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Abstract 11 

Gastrointestinal bacterial pathogens such as enteropathogenic E. coli, Salmonella and Shigella 12 

control inflammatory and apoptotic signaling in human intestinal cells to establish infection, 13 

replicate and disseminate to other hosts. These pathogens manipulate host cell signaling through the 14 

translocation of virulence effector proteins directly into the host cell cytoplasm, which then target 15 

various signaling pathways. Death receptors such as TNFR1, FAS and TRAIL-R induce signaling 16 

cascades that are crucial to the clearance of pathogens, and as such are major targets for inhibition 17 

by pathogens. This review focuses on what is known about how bacterial gut pathogens inhibit 18 

death receptor signaling to suppress inflammation and prevent apoptosis. 19 
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1. Introduction 47 

Bacterial pathogens activate a number of signaling cascades within host cells during infection, 48 

many of which subsequently induce inflammation. Alternatively, and often in parallel, microbial 49 

detection can activate apoptotic signaling, which leads to the eradication of infected cells. The 50 

benefits of inhibiting or inducing cell death or inflammation for a pathogen differ depending on the 51 

specific pathogen and type of host cell targeted. For some pathogens, the induction of cell death in 52 

epithelial cells facilitates invasion to deeper tissues, while inducing cell death in immune cells can 53 

promote pathogen survival [1]. Bacterial gut pathogens have evolved highly specific mechanisms to 54 

modulate cell death and inflammatory signaling pathways in order to successfully establish 55 

infection, replicate and disseminate to other hosts. Ultimately, the inhibition of inflammation allows 56 

the pathogen to evade the innate immune response. However, inflammation can also be useful to 57 

pathogens, for example Salmonella induces inflammation to outcompete commensal bacteria in the 58 

gut [2]. 59 

 60 

Inflammation and cell death are induced by a variety of extrinsic and intrinsic factors targeting 61 

different cellular receptors. Key signaling pathways involved in the host anti-microbial defences 62 

include the nuclear factor-kappa B (NFκB) transcriptional regulator and mitogen-activated protein 63 

kinase (MAPK) pathways. This review will focus on how bacterial gut pathogens inhibit death 64 

receptor signaling to prevent inflammation and host cell death. 65 

 66 

2. Death receptors and bacterial gut pathogens 67 

Death receptor signaling is a significant component of the host response to bacterial gut pathogens. 68 

Death receptors including TNFR1, FAS (TNFSFR6) and the TRAIL (TNF-associated apoptosis-69 

inducing ligand) receptors, DR4 and DR5, are defined by the presence of   a cytoplasmic death 70 

domain (DD), which recruits DD-containing adapter proteins to an oligomeric signalosome via 71 

homo- and heterotypic DD interactions [3, 4]. The stimulation of death receptors occurs through an 72 

extracellular cysteine-rich domains (CRD) leading either to an inflammatory response or death of 73 

the cell.  74 

 75 

In response to TNF, TNFR1 recruits adapter proteins to form different signaling complexes that 76 

have distinct and diverse outcomes [3]. Complex I requires binding of TRADD to TNFR1 via DD 77 

interactions, followed by recruitment of TRAF2, RIPK1 and cIAPs to the receptor complex. This 78 

signaling platform results in the activation of NF-κB and MAPK signaling, inducing an 79 

inflammatory response [5]. Complex IIa is formed upon dissociation of TRADD from TNFR1, 80 

recruitment of FADD and procaspase-8 to TRADD, followed by the activation of caspase-8 and 81 
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apoptosis of the cell. Complex IIb leading to necroptosis is formed upon de-ubiquitination and 82 

phosphorylation of RIPK1 and involves the components, RIPK3, FADD and procaspase-8 [6]. The 83 

formation of each of these signaling complexes is tightly regulated so that not all complexes can be 84 

activated at once and tissue homeostasis is maintained.  85 

 86 

In the canonical extrinsic apoptosis pathway, recognition of FAS ligand (FasL) by FAS leads to the 87 

recruitment of FADD and procaspase-8 and formation of the death-inducing signaling complex 88 

(DISC), which initiates cell death though the activation of caspase-8 [7]. The signaling pathway in 89 

lymphoid cells differs slightly to that of non-lymphoid cells. For the latter, processing of the pro-90 

apoptotic protein Bid is required to induce cell death [8, 9]. 91 

 92 

TRAIL-R is another death receptor which upon binding of the ligand TRAIL, recruits FADD and 93 

procaspase-8 to form the DISC [10]. TRAIL has been studied extensively in the context of tumor 94 

cell apoptosis, but a role for TRAIL during infection with bacterial pathogens is not well 95 

established. While the involvement of TRAIL-R and FAS in apoptotic signaling is well accepted, 96 

their potential influence on anti-apoptotic, inflammatory and pro-survival signaling are 97 

controversial. Non-apoptotic signaling via these receptors seems to involve NF-B and MAPK 98 

pathways, but the physiological relevance remains unclear [10, 11]. 99 

 100 

The evolution of bacterial pathogens to inhibit death receptor signaling can be attributed to the 101 

acquisition of virulence genes on mobile genetic elements such as prophages and integrative 102 

elements, which can be horizontally transferred between bacteria. Enteropathogenic Escherichia 103 

coli (EPEC) and enterohaemorrhagic E. coli (EHEC) are extracellular pathogens that infect 104 

epithelial cells of the human gut. EPEC and EHEC utilize a type III secretion system (T3SS) to 105 

inject virulence effector proteins directly into host cells, which manipulate host cell function [12]. 106 

One such effector, termed the translocated intimin receptor (Tir) mediates the formation of 107 

attaching and effacing (A/E) lesions which are characterized by intimate attachment of the bacteria 108 

to host cells and the effacement of brush-border microvilli around the adherent bacteria. The T3SS 109 

and several effectors, including Tir, are encoded by the locus of enterocyte effacement (LEE) 110 

pathogenicity island. There are also non-LEE encoded (Nle) effector proteins, many of which 111 

inhibit inflammation and cell death by blocking death receptor signaling. The effects of these 112 

proteins during infection in vivo have been studied using Citrobacter rodentium, an A/E pathogen 113 

of mice that is highly related to EPEC and EHEC. 114 

 115 

Unlike EPEC, Salmonella enterica serovar Typhimurium is an invasive gastrointestinal pathogen 116 
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that possesses two T3SSs encoded by Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2). 117 

While the SPI-1 T3SS is required to facilitate entry into host cells, the SPI-2 T3SS is required to 118 

establish intracellular replication. However, similar to EPEC, S. Typhimurium has evolved to evade 119 

host immune defenses through the injection of T3SS effectors that subvert innate immune and 120 

apoptotic signaling pathways. 121 

 122 

Shigella is the causative agent of bacillary dysentery, or shigellosis, an invasive infection of the 123 

human colon. While highly genetically related to E. coli, Shigella spp. are different to A/E 124 

pathogens as they are invasive gastrointestinal pathogens. Once inside the cell, the bacteria lyse the 125 

endocytic vacuole, replicate in the cytoplasm and spread to adjacent cells via the polymerisation of 126 

F-actin at one pole. Shigella also uses a T3SS to translocate effector proteins directly in the host cell 127 

cytosol that are essential for invasion, vacuolar escape, and cell-to-cell spread [13]. As with A/E 128 

pathogens and Salmonella, a number of additional T3SS effectors target inflammation and 129 

cytoskeletal dynamics to promote the survival and dissemination of the pathogen [13, 14]. Many of 130 

these effectors share significant sequence homology with T3SS effectors of EPEC, EHEC and 131 

Salmonella and are likely to have similar functions within the cell. 132 

 133 

3. Inhibition of death receptor induced inflammation 134 

Gut bacterial pathogens trigger innate immune signaling via recognition of their pathogen 135 

associated molecular patterns (PAMPs) including flagellin and LPS [15]. Inflammatory cytokines 136 

such as TNF can then induce death receptor signaling and further inflammation via the activation of 137 

NF-κB or MAPK pathways [5]. 138 

Early studies showed that while EPEC PAMPS induced inflammation, the pathogen possessed the 139 

ability to inhibit the production of inflammatory cytokines [16, 17]. Prior EPEC infection led to the 140 

inhibition of IL-8 production in infected cells even when stimulated with TNF, IL-1β or bacterial 141 

flagellin. The inhibition was T3SS dependent, and subsequently several effectors of EPEC and 142 

EHEC were shown to inhibit NF-κB signaling by targeting different host cell components using 143 

diverse mechanisms of action. 144 

 145 

TNF produced during Shigella and Salmonella infection also triggers MAPK and NF-κB activation. 146 

Indeed, patients infected with S. dysenteriae or S. flexneri have consistently higher levels of 147 

cytokines including TNF in their serum, intestinal tissue and stools during both the acute and 148 

convalescent phase of infection [18, 19]. Likewise, increased levels of inflammatory cytokines such 149 

as TNF are observed in sera from patients suffering from gastrointestinal Salmonella infections 150 
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[20]. Similar to EPEC, T3SS effectors from Shigella and Salmonella have been described that 151 

inhibit inflammatory signaling pathways.  152 

 153 

3.1. Inhibition of NF-κB signaling by bacterial T3SS effectors 154 

3.1.1. Targeting of TAB2 and TAB3 155 

NleE is a T3SS effector of A/E pathogens that blocks NF-κB signaling in response to TNF and IL-156 

1. Initial studies showed that cells infected with A/E pathogens or expressing NleE ectopically 157 

were unable to respond to stimulation with TNF or IL-1 and that NleE prevented IκB degradation 158 

and p65 nuclear translocation [21, 22]. Recently, NleE was shown to target the adapter proteins 159 

TAB2 and TAB3 upstream of IκB in the NF-κB signaling pathway [23] (Fig. 1). NleE is a novel 160 

cysteine methyltransferase that modifies TAB2 and TAB3 by transferring a methyl group onto a 161 

zinc coordinating cysteine residue within the Npl4 zinc finger domain. This prevents recognition of 162 

the ubiquitin chains on TRAF2 and TRAF6, the ubiquitin ligases involved in the TNFR1 and IL-1 163 

receptor complexes respectively [23]. The activity of NleE depends on a conserved six amino acid 164 

motif, 
209

IDSYMK
214

, within the C-terminal region that is essential for the effector to block NF-κB 165 

activation and modify TAB2/3 [22, 23]. Although several EPEC effectors inhibit NF-κB signaling, 166 

NleE appears to contribute significantly to the prevention of IL-8 secretion during infection of 167 

epithelial cells [22]. However, despite the potency of its activity in vitro, the importance of NleE 168 

during infection in vivo has been hard to define. During C. rodentium infection of mice, nleE null 169 

mutants show only a marginal defect in virulence in comparison to wild-type C. rodentium infection 170 

[24, 25], perhaps due to redundancy in activity with other T3SS effectors. 171 

 172 

OspZ is a homologue of NleE, found in all Shigella species that also inhibits NF-κB activation and 173 

p65 nuclear translocation [22] (Fig. 2). Given the high amino acid sequence similarity with NleE in 174 

all species except S. flexneri serotype 2a [22], OspZ presumably also exhibits methyltransferase 175 

activity and targets TAB2/3 during Shigella infection. Curiously, OspZ from S. flexneri 2a is 176 

truncated by 36 amino acids at the C-terminus, lacks the IDSYMK motif and is non-functional [22, 177 

26]. The non-functional form of OspZ is highly conserved among strains of S. flexneri 2a and it is 178 

unclear why the truncated gene is maintained in the bacterial genome.  179 

 180 

3.1.2 Control of cellular ubiquitination by type III effectors 181 

Ubiquitination is a key mechanism regulating many eukaryotic cellular processes, including cell 182 

cycle progression, gene transcription and death receptor signaling [27]. The Shigella effector OspG, 183 

is an atypical Ser/Thr protein kinase that inhibits NF-κB activation by preventing ubiquitination and 184 

subsequent proteasomal degradation of phospho-IκBα [28, 29]. OspG directly interacts with 185 
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ubiquitin conjugates and K63 or K48-linked poly-ubiquitin chains in host cells, blocking the 186 

progression of p65 nuclear translocation and transcriptional activation [29] (Fig. 2). 187 

 188 

The EPEC homologues of OspG, NleH1 and NleH2 also inhibit degradation of IκB in response to 189 

TNF stimulation [30]. Ectopic expression of NleH1/2 inhibits IκB ubiquitination through an 190 

unknown mechanism dependent on conserved lysine residues, K159 and K169 in NleH1 and NleH2 191 

respectively, that are implicated in kinase activity [30]. NleH1 has also been shown to inhibit NF-192 

κB signaling independent of its kinase activity and its role in inhibition of IκB degradation. NleH1 193 

targets ribosomal protein S3 (RPS3), a KH domain protein that binds to p65 and increases its 194 

affinity for a subset of NF-κB dependent genes [31, 32]. NleH1/2 both bind RPS3 however only 195 

NleH1 prevents nuclear translocation of RPS3, due to inhibition of IKK mediated phosphorylation 196 

of RPS3 [31]. NleH also prevents intrinsic apoptosis, possibly through binding Bax inhibitor 1 [33]. 197 

Animal experiments using NleH mutants have yielded conflicting results, and the function of NleH 198 

in vivo has still not been established (Fig. 1). 199 

 200 

The Salmonella effector protein GogB was recently identified as an anti-inflammatory effector that 201 

manipulates the host ubiquitination system [34]. GogB targets the host Skp, Cullin, F-box (SCF) 202 

containing complex by binding to 2 of its components: S-phase kinase-associated protein 1 (Skp1) 203 

and F-box only protein 22 (FBOX22) [34]. The SCF complex is a multi-protein E3 ubiquitin ligase 204 

that catalyzes the addition of ubiquitin moieties to proteins fated for proteasomal degradation, one 205 

of which is IκB [34]. By targeting the SCF complex, GogB interferes with IκB degradation and 206 

inhibits NF-κB activation (Fig. 3). 207 

 208 

The Salmonella effector SseL was also initially proposed as having anti-inflammatory activity. Le 209 

Negrate et al. suggested SseL dampens innate immune defences in vivo by deubiquitinating IκB, 210 

preventing its proteasomal degradation and interfering with NF-κB signaling [35] (Fig. 3). 211 

However, a recent study reassessed the involvement of SseL in the inhibition of the NF-κB pathway 212 

and found no evidence that SseL targets the NF-κB pathway [36]. Instead, SseL was found to 213 

contribute to macrophage cell death [36]. 214 

 215 

While some effectors can either inhibit inflammation or apoptosis, the Salmonella T3SS effector, 216 

AvrA, can dampen both the inflammatory and apoptotic pathways of a eukaryotic cell by inhibition 217 

of a number of signaling pathways. Initial studies suggested that AvrA blocks the NF-κB pathway 218 

downstream of IKK activation. Ectopically expressed AvrA inhibits p65 nuclear translocation in 219 

response to TNF as well as TNF-induced activation of an NF-κB-dependent IL-8 reporter in HeLa 220 
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cells [37]. Later work suggested that AvrA inhibits NF-κB signaling and apoptosis both in vitro and 221 

in vivo and proposed that AvrA acts as a deubiquitinase with suggested targets of IκB and β-222 

catenin [38]. Deubiquitination of IκB rendered it more stable, thereby preventing p65 nuclear 223 

translocation [38] (Fig. 3). 224 

 225 

While some effectors inhibit ubiquitination of IκB to inhibit NF-κB signaling, other effectors 226 

promote ubiquitination to induce degradation of upstream signaling mediators. IpaH9.8 is an E3 227 

ubiquitin ligase that targets the NF-κB signaling component NEMO/IKKγ during Shigella infection 228 

[39, 40]. The interaction of IpaH9.8 with NEMO and the ubiquitin-binding adaptor protein ABIN-1 229 

promotes the polyubiquitination and subsequent proteasomal degradation of NEMO, resulting in a 230 

reduced NF-κB response during infection [39]. Studies have shown that IpaH9.8-mediated 231 

inhibition of NF-κB is more pronounced during TLR4 or NOD1 signaling compared to TNF-232 

induced signaling [39], however given that NEMO/IKKγ is located downstream of TNFR1, it is 233 

plausible that IpaH9.8 would interfere with signaling induced as a result of TNF production in the 234 

gut during Shigella infection (Fig. 2). 235 

 236 

The homologue of IpaH9.8 in Salmonella, SspH1, contributes to the down-regulation of IL-8 237 

production after invasion of intestinal epithelial cells. SspH1 binds a mammalian Ser/Thr protein 238 

kinase called PKN1 through a leucine-rich repeat domain [41] which could explain the nuclear 239 

localization of SspH1 as well as its role in the inhibition of NF-κB-dependent gene expression 240 

including IL8 [42]. SspH1 was later shown to function as an E3 ubiquitin ligase for PKN1 [43], 241 

which may be involved in the TRAF-NF-κB signaling pathway [44, 45] (Fig. 3). However, a recent 242 

study showed that SspH1-mediated ubiquitination and subsequent degradation of PKN1 did not 243 

inhibit NF-κB signaling and suggested that there may be other cellular targets of SspH1, which 244 

mediate this effect [46].  245 

 246 

3.1.2. Inhibition of inflammation by direct cleavage of NF-κB 247 

While some effector proteins promote the degradation of signaling components by regulating 248 

cellular ubiquitination, other effectors degrade NF-κB proteins directly. NleC is a T3SS effector of 249 

A/E pathogens that directly cleaves p65 and p50. NleC functions as a zinc metalloprotease and 250 

contains the catalytic consensus motif HEXXH [47-50]. Direct cleavage of p65 by NleC was shown 251 

using recombinant proteins [47, 50] and ectopic expression of NleC results in rapid degradation of 252 

p65 [49]. Cleavage of p65 occurs at the N-terminus within the Rel homology domain (RHD), 253 

however there is some disagreement on the precise cleavage site, with two studies identifying 254 

different cleavage points [47, 50]. NleC also cleaves other NF-κB proteins, p50 and c-Rel and 255 
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potentially other related signaling proteins, IκB and the histone acetyltransferase p300 [48, 49, 256 

51]. While deletion of nleC in C. rodentium does not result in colonization defects or lower 257 

pathogen load during infection in mice, increased colitis was observed in comparison to infection 258 

with wild-type C. rodentium, thereby supporting a role for NleC in inhibiting inflammation [52] 259 

(Fig. 1). 260 

 261 

3.1.3. Inhibition of TNFR1 receptor complex formation  262 

Unlike NleC and NleE, the T3SS NleB1 from A/E pathogens, was observed to inhibit NF-B 263 

signaling in response to TNF, but not IL-1 [22]. Upon overexpression, NleB1 inhibited activation 264 

of NF-B by preventing IB degradation, however the specific cellular targets and mechanism of 265 

action of NleB were unknown until very recently. NleB1 was identified through sequence 266 

homology to be a glycosyl transferase, containing a Rossman fold and signature DXD catalytic 267 

motif [53]. The initial target of NleB from C. rodentium (NleB1 in EPEC) was suggested to be 268 

GAPDH, which was proposed to be a cofactor for TRAF2 that was O-GlcNAcylated by NleB to 269 

prevent TRAF2 polyubiquitination and downstream signaling [53]. However, the precise 270 

modification site within GAPDH was not identified and subsequent studies found NleB does not 271 

glycosylate GAPDH. Instead, NleB modifies the death domains of particular signaling mediators, 272 

including FADD, TRADD and RIPK1[54, 55]. Furthermore, NleB mediates a highly novel post-273 

translational modification, which is N-linked glycosylation to arginine [54, 55], a modification that 274 

has only been described once for a self-glucosylating corn protein [56]. The arginine targeted by 275 

NleB is highly conserved within certain death domains, including arginine 235 within the death 276 

domain of TRADD. This modification prevents TRADD oligomerisation and recruitment to 277 

TNFR1 [54]. Infection of mouse embryonic fibroblasts (MEFs) with an nleBE double mutant of 278 

EPEC overexpressing NleB1 leads to inhibition of NF-κB signaling [54], yet despite the effect on 279 

NF-κB, NleB does not inhibit IL-8 secretion during EPEC infection [55]. Hence in vivo, NleB may 280 

not function to inhibit inflammation [11, 15]. NleB1 also modifies a conserved arginine in several 281 

other death domains (FADD, TNFR1 and RIPK1) some of which relate to its ability to inhibit 282 

apoptosis driven by death receptor signaling (see below) (Fig. 1). 283 

 284 

EPEC and EHEC also contain a homologue of NleB1, NleB2 that also contains a Rossman fold and 285 

signature DXD catalytic motif. Recombinant NleB2 appears to glycosylate TRADD, however its 286 

activity is less than that of NleB1 [54]. Additionally, ectopic expression of NleB2 does not inhibit 287 

NF-B activation in response to TNF to the same extent as NleB1 [54]. By co-288 

immunoprecipitation, NleB2 binds only weakly to RIPK1 and not at all not to TRADD or FADD 289 

[55]. NleB2 also does not inhibit IL-8 secretion during infection of cultured cells [55]. Given its 290 
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inefficient binding to and modification of DD proteins, it is possible that the true cellular targets of 291 

NleB2 have not yet been found. 292 

 293 

Strong homologues of NleB1 exist in S. Typhimurium where they are termed SseK1, SseK2 and 294 

SseK3. NleB1 and the SseK homologues share between 80-92% similarity and 57-76% identity. 295 

Importantly, all SseK effectors contain the signature DXD catalytic motif present in NleB1 and 296 

NleB2. SseK1 and SseK2 are encoded on distinct pathogenicity islets on the bacterial chromosome 297 

whereas SseK3 is encoded within the phage ST64B lysogen [57, 58]. While SseK1 and SseK2 are 298 

present in most available Salmonella genome sequences, SseK3 has a limited distribution in these 299 

genome sequences, consistent with it being encoded on an active phage lysogen [57].  All three 300 

SseK proteins are translocated by the SPI-2-encoded T3SS [57, 58].  In view of the strong 301 

homology amongst the NleB and SseK effectors, it is tempting to speculate that the SseK effectors 302 

also modify death domain-containing proteins through glycosyl transferase activity similar to 303 

NleB1 from EPEC.  Additionally, Li et al. recently reported that SseK1 glycosylates the death 304 

domain of TRADD, and inhibits NF-B signaling when expressed ectopically [54]. However, more 305 

work is needed to establish whether the SseK effectors function as glycosyltransferases and inhibit 306 

death receptor signaling pathways in vivo (Fig. 3).  307 

 308 

Some studies have also shown that Tir has immunomodulatory functions unrelated to intimin 309 

binding and the formation of A/E lesions. Ectopically expressed Tir inhibits NF-B activation in 310 

response to TNF stimulation of cultured epithelial cells, and this has been attributed to an 311 

interaction with TRAF2 [59]. Subsequent studies have revealed that Tir contains immunoreceptor 312 

tyrosine-based inhibitory motifs (ITIMs) that interact with protein tyrosine phosphatases (SHP-1 313 

and SHP-2) resulting in deubiquitination of TRAF6 and a block in signaling via the IL-1 receptor 314 

[60, 61]. However, since it is difficult to dissect the immunomodulatory function of Tir from its role 315 

in A/E lesion formation, the impact of this activity compared to NleE and NleC is hard to assess.  316 

 317 

3.2. Inhibition of MAP kinase pathways to prevent inflammation 318 

3.2.1 Specific inactivation of JNK and p38 319 

NleD from EPEC and EHEC is another zinc metalloprotease effector that inhibits inflammatory 320 

signaling [47, 62]. NleD specifically cleaves JNK and p38 to inhibit MAPK signaling rather than 321 

NF-B signaling [47]. Cleavage of JNK by NleD occurs within the activation loop of JNK2 and 322 

requires no additional host cofactors. While the role of NleD in inhibiting inflammation is not as 323 

pronounced as NleE and NleC, infection of cells with an EPEC mutant lacking nleB, nleE and nleC 324 

leads to less IL-8 secretion than infection with EPEC lacking nleB, nleE, nleC and nleD [47], 325 
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suggesting that NleD contributes to the combined suppression of inflammatory effectors. NleC has 326 

also been implicated in inhibition of p38 phosphorylation and activation, however NleC does not 327 

degrade p38, and its mechanism of action in this pathway remains to be elucidated [47, 52] (Fig. 1). 328 

 329 

SpvC is another Salmonella effector with apparent anti-inflammatory properties [63]. SpvC 330 

inactivates p38 and JNK in vitro [64, 65] by removing phosphate from threonine in a conserved 331 

MAPK activation motif. SpvC inhibits the production of pro-inflammatory cytokines in vivo 332 

presumably through its function as a phosphothreonine lyase [64](Fig. 3). 333 

 334 

3.2.2 OspF targets MAPK signaling and additionally inhibits NF-κB 335 

The homologue of SpvC, the Shigella effector OspF is also a phosphothreonine lyase that 336 

irreversibly inactivates MAPK [66, 67]. The activity of OspF prevents histone H3 phosphorylation 337 

in the host cell nucleus, thereby blocking access to NF-κB binding sites including in the IL8 338 

promoter [66, 68]. This results in decreased neutrophil recruitment at the site of infection [66] (Fig. 339 

2). 340 

 341 

While AvrA from Salmonella has been directly linked to NF-B inhibition by deubiquitinating IB, 342 

a different biochemical activity has also been suggested by Jones et al., whereby AvrA inhibits 343 

inflammation and apoptosis both in vivo and in vitro by acetylating the mitogen-activated protein 344 

kinase kinases (MAPKK) MKK4 and MKK7, inhibiting their phosphorylation and thereby blocking 345 

JNK and NF-κB signaling pathways [69] (Fig. 3). Using the streptomycin pretreatment mouse 346 

model of enteric salmonellosis, AvrA was observed to prevent macrophage cell death and bacterial 347 

dissemination by blocking JNK phosphorylation [70].  The ability of AvrA to dampen both the 348 

inflammatory and the apoptotic pathways is consistent with the fact that Salmonella elicits a 349 

transient inflammation in intestinal epithelial cells without overtly destroying the epithelia, a 350 

pathology that is more characteristic of infections with Shigella or EHEC [71]. 351 

 352 

4. Inhibition of extrinsic apoptosis 353 

As the subversion of inflammatory signaling can lead to apoptosis, bacterial gut pathogens have 354 

also evolved to inhibit apoptotic pathways induced by death receptor ligands. Apoptotic cell death 355 

is non-inflammatory due to the rapid engulfment of apoptotic bodies that do not release their 356 

contents, and is characterized by a lack of inflammatory cytokine production by macrophages 357 

during engulfment.  358 

 359 

4.1. Inhibition of the death inducing signaling complex (DISC) 360 
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Although NleB1 was first described as having a role in the inhibition of NF-B activation [21, 22], 361 

NleB1 can also antagonize death receptor signaling to prevent apoptosis [54, 55]. NleB1 binds to 362 

and modifies the death domain of FADD to inhibit TNF or FasL-induced DISC formation, thereby 363 

preventing caspase-8 activation and cell death [54, 55]. NleB1 modifies arginine 117 with GlcNAc 364 

in the DD of FADD, which is essential for formation of the FAS-FADD oligomeric complex and 365 

formation of the DISC [4, 72]. An EPEC nleB1 mutant has reduced ability to inhibit caspase-8 366 

activation and cell death in vitro, while a C. rodentium nleB mutant also shows diminished ability to 367 

inhibit caspase-8 activation in vivo [55] (Fig. 1). 368 

 369 

The inhibition of FAS signaling by NleB suggests that the FAS pathway is important for controlling 370 

infection with A/E pathogens. Indeed the role of FAS signaling in controlling infection with 371 

C. rodentium in vivo is supported by the development of severe disease during infection of FAS and 372 

FasL deficient mice with C. rodentium [55]. Furthermore, similar phenotypes of severe disease are 373 

observed during infection of Bid deficient mice, suggesting that apoptosis of non-lymphoid cells 374 

helps control colitis. Interestingly, polymorphisms in the human FASLG gene encoding FasL have 375 

been implicated in the development of inflammatory bowel disease, suggesting a role for Fas 376 

signaling in controlling pathology in response to gut microbes [73]. For EPEC, NleB may prolong 377 

the survival of infected gut epithelial cells by preventing their removal to enhance bacterial 378 

colonization and increase bacterial shedding in feces. This would optimize subsequent 379 

dissemination to other hosts [74]. 380 

 381 

4.2. Prevention of apoptosis by direct inhibition of caspases 382 

NleF has been implicated in inhibition of apoptosis induced by both intrinsic and extrinsic 383 

pathways. Although work has focused mainly on the role of NleF in inhibiting intrinsic apoptosis, 384 

NleF binds caspase-8 and inhibits TRAIL induced activation of caspase-8 and apoptosis [75]. It 385 

appears that NleF may act as a direct caspase inhibitor, as NleF was shown to directly bind caspase-386 

9 similarly to previously reported caspase-9 inhibitors [75]. However, it appears that the role of 387 

NleF in inhibiting apoptosis may be secondary to other effectors such as NleB, as no differences in 388 

activation of effector caspases-3 and -7 were observed during infection of HeLa cells with EPEC 389 

nleF in comparison to wild-type EPEC [75] (Fig. 1). 390 

 391 

5. Lymphotoxin-α and alternative signaling via TNFR  392 

Lymphotoxin-α (LTα) is a member of the TNF superfamily and has recently emerged as an 393 

important factor in controlling immune homeostasis and regulation of the intestinal microflora [76]. 394 

LTα is essential for the development of secondary lymphoid tissues and for the organization of 395 
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lymphoid tissues including the spleen and thymus [77, 78]. The predominant pathway for LT-396 

induced lymphoid tissue development is via the lymphotoxin-β receptor (LTβR), which is found on 397 

a number of non-lymphoid cell types including, fetal stromal cells, cells of the myeloid lineage, 398 

endothelial cells, hepatocytes and intestinal epithelial cells [79, 80]. The LTβR is activated when 399 

engaged by a heterotrimer of LTα and LTβ [LTα1β2), which can be expressed by B cells, T cells 400 

and innate lymphoid cells (ILCs) that express the RORγt receptor [76]. Mice deficient in LTα, LTβ 401 

or LTβR are unable to coordinate lymphoid organogenesis [76, 81] 402 

 403 

Homotrimers of LTα can also bind and activate signaling via TNFR1 [82], although activation is 404 

not as potent as that induced by TNF [80, 83, 84]. As a natural pathogen of mice, C. rodentium 405 

infection provides a useful model to study the interaction between ILCs and intestinal epithelial 406 

cells in vivo. During C. rodentium infection LT is essential for IL-22 production by ILCs, and 407 

inhibition of LTβR signaling severely impairs ILC IL-22 production [85, 86].  These ILCs are 408 

predominantly located in lymphoid follicles in the colon and are closely associated with dendritic 409 

cells (DCs). LTβR-deficient mice are highly susceptible to infection with C. rodentium with 410 

mortality occurring as early as day 10 after infection [87] and clearance is dependent on expression 411 

of LTβR on both myeloid and intestinal epithelial cells [87]. TNFR-deficient mice are also 412 

susceptible to C. rodentium infection [88], which suggests that either TNF- and/or LT-induced 413 

TNFR signaling may play a role in clearance of the pathogen. Given that C. rodentium encodes all 414 

of the same LEE and non-LEE-encoded virulence factors that inhibit death receptor signaling [12, 415 

89], it is likely that TNFR signaling would be blocked during C. rodentium infection. 416 

 417 

6. Conclusions 418 

There is much left to understand about the role of various effector proteins in inhibiting 419 

inflammation and/or apoptosis during infection. Several effectors appear to have redundant 420 

functions, so it remains to be seen how all the effectors act together and whether their activity is 421 

regulated by hierarchy of expression and/or translocation in vivo. What is certain is that bacterial 422 

effector proteins potently subvert the anti-microbial response of the host cell by inhibiting both 423 

death receptor induced inflammation and cell death.  424 

 425 

In some cell types, the simultaneous inhibition of inflammatory and apoptotic pathways induces a 426 

form of cell death known as necroptosis, which can not only remove infected cells, but also induce 427 

inflammation [90]. The role of necroptosis in normal human physiology is unclear but the 428 

inflammation and cell death induced by necroptosis could potentially promote the clearance of 429 

infection where the primary innate responses are inhibited by the pathogen. However, considering 430 
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that bacterial effector proteins attack both inflammatory and apoptotic signaling at multiple points, 431 

it is reasonable to assume that some pathogens will also inhibit the last remaining innate anti-432 

microbial response of necroptosis. Further study is required to investigate the potential role of 433 

necroptosis during infection and the possible inhibitory mechanisms exhibited by bacterial 434 

pathogens that may attack this pathway. 435 

 436 

  437 
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Legend to the Figures 438 
 439 
Figure 1. Inhibition of death receptor signaling by enteropathogenic E. coli (EPEC) and 440 

enterohemorrhagic E. coli (EHEC). The T3SS effector NleB1 is a glycosyltransferase that 441 

modifies a conserved arginine in the DD of FADD, TRADD and RIPK1 with a single GlcNAc. The 442 

modified DD proteins are not recruited to the death receptor complex and cell death is subsequently 443 

blocked. Tir is a dual function effector that 1) mediates intimate attachment of EPEC/EHEC to the 444 

host cell and 2) interacts with TRAF2 to inhibit NF-B activation. NleE is a cysteine 445 

methyltransferase that modifies the zinc finger domain of TAB2/3 thereby preventing recognition 446 

of ubiquitinated TRAF2. NleD and NleC are zinc metalloproteases that specifically cleave JNK/p38 447 

and Rel proteins, respectively. NleH binds the transcription factor RPS3 and prevents its nuclear 448 

translocation, thereby dampening NF-B activation. NleF binds caspases-4, -8 and -9 and prevents 449 

apoptosis.  450 

 451 

Figure 2. Inhibition of death receptor signaling by Shigella. OspF is a phosphothreonine lyase 452 

that inactivates MAPK signaling. OspZ inhibits IB degradation and although the mechanism has 453 

not been tested, it is likely that OspZ is a cysteine methyltransferase given its high sequence 454 

homology to NleE from EPEC/EHEC.  OspG is a Ser/Thr protein kinase that inhibits ubiquitination 455 

and proteasomal degradation of phospho-IB. IpaH9.8 is an E3 ubiquitin ligase that promotes 456 

ployubiquitination and proteasomal degradation of NEMO. 457 

 458 

Figure 3. Inhibition of death receptor signaling by Salmonella. SseK1 is highly homologous to 459 

NleB1 from EPEC/EHEC and potentially GlcNAcylates the DD of TRADD, however no functional 460 

studies have been published. AvrA and SseL inactivate NF-B signaling by deubiquitinating IB. 461 

AvrA also inhibits phosphorylation of MAPK components MKK4 and MKK7, further inactivating 462 

NF-B and JNK signaling. SpvC is a phosphothreonine lyase that inactivates p38 and JNK. GogB 463 

targets the host SCF E3 ligase complex to inhibit ubiquitination and subsequent degradation of 464 

IB. 465 

 466 
 467 

  468 



Page 18 of 26

Acc
ep

te
d 

M
an

us
cr

ip
t

 16 

Table 1. Type III effector proteins from bacterial gut pathogens and their effect on death receptor 469 

signaling 470 

Effector  Host targets Enzymatic 

activity 

Function References 

Attaching and effacing pathogens (EPEC, EHEC, C. rodentium) 

 

Tir SHP-1, SHP-2, 

TRAF 2 

 Inhibits NF-B signaling. [59-61] 

NleB1/NleB2 Death domain 

containing 

proteins (FADD, 

TRADD, RIPK1, 

TNFR1) 

N-linked Glycosyl 

transferase 

Inhibits DISC formation, 

inhibiting apoptosis. Inhibits 

NF-B signaling. 

[53-55] 

NleC p65(RelA), p50, c-

rel, IB, p300 

Zinc 

metalloprotease 
Cleaves NF-B, inhibits 

inflammation. 

[47-51] 

NleD JNK, p38 Zinc 

metalloprotease 

Cleaves JNK and p38. Inhibits 

inflammation 

[47] 

NleE TAB2, TAB3 Cysteine 

methyltransferase 

Inhibits ubiquitin chain binding 

by TAB2 and TAB3, inhibiting 

NF-B signaling. 

[21-23] 

NleF Caspase-4, -8 and 

-9 

 Caspase inhibitor, inhibits 

apoptosis. 

[75] 

NleH1/NleH2 RPS3, Bax 

inhibitor 1 

Ser/Thr kinase Inhibits NF-B and apoptosis [30, 31, 33] 

Salmonella 

 

AvrA IB, MKK4, 

MKK7 

Deubiquitinase, 

acetyltransferase 
Inhibits NF-B and MAPK 

signaling, anti-inflammatory 

and anti-apoptotic 

[37, 38, 91] 

GogB Skp1, FBOX22  Targets SCF complex to inhibit 

IB degradation and NF-B 

activation. 

[34] 

SpvC ERK, p38, JNK Phosphothreonine 

lyase 

Inactivates MAPK, inhibits 

inflammation 

[63-65] 

SseL IB Deubiquitinase Deubiquitinates IB to inhibit 

NF-B signaling, contested by 

[36] 

[35] 

SseK1/2/3 DD of TRADD 

(for SseK1) 

N-linked Glycosyl 

transferase 
Inhibits NF--B activation [54] 

SspH1 PKN1 E3 ubiquitin 

ligase 
Inhibits NF-B activation [42, 92, 93] 

Shigella 

 

IpaH9.8 NEMO, ABIN-1 E3 ubiquitin 

ligase 
Inhibits NF-B activation by 

promoting ubiquitinationa and 

proteasomal degradation of 

NEMO 

[39] 

OspG K63 or K48-

linked 

polyubiquitinated 

proteins 

Ser/Thr protein 

kinase 
Prevents ubiquitination of IB [28, 29] 

OspF MAPK Phosphothreonine 

lyase 

Inactivates MAPK, prevents 

access of NF-B to the IL8 

promoter. 

[66-68] 

OspZ TAB2, TAB3 (by 

homology to 

NleE) 

Cysteine 

methyltransferase  
Inhibits NF-B activation [22) 

 471 

  472 
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Figure 2
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