. For exam-

ple, empirical Bayes methods can underestimate the variance of the posterior

distribution (Royle and Dorazio, 2008; Fiske and Chandler, 2011).

A full likelihood approach, simultaneously estimating detectability and occu-

pancy, is of course possible, as is also when including covariates (e.g. MacKenzie

et al., 2002; Fiske and Chandler, 2011; Welsh et al., 2013). However, even in

the simple homogenous case we reveal problems with the standard likelihood

and propose solutions. Others have identified restrictions with the full likeli-

hood, and have evaluated its bias and measures of uncertainty (Tyre et al.,

2003; Wintle et al., 2004; Guillera-Arroita et al., 2010; Welsh et al., 2013).

Sample-based uncertainty about the parameter estimates must be considered

in order to provide a complete picture of a study. The full likelihood function

does not have a readily available closed form solution for the estimates of

detectability or occupancy. Further, the asymptotic variance for occupancy

given in MacKenzie et al. (2006) may not always yield estimates. It is noted

in MacKenzie et al. (2002) that the likelihood-based, large-sample standard

errors may not be appropriate for estimating the uncertainty, especially when
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sample sizes are small (MacKenzie et al., 2002). The observed information

(or hessian) matrix is not always invertible. Consequently, MacKenzie et al.

(2002) used an ordinary nonparametric bootstrap estimator, also called the

nonparametric basic bootstrap, though it may not be appropriate for rare

(small population size) and clustered species distributions (Efron, 1982). We

verify this and explore other interval estimators in Chapter 3, the work of

which has been published in Karavarsamis et al. (2013).

In Chapter 2 we examine the equations for the maximum likelihood estimators

(MLEs) and identify when the score equations of the basic occupancy likelihood

do not yield solutions for the ML estimates. For example the score equations

will give estimates for occupancy and detection that are greater than 1. We

find that the score equations do not apply on the boundary (or edges) of the

sample space and we define the relationships between the sufficient statistics,

the number of sites and survey occasions that yield the boundaries. We then

relate the edges to the parameter space and determine when the score equations

do not apply.

Furthermore, we define the region of the sample space and parameter space

for which estimation is not possible, and identify a region within which the

MLEs always exist and where estimates are less biased. We give a rough

approximation to the convex hull for all possible solutions for the MLE.

To evaluate the bias associated with occupancy we derive the probability mass

function of the sufficient statistics, which leads to an expression for the exact

expectation of occupancy and for the exact variance. We evaluate the asymp-

totic variance against the exact variance, and evaluate the bias of the basic

occupancy estimator and explore ways of correcting for it. Overall, the score

equations and asymptotic variance for occupancy will perform well for large

N and large T .

Often investigators will wish to include auxiliary (or covariate) information into

the estimation process to better understand relationships between the species

and its environment. This may include site characteristics (e.g. geographic),

or species characteristics. Species characteristics may relate the probability

of occupancy to the species via covariates on habitat type, patch size, gender,

age etc; or relate the probability of detecting the species to weather conditions,

site accessibility, detection methods etc.

When incorporating auxiliary information for the estimation of occupancy and

detection into the full likelihood function the problems discussed above are even
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more serious. Welsh et al. (2013) investigate this scenario, they found many

problems when including covariates into the full likelihood model. Specifically,

they remark on problems when estimating in some regions of the parameter

space, as we investigate in Chapter 2 for the non-covariate case. In addition,

limitations imposed by the full likelihood do not guarantee that the solutions

to the score equations are between 0 and 1.

In summary, the full likelihood gives estimates which are highly variable, and

it is difficult to include covariate information. Welsh et al. (2013) show that

issues with the basic occupancy model extend to the covariate model, although

some of these limitations may be due to the use of the VGAM package. Fur-

ther, the full likelihood is not a generalised linear model (GLM) so the GLM

machinery is not easily applicable; specialist programs are needed. Many of

the limitations mentioned may be overcome by including covariate informa-

tion, in that covariates assist in stabilising estimates. As well, the nature of

presence-absence data that is characterised by repeated visits to a site is a

source of heterogeneity which may also be overcome with covariates.

We exploit repeated visits to a site in order to consider occupancy separately

to detection. In particular, detections and nondetections are recorded at each

site so that there is more information on the detection probabilities. We apply

partial likelihoods that are often used to simplify complex likelihoods and to

deal with nuisance parameters, here the detection probabilities. This way we

have full accessibility to the GLM framework, as well as its extensions.

We show, in Chapter 4, a number of approaches for incorporating covariate

information into the likelihood under site inhomogeneity, i.e., when presence

and detection are not the same among sites, but do remain constant across

the duration of the survey, i.e., constant within sites. We show that it is

possible to estimate ψ and p in two separate stages, rather than maximising

the full likelihood, and how this is done by using standard statistical methods

and software. The proposed two-stage method resolves the problems identified

with the full likelihood, both in the site homogenous case and the site inho-

mogeneous case. We explore presence-absence type data and how we may use

standard statistical techniques (e.g. GLM, generalised additive models (GAM)

and vector generalised linear and additive models (VGLMs/VGAMs)) to anal-

yse these (Hastie and Tibshirani, 1986; McCullagh and Nelder, 1989; Yee and

Wild, 1996). We derive standard errors for the estimates of the coefficients

for models with, and without, covariates. The use of standard GLM tech-

niques (in the two-stage procedure) give computational advantages over the
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full likelihood approach, and, GAMs may easily incorporate semi parametric

modelling of occupancy and detection probabilities. We show that the gain in

computational efficiency outweighs some small loss of efficiency in estimating

the detection probabilities.

1.4 Statement of the Problem

The main problems involved with occupancy models we address, then resolve,

in this thesis, are:

1. evaluate boundary estimates then give correct expressions and a plausible

region for estimation

2. examine nonconvergence of the full likelihood and propose an alternative

two-stage approach for partial likelihoods

3. assess the asymptotic variance and bias of occupancy

4. resolve computational limitations within modern software.
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Chapter 2

The bias of the occupancy

estimator ψ̂

2.1 Overview

Site occupancy ψ is used for monitoring species populations, as mentioned pre-

viously. Further, to accurately estimate occupancy the uncertainty associated

with nondetections must also be considered. Inherently, occupancy is biased

by the uncertainty of imperfect detection.

In this chapter we explore, in detail, the basic occupancy model as proposed by

MacKenzie et al. (2002) with emphasis on, and motivated by, evaluating the

bias of the occupancy estimator. This model is specified by two parameters:

ψ and p. Our primary concern is the occupancy (probability of occupation

or presence), ψ, which denotes the probability that the species occupies a

particular site. The other parameter, p, is effectively a nuisance parameter:

the detectability p denotes the probability that the species is observed, given

that it is present at a site.

Overall, it is difficult to estimate near the boundaries of the parameter space of

occupancy and detectability. Guillera-Arroita et al. (2010) give the sufficient

statistics and we verify this here with a complete derivation. Guillera-Arroita

et al. (2010) give the conditions for which the score equations do not apply

and give solutions that yield the MLEs. We identify an additional condition

(‘boundary’ case) and give the complete set of boundary solutions, referred

to as the ‘edge’ solutions. The special case when the sufficient statistics are

zero is addressed throughout the chapter. We derive the joint distribution

11
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of the sufficient statistics that is necessary to derive the exact expectation,

the exact variance and bias for occupancy. These allow for the evaluation of

the asymptotic variance estimator given in MacKenzie et al. (2006, p. 96) for

which there is no closed form and which is known to under-perform. We give

the derivations for the asymptotic variance estimator for occupancy.

Let K = the number of sites at which the species was observed (at least

once) and X = the total number of (site-occasion) times that the species was

observed. We show that (X,K) is sufficient for (ψ, p), and derive the joint

probability mass function (pmf) for (X,K). This is used to obtain an ex-

pression for the expectation of the occupancy estimator, E(ψ̂ ). We evaluate

the expectation of ψ̂ and hence its bias. We consider also a conditional ex-

pectation, conditional on (X,K) 6= (0, 0), and compare the conditional and

unconditional expectations.

For small values of the detection probability p, we show that estimation of ψ

is unfeasible, in that the ML estimates do not exist everywhere in the param-

eter space. We produce a rule specifying a region where estimation of (ψ, p)

is ‘plausible’, and within this region we give a correction for the occupancy

estimator to reduce its bias.

The pmf of (X,K) is used to compute the exact variance and mean squared

error (MSE) of ψ̂. The asymptotic variance estimate of the occupancy estima-

tor is evaluated and found to seriously underestimate the variance, unless N ,

T , and p are large. This will lead to confidence intervals for ψ̂ that are too nar-

row. Furthermore, the MSE will be underestimated. Instead, we recommend

that the exact standard deviation is used i.e. the exact variance.

To evaluate these results in a practical setting we use several test cases and

two real data sets. These cover a range of real study sizes and test scenarios.

2.2 Definition and derivation of likelihood func-

tion

Consider a set of N sites that are each surveyed over T occasions. Let xij

denote a detection indicator at site i on occasion j, i.e. if xij = 1 then the

species is detected at site i on occasion j; and xij = 0 otherwise. Thus, the

row vector xi = (xi1 xi2 . . . xiT ) describes the site history, i.e. the detection

history vector for site i, (i = 1, 2, . . . , N).
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The data set X = [xij] is the N ×T detection (or history) matrix of responses

for N sites surveyed on T occasions. The matrix X describes the detections

and nondetections of the study:

X =


x11 x12 . . . x1T

x21 x22 . . . x2T

...
...

...
...

xN1 xN2 . . . xNT


The basic occupancy-detection model depends on the parameters ψ and p. The

distribution of the random matrix X can be defined in terms of independent

Bernoulli random variables. We let B(θ) denote a Bernoulli random variable,

i.e. 1 with probability θ, and 0 with probability 1− θ.

Then Xij can be regarded as being obtained from the following unobserved

independent random variables:

• Pi = presence (occupation) at site i; P1, P2, . . . , PN are assumed to be

independent B(ψ). If Pi = 1 then the species is present at (i.e. occupies)

site i for all occasions in the study.

• Dij = detection at site i on occasion j, where the Dij are independent

B(p): if Dij = 1, then species presence would be detected at site i on

occasion j. It follows that Di � =
∑T

j=1Dij
d
= Bi(T, p), where Bi denotes

the binomial distribution consisting of T trials with probability p of a

detection on any trial.

Then Xij = PiDij, and

Pr(Xi = 0) = Pr(Pi = 0) + Pr(Pi = 1, Di � = 0) = 1− ψ + ψ(1− p)T ;

Pr(Xi = xi) = Pr(Pi = 1, Dij = xij) = ψpxi �(1− p)T−xi � , for xi 6= 0.

Let xi � =
∑T

j=1 xij be the row sums of the history matrix, i.e. the number of

occasions for which the species was detected at site i; and let x� j =
∑N

i=1 xij

denote the number of sites for which the species was detected at occasion j.

We define an indicator ui = I(xi � > 1) to determine whether the species was

detected at site i on at least one occasion. Then the likelihood for site i, based

on observing xi, is given by

Li(ψ, p |xi) =
(
ψpxi �(1− p)T−xi �

)ui (1− ψ + ψ(1− p)T
)1−ui (2.1)
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Then, assuming independence between sites, the joint likelihood is

L(ψ, p |X)

=
N∏
i=1

(
ψpxi �(1− p)T−xi �

)ui (1− ψ + ψ(1− p)T
)1−ui

=
(
ψ(1− p)T + (1− ψ)

)N−k
ψkpx(1− p)kT−x (2.2)

where k =
∑N

i=1 ui = number of sites at which some detection is made during

the study; and x = x � � =
∑N

i=1 xi � = total number of site-occasions for which

a detection is made (MacKenzie et al., 2002).

Writing the likelihood in this way is akin to Huggins (1989) who suggested

partitioning the likelihood into detections (equivalent to the captures) and

nondetections.

It follows from the factorisation theorem that (X,K) is sufficient for (ψ, p) for

a study of N sites and T survey occasions. In other words, the conditional

distribution of the data, given the statistic (X,K), does not depend on the pa-

rameters (ψ, p), so (X,K) are sufficient statistics for (ψ, p). All the information

concerning (ψ, p) that is contained in the data is captured by (X,K) (Casella

and Berger, 2002, p.272 & p.274), and hence (ψ̂, p̂) = (ψ̂(x, k), p̂(x, k)). This

observation is important in what comes later as it enables us to specify the

exact distribution of the MLE, and hence to evaluate the expectation and the

variance of ψ̂. Knowing the exact distribution for X and K, enables us to

explore the bias and propose a correction for it; and to assess the asymptotic

approximations for the variance.

Taking logs we obtain

logL = k log(ψ) + x log(p) + (kT − x) log(1− p)
+ (N − k) log

{
ψ(1− p)T + (1− ψ)

}
.

(2.3)

Define θ = g(p) = 1 − (1 − p)T , the probability of detecting the species in at

least one of the T survey occasions at an occupied site. Then

logL = k log(ψ)+x log(p)+(kT −x) log(1−p)+(N−k) log(1−ψθ). (2.4)
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2.3 Maximum likelihood estimators

2.3.1 The score equations and edge solutions

The score equations have been previously given in MacKenzie et al. (2002).

Maximising the log-likelihood function gives the maximum likelihood estimates

(MLEs) ψ̂ and p̂. The score equations for the log-likelihood are

∂ logL

∂ ψ
=
k

ψ
− (N − k)θ

1− ψθ
, (2.5)

∂ logL

∂ p
=
x

p
− (k T − x)

(1− p)
− (N − k)ψ T (1− p)T−1

(1− ψ θ)
, (2.6)

recalling that θ′ = g′(p) = T (1− p)T−1.

Equating (2.5) to zero and solving for ψ we obtain

ψ̂ =
k

N θ̂
. (2.7)

Since (1 − p)T−1 =
1− θ
1− p

, the second score Equation (2.6) can be re-written

as follows:

∂ logL

∂ p
=
(x
p
− kT − x

1− p

)
−
((N − k)θ

1− ψθ

) ψT (1− θ)
θ(1− p)

=
x− kTp
p(1− p)

− k

ψ

ψT (1− θ)
θ(1− p)

, using (2.5);

=
xθ − kTp
θp(1− p)

. (2.8)

So, equating (2.8) to zero leads to

xθ̂ = kT p̂,

and hence

p̂

θ̂
=

x

kT
. (2.9)
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Thus the score equations give the two equations:

ψ̂ =
k

Nθ̂
and

p̂

θ̂
=

x

kT
, (2.10)

where θ̂ = g(p̂ ) = 1 − (1 − p̂ )T . Thus the second equation of (2.10) yields

a (numerical) solution for p̂, and hence for θ̂. Then, putting θ̂ in the first

equation gives a solution for ψ̂.

Note that the values of (x, k) occupy a finite grid, so if (x, k) are specified, then

we can evaluate ψ̂ (x, k), since N and T are given: we solve
1− (1− θ̂ )1/T

θ̂
=

x

kT
to give θ̂ (x, k); and then ψ̂(x, k) =

k

Nθ̂ (x, k)
.

However, the solution to the score equations is not always the MLE. We let

(ψ̂s, p̂s) denote the solution of the score equations. This gives the MLE if the

maximum occurs at a turning point in the interior of the parameter space,

the unit square: [0, 1]2. If the maximum of the likelihood function occurs

on the edge of the parameter space, then the maximum may not occur at a

turning point and one (or both) of the score equations may not be satisfied,

and (ψ̂, p̂ ) 6= (ψ̂s, p̂s).

This will tend to happen when (x, k) is on the edge of the sample space (k = N

or x = k or x = kT ). This results in three sets of ‘edge’ solutions: edge solution

(1) for k = N , edge solution (2) for x = k, and edge solution (3) for x = kT ;

see Figure 2.1. Let Ω denote the sample space, i.e. the set of all possible values

of (x, k):

Ω = {(x, k) : x = k, k+1, . . . , kT : k = 0, 1, 2, . . . , N}.

Let Ω′ = Ω\(0, 0), i.e. the sample space, excluding (x=0, k=0):

Ω′ = {(x, k) : x = k, k+1, . . . , kT : k = 1, 2, . . . , N}.

On the boundaries OA (x=k) or AB (k=N) the maximum is obtained by

assuming that occupancy is perfect (or complete, ψ = 1), and all sites are

occupied (ψ̂ = 1) and our failure to observe at all site-occasions is explained

by imperfect (or incomplete) detectability (p < 1): p̂ is the proportion of all

NT site-occasions that animals are detected, i.e.

if x = k or if k = N , then (ψ̂, p̂ ) = (1,
x

NT
).

On the boundary OB (x=kT ), the maximum is obtained by assuming that

detection is perfect (ψ = 1), and that the failure to observe at all site-occasions

is due to imperfect (ψ < 1) occupancy: ψ̂ is the number of sites that are
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 O

x = kT

B

k = N

A

x = k

Figure 2.1: Diagram of the sample space, Ω, and its edges.

(perfectly) detected, i.e. ψ̂ = k
N

. Thus,

if x = kT , then (ψ̂, p̂ ) = (
k

N
, 1).

We derive these ‘edge’ results next.

2.3.2 Edge solutions

Let Π denote the parameter space, i.e. the set of possible values of (ψ, p):

Π = {(ψ, p) : 0 6 p 6 1; 0 6 ψ 6 1}.

Let Πs denote the “extended” parameter space, encompassing the set of pos-

sible values of (ψ̂s, p̂s):

Πs = {(ψ, p) : 0 6 p 6 1, 0 6 ψ 6 1/θ}, where θ = 1− (1− p)T ,

see Figure 2.2. The function L, as specified by (2.2), is non-negative for

(ψ, p) ∈ Πs. We seek to maximise L on Π.
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Figure 2.2: The sets: Π, the parameter space of possible (ψ, p), and Πs, the

“extended” parameter space of possible score estimates (ψ̂s, p̂s): the region of
the graph to the left of the curve and inside the square.

The score equations (see Equations (2.10)),

ψ̂ =
k

Nθ̂
and

p̂

θ̂
=

x

kT
,

give a unique maximum on Πs, denoted by (ψ̂s, p̂s), allowing (ψ̂s, p̂s) = (∞, 0)

in the case that x = k.

Let u(p) =
p

θ
=

p

g(p)
, then u is an increasing function of p, such that u(0) =

lim
p→0

u(p) =
1

T
and u(1) = 1. Therefore

p̂

θ̂
=

x

kT
always has a solution p̂s ∈

[0, 1], since k 6 x 6 kT ; θ̂s = 1 − (1 − p̂ )T . The value of ψ̂s is then given by

ψ̂s =
k

Nθ̂s
.

The MLEs for the edges (or boundaries) of the sample space Ω comprised of

the (X,K) pairs (see Figure 2.1) are found next. The edge (OA+) considers

the (x, k) points between the vertices excluding the special case (0, 0), which

is addressed separately in (O) below. The remainder of the edges below are

defined according to the vertices in Figure 2.1.

(OA+) For x = k, and possibly some other values of x (k+1, k+2, . . .), close
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to the boundary of the sample space, the value of ψ̂s is greater than 1

(see Figure 2.2). In that case, as L has no other local maxima in Π∗, it

follows that ψ̂ = 1. To find p̂, we therefore seek the point for which L is

a maximum along the ψ̂ = 1 boundary.

Now, logL(1, p) = x log(p) + (NT −x) log(1−p), which has a maximum

at p =
x

NT
. Therefore (ψ̂, p̂ ) = (1,

x

NT
).

(AB) If k = N , then
∂ logL

∂ψ
=

k

ψ
> 0; and therefore ψ̂ = 1, from which it

follows that p̂ =
x

NT
, i.e. (ψ̂, p̂ ) = (1,

x

NT
) as above.

(OB) In the case that x = kT , the score equations give
p̂

θ̂
= 1, so that p̂s =

θ̂s = 1 and ψ̂ =
k

Nθ̂s
=

k

N
. Hence, (ψ̂, p̂ ) = (

k

N
, 1).

(O) The odd case (x, k) = (0, 0). In this case,

L = [ψ(1−p)T + (1−ψ)]N = (1− ψθ)N .

This is maximised for any (ψ̂, p̂ ) such that ψ̂ × p̂ = 0, i.e. when either

ψ̂ = 0 or p̂ = 0, or both. Thus there is no unique MLE in this case,

without further restriction or assumption.

We arbitrarily choose to define (ψ̂, p̂ ) = (0, 0) in this case.

This case is odd in many ways. It means that N sites have been observed

on T occasions . . . all for no result, i.e. no species sightings are made

on any of the NT site-occasions. This outcome conveys no information

about occupation, as it is not known whether the failure to sight the

species is due to its absence, or due to a failure of detection. This is

reflected in the non-uniqueness of the MLE in this case.

Several approaches could be used:

1. If we assume that p > 0, i.e. that the detection probability is non-

zero, then ψ̂ = 0. This seems like a plausible assumption for any

sensible observational procedure. For example, conducting a trial

run in which a sighting is made would be enough to ensure p > 0.

In this case p̂ remains undefined. [We, somewhat absurdly, may

choose to retain the definition p̂ = 0, for convenience.]

2. The (x, k) = (0, 0) case can be avoided entirely by considering the

behaviour of ψ̂ conditional on (x, k) 6= (0, 0), i.e. ψ̂ > 0.
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Any sensible experiment would endeavour to avoid the (0, 0) outcome. It

is unlikely that such a result would be reported. If N , T are moderately

large, and ψ, p are not too small, then the probability of (0, 0) is very

small.

In any event, the (0, 0) outcome is to be avoided — and we reflect this

in our analysis. Any study for which (0, 0) (i.e. no detections are ever

observed during the study) is a likely outcome would be regarded as

a poor study, and so some indication of the ‘quality’ of the study is

indicated by the magnitude of π = Pr(X = 0, K = 0): better ‘quality’

corresponding to smaller π.

We report two sets of results (1) allowing the possibility of the (0, 0)

outcome, and (2) conditioning on (x, k) 6= (0, 0). We would want π to

be small, and the difference between the conditional and unconditional

results to be small.

Some examples of (ψ̂, p̂ ):

N = 2, T = 2

4 (1, 1)

3 (1, 3
4)

2 (1
2 , 1) (1, 1

2)

1 (1, 1
4)

x = 0 (0,0)

k = 0 1 2

N = 3, T = 2

6 (1, 1)

5 (1, 5
6)

4 (2
3 , 1) (1, 2

3)

3 (3
4 ,

2
3) (1, 1

2)

2 (1
3 , 1) (1, 1

3)

1 (1, 1
6)

x = 0 (0,0)

k = 0 1 2 3
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N = 5, T = 3

15 (1, 1)

14 (1, 14
15)

13 (1, 13
15)

12 (0.8, 1) (1, 12
15)

11 (0.801, 0.916) (1, 11
15)

10 (0.804, 0.829) (1, 10
15)

9 (0.6, 1) (0.815, 0.736) (1, 9
15)

8 (0.601, 0.888) (0.841, 0.634) (1, 8
15)

7 (0.608, 0.768) (0.901, 0.518) (1, 7
15)

6 (0.4, 1) (0.631, 0.634) (1.000, 0.400)∗ (1, 6
15)

5 (0.402, 0.829) (0.701, 0.475) (1.000, 0.333)∗ (1, 5
15)

4 (0.421, 0.634) (0.969, 0.275) (1, 4
5)

3 (0.2, 1) (0.524, 0.382) (1, 3
15)

2 (0.21, 0.63) (1, 2
15)

1 (1, 1
15)

x = 0 (0,0)

k = 0 1 2 3 4 5

∗ The asterisked entries produced ψ̂s > 1 and so were truncated to ψ̂ = 1.

In turn, the p̂ were adjusted according to the edge solutions described above.

This example demonstrates well how the edge solutions are applied to find

estimates for both ψ and p and what happens when score equation solutions

are greater than 1. We outline the details of the algorithm in Appendix 2.8.

2.3.3 Plausible region

In proceeding with our analysis, we must restrict ourselves to the region of

the parameter space in which the non-zero ML estimates exist i.e. a region of

the parameter space Π = {(ψ, p) : 0 6 ψ 6 1, 0 6 p 6 1} in which unbiased

estimation is plausible. We avoid the region of the parameter space in which

there are no ML estimates.

We specify that the set of non-zero ML estimates for ψ and p exist in

Q̂ = {(ψ̂, p̂ )(x, k), (x, k) ∈ Ω′}, Ω′ = Ω\(0, 0)

excluding (x, k) = (0, 0). Note: we have defined (ψ̂, p̂ )(0, 0) = (0, 0).
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Let Q̂s denote the set of score equation solutions, excluding (x=0, k=0):

Q̂s = {(ψ̂s, p̂s)(x, k), (x, k) ∈ Ω′}.

Then Q̂ ⊂ Π and Q̂s ⊂ Πs.

The set Q̂ (i.e. the values of ψ and p in Q̂) is bounded below by ψθ = 1/N ,

where θ = 1 − (1 − p)T , the (k = 1)-line in Figure 2.3. This is found from

the score equation ψ̂s = k/Nθ̂s corresponding to k = 1. This lower bounding

curve is populated by only T − 2 (i.e. kT − 2, with k = 1) ‘internal’ points

(i.e. points not on the boundary of Q̂), so if T is small this lower bound curve

may be well under most of the actual estimate points (Figure 2.3). The ‘next’

curve is ψθ = 2/N populated by (at most) 2T − 2 internal points, which may

also only be relatively few points for small T .

The actual lower limit for parameter values which may be unbiasedly esti-

mated, excluding (0, 0) in some way, is the convex hull of the set of possible

estimates. This is indicated by the solid line in Figure 2.3 which connects the

(ψ̂, p̂ ) for the observations at (x, k) for k = 1 and x = k, k+1, . . . , kT = 1, 2, 3.

We apply the score equations i.e. ψ̂s = k/Nθ̂s and p̂s = xθ̂s/kT , to find the

internal points corresponding to the (x, k) pairs. The θ̂s was found previously

via numerical approximation (see Section 2.3.1).
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●
●

Q(N = 5, T = 3)

k = 5 (x = 5, . . . , 15)

k = 4 (x = 4, . . . , 12)

k = 3 (x = 3, . . . , 9)

k = 2 (x = 2, . . . , 6)

k = 1 (x = 1, 2, 3)

ψLB
QE

(k = 1, x = 3)(k = 1, x = 2)
1/5

ψ

1/5 p

Figure 2.3: Convex hull QE for N = 5, T = 3. The solid lines mark the Lk-lines
for k = 1, . . . , N and the bullets along the Lk mark the MLE corresponding to
(x, k) where for each k : x = k, k + 1, . . . , kT .
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The convex hull is defined by all points in QE(N, T ) = Conv(Q̂(N, T )) =

Conv{(ψ̂, p̂ )(x, k), (x, k) ∈ Ω′}. We would like to find an approximation for

the bottom edge of the convex hull of the set of MLEs QE(N, T ) , so that for

points above this, unbiased estimation is plausible.

The top–right region of the parameter space (large p, large ψ) is mostly pop-

ulated by the estimated points with the bottom–left region (small p, small ψ)

being the least populated. This is illustrated, for example, in Figures 2.3, 2.4

and 2.5, where for larger N and T the plausible region becomes more densely

populated with points. For example, in Figure 2.3 when N = 5, T = 3 and

p = 0.4 there would need to be at least k = 2 detected sites with x = 3 total

detections and a level of occupancy of at least ψ = 0.45 to achieve an estimate

in the convex hull (a ψ̂ in QE) i.e. an estimate for occupancy that may be

unbiased. Other studies have identified similar conditions necessary for esti-

mates to exist, see, for example Wintle et al. (2004) and Guillera-Arroita et al.

(2010).
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Figure 2.4: Convex hull QE for N = 27, T = 4. The solid lines mark the
Lk-lines for k = 1, . . . , N and the bullets along the Lk mark the MLE corre-
sponding to (x, k) where for each k : x = k, k + 1, . . . , kT .

In general, the set of MLEs, Q̂(N, T ) consists of points on the lines Lk : ψθ =

k/N for k = 1, 2, . . . , T . These lines increase with k : L1 < L2 < . . . <

LT . So we know that QE has a lower bound given by the line ψ = 1/(Nθ),

corresponding to k = 1. But, as L1, the (k = 1)-line, has few points on it (at



24 CHAPTER 2. THE BIAS OF THE OCCUPANCY ESTIMATOR ψ̂

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

x = 1 10 19 28 37 46 50

● ●

●

●

●

●

●

●●● ●

●

●

●

●

●

●● ●

●

●

●

●

●

●● ●

●

●

●

●

●

●● ●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●●●●

●

●
● ● ●

Q(N = 10, T = 5)

k = 10 (x = 10, . . . , 50)

k = 9 (x = 9, . . . , 45)

k = 8 (x = 8, . . . , 40)

k = 7 (x = 7, . . . , 35)

k = 6 (x = 6, . . . , 30)

k = 5 (x = 5, . . . , 25)

k = 4 (x = 4, . . . , 20)

k = 3 (x = 3, . . . , 15)

k = 2 (x = 2, . . . , 10)

k = 1 (x = 1, 2, 3, 4, 5)

ψLB

QE

1/10

ψ

1/10 p

Figure 2.5: Convex hull QE for N = 10, T = 5. The solid lines mark the
Lk-lines for k = 1, . . . , N and the bullets along the Lk mark the MLE corre-
sponding to (x, k) where for each k : x = k, k + 1, . . . , kT .

most T − 2), and the L2 not many more, we would like a curve that is closer

to QE, and includes most of the points.

So, the approximation for the bottom edge of the convex hull of the set of

ML estimates QE(N, T ) consists of the region that is not densely populated so

that for points above this, unbiased estimation is plausible. If this equation is

expressed in the form ψ = f(p), then given p, we can estimate ψ for ψ > f(p),

i.e. f(p) represents a lower bound for unbiased estimation of ψ.

We find a lower bound for ψ, ψLB. Set ε to be a small number greater than

zero (i.e. ε > 0), for example ε = 0.01.

Suppose that p(0, 0) 6 ε, and solve for ψ:

(1− ψθ)1/N 6 ε ⇒ ψ >
1− ε1/N

θ
, where θ = 1− (1− p)T .

Now, we have

ψ >
1− ε1/N

1− (1− p)T
≈ cε

p
, for small p,

where cε = (1 − ε1/N)/T . We adjust this so that it goes through (1,
1

N
), and

define the approximate lower bound



2.3. MAXIMUM LIKELIHOOD ESTIMATORS 25

ψLB =
cε
p

+ (
1

N
− cε), (2.11)

which gives a reasonable approximation for small p, and tends to 1 as p→ 1.

This approximate lower bound is intended to provide a reasonable practical

lower bound for ‘plausible’ estimation of ψ for a given value of p. It is found

that when N and T are small ε = 0.01 provides a useful practical approxima-

tion. For example see Figure (2.5) for N = 10, T = 5 and Figure (2.3) when

N = 5, T = 3.

If we consider p to be a nuisance parameter, and our primary interest is the

estimation of ψ, then it will suffice to use the approximate lower bound for ψ,

ψLB(p) given by equation (2.11).

For example, in Figure 2.3 we would say that for a value for p = 0.4, the ML

estimates for occupancy exist within the convex hull marked by QE and that

it is plausible to estimate ψ provided ψ & 0.45. [The region below ψLB is

too sparsely populated by observations and must lead to biased estimates.] As

another example, in Figure 2.5 for a study of sizeN = 10 sites and T = 5 survey

occasions there are seven (x, k) pairs (marked with bullets in the figure) which

lie below the boundary ψLB. There are three pairs at ψ̂ = 1, if we specify

ψ∗LB = min (1, ψLB), then only four pairs are below ψ∗LB. So ψLB gives a

reasonable practical lower bound for estimation of ψ. In the following sections

we demonstrate with examples the practical use of the ψ lower bound when

evaluating the expectation, bias and variance of occupancy.
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2.4 Asymptotic variance of ψ̂

Following MacKenzie et al. (2006, p. 96), in this section we derive expres-

sions for the asymptotic variance of ψ̂ and p̂ of Equations (2.10), respectively.

The result of this asymptotic estimate is given in the literature, however the

derivations are not published, thus we show our derivations here in order to un-

derstand the limitations with the estimator. We use the variances to evaluate

the precision of the estimators.

To obtain the expressions for the asymptotic variances we need the expected

information matrix. This matrix is obtained from the partial second derivatives

of the log-likelihood function.

We calculate each entry of the expected Fisher information matrix, I(ψ, p),

which corresponds to the basic occupancy likelihood function, shown below in

Equation (2.13),

I =

 Iψψ Iψp

Ipψ Ipp

 (2.12)

Each element is the expected value of the observed information, i.e. the neg-

ative of the partial second derivative of the log-likelihood. For example,

Ipp (ψ, p) = −E
(
∂2 logL(ψ, p |X,K)

∂ p2

)
.

Recall the log-likelihood equation from above (Equation (2.4))

logL = k log(ψ)+x log(p)+(kT −x) log(1−p)+(N−k) log(1−ψθ) (2.13)

where θ = θ(p) = 1− (1−p)T , x = the total number of site-occasions on which

the species was observed, and k = the number of sites on which the species

was observed (at least once) — see Section 2.3.1 for details.

We give an alternative derivation of the likelihood function, specifying the

distributions of X and K: the expectations of X and K are used to derive

expressions for the expected information.

The basic occupancy model assumes that the detection, p, remains constant

over all N sites and T survey occasions. Under this assumption, we may

construct the likelihood by modelling the number of detections at each site

Xi � as a ZIB(T, p;ψ) random variable (that is, a zero-inflated binomial (ZIB)

random variable) (Hall, 2000; Royle and Nichols, 2003; Royle, 2006; MacKenzie
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et al., 2006, p. 94). We assume that the number of detections Xi � at site i is

distributed as

Xi �
d
=

Bi(T, p), with probability ψ,

0, with probability (1− ψ).
(2.14)

Thus

Pr(Xi � = xi �) =

ψ
(
T
xi �

)
pxi �(1− p)T−xi � , xi � = 1, 2, . . . , T ;

ψ(1− p)T + (1− ψ), xi � = 0.
(2.15)

To construct the likelihood function we adopt the approach of Hall (2000,

Equation 3). Then we sum over the site specific likelihoods similar to Royle

and Nichols (2003). Let the indicator function ui � = I(xi � > 1) denote whether

a detection was made at the ith site,

ui � = I(xi � > 1) =

1, if xi � > 0,

0, if xi � = 0.
(2.16)

The likelihood for data at the ith site is given by:

Li(ψ, p |xi)
= Pr(Xi � = xi � ; ψ, p)

=
[
ψ
(
T
xi �

)
pxi �(1− p)T−xi �

]ui �[
ψ(1− p)T + (1− ψ)

](1−ui �)
.

Then, the full likelihood is

L(ψ, p |X)

=
∏N

i=1 Li(ψ, p |xi�)

=
∏N

i=1 Pr(Xi � = xi �)

=
∏N

i=1

[
ψ
(
T
xi�

)
pxi �(1− p)T−xi�

]ui�[
ψ(1− p)T + (1− ψ)

](1−ui�)

=
∏N

i=1

(
T
xi�

)ui�
ψ

∑N
i=1 ui�p

∑N
i=1 xi�ui�(1−p)

∑N
i=1 ui�(T−xi�)(1−ψθ)

∑N
i=1(1−ui�),

where

p

N∑
i=1

xi �ui �
= p

N∑
i=1

xi �I(xi �>0)
= p

N∑
i=1

xi �
= px and k =

N∑
i=1

ui � .
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It follows that,

L (ψ, p |X) = k ψkpx(1− p)kT−x(1− ψθ)N−k, (2.17)

where k =
∏N

i=1

(
T
xi�

)
, which is independent of the parameters. Hence Equa-

tion (2.2) is equivalent to Equation (2.17).

To evaluate the expectation required for the information matrix, we need an

expression for the expectations of X and K.

Now X =
∑N

i=1Xi�, where Xi�
d
= ZIB(T, p;ψ), and so E(Xi�) = Tpψ. Conse-

quently, E(X) = NTpψ, since the Xi are identically distributed.

The random variable K =
∑N

i=1 Ui =
∑N

i=1 I(Xi� > 0); and E(I(Xi� > 0)) =

Pr(Xi� > 0) = 1− ψ(1− p)T − (1− ψ) = ψ(1− (1− p)T ) = ψθ.

It follows that E(K) = Nψθ.

Evaluation of Iψψ

The Iψψ entry of the information matrix is the expectation of the negative of

the second partial derivative of ψ̂,

Iψψ(ψ, p) = E

(
−∂

2 logL(ψ, p |x, k)

∂ψ2

)
, (2.18)

where K =
N∑
i=1

I(Xi > 0). The first partial derivative of the log-likelihood with

respect to ψ is

∂ logL(ψ, p |x, k)

∂ ψ
=
K

ψ
− (N −K)θ

1− ψθ
. (2.19)

Note that E(∂ logL
∂ψ

) = 0 ⇒ E(K) = Nψθ.

The second partial derivative, again with respect to ψ gives

∂2 logL(ψ, p |x, k)

∂ψ2
= −K

ψ2
− (N −K)θ2

(1− ψθ)2
. (2.20)
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We use the expression for E(K) to obtain Iψψ:

Iψψ(ψ, p) =
E(K)

ψ2
+

(N − E(K))θ2

(1− ψθ)2

=
Nψθ

ψ2
+

(N −Nψθ)θ2

(1− ψθ)2

=
Nθ

ψ(1− ψθ)
.

(2.21)

Evaluation of Ipp

Recall that θ = g(p) = 1 − (1 − p)T , so that θ′ = g′(p) = T (1 − p)T−1 and

θ′′ = g′′(p) = −T (T−1)(1− p)T−2.

The first partial derivative with respect to p gives

∂ logL

∂ p
=
x

p
− kT − x

1− p
− (N − k)ψ T (1− p)T−1

1− ψθ
. (2.22)

Note that E(∂ logL
∂p

) = 0 ⇒ E(X) = NTpψ, using the previously derived

expression for E(X).

And, the second partial derivative again with respect to p is

∂2 logL

∂ p2
= − x

p2
− kT−x

(1−p)2
−(N−k)ψT

(1−p)T−2

1− ψθ

(
1−T+

ψT (1−p)T

1− ψθ

)
. (2.23)

The final step in obtaining Ipp requires the expectation of Equation (2.23). The

only random variables in this expression are X and K, so using the results

E(X) = NTpψ and E(K) = Nψθ, we obtain

Ipp

= −E
(
∂2 logL(ψ, p |X,K)

∂p2

)
=
E(X)

p2
+
TE(K)− E(X)

(1− p)2
+ (N−E(K))ψT

(1−p)T−2

1− ψθ

[
1− T +

ψT (1−p)T

1− ψθ

]
=
NTpψ

p2
+
TNψθ −NTpψ

(1− p)2
+ (N−Nψθ)ψT (1−p)T−2

1− ψθ

[
1− T +

ψT (1−p)T

1− ψθ

]
=

NTψ

p(1− p)
− NψT 2(1− θ)(1− ψ)

(1− p)2(1− ψθ)
.

(2.24)
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Evaluation of Ipψ

The entries required to complete the information matrix are Ipψ and Iψp. Since

these two quantities are equal we need only find one. The final entry, Ipψ =

−E
(
∂2 logL(ψ,p |x,k)

∂ψ∂p

)
; and we have, from (2.19):

∂ logL(ψ, p |x, k)

∂ψ
=
k

ψ
− (N − k)θ

1− ψθ
. (2.25)

So

∂2 logL(ψ, p |x, k)

∂ψ ∂p
=

∂

∂p

[
k

ψ
− (N − k)θ

1− ψθ

]
,

= −(N − k)T (1− p)T−1

1− ψθ
− (N − k)ψθT (1− p)T−1

(1− ψθ)2

= −(N − k)T (1− p)T−1

1− ψθ

[
1 +

ψθ

1− ψθ

]

= −(N − k)T (1− p)T−1

(1− ψθ)2
.

(2.26)

Then the entry for the expected information matrix is

Iψp = −E
(
∂2 logL(ψ, p |X,K)

∂ψ ∂p

)
=

(N − E(K))T (1− p)T−1

1− ψθ

=
(N −Nψθ)T (1− p)T−1

1− ψθ
,

=
NT (1− p)T−1

1− ψθ
.

(2.27)

Finally

I =

 Ipp Ipψ

Ipψ Iψψ

−1

=

 vpp vpψ

vpψ vψψ

 .
If we invert the information matrix I, we find the asymptotic variance,

σ2
a(ψ, p) = asvar(ψ̂ ) =

ψ

N

(
(1− ψ) +

1− θ
θ − Tp(1− p)T−1

)
. (2.28)
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Note that asvar(ψ̂ ) = vψψ. The asymptotic standard error is denoted by

ase(ψ̂ ) =

√
asvar(ψ̂ ) =

√
σ2
a(ψ, p). As mentioned previously, this asymptotic

variance is given in MacKenzie et al. (2006, p.96).
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2.5 Distributions of the sufficient statistics

Here we derive the distribution of the sufficient statistics. We show that (ψ̂, p̂ )

is a function of (x, k). Thus, to determine the distribution of (ψ̂, p̂ ), and in

particular the expectation of ψ̂, we need to specify the distribution of (X,K).

Then we may go on to evaluate the bias and variance of occupancy.

2.5.1 Introduction

We reorder the sites of the history matrix so that the detected sites are listed

from 1, . . . , k and the undetected sites from k+1, . . . , N . By detected we mean

a site at which the species was detected at least once during the study (xij > 1

for some j). It follows, that on undetected sites, the species was not detected

on any occasion (xij = 0, for all j), resulting in a row of zeros for that site,

X =



x11 x12 · · · x1T

x21 x22 · · · x2T

...
...

...
...

xk1 xk2 · · · xkT

x(k+1)1 x(k+1)2 · · · x(k+1)T

x(k+2)1 x(k+2)2 · · · x(k+2)T

...
...

...
...

xN1 xN2 . . . xNT



x1 �

x2 �

...

xk �


x(k+1) �

x(k+2) �

...

xN �


x� 1 x� 2 · · · x�T

6= 0

= 0

(2.29)

where k = 0, . . . , N . As before k =
∑N

i=1 I(xi � > 1), the number of detected

sites, where xi � =
∑T

j=1 xij are the number of detections at a site, i.e. the

ith row sum of the history matrix, and the row vectors xi = (xi1 xi2 . . . xiT )

describe the N detection history vectors for each site i of the study (2.5.1).

x� j =
∑N

i=1 xij is the total number of detections on the jth occasion, i.e. the

sum of the jth column of the history matrix. Contributions to the sums xi �

and x� j are made exclusively by the k detected sites, whereas the (re ordered)

sites (k + 1), . . . , N do not contribute since all entries for these sites are zero.

Finally, the total number of detections in the history matrix are x = x� � =∑T
j=1 x� j; the sum of the column sums. Equivalently, x may be described
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as the sum of the row sums to which only the k detected sites contribute:

x = x� � =
∑N

i=1 xi � =
∑k

i=1 xi �

As previously shown in Section 2.2, (x, k) is sufficient for (ψ, p), with the log-

likelihood given by

logL(ψ, p |x, k) = k log(ψ) + x log(p) + (k T − x) log(1− p)
+ (N − k) log(1− ψ θ),

(2.30)

where θ = θ(p) = 1− (1− p)T .

It follows that (ψ̂, p̂ ) is a function of (x, k). In the following section we find

the distribution of (X,K) so that we may determine the distribution of (ψ̂, p̂ )

that will give the exact variance and bias for ψ̂.

2.5.2 The joint pmf of X and K

The number of detections at site i, Xi � =
∑T

j=1Xij is such that

if i = 1, 2, . . . , k, then Xi �
d
= Bi+(T, p), and,

if i = k+1, k+2, . . ., then Xi � = 0;

where Bi+ denotes a Binomial distribution without zero. That is, conditional

on Xi � being positive:

if Z
d
= Bi+(n, p), then Pr(Z = z) =

(
n

z

)
pz(1− p)n−z

1− (1− p)n
, z = 1, 2, . . . , n.

It follows that the probability generating function (pgf) of Z is given by

PZ(s) =
(1− p+ ps)n − (1− p)n

1− (1− p)n
.

The joint probability mass function (pmf) of (X,K) is given by

p(x, k) = P(K = k)× P(X = x |K = k)

= c(x, k) ψk(1− ψθ)N−kpx(1− p)kT−x

= c1(k)(ψθ)k(1− ψθ)N−k × c2(x, k)
px(1− p)kT−x

θk
,

pmf of K pmf of X |K=k

(k = 0, 1, . . . , N) (x = k, k + 1, . . . , kT ) (2.31)

where c(x, k), c1(k) and c2(x, k) are constants, i.e. they do not depend on

(ψ, p).
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The pmf of K, the distribution of the number of detected sites in the history

matrix (Equation (2.2)), and the first term in Equation (2.31), follows a Bi-

nomial distribution, K
d
= Bi(N,ψθ). It follows that c1(k) =

(
N
k

)
. The second

term in Equation (2.31) corresponds to a sum of independent random variables

each having the positive binomial distribution, Bi+; the binomial distribution

for which zero is not in the support space. Furthermore, the domain of X is

restricted to between k and kT , k 6 x 6 kT .

Hence, the pgf of (X|K = k)
d
= X1 +X2 + · · ·+Xk is the sum of k Bi+(T, p)

distributions. So conditional on K = k,

PX(s |K = k) = E(sX |K = k)

= PX1(s)
k, since the Xi are iid

=

(
(ps+ 1− p)T − (1− p)T

θ

)k
=

[
(q + ps)T − qT

1− qT

]k
, θ = 1− qT = 1− (1− p)T

=
qkT

θk

[(
1 +

ps

q

)T
− 1

]k
(2.32)

Let
[(

1+ ps
q

)T−1
]k

= [(1+z)T−1]k, to which we apply the binomial expansion:

[(1 + z)T − 1]k =
k∑
j=0

(
k

j

)
(1 + z)Tj(−1)k−j. (2.33)

Next, expand (1 + z)Tj, so that

[(1 + z)T − 1]k =
k∑
j=0

(−1)k−j
(
k

j

) Tj∑
x=0

(
Tj

x

)
zx, (2.34)

where x = 0 when, and only when, k = 0 (which would mean that no positive

observations were made in the study). Thus, we exclude k = 0 as a special

case and, for k = 1, 2, . . .

[(1 + z)T − 1]k =
Tk∑
x=k

{ k∑
j=1

(−1)k−j
(
k

j

)(
Tj

x

)}
zx. (2.35)
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Furthermore, x = k, . . . , Tk, since the smallest power permissible is k,

[(1 + z)T − 1]k = [ 1 +

(
T

1

)
z +

(
T

2

)
z2 + · · · − 1 ]k

= [Tz +
T (T − 1)

2
z2 + · · · ]k

= T k zk + · · · .

(2.36)

In conclusion, the expression for the conditional probability generating func-

tion is

PX(s|K = k) =
qTk

θk

Tk∑
x=k

{ k∑
j=1

(−1)k−j
(
k

j

)(
Tj

x

)}
zx

=
qTk

θk

Tk∑
x=k

{ k∑
j=1

(−1)k−j
(
k

j

)(
Tj

x

)} (ps
q

)x
,

where q = 1− p, z =
ps

q
and θ = 1− (1− p)T ,

=
Tk∑
x=k

{
k∑
j=1

(
k

j

)(
Tj

x

)
(−1)k−j

}
px(1− p)Tk−x

θk
sx.

(2.37)

Hence, the coefficient required to complete the expression for the joint pmf of

(X,K) (2.31) is

c2(x, k) =
k∑

j=d x
T
e

(
k

j

)(
Tj

x

)
(−1)k−j, (2.38)

where k = 1, . . . , N and x = k, k + 1, . . . , Tk. The summation begins at

j = d x
T
e as

(
Tj
x

)
= 0 if x > Tj, since Tj is an integer.

The joint probability mass function of X and K is thus

p(x, k) = c1(k)(ψθ)k(1− ψθ)N−k × c2(x, k)
px(1− p)Tk−x

θk

=

(
N

k

)
(ψθ)k(1− ψθ)N−k ×

k∑
j=d x

T
e

(
k

j

)(
Tj

x

)
(−1)k−j

px(1− p)Tk−x

θk
. (2.39)
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2.5.3 Expectation of the occupancy estimator, ψ̂

Having obtained the pmf of (X,K), since ψ̂ = ψ̂(X,K), it follows that the

expectation for ψ̂ is given by

E (ψ̂ |ψ, p) =
N∑
k=0

Tk∑
x=k

ψ̂(x, k) p(x, k)

=
N∑
k=0

Tk∑
x=k

ψ̂(x, k)

(
N

k

)
(ψθ)k(1− ψθ)N−k ×{

k∑
j=d x

T
e

(
k

j

)(
Tj

x

)
(−1)k−j

}
px(1− p)Tk−x

θk
. (2.40)

The expectation can be re-written as

µ(ψ, p) = E(ψ̂ ) =
N∑
k=1

Tk∑
x=k

ψ̂(x, k) p(x, k), (2.41)

since we have assumed ψ̂(0, 0) = 0.

An alternative approach is to exclude the (0, 0)-case to give a conditional

expectation for the occupancy estimator, i.e.

µ∗(ψ, p) = E(ψ̂ | ψ̂ > 0) =
N∑
k=1

Tk∑
x=k

ψ̂(x, k) p(x, k)

1− p(0, 0)
, (2.42)

where p(0, 0) = (1− ψθ)N . So µ∗ =
µ

1− p(0, 0)
.

Graphs of µ and µ∗ for various cases of N and T are shown in Figures 2.6a,

2.6b for (N, T ) = (5, 3), 2.6c, 2.6d for (N, T ) = (10, 5), 2.8a, 2.8b for (N, T ) =

(27, 4), and 2.8c, 2.8d for (N, T ) = (27, 12).

In all these figures the estimation of ψ is not possible to the left of the vertical

line or below the solid horizontal line, marked 1/N (where k = 1 and θ = 1 in

ψ = k/Nθ). We propose that estimation is restricted to within the plausible

region, the visible portions of curves corresponding to a value for p shown in

figures. The visible portion of each curve is determined by the lower bound

for ψ, ψLB, defined in Section 2.3.3 and is based on the plausible region for

estimating unbiased values for ψ when estimates exist, given by ψ > ψLB.

Recall that the lower bound for ψ is defined by a weighted average function

ψLB = cε/p+ ( 1
N
− cε), where cε = (1− ε1/N)/θ and ε is set to 0.01.
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For example, for N = 5, T = 3 and p = 0.1, the lower boundary for ψ is

greater than 1, it is outside the parameter space outside the plot boundaries

and is not visible in Figures 2.6a and 2.6b. This means that estimation for

ψ when p = 0.1 is not possible: either the ML estimates do not exist, or

the expectation function is non-monotone increasing or the parameter space is

sparsely populated (if at all populated) causing strong bias. Recall the convex

hull QE of the sample space for N = 5, T = 3 is sparse, Figure 2.3. The

ψ lower bound for p = 0.2 is also greater than 1, so that no portion of the

expectation curve appears in the figure, indicating that unbiased estimation

for ψ is again not possible, see for example Figure 2.6b.

For some studies the mean function of µ, and its conditional version µ∗, are

not monotone increasing. This will depend on the combination of the overall

number of sites surveyed N and survey occasions T .

For some p, µ is non-monotonic in ψ. For example, for N = 27, T = 12 and p =

0.1 in Figure 2.7. For both the unconditional and conditional case (Figures 2.7c

and 2.7d) the expectation function for occupancy decreases between ψ = 0.1

and 0.2. The function then increases again after ψ = 0.2. For values of

p ≥ 0.2 the mean function µ is monotonic increasing. The bias is not much

of a problem in this case except if p is small, since all curves rapidly approach

the diagonal line as p increases and the bias rapidly diminishes.The smallest

ψ that give functions that are monotone increasing contribute to determining

an appropriate lower bound of ψ, ψLB. The resulting curves for values of the

mean functions greater than ψLB for N = 27, T = 12 are shown in Figures 2.8c

and 2.8d.

When there is a largish difference (or ratio) between N and T the function of

expectation is non-monotonic for a greater range of values of p. We see that

the curves are non-monotonic, for example, when N = 27, T = 4 and p =

0.1, 0.2, . . . , 0.5 in Figure 2.7a and, for the conditional expectation function,

Figure 2.7b. So in such cases, there needs to be a moderate level of detectability

(p > 0.5) before the expectation function is monotonic increasing, ψ > 0.4.

The functions that are above ψLB for given p are shown in Figures 2.8a and

2.8b.

Further, the bias is generally greater when the difference between N and T

is larger. For example, when N = 27 and for the same values of ψ and p in

Figures 2.8a and 2.8c the bias is considerably greater when T = 4 compared

to when T = 12. Also, the bias persists for a larger range for ψ when T is
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considerably smaller than N . For example when N = 27, T = 4 and p = 0.2

the estimator is more biased over the range of ψ compared to the same case

when T = 12. Other studies have explored the dependence of the expectation

on N and T , for example see Wintle et al. (2004); Guillera-Arroita et al. (2010);

Karavarsamis et al. (2013).

On the other hand, when N = 5 and T is not much smaller e.g. when T = 3 the

function of the expectation for occupancy is monotonic for all values of p and

the entire range of ψ in [0,1] (figure not shown here), whereas the same is not

true when (N = 27, T = 4) or (N = 27, T = 12) as seen in Figure 2.7. When

(N = 10, T = 5) the function is monotonic for the unconditional case but is

non-monotonic for the conditional expectation function for ψ, ψ > 0 (figure

not shown here). Non-monotonicity would be a problem, but this is avoided

by the cut-offs at the ψ lower limit i.e. remaining within the plausible region.

Compare Figure 2.7 which ignores the plausible region to Figure 2.8, once the

plausible region is applied. In general, the magnitude of N and T individually,

as well as their relative magnitude, will affect monotonicity of the occupancy

expectation function. For example, if N is much greater than T (N � T ),

then monotonicity is almost surely achieved. However, if N and T are close in

value, and neither is very large, then it is likely that there is a problem with

monotonicity. So that the expectation function is non-monotonic for N = 27

and T = 4 or 12, i.e. where N � T in both cases (see Figure 2.7).

When the expectation is adjusted by p(0, 0), effectively excluding the (x, k) =

(0, 0) case, the conditional mean function µ∗ varies little in terms of the bias

compared to µ. So for N = 27, T = 4 and for the same values of p and ψ in

Figures 2.8a and 2.8b there is generally little difference in the bias between

the curves for µ and µ∗, when we consider the plausible estimates for ψ i.e.

for the visible section of the curves that is above the lower bounds for ψ for

each value of p, ψ > ψLB. Similar comments may be made for the case N = 5

and T = 3 that µ and µ∗ are not very different for values within the plausible

region i.e. the visible section of the curves determined by ψ > ψLB.
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Figure 2.6: The exact unconditional and conditional expectations for occu-
pancy when (N = 5, T = 3) and (N = 10, T = 5), respectively. We show the
portion of the curves determined by ψ > ψLB for the p in the legend.
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Figure 2.7: The full curves for the exact unconditional and conditional expec-
tations for occupancy when N = 27, T = 12. The dashed vertical lines mark
the ψ lower bounds ψLB for the values of p.
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Figure 2.8: The exact unconditional and conditional expectations for occu-
pancy when (N = 27, T = 4) and (N = 27, T = 12), respectively. We show
the portion of the curves determined by ψ > ψLB for the p in the legend.
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2.5.4 The exact variance of ψ̂

Using the pmf of (X,K), since ψ̂ = ψ̂(X,K), it follows that the expectation

for ψ̂2 is given by

λ(ψ, p) = E(ψ̂2 |ψ, p) =
N∑
k=0

Tk∑
x=k

ψ̂2(x, k) p(x, k). (2.43)

And hence that

σ2(ψ, p) = var(ψ̂ |ψ, p) = λ(ψ, p)− µ(ψ, p)2, (2.44)

ν2(ψ, p) = mse(ψ̂ |ψ, p) = λ(ψ, p)− 2ψµ(ψ, p) + ψ2. (2.45)

Of course, mse(ψ̂ |ψ, p) = var(ψ̂ |ψ, p) + Bias(ψ̂ |ψ, p)2, so that the MSE and

variance of ψ̂ will not be equal i.e. Bias(ψ̂ |ψ, p) = µ(ψ, p)− ψ.

These results enable computation of the exact values of the variance and mean

squared error — and hence comparison with the expressions for the asymptotic

variance.

As an example, compare the plots for the asymptotic variance and exact vari-

ance for N = 5, T = 3 (Figures 2.9c and 2.9a) and N = 27, T = 4 (Figures

2.10c and 2.10a). In all plots of the asymptotic variances, we omit the curves for

p = 0.1 as these gave results which were unreasonable. The variance functions

for the same N and T are plotted on the same scale to make these comparable.

So for some values of p the function may not appear on the diagram. In each

case we address why these may be ignored.

The asymptotic variance for N = 5, T = 3 is shown in Figure 2.9c, where the

exact variance (at p = 1) is marked by the dashed curved line and overlaps

the asymptotic variance for p = 0.95. Its exact variance, for the same values

of p, is plotted in Figure 2.9a and a plot of the MSE of ψ̂ is in Figure 2.9b.

What is striking in this case is that the asymptotic variance performs poorly

for small N, T .
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Figure 2.9: The exact, and asymptotic, variance and exact MSE for occupancy,
for N = 5 and T = 3. We show the curves for values of p in each legend. The
dashed vertical lines mark the ψ lower bounds ψLB for the values of p. In
Figure c) the exact variance for perfect detection p = 1 is shown by the solid
black curve.

For N = 27 and T = 4 the asymptotic and exact variances are given in, re-

spectively, Figures 2.10c and 2.10a, and 2.10b shows the MSE of ψ̂. For this

case, when N is considerably larger than T , the asymptotic variance seems

to misjudge the size and shape of the error when compared to the exact vari-

ance. For when p is between 0.2 and 0.8 the exact variance grows rapidly
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for ψ between 0 and 0.4. Then there is a steep descent beyond. The same

characteristic is not present in the asymptotic variance. For this reason we

use the ψ lower bounds to indicate where the sensible estimates are found. In

general the shape of the two plots between the asymptotic and exact variances

are distinctly different for small p. However for larger p and ψ they appear

to be close. Overall, the asymptotic variance appears to perform poorly ex-

cept for large values of p. Instead, we recommend using the standard error,

i.e. se(ψ̂ ) =
√
σ2(ψ, p). The standard error is the estimate of the standard

deviation (sd) obtained by substituting the estimates ψ̂, p̂ into the functional

formula for the exact standard deviation, i.e. σ(ψ̂, p̂ ), where sd(ψ̂) = σ(ψ, p).

In other words, σ denotes a function of two variables.

For example, Figure 2.10 shows that when N = 27, T = 4, p = 0.3 and

ψ = 0.4 the asymptotic variance for ψ̂ is much smaller that the actual (ex-

act) variance, asvar(ψ̂ ) is approximately 0.018, whereas the exact variance is

var(0.4, 0.3) = 0.034 and the (exact) MSE is approximately 0.035. Similarly,

this may be observed from Figure 2.9 when N = 5 and T = 3. The case studies

in Section 2.7 calculate the asymptotic (ase) and exact (se) standard error.

In cases where p is large, the ase and se are close, as expected. In conclusion,

the asymptotic variance for ψ̂ seriously underestimates the variance of ψ̂, and

even more, underestimates the MSE. This means that the confidence interval

for ψ̂ will be too narrow.
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Figure 2.10: The exact, and asymptotic, variance and exact MSE for occu-
pancy, for N = 27 and T = 4. We show the curves for values of p in each
legend. The dashed vertical lines mark the ψ lower bounds ψLB for the values
of p. In Figure c) the exact variance for perfect detection p = 1 is shown by
the solid black curve.
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2.6 The Bias of the occupancy estimator ψ̂

2.6.1 Exact bias

In this section we examine the exact bias of ψ̂, based on E(ψ̂ ) = µ and

E(ψ̂ | ψ̂ > 0) = µ∗, as derived in the previous section; and we use these

expressions to obtain a corrected estimator with reduced bias.

We evaluate µ and µ∗ exactly on a grid of values (ψi, pj) ∈ G, where G =

{ψ1, ψ2, . . . , ψr}×{p1, p2, . . . , ps} = {0, 0.001, 0.01, 0.02, (0.01) . . . , 0.3, (0.1) . . .,

0.9, 0.95, 1} ×{0, 0.05, 0.1, . . . , 0.9, 0.95, 1}; and, if values of µ or µ∗ for other

values of (ψ, p) are required as part of a computational procedure, we use

(bi-)linear interpolation between the grid points, as outlined in Appendix 2.9.

We focus on the bias-corrected estimates for ψ̂ for values of ψ and p which

fall within the ‘plausible region’ — the visible portion of the curves in the

figures to come. Effectively, this means the section of the bias curves that are

determined by ψ > ψLB for a particular value for p i.e. the visible sections of

the curves, for example, in Figures 2.11a and 2.11c).

If we [assume that ψ̂(0, 0) = 0 or] exclude the case (x, k) = (0, 0), the con-

ditional expectation µ∗(ψ, p) produces more biased estimates than µ(ψ, p) for

some cases, for example, when N = 5 and T = 3, µ∗ (Figure 2.11b ) is more

biased above the lower bound ψLB (i.e. the visible portion of the curves) com-

pared to µ (Figure 2.11a). For example, in Figure 2.11a and p = 0.1 there is

no section of the curve which falls within the plausible region, as the region

is outside the parameter space for ψ i.e. ψLB(0.1) > 1 and thus is not visible.

This means that the bias curve for p = 0.1 should be ignored. And, effectively

the bias curve should also be ignored for p = 0.2 as its ψLB falls almost at

ψ = 1. Whereas for N = 27, T = 4 and p = 0.1 of Figure 2.11d the plausible

region for occupancy is defined from ψ > 0.7. However, the bias is large and

negative, especially for the bias function above ψ ≈ 0.8 and is pretty much the

same for unconditional ψ, ψ̂ (Figure 2.11c).

Thus, the exact bias when considering the unconditional expectation of ψ̂ is

Bias(ψ̂ ), defined as B(ψ, p) = Bias(ψ̂ |ψ, p) = E(ψ̂ ) − ψ = µ − ψ. For the

conditional expectation, the bias is Bias(ψ̂ | ψ̂ > 0, ψ, p) defined as B∗(ψ, p) =

E(ψ̂ | ψ̂ > 0)− ψ = µ∗ − ψ.

We apply a bias correction for each of the unconditional and conditional ex-
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pectations to give ψ̂c and ψ̂∗c . Our aim is to choose ψ̂c so that Bias(ψ̂c) ≈ 0

(which will give E(ψ̂c) ≈ ψ), and ψ̂∗c so that Bias(ψ̂∗c |NZ) ≈ 0. [NZ = {(x, k) :

(x, k) 6= (0, 0)}]. Then we find the expectation followed by the bias for each of

the corrected estimators.

Although there are two standard ways of correcting for the bias (vertical

and horizontal, described in Section 2.6.2) we use ψ̂c to denote the verti-

cal bias correction method. We denote the bias for the corrected estimator

as Bias(ψ̂c |ψ, p) = Bc(ψ, p) and for the conditional corrected estimator as

Bias(ψ̂∗c | ψ̂ > 0, ψ, p) = B∗c(ψ, p).

We examine and comment on the performance of the bias-corrected occupancy

estimators, namely ψ̂c and ψ̂∗c , in Section 2.7.

An underestimate for occupancy, or a negative bias, ψ̂(x, k)−E(ψ̂
∣∣ψ, p) < 0,

may occur when occupancy is perfect, ψ = 1, but detectability is not i.e.

p < 1. Practically, this means that we do not detect every animal (θ < 1)

that is actually present (ψ = 1). The quantity ψθ in p(x, k) affects E(ψ̂) =∑∑
ψ̂(x, k)p(x, k). So that, ψ̂ < E(ψ̂) as ψ → 1 since θ < 1 in ψθ.

We adapted and applied an additional bias correction method based on a gen-

eral method given in Bartlett (1955). The simplified version of the Bartlett

(1955) bias correction method was proposed by Levin and Kong (1990) and

evaluated by Hu and Lachin (2003, equation 2.2). However, we found that

Bartlett’s method was intractable in our case. The other bias correction

method that is explored by Hu and Lachin (2003) is based on Lindsay’s condi-

tional likelihood method (Lindsay, 1982). This method does not apply in this

case, since there is no sufficient statistic for p, the nuisance parameter.
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Figure 2.11: The exact bias from the unconditional and conditional expectation
for occupancy when (N = 5, T = 3) and (N = 27, T = 4). We show the portion
of the curves determined by ψ > ψLB for the p in the legend.
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2.6.2 Numerical bias correction based on exact expec-

tation

Consider the one parameter case. Suppose T is an estimator of α. Suppose

that its mean is E(T ) = µ(α), and if µ(α) 6= α, then T is said to be biased.

Its bias is given by B(α) = µ(α)− α.

We could work this out using something like E(T ) =
∑

p(x∼ |α)T (x∼). This

specifies the value of the mean of the estimator, for a specified value of α, and

hence the bias B(α). This defines the bias function B.

Now, T − B(α) is “unbiased”, since E(T − B(α)) = µ(α) − [µ(α) − α] =

α. But it’s not an estimator, since it involves α. So, we replace B(α) by

B(T ), assuming that T will be “close enough” to α to make the approximation

reasonable.

Thus we propose a “bias-corrected” estimator Tc = T − B(T ).

An alternative is to make the correction ‘at the other end’: i.e. to use T ′c such

that T ′c + B(T ′c) = T .

Hepworth and Watson (2009) refer to these estimators as the vertical and

horizontal corrections, based on a graphical representation of the correction.

In our situation, the idea is the same, but now we have two parameters: α and

a nuisance parameter β.

The bias function is evaluated as a function of the parameters: B(α, β), and

we use this function to “correct” the estimator:

Tc = T − B(T, U),

where U denotes an estimator of the nuisance parameter β; or in more familiar

terms, the vertical method for bias adjustment yields the corrected estimates

ψ̂c = ψ̂ − B(ψ̂, p̂ ).

We find B(ψ̂, p̂ ) by evaluating B(ψ, p) at (ψ, p) = (ψ̂, p̂ ). For those values not

on the grid G, we use (bi-)linear interpolation to obtain B(ψ̂, p̂ ).

An alternative estimator, corresponding to the horizontal correction above, is

given by:

T ′c, such that T ′c + B(T ′c, U) = T ,

or in the present case:

ψ̂∗c , such that ψ̂∗c + B(ψ̂∗c , p̂ ) = ψ̂.
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The horizontal method requires solving the equation

ψ̂∗c + B(ψ̂∗c , p̂ ) = ψ̂, i.e. µ(ψ̂∗c , p̂ ) = ψ̂. (2.46)

We use (bi-)linear interpolation for µ, where necessary. Specifically, values for

ψ and p not found on the ‘grid’ will need to be found by interpolation.

In practice, we use the table of µ(ψ, p) values previously calculated, and

(bi-)linear interpolation as required, to find m−1
p̂ (ψ̂ ), where mp̂(ψ) = µ(ψ, p̂ )

(see Appendix 2.9).

We decided not to use the horizontal method as it was difficult to implement

and for simple cases it turned out that it yielded no advantage over the vertical

method.

Some examples of the vertical bias correction method are shown in Figures: 2.12a,

2.12c, 2.12b, 2.12d.
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Figure 2.12: The exact bias for the bias-corrected occupancy of the uncondi-
tional and conditional expectation for occupancy when (N = 5, T = 3) and
(N = 27, T = 4). We show the portion of the curves determined by ψ > ψLB
for the p in the legend.
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2.7 Examples

We apply bias correction for occupancy estimation to studies that vary in size,

occupancy, and detectability levels. We give a range of values for N and T ,

which would cover the range where data are likely to be observed and where

the asymptotic behaviour may be a problem. The small study presented is a

useful illustrative example of the procedure and is included for that reason.

We restrict ourselves to moderate sample sizes, as larger sample sizes would

entail a major project, and would be beyond the scope of this thesis. For each

study, unconditional and conditional occupancy expectation is considered for

bias correction. Corrected estimates are compared to uncorrected estimates

with assistance from plots of MSE functions. Also, exact (numerical) variance

is compared to asymptotic variance.

2.7.1 Example 1: Small N and T , moderate ψ, low p

A study is simulated in which N = 5 sites each are visited on T = 3 occasions,

with a total of x = 3 detections made on k = 2 sites for ψ = 0.5 and p = 0.3.

This simulation was done for illustrative purposes.

Estimates for uncorrected (ψ̂ ), corrected (ψ̂c) and conditional corrected (ψ̂∗c )

occupancy, se and RMS, are presented in Table 2.1. Detectability was esti-

mated to p̂ = 0.38. The bias correction is too strong, the uncorrected estimate

ψ̂ = 0.52 is closest to ψ = 0.5. The standard error, se = 0.382, is too large for

the occupancy estimate to be of much use. The bias correction is too strong,

the se as well as the RMS are larger once the bias correction has been applied.

The bias functions in Figures 2.11 and 2.12 show a larger bias with a correc-

tion, which even greater for the conditional expectation of ψ. Results for se

and bias are summarised in the MSE plots in Figures: 2.13a, 2.13b, 2.13c and

2.13d.

The (x, k) pair of this example lies on the boundary of the convex hull (Fig-

ure 2.3); Lk-line for k = 2 at x = 3. This means that the score equations

did not apply for ψ̂ and p̂. Instead, estimates are found using equations given

in Section 2.3.2 (occupancy estimates for the entire sample space are given

in an example — page 21 of Section 2.3.2). Furthermore, estimates for ψ

are not within the plausible region i.e. ψ estimates are not greater than the

lower bound for ψ, ψLB. Thus, the bias function and MSE function do include

estimates found here (Figures 2.11, 2.12 and 2.13).
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Estimate se ν

ψ̂ 0.52 0.382 0.417

ψ̂c 0.38 0.408 0.430

ψ̂∗c 0.32 0.383 0.436

Table 2.1: Estimates and standard errors (estimate of the sd, se) and RMS (ν)
for occupancy for a simulated history matrix from a study with N = 5, T = 3,
and x = 3, k = 2 for ψ = 0.5 and p = 0.3. The detection estimate is p̂ = 0.38.

The next set of MSE plots represent (N = 5, T = 3) in Figures: 2.13a, 2.13b,

2.13c and 2.13d. These are helpful since they encapsulate the overall shapes

of the MSE functions within the plausible region, for this study: N = 5 and

T = 3.

The exact expectation and estimates of variance, bias and MSE for occu-

pancy are found for these scenarios, for parameter values on a grid defined

by (ψi, pj) ∈ G as defined in Section 2.6. We use all valid combinations for

(x, k), according to the criteria outlined previously (Section 2.3.1). Subse-

quently, unconditional and conditional estimates for occupancy are adjusted

by the amount of bias obtained from the exact expectation of ψ̂. Where nec-

essary, (bi-)linear interpolation is applied to calculate bias of occupancy from

estimates of ψ and p (ψ̂, p̂ ) not on the grid G of parameter values (ψi, pj).
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Figure 2.13: The exact MSE for the uncorrected and bias-corrected occupancy
of the unconditional and conditional expectation for occupancy when N = 5
and T = 3. We show the portion of the curves determined by ψ > ψLB for
p = 0.3, . . . , 0.9, 0.95.
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2.7.2 Example 2: Frogs

We apply bias corrections to estimators for occupancy of a frog data set.

This data is described in Chapter 3, Section 3.3.2 (and in Karavarsamis et al.

(2013)). A complete detection history matrix for N = 27 sites each surveyed

on T = 4 occasions, shown in Table 2.2, arise from a larger presence-absence

study conducted on the the endangered growling grass frog (GGF) (Litoria

raniformis) in southern Victoria, Australia (Heard et al., 2006). Detection

histories were collected on catchment sites along the Merri Yuroke and Dare-

bin Creeks on the northern outskirts of the Melbourne metropolitan area, each

of which was visited multiple times.

Survey 1 Survey 2 Survey 3 Survey 4

Site 1 0 0 0 0

Site 2 0 0 0 0

Site 3 0 0 0 0

Site 4 0 0 0 0

Site 5 0 0 0 0

Site 6 0 0 0 0

Site 7 0 0 0 0

Site 8 1 1 1 1

Site 9 0 0 1 1

Site 10 1 1 1 1

Site 11 0 1 0 0

Site 12 0 1 0 0

Site 13 1 1 1 1

Site 14 1 1 1 1

Site 15 1 1 1 1

Site 16 0 0 0 0

Site 17 0 0 0 0

Site 18 1 1 1 1

Site 19 0 0 0 0

Site 20 1 1 1 1

Site 21 1 1 1 1

Site 22 0 0 0 0

Site 23 0 1 1 1

Site 24 0 1 1 1

Site 25 0 0 0 1

Site 26 1 1 1 1

Site 27 0 0 0 0

Table 2.2: Detection histories for the growling grass frog. The 27 independent
sites each were surveyed on 4 occasions within the 2002-2003 season.

Bias is corrected for unconditional and conditional occupancy estimates, re-

sults are shown in Table 2.3. Correcting estimates for ψ is ineffective, probably

due to a high detectability estimate, p̂ = 0.782. Occupancy is moderate for

the frog history matrix, approximately a 56% chance that any site is occu-

pied. The asymptotic standard error for unconditional occupancy, given by

Equation (2.28), ase(ψ̂ ) =

√
σ2
a(ψ̂, p̂ ) = 0.096 is practically equal to the exact
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standard error (an estimate from exact variance), se = 0.095. Considering

high p and moderate ψ it is expected that the asymptotic variance is close

to the exact variance, as is seen in Figure 2.10. For corrected unconditional

and conditional occupancy estimators, Figure 2.14 allows for a comparison of

MSE for the full range of ψ and p within (0, 1). It shows that, for p ≥ 0.5,

MSE stabilises to ≈ 0.012 given ψ ≥ 0.3, regardless of estimator. And that,

for p < 0.4 the estimators are unreliable.

In comparison, estimates of occupancy obtained here from score equations are

within the 95% credible interval of occupancy given in Heard et al. (2006);

ψ̂ = 0.558 (0.408, 0.757) (Table 3). Although, the same cannot be said for

detectability; p̂ = 0.696 (0.585, 0.757), compared to our estimate p̂ = 0.782.

Heard et al. (2006) use a Markov Chain Monte Carlo (MCMC) method in

WinBUGS to fit a model to presence-absence that includes covariate informa-

tion.

A direct maximisation of the likelihood results in estimates which are closer to

those presented here than MCMC. In their study, Karavarsamis et al. (2013)

use the optim function in R to produce ψ̂ = 0.56 (0.347, 0.787) and p̂ =

0.78 (0.577, 0.904). The interval limits result from the method of bootstrap-

based studentised interval. Comparisons of several interval estimators are eval-

uated in the next chapter, Chapter 3 (the work of Karavarsamis et al. (2013)).

For this history matrix the number of sites with any detections is k = 15. And,

the number of total (site-occasion) detections during the study is x = 47. The

pair (x, k) does not fall onto an edge of the sample space: k 6= N , x 6= k or

x 6= kT . The score equations give estimates for occupancy and detectability:

ψ̂ = k/(N θ̂) = 15/(27 θ̂) and p̂ = x θ̂/(k T ) = (47 θ̂ )/(15 × 4). We solve θ̂

numerically according to the method described in Section 2.3.2. A numerical

solution to the function
(1− (1− θ)1/T )

θ
=

x

kT
i.e.

(1− (1− θ)1/4)

θ
=

47

15× 4
returns θ̂ = 0.997. Thus occupancy is estimated at ψ̂ = 0.557 and detectability

at p̂ = 0.782.

Estimate se ν

ψ̂ 0.557 0.095 0.095

ψ̂c 0.556 0.096 0.096

ψ̂∗c 0.556 0.096 0.096

Table 2.3: Estimates, standard errors (estimate of the sd, se) and RMS (ν)

for GGF (N = 27, T = 4, x = 47, k = 15), p̂ = 0.782 and ase(ψ̂ ) = 0.096, for:

ψ̂, unconditional corrected (ψ̂c) and conditional corrected (ψ̂∗c ).
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Figure 2.14: The exact MSE for the uncorrected and bias-corrected occupancy
of the unconditional and conditional expectation for occupancy when N = 27
and T = 4. We show the portion of the curves determined by ψ > ψLB for
p = 0.2, . . . , 0.9, 0.95.
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2.7.3 Example 5: Large N , moderate T , low ψ and p

This example investigates bias of occupancy for a study for a realistic scenario

in which (N =) 55 sites are each surveyed (T =) 8 times, and low occupancy

and detectability.

The estimation space Q(N, T ) for all possible (x, k) values for N = 55 and T =

8 are shown in Figure 2.15. The (x, k) pair which best matches moderate ψ(=

0.35) and p(= 0.36) occurs at x = 57 and k = 19. The Lk–line corresponding

to this example is marked in the figure. The convex hull QE as well as the

plausible region, with lower bound shown by ψLB, encompass the majority of

the sample space, which is to be expected given the size of the study.

The (x, k) at (57, 19) gives an occupancy estimate from the score equation of

ψ̂ = k/(N θ̂ ) = 19/(55 × θ̂ ) where θ̂ = 0.974 is obtained via numerical ap-

proximation. Thus, ψ̂ = 0.355 and the score equation for detectability gives

p̂ = 1− (1− θ̂ )1/T = 0.365. The bias-corrected occupancy estimates are shown

in Table 2.4. We find that the estimates and standard errors for occupancy

are very similar for all occupancy estimators: bias-corrected and uncorrected,

conditional and unconditional. It is no surprise that bias correction had little

effect, shown by investigations of this chapter (for example, see Section 2.6

which evaluates exact bias and numerical bias correction) and concluded that

bias corrections, especially for large studies, are unnecessary. The MSE func-

tions, in Figure 2.16, verify that bias is negligible even for moderate ψ and

p. The asymptotic standard error ase(ψ̂ ) = 0.066 is not dissimilar from the

exact standard error (i.e. the estimate of standard deviation), se(ψ̂ ) = 0.063.

We showed earlier in this chapter that asymptotic results are quite reliable for

large studies.

Estimate se ν

ψ̂ 0.355 0.063 0.063

ψ̂c 0.353 0.063 0.063

ψ̂∗c 0.353 0.063 0.063

Table 2.4: Estimates and standard errors (estimate of the sd, se) and RMS
(ν) for occupancy for a study where N = 55, T = 8, k = 19, x = 57. The

estimate for detection is p̂ = 0.366. Shown are ψ̂, unconditional corrected (ψ̂c)

and conditional corrected (ψ̂∗c ) occupancy estimates. The asymptotic standard

error is ase(ψ̂ ) = 0.066.
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Figure 2.15: Convex hull QE for (N = 55, T = 8). The solid lines mark
the Lk-lines for k = 1, . . . , N and the bullets along the Lk mark the MLE
corresponding to (x, k) where for each k : x = k, k + 1, . . . , kT . The lower
bound ψLB for the plausible region is shown.

2.7.4 Example 6: Large N , moderate T , high ψ and p

This example investigates whether high ψ and p will affect estimation for the

same scenario presented above i.e. where N = 55, T = 8. We use simulation

to generate a history matrix to illustrate the procedure of estimation and bias

correction. Estimates are given in Table 2.5. Exact results give a standard

error (an estimate of the standard deviation) se = 0.054.

Estimate se ν

ψ̂ 0.891 0.054 0.054

ψ̂c 0.891 0.054 0.054

ψ̂∗c 0.891 0.054 0.054

Table 2.5: Estimates and standard errors (estimate of the sd, se) and RMS (ν)
for occupancy for a simulated history matrix, N = 55, T = 8, k = 49, x = 291,
assuming ψ = 0.8, p = 0.7. The estimate for detection is p̂ = 0.742. Shown are
ψ̂, the unconditional corrected (ψ̂c) and conditional corrected (ψ̂∗c ) occupancy

estimates. The asymptotic standard error is ase(ψ̂ ) = 0.042).

Set N = 55, T = 8, ψ = 0.8 and p = 0.7. A vector of independent site-
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detections are generated from Di �
d
= Bi(T = 8, p = 0.7), i = 1, . . . , N(= 55).

A vector of independent site occupancy probabilities are generated from Pi
d
=

Bi(ψ = 0.8). From this, the number of sites with at least one detection is k =∑N
i pi = 49, and the total number of detections is given by x =

∑N
i xi � = 291.

Numerical approximation gives θ̂ = 0.999. Finally, the score equations give

ψ̂ = 0.891 and p̂ = 0.742.

These two examples (Sections 2.7.3 and 2.7.4) verify that estimating occupancy

for large N and moderate T is effectively unbiased. For example, the expec-

tation function in Figure 2.8 (Section 2.5.3) and bias function in Figure 2.11

(Section 2.6). It is no surprise given that the sample space and convex hull

for this study size are densely populated, bias correction is redundant in this

case (Figure 2.15). The sample points are shown for the previous example at

Lk-line k = 19. These figures of the expectation, and bias, function and the

sample space, are testament to bias diminishing as N and T become larger.

So much so, that, for this example, where detectability is high, estimates for

occupancy effectively are equal to the parameter.

MSE functions in Figure 2.16 show that the MSE are small (< 0.012) for

ψ ≥ 0.2 and p > 0.1. They show a very small bias.
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Figure 2.16: The exact MSE for the uncorrected and bias-corrected occupancy
of the unconditional and conditional expectation for occupancy when N = 55
and T = 8. We show the portion of the curves determined by ψ > ψLB for
p = 0.1, . . . , 0.9, 0.95.
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2.8 Appendix: Algorithms

This appendix gives a summary of methods, and algorithms, developed in this

chapter for obtaining the expressions for appropriate estimators occupancy and

detectability, the joint pmf of the sufficient statistics X and K, and the expec-

tation for the occupancy estimator. We show how to obtain the variance and

bias for occupancy based on the vertical method of bias-correction for occu-

pancy described in Section 2.6.2. Bias-correction is shown for the conditional

and unconditional expected occupancy. Appendix 2.9 outlines in detail the

method of interpolating bias when the (ψ̂, p̂) are not on the grid G of values.

Our methods are described in this appendix with flowcharts. Figure 2.17

outlines the estimation method for occupancy and detectability, where x and

k are determined by x = 0, . . . , N × T and k = 0, . . . , N . The sample space

Ω, shown in Figure 2.1, determines which MLE equation will give the correct

estimator. If the (x, k) co–ordinate is on an edge then an edge solution that

we derived in Section 2.3.2 will give the correct estimator, otherwise the score

equations are used if the co–ordinate sits within the boundaries of Ω.

To find a numerical approximation to θ̂ we use the uniroot function in R based

on Brent’s method, an algorithm without derivatives combining the bisection

method, the secant method and inverse quadratic interpolation (Brent, 1973).

The joint pmf for X and K, p(x, k) is calculated in parallel to the method for

the estimators in Figure 2.17. The flowchart for finding p(x, k) for a specific

(ψ, p) pair is shown in Figure 2.18.

The estimate of occupancy generated from the method in Figure 2.17 is com-

bined with the joint pmf of (X,K) from the flowchart in Figure 2.18 which

gives the exact expectation, variance, bias and MSE for ψ̂. This results in the

flowchart shown in Figure 2.19 and applies to a single (ψ, p) combination. To

find the expectation, variance and bias for the conditional case, their expres-

sions are adjusted by 1− p(0, 0) as shown in Figures 2.20. These produce λ∗,

µ∗, λ∗c and µ∗c . Then the MSE and bias are obtained for the conditional esti-

mates. For both Figures 2.19 and 2.20, the bias is interpolated for occupancy

estimates that are not on the grid G of values (ψi, pj), defined in Section 2.6.

The interpolation method in our case is described in next, in Appendix 2.9.
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Figure 2.17: Flowchart of the algorithm for finding ψ̂, p̂.
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Figure 2.18: Flowchart of the algorithm for the pmf of X and K.
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Figure 2.19: Flowchart for the expectation, variance, bias and MSE for uncon-
ditional ψ̂.
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Figure 2.20: Flowchart for the conditional expectation, variance, bias and MSE
for ψ̂.
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2.9 Appendix: Bias Interpolation

Here we outline how we use the (bi-)linear interpolation method in our case.

In Section 2.6.2 we described the vertical and horizontal methods of adjusting

bias to obtain the bias-corrected estimates for ψ. Linear interpolation is used if

the ψ estimates fall on an edge of the ‘grid’, G, of predefined (ψ, p) co-ordinates.

For the internal ‘grid’ estimates of ψ i.e. not on the (ψ, p) co-ordinates, we

interpolate in two directions, both the ψ and p direction. In other words we use

bi-linear interpolation for B(ψ, p). We adjusted the estimate of occupancy, ψ̂,

by the numerical value of the bias using (bi-)linear interpolation to determine

the amount by which a ψ estimate should be adjusted. The method of (bi-

)linear interpolation for finding the amount of bias is shown in Figure 2.21.

Figure 2.21: diagram of the bi-linear interpolation method.
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For example, when (ψ̂, p̂ ) is not equal to a pre-defined (ψ, p) co-ordinate of G

and is not on an edge of G, then an approximation for the bias is:

B(ψ̂, p̂ ) ≈ B(q11)

(ψ̂2 − ψ̂1)(p̂2 − p̂1)
(ψ̂2 − ψ̂)(p̂2 − p̂ )

+
B(q21)

(ψ̂2 − ψ̂1)(p̂2 − p̂1)
(ψ̂ − ψ̂1)(p̂2 − p̂ )

+
B(q12)

(ψ̂2 − ψ̂1)(p̂2 − p̂1)
(ψ̂2 − ψ̂)(p̂− p̂1)

+
B(q22)

(ψ̂2 − ψ̂1)(p̂2 − p̂1)
(ψ̂ − ψ̂1)(p̂− p̂1). (2.47)

Then the estimate for occupancy corrected for bias using the vertical method

of adjustment is: ψ̂c = ψ̂ − B(ψ̂, p̂ ).

When (ψ̂, p̂ ) falls on a vertex of G : VG = {(0, 0), (0, 1), (1, 0), (1, 1)} the bias

is assumed zero: i.e. B(ψ, p) = 0.

And, when (ψ̂, p̂ ) is on and edge of the grid then linear interpolation finds the

amount of bias. For example, we find the amount of bias which corresponds

to (ψ̂, 0) (Figure 2.21) by amending Equation 2.47:

B(ψ̂, p̂ ) = B(q11)
ψ̂2 − ψ̂
ψ̂2 − ψ̂1

+ B(q21)
ψ̂ − ψ̂1

ψ̂2 − ψ̂1

(2.48)

A similar approach is used for the three remaining edges of Figure 2.21. As an

example: B(0.57) = 0.3 ∗ B(0.5) + 0.7 ∗ B(0.6).

The same methods of linear bi-linear interpolation outlined here are used for

finding the bias for ψ̂c, ψ̂
∗ and ψ̂∗c .

When any of the occupancy estimators are greater than 1 or less than zero, say

ψ̂ > 1 or ψ̂ < 0, we truncate to 1 and 0, respectively. This occurs usually as

a result of floating point error, an accumulation of computational arithmetic

errors.
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2.10 Appendix: Simulation for Frogs

We give a detailed numerical example to illustrate methods outlined in Ap-

pendix 2.8 that are used to find estimates for occupancy in the case of the

conditional and unconditional expectation for occupancy. And for the method

of interpolation given in Appendix 2.9. Then we find their asymptotic vari-

ances, exact variances and finally their bias-corrected versions.

Let ψ = 0.557 and p = 0.782 for simulation of a detection history matrix.

Simulate a vector of (N=) 27 independent site-detections from Di �
d
= Bi(T =

4, p = 0.782), i = 1, . . . , N(= 27) (given in Section 2.2),

{di �} : {4, 4, 4, 1, 2, 3, 3, 3, 4, 2, 4, 3, 3, 3, 2, 2, 3, 3, 4, 3, 3, 4, 3, 3, 3, 4, 2}.

A simulated vector for occupancy for site i, where Pi
d
= Bi(ψ = 0.557) (Section

2.2), is

{pi} : {0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1}.

There are k =
∑N

i pi = 13 detected sites where the number of detections

at each site i, given by Xi � = PiDi �, occurs with probability of occupancy

ψ = 0.557,

{xi �} : {0, 0, 0, 0, 0, 3, 0, 3, 4, 2, 4, 0, 3, 3, 2, 0, 3, 0, 4, 3, 0, 4, 0, 0, 0, 0, 2}.

Thus in total, x =
∑N

i xi � = 40 detections were recorded for this study.

Occupancy and detectability estimates are obtained from the score equations

(Equations (2.10)), since (x, k) = (40, 13) is internal to the sample space Ω

i.e. it is not on an edge of Ω (Figure 2.1).

The numerical solution θ̂ = 0.997 gives,

ψ̂ = 0.483 and p̂ = 0.767.

Table 2.6 summarises the estimates for occupancy and their standard errors.

For exact variance and bias, and by extension the MSE, it is necessary first

to obtain µ, the exact expectation for ψ (Equation (2.40) or (2.41)). For this

to occur, the joint probability for every (x, k) pair, p(x, k), is to be calcu-

lated (Equation (2.39)). The estimate pair (ψ̂, p̂ ) = (0.482, 0.767) is not a co-

ordinate on the grid G of the parameter space (ψ, p), thus, exact variance and

bias are approximated with bi-linear interpolation as outlined in Appendix 2.9.

The co-ordinates of the vertices of the smallest square that encloses (ψ̂, p̂ ) =

(0.482, 0.767) (see Figure 2.21) are:
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q11 = (ψ̂1, p̂1) = (0.4, 0.7),

q12 = (ψ̂1, p̂2) = (0.4, 0.8),

q21 = (ψ̂2, p̂1) = (0.5, 0.7),

q22 = (ψ̂2, p̂2) = (0.5, 0.8).

The exact variance is found by replacing B for σ2 in Equation (2.47) for in-

terpolation. Then, the interpolated standard error (estimate of the sd) is

se(ψ̂ ) = 0.096, which is equal to the asymptotic standard error, given by

Equation (2.28), ase(ψ̂ ) =

√
σ2
a(ψ̂, p̂ ) = 0.096. As expected, the asymptotic

standard error is a good approximation to the standard error se for large p, in

this case p > 0.7. However, both are large in magnitude, which indicates that

occupancy has not been estimated well.

An approximation of the exact bias for the occupancy estimate is found by

interpolating the exact bias for the four co-ordinates: q11, q12, q21 and q22:

B(q11) = B(0.4, 0.7) = 0.00142,

B(q12) = B(0.4, 0.8) = 0.0004307,

B(q21) = B(0.5, 0.7) = 0.001374,

B(q22) = B(0.5, 0.8) = 0.0004163.

Then, the method outlined in Appendix 2.9 gives the approximate bias, B(ψ̂, p̂ ) ≈
0.000737, and the interpolated MSE is ν2(ψ̂, p̂ ) ≈ 0.009 and its exact RMS is√
ν2(ψ̂, p̂ ) ≈ 0.096 (see Table 2.6 for results of all estimators).

Then the vertical method (Section 2.6.2) corrects the occupancy estimate to

become

ψ̂c = ψ̂ − B(ψ̂, p̂ ) = 0.483− 0.000737 = 0.482.

There is practically no difference, only a slight reduction is made by the cor-

rection but it is no closer to the actual occupancy parameter, ψ = 0.557. It has

overcorrected and has further underestimated the actual occupancy. That is,

the bias correction may cause the estimate to move from a positive bias, to a

negative bias once corrected. For example, Figures 2.12c and 2.12d compared

to the uncorrected bias estimate in Figures 2.11c and 2.11d. With a standard

error of se ≈ 0.1, we ‘expect’ that with ψ = 0.58, a rough probability interval

is 0.38 6 ψ̂ 6 0.78 i.e. ψ̂ ± 2× 0.1.

In a similar way the bias-corrected estimate for the conditional case is, ψ̂∗c =

ψ̂ − B∗(ψ̂, p̂ ) = 0.482, where B∗(ψ̂, p̂ ) = Bias(ψ̂ | ψ̂ > 0) and is approximated

by its interpolated value. Its standard error is: se(ψ̂∗c ) = 0.096. Clearly there
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is no difference in the corrected occupancy estimate between the conditional

and unconditional ψ.

Estimate se ν

ψ̂ 0.483 0.096 0.096

ψ̂c 0.482 0.096 0.096

ψ̂∗c 0.482 0.096 0.096

Table 2.6: Estimates and standard errors (estimate of the sd, se) and RMS
(ν) for occupancy for a simulated history matrix from the frog data with
N = 27, T = 4, x = 40, k = 13, ψ = 0.557, and p = 0.782. The estimate
for detection is p̂ = 0.767. Shown are ψ̂, unconditional corrected (ψ̂c) and

conditional corrected (ψ̂∗c ) occupancy estimates. The asymptotic standard

error is ase(ψ̂ ) = 0.096.
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Chapter 3

Comparison of four interval

estimators

The material in this chapter has been published in Karavarsamis et al. (2013).

3.1 Overview

Sample-based uncertainty about the parameter estimates must be reported to

provide a complete picture of a study. The MacKenzie et al. (2002) likeli-

hood function does not have a closed form solution for the variance associated

with the probability of detection. Likelihood-based large-sample standard er-

ror estimates may not be appropriate for estimating the uncertainty, especially

when sample sizes are small (MacKenzie et al., 2002). Consequently, MacKen-

zie et al. (2002) used ordinary nonparametric bootstrap estimators, also called

the nonparametric basic bootstrap. However the basic bootstrap may not be

appropriate for rare and clustered species distributions (Efron, 1982).

The goal of this chapter is to assess a suite of interval estimators. Here we

compare the performance of three nonparametric, finite-population bootstrap-

based interval estimators: 1) the basic bootstrap 2) the studentised bootstrap

(or bootstrap-t) and 3) the percentile interval, against the normal approxima-

tion (or asymptotic method) (Davison and Hinkley, 1997, Section 5). The per-

formances of the estimators are tested using two simulation studies. The first

study is carried out under the assumption that there is no spatial clustering

of the observations. The second study assesses the performance of the interval

estimators when the observations show over-dispersion, using bootstrap-style

73
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replicates from an ecological study.

These estimators are demonstrated using a presence-absence data set of the

growling grass frog (Litoria raniformis), an endangered species found also in

Southern Victoria, Australia.

Similarly to MacKenzie et al. (2002), we apply the nonparametric bootstrap

resampling scheme proposed by Efron (1982) to the sites (rows) of the de-

tection matrix to generate an estimate of the empirical distribution of the

log-likelihood function (2.4). The resulting sample of bootstrap estimates for

ψ and p inform the subsequent interval estimation. We used the boot.ci

(Canty and Ripley, 2009) procedure in R (R Development Core Team, 2009)

to provide the approximate confidence intervals.

The rest of the chapter is organised as follows, Sections 3.2 and 3.3 outline

the methods used in the study i.e. the interval estimators we compared, and

details of the simulation and cases studies. In Sections 3.4 we present results

of the studies with corresponding tables and figures. The chapter ends with

our conclusions (Section 3.5)

3.2 Interval estimators

The bootstrap sample variance estimate may overstate the precision for pa-

rameter values which are close to 1, leading to positively biased estimates.

Similarly, the asymptotic variance from the normal approximation of large

sample theory may not be appropriate for studies of small sample size. Fur-

thermore, asymptotic normal approximation is inappropriate for populations

that are rare or clustered, as is the case for our study population (MacKenzie

et al., 2002).

The three bootstrap-based interval estimators we consider are derived from

basic methods for confidence limits for a parameter η and compared to the

large sample normal approximation. Suppose that H is an estimator for η

and we seek an equi-tailed interval with tails of probability α/2. The lower

and upper boundaries of the (1 − α/2) equi-tailed confidence interval are,

respectively

η̂α/2 = h− c(1−α/2), η̂(1−α/2) = h− cα/2, (3.1)

where h is an estimate of the parameter η (or a realisation of H) and the
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constants c are the appropriate quantiles of the distribution of H. We use the

maximum likelihood estimates, ψ̂ and p̂, for h. Since the distribution of H− η
is unknown we consider approximate methods for estimating its quantiles.

3.2.1 Normal approximation

The simplest approach to constructing confidence limits applies a normal ap-

proximation N(0, v) for H − η. The resulting lower and upper approximate

confidence limits are, respectively,

η̂α/2 = h− v1/2z1−α/2, η̂(1−α/2) = h+ v1/2z1−α/2,

where the estimate h (in our case ψ̂ or p̂) is obtained from the original data, as

is the asymptotic variance estimator v. The z(1−α/2) critical value provides the

(1−α/2) quantile from the inverse standard normal distribution, i.e. z1−α/2 =

Φ−1(1 − α/2). This approach for estimating limits is potentially problematic

when the parameter estimates are on, or near, the boundaries of the parameter

space, which in this context are zero and one (Lebreton et al., 1992). This

issue may be ameliorated to some extent by transforming the estimates onto an

alternative scale that is not bounded between 0 and 1, e.g., logit or arcsin. The

normal approximation, for a large-sample estimator, is based on asymptotic

normality of the estimator η̂ (Lebreton et al., 1992; Davison and Hinkley, 1997,

p.198). Consequently, we do not expect it to have good small-sample properties

unless the sampling distribution of the parameter estimate is sufficiently close

to normal, and it is likely to result in coverages that are inadequate. Given

that we are dealing with detection histories characterised by asymmetry and

sparseness, a common feature of clustered and rare populations, we do not

expect to observe adequate coverages from the normal method. Restrictions

of the normal method might further be explained by its degree of accuracy,

which is to first-order, and its coverage, which is α +O(n−1/2).

3.2.2 Basic bootstrap method

The basic bootstrap method involves approximating the confidence limits by

the quantiles of the empirical distribution formed by the R bootstrap repli-

cates. Let H∗ represent a random variable drawn from the empirical distribu-

tion function F̂ generated from the bootstrap samples. The random variable
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H∗ is the bootstrap equivalent of H, and t∗ corresponds to the bootstrap es-

timate of h. Then, we aim to approximate the distribution of H − η by the

distribution of H∗− h. The quantiles cα/2 and c(1−α/2) of H − η are estimated

by the corresponding quantiles of H∗ − h. Let h∗ represent a realisation of

H∗. The mth quantile is estimated by the (R+ 1)mth ordered value of h∗ − h:

h∗((R+1)m) − h. Choose R such that (R + 1)(α/2) is an integer. So, the α/2

quantile of H − η will be the (R + 1)(α/2)th ordered value of h∗ − h, that

is, h∗((R+1)α/2) − h. Similarly, the (1 − α/2) quantile of H − η corresponds to

h∗((R+1)(1−α/2)) − h.

The lower and upper limits of the estimated (1 − α) equi-tailed confidence

interval for the parameter, η, are

η̂α/2 = 2h− h∗((R+1)(1−α/2)), η̂(1−α/2) = 2h− h∗((R+1)α/2),

where h = ψ̂ or p̂, is the maximum likelihood estimate of ψ or p, respectively,

produced from the original data set. Accordingly h∗ represents a realization of

the bootstrap estimates of ψ or p. So, for example, the approximate confidence

interval for ψ is obtained from the quantiles of h∗ =
(
ψ̂∗(1), ψ̂

∗
(2), . . . , ψ̂

∗
(R)

)
. In

the same way, the quantiles may be obtained from the corresponding distribu-

tion of ordered bootstrap estimates for the probability of detection p.

3.2.3 Studentised bootstrap method

The studentised bootstrap method is also known as the ‘bootstrap-t’ method

and was first proposed by Efron (1982). The confidence limits are obtained

by replacing the N(0, 1) approximation by the studentised statistic Z =

(H − η)/V 1/2. As the distribution of Z is unknown, it is approximated by

its bootstrap counterpart Z∗.

Each bootstrap replicate will produce h∗ = {ψ̂∗, p̂∗} and an associated asymp-

totic variance estimate v∗ = {v̂ar(ψ̂∗), v̂ar(p̂∗)}, resulting in the bootstrap pivot

z∗ = (h∗ − h)/v∗1/2. The R bootstrap estimates of z∗ are ordered and the

(R + 1)mth ordered value estimates the mth quantile of Z. Then the studen-

tised confidence limits are

η̂α/2 = h− v1/2z∗((R+1)(1−α/2)), η̂(1−α/2) = h− v1/2z∗((R+1)α/2).

The accuracy of the estimated confidence limits relies on the number of boot-
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straps, R, but also on the extent of agreement between the distributions of

H∗−h and H−η. Studentising improves the accuracy of the confidence limits

by improving the level of agreement between the distributions of H∗ − h and

H− η. It achieves stronger agreement by taking a pivot, since complete agree-

ment occurs if the distribution of H− η does not depend on any unknowns. It

does this by eliminating the unknown standard deviation and replacing it with

the sample estimate. In this way, it mimics the Student-t statistic for making

inferences about a normal mean.

The studentised bootstrap method for calculating confidence intervals is in-

herently more accurate than the basic bootstrap and percentile method. The

first offers second-order accuracy whose coverage is α + O(n−1) whereas the

last two are both restricted to first-order accuracy, α + O(n−1/2). However,

the basic and percentile limits are still better than the normal approximation

limits (Davison and Hinkley, 1997, pp. 212-4).

3.2.4 Percentile method

The studentised bootstrap method is an example of how the transformation

of a statistic, in this case Student’s-t transform, improves the accuracy of

confidence limits. Another bootstrap method for approximating confidence

limits based on a transformation is the percentile method. Unlike the stu-

dentised method, the percentile method implicitly assumes the existence of a

good transformation, but does not require that a good transformation be found

(Davison and Hinkley, 1997, Section 5.3, p. 202). It is based on the premise

that the resulting distribution for some unknown transformation, g(H), will

be symmetric. This premise of symmetry is used to derive confidence limits

independent of the transformation g(H). The confidence interval of Equation

(3.1) is rewritten with cα/2 = −c(1−α/2). Then by applying the basic bootstrap

method (Section 3.2.2) and after back-transformation the percentile confidence

limits on the original scale are

η̂α/2 = h∗((R+1)α/2), η̂(1−α/2) = h∗((R+1)(1−α/2)),

where these new limits are independent of the transformation g(H). The h∗ are

the bootstrap estimates of occupancy and detectability, ψ and p respectively.
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3.3 Simulation and Case study

3.3.1 Simulation study

We used a simulation study to assess the statistical properties of the interval

estimators under a range of sample scenarios. To simultaneously investigate

the effects of the number of sites sampled (or sample size), N , and number

of survey occasions (T visitations to a site), we considered three sample sizes

(N = 10, 30, 50) across two levels of survey occasions, (T = 5, 10). The six

combinations allow for a comparison with the results from the case study we

present, as well as with results presented in MacKenzie et al. (2002).

Simulations for the first study were performed as follows. A site occupation

matrix was constructed, row-wise, by comparing a uniform random variate

for each simulated site with the set probability of occupation. Hence the site

occupation matrix comprised rows (i.e. sites) of all 0s or all 1s. A detection

matrix of the same dimension was constructed cell-wise by comparing N × T
uniform random variates with the set detection probability. The detection

matrix also comprised all 0s or all 1s. The simulated detection (history) matrix

was then constructed as the elementwise product of the site occupation and

the detection matrices.

We resampled 100 or 250 bootstrap replicates (R), respectively, for each sam-

ple size (N) by survey occasion (T ) combination to assess the effect of boot-

strap replication number on the accuracy of the interval estimator. We com-

puted coverage probabilities and average confidence interval widths from each

scenario. The expression of variance for a binomial proportion was used to

estimate the standard error of coverage. Furthermore, the simulation study

covered a range of combinations for occupancy, ψ = {0.4, 0.5 . . . , 0.8}, and de-

tectability, p = {0.4, 0.5 . . . , 0.8}, resulting in 3× 2× 2× 5× 5 = 300 scenarios

for which s = 1000 simulations each were generated.

3.3.2 Case study

For a second study, we used data from a study of occupancy and detectability

for the endangered growling grass frog (GGF) (Litoria raniformis) in southern

Victoria, Australia (Heard et al., 2006). The parameters estimated from these

data were used to guide the design of the simulation experiment. Details of the

sampling are given in Heard et al. (2006). Briefly, the study area encompassed
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the catchments of the Merri Yuroke and Darebin Creeks on the northern out-

skirts of the Melbourne metropolitan area. Spotlight surveys were conducted

and the detection histories were recorded for adult frogs and tadpoles detected

from the 2002–2003 season (Table 2.2, Section 2.7.2 in Chapter 2).

Alternatively, a logistic model may be fit, such as that presented in MacKenzie

et al. (2002). We explore this option in Chapter 4.

In total, our case study comprised N = 27 measurement sites, T = 4 survey

occasions, and R = 199 bootstrap replicates drawn from the observed GGF

history matrix. We applied the four interval estimators to the bootstraps of the

detection histories of the GGF to obtain confidence limits and corresponding

interval widths.

During the analysis, we noted that the sample variance of the data (3.35) was

high compared to the theoretical Binomial variance (0.387; the dispersion ratio

was 8.65). This is strong evidence of overdispersion, which suggests that the

data are clustered.

In order to generate interval coverages that would be comparable to those com-

puted from the GGF data requires reproducing the overdispersion inherent in

the GGF detection matrix. Thus we conducted a second simulation study as-

suming overdispersion. We incorporated a degree of overdispersion similar to

the GGF data by randomly selecting the same number of sites (rows), with

replacement, from the GGF matrix. We obtained 2000 simulated detection

matrices from which we then obtained bootstrap interval estimates. For each

of the 2000 simulated matrices we generated 250 bootstrap replicates, subse-

quently computing coverage rates and average interval widths. We chose 2000

simulations to deal with the large (up to 40%) failure rate for maximisation of

the likelihood. The conditions under which the MLE equations will not always

be valid were studied and addressed in Chapter 2 (see the edge solutions given

in Section 2.3.2), as well as in (MacKenzie et al., 2002; Wintle et al., 2004;

Guillera-Arroita et al., 2010). In Chapter 4 we address this using a partial

likelihood approach, for models that also include covariates.

The difference between the first simulation study and the GGF simulation

study lies in the method used for generating the simulated detection matrices,

from which we subsequently took the bootstrap samples. The latter study,

which allows for overdispersion, randomly selected sites (rows) with replace-

ment directly from the GGF detection matrix, followed by bootstrapping.
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In evaluating the coverage provided by an interval estimation method, we adopt

the approach of Newcombe (1998), who suggested that if 1−α is construed as

an average coverage rate, the mean CP (coverage probability) should ideally

be a little over 1 − α and the minimum CP a little under it. This provides a

sensible aim when constructing non-conservative CIs; it recognises that if the

nominal level cannot be achieved exactly, an almost universal choice would be

to be above it rather than to be a similar amount below it (Newcombe, 1998;

Hepworth, 2004).

To assist in interpreting the plots of the coverages, we added a dashed line

to each plot representing the lowest possible value of the estimate that would

still contain 0.95 within its 95% confidence interval with 1000 samples. We

ignore the simulation failures in this calculation hence this is an approximation.

We assume the number of simulations to be s = 1000. We solve the following

equation, for λ, to obtain the approximate upper limit for the CI of the nominal

(= 0.95) coverage level:

1− α = λ+ cα/2

√
λ(1− λ)

s

i.e. 0.95 = λ+ 1.96

√
λ(1− λ)

1000

therefore λ = 0.934

All estimates of ψ, or p, that are above the dashed line will, according to this

construction, include 0.95 in their 95% confidence interval. We have ignored

the possibility that the estimate is too high as we are less concerned with this

condition.

3.4 Results

3.4.1 First study

Based on the values that we chose to compare, we found that the number of

sites sampled, N , had the largest impact on coverage for each of the interval

estimators (Figures 3.1a and 3.1b)1. Note that the full suite of results included

interval coverage rates and widths for each parameter conditional on specific

values of the other. Here we report only the marginal results. We examined

1Labelled Figure 1. and 2., respectively, in Karavarsamis et al. (2013).
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some conditional results (not shown here) and found no evidence that averaging

would provide a misleading summary.

Figure 3.1a shows coverage probabilities for occupancy ψ produced from the

first simulation study, assuming there is no overdispersion, were averaged over

p, for R (= 100 or 250) replicates and s (6 1000) simulations. Similarly,

Figure 3.1b shows coverages for detectability p averaged over ψ. The panels

display combinations of sample size N by the number of survey occasions

T . The solid horizontal line indicates the 0.95 nominal confidence level. The

dashed line denotes the line (= 0.934) below which any point would not include

0.95 in its normal approximation based confidence interval. The y-axis scale

for the plots differs between rows.

Table 3.1 shows coverage probabilities and average interval widths of confidence

interval for occupancy ψ and detectability p, at the nominal 0.95 level of

confidence. Interval widths, which lie between 0 and 1, and corresponding

coverages are obtained from the first simulation study (Section 3.3.1), assuming

there is no overdispersion in the data. Widths and coverages are averaged over

all combinations of ψ and p, for R (= 100 or 250) replicates and s (6 1000 per

scenario) simulations.

An increase in N can result in an increase in observed detections, thus improv-

ing convergence of the optimization of the likelihood function and therefore also

the number of successful simulations. In general, our results were unreliable

when N = 10 as it caused many simulations (20%) to fail. Given this, we focus

on those results produced by larger values of N .

When estimating occupancy, the studentised method produced the most con-

sistent (least variable) estimated coverage probabilities of the estimators (Fig-

ure 3.1a and Table 3.1). It had the fewest fluctuations, coverages were below

nominal 0.95 as well as above λ(= 0.934), and the fewest outliers. The re-

maining three estimators produced coverages that at times were well below

the nominal coverage; for example the basic method produced a coverage of

0.55 when ψ = 0.8, p = 0.8, N = 10, T = 10 and R = 250 (not shown

here). Overall, the basic method for approximating the confidence limits for

occupancy was the least reliable, with its coverages generally being further

below nominal than the other methods (Figure 3.1a). The percentile, basic

and normal approximation results were parallel with each other across most

of the parameter space within the scope of the study (Figure 3.1a). Overall,

the percentile method outperformed the normal approximation when estimat-
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Figure 3.1: Coverage probabilities for occupancy ψ and detectability p. Solid
horizontal line indicates the 0.95 nominal confidence level and dashed line
denotes λ(= 0.934) the approximate upper limit for the CI below which any
point would not include 0.95 in its normal approximation based confidence
interval. Legend: • studentised bootstrap; + normal approximation; 4 basic
bootstrap; and × percentile.
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ing occupancy (Figure 3.1a). As the probability of presence increased, the

coverage improved likewise, for most combinations of N and T .

Interval Estimator Occupancy ψ Detectability p

coverage interval width coverage interval width

Basic

mean 0.9521 0.4124 0.9084 0.1949

sd 0.0406 0.1513 0.0487 0.0695

Studentised

mean 0.9795 0.4875 0.9097 0.1939

sd 0.0147 0.2214 0.0551 0.0685

Percentile

mean 0.9639 0.4124 0.9004 0.1949

sd 0.0254 0.1513 0.0739 0.0695

Normal

mean 0.9593 0.4097 0.9503 0.2106

sd 0.0273 0.1559 0.0158 0.0933

Table 3.1: Coverage probabilities and average widths of confidence interval for
occupancy ψ and detectability p, at the nominal 0.95 level of confidence.

Figure 3.2a shows average confidence interval widths (which lie between 0

and 1) of occupancy ψ produced from the first simulation study, assuming

there is no overdispersion, averaged over p for R (= 100 or 250) replicates and

s( 6 1000) simulations. The panels display combinations of sample size N by

the number of survey occasions T . To make the differences visible between

estimators for each combination of N and T , the scale on the y-axis is unique

to each plot. Similarly, Figure 3.2a shows average confidence interval widths

of detectability p averaged over ψ.

In general, average confidence interval widths were narrower for detectability

(p) compared with occupancy (ψ) (Figures 3.2a and 3.2b, and Table 3.1)2.

The coverages for detectability were below nominal (Table 3.1). Coverages of

the normal approximation intervals for detectability were closest to nominal,

and these intervals were also generally wider than those for the other methods.

2Labelled Figures 3 and 4, and Table 2, respectively, in Karavarsamis et al. (2013)
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Figure 3.2: Average confidence interval widths for occupancy and detectability.
Legend: • studentised bootstrap; + normal approximation; 4 basic bootstrap;
and × percentile.
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3.4.2 Second study

Of the 2000 simulated GGF (Growling grass frog) detection matrices, 1155

returned MLEs for all 250 bootstrap-created detection matrices. Our goal was

to reproduce the overdispersion inherent in the GGF matrix. The simulated

matrices were generated with an average overdispersion of 8.16 compared to

8.45 present in the GGF detection matrix. Dispersion factors amongst sim-

ulated matrices ranged from 5.062 to 10.95. The GGF dispersion factor was

adequately preserved during the bootstrapping. Averaged over simulations,

these ranged from 4.93 to 10.85 with a mean of 8.04.

Table 3.2 shows the Growling grass frog occupancy ψ and detectability p con-

fidence limits, and widths, at the nominal 0.95 level of confidence. Interval

limits and corresponding widths, which lie between 0 and 1, were generated

from R = 199 bootstrap replicates drawn from the (27 × 4) GGF detection

matrix. Coverages are obtained from the second simulation study assuming

overdispersion: 250 bootstrap replicates drawn from the GGF detection matrix

for each of the 1155 out of 2000 successful simulations.

Interval Estimator Occupancy ψ̂ = 0.56 Detectability p̂ = 0.78

lower
limit

upper
limit

interval
width

cp lower
limit

upper
limit

interval
width

cp

Basic

0.371 0.777 0.406 0.943 0.651 0.932 0.281 0.978

Studentised

0.347 0.787 0.441 0.989 0.577 0.904 0.327 0.977

Percentile

0.337 0.742 0.406 0.964 0.631 0.912 0.281 0.967

Normal

0.368 0.744 0.376 0.946 0.675 0.888 0.212 0.886

Table 3.2: Growling grass frog (GGF) occupancy ψ and detectability p confi-
dence limits, widths and coverages.

We applied the four interval estimators to the probability that the growling

grass frog was present (ψ), and to the probability of detecting a frog (p). Con-

sistent with findings from the first simulation study (Figure 3.2a), the GGF

occupancy and detectability interval widths are equal for the basic bootstrap

and percentile methods (Table 3.23). From the GGF study, the studentised

estimator resulted in a marginally wider interval for occupancy than did the

basic or percentile methods, and a substantially wider interval for detectabil-

3Labelled Table 3 in Karavarsamis et al. (2013)
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ity overall. However, corresponding normal coverages, particularly for p, were

below nominal based on the GGF simulation study, suggesting the normal

approximation-based interval estimates were too narrow (Table 3.2). In par-

ticular, Table 3.2 shows that the normal approximation CIs did not work

for detectability, the coverage probability is below 0.9. This may be due to

overdispersion that is not accounted for in the model. In Chapter 2 we showed

that the asymptotic variance estimator underestimates the actual (or exact)

variance, for occupancy.

Overall, the estimated interval widths for the probability p of detecting frogs at

a site were considerably narrower than those corresponding to the probability

ψ of frogs occupying a site, as expected (Table 3.2). This implies that we know

with more certainty the chance of detecting frogs at a site, than the chance

with which the GGF actually occupies a site. To verify this conclusion, associ-

ated coverages obtained from the simulation study should be considered. The

studentised estimator produced above nominal (0.95) and consistent coverages

over the parameter space [0,1] for ψ. It achieved these results for simulations

conducted in both the presence, and absence, of overdispersion (Table 3.2 and

Figure 3.1a, respectively). When overdispersion is not assumed and when

ψ = 0.56, N = 30 and T = 5, the percentile method produces coverages clos-

est to nominal (Figure 3.1a). However, over the entire range of possible values

of occupancy (0 to 1), the studentised estimator does not fall below nominal

coverage. It provides more consistent, albeit sometimes more conservative,

coverages.
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3.5 Conclusions

Overall, we found that the studentised estimator outperformed the others when

estimating occupancy, in that it gave coverages which were stable and remained

above nominal (Figure 3.1a), but the same did not hold when estimating de-

tectability. In addition, the performance of the estimator depends on whether

overdispersion is present in the detection matrix. We showed in Chapter 2

that the asymptotic variance for occupancy underestimates the actual (or ex-

act) variance (Section 2.5.4). Hence normal intervals are probably too narrow,

and the studentised are closer to the actual widths i.e. closer to widths that

they should be. In addition, studentised intervals are the most consistent over-

all (closest, or above, nominal level and above λ), albeit wider and possibly

conservative on occasion.

For detectability p, and for data that are not overdispersed, we found that on

the whole the normal approximation provided coverages which approached the

nominal level from below, as either N or T increased. The discrepancy in the

performance between estimators depends on how closely the empirical distri-

bution agrees with the probability distribution (Davison and Hinkley, 1997, p.

29). Agreement between the two distributions ensures that the coverage of the

interval estimator converges faster to 1− α.

For some estimators, the distribution of bootstrapped estimates directly con-

tributes to the limits via the α/2 and 1 − α/2 percentiles of z∗ or h∗. This

applies to the studentised, the basic and the percentile methods. Thus when

parameter estimation is problematic (for example, when estimating some val-

ues of p close to the boundaries i.e. 0 and 1), the corresponding empirical

distribution generated from the bootstrapped estimates does not closely agree

with the population distribution, leading to poor coverages for these three

estimators.

In contrast, the critical value associated with the normal approximation is not

recovered from the distribution of the estimates (for example from the distri-

bution of h∗), but is obtained from the inverse cumulative distribution function

for the (standard) normal distribution. However, the normal approximation

outperforms all others when estimating p. We examined the distribution of

the bootstrap estimates of p from the GGF data. The assumption of normal-

ity of the bootstrap distribution appeared to be reasonable in this case. This

would imply that, on average, we would expect the normal CI to do very well,

certainly better than the basic and percentile methods.
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The poor estimation of p from our model may be attributed to the assumption

of constant detectability across sites and survey occasions. The assumption

of constant detectability is unlikely to be true for many species, so this would

pose a problem for a great host of ecological studies. A model that allows for

heterogeneous detections between survey occasions, and even amongst sites,

may lend itself to better estimates for p. A number of studies have developed

models, such as a logistic regression (MacKenzie et al., 2002) or finite mixture

models (Royle and Nichols, 2003), which allow for heterogeneity in p. In

Chapter 4, we propose models for these scenarios using a partial likelihood

approach, and introduce a model based on a conditional likelihood function.

For the overdispersed data resulting from resampling the GGF detection his-

tory matrix, the studentised and percentile estimators work best for ψ and p

alike. The reasons are similar to those which apply to the large simulation

study. Specifically, pivotal quantities are less influenced by overdispersion be-

cause they are scale-free. Thus for the overdispersed data in particular, the

empirical distributions derived from pivotal quantities will more closely agree

with the true probability distribution compared to, say, the normal approxi-

mation which assumes an underlying normal distribution. Consequently the

basic method produced inconsistent coverages which were below nominal for

ψ and above for p. This is possibly because it relies solely on the distribution

of the bootstrap estimates and it does not include the variation from within

the detection matrix in its estimation process. Referring to our approach for

evaluating the interval estimators described earlier (Section 3.3.2), the studen-

tised estimator outperformed the percentile when the data were overdispersed

because it includes the variability of the detection matrix in the pivots.

We expected that an increase of information would produce coverages closer to

the nominal level and narrower interval widths. Coverages for ψ approached

the nominal level and average interval widths narrowed as we accrued infor-

mation about occupancy, as the probability of presence approached one. In

contrast, we found for p that as the number of detections increased, i.e., as

the probability of detection improved, the average interval width narrowed

(Figures 3.1b and 3.2b).

We observed these patterns when exploring interval widths and associated cov-

erages for the simulations not assuming overdispersion. This is not unlike the

case study, where we found that interval widths produced for detectability,

irrespective of interval estimator, were considerably narrower than for occu-

pancy. We also found via simulations without overdispersion that the narrower
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interval widths corresponding to detectability, in contrast to occupancy, are

misleading in that they gave coverages for detectability which are substantially

below the nominal level, even below 0.9 in some instances. Contrary to what

we expected, the decline in coverage as detectability improved could be indi-

cating a difficulty in accurately estimating detectability. When the data were

overdispersed, the coverage for p was above nominal for all except the normal

method. It should be noted though that the estimate for p was high for the

GGF data (p̂ = 0.78), whereas coverages for the non-overdispersed study were

averaged over values of p ranging from 0.4 to 0.8.

When N is adequate (> 10), we recommend using the studentised estimator for

ψ as it provides more consistent coverage than the other estimators, generally

generating coverages at, or above, nominal, and that will be above λ(= 0.934)

i.e. the approximate upper limit that will include 0.95 in their 95% CI. It

provided intervals which appropriately reflect the small sample size for N . We

have demonstrated that the basic method is not appropriate for this likelihood.

The normal approximation gives a better result for occupancy compared to

detectability. Importantly, the normal approximation appears to perform best

when estimating p and second worst, after the basic, when estimating ψ for

the non-overdispersed study. The studentised method is reliable, in that it

produced the most consistent coverages along the range of values for ψ and p,

for a moderate sample size (N > 25) even when there are few survey occasions

(T = 4, 5 or 10), but the same does not apply for small sample sizes (N 6 10).

The studentised pivot incorporates the spread of the empirical distribution by

using an estimate of the variance in constructing confidence limits, a difference

from its percentile counterpart. As a result the intervals from the studentised

estimator were wider in this study. In Chapter 2 we found that the asymp-

totic variance underestimates the actual variance. Also that summaries in this

chapter are averaged of the entire range for ψ and p which may have affected

results, as seen in Chapter 2, that plausibility for estimation and accuracy of

estimation are affected by the level for ψ and p (for example see Section 2.3.3).

For example, the expectation for occupancy is not always monotone increasing

(Section 2.5.3). Plus, the boundary problems when directly maximising the full

likelihood prevents convergence. This is investigated and evaluated in detail

in Chapter 4. This, coupled with the fact that its coverages are consistently

closest to nominal levels, suggests that the studentised estimator is correctly

adjusting for the effects of bias and nonconstant variance inherent in the esti-

mators of ψ and p, and asymmetry in the underlying distributions. Such an
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observation is consistent with the studentised method providing second-order

accuracy, unlike the percentile, basic and normal approximation, which provide

first-order accuracy (Davison and Hinkley, 1997, pp. 212-4). Consequently,

coverages from the studentised method did not fall below the nominal level,

although they did for the other three estimators in the simulation study.

In the simulation study, the percentile method closely followed the studentised

estimator with respect to coverages approaching nominal levels. Of the esti-

mators we explored, the studentised and percentile estimators outperformed

the others. The percentile method coverages were not as conservative as those

resulting from the studentised method, but did fall below nominal, and its in-

tervals were generally narrower. In other instances, when N and s were small

(10 and � 1000 respectively), interval estimates could not be produced for

the studentised and normal approximation. We could not elicit the asymp-

totic variances from the hessian matrix since it was not invertible in these

instances. This occurred for scenarios of the simulation study and for the

GGF case studies. However, the percentile method always produced interval

estimates.

From our simulation studies, we found that the magnitude of N has a different

effect on occupancy than it has on detectability. An increase in N increases

the amount of information provided to the likelihood. A larger N is needed for

an improvement in accuracy when estimating detectability p than is required

for estimating ψ. This is possibly because for a fixed number of individuals at

a site, or a fixed density of presence of a species on a site, we detect a fraction

of these. Consequently, more information is known for the patterns of presence

than detection for a fixed size of N .

Our simulation results do not align with the asymptotic variance estimators as

provided by Guillera-Arroita et al. (2010), who showed that, asymptotically,

N should have the same effect upon p as it does on ψ. However, it is possible

that the sample sizes that we considered operationally realistic are too small

to reflect the asymptotic results.

Our results were unreliable for a small sample size i.e., when we sampled

N = 10. For a large number of the bootstrap replicates the likelihood did not

converge so there were not enough simulated confidence intervals from which to

accurately estimate coverage; the number of successful simulations was small.

In summary, s affects the accuracy of the interval estimator, or coverage, and N

affects the accuracy of the occupancy (or detectability) estimator, as reflected
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by the width of the confidence interval. Our results for small N are consistent

with findings from other studies, in which the estimator properties depart from

those predicted by large-sample approximations (Wintle et al., 2004; Guillera-

Arroita et al., 2010).

We also found problems with convergence for values of ψ and p close to their

boundaries (results not shown here). It is known that for some data sets, max-

imisation of this likelihood function may result in estimates of occupancy that

are greater than 1 (MacKenzie et al., 2006; Guillera-Arroita et al., 2010, p. 95).

The likelihood does not implicitly constrain the estimates of the probabilities

to fall between 0 and 1 (MacKenzie et al., 2006, p. 95). Consequently, our

results include only those estimates for ψ and p which happen to lie within the

boundaries. Issues of nonconvergence need to be overcome for more definitive

comparisons between these interval estimators. As mentioned previously, a

transformation onto an alternative scale not bounded between 0 and 1 may

help overcome this issue (see Section 3.2.1). Alternatively, models could be

explored which are appropriate for presence-absence data (Wintle et al., 2004;

Holzmann et al., 2006; Dorazio, 2007). Another option includes making ad-

justments directly to the likelihood function we have used here. We explore

some models in the next chapter and extend existing models using partial

likelihoods, incorporating covariates.

Convergence rates may also have been compromised by the choice of the max-

imisation process. Here, we used a Newton-Raphson type algorithm for max-

imising the likelihood, which may account for some problems with convergence

(Nelder and Mead, 1965). This algorithm works best when the gradient of the

profile likelihood is sufficiently steep. The likelihood function we used could

be quite flat for some parameter combinations. It might be useful to explore

alternative maximisation algorithms for this likelihood function, although that

is beyond the scope of this study. For example, the L-BFGS-B maximisation

algorithm of Byrd et al. (1995), a modified BFGS quasi-Newton method, has

been used by Haas and Stokes (1998) and Hwang and Shen (2010) to overcome

problems with convergence.
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Chapter 4

A partial likelihood approach

for modelling occupancy with

covariates

4.1 Overview

In this chapter we focus on using partial likelihoods for occupancy and de-

tectability to analyse complex data structures using standard modelling tech-

niques.

In Chapters 2 and 3 we identified and explored in detail some problems con-

cerning the full likelihood approach to the occupancy model. These are known

challenges and have been explored by, for example, Wintle et al. (2004);

Guillera-Arroita et al. (2010); Welsh et al. (2013); Karavarsamis et al. (2013).

In particular, Welsh et al. (2013) and in Chapter 3 of this thesis (the work pub-

lished in Karavarsamis et al. (2013)) illustrate that there are many problems

associated with using methods based on the full likelihood to fit occupancy

models. For example, there are issues of identifiability when the estimates

exceed 1 or are near the boundary of the parameter space, as were addressed

in Chapters 2 and 3. And, these issues persist if we wish to include covariates

(Welsh et al., 2013). We show that by using partial likelihood and basing

inference for the detection probabilities on the redetections we may overcome

many of these problems. The resulting models can include both parametric

and nonparametric covariates using standard GLM methods.

Partial likelihood techniques are often used to simplify complex likelihoods.

93
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Here we exploit this approach to partition the likelihood into two partial like-

lihoods. We then use the first to estimate what are essentially nuisance pa-

rameters (detectability) in the second and finally estimate the quantities of

interest, which here are the occupancy probabilities. We show how sophisti-

cated models can be more easily applied using a partial likelihood approach.

Whilst with the basic occupancy model it is not computationally simple to

estimate occupancy ψ and detection p when covariates and complex models

are involved we show that this can be easily done using a partial likelihood

approach.

By using a partial likelihood approach we are able to directly and fully explore,

and model, characteristics of the data. For example, we can make use of

GLMs and GAMs to fit parametric and nonparametric functional relations.

The use of standard GLM methods allows the use of iteratively reweighted

least squares, rather than nonlinear optimisation, which yields computationally

efficient stable estimates.

A particular advantage is that we can first focus on the modelling of the detec-

tion probabilities then, once this is complete, move to modelling the occupancy.

As we shall see in the two-stage procedure that we propose, estimation of the

detection probabilities is through a standard GLM and hence the full range of

GLM modelling methods are available. This is discussed in Section 4.4.2.

We begin the chapter with a review of existing methods and provide a moti-

vation for the methods we go on to develop (Section 4.2).

In Sections 4.3, 4.4, 4.5, and 4.6, we introduce some new theory. We evaluate

this with a range of simulation studies and with several real applications. We

apply our methods to the motivating frog data and two sets of fish data, using

standard software.

In Section 4.3 we first outline the theory of partial likelihood for the homo-

geneous case that assumes constant ψ and p among sites and for all survey

occasions. We compare the homogeneous partial likelihood approach to direct

maximisation of the full likelihood (as shown in Chapter 3) via simulations and

real data. We first compare these to the MLE equations for the full likelihood

derived in Chapter 2. We use simulations to evaluate the efficiency for these

approaches.

In Section 4.4 the homogeneous partial likelihood function is extended to al-

low for site inhomogeneity. The site inhomogeneous likelihood function permits



4.1. OVERVIEW 95

site occupancy and detectability to vary among sites, but still remain constant

within sites i.e. over survey occasions. We consider three approaches to es-

timate occupancy for the site inhomogenous likelihood. The first is a direct

maximisation of the partial likelihood, the second is via an iterative approach

that involves an offset (in the likelihood), and the third, is through a ratio

estimator for ψ. We compare these approaches with a number of simulation

studies and applications to real data. Again we compare our approach to

existing approaches.

Then, in Section 4.5 we develop a partial likelihood for time dependent co-

variates for estimating detection probabilities. Here detection is modelled as

a function of covariates that vary with sites and time occasions. Occupancy is

supposed constant within sites but may vary among sites.

For all estimators for occupancy and detectability that we propose, we also

derive approximate standard errors. We exploit asymptotic theory for these

derivations, and examine their consistency and efficiency using simulations

and real data. We also assess their performance against some typical variance

approximations that involve bootstrapping or are based on Bayesian methods,

discussed in Section 4.2.

For the homogeneous case (Section 4.3), we show that our variance estimator

for occupancy perform well compared to the asymptotic estimator for the full

likelihood. In Chapter 2 we showed that the asymptotic standard error for

ψ from the basic occupancy model is unreliable and seriously underestimates

the actual variance. Comparisons in Section 2.5.4 of exact and asymptotic

variance, and MSE, are shown in Figures 2.9 and 2.10, for example. And, in

Chapter 3 we compared the asymptotic estimator to bootstrap based methods

(this work is published in Karavarsamis et al. (2013)).

For the site inhomogeneous case (Section 4.4), we derive approximate standard

errors for use with GLMs and adapt these for use with GAMs. We show these

approximations to be reliable and to perform at least as well, if not better

under certain conditions, than those for the full likelihood.

The advantage of the estimator we propose in this chapter, is that it relies on

the data i.e. on the redetections that are recorded, whereas the score equation

of the full likelihood requires an approximation for θ̂, that is typically a numer-

ical approximation. For example, the Solver function in Excel or uniroot in

R may be used (MacKenzie and Hines, 2009; Fiske and Chandler, 2011, etc.).
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Recall from Chapter 2 that p̂/θ̂ = y/ {(S − f0)τ}1, where θ̂ = 1 − (1 − p̂ )τ )

where we used both computer functions. In addition, our methods will work

easily and readily in R, thus on many computer platforms, whereas the stan-

dalone software PRESENCE by (MacKenzie and Hines, 2009) is not so easily run

on Apple Computers.

[Note: In this chapter we adopt alternative notation to easily express equations

for complex covariate structures. We believe this change will make the notation

concise and neat. It will be made clear throughout the chapter when the

notation is altered.]

4.2 Review of methods and motivation

Modern statisticians have become accustomed to using methods such as Gen-

eralized Additive Models (GAMs; Hastie and Tibshirani (1990); Wood (2006))

as a matter of common practice. These are readily implemented in the gen-

eralized linear model (GLM) framework. However, their extension to settings

such as occupancy models is difficult and can require extensive computer pro-

gramming.

The basic occupancy model (or full likelihood) simultaneously estimates occu-

pancy and detectability, which is considered a nuisance parameter (e.g. Hall,

2000; MacKenzie et al., 2002; Tyre et al., 2003). A standard method of han-

dling nuisance parameters is the profile likelihood but as with the full likeli-

hood this would require the writing of specialist programs that do not take

advantage of available methods for generalized linear models. In particular,

fitting GAMs to both detection and occupancy probabilities would become a

fearsome computational task. We note that in occupancy models there are

repeated observations at each site so that there is more information on the

detection probabilities than on the occupation probabilities. Thus, it may be

advantageous to gain computational efficiency at the cost of some small loss

of efficiency in estimating the detection probabilities.

In GAMs there may be a large number of parameters to estimate given there

are two functions that must be simultaneously estimated. Partial likelihoods

are particularly appealing because they result in a simple binomial model that

can be fitted with the common logistic function, the logit link which is com-

monplace in all modelling software packages.

1S ≡ N , τ ≡ T and f0 = N − k
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Partial likelihood was initially developed in Cox (1975) and the theory is well

developed (e.g. Wong, 1986; Gill, 1992). In order to use GLMs in both stages

of estimation we adopt this approach to occupancy models by using the re-

detections after the first detection to estimate the parameters in the model

for the detection probabilities. This is the first stage of the analysis and the

second partial likelihood. These practices have been adopted for some time

now, for example in Yip et al. (1996); Pledger et al. (2003). Stoklosa et al.

(2011) showed they are useful in capture-recapture models with covariates,

where they are readily implemented.

We may also conduct inference on the detection probabilities by conditioning

on at least one detection at a site. We refer to this as the conditional likelihood

and call the approach based on redetections the partial likelihood. The condi-

tional likelihood can be implemented as vector generalized linear or additive

models (VGLM VGAM) but these are not yet as well developed as GLM and

GAM methods and we do not emphasise this approach here.

In some cases, we can compare our methods to corresponding models using

the full likelihood via the unmarked R package, and also to the stand alone

PRESENCE software for occupancy models (Fiske and Chandler, 2011; MacKen-

zie and Hines, 2009; R Development Core Team, 2009). Both these products

may fit a range of similar occupancy models. In particular we use the occu

procedure in unmarked which fits the ‘single season occupancy model’ by max-

imising the full likelihood and obtains standard errors from the observed in-

formation matrix, as described in MacKenzie et al. (2002, 2006); Royle and

Dorazio (2008); Fiske and Chandler (2011).

4.3 Homogeneous case

4.3.1 Estimating detection and occupancy

We begin by considering the homogenous case as this allows us to examine the

efficiency of the two-stage approach. Consider S sites labelled s = 1, . . . , S and

τ occasions at each site where the presence of a species may be observed. Let

ψs be the probability that site s is occupied and let ps be the probability the

species is observed on a given occasion given it is present. For the homogeneous

case we consider that occupancy and detection are constant, ψs ≡ ψ and

ps ≡ p.
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Denote by ys
2 the number of occasions upon which the species was detected

at site s. Let s = 1, . . . , O denote the sites at which at least one detection

occurred and let as be the first time upon which a detection occurred. Then

bs = τ −as is the number of occasions after the first detection and b =
∑O

s=1 bs

is the total number of occasions upon which species could be redetected, over

the O sites with any detections. Finally, let f0 be the number of sites at which

no detections occurred and so S−f0 is the number of sites with any detections3.

The full likelihood4 may be re-written,

L(ψ, p) ∝ (1− ψ + ψ(1− p)τ )f0
O∏
s=1

ψpys(1− p)τ−ys

= (1− ψ + ψ(1− p)τ )f0ψS−f0
O∏
s=1

(1− p)as−1p
O∏
s=1

pys−1(1− p)bs−ys+1

= L1(ψ, p)L2(p). (4.1)

where

L1(ψ, p) = (1− ψ + ψ(1− p)τ )f0ψS−f0
O∏
s=1

(1− p)as−1p

= (1− ψθ)f0ψS−f0
O∏
s=1

(1− p)as−1p, (4.2)

and

L2(p) =
O∏
s=1

pys−1(1− p)bs−ys+1 = py−O(1− p)b−(y−O). (4.3)

Here y =
∑O

s ys is the number of total detections for the history matrix5 and, as

usual, θ = 1−(1−p)τ is the probability of at least one detection. Occupancy, ψ,

is only involved in the first component L1(ψ, p). The first component L1(ψ, p)

also includes the probability of first detection. The second component L2(p)

only involves the detection probability p.

2Previously defined as xi �, i.e. xi � ≡ ys.
3Changes to the notation from earlier chapters: N − k = f0 where S ≡ N and O ≡ k.
4Referred to also as the basic occupancy-detectability (BOD) model. A full derivation

was given in Section 2.2
5y ≡ x.
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Thus, maximising L2(p) yields

p̂ =
y −O
b

, (4.4)

the ratio of the number of redetections over the number of remaining visits

after the first detection. The estimator for p given here differs to that derived

from the full likelihood (see Equation (2.10) of Section 2.3.1 in Chapter 2) since

this version is estimated from the redetections, whereas the full likelihood also

includes the first detection. The advantage of the current estimator, is that it

relies on the data i.e. on the redetections that are recorded, whereas the score

equation of the full likelihood requires an approximation for θ̂, that is typically

a numerical approximation.

To estimate ψ we maximise L1(ψ, p̂) as a function of ψ. This yields

ψ̂ =
S − f0

Sθ̂
(4.5)

which is equivalent to the score equation of the basic occupancy model (ψ̂ =

k/Nθ̂) given in Equation 2.10 of Section 2.3.1 in Chapter 2. Thus in the

homogeneous case, the estimators have simple closed forms. By construction,

0 6 p̂ 6 1 and to have ψ̂ < 1 we require the simple condition that f0 >

S(1− p̂ )τ . Note that ψ̂ given by (4.5) is a ratio estimator i.e.
(S − f0)/S

θ̂
etc..

Furthermore, note that this estimator ignores any information on p from first

detections. The advantage is that we have two simple closed form estimators.

4.3.2 Standard error for detection

The variance of p̂ is derived from the partial likelihood L2(p) in Equation (4.3).

The distribution for the number of detections conditional on the first detec-

tion is
(
y −O

∣∣ b) d
= Binomial(b, p) so that E

(
p̂
∣∣ b) = E

{
(y −O)/b

∣∣ b} =

E
(
1/b
∣∣ b)E (r ∣∣ b) = p with variance Var

(
p̂
∣∣ b) = p(1 − p)/b. The variance

for detectability is given by the standard property Var(p̂ ) = E
{

Var(p̂
∣∣ b)} +

Var
{
E
(
p̂
∣∣ b)}. Now, Var

{
E
(
p̂
∣∣ b)} = Var(p) = 0, and E

{
Var(p̂

∣∣ b)} =

E {p(1− p)/b} = p(1−p)E (1/b) which gives Var (p̂) = p(1−p)E (1/b). Thus

we estimate the variance of p̂ by S2
p = p̂ (1− p̂) /b.

We verify by simulations in Section 4.3.5 this expression for the variance of p̂

that we derived here.
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4.3.3 Standard error for occupancy

Now, f0 ∼ Binomial(S, 1 − ψθ) 6 where E(f0) = S(1 − ψθ), ψ̃ = ψ̂(a) =

(S − f0)/(Sθ) so that if p and hence θ are known E(ψ̃) = ψ and Var(ψ̃) =

ψ(1− ψθ)/(Sθ).

We use a Taylor expansion for ψ̂ = (S − f0)/Sθ̂ = ψ̃θ/θ̂. Firstly,

θ̂ ≈ θ̂(p) + θ̂′(p)(p̂− p)

= θ + τ(1− p)τ−1(p̂− p) (4.6)

where θ̂(p) = 1− (1− p)τ = θ and θ̂′(p) = ∂θ̂/∂p = τ(1− p)τ−1. Then,

ψ̂ ≈ ψ̂(θ) + ψ̂′(θ)(θ̂ − θ)

=
S − f0

Sθ
− (S − f0)

Sθ2
(θ̂ − θ)

= ψ̃ {1− (θ̂ − θ)
θ
}

≈ ψ̃

{
1− τ(1− p)τ−1(p̂− p)

θ

}
(4.7)

where ψ̂′(θ) = ∂ψ̂/∂θ = −(S − f0)/Sθ2. Alternatively, the expansion for ψ̂

may be found directly in terms of p, where ψ̂ ≈ ψ̂(p) + ψ̂′(p)(p̂ − p), and

ψ̂′(p) = (S − f0)θ′/Sθ2.

Then noting that E
(
ψ̂
∣∣ b, S − f0

)
≈ ψ̃ and E(ψ̃2) = ψ(1 − ψθ)/(Sθ) + ψ2

((4.30) and (4.31), see Appendix 4.9.1 for detailed derivations) yields

Var(ψ̂
∣∣ b, S − f0) ≈ E(ψ̂2

∣∣ b, S − f0)−
{
E(ψ̂

∣∣ b, S − f0)
}2

≈
(
ψ(1− ψθ)

Sθ
+ ψ2

){
1− 1

θ2
Var(θ̂

∣∣ b, S − f0)

}
− ψ̃2

≈ ψ̃2τ 2(1− p)2(τ−1)

θ2
Var(p̂

∣∣ b, S − f0). (4.8)

The derivation for the conditional squared expectation, E(ψ̂2
∣∣ b, f0), and for

Var(θ̂
∣∣ b, S − f0) can be found in Appendix 4.9.2.

To find an approximation to the variance of ψ̂ we condition on b (= the number

of remaining visits after the time of first detection) and S− f0 (= the number

6Note the similarity to K
d
= Bi(N,ψθ) as derived in Chapter 2 (Equation (2.31), Sec-

tion 2.5.2), and can be re-written N −K d
= Bi(N, 1− ψθ), where N ≡ S and K = S − f0.
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of detected sites). Then

Var(ψ̂ ) = Var
{
E
(
ψ̂
∣∣ b, S − f0

)}
+ E

{
Var

(
ψ̂
∣∣ b, S − f0

)}
≈ ψ(1− ψθ)

Sθ
+

(
ψ(1− ψθ)

Sθ
+ ψ2

)
τ 2(1− p)2(τ−1)

θ2

p(1− p)
b

,

(4.9)

where Var(ψ̃) was derived above and a detailed derivation for Var(ψ̂ ) is given

in Appendix 4.9.3

Recall the asymptotic variance given by MacKenzie et al. (2002) (Equation

(2.28), Section 2.4 of Chapter 2) as well as the exact variance that we derive

in Chapter 2 (Equation (2.44), Section 2.5.4 of Chapter 2). We compare these

asymptotic variances to that of the partial likelihood in the following sections.

4.3.4 Comparisons

Here, we conduct a small simulation study to compare four methods for es-

timating occupancy and detectability for the site homogenous case. We use

the partial likelihood, and four methods for the full likelihood. These include,

direct maximisation of the full likelihood with: 1) the optim procedure in R

with our methods from Chapter 3, 2) the occu procedure in the R unmarked

package that also implements optim. Then, with 3) the score equations (Equa-

tions (2.10)) or Edge solutions (Section 2.3.2) of the full likelihood given in

Chapter 2, and 4) the ‘single-season-constant-p’ model in PRESENCE (MacKen-

zie and Hines, 2009). We simulate from two populations for S = 28 sites over

τ = 10 survey occasions. The results are presented in Table 4.1. As usual, the

full likelihood based estimators are not in closed form and require a numerical

approximation for θ̂ to obtain p̂ and ψ̂. We adopt uniroot in R to use with

optim.

4.3.5 Efficiency

To examine the efficiency of the partial likelihood approach, we simulate an

experiment and compute the full and partial likelihood estimates. We use

optim slightly differently from Section 4.3.4 for direct maximisation of the full

likelihood. This method uses the partial likelihood estimates as starting values

for ψ̂ and p̂ in the full likelihood direct maximisation. The standard errors of
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τ = 10

ψ̂ p̂

Partial 0.794 0.530

optim 0.794 0.526

Edge solutions 0.794 0.526

PRESENCE 0.794 0.526

unmarked 0.794 0.526

Table 4.1: Comparison of the homogeneous partial likelihood estimates to
estimates from three methods for the full likelihood.

the full maximum likelihood estimates were computed using the numerically

computed observed information matrix. We conducted 1000 simulations at

each step. Results are shown in Table 4.2. We report the medians of the

estimated values and the associated standard errors and the median absolute

deviation (MAD) of the estimates, given by MAD = c × median (|xi − xM |),
where c = 1/Φ(−1)(3/4), Φ(−1)(3/4) is the third quartile of the inverse stan-

dard normal distribution, and xM is the median of xi. The efficiency is the

usual ratio of variances. In neither method is there any indication of bias,

both estimated standard errors appear reliable and the efficiency of the partial

likelihood method for ψ is above 90%. In settings with smaller values of p

or S, the stability of the full likelihood estimators was an issue so we do not

consider them further in the simulations.

Partial Full Partial Full

p̂ ψ̂ p̂ ψ̂ p̂ ψ̂ p̂ ψ̂

S = 1000, τ = 5 0.100 0.400 0.100 0.400 0.050 0.400 0.050 0.400

Median estimate 0.100 0.401 0.100 0.402 0.049 0.411 0.049 0.413

Median s.e. 0.016 0.058 0.015 0.057 0.016 0.128 0.015 0.123

MAD 0.015 0.060 0.015 0.057 0.016 0.128 0.016 0.127

Efficiency 0.915 0.925 0.957 0.991

S = 100, τ = 5 0.200 0.400 0.200 0.400 0.200 0.600 0.200 0.600

Median estimate 0.199 0.405 0.197 0.411 0.198 0.609 0.197 0.609

Median s.e. 0.049 0.091 0.045 0.088 0.040 0.106 0.037 0.101

MAD 0.051 0.093 0.045 0.089 0.039 0.103 0.036 0.101

Efficiency 0.801 0.914 0.843 0.909

Table 4.2: Simulation results to compare the partial likelihood and full likeli-
hood approaches.
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To examine the effects of small probabilities and different numbers of occasions,

we took S = 100, p = 0.05, ψ = 0.6 and τ = 5 or τ = 10 for 1000 simulations.

Results are summarised in Table 4.3 where we only report for simulations that

satisfy f0 > S(1 − p̂ )τ since this ensures that ψ̂ < 1 by construction of the

estimator (Equation (4.5)). There is evidence of some bias for small values of

p and small τ which are consistent with findings from Chapters 2 and 3, and

from findings of published studies as discussed previously (e.g. Wintle et al.,

2004; Guillera-Arroita et al., 2010).

τ = 5 τ = 10

p̂ ψ̂ p̂ ψ̂

Value 0.050 0.600 0.050 0.600

Median estimate 0.067 0.475 0.052 0.587

Median s.e. 0.046 0.326 0.020 0.208

MAD 0.031 0.227 0.017 0.182

Table 4.3: Simulations of the interative estimator with S = 100 sites and small
values of p (p = 0.05, ψ = 0.6).

Finally, we took S = 27, τ = 4, ψ = 0.6 and p = 0.6, which is similar to

the values in the frog application (Section 4.3.6). The results are reported in

Table 4.4. In this setting, the estimator again performs well.

Partial Full

p̂ ψ̂ p̂ ψ̂

Value 0.600 0.600 0.600 0.600

Median estimate 0.600 0.604 0.600 0.604

Median s.e. 0.078 0.097 0.066 0.097

MAD 0.078 0.104 0.065 0.105

Efficiency 0.709 0.991

Table 4.4: Simulations with a small number of sites (S = 27), small number of
occasions (τ = 4) and large values of p are comparable to those in the example
(p = 0.6, ψ = 0.6).

The conclusion from our small simulation study is that the two-stage partial

likelihood approach has quite good efficiency to estimate ψ compared with

the full maximum likelihood approach, and as there are analytic forms for the

estimators they are more stable than the full maximum likelihood estimators.
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4.3.6 Applications

We apply the partial likelihood approach to the frog data and compare this to

the full likelihood approach.

The partial likelihood equations give p̂ = (y−O)/b = (47−15)/36 = 0.889 with

standard error 0.052 and ψ̂ = (S − f0)/(Sθ̂ ) ≈ 15/27 = 0.556 with standard

error 0.096. Here θ̂ is close to 1. Recall that in Section 2.3.1 of Chapter 2 we

found θ̂ = 1− (1− p̂ )τ = 0.997.

The full likelihood yields estimates p̂ = 0.782 with standard error 0.054 and

ψ̂ = 0.557 with standard error 0.096. These were generated in the usual way,

direct maximisation of the likelihood with the optim procedure in R (described

in Chapter 3) and starting values from the partial likelihood.

Some of the difference in the estimates of p̂ may be explained by the estimators

themselves. The partial likelihood considers redetections, whereas the full

likelihood incorporates information from the first detection. So it may be

that there is some difference between the probability of detection between

the first, and subsequent detections. Moreover, it is possible that a more

accurate estimate for detection could be reached if detection probability was

not assumed constant between visitations, or among sites. We will explore

these scenarios in the following sections.

An alternative approach to estimating the detection probabilities is to condi-

tion on at least one detection at a site. This may be implemented in VGLM and

when applied to the sample data gave p̂ = 0.783, which agrees more closely

with the full likelihood estimate. We examine the conditional likelihood in

Section 4.6.

When applied to the Coosa bass data, the two-stage method yielded p̂ = 0.83

with estimated standard error 0.03 and ψ̂ = 0.78 with estimated standard error

0.06. The full likelihood yielded p̂ = 0.80 with estimated standard error 0.03

and ψ̂ = 0.78 with estimated standard error 0.06. Implementing conditional

likelihood via VGLM gave p̂ = 0.80 when applied to these data.

When applied to the brook trout data, we obtained p̂ = 0.54, with estimated

standard error 0.07 and ψ̂ = 0.46 with estimated standard error 0.07. The full

likelihood yielded p̂ = 0.53 with estimated standard error 0.06 and ψ̂ = 0.46

with estimated standard error 0.07. Implementing conditional likelihood via

VGLM gave p̂ = 0.59 when applied to these data.
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These three applications indicate good agreement between the partial likeli-

hood and full likelihood estimates.

4.4 Site inhomogeneity

The homogeneous model assumes that ψ and p remain constant across sites

and survey occasions. Of more interest, and relevance to practical situations, is

when occupancy and detectability are allowed to vary between sites according

to some covariates.

Thus, we extend the theory of the basic (homogeneous) partial likelihood func-

tion to allow the occupancy and detection probabilities to vary among sites

according to observable covariates. It is possible to compute a full likelihood

over both occupancy and detection probabilities, but, particularly if semipara-

metric models are used, the number of parameters in the likelihood could

become quite large. As we observed in the simple homogeneous model that

the full likelihood can be numerically unstable, and taking into account the

observations of Welsh et al. (2013), here we extend the two–stage approach.

As mentioned earlier we consider three approaches to estimating occupancy in

the presence of site inhomogeneity. In all approaches the detection probabilities

are estimated in the first stage using GLM or GAM. A direct maximisation of

the partial likelihood L1(ψ, p) of the second stage is presented in Section 4.4.3.

An iterative approach is developed in Section 4.4.3 and finally a ratio estimator

is developed in Section 4.4.4. In Section 4.4.5 we show how the iterative

approach may be extended to incorporate GAMs using the R mgcv package.

4.4.1 Notation and the likelihood

Now let ψs = h(xTs α) where h is for example the logistic function h(x) =

(1 + exp(−x))−1 for a vector of covariates xs ∈ Rqψ and a vector of parameters

α ∈ Rqψ . We also allow the detection probabilities to depend on covariates,

ps = p(us, β) = h(uTs β) for a possibly different vector of covariates us ∈ Rqp

and parameters β ∈ Rqp . Recall ys is the number of occasions upon which the

species was detected at site s, zs = I(ys = 0)7 is the indicator of no detections

at site s and for ys > 0 let rs = ys − 1 be the number of redetections at

site s. Further, recall we have labelled the sites where at least one individual

7In chapter 2 we defined ui = I(xi � > 1)⇒ zs = 1− ui (i ≡ s)



106 CHAPTER 4. A PARTIAL LIKELIHOOD FOR OCCUPANCY

was observed 1, . . . , O. In the heterogeneous case, (4.1)-(4.3) are modified to

incorporate heterogeneity and now the contribution to the full likelihood of

site s is

Ls(ψs, ps) = (1− ψs + ψs(1− ps)τ )zs
{(

τ

ys

)
ψsp

ys
s (1− ps)τ−ys

}1−zs

∝ (1− ψsθs)zsψ1−zs
s

{
ps(1− ps)(as−1)

}(1−zs) {
p(ys−1)
s (1− ps)bs−ys+1

}(1−zs)

= L1s(ψs, ps)L2s(ps) (4.10)

where

L2s(ps) =
{
p(ys−1)
s (1− ps)bs−ys+1

}(1−zs)
(4.11)

and

L1s(ψs, ps) = (1− ψs + ψs(1− ps)τ )zsψ1−zs
s

{
ps(1− ps)(as−1)

}(1−zs)

= (1− ψsθs)zsψ1−zs
s

{
ps(1− ps)(as−1)

}(1−zs)
(4.12)

4.4.2 Estimating detection

The partial likelihood for the parameters β, associated with the redetections

rs is

L2(β) =
O∏
s=1

p(us, β)rs(1− p(us, β))bs−rs (4.13)

where s = 1, . . . , O denotes the sites where at least one individual was observed.

Then L2(β) corresponds to a binomial model so that β may be estimated

by considering redetections over the sites where at least one individual was

observed. We denote its estimate by β̂ and its estimated covariance matrix by

V̂β.

In particular, we may fit generalized linear models (GLMs) or generalized

additive models (GAMS) to the redetections using standard software.

It is convenient to note here that if there were at least one detection at a

site, the score equations for β would involve the differences rs − bsp(us, β),

which have mean zero given at least one detection. If there were no detections

at a site, then both bs = 0 and rs = 0, so E(rs − bsp(us, β)|zs) = 0 and
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the partial score equations for the detection probabilities and the occupancy

probabilities are hence uncorrelated. A similar argument applies to inferences

based on a likelihood conditional on at least one detection at a site. That is,

the conditional score function is also uncorrelated with the partial likelihood

for occupancy and hence their development is a relatively minor extension of

the present approach. In the literature if this occurs for the full likelihood

these parameters are referred to as orthogonal (Cox and Reid, 2004). We raise

this in the conclusion (Section 4.8).

4.4.3 Estimating occupancy using partial likelihood

Suppose we have obtained estimates of θs = 1 − (1 − ps)
τ for site s, where

typically the ps are estimated using the partial likelihood Section 4.4.2. To

estimate ψs we estimate the coefficients α by maximising the partial likelihood∏S
s=1 L1s(ψs, p̂s).

4.4.3.1 Likelihood and standard error

Let, ps = ps(β) be the detection probabilities ps. Then the portion of the

partial likelihood that involves the ψs is

L(α, β) =
S∏
s=1

L1s(ψs, β) ≈
S∏
s=1

(1−ψs+ψs(1−ps)τ )zsψ1−zs
s =

S∏
s=1

(1−ψsθs)zsψ1−zs
s .

Let α̂(β) be the estimator of α arising from solving Q(α, β) = 0 for a given β.

Denote the partial score function by Q(α, β) = ∂`(α, β)/∂αT ; the second par-

tial derivative with respect to α by I(α, β) = ∂Q(α, β)/∂αT ; and the partial

derivative with respect to β by B̃(α, β) = ∂Q(α, β)/∂βT . We use these quan-

tities to derive the expressions for the asymptotic variance of our estimators in

the linear logistic case. Specifically, we will derive the variance for α̂(β̂) under

mild regularity conditions.

Let α0 and β0 be the true values of α and β respectively. Suppose that β̂

is a consistent estimator for β arising from the first stage. We suppose that

for some qs × qs matrix B(α, β) and for convergence in probability, or almost

surely,

S−1∂Q(α0, β0)

∂βT0
→ B(α0, β0)
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and we further suppose that for some qo × qo matrix A(α, β),

S−1I(α0, β0) = −S−1∂Q(α0, β0)

∂αT0
→ A(α0, β0),

where I(α, β) = −∂Q(α, β)/∂αT . Moreover, we suppose that the central limit

theorem (CLT) is applicable to Q(α0, β0) and

S−1/2Q(α0, β0)
d−→ N(0,ΣQ).

This will often follow if the sites are independent (see Appendix 4.10 for a

detailed derivation). We also suppose that the estimate from the first stage

satisfies

S1/2(β̂ − β0)
d−→ N(0,Σβ).

This will usually follow from the GLM procedure applied in the first stage.

Finally, we suppose that the partial score functions for α are uncorrelated

with those for β. We have noted in Section 4.4.2 that this holds for our partial

likelihood and for the likelihood conditional on at least one detection at a site.

The log-partial likelihood
∑S

s=1 logL1s(ψs, ps) is equal to

`(α, β) =
S∑
s=1

{(1− ws) log(1− ψs(α)θs) + w log(ψs(α))}

so that

Q(α, β) ≈ ∂`(α, β)

∂αT
=

S∑
s=1

xs
{ws − ψs(α)θs}(1− ψs(α))

1− ψs(α)θs
,

where a detailed derivation is given in Appendix 4.10.1.

The second derivative, or the derivative of Q(α, β) with respect to α is found

by the chain rule for
∂Q

∂αT
=
∂Q

∂ψs

∂ψs
∂αT

to be

I(α, β) = −∂Q(α, β)

∂αT

=
S∑
s=1

xsx
T
s

{
θs − 2ψs(α)θs + ψs(α)2θ2

s + ws(1− θs)
{(1− ψs(α)θs}2

}
ψs(α){1− ψs(α)}.

(4.14)
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Then, to obtain the estimators α̂(β̂) we solve Q(α̂(β̂), β̂) = 0. Now, a Taylor

expansion for Q about α0 gives

0 = Q(α̂(β̂), β̂) ≈ Q(α0, β̂) + I(α0, β̂)
(
α̂(β̂)− α0

)
,

where I(α0, β̂) = −∂Q(α0, β̂)/∂αT0 so that

α̂(β̂)− α0 = −I(α0, β̂)−1Q(α0, β̂).

Multiply the above equation through by S1/2 to get

S1/2
(
α̂(β̂)− α0

)
= −

{
S−1I(α0, β̂)

}−1

S−1/2Q(α0, β̂). (4.15)

Using the consistency of β̂ we see that

S−1I(α0, β̂) = S−1I(α0, β0) +O(β̂ − β0) ≈ S−1I(α0, β0).

Next an expansion for β̂ leads to

S−1/2Q(α0, β̂) ≈ S−1/2Q(α0, β0) + S−1∂Q(α0, β0)

∂β0

S1/2(β̂ − β0). (4.16)

To determine B̃(α, β) = ∂Q(α, β)/∂βT note that

∂Q(α, β)

∂θs
= −xsψs(1− ψs)(1− ws)

(1− ψsθs)2
(4.17)

and recall that
∂θs
∂ps

= τ(1− ps)τ−1 so that using the chain rule
∂Q

∂ps
=
∂Q

∂θs

∂θs
∂ps

,

qs =
∂Q(α, β)

∂ps
= −xsψs(1− ψs)(1− ws)τ(1− ps)τ−1

(1− ψsθs)2
.

As ∂ps/∂β
T = ps(1− ps)us and

∂Q

∂βT
=
∂Q

∂ps

∂ps
∂βT

we then see that

B̃(α, β) =
∂Q(α, β)

∂βT
= −

S∑
s=1

xsu
T
s ψs(1− ψs)(1− ws)τ(1− ps)τps

(1− ψsθs)2
. (4.18)

Recall that S−1I(α0, β0) ≈ A(α0, β0) and S−1∂Q(α0, β0)/∂βT0 ≈ B(α0, β0) so

that substituting these, together with equation (4.16), (back) into equation
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(4.15) gives

S1/2(α̂(β̂)− α0) = −
{
S−1I(α0, β̂)

}−1

S−1/2Q(α0, β̂)

≈ −A(α, β)−1
{
S−1/2Q(α0, β0) +B(α0, β0)S1/2(β̂ − β)

}
.

Then

S1/2(α̂(β̂)− α0)∼N
(
0, A(α0, β0)−1

{
ΣQ +B(α0, β0)ΣβB(α0, β0)T

}
A(α0, β0)−T

)
,

So, Var(S1/2{α̂(β̂)− α0)} = S Var{α̂(β̂)}, or

Var{α̂(β̂)} = S−1
{
A(α0, β0)−1 + A(α0, β0)−1B(α0, β0)ΣβB(α0, β0)TA(α0, β0)−T

}
.

Note that Σβ = SVar(β̂) = SVβ where Vβ is the covariance matrix of β̂.

And, that A(α0, β0)−1ΣQA(α0, β0)−T = A(α0, β0)−1, which implies that ΣQ =

A(α0, β0)T . Thus we estimate Var{α̂(β̂)} by

V̂ar{α̂(β̂)} = S−1
[
{S−1I(α̂(β̂), β̂)}−1

+ {S−1I(α̂(β̂), β̂)}−1S−1B̃(α̂(β̂), β̂)SV̂βS
−1B̃(α̂(β̂), β̂)T{S−1I(α̂(β̂), β̂)}−1

]
which reduces to

V̂ar{α̂(β̂)} = I{(α̂(β̂), β̂)}−1

+ I{(α̂(β̂), β̂)}−1B̃{(α̂(β̂), β̂)}V̂BB̃{(α̂(β̂), β̂)}T I{(α̂(β̂), β̂)}−1.

(4.19)

As noted above, V̂β is computed by the GLM in the first stage, I(α̂(β̂), β̂) may

be computed from (4.14) and B̃(α̂(β̂), β̂) from (4.18).

We use β̂ obtained from the first stage, based on the S− f0 sites with redetec-

tions, to predict θ̂s for the remainder f0 sites of the detection matrix i.e. for

sites without redetections.

Then, the estimated occupancy probability for site s is

ψ̂s = [1 + exp{−xTs α̂(β̂)}]−1,

which has estimated variance

V̂ar(ψ̂s) = {ψ̂s(1− ψ̂s)}2xTs V̂ar{α̂(β̂)}xs.
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We give the detailed derivations in the appendices (Section 4.10).

4.4.3.2 Computing the estimates - offset with the iterative proce-

dure

The second stage estimates may be computed by maximising the partial like-

lihood. However, this direct approach does not allow us to use GLM methods.

Let ws = 1 − zs be an indicator of presence for site s. Suppose we have es-

timates of θs for site s, typically estimated from the partial likelihood of the

redetections. Suppose the sites are labelled s = 1, . . . , S. Write the contribu-

tion to the likelihood of a single site by

Ls = (1− ψsθs)zsψ1−zs
s ∝ (1− ψsθs)zs(ψsθs)1−zs = (1− ψsθs)1−ws(ψsθs)

ws ,

(4.20)

which is proportional to a binomial likelihood with probability ψsθs.

Consider a single site. Now under the logistic model,

ψs(x) =
exp(αTxs)

1 + exp(αTxs)

so that

ψs(x)θs =
exp(αTxs + log(θs))

1 + exp(αTxs)

If we let

as(x) = log(θs)− log{1 + exp(αTxs)(1− θs)},

we have

ψs(x)θ̂s =
exp(αTxs + as(x))

1 + exp(αTxs + as(x))

so that as(x) has the appearance of an offset. However, it is a function of the

linear predictor αTxs.

This suggests a simple iterative approach to estimation in the second stage.

Let α̂0 be an initial estimate for α which may be obtained by fitting a logistic

model for ws without any offset.
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1. If α̂i−1 is the estimate of α from the previous step, compute

a(i)
s (x) = log(θ̂s)− log{1 + exp(αTi−1xs)(1− θ̂s)}.

2. Fit a binomial generalised linear model to ws with the usual logit link

and offset a
(i)
s (x) to produce a new estimate α̂i of α.

Repeat steps 1 and 2 until convergence.

Then we obtain estimates for ψs from

ψ̂s(x) =
exp(α̂Ti xs)

1 + exp(α̂Ti xs)
.

4.4.3.3 Small simulation study

To assess the performance of the iterative estimator and the approximate

standard error we conducted a small simulation study. We considered two

independent covariates x1 and x2 each with N(0, 2) distributions and took

αψ = (1, 0.5, 0.5) and βp = (−1, 0.5, 0.5). In each set of simulations we simu-

lated the covariates once then simulated 1000 detection experiments. We only

report the results for α associated with the sites and give these in Table 4.5.

These indicate that the estimators are relatively unbiased and the formula for

the standard errors is reasonable.

α0 α1 α2

S = 1000, τ = 4

Actual 1.000 0.500 0.500

Median 1.016 0.506 0.499

MAD 0.197 0.094 0.097

Med s.e. 0.202 0.096 0.096

S = 1000, τ = 6

Actual 1.000 0.500 0.500

Median 1.006 0.504 0.499

MAD 0.136 0.075 0.085

Med s.e. 0.136 0.075 0.078

Table 4.5: Results of simulations for the covariate model.
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4.4.3.4 Simulations - iterative and unmarked

We compare estimates from the iterative procedure to the full likelihood as

implemented with the occu procedure from the R unmarked package. The occu

procedure fits the single-season model of MacKenzie et al. (2002), and uses a

direct maximisation of the likelihood function for simultaneous estimation of

ψ and p.

We begin with a null model without any covariates. We simulate a single

detection matrix from a population where it is presumed ψ = 0.6, p = 0.7, and

S = 100, τ = 5. Estimates for ψ and p as well as the estimated intercepts

for the same model are shown in Table 4.6. Significance of the estimates are

indicated by the t-statistic for occupancy coefficients (tα) and for detectability

coefficients (tβ). Estimates for ψ and p are similar for the iterative method

and occu procedure.

Then we fit a model with an intercept and two covariates. To generate the

population we used starting parameter coefficient values βp = (0, 0.5, 0) and

αψ = (0, 0, 0.5) for an intercept and two covariates. Then we simulated covari-

ate coefficients from the population and fit the same model with the iterative

and with the unmarked methods. Table 4.7 shows the coefficient estimates.

The results for the two methods are still similar.

To assess the efficiency of the iterative method compared to the unmarked

software we ran simulations for a variety of S and τ (Table 4.8). We considered

the same model for occupancy ψ and detection p. We ran this for moderate

(≈ 0.5) values for ψ and p, and for uncorrelated ψ and p.

Table 4.8 summarises for simulations for the occupancy covariate coefficients

(α). Specifically, the summaries include: the median (Med.), the median ab-

solute deviations (MAD) and the standard error of the medians (Med se). It

reveals that the partial likelihood estimators compare quite well to the full

likelihood, where there appears to be a gain in efficiency for S = 30. This is

unexpected and may be due to either simulation error or convergence problems

in the unmarked procedure.

We ran 1000 simulations for several scenarios for S and τ (Table 4.8). To

generate the population we used starting parameter coefficient values βp =

(0, 0.5, 0) and αψ = (0, 0, 0.5) for an intercept and two covariates. Then we

simulated covariate coefficients from the population and fit the same model

with the iterative and with the unmarked methods. Specifically, we fit occu =

(∼ x + x.1 ∼ x + x.1, data) with the unmarked package. We fit the same
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covariates with the iterative method.

p̂ s.e. p̂ ψ̂ s.e. ψ̂

Actual 0.700 0.600

iterative 0.691 0.033 0.542 0.050

unmarked 0.687 0.029 0.542 0.050

β̂ s.e. β̂ tβ α̂ s.e. α̂ tα

iterative 0.805 0.157 5.142 0.166 0.201 0.827

unmarked 0.785 0.133 5.893 0.167 0.201 0.829

Table 4.6: Estimates for a null model using both the iterative and the occu

procedure for a single simulated history matrix, for S= 100, τ = 5. t-statistics
are displayed for occupancy (tα) and detectability (tβ) coefficients.

β̂ s.e. β̂ tβ̂ α̂ s.e. α̂ tα̂

iterative Intercept -0.273 0.177 -1.540 0.206 0.229 0.900

x 0.442 0.169 2.620 -0.075 0.224 -0.335

x.1 0.283 0.158 1.798 0.623 0.208 2.995

unmarked Intercept -0.228 0.153 -1.489 0.198 0.224 0.882

x 0.459 0.142 3.221 -0.081 0.221 -0.368

x.1 0.085 0.126 0.673 0.710 0.210 3.380

Table 4.7: Estimates for a single simulated data set for S = 150 and τ = 4.
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τ = 4 τ = 8 τ = 16

α0 α1 α2 α0 α1 α2 α0 α1 α2

S Actual 0 0 0.5 0 0 0.5 0 0 0.5

30 ψ̄s, p̄s, ρ 0.521 0.501 -0.215 0.502 0.480 0.029 0.462 0.459 0.165

Iter. Med. 0.076 0.029 0.607 0.055 -0.024 0.559 -0.027 0.008 0.544

MAD 0.496 0.522 0.55 0.385 0.487 0.562 0.459 0.469 0.467

Med se 0.507 0.519 0.542 0.406 0.467 0.534 0.430 0.436 0.435

Unm. Med. 0.201 -0.077 0.576 0.026 -0.044 0.628 0.024 -0.006 0.564

MAD 0.594 0.642 0.655 0.409 0.519 0.586 0.446 0.471 0.470

Med se 0.534 0.539 0.554 0.408 0.470 0.541 0.431 0.440 0.442

150 ψ̄s, p̄s, ρ 0.493 0.523 0.027 0.494 0.487 -0.085 0.503 0.493 0.120

Iter. Med. 0.029 -0.022 0.526 -0.005 -0.009 0.512 0.001 -0.001 0.505

MAD 0.215 0.219 0.200 0.181 0.164 0.172 0.161 0.176 0.189

Med se 0.208 0.212 0.193 0.175 0.173 0.172 0.170 0.168 0.175

Unm. Med. 0.025 -0.020 0.525 -0.008 -0.009 0.515 0.001 0.000 0.505

MAD 0.196 0.216 0.191 0.182 0.165 0.177 0.162 0.175 0.189

Med se 0.204 0.209 0.191 0.174 0.172 0.172 0.170 0.168 0.175

400 ψ̄s, p̄s, ρ 0.508 0.494 -0.047 0.498 0.505 -0.024 0.502 0.503 -0.063

Iter. Med. 0.013 -0.015 0.515 0.006 -0.005 0.501 0.004 -0.006 0.504

MAD 0.129 0.129 0.126 0.103 0.101 0.119 0.108 0.101 0.110

Med se 0.122 0.124 0.123 0.105 0.105 0.117 0.103 0.100 0.109

Unm. Med. 0.008 -0.018 0.515 0.006 -0.004 0.503 0.004 -0.005 0.505

MAD 0.125 0.124 0.116 0.104 0.100 0.120 0.109 0.101 0.110

Med se 0.120 0.122 0.121 0.105 0.105 0.117 0.103 0.100 0.109

1000 ψ̄s, p̄s, ρ 0.508 0.505 0.036 0.502 0.505 0.004 0.504 0.492 -0.022

Iter. Med. 0.004 0.002 0.507 -0.001 -0.003 0.502 -0.005 0.003 0.500

MAD 0.078 0.077 0.086 0.072 0.070 0.068 0.068 0.065 0.066

Med se 0.076 0.079 0.080 0.066 0.069 0.069 0.065 0.065 0.068

Unm. Med. 0.004 0.002 0.508 0.000 -0.003 0.501 -0.005 0.002 0.500

MAD 0.076 0.078 0.084 0.071 0.069 0.068 0.068 0.065 0.066

Med se 0.075 0.078 0.079 0.066 0.069 0.068 0.065 0.065 0.068

Table 4.8: Summaries for occupancy coefficient estimates for 1000 simulations
for the iterative GLM and occu procedures. Detection starting values were
βp = (0, 0.5, 0).
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4.4.3.5 Applications

The Coosa Bass data included two covariates, stream link magnitude (MAG)

and the coefficient of variation of stream flow (CV). Fitting both terms as

linear effects yielded Table 4.9 a). We would conclude from the table that

detection is not related to either of the covariates but occupancy is related to

MAG. For the brook trout data we fitted the single covariate Elevation (Ele.)

as a linear term. See Table 4.9 b). This term is related to occupancy but not

detection. A variety of covariates were available for the data of Table 4.9 c).

We considered area and a measure of water vegetation (WV). Neither were

related to occupancy or detection. An intercept (Int.) was included in all

models.

Detection Occupancy

β̂ s.e. β̂ tβ α̂ s.e. α̂ tα

a) Coosa

bass

iterative Int. 1.144 0.538 2.126 4.106 1.843 2.228

MAG -0.195 0.275 -0.710 3.707 1.353 2.741

CV 0.393 0.354 1.110 -0.155 0.693 -0.223

unmarked Int. 1.252 0.440 2.846 3.942 1.751 2.251

MAG -0.269 0.213 -1.265 3.570 1.277 2.797

CV 0.219 0.270 0.812 -0.143 0.680 -0.210

b) Brook

trout

iterative Int. -0.1031 1.4304 -0.0721 -4.1534 1.1773 -3.5278

Ele. 0.0001 0.0004 0.1982 0.0014 0.0004 3.5578

unmarked Int. -2.207 0.205 -10.792 -3.338 1.533 -2.178

Elev. 0.000 0.000 7.739 0.003 0.001 4.031

c) Frogs

iterative Int. -0.052 1.310 -0.040 -0.494 0.796 -0.621

Area 0.000 0.000 0.864 0.000 0.000 0.965

WV 0.049 0.037 1.310 0.014 0.019 0.747

unmarked Int. -0.0006 0.5356 -0.0012 -0.0005 0.7826 -0.0007

Area 0.0001 0.0001 1.0582 0.0002 0.0002 0.9414

WV 0.0037 0.0128 0.2878 -0.0081 0.0193 -0.4212

Table 4.9: iterative GLM and unmarked with linear effects a) for the Coosa
bass data, b) for the Brook trout data, c) for the reduced frog data (GGF).
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4.4.4 Ratio estimator

From (4.5) an alternative and simpler approach to the second stage involves a

ratio estimator where we estimate the probability ηs that a species is observed

at site s. This gives a natural ratio estimator for occupancy since ηs = ψsθs

gives ψs = ηs/θs.

We will see that this estimator works well under certain conditions. For ex-

ample, it is suitable when p is large, but not for small p. However, obtaining

analytic standard errors is not trivial. Lastly, we will show that the ratio

estimator does not work well in the GAMs family, unless p is large.

We show next how to obtain estimates for ψs.

4.4.4.1 Computing the estimates

Let p̂s be the estimate of ps from L2s(ps) as outlined in Section 4.4.2, the first

stage of estimation. Then the second stage of estimating occupancy, proceeds

as follows. Recall that we could re-write the likelihood as in Equation (4.20),

where

ηs = ψsθs, (4.21)

is the probability there has been at least one sighting (θs) i.e. P (ws = 1) =

ηs = ψsθs and the likelihood is

L1s(ηs, ps) = (1− ηs)zsη1−zs
s = (1− ηs)(1−ws)ηwss .

Now, we use a logistic regression to fit the model

ηs(x) =
exp(δTxs)

1 + exp(δTxs)
, (4.22)

and estimates for ψ are obtained by,

ψ̆s(x) =
exp(δ̂Txs)(

1 + exp(δ̂Txs)
)
θ̂s
, (4.23)

since η̂s = ψ̆sθ̂s (where θ̂s = 1 − (1 − p̂s)τ ). Note that as long as τ is large,

ψs ≈ ηs.
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4.4.4.2 Standard error

We may replace ws by its expectation ŵs, ψsθs, in B̃(α, β) = ∂Q(α, β)/∂βT

(Equation (4.18)) and in I(α, β) = ∂Q(α, β)/∂αT (Equation (4.18)). Then an

approximate estimated variance is

V̂ar(ψ̆s) = {ψ̆s(1− ψ̆s)}2xTs V̂ar{α̂(β̂)}xs. (4.24)

4.4.4.3 Simulations

To compare the iterative and ratio methods of estimation for occupancy, ψ,

for the site inhomogeneous case we conducted a simulation study. We examine

the consistency of the estimators and the standard error (s.e.) formulation for

the iterative method.

We begin with a study for a small number of sites to evaluate and compare

the variation of the estimates resulting from both iterative and ratio meth-

ods (Section 4.4.4.4). We illustrate that estimates for the ratio method are

considerably more variable than those produced from the iterative method.

Then, in Section 4.4.4.5 we conduct a simulation study for a large number

of sites to examine the two methods of estimating ψ for positive, negative,

and zero correlation between ψ and p according to the model covariates. Re-

sults are reported in Tables 4.10, 4.11 and 4.12. Positive correlation results

from coefficients with the same sign in models. Then, a negative correlation

is achieved with opposite signs for coefficients in models. We also consider de-

pendent and independent models for ψ and p. Dependent models occur when

ψ and p are functions of the same covariates, conversely, independent models

are obtained when ψ and p are functions of dissimilar covariates. In addition,

for these situations we examine methods for a high, moderate and low level of

detectability.

Section 4.4.4.6 explores the estimators for a variety of S and τ . Simulation

results, reported in Table 4.13, were unstable for small S and τ and in many

of these cases the estimates either did not exist or were clearly inadequate i.e.

strongly biased. This was related to small values of some p̂s, parameters not

being able to be estimated and some p̂s being estimated as one or zero. In the

reported simulations for S = 30, S = 50 and τ = 4 we only reported cases

where min(p̂s) > 0.1, all parameters could be estimated and none of p̂s were

1, and continued simulations until we had 1000 estimates. We note that in
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practice, one would interactively change the model to hopefully obtain sensible

estimates but this is not feasible in a large number of simulations. With S = 30

and τ = 4 there were 400 failed simulations (out of 1400 conducted) and with

S = 30 and τ = 4 there were 237 failed simulations (out of 1237 conducted).

We note some slight bias when S = 30 that may be due to the failed estimates.

4.4.4.4 Simulations: small number of sites

To compare the iterative and ratio estimates we generate a population for the

100 sites from a population with mean ps = 0.3 and mean ψs = 0.7 and with

correlation ρ(ψs, ps) = 0.95 (Figure 4.1).

A simulated population was generated for two covariates and intercept from

N(0, 1) with parameters αψ = (−1, 0.5, 0.5) and βp = (1, 0.5, 0.5), and 1000

simulated detection matrices were produced.

Results from this simulation study show that the variability of the estimates

from the ratio method are considerably higher than those produced by the

iterative method (Figure 4.2 b). Results such as these discourage us from

deriving standard errors for ψ̆ from the model for η̂ particularly when this

is not straightforward. This is particularly so when coefficient estimates and

standard errors from the GLM software are not readily useable.
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Figure 4.1: Values of ps and ψs used in simulations for S = 100 and τ = 4,
ρ = 0.946. The solid pink line shows ps and the dotted black line shows ψs.
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Figure 4.2: Results for the iterative and ratio methods of estimation for S =
100, τ = 4, ρ = 0.946 for 1000 simulations. a) median values for ψ̂s (iterative
method) are blue; green for the ratio estimator ψ̆ and red for the actual ψs.
Median p̂s is pink and the actual ps in black. And b) standard deviation (s.d.)
for ψ̆s (light blue), and median absolute deviation (MAD) for ψ̆s (magenta),

as well as s.d. ψ̂s (black), MAD ψ̂s (red), the mean (green) and medians (dark
blue) of the estimated standard errors for the iterative method.
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4.4.4.5 Simulations: large number of sites

The simulation study here examines the impact of varying the level of de-

tectability. We explore, a high, moderate and low detectability for a number

of models for the scenarios described above.

We examine the consistency of the iterative and ratio estimators and the stan-

dard error (s.e.) formulation for the iterative method. Results from the small

sample simulation study above (Section 4.4.4.4) showed that the variability

of the estimates from the ratio method were considerably higher than those

produced by the iterative method (Figure 4.2 b). Given results favoured the

iterative method we did not derive an expression for the standard error for ψ

arising from the ratio method. Here we illustrate that even though the two

methods give similar results for high detectability, the iterative method is su-

perior to the ratio method for moderate or low detectability regardless of the

number of sites sampled e.g. S = 1000. In this case the number of visits is

small i.e. τ = 4.

For simplicity we only considered an intercept term and up to two covariates,

ps = β0 + β1x1 + β2x2, ψs = α0 + α1x1 + α2x2, s = 1, . . . , S.

We examined independent and dependent models for high positive, high neg-

ative and zero correlation (ρ). We conducted 1000 simulated experiments at

each combination. Results are shown separately for high, moderate and low

detectability, in Tables 4.10, 4.11 and 4.12, respectively. For all tables, simula-

tions are conducted for a moderate level ψs = 0.5. In each table, four models

are considered, and summary statistics for occupancy coefficient estimates dis-

played. The means for the simulated parameters are shown, i.e. ψ̄s, p̄s, as well

as the actual correlation ρ.

Although the program was set to run 1000 simulations for each case, not all

simulations were able to produce results, thus for some cases the number of

simulations is < 1000.

To evaluate simulations we compute a number of summary statistics. These

are shown in detail for the iterative method. For the ratio estimator the root

mean square is shown.

The average of the root mean square (RMS). That is, RMS is the average

of

√
S−1

∑S
s=1(ψ̂s − ψs)2 over the simulations, for the iterative method (RMS
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iter.) and the ratio method (RMS ratio) of estimation. Similarly we computed

RMS s.e. as the average of
√
S−1

∑S
s=1(ŝ.e.s − sds)2 where sds is the median

of the estimates of ψs and ŝ.e.s is the estimated standard error at s. Note

that there is no RMS s.e. to report for the ratio estimator ψ̄ since there is no

analytic standard error for it.

Results here verify that the iterative method is more stable than the ratio

method. It is more likely to converge to an estimate whereas the ratio method

will not, in many cases, and that the ratio method tends to overestimate

occupancy. Moreover, we could find no reliable estimates of the standard

errors for the ratio occupancy estimator.

Intercept x1 x2 Intercept x1 x2

Actual ψ 0.000 0.000 0.500 0.000 0.500 0.000

p 1.000 0.500 0.000 1.000 -0.500 0.000

ψ̄s, p̄s, ρ 0.499 0.713 0.047 0.494 0.726 -0.990

Intercept α1 α2 Intercept α1 α2

Median iterative -0.001 0.002 0.498 -0.002 0.501 -0.001

MAD iterative 0.064 0.073 0.068 0.067 0.071 0.066

Med iterative s.e. 0.066 0.069 0.070 0.066 0.073 0.066

RMS: iter., s.e., ratio 0.025 0.001 0.026 0.024 0.002 0.026

Intercept x1 x2 Intercept x1 x2

Actual ψ 0.000 0.500 0.000 0.000 0.250 0.250

p 1.000 0.500 0.000 1.000 0.250 0.250

ψ̄s, p̄s, ρ 0.500 0.720 0.991 0.502 0.727 0.995

Intercept α1 α2 Intercept α1 α2

Median iterative 0.001 0.503 0.004 0.002 0.250 0.252

MAD iterative 0.064 0.071 0.066 0.067 0.067 0.066

Med iterative s.e. 0.066 0.072 0.067 0.065 0.067 0.064

RMS: iter., s.e., ratio 0.024 0.001 0.025 0.025 0.001 0.025

Table 4.10: S = 1000, τ = 4 for 1000 simulations for high detectability
(p ≈ 0.7). Comparisons of the iterative and ratio method of estimation for
ψ, including the standard error (s.e.) of the RMS for the iterative estimates.
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Intercept x1 x2 Intercept x1 x2

Actual ψ 0.000 0.000 0.500 0.000 0.500 0.000

p 0.000 0.500 0.000 0.000 -0.500 0.000

ψ̄s, p̄s, ρ 0.504 0.501 -0.015 0.510 0.491 -1.000

Intercept α1 α2 Intercept α1 α2

Median iterative 0.003 -0.006 0.500 -0.001 0.504 0.003

MAD iterative 0.078 0.079 0.083 0.074 0.101 0.078

Med iterative s.e. 0.077 0.078 0.080 0.078 0.090 0.074

RMS: iter., s.e., ratio 0.029 0.002 0.039 0.030 0.002 0.061

Intercept x1 x2 Intercept x1 x2

Actual ψ 0.000 0.500 0.000 0.000 0.250 0.250

p 0.000 0.500 0.000 0.000 0.250 0.250

ψ̄s, p̄s, ρ 0.506 0.506 1.000 0.503 0.503 1.000

Intercept α1 α2 Intercept α1 α2

Median iterative 0.006 0.503 -0.004 0.009 0.249 0.255

MAD iterative 0.075 0.082 0.069 0.075 0.076 0.074

Med iterative s.e. 0.074 0.082 0.070 0.072 0.074 0.073

RMS: iter., s.e., ratio 0.027 0.002 0.029 0.028 0.002 0.029

Table 4.11: S = 1000, τ = 4 for 1000 simulations for moderate detectability
(p ≈ 0.5). Comparisons of the iterative (iter.) and ratio method of estimation
for ψ, including the standard error (s.e.) of the RMS for the iterative estimates.

Intercept x1 x2 Intercept x1 x2

Actual ψ 0.000 0.000 0.500 0.000 0.500 0.000

p -1.000 0.500 0.000 -1.000 -0.500 0.000

ψ̄s, p̄s, ρ 0.500 0.279 0.053 0.501 0.279 -0.990

Intercept α1 α2 Intercept α1 α2

Median iterative 0.014 0.001 0.503 0.013 0.505 -0.000

MAD iterative 0.142 0.129 0.128 0.150 0.160 0.123

Med iterative s.e. 0.134 0.126 0.125 0.142 0.141 0.117

RMS: iter., s.e., ratio 0.047 0.006 0.060 0.051 0.007 0.088

Intercept x1 x2 Intercept x1 x2

Actual ψ 0.000 0.500 0.000 0.000 0.250 0.250

p -1.000 0.500 0.000 -1.000 0.250 0.250

ψ̄s, p̄s, ρ 0.502 0.281 0.990 0.501 0.275 0.995

Intercept α1 α2 Intercept α1 α2

Median iterative 0.010 0.508 -0.007 0.020 0.254 0.243

MAD iterative 0.122 0.120 0.111 0.126 0.109 0.117

Med iterative s.e. 0.128 0.122 0.108 0.123 0.112 0.119

RMS: iter., s.e., ratio 0.043 0.006 0.046 0.045 0.006 0.046

Table 4.12: S = 1000, τ = 4 for 1000 simulations for low detectability (p ≈
0.3). Comparisons of the iterative (iter.) and ratio method of estimation for
ψ, including the standard error (s.e.) of the RMS for the iterative estimates.



124 CHAPTER 4. A PARTIAL LIKELIHOOD FOR OCCUPANCY

4.4.4.6 Varying number of sites and visits

We ran 1000 simulations for each combination for a moderate level of detection

and occupancy. And, we ran these for independent models for ψ and p, with

starting parameters αψ = (0, 0, 0.5) and βp = (0, 0.5, 0). The RMS for the

iterative and ratio methods are shown in Table 4.13.

Table 4.14 shows the number of estimates greater than 1 returned by the ratio

estimator. All estimates returned by the iterative method were constrained

to between 0 and 1. Simulations were run until 1000 valid estimates were

obtained. The simulations for S 6 30 and S = 50 for a few visitations, τ = 4,

returned a failure rate of about 90% and 20%, respectively. We found similar

failure rates for non-convergence in Karavarsamis et al. (2013) (Chapter 3).
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S RMS τ = 4 τ = 8 τ = 16

30 iterative 0.178 0.148 0.143

s.e. 0.140 0.033 0.032

ratio 0.183 0.154 0.143

50 iterative 0.145 0.109 0.112

s.e. 0.056 0.015 0.017

ratio 0.185 0.110 0.116

150 iterative 0.076 0.066 0.062

s.e. 0.011 0.008 0.006

ratio 0.085 0.068 0.062

400 iterative 0.047 0.038 0.038

s.e. 0.005 0.003 0.003

ratio 0.059 0.041 0.038

1000 iterative 0.028 0.025 0.024

s.e. 0.002 0.001 0.001

ratio 0.037 0.027 0.024

Table 4.13: Root mean square (RMS) comparing the iterative and ratio meth-
ods of estimation of ψ, including the standard error (s.e.) of the RMS for the
iterative estimates.

S τ = 4 τ = 8 τ = 16

30 790 219 5

50 1537 8 180

150 661 42 0

400 1585 260 0

1000 687 16 0

Table 4.14: Number of ψ̂ > 1 from the ratio method. Simulations were run
until 1000 valid estimates for ψ were found.
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4.4.5 Estimating occupancy using GAMs

The MGCV R package readily allows us to fit generalized linear additive models

(GAMs) through a penalised likelihood. Development of our partial likelihood

approach and the offset method of estimation developed in Section 4.4.3.2 al-

lows a straightforward implementation of GAMs methods to model occupancy

data. As it is a minor change to the GLM formulae, we briefly outline the

approach to demonstrate the derivation of the associated standard error for-

mulae.

Let us be the covariates associated with detectability whose effects will be

modelled parametrically and vs1, . . . , vsK those that will be modelled nonpara-

metrically. Then the GAM for the linear predictor κs is

κs = uTs α + f1(vs1) + · · ·+ fK(vsK).

Similarly, for occupancy let xs be the parametric covariates and rs1, . . . , rsJ

the nonparametric components. Then the GAM for the linear predictor is

νs = xTs α + g1(rvs1) + · · ·+ gJ(rsJ).

These are fitted through penalised partial likelihoods as follows in two stages,

where in the second stage we use the iterative method to obtain estimates for

occupancy.

1. Fit a GAM to the redetection data. This yields estimates p̂s of ps for all

sites as functions of us and vs1, . . . , vsK . In particular we may compute

θ̂s for each s.

2. Fit a GAMS to the indicators of presence ws with an offset computed as

in Section 4.4.3.2 using the iterative procedure described there. That is

at the ith step the offset is

a(i)
s = log(θs)− log{1 + exp(ν(i−1)

s )(1− θs)}.

where ν
(i−1)
s is the predictor arising at the (i− 1)th step.

We use penalised cubic B-splines coupled with the GCV criterion to find the

optimal smoothing parameter for the spline (de Boor, 1978; Wood, 2006, p.

177). The GAM penalised likelihood is maximised, and coefficients estimated,
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by penalised iteratively re-weighted least squares (P-IRLS) (Wood, 2006, p.

169).

4.4.5.1 Standard errors

We next outline the derivation of the standard error.

Firstly, we may retrieve an estimate Vβ of the variance matrix of the param-

eters in the model for the detection probabilities from the output of the gam

command. Write α = (αT1 , α
T
2 )T where α1 are the parameters in the parametric

component of the model and α2 those in the nonparametric component.

For a given λS and penalty matrix P , the penalised partial log-likelihood is

`λ(α, β) =
S∑
s=1

{(1− ws) log(1− ψs(α)θs) + ws log(ψs(α))} − 1

2
λSα

T
2Pα2

so that the penalised partial score function is

Qλ(α, β) =
∂`(α, β)

∂αT
=

S∑
s=1

xs
{ws − ψs(α)θs}(1− ψs(α))

1− ψs(α)θs
− λSP∗α2.

Here P∗ is a penalty matrix that penalises parameters in the nonparametric

component of the model. It has zero columns initially corresponding to α1.

Let α̂λ(β) be the solution of Qλ(α, β) = 0. Then

0 = Qλ(α̂λ(β̂), β̂) ≈ Qλ(α, β̂) + Iλ(α, β̂)
(
α̂λ(β̂)− α

)
where

Iλ(α, β̂) = I(α, β̂) + λSP∗.

A minor modification of the derivations leading to the variance expression for

the iterative method (4.19) yields (4.25). Specifically, a simple substitution of

I(α, β) with Iλ(α, β) will yield (4.25).

Following the derivations leading to (4.19) we see that

V̂ar(α̂λ(β̂)) ≈ Iλ{α̂(β̂), β̂}−1I{α̂(β̂), β̂}Iλ{α̂(β̂), β̂}−1

+ Iλ{α̂(β̂), β̂}−1B̃{α̂(β̂), β̂)}V̂βB̃{α̂(β̂), β̂}T Iλ{α̂(β̂), β̂}−1.

(4.25)
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Again the estimated occupancy probability is ψ̂
(λ)
s = [1 + exp{−xTs α̂λ(β̂ )}]−1,

which has estimated variance

V̂ar(ψ̂ (λ)
s ) = {ψ̂s(1− ψ̂s)}2xTs V̂ar{α̂λ(β̂ )}xs.

Remark For our theory to apply we need the penalty matrix used in the GAM

fit. These can be extracted from the R gam object.
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4.4.5.2 Simulations

To examine the consistency of the estimators and the above standard error

formulation we again conducted a simulation study. For simplicity we only

considered an intercept term and a single covariate. We considered a single

covariate s corresponding to the index of the site and took

ps = β0 + β1 sin(8s/S), ψs = α0 + α1 sin(8s/S), s = 1, . . . , S

For S = 1000, τ = 4, β0 = β1 = 0.5 and α0 = 0, α1 = 0.5 we plot the values of

ps and ψs in Figure 4.3. These high values of detectability and occupancy are

perhaps not that unusual in practice and allow us to consider relatively small

S without too many complications. We conducted 1000 simulated experiments

at each combination. For the first simulations we plot the actual values and

the medians of the estimates arising from the simulations (Figure 4.3) as well

as their standard deviation (s.d.) and median absolute deviation (MAD) and

the mean (av s.e.) and median (med s.e.) of the estimates of the standard

error estimator (Figure 4.4). This gives us confidence that our asymptotic

results are reasonable.

S τ RMS s.e. RMS

1000 4 0.037 0.005

1000 6 0.036 0.005

1000 20 0.037 0.005

500 4 0.051 0.009

500 6 0.051 0.008

500 20 0.051 0.008

400 4 0.057 0.008

400 6 0.056 0.008

400 20 0.056 0.010

100 4 0.107 0.028

100 6 0.103 0.026

100 20 0.108 0.028

50 4 0.511 0.006

50 6 0.141 0.039

50 20 0.144 0.044

Table 4.15: Average root mean square, of the estimates and their standard
errors. Simulations (1000 per case) for the GAM model with a single covariate.

We considered S = 1000, 500, 400, 100, 50 and τ = 4, 6, 20 and conducted 1000
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Figure 4.3: Median values of ps and ψs used in the first set of simulations:
S = 1000, τ = 4, β0 = β1 = 0.5 and α0 = 0, α1 = 0.5.
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Figure 4.4: Standard errors for values of ps and ψs used in the first set of
simulations: S = 1000, τ = 4, β0 = β1 = 0.5 and α0 = 0, α1 = 0.5.

simulated experiments at each combination; results are summarised in Ta-

ble 4.15.

Our simulations show that for a small number of sites and low detection prob-

abilities, the standard error estimator of the estimated occupancies do not

perform well.

To fit GAMs requires a substantial amount of data. The practical examples

considered in this thesis were not suitable for GAMs. Practical applications

are deferred for future work.
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4.5 Time dependent covariates
In some instances it is possible that there are time dependent covariates that we

may then relate to detection, for example in the brook trout data described in

Section 4.3.6. The models considered here suppose a constant occupancy but it

is straightforward to allow the detection probabilities to vary with covariates.

Let ysj take the value 1 if an individual was detected at site s on occasion j

and zero otherwise. Let psj be the probability of detection at site s on occasion

j if site s is occupied. When we allow the detection probabilities to depend on

time dependent covariates, the partial likelihood is now

τ∏
j=as+1

p
ysj
sj (1− psj)1−ysj ,

where psj = h(uTsjβ) and h is for example the logistic function h(u) = (1 +

exp(−u))−1 for a vector of covariates usj ∈ Rqp and a vector of parameters

β ∈ Rqp . That is, with time dependent covariates we see that the redetections

form a sequence of independent Bernoulli trials. To do this, we construct a

0-1 response variable for each occasion at which redetections were possible and

further construct a matrix of covariates.

Let β̂ again denote the estimator of β and let V̂β be its estimated variance

matrix. Now we let

B̃(α, β) = −
S∑
s=1

xsψs(1− ψs)(1− ws)(1− θs)
∑τ

j=1 psju
T
sj

(1− ψsθs)2

and with these changes, the expression (4.19) for the variance of α̂(β̂) still

holds.

Recall B̃(α, β) =
∂Q(α, β)

∂βT
=
∂Q(α, β)

∂θs

∂θs
∂βT

. In this case θs = 1−
∏τ

j=1(1 −

psj) and hence for the logistic model,

∂θs
∂βT

=
τ∑
j=1

∏
k 6=j

(1− psk)
∂psj
∂βT

=
τ∑
j=1

τ∏
k=1

(1− psk)psjusj

= (1− θs)
τ∑
j=1

psjusj.

(4.26)

Now ∂Q(α, β)/∂θs is unchanged from (4.17) and with (4.26) this yields the
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version of the expression (4.19) for the standard errors given in Section 4.5.

Note that if psj ≡ ps and usj ≡ us then
∑τ

j=1 psju
T
sj = τpsus and we recover

our previous expression. Also as before we can replace ws by ψsθs. In prelim-

inary simulations of the time dependent case, we observed that the estimated

standard errors computed in this fashion were more stable so we used these in

the application and simulations below.

Remark 1 To fit separate effects for each occasion, including the first, we

need to use a conditional likelihood rather than the partial likelihood applied

to the redetections. By only considering redetection, the partial likelihood is

unable to estimate the probability of detection on the first occasion. This is

of course possible but for simplicity we defer a consideration of this. However,

as noted before, this only requires a minor change to the variance formula in

that V̂β is different.

Remark 2 Time dependent occupancy where occupancy can vary from occa-

sion to occasion does not permit use of partial and conditional likelihoods.

4.5.1 Application

Fitting a GLM to the redetections of the brook trout with Elevation and stream

mean cross-sectional area (CSA) yielded Table 4.16. Thus, neither covariate

was significant in a linear model.

In Table 4.16 we allow the detection probabilities to depend on both elevation

and the time varying covariate CSA and the occupancy probabilities depend on

elevation. Whilst none of the covariates were significantly related to detection,

we retained them in the model to estimate the occupancies. The results in

Table 4.16 relating to occupancy are similar to those in Table 4.9 b).

Estimate Std. Error z-value p-value

Detectability

Intercept 0.2007 1.4648 0.137 0.891

Elevation 0.0003 0.0004 0.690 0.490

CSA -0.6657 0.4252 -1.566 0.117

Occupancy

Intercept -3.9413 1.2374 -3.1867 0.0014

Elevation 0.0013 0.0004 3.3231 0.0009

Table 4.16: GLM fitting time dependent covariates to the detection probabil-
ities of the brook trout and the resulting estimates of occupancy.
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4.5.2 Simulations

Again to verify the method we conducted a small simulation study that mim-

ics the brook trout data. Results are shown in Table 4.17. We took β =

0.2, 0.0003,−0.66, α = −4.0, 0.0013, simulated elevation from a normal distri-

bution with µe = 2860 and σe = 1140, and CSA from a normal distribution

with µc = 1.6 and σc = 0.5. We only report the results for α as the detection

probabilities are once again fitted using a standard GLM. We considered τ = 4

and S = 1000, 400, 150 and 50. These results show there is little evident bias

and the estimated standard errors are reasonable.

S = 1000 τ = 4 S = 400 τ = 4

α -4.0000 0.0013 -4.0000 0.0013

Median α̂ -4.0031 0.0013 -3.9985 0.0013

MAD α̂ 0.3174 0.0001 0.5490 0.0002

Median s.e. α̂ 0.3120 0.0001 0.4998 0.0002

S = 150 τ = 4 S = 50 τ = 4

α -4.0000 0.0013 -4.0000 0.0013

Median α̂ -4.0721 0.0013 -4.1052 0.0013

MAD α̂ 0.8001 0.0003 1.5028 0.0005

Median s.e. α̂ 0.8204 0.0003 1.4641 0.0004

Table 4.17: Simulation results for the model for the occupation probabilities
with time dependent detection probabilities.
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4.6 The basic conditional likelihood

As mentioned earlier, yet another alternative approach to estimating the de-

tection probabilities is to condition on at least one detection at a site rather

than the first detection. Here we restrict the discussion to an introduction of

the conditional likelihood approach as its implementation with any software

(e.g. VGAM) is more complicated than the software available for GLMs and

GAMs.

From the full likelihood given for site inhomogeneity (4.10), we may also write

Ls(ψs, ps) = (1− ψsθs)zs(ψsθs)1−zs

((
τ
ys

)
pyss (1− ps)τ−ys

θs

)1−zs

, (4.27)

the conditional likelihood given at least one detection at a sight which is based

on the second term in this formulation i.e. ψsθs. This conditional likelihood

constitutes the positive binomial distribution and can be modelled in VGAM

which offers the positive binomial link family.

The two components of the likelihood to be considered at each stage of esti-

mation separately for ψs and ps are, for detection

L1s(ps) =

((
τ
ys

)
pyss (1− ps)τ−ys

θs

)1−zs

(4.28)

and at the second stage, the likelihood for occupancy is

L2s(ψs, θs) = (1− ψsθs)zs(ψsθs)1−zs . (4.29)

With this formulation we use posbinomial family in VGAM to model the num-

ber of detections for detected sites i.e. for sites with at least one detection, to

obtain estimates for detection ps. Then use the presence indicator ws = 1− zs
to estimate occupancy according to the iterative method for GLM or GAM, for

example. We have reported some results using this formulation in the above

sections and will not consider this further in this thesis.
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Alternatively, for estimating detection we could use a formulation from previ-

ous sections which considers redetections. In this way we ignore the contribu-

tion to the likelihood related to first detections, which is

L1s(ps) =

{
ps(1− ps)(as−1)

θs

}(1−zs)

,

where this is the probability of being detected for the first time at as given de-

tected at least once. That is, our two-stage process using the partial likelihood

ignores the information on the detection probabilities in the first detections of

each detected site (site with at least one detection).
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4.7 Crossbill application

Here we compare our iterative method to the direct maximisation of the full

likelihood fit with the occu function of unmarked package.

We apply the two-stage iterative GLM methods to data on the European cross-

bill (Loxia curvirostra) collected in 267 1-km2 sample quadrats in Switzerland,

1999 (Schmidt, 2004). We analyse the data from the example presented in

Fiske and Chandler (2011) that involves the site covariates elevation and for-

est.

We fit two models for the crossbill data: a model with linear effects for elevation

and forest (Table 4.18) and another that includes a squared term for elevation

(Table 4.19).

Results given here comparing the two methods are consistent with simulation

results given in Section 4.4.3.4, in that there is less agreement in estimates

between the two methods as more terms are added to the model. See for

example Table 4.6 compared to Table 4.7. In the former table, for the null

model (i.e. no covariates) estimates between the iterative and occu are similar.

In contrast, in Table 4.7 for a model that includes two linear covariates the

two methods give estimates which differ more than the null model. Similarly,

in the crossbill application here, estimates for the two methods agree more in

the simpler model (Table 4.18) than the complicated model that includes the

squared term (Table 4.19).

There is not much difference in the results between the two methods for the

simple model in Table 4.18, if we consider that standard errors from occu are

known to be an underestimate, and that there is some loss of efficiency with the

iterative method in estimating detectability, β̂. Observations here are verified

from simulations in Tables 4.6, 4.7 and 4.8.

Detections from the first year of the study, in 1999, were used in the analysis,

τ = 3. To make comparison of the two methods possible, sites with any missing

detections were removed prior to fitting models, S = 201.

In the example presented in Fiske and Chandler (2011) the covariates are stan-

dardised to make it possible to find the maximum likelihood estimates with

the direct maximisation of the full likelihood of MacKenzie et al. (2002). It is

recommended that covariates are standardised to help stabilise the optimisa-

tion algorithm used in unmarked (see p. 2 of the R vignette Fiske and Chandler
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(2014)8). In our applications and simulations with unmarked we observed this

to be true.

Whilst the stability of our iterative approach is unaffected by standardisation

we also use the standardised covariates. We encountered difficulties when the

R predict procedure was used on unmarked data with standardised covari-

ates. This is a known problem with the methods9. Recall though that it is

recommended that unmarked covariates are standardised to help stabilise the

maximisation process.

More complex models such as GAMs could not be fit successfully to this data

because there are an insufficient number of redetections for reasonable estima-

tion.

β̂ s.e. β̂ tβ̂ α̂ s.e. α̂ tα̂

Iterative Intercept -1.448 0.477 -3.038 0.329 0.787 0.418

Elevation 1.490 0.399 3.733 0.240 0.559 0.428

Forest 0.102 0.337 0.302 0.050 0.401 0.124

unmarked Intercept -1.545 0.415 -3.727 0.272 0.680 0.400

Elevation 0.964 0.413 2.335 0.614 0.724 0.848

Forest 0.223 0.332 0.671 0.011 0.569 0.020

Table 4.18: Iterative GLM and unmarked with linear effects for the crossbill
data, S = 201 and τ = 3.

β̂ s.e. β̂ tβ̂ α̂ s.e. α̂ tα̂

Iterative Intercept -1.468 0.514 -2.853 1.504 1.164 1.292

Elevation 2.301 1.184 1.943 -3.296 2.203 -1.497

Elevation2 -0.486 0.635 -0.765 1.652 0.961 1.718

Forest 0.076 0.343 0.222 0.087 0.403 0.215

unmarked Intercept -1.890 0.240 -7.870 3.132 1.739 1.801

Elevation 0.292 0.483 0.604 3.346 1.281 2.612

Elevation2 0.450 0.269 1.672 -2.147 0.927 -2.316

Forest 0.123 0.176 0.702 0.574 0.694 0.826

Table 4.19: Iterative GLM and unmarked with linear effects including a squared
term for the crossbill data, S = 201 and τ = 3.

In the next section we explore and compare these methods with simulations.

8cran.at.r-project.org/web/packages/unmarked/vignettes/unmarked.pdf
9https://sites.google.com/site/unmarkedinfo/home/known-bugs

cran.at.r-project.org/web/packages/unmarked/vignettes/unmarked.pdf
https://sites.google.com/site/unmarkedinfo/home/known-bugs
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4.7.1 Simulations

To evaluate the use of our method on the crossbill data we ran 1000 simulations

that mimic this example. In all models we simulated samples for S = 250 and

τ = 3. Simulations for a selection of scenarios compare the iterative two-stage

partial and conditional likelihood methods, and the direct maximisation of the

full likelihood using the occu procedure. The conditional likelihood was fitted

using the vglm function of the VGAM procedure under the positive binomial

link function.

Table 4.20 shows simulation results for a model similar to the crossbill appli-

cation that includes an intercept x0 and two terms x1, x2, each generated once

from N(0, 1), plus a squared term x2
1. Then 1000 simulated detection experi-

ments were generated for βp = (1, 1,−0.5, 0.5) and αψ = (1, 0.5, 0.5, 0.45). In

all simulations, mean p = 0.800 and median p = 0.787. And, mean ψ = 0.624,

median ψ = 0.694 and correlation between p and ψ was ρ = 0.286. The

partial and conditional likelihoods gave similar results which means that ig-

noring first detections in the partial likelihood did not cause any great loss

of efficiency. Next, estimates produced by our methods are not substantially

different from unmarked and our methods offer full use of GLM and VGAM

functionalities. These results verify our methods even though estimates varied

between methods when this model was applied to the crossbill data (results

shown in Table 4.19).

To explore differences in estimates produced by our methods and unmarked for

the crossbill data we ran 1000 simulations for the same model where x1 and x2

are generated once from N(0, 1). Estimates from the crossbill data (Table 4.19)

obtained for the model including the square for elevation were used here as

starting values for simulations. Specifically, we simulated from a population

with βp = (−1.89, 0.292, 0.45, 0.123) and αψ = (3.132, 3.346,−2.147, 0.574)

given by unmarked from the crossbill data. In all simulations, mean p =

0.212 and median p = 0.157. And, mean ψ = 0.680, median ψ = 0.907 and

correlation between p and ψ was ρ = −0.216. Results are shown in Table 4.21.

Estimates produced by the partial and conditional likelihood approaches are

considerably more accurate for occupancy compared to unmarked. All three

methods give similar estimates for detectability.

We used the covariates from the crossbill data then simulated 1000 detec-

tion experiments based on starting values βp = (−1.89, 0.292, 0.45, 0.123) and

αψ = (3.132, 3.346,−2.147, 0.574) obtained from unmarked on the crossbill
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data. Results are shown in Table 4.22. For simulated covariates generated

from crossbill data, mean p = 0.210 and median p = 0.156. And, mean

ψ = 0.881, median ψ = 0.881 and correlation between p and ψ was ρ = 0.300.

Results here verify findings from the previous section of the crossbill applica-

tion.

ψ p

x0 x1 x2
1 x2 x0 x1 x2

1 x2

Actual 1.000 1.000 -0.500 0.500 1.000 0.500 0.500 0.450

Partial

Median 1.004 1.023 -0.504 0.495 1.011 0.507 0.530 0.450

MAD 0.206 0.181 0.145 0.160 0.210 0.265 0.278 0.158

Med. s.e. 0.204 0.180 0.151 0.162 0.202 0.256 0.260 0.165

Conditional

Median 1.006 1.025 -0.505 0.496 1.000 0.508 0.512 0.450

MAD 0.206 0.184 0.146 0.158 0.174 0.200 0.227 0.135

Med. s.e. 0.203 0.180 0.150 0.161 0.164 0.205 0.209 0.134

unmarked

Median 1.006 1.026 -0.505 0.497 0.998 0.510 0.511 0.450

MAD 0.206 0.183 0.147 0.161 0.173 0.197 0.220 0.134

Med. s.e. 0.203 0.180 0.150 0.161 0.164 0.205 0.209 0.133

Table 4.20: Simulations (=1000) for the Partial, Conditional and unmarked

methods (S =250, τ = 3).
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ψ p

x0 x1 x2
1 x2 x0 x1 x2

1 x2

Actual 3.132 3.346 -2.147 0.574 -1.890 0.292 0.450 0.123

Partial

Median 2.279 2.478 -1.602 0.211 -1.934 0.104 0.566 0.119

MAD 0.963 0.835 0.499 0.514 0.397 0.531 0.374 0.249

Med. s.e. 1.734 1.140 0.811 0.618 0.413 0.710 0.472 0.246

Conditional

Median 2.260 2.494 -1.623 0.213 -1.916 0.099 0.553 0.116

MAD 0.879 0.763 0.484 0.489 0.357 0.486 0.326 0.219

Med. s.e. 1.656 1.098 0.786 0.605 0.383 0.643 0.413 0.217

unmarked

Median 6.387 6.014 -4.088 0.919 -1.929 0.272 0.481 0.123

MAD 6.849 5.127 3.714 1.905 0.216 0.442 0.276 0.129

Med. s.e. 4.245 3.149 2.438 1.241 0.171 0.367 0.256 0.119

Table 4.21: Simulations (=1000) for the Partial, Conditional and unmarked

methods, from a population with parameters from unmarked estimates for
crossbill data (S =250, τ = 3).

ψ p

Int. Elev. Elev.2 Forest Int. Elev. Elev.2 Forest

Actual 3.132 3.346 -2.147 0.574 -1.890 0.292 0.450 0.123

Partial

Median 2.075 2.512 -1.415 0.306 -1.887 0.117 0.548 0.098

MAD 0.995 0.913 0.636 0.661 0.449 0.683 0.396 0.325

Med. s.e. 1.793 1.218 0.933 0.698 0.493 0.765 0.439 0.340

Conditional

Median 2.118 2.506 -1.453 0.279 -1.911 0.147 0.546 0.115

MAD 0.951 0.860 0.594 0.595 0.440 0.585 0.342 0.283

Med. s.e. 1.745 1.160 0.904 0.671 0.456 0.688 0.387 0.301

unmarked

Median 4.601 4.749 -2.838 0.791 -1.864 0.261 0.465 0.125

MAD 4.423 3.205 2.263 1.259 0.273 0.465 0.275 0.175

Med. s.e. 2.738 2.019 1.519 0.864 0.233 0.415 0.247 0.173

Table 4.22: Simulations (=1000) from crossbill data for the Partial, Condi-
tional and unmarked methods (S =201, τ = 3).
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4.8 Conclusions

Our approach using partial likelihood allows the use of standard GLM meth-

ods to estimate the model parameters, greatly simplifying the programming

required to fit complex models. It compares well to the full likelihood in sim-

ulation studies. An advantage of our methods is that we now obtain analytic

standard errors for both ψ̂ and p̂, that perform well, whereas for the full like-

lihood there are no closed form solutions and asymptotic standard errors tend

to be an underestimate (e.g results produced by unmarked in Tables 4.20, 4.21

and 4.22.

We may also use conditional likelihood to estimate the detection probabilities.

Note that a conditional likelihood is a special case of a partial likelihood and

our theory is readily transferable. Whilst more difficult to implement, the con-

ditional likelihood can be fitted using the VGAM package. However, VGAM is

not yet as sophisticated as GAMs, so our current focus has been on the partial

likelihood. Further, this is a minor extension of our methods and we do not

expand on this in detail. As noted in our example, the partial likelihood can

have some disadvantages — for example if there is a “learning effect” in the

detection probabilities. That is, after the initial visit the investigator may find

it easier to detect individuals at a given site. We defer consideration of this

and our concern here has been with time homogeneous detection probabilities.

In developing our estimator we also considered a ratio estimator. This ap-

proach has the advantage that both sets of covariate coefficients, for p and

ψ, may be simply estimated using standard GLM methods and in particular

GAMS. Our simulations showed that these estimators tended to be biased and

simple bias corrections were not sufficient. As the offset approach of Section

4.4.3.2 readily allows the use of GLM techniques we did not pursue this further.
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4.9 Appendix 1: Proofs for Homogeneous case

4.9.1 Expectation for ψ̂

Here we show E
(
ψ̂
∣∣ b, S − f0

)
≈ ψ̃. Recall the quantities from Section 4.3.3,

ψ̃ = ψ̂(a) = (S−f0)/(Sθ) and Equation (4.7) ψ̂ ≈ ψ̃

{
1− τ(1− p)τ−1(p̂− p)

θ

}
≈

ψ̃

{
1− 1

θ
(θ̂ − θ)

}
, then

E
(
ψ̂
∣∣ b, S − f0

)
= E

{
ψ̃

(
1− 1

θ
(θ̂ − θ)

) ∣∣ b, S − f0

}
= E

{
ψ̃
∣∣ b, S − f0

}
− 1

θ
E
{
ψ̃(θ̂ − θ)

∣∣ b, S − f0

}
= ψ̃ − 1

θ
ψ̃ E

{
(θ̂ − θ)

∣∣ b, S − f0

}
≈ ψ̃, (4.30)

using the consistency of θ̂, the dominant convergence theorem and asymptotic

independence. We showed that the partial score equations for the detection and

occupancy probabilities are uncorrelated, so ψ and p are partially orthogonal.

Thus θ̂, a function of redetections, is asymptotically independent of b and the

number of non detected sites S − f0 (see Sections 4.4.2 and 4.4.3.1 for more

details). Then taking the expectation gives E
(
ψ̂
)
≈ E

(
ψ̃
)
≈ ψ.

Now we find E
(
ψ̃2
)

. Then together with Var(ψ̃) (see Section 4.3.3),

E
(
ψ̃2
)

= Var
(
ψ̃
)

+
(
E
(
ψ̃
))2

=
ψ(1− ψθ)

Sθ
+ ψ2. (4.31)
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4.9.2 Conditional expectation for ψ̂ 2

Here we show the proof for the conditional expectation for ψ̂ 2.

E
(
ψ̂ 2
∣∣ b, S − f0

)
= E

{
ψ̃ 2{1− τ(1− p)τ−1

θ
(p̂− p)}2

∣∣ b, S − f0

}
= ψ̃ 2E

{
(p̂− p)2

∣∣ b, S − f0

} τ 2(1− p)2(τ−1)

θ2

= ψ̃ 2

{
1− τ 2(1− p)2(τ−1)

θ2
Var (p̂ )

}
,

or in terms of θ̂,

= E

{
ψ̃ 2(1− 1

θ2
(θ̂ − θ))2

∣∣ b, S − f0

}
= ψ̃ 2

{
1− 1

θ2
E[(θ̂ − θ)2

∣∣ b, S − f0]

}
= ψ̃ 2

{
1− 1

θ2
Var

(
θ̂
)}

, (4.32)

where Var
(
p̂
∣∣ b, S − f0

)
≈ Var(p̂ ) and Var

(
θ̂
∣∣ b, S − f0

)
≈ Var(θ̂ ), based on

the assumption of asymptotic independence. The variance for θ̂ is derived in

the next section.

4.9.3 Variances

An approximate expression for Var(θ̂ ) is based on a Taylor expansion for θ̂

about p, θ̂ ≈ θ + τ(1 − p)τ−1(p̂ − p) (see Equation (4.6)). Then Var(θ̂ ) ≈
Var (θ + τ(1− p)τ−1(p̂− p)) = τ 2(1− p)2(τ−1) Var (p̂ ).

Thus, an approximate variance for conditional θ̂ is

Var
(
θ̂
∣∣ b, S − f0

)
≈ Var

{
τ(1− p)τ−1p̂

∣∣ b, S − f0

}
= τ 2(1− p)2(τ−1) Var

(
p̂
∣∣ b, S − f0

)
. (4.33)

Estimates are used in place of Var(p̂ ) and may be obtained from a fitted model

for p, Var (p̂ ) ≈ V̂ar (p̂ ).

To find an approximation for the variance for ψ̂ we condition on b (= the

number of remaining visits after the time of first detection) and S− f0 (= the
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number of detected sites),

Var(ψ̂ ) = Var
{
E
(
ψ̂
∣∣ b, S − f0

)}
+ E

{
Var

(
ψ̂
∣∣ b, S − f0

)}
. (4.34)

Now,

Var
(
ψ̂
∣∣ b, S − f0

)
≈ E

(
ψ̂ 2
∣∣ b, S − f0

)
−
{
E
(
ψ̂
∣∣ b, S − f0

)}2

,

(4.35)

which is found from substituting Equations (4.30) and (4.32). Then, together

with Var(p̂ ) ≈ p(1− p)/b (Section 4.3.2),

E
{

Var(ψ̂
∣∣ b, S − f0)

}
≈ E

{
ψ̃ 2τ 2(1− p)2(τ−1) Var(p̂ )

θ2

}

≈ E
(
ψ̃ 2
) τ 2(1− p)2(τ−1)

θ2
E

(
p(1− p)

b

)
≈
{
ψ(1− ψθ)

Sθ
+ ψ2

}
τ 2(1− p)2(τ−1)

θ2

p(1− p)
b

.

(4.36)

Finally,

Var
{
E
(
ψ̂
∣∣ b, S − f0

)}
= Var(ψ̃ )

=
ψ(1− ψθ)

Sθ
, (4.37)

where from before we found that E
(
ψ̂
∣∣ b, S − f0

)
= ψ̃.
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4.10 Appendix 2: Proofs for site inhomogene-

ity

4.10.1 Basic quantities

Here we derive some basic quantities used in derivations of Section 4.4.

We denote ψs(α) = (1 + exp(−αTxs))−1 = exp(αTxs)/(1 + exp(αTxs)). Note,

1− ψs(α) = exp(−αTxs)/(1 + exp(−αTxs)).

The partial log-likelihood is

`(α, β) =
S∑
s=1

(1− ws) log(1− ψs(α)θ̂s) + ws logψs(α).

Let f(α) = 1− ψs(α)θ̂s and g(α) = ψs(α) so that

f ′(α) = ∂(1− ψs(α)θ̂s)/∂α = θsxs exp(−αTxs)/ψs(α)2

and

g′(α) = xs exp(−αTxs)/ψs(α)2 = xs/(1 + exp(−αTxs) = xsψ(1− ψ).

This gives

Q(α, β) =
∂`(α, β)

∂αT

= (1− ws)
f ′(a)

f(a)
+ ws

g′(a)

g(a)

=
(1− ws)

{
−θsxs exp(−αTxs)/ψs(α)2

}
1− ψs(α)θs

+
wsxs exp(−αTxs)/ψs(α)2

ψs(α)

=
{−θsψs + ws}ψsxs {1− ψs(α)}

ψs(α) {1− ψs(α)θs}

=
xs {ws − θsψs(α)} {1− ψs(α)}

1− ψsθs
.
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4.10.2 Variance for α̂

Here we show the variance for α̂ evaluated at β̂ used in derivations for the

approximate variance of occupancy (Sections: 4.4.3.1, 4.4.4.2 and 4.4.5.1).

Q(α0, β0) is the sum of independent random variables, thus under mild regu-

larity conditions the central limit theorem holds so that

S−1/2Q(α0, β0)
d−→ N(0,ΣQ).

Recall that

Q(α0, β0) =
∂`(α0, β0)

∂αT
=
∂ logL(α0, β0)

∂αT
.

and

I(α0, β0) = −∂Q(α0, β0)

∂αT
= −∂`

2(α0, β0)

(∂αT )2 .

Now we show that ΣQ = A(α0, β0)T from A(α0, β0)−1ΣQA(α0, β0)−T =

A(α0, β0)−1 which implies that ΣQ = A(α0, β0)T . To show this we find

Var
{
Q(α0, β0)

}
= E

{
Q(α0, β0)2

}
− E {Q(α0, β0)}2

= E
{
Q(α0, β0)2

}
= E

{(
∂`(α0, β0)

∂αT

)2
}

= −E
{
∂2`(α0, β0)

(∂αT )2

}
= −E {−I(α0, β0)}

= I(α0, β0)

= −∂Q(α0, β0)

∂αT
.
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Alternatively, we can use Var
{
Q(α0, β0)

}
= Σqsq

T
s and

Var(Q(α0, β0)) = Σqsq
T
s

= ΣE(qsq
T
s )

= ΣE

{
∂2`(α0, β0)

(∂αT )2

}
= I(α0, β0)

= −∂Q(α0, β0)

∂αT
,

where E {Q(α0, β0)} = E

{
∂ logL(α0, β0)

∂αT

}
= 0 by definition. Thus,

ΣQ = Var{S−1/2Q(α0, β0)}

= S−1Var{Q(α0, β0)}

= S−1I(α0, β0)

= −S−1∂Q(α0, β0)

∂αT

≈ A(α0, β0)T .

Now we can use this to show that

A(α0, β0)−1ΣQA(α0, β0)−T = A(α0, β0)−1A(α0, β0)TA(α0, β0)−T

= A(α0, β0)−1.

We assume that β̂ has been constructed from a method such as our partial or

conditional likelihood so that

S1/2(β̂ − β)
d−→ N(0,Σβ)

holds and

Var
{
S1/2(β̂ − β)

}
= SVar{β̂ } = SVβ = Σβ,

and Vβ is the covariance matrix for β̂.

We go on to find the variance for α̂ evaluated at β̂. Given that Var
{
S−1/2Q(α0, β0)

}
=

ΣQ, Var
{
S1/2(β̂ − β)

}
= Σβ, and assuming independence between α0 and β0
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which implies that the covariance is 0,

Var
{
S1/2(α̂(β̂ )− α0)

}
= Var

{
−A(α0, β0)−1

{
S−1/2Q(α0, β0) +B(α0, β0)S1/2(β̂ − β)

}}
= A(α0, β0)−1

{
Var

{
S−1/2Q(α0, β0) +B(α0, β0)S1/2(β̂ − β)

}}
A(α0, β0)−T

= A(α0, β0)−1
{

Var
{
S−1/2Q(α0, β0)

}
+ Var

{
B(α0, β0)S1/2(β̂ − β)

}}
A(α0, β0)−T

= A(α0, β0)−1
{

ΣQ +B(α0, β0)ΣβB(α0, β0)T
}
A(α0, β0)−T .

Next, using SV̂B = Σ̂β, ΣQ = A(α0, β0)T , S−1I(α̂(β̂ ), β̂ ) ≈ (α̂, β̂ ) and

S−1B(α̂(β̂ ), β̂ ) ≈ B(α̂(β̂ ), β̂ ), we derive

V̂ar
{
α̂(β̂ )

}
= S−1

[{
S−1I(α̂(β̂ ), β̂ )

}−1

+
{
S−1I(α̂(β̂ ), β̂ )

}−1

S−1B̃(α̂(β̂ ), β̂ )SV̂BS
−1B̃(α̂, β̂)

{
S−1I(α̂(β̂ ), β̂ )

}−1
]

= I(α̂(β̂ ), β̂ )−1 + I(α̂(β̂ ), β̂ )−1B̃(α̂(β̂ ), β̂ )V̂BB̃(α̂(β̂ ), β̂ )T I(α̂(β̂ ), β̂ )−1,

where B̃(α̂(β̂ ), β̂ ) = ∂Q(α̂(β̂ ), β̂ )/∂βT , as shown in Equation (4.18) of Section

4.4.3.1.



Chapter 5

Conclusions, discussion and

future work

Investigations in Chapters 2, 3 and 4, of the full likelihood function in the ho-

mogeneous case, where ψ and p are assumed constant, reveal several practical

limitations. These were found in theoretical results as well as applied exam-

ples considered in these chapters. In Chapter 2 we considered small, mod-

erate and large sized studies, in Chapter 4 we considered also larger studies.

And the extension to penalised likelihood for the full likelihood is not triv-

ial, and possibly unnecessary given the more than satisfactory performance of

our partial likelihood approach. Broadly speaking, these (limitations) may be

grouped into: 1) boundary estimates; 2) nonconvergence of the likelihood; 3)

inadequate asymptotic standard error; and 4) computational issues in imple-

menting modern GLM methods. These limitations extend through to the site

inhomogeneous case (nonconstant site ψ and p) especially when covariates are

considered.

We addressed these limitations and provided resolutions. Initially this thesis

considered the homogenous case that does not include any covariates.

The first limitation regarding boundary estimates (probabilities of zero or one)

was addressed in Chapter 2. It is possible that estimates are equal to zero

or greater than one, which means that the score equations are not always

the solutions for the ML estimates. We resolved this by giving the correct

expressions for the MLEs for ψ and p that apply to the three boundaries of

the sample space, i.e. the ‘Edge solutions’ (Section 2.3.2).

For small values of detectability, we showed that estimation of occupancy is

149
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unfeasible, in that the ML estimates do not exist everywhere in the parameter

space. We produced a rule specifying a region where estimation of (ψ, p)

is ‘plausible’: a) the MLEs always exist; and b) estimates are less biased.

The region ensures that the expectation function for occupancy will always

be monotone increasing. The amount of bias will depend on how densely

populated is the plausible region.

Knowing the edge solutions means that boundary estimates are no longer an

issue because given the sufficient statistics of an experiment the correct expres-

sion (either the score equations or the edge solutions) for the MLEs always can

be determined.

Next, consideration was given to the precision of the estimates (Chapter 2).

The asymptotic variance for the full likelihood for the homogeneous case does

not provide a closed form solution for the estimates. This makes it unreliable,

the information matrix is not always invertible so that values cannot always

be calculated. When values are produced, it is suspected that these may

underestimate the actual variance especially for small samples (and bootstrap

methods are instead recommended) (e.g. MacKenzie et al., 2002).

To evaluate the ML estimator of ψ, we derived the expression for the joint

probability mass function of the sufficient statistics; the number of detected

sites and the total number of detections for a study. With this we were able to

obtain expressions for, and evaluate, the exact expectation, the exact variance,

and the exact bias, and to explore bias corrections for occupancy.

The asymptotic variance was found to be less than satisfactory; it seriously

underestimates the variance, unless N and T are large. This was illustrated

by comparisons of the exact and asymptotic variances, and the MSE in Sec-

tion 2.5.4, Chapter 2 (for example, see Figures 2.9 and 2.10). This will lead

to confidence intervals for ψ̂ that are too narrow, for example the normal ap-

proximation interval width, and coverage, including Figure 3.4 and Table 3.2.

A possible correction for the variance estimates an overdispersion factor to

inflate them (MacKenzie and Bailey, 2004). Their estimate was based on a

simple Pearson chi-square statistic over the average test statistics obtained

from parametric bootstraps.

A number of alternative interval estimators were explored in Chapter 3. These

results have been published in Karavarsamis et al. (2013). We compared three

bootstrap-based interval estimators against the normal approximation. Boot-

strap estimators were selected on the basis that these are recommended and
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commonly used (for example, see MacKenzie et al., 2002). It was necessary to

determine which performs best. Overall, we found that when detectability, the

number of sites, and the number of survey-occasions of the study are not too

small, the studentised interval estimator gives the most consistent interval es-

timates over the range of p and ψ. Alternatively, a better approximation than

the current asymptotic estimator should be devised for the full likelihood. We

propose better variance approximations for the partial likelihood.

Next, the bias of occupancy was evaluated. We tried bias corrections on a

conditional and unconditional expectation for ψ̂ within the plausible region,

i.e. the region of the parameter space where MLEs always exist and are less

biased. However, no corrections were effective for few sites or survey occasions,

or for small detection probability. And, bias corrections are unnecessary when

all these quantities are large.

There are far greater issues with the full likelihood which prohibit any rea-

sonable bias correction to be adequate and/or effective. These sentiments are

shared by other studies. For example, Welsh et al. (2013) found that when data

are sparse and when detection depends on abundance (or occupancy) estima-

tors cannot be corrected for bias. They showed that to ignore the possibility

of nondetection (to assume that the site is unoccupied) results in a similar

bias, and smaller variance, than when it is not ignored. They concluded that

because detection error is not directly observable its presence (or magnitude)

cannot be determined, which means that it is not possible to adjust for bias.

Given the discussion thus far, it is no surprise that our investigations confirmed

that the full likelihood is affected by nonconvergence and identifiability (results

shown in Chapter 3 and published in Karavarsamis et al. (2013)). Overall, our

work is well anchored within the literature for occupancy models, for example

MacKenzie et al. (2002); Wintle et al. (2004); MacKenzie et al. (2009); Guillera-

Arroita et al. (2010); Welsh et al. (2013) .

In the final part of this thesis we developed a basic methodology for occupancy

models with partial likelihoods. Thus we were able to overcome many of the

issues of the full likelihood. Fundamentally, we devised a two-stage process

(by exploiting redetections at sites) to estimate occupancy and detectability

separately, that gives full access to GLM and GAM machinery in standard soft-

ware. Thus our methods are easily extendable to allow for more possibilities;

for example sliced inverse regression (SIR) is now accessible.

Throughout the development of methods in Chapter 4, we avoided issues to
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do with identifiability, which are known to affect the full likelihood for the

homogeneous case, previously referred to as the basic occupancy model. In

this chapter we demonstrated that our partial likelihood two-stage approach

gives estimators that are less affected by identifiability and that it is almost

always possible to obtain estimates. We showed our estimators to be consis-

tent, efficient and more robust to boundary estimates and identifiability. The

analytic forms of our estimators means that estimates are more stable than

those generated from the full likelihood.

We also developed a better approximation to the variance for occupancy and

detectability for GLMs and GAMs by simple extension to the case of time

varying covariates for detection. The analytic forms of the variances guar-

antee estimates are always available. We found our methods to be at least

comparable or better than existing methods, for example, when compared to

asymptotic and bootstrap approximations (used by PRESENCE and unmarked

software, for example). In addition, our methods are readily applied with exist-

ing software, such as R, which may be run easily on many computer platforms

(e.g Apple, Linux, Windows etc.). Whereas other software is not so easily

adaptable (e.g PRSENCE which runs readily and easily on Windows but no so

on Apple Computers, for example.)

This thesis focussed on covariates that are constant over time for occupancy

and detectability, then introduced time varying covariates for detectability. A

natural extension would be to consider when occupancy and detectability vary

in time.

When occupancy and detectability both vary in time the partial likelihood

is not appropriate. We could consider extensions to a composite likelihood,

models that may include seasonality, but it is beyond the scope of this thesis.

Briefly, the model would estimate overdispersion. And, these models would

still have the benefits of the GLM framework. Comparative and alternative

methods include random-effects models, and more generally mixed models (or

hierarchical models). These would be natural extensions to models considered

in this thesis. We note that hierarchical models, as well as multi-season models,

have been considered extensively for the full likelihood case (see Royle and

Dorazio, 2008, for example).

Robust designs founded in capture-recapture methods would be appropriate

for our models (for example, Pollock, 1982; Pollock et al., 1990). These allow

for sampling at two different time scales: a primary and secondary sampling
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phase. Time scales are selected such that within each (sampling phase) prob-

abilities are assumed constant. We may choose to visit sites within the same

season over a number of years. In this way we assume that occupancy and

detectability are constant at each time scale but not across time scales; at the

first phase probabilities are constant between years but can vary within years;

at the second phase probabilities are constant within seasons but may vary

between seasons. The primary sampling phase takes place over years and the

secondary sampling phase occurs within years, at the season level. This idea

has been implemented in dynamic occupancy models (MacKenzie et al., 2003;

McClintock et al., 2010).

Currently, our methods assume time constant models for both occupancy and

detection probability. These cannot be easily extended to a nonconstant occu-

pancy. A next step would be to consider seasonal models, with a conditional

likelihood for season.

Our methods have the possibility to be extended to account for misidentifi-

cation, or false-positive detections (Miller et al., 2011). These occur when

detection of a species is incorrectly recorded when the site actually is unoc-

cupied. In the site inhomogeneous likelihood, detection probabilities could

be estimated from redetections after the initial positive detection, where we

assume false positives do not occur. However, a likelihood conditional on at

least one positive detection at a site might be better. We may require a Bayes

probability approach for uncertain detections.

Finally we mention that extensions to our work would include combining

a variety of data structures. For example, we could use capture-recapture

data recorded for a species from a small study to augment presence-absences

recorded from a larger study for the species.

In closing, in this thesis we resolved some existing problems and extended the

basic methodology for the analysis of occupancy models, an active research

area which continues to grow.
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