
Accepted Manuscript

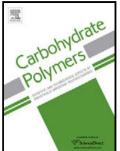
Title: Physical characterisation of high amylose maize starch and acylated high amylose maize starches

Author: Ya-Mei Lim Pamela Hoobin Dan Yang Ying Iko Burgar Paul R. Gooley Mary Ann Augustin

CARP 9326

To appear in:

Reference:


PII:

DOI:

Received date: 27-11-2013 Revised date: 9-9-2014 Accepted date: 18-9-2014

Please cite this article as: Lim, Y.-M., Hoobin, P., Ying, D. Y., Burgar, I., Gooley, P. R., and Augustin, M. A., Physical characterisation of high amylose maize starch and acylated high amylose maize starches, Carbohydrate Polymers (2014), http://dx.doi.org/10.1016/j.carbpol.2014.09.068

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Page 1

- 1 Physical characterisation of high amylose maize starch and acylated high amylose maize
- 2 starches
- 3
- 4 Ya-Mei Lim^{1,2,3}, Pamela Hoobin⁴, DanYang Ying¹, Iko Burgar⁴, Paul R Gooley^{*,2,3}, Mary Ann
- 5 Augustin¹
- 6
- 7 ¹CSIRO Preventative Health National Research Flagship & Animal, Food and Health Sciences,
- 8 671 Sneydes Road, Werribee, Vic 3030, Australia
- 9 ²Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville,
- 10 Vic 3010, Australia
- ³The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne,
- 12 Parkville, Vic 3010, Australia
- ⁴CSIRO Manufacturing & Materials Technology, Private Bag 33, Clayton South MDC, Clayton
- 14 South, Victoria 3169, Australia
- 15
- 16 * Corresponding author
- 17 Paul R. Gooley
- 18 Department of Biochemistry and Molecular Biology,
- 19 The University of Melbourne, Parkville, Vic 3010, Australia.
- 20 Tel.: +61 3 834 42273 Email: prg@unimelb.edu.au

21

22

Page 2

- 24 Keywords: high amylose maize starch; NMR; Dynamic Vapour Sorption; digestibility;
- 25 dynamics
- 26
- 27 List of abbreviations
- 28 a_w water activity
- 29 CPMG Carr-Purcell-Meiboom-Gill
- 30 D_{4,3} mean particle size
- 31 DS degree of substitution
- 32 EMC equilibrium moisture content
- 33 G specific gravity
- 34 DVS dynamic vapour sorption
- 35 FID free induction decay
- 36 HAMS high amylose maize starch
- 37 HAMSA acetylated high amylose maize starch
- 38 HAMSP propionated high amylose maize starch
- 39 HAMSB butyrylated high amylose maize starch
- 40 M_o monolayer moisture content
- 41 T₂ spin-spin relaxation time
- 42 T₁ spin-lattice relaxation time

1	2a	g	е	3
	~	D	-	-

43	
44	
45	
46	Highlights
47	Heat-induced retrogradation leads to irreversible reduced water interaction abilities
48	Particle size is not predictive of water interaction due to internal channel pores
49	Complex relationship between starch retrogradation, sizing and water interaction
50	
51	
52	
53	
54	
55	Abstract
56	The particle size, water sorption properties and molecular mobility of high amylose maize
57	starch (HAMS) and high amylose maize starch acylated with acetate (HAMSA), propionate
58	(HAMSP) and butyrate (HAMSB) were investigated. Acylation increased the mean particle
59	size ($D_{4,3}$) and lowered the specific gravity (G) of the starch granules with an inverse
60	relationship between the length of the fatty acid chain and particle size. Acylation of HAMS
61	with fatty acids lowered the monolayer moisture content with the trend being HAMSB <
62	HAMSA < HAMSP < HAMS, showing that the decrease is affected by factors other than the
63	length of the fatty acid chain. Measurement of molecular mobility of the starch granules by
64	NMR spectroscopy with Carr-Purcell-Meiboom-Gill (CMPG) experiments showed that T_2 long
65	was reduced in acylated starches and that drying and storage of the starch granules further
66	reduced T_2 long. Analysis of the Free Induction Decay (FID) focussing on the short

USCRIPT ACCEP ΕD

Page 4

67	components of T_2 (correlated to the solid matrix), indicated that drying and subsequent
68	storage resulted in alterations of starch at $0.33a_{\rm w}$ and that these changes were reduced with
69	acylation. In vitro enzymatic digestibility of heated starch dispersions by bacterial α -amylase
70	was increased by acylation (HAMS < HAMSB < HAMSP \leq HAMSA) showing that the trend was
71	not related to the length of the fatty acid chain. Digestibility was enhanced with an increase
72	in particle size, or decrease in G, and inversely proportional to the total T_2 signal. It is
73	suggested that both external surface area and an internal network of pores and channels
74	collectively influence the digestibility of starch.

Page 5

75

76 <u>1. Introduction</u>

77 As a major source of energy for humans and animals, starch that is used in the production of 78 food products and animal feed is often supplied in its dehydrated form to prevent spoilage 79 during transport. High amylose maize starch (HAMS) and high amylose maize starch 80 acylated with acetate (HAMSA), propionate (HAMSP) and butyrate (HAMSB) increase 81 degradative resistance by mammalian enzymes and help to deliver health promoting short 82 chain fatty acid (SCFA) to the host gut (Clarke et al., 2011). To understand the metabolism of 83 the starches by gut microbiota, we previously investigated the breakdown of HAMS and the 84 three modified HAMS by monocultures of bifidobacteria, ruminococcus and faecalibacteria. 85 The starches were differentially degraded with HAMSA being readily degraded while HAMS 86 and HAMSB the least (Lim, Barnes, et al., 2014). This trend is consistent with the notion that 87 the butyl group of HAMSB lies parallel to the glucosyl units whereas the acetyl group of 88 HAMSA lie perpendicular (Lopez-Rubio, Clarke, Ben, Topping & Gilbert, 2009), thus making 89 HAMSA more open and accessible by enzymes. Similar packing was implied in investigations 90 of the hydrodynamic radii of solubilised fractions for these same four starches (Lim, Yao, et 91 al., 2014). While starch structural properties are widely acknowledged to be associated with 92 starch digestion, processing, stability and storage (Chanvrier, Uthayakumaran, Appelqvist, 93 Gidley, Gilbert & Lopez-Rubio, 2007; Shrestha et al., 2012; Zhou, Chung, Kim & Lim, 2013), 94 this area generally remains understudied particularly for high amylose esterified starches. 95

Techniques such as Fourier transform infrared spectroscopy, neutron scattering, dynamic
 vapour sorption (DVS), differential scanning calorimetry and nuclear magnetic resonance
 (NMR) spectroscopy have been used to elucidate the physio-chemical properties of starch

Page 6

99	and the role and behaviour of water in food (Choi & Kerr, 2003; Enrione, Hill & Mitchell,
100	2007; Zeng, Li, Gao & Ru, 2011). Factors such as the composition of the starch, treatments
101	applied during food processing and conditions of storage, all impact on the interactions
102	between water and the starch molecules (Åkerberg, Liljeberg & Björck, 1998; Lewicki, 2004;
103	Svihus, Uhlen & Harstad, 2005). The interactions between water and biopolymer molecules
104	such as starch have a significant influence on biopolymer functionality (Hermansson &
105	Svegmark, 1996). Despite extensive knowledge about the fundamental properties of starch,
106	the ability to predict starch interactions and functionality remain a challenge to the food
107	and starch industry (Copeland, Blazek, Salman & Tang, 2009).
108	
109	In this study, HAMS and the three acylated HAMS were examined to assess the impact that
110	acylation has on specific gravity (G), particle size and the effect of dry heat treatment and
111	storage on water sorption in the starch molecules. Additionally, we examined the in vitro
112	enzymatic digestibility of heated starch dispersions by bacterial α -amylase. The interactions
113	between starch and water were examined using DVS and water mobility was assessed by T_2
114	distribution profiles using ¹ H NMR spectroscopy using both Carr-Purcell-Meiboom-Gill
115	(CPMG) and Free Induction Decay (FID) investigations. The relationship between particle
116	size and water-starch interactions on the enzymatic digestibility of starch was assessed.
117	
118	2. Materials and methods

2.1 Starch material. HAMS, produced by Ingredion (New Jersey, USA) is an unmodified
maize starch that contains approximately 70% amylose. HAMS was used as the base starch
to manufacture HAMSA, HAMSP and HAMSB (Ingredion). The extent of acylation of these
raw starches is expressed as a degree of substitution (DS), which can be defined as the

Page 7

123	average number of	substitution	groups per	anhydroglucose	unit in starch. DS can be
-----	-------------------	--------------	------------	----------------	---------------------------

124 calculated using the following equation:

125 DS = [S]/[B]

- 126 Where [S] is the concentration of the substituent in the sample and [B] is the concentration
- 127 of the backbone in monomeric terms. As there are only three hydroxyl groups per glucose
- 128 unit, the maximum DS value for starch is three. The DS values of HAMSA, HAMSP and
- 129 HAMSB used in this study are 0.22, 0.20 and 0.20 respectively, as determined by Ingredion.
- 130 The initial moisture content (% dry basis) of the raw starches range from 10.23 to 11.62%.
- 131

132 2.2 Amylose content. The amylose content of the raw starches were determined by their 133 iodine binding capacity using a modified ampero-metric method (Gerard, Barron, Colonna & 134 Planchot, 2001; Larson, Gilles & Jenness, 1953). 100 mg (±10 %) of dry starch was solubilised 135 in 3 ml of 1 N KOH for 10 h at 4 °C with occasional mixing. 3 ml of 1 N HCl and 2 ml of H_2O 136 was added to neutralise the starch solution. 1 ml samples containing diluted starch in the 137 range of 0.5-1 mg and 100 μ l of iodine solution (Grams Iodine, Sigma-Aldrich) was prepared 138 and their optical density at 620 nm measured. The amylose content was determined against 139 a standard curve of pure amylose (soluble starch, Sigma Aldrich).

140

141

2.3 Scanning electron microscopy. The morphology of the dried starch samples were 142 examined using a field emission scanning electron microscope (SEM) (Quanta; Fei Company, 143 Hillsboro, Oregon, U.S.A.) at 10kV. Raw starch powders were mounted on a stud and coated 144 with gold prior to SEM examination. The detectors used for the SEM observation were an Everhart Thornley detector. 145

Page 8

147	2.4 Size distribution and specific gravities. Particle size analysis of the raw starches was
148	measured by light scattering using a Malvern Mastersizer 2000 (Malvern Instrument,
149	Malvern, UK). Raw starch granules were dispersed in H_2O (10% w/v) and added into the
150	apparatus circulating cell stirring at 2000 rpm. A general purpose analysis model within the
151	Mastersizer analysis software was used with particle refractive and absorption indices of
152	1.53 and 0.1 respectively, while the refractive index of water as the dispersant was 1.33.
153	Duplicate measurements were carried out for each of the starch preparations. Particle size
154	were obtained and expressed in terms of the mean particle size, $D_{4,3}$.
155	
156	The G (mass density of solids to that of water), of the starches was obtained using a 25 ml
157	density bottle (pycnometer) at 25 °C. 2000 mg ($\pm 10\%$) of raw starch was used in the
158	determination with ddH ₂ O as solvent.
159	
160	2.5 Dynamic vapour sorption. Vapour sorption properties of the raw starches were
161	determined at 25 °C using a controlled-atmosphere microbalance (Dynamic Vapour Sorption
161 162	determined at 25 °C using a controlled-atmosphere microbalance (Dynamic Vapour Sorption Series 2000, Surface Measurement System Ltd., London, U.K.) housed in a controlled
162	Series 2000, Surface Measurement System Ltd., London, U.K.) housed in a controlled
162 163	Series 2000, Surface Measurement System Ltd., London, U.K.) housed in a controlled temperature incubator (±0.1 °C) as described previously (Ying, Phoon, Sanguansri,
162 163 164	Series 2000, Surface Measurement System Ltd., London, U.K.) housed in a controlled temperature incubator (±0.1 °C) as described previously (Ying, Phoon, Sanguansri, Weerakkody, Burgar & Augustin, 2010). Briefly, a sample (~50 mg) was loaded onto a quartz
162 163 164 165	Series 2000, Surface Measurement System Ltd., London, U.K.) housed in a controlled temperature incubator (±0.1 °C) as described previously (Ying, Phoon, Sanguansri, Weerakkody, Burgar & Augustin, 2010). Briefly, a sample (~50 mg) was loaded onto a quartz DVS flat bottom sample pan and pre-equilibrated at 0% RH in a continuous flow of dry air
162 163 164 165 166	Series 2000, Surface Measurement System Ltd., London, U.K.) housed in a controlled temperature incubator (±0.1 °C) as described previously (Ying, Phoon, Sanguansri, Weerakkody, Burgar & Augustin, 2010). Briefly, a sample (~50 mg) was loaded onto a quartz DVS flat bottom sample pan and pre-equilibrated at 0% RH in a continuous flow of dry air for 1000 min before the sample was ramped to the desired water activity. The mass at the
162 163 164 165 166 167	Series 2000, Surface Measurement System Ltd., London, U.K.) housed in a controlled temperature incubator (±0.1 °C) as described previously (Ying, Phoon, Sanguansri, Weerakkody, Burgar & Augustin, 2010). Briefly, a sample (~50 mg) was loaded onto a quartz DVS flat bottom sample pan and pre-equilibrated at 0% RH in a continuous flow of dry air for 1000 min before the sample was ramped to the desired water activity. The mass at the end of this step was used as the dry mass. The sample was then exposed to the following

Page 9

171	at each a_w was set at 500 min. The changes in sample mass as a function of time were
172	recorded by the microbalance. Using this method, equilibrium moisture content (EMC) at
173	each a_w was determined. The monolayer moisture content (M $_o$) was obtained by fitting the
174	isotherm with Guggenheim-Anderson-De Boer model as previously described (Ying, Phoon,
175	Sanguansri, Weerakkody, Burgar & Augustin, 2010). The moisture isotherm was calculated
176	using DVS Analysis Macro version 6.1. The error of the duplicated sorption isotherms was
177	within 3%.
178	
179	2.6 NMR spectroscopy. Raw starch samples (non-dried) were placed in glass tubes and
180	equilibrated at a_w 0.33 and 0.70 using saturated solutions of magnesium chloride (MgCl ₂) or
181	of strontium chloride (SrCl ₂) in sealed glass desiccators. Additionally, dried raw starch
182	samples were prepared similarly following drying at 100 °C for two hours. Spin-spin
183	relaxation time (T_2) were obtained on a MARAN ULTRA 23 MHz spectrometer (Oxford
184	Instruments, Oxfordshire) using the CPMG technique (Hoobin, Burgar, Zhu, Ying, Sanguansri
185	& Augustin, 2013). The 90° - 180° pulse spacing ($ au$) in the CPMG sequence was set to 30 μ s
186	and a dwell time of 0.5 μs and collected until the signal decayed to baseline. The number of
187	scans used was 32 or 64, selected so that the signal to noise ratio was sufficient. Data were
188	fitted using a double exponential equation in Wavemetrics (Igor) software and obtaining
189	two T_2 time constants. After storage for 6 months in a_w 0.33 and 0.7, additional analysis of
190	the shorter components (correlated to the solid matrix) was carried out using the FID. The
191	FID investigation improved the determination of the shorter T_2 component, which could not
192	be observed accurately using the CPMG method.
102	

Page 10

194	2.7 Enzymatic digestion by amylase. All starch samples were dispersed in water (0.625 %
195	w/v), aliquot into 8 ml fractions and autoclaved for 15 min at 121 °C. Amylase stock solution
196	(α -amylase from Bacillus licheniformis, Sigma-Aldrich) was added to each fraction to make
197	up a final volume of 10 ml, a final enzymatic concentration of 50 U/ml and 0.5 % (w/v)
198	starch and incubated at 37 °C for the duration of the experiment. To quantify residual
199	starch, the sample is centrifuged at 4000 g for 5 mins. The pelleted starch is hydrolysed
200	using 10 % HCl (v/v) at 95 °C and quantified using 1 H NMR (Lim, Barnes, et al., 2014) .
201	
202	<u>3. Results</u>
203	3.1 Amylose content, shape and size distribution of starch granules. Amylose:amylopectin
204	ratios of the chemically modified starches were not altered significantly by acylation, with
204 205	ratios of the chemically modified starches were not altered significantly by acylation, with the four starches containing 69.33 - 70.81 % amylose (Table 1). All four starches appear
205	the four starches containing 69.33 - 70.81 % amylose (Table 1). All four starches appear
205 206	the four starches containing 69.33 - 70.81 % amylose (Table 1). All four starches appear similar in size and were generally round or oval with a small percentage being irregular
205 206 207	the four starches containing 69.33 - 70.81 % amylose (Table 1). All four starches appear similar in size and were generally round or oval with a small percentage being irregular (Figure 1). The micrographs of HAMS display filamentous and rod-like characteristics typical
205 206 207 208	the four starches containing 69.33 - 70.81 % amylose (Table 1). All four starches appear similar in size and were generally round or oval with a small percentage being irregular (Figure 1). The micrographs of HAMS display filamentous and rod-like characteristics typical in starches with high-amylose content (Fishman, Cooke, White & Damert, 1995). In contrast,
205 206 207 208 209	the four starches containing 69.33 - 70.81 % amylose (Table 1). All four starches appear similar in size and were generally round or oval with a small percentage being irregular (Figure 1). The micrographs of HAMS display filamentous and rod-like characteristics typical in starches with high-amylose content (Fishman, Cooke, White & Damert, 1995). In contrast, modified HAMS granules appear to be more angular, with bulbous protrusions on the starch

213 confirms that there was a heterogeneous distribution of particles, with modified HAMS 214 possessing a wider range than HAMS, and the most polydispersed starch being HAMSA. The 215 mean particle size ($D_{4.3}$) of HAMS (12.4 µm) and HAMSB (15.8 µm) were found to be smaller 216 than HAMSP (24 µm) and HAMSA (28.7 µm) with the trend being HAMS < HAMSB < HAMSP 217 < HAMSA. Corn starches are typically in the range of 2-26 µm with commercial corn starch

Page 11

218	having a $D_{4,3}$ of 16.9 μm (Hossen, Sotome, Takenaka, Isobe, Nakajima & Okadome, 2011;
219	Vasanthan & Bhatty, 1996).

220

221	The polydispersity of modified HAMS, especially HAMSA, suggests a portion of the starch
222	may either be larger due to esterification-induced change or are aggregating. With light
223	scattering, a few large aggregates can skew the distribution towards one that emphasises
224	the size of the large particles. To further investigate other factors that might contribute to
225	the $D_{4,3}$ differences, the G of the starches were measured as this provides insights into
226	esterification-induced alterations to the internal packing of the starch (Table 1). There was
227	no significant difference in G between HAMSA and HAMSP. However, HAMS was found to
228	have the highest G, followed by HAMSB and HAMSA/HAMSP. HAMS is the most dense, with
229	the trend in density being HAMSA, HAMSP < HAMSB < HAMS which is consistent with the
230	observed D _{4,3} values.

231

3.2 Dynamic vapour sorption. The moisture sorption isotherms of the starches are given in Figure 3. The M_o of the starches are in a range of 7.9 - 8.4 g H₂O/100 g solids with HAMSB (7.9) < HAMSA (8.0) < HAMSP (8.3) < HAMS (8.4), showing that the trend in the decrease in M_o did not parallel the increase in length of the fatty acid chain. The M_o values of HAMS and modified HAMS were lower than reported for potato flour (9.79 g H₂O/100 g solids), wheat flour (9.89 g H₂O/100 g solids) and corn flour (10.27 g H₂O/100 g solids) (Timmermann, Chirife & Iglesias, 2001).

239

3.3 NMR spectroscopy. The measured T_2 distributions show decaying signals representative of both mobile and less mobile ¹H components in the samples which provide information on

Page 12

242	the interactions of water with the starch molecules. The T_2 values and distribution of the
243	dried and non-dried starches equilibrated at a_w values of 0.33 and 0.70 after 19 days using
244	the described CPMG sequence (Hoobin, Burgar, Zhu, Ying, Sanguansri & Augustin, 2013) are
245	shown in Figure 4, respectively. While the exact moisture content are not measured for
246	each sample due to the small sample size, moisture uptake was measured by weight change
247	and is given in Table S1 (see supplemental material). The distribution curves showed that T_2
248	long is reduced in acylated starches and that drying and subsequent storage of the starch
249	granules further reduced T_2 long. As the distribution from the CPMG decay (Figure 4) does
250	not enable an accurate determination of the T_2 short and long values, the original data was
251	processed by Igor software with a double exponential fit to obtain T_2 values with better
252	accuracy. Using Igor software two distinct T_2 time constants could be discerned (Table 2)
253	which confirms that T_2 values and % contributions to the signal were decreased by acylation.
254	At 0.33 a_w , a fast-decaying component is characterised with the following T_2 short values:
255	HAMS (294 μ s) > HAMSP (112 μ s) > HAMSB (81.4 μ s) > HAMSA (73.5 μ s). The same trend is
256	observed for the slow-decaying component with the following T_2 long values: HAMS (814 μs)
257	> HAMSP (609 μs) > HAMSB (512 μs) > HAMSA (453 μs). At 0.70 a_w , these times became less
258	discerning for the acylation state. While the fast-decaying component shows similar values
259	(T ₂ short) to the 0.33 a_w data: HAMS (218 μ s) > [HAMSA~HAMSP~HAMSB (97-102 μ s)], the
260	slow-decaying data showed an increase in T ₂ values (T ₂ long): HAMS (1670 μ s) >
261	HAMSP~HAMSB (1170-1190 μ s) > HAMSA (890 μ s). However, in all cases, acylation for the
262	non-dried starches decreases T_2 for both fast and slow-decaying components, suggesting a
263	more rigid structure is formed after acylation.

Page 13

265	As the CPMG sequence did not allow detection of the very short T_2 component (solid
266	matrix), the FID was used to obtain more accurate estimations of these fast-decaying
267	components after 6 month storage (Table 3). The major findings relating to the effects of
268	acylation on molecular mobility in non-dried starches stored at 0.33 $a_{ m w}$ were that (i) the
269	integral of the total T_2 signal of the FID component was reduced in acylated starches
270	compared to the unmodified starch with the order of the total T_2 signal being HAMS >
271	HAMSB > HAMSP > HAMSA and (ii) the contribution of T_2 short of the FID component
272	increased with the length of the fatty acid chain, suggesting that as fatty acid length is
273	increased, there are more immobile components. Long term storage of previously dried
274	starch (100 °C/2 h) at a_w 0.33 caused a shift in T_2 distribution with reduced T_2 long (both
275	contribution and integral value) (Table 3). Furthermore, the % increase in the contribution
276	of T_2 short to the total signal was greatest for HAMS. The lower % increase in the
277	contribution of T_2 short for the acylated starches on storage is consistent with the mobility
278	of starch being reduced with acylation (Adebowale & Lawal, 2003; Lawal, 2004).
279	
280	3.4 Digestion of heated starch dispersion by α-amylase. Digestion of heated starch
281	dispersion in vitro by bacterial α -amylase was tracked over a time period of 27 h as shown in
282	Figure 5. Heated starch dispersions adopt a 'burst granule' state with a fraction being
283	solubilised and the largest of these burst granules being visible to the naked eye as grainy
284	particulates. The hydrodynamic radii of solubilised starch have been shown to follow a trend
285	where HAMSA > HAMSP > HAMSB > HAMS (Lim, Yao, et al., 2014). In the digestion of heated
286	starch dispersions, a similar trend is observed with the order of most rapid to least digested
287	starch determined to be: HAMSA \geq HAMSP > HAMSB > HAMS. This trend was also observed

Page 14

288	in a study of acylated high amylose maize starch digestibility by probiotics and gut bacterial
289	species (Lim, Barnes, et al., 2014).
290	
291	4. Discussion
292	Four starches (HAMS, HAMSA, HAMSP and HAMSB) were examined by various techniques
293	to understand their physical characteristics (SEM, G, mean particle sizing), water-starch
294	interactions (DVS and ¹ H NMR spectroscopy) and their relationship to starch digestibility and
295	mobility during storage.
296	
297	4.1 Acylation and mean particle size. Increase in angular and irregular granules was
298	observed post-acylation, with the loss of filamentous and rod-like characteristics. The
299	proportion of rod-like granules was previously determined to correlate with amylose
300	content (Fishman, Cooke, White & Damert, 1995; Jiang, Horner, Pepper, Blanco, Campbell &
301	Jane, 2010), although this was not observed in the current study. The bulbous surface of
302	angular granules in modified HAMS also appears to be formed through fusion of smaller
303	granules, as previously observed by (Jiang, Horner, Pepper, Blanco, Campbell & Jane, 2010),
304	which may contribute to the increase in particle size.
305	
306	Acylation increased the mean particle size with HAMS < HAMSB < HAMP < HAMSA, showing

an inverse relationship between acylated group length and particle size. The lack of a direct

308 relationship between the length of the fatty acid chain is contrary to expectations. However,

- 309 our finding may be rationalised by observations of starch structure from X-ray diffraction
- 310 studies (Lopez-Rubio, Clarke, Ben, Topping & Gilbert, 2009), which inferred that acylation
- 311 introduced void spaces in the starch structure. Additionally, longer chain fatty acids (butyric

Page 15

312	acid) results in smaller void spaces while shorter fatty acids such as acetic acid results in
313	more pronounced structural changes and larger void spaces (Lopez-Rubio, Clarke, Ben,
314	Topping & Gilbert, 2009). This is due to longer chain fatty acids being able to lie parallel to
315	the starch backbone due to their length and flexibility. Comparatively, short fatty acids such
316	as acetic acid extend perpendicular to the starch backbone resulting in greater disruptions
317	to the semi-crystalline nature of starch granules (Lopez-Rubio, Clarke, Ben, Topping &
318	Gilbert, 2009). Support for alteration in internal packing and introduction of void spaces
319	within modified HAMS is also evident in the G of the four starches (Table 1).
320	
321	4.2 Starch alterations on storage. Drying of starch at 100 °C altered starch-moisture
322	interactions, as evidenced by the changed NMR profiles on starches that had been pre-
323	exposed to heat (100 °C/2 h) before storage at various a_w , using both the CPMG and FID.
324	Using the CPMG sequence, the dried starches had shorter T_2 long illustrating an impeded
325	ability for water to interact with the starch components (Figure 4, Table 2), an effect that is
326	evident after six months. This effect is most pronounced in HAMS while modified HAMS was
327	affected to a lesser degree, suggesting that acylation reduces mobility changes on storage.
328	Confirmation that mobility was reduced in acylated starches was obtained with the FID
329	investigation (Table 3). Others have shown that chemical modification through cross-linking
330	(Liu, Ramsden & Corke, 1999) and acylation of starch alters its mobility and decreases
331	retrogradation (Adebowale & Lawal, 2003; Lawal, 2004).
332	
333	4.3 Relationships between physio-chemical properties and factors affecting starch
334	digestibility. The interaction between water and starch, measured by DVS and NMR are

related. The equilibrium water content (EMC) (Figure 3) and T_2 long (Table 3) are linearly

Page 16

336	related (but not significantly; Pearson correlation = 0.938, P-value = 0.062) (Figure 6A), but
337	not the multilayer water content (EMC less M_o) (Pearson correlation = -0.693, P-value =
338	0.307) (Figure 6B). T_2 long has been previously found to be correlated to multilayer water
339	and inactivation rates of encapsulated bacteria (Hoobin, Burgar, Zhu, Ying, Sanguansri &
340	Augustin, 2013; Ying, Phoon, Sanguansri, Weerakkody, Burgar & Augustin, 2010). A similar
341	correlation is not observed in HAMS and modified HAMS, possibly due to the heterogenous
342	structure of starch and differences in particle sizing impeding a straightforward model of
343	water interaction. In this work, HAMSA, which has the largest mean particle size and total T_2
344	signal, had the greatest digestibility followed by HAMSP, HAMSB and HAMS respectively.
345	
346	The relationship between the measured physio-chemical properties (i.e. particle size and
347	water relations) and starch digestibility in disrupted granules is complex. Others have found
348	that amylase digestion of starch was reduced as particle size of starch granules was
349	increased (Dhital, Shrestha & Gidley, 2010). They further suggested that digestion rate was
350	essentially determined by external-surface area for potato starch. However, in maize starch,
351	digestibility is often larger than predicted from external surface area, due to the
352	contribution of surface pores and channels to the effective total surface area (Dhital,
353	Shrestha & Gidley, 2010).
354	
355	The observed effects of particle size and the lack of correlation of mobile water (long T_2) or
356	fatty acid chain length with starch digestion, suggests that other factors have a more

357 significant influence on digestibility of acylated starches. This lack of correlation between

358 fatty acid chain length (i.e. hydrophobicity) is contradictory to studies in α -amylose

359 fragments, which found both glycosidic linkage conformation and hydrophobicity to be

Page 17

360	equal factors in water sorption (Fringant, Tvaroska, Mazeau, Rinaudo & Des	sbrieres, 1995). It
361	is suggested that the disruption to the starch structure caused by the introc	luction of various
362	fatty acids, as previously observed by others using small angle x-ray scatter	ing (Lopez-Rubio,
363	Clarke, Ben, Topping & Gilbert, 2009), possibly has the overriding influence	on the
364	digestibility of the starch.	

365

366 <u>5. Conclusion</u>

367 Moisture is an inherent component of many food materials with an important role in the 368 prediction of material properties and food shelf life. Our study shows that acylation with 369 short chain fatty acids alter the physical and chemical properties of starch, though not in 370 accordance to the length of the hydrophobic alkyl chain. Other factors such as openness of 371 the internal structure play a pivotal role. DVS and NMR spectroscopy are valuable tools in 372 understanding starch behaviour and properties in food processing. While heat induced 373 changes and hydrophobicity of acyl chains are contributory, structural alteration appears as 374 the overriding factor affecting acylated starch properties. Systemic studies on other food 375 material are required to determine if this observation extends to other dehydrated material. 376 Importantly, current findings suggest that while butylation of HAMS may aid in delivery of 377 butyric acid to the lower gut (Clarke, et al., 2011), the structural packing of HAMSB is not 378 optimal for bacterial degradation. In contrast, HAMSA adopts a more open structure and is 379 more readily digested suggesting that mixed acylation may produce a more accessible 380 starch that will better function as a delivery vehicle for butyrate.

381

382 Acknowledgement

Page 18

- 383 We thank Dr Julie Clarke and Ben Scherer of CSIRO Animal Food and Health Sciences
- 384 (Adelaide, Australia) for the provision of starches, Sukhdeep Bhail for particle size analysis
- 385 and Lydia Ong for scanning electron microscopy assistance. The research presented is
- 386 supported in part by a CSIRO OCE Postgraduate Scholarship and University of Melbourne
- 387 MIFRS Scholarship.

388

Page 19

389

390 <u>References</u>

391	Adebowale, K. O., & Lawal, O. S. (2003). Functional properties and retrogradation behaviour							
392	of native and chemically modified starch of mucuna bean (Mucuna pruriens). Journal							
393	of the Science of Food and Agriculture, 83(15), 1541-1546.							
394	Åkerberg, A., Liljeberg, H., & Björck, I. (1998). Effects of Amylose/Amylopectin Ratio and							
395	Baking Conditions on Resistant Starch Formation and Glycaemic Indices. Journal of							
396	Cereal Science, 28(1), 71-80.							
397	Chanvrier, H., Uthayakumaran, S., Appelqvist, I. A. M., Gidley, M. J., Gilbert, E. P., & Lopez-							
398	Rubio, A. (2007). Influence of storage conditions on the structure, thermal behavior,							
399	and formation of enzyme-resistant starch in extruded starches. Journal of							
400	Agricultural and Food Chemistry, 55(24), 9883-9890.							
401	Choi, SG., & Kerr, W. L. (2003). 1H NMR studies of molecular mobility in wheat starch. Food							
402	Research International, 36(4), 341-348.							
403	Clarke, J. M., Topping, D. L., Christophersen, C. T., Bird, A. R., Lange, K., Saunders, I., &							
404	Cobiac, L. (2011). Butyrate esterified to starch is released in the human							
405	gastrointestinal tract. The American journal of clinical nutrition, 94(5), 1276-1283.							
406	Copeland, L., Blazek, J., Salman, H., & Tang, M. C. (2009). Form and functionality of starch.							
407	Food Hydrocolloids, 23(6), 1527-1534.							
408	Dhital, S., Shrestha, A. K., & Gidley, M. J. (2010). Relationship between granule size and in							
409	vitro digestibility of maize and potato starches. Carbohydrate Polymers, 82(2), 480-							
410	488.							
411	Enrione, J. I., Hill, S. E., & Mitchell, J. R. (2007). Sorption Behavior of Mixtures of Glycerol and							
412	Starch. Journal of Agricultural and Food Chemistry, 55(8), 2956-2963.							
413	Fishman, M. L., Cooke, P., White, B., & Damert, W. (1995). Size distributions of amylose and							
414	amylopectin solubilized from corn starch granules. Carbohydrate Polymers, 26(4),							
415	245-253.							
416	Fringant, C., Tvaroska, I., Mazeau, K., Rinaudo, M., & Desbrieres, J. (1995). Hydration of							
417	alpha-maltose and amylose: molecular modelling and thermodynamics study.							
418	Carbohydrate Research, 278(1), 27-41.							
419	Gerard, C., Barron, C., Colonna, P., & Planchot, V. (2001). Amylose determination in							
420	genetically modified starches. Carbohydrate Polymers, 44(1), 19-27.							
421	Hermansson, AM., & Svegmark, K. (1996). Developments in the understanding of starch							
422	functionality. Trends in Food Science & Technology, 7(11), 345-353.							
423	Hoobin, P., Burgar, I., Zhu, S., Ying, D., Sanguansri, L., & Augustin, M. A. (2013). Water							
424	sorption properties, molecular mobility and probiotic survival in freeze dried protein-							
425	carbohydrate matrices. Food & Function, 4(9), 1376-1386.							
426	Hossen, M. S., Sotome, I., Takenaka, M., Isobe, S., Nakajima, M., & Okadome, H. (2011).							
427	Effect of Particle Size of Different Crop Starches and Their Flours on Pasting							
428	Properties. Japan Journal of Food Engineering, 12(1), 29-35.							
429	Jiang, H., Horner, H. T., Pepper, T. M., Blanco, M., Campbell, M., & Jane, Jl. (2010).							
430	Formation of elongated starch granules in high-amylose maize. Carbohydrate							
431	Polymers, 80(2), 533-538.							
432	Larson, B. L., Gilles, K. A., & Jenness, R. (1953). Amperometric Method for Determining							
433	Sorption of Iodine by Starch. Analytical Chemistry, 25(5), 802-804.							

Page 20

434 435 436	Lawal, O. S. (2004). Succinyl and acetyl starch derivatives of a hybrid maize: physicochemical characteristics and retrogradation properties monitored by differential scanning calorimetry. Carbohydrate Research, 339(16), 2673-2682.
437	Lewicki, P. P. (2004). Water as the determinant of food engineering properties. A review.
438	Journal of Food Engineering, 61(4), 483-495.
439	Lim, Y. M., Barnes, M. B., Gras, S. L., McSweeney, C., Lockett, T., Augustin, M. A., & Gooley,
440	P. R. (2014). Esterification of high amylose starch with short chain fatty acids
441 442	modulates degradation by Bifidobacterium spp. Journal of Functional Foods, 6, 137- 146.
443	Lim, Y. M., Yao, S., Gras, S. L., McSweeney, C., Lockett, T., Augustin, M. A., & Gooley, P. R.
444	(2014). Hydrodynamic radii of solubilized high amylose native and modified starches
445	by pulsed field gradient NMR diffusion measurements. Food Hydrocolloids, 40, 16-
446	21.
447	Liu, H., Ramsden, L., & Corke, H. (1999). Physical Properties of Cross-linked and Acetylated
448	Normal and Waxy Rice Starch. Starch - Stärke, 51(7), 249-252.
449	Lopez-Rubio, A., Clarke, J. M., Ben, S., Topping, D. L., & Gilbert, E. P. (2009). Structural
450	modifications of granular starch upon acylation with short-chain fatty acids. Food
451	Hydrocolloids, 23(7), 1940-1946.
452	Shrestha, A. K., Blazek, J., Flanagan, B. M., Dhital, S., Larroque, O., Morell, M. K., Gilbert, E.
453	P., & Gidley, M. J. (2012). Molecular, mesoscopic and microscopic structure
454	evolution during amylase digestion of maize starch granules. Carbohydrate Polymers,
455	90(1), 23-33.
456	Svihus, B., Uhlen, A. K., & Harstad, O. M. (2005). Effect of starch granule structure,
457	associated components and processing on nutritive value of cereal starch: A review.
458	Animal Feed Science and Technology, 122(3-4), 303-320.
459	Timmermann, E. O., Chirife, J., & Iglesias, H. A. (2001). Water sorption isotherms of foods
460	and foodstuffs: BET or GAB parameters? Journal of Food Engineering, 48(1), 19-31.
461	Vasanthan, T., & Bhatty, R. S. (1996). Physicochemical Properties of Small- and Large-
462	Granule Starches of Waxy, Regular, and High-Amylose Barleys. Cereal Chem, 73(2),
463	199-207.
464	Ying, D. Y., Phoon, M. C., Sanguansri, L., Weerakkody, R., Burgar, I., & Augustin, M. A. (2010).
465	Microencapsulated Lactobacillus rhamnosus GG powders: relationship of powder
466	physical properties to probiotic survival during storage. Journal of Food Science,
467	75(9), E588-595.
468	Zeng, J., Li, G., Gao, H., & Ru, Z. (2011). Comparison of A and B Starch Granules from Three
469	Wheat Varieties. Molecules, 16(12), 10570-10591.
470	Zhou, X., Chung, HJ., Kim, JY., & Lim, ST. (2013). In vitro analyses of resistant starch in
471	retrograded waxy and normal corn starches. International journal of biological
472	macromolecules, 55, 113-117.
473 474	
475	

Page 21

477 **Table 1:** Specific gravity and % amylose of HAMS, HAMSA, HAMSP and HAMSB

Starch	HAMS	HAMSA	HAMSP	HAMSB478
Specific Gravity	1.50 (0.01)	1.40 (0.03)	1.40 (0.01)	1.44 (0.02)
% amylose	70.81 (1.20)	69.33 (1.16)	70.56 (1.63)	69.47 (0 ⁴ 89)

- 481 The specific gravity and % amylose of high amylose maize starch (HAMS), acetylated high amylose maize starch (HAMSA), propionated high
- 482 amylose maize starch (HAMSP) and butyrylated high amylose maize starch (HMASB) were determined in triplicate. (±SEM).

Page 22

483

484 **Table 2**: T₂ short and T₂ long profiles of dried and non-dried starches after 19 days storage at a_w values of 0.33 and 0.7 using the CPMG decay

485 signal.^a

486

		1							
a _w 0.33		Non-dried				Dried			
		HAMS	HAMSA	HAMSP	HAMSB	HAMS	HAMSA	HAMSP	HAMSB
T ₂ short	Time (µs)	294	73.5	112	81.4	93.0	116	171	128
	% contribution	54.3	38.1	35.4	42.1	48.8	70.6%	75.5	70.0
T ₂ long	Time (µs)	814	453	609	512	394	409	484	434
	% contribution	45.7	61.9	64.6	57.9	51.2	29.4	24.5	30.0
a _w 0.70		Non-dried				Dried			
		HAMS	HAMSA	HAMSP	HAMSB	HAMS	HAMSA	HAMSP	HAMSB
T ₂ short	Time (µs)	218	98.6	102	96.6	192	86.6	80.2	117
	% contribution	20.4	25.8	25.4	28.7	22.0	30.1	28.0	26.5
T ₂ long	Time (μs)	1670	890	1170	1190	1150	780	955	969
	% contribution	79.6	74.2	74.6	71.3	78.0	69.9	72.0	73.5

- ^a Error is up to 3% of the measured values. For each starch (HAMS, High amylose maize starch; HAMSA, acetylated high amylose maize starch;
- 489 HAMSP, propionated high amylose maize starch and HAMSB, butyrylated high amylose maize starch), condition (non-dried, dried) and T₂ time
- 490 $(T_2 \text{ short}, T_2 \text{ long})$, the mean T_2 , the % contribution to the integral of the total T_2 is given.

Page 23

491

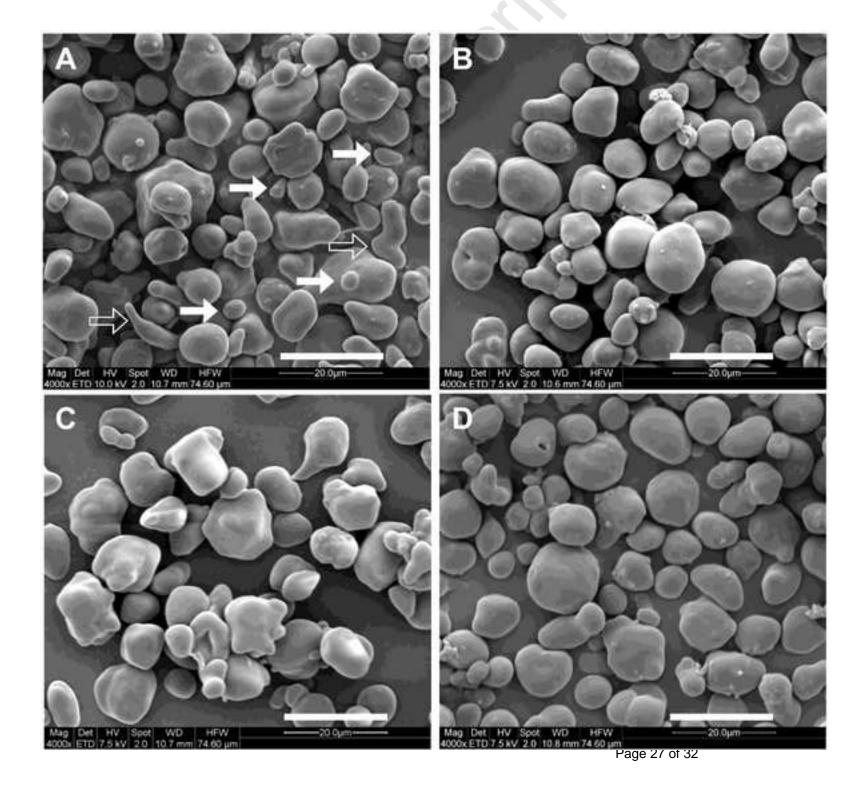
		1				1			
a _w 0.33		Non-dried				Dried			
		HAMS	HAMSA	HAMSP	HAMSB	HAMS	HAMSA	HAMSP	HAMSB
T ₂ short	Time (μs) Integral (a.u) % contribution	11.2 65625 80.8	12.1 60514 82.3	12.1 65839 83.2	12.1 68519 85.0	11.2 64454 84.8	11.7 64508 86.0	11.7 67809 86.9	12.1 71127 88.1
T ₂ long	Time (μs) Integral (a.u) % contribution	517 15638 19.2	536 12975 17.7	642 13340 16.8	597 12102 15.0	360 11541 15.2	387 10532 14.0	388 10187 13.1	387 9630 11.9
T ₂ total	Total integral	81263	73489	79179	80621	75995	75040	77996	80757
a _w 0.70		Non-dried				Dried			
		HAMS	HAMSA	HAMSP	HAMSB	HAMS	HAMSA	HAMSP	HAMSB
T ₂ short	Time (μs) Integral (a.u) % contribution	10.1 60345 70.1	10.9 58673 69.5	11.3 62527 71.5	11.7 66128 73.7	10.1 58140 71.3	10.9 57322 70.0	10.9 60743 73.0	11.7 67837 74.7
T ₂ long	Time (μs) Integral (a.u) % contribution	666 25763 29.9	620 25770 30.5	691 24863 28.5	691 23607 26.3	642 23347 28.7	598 24600 30.0	666 22507 27.0	666 22943 25.3
T ₂ total	Total integral	86108	84443	87390	89735	81487	81922	83250	90780

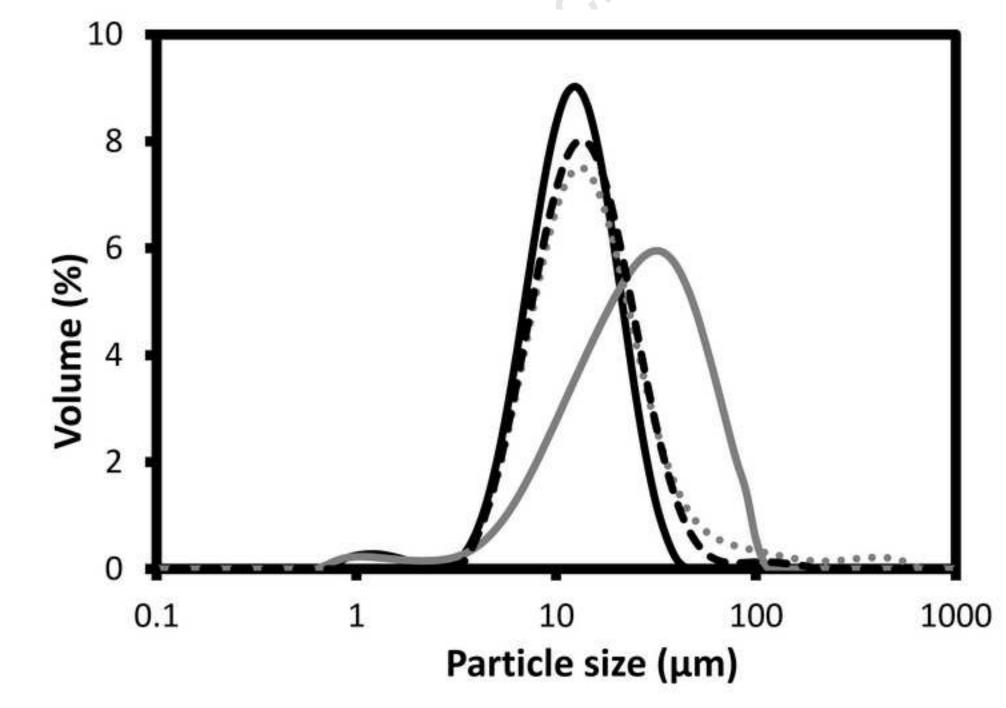
492 **Table 3**: T₂ short and T₂ long profiles of dried and non-dried starches after 6 months of equilibration at a_w values of 0.33 and 0.70 using the FID^a

Page 24

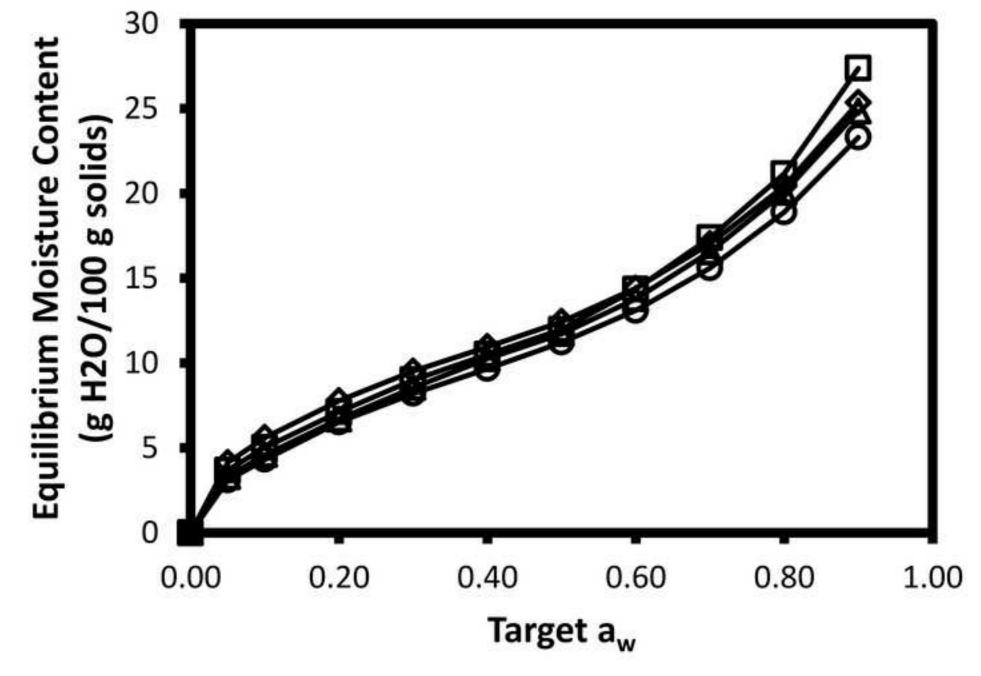
- ^a Error is up to 3% of the measured values. For each starch (HAMS, High amylose maize starch; HAMSA, acetylated high amylose maize starch;
- 495 HAMSP, propionated high amylose maize starch and HAMSB, butyrylated high amylose maize starch), condition (non-dried, dried) and T₂ time
- 496 (T₂ short, T₂ long), the mean T₂, the integral attributed to that T₂ and % contribution to the integral of the total T₂ is given.

Page 25

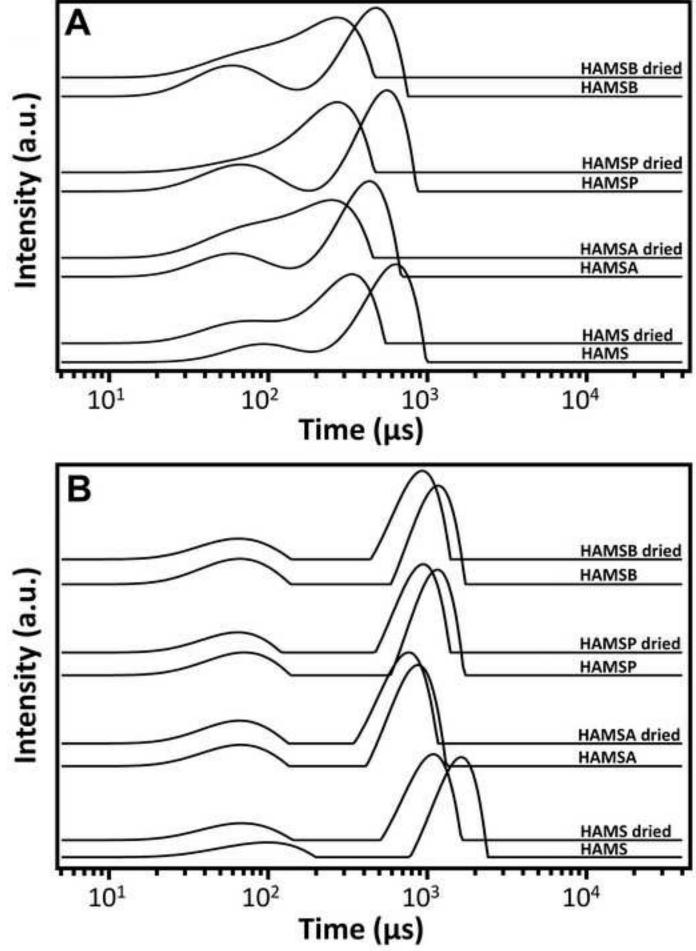

497	Figure Legend
498	Figure 1: SEM images of (A) HAMS, (B) HAMSA, (C) HAMSP and (D) HAMSB illustrating shape
499	differences and size distributions. Filamentous and rod-like starches are indicated by the
500	open arrows while solid arrows indicate small particles found only in HAMS. Images
501	obtained are of raw starches (prior to dry heat treatment and storage at a_w 0.33 or 0.70). All
502	scale bars = 20 μm.
503	
504	Figure 2: Deconvoluted light scattering data showing particle size distribution of HAMS and
505	modified HAMS. The distributions for raw starch HAMS (black lines), HAMSA (grey lines),
506	HAMSP (broken grey lines) and HAMSB (broken black lines) illustrate larger particle size of
507	HAMSA and significant overlap between HAMS, HAMSP and HAMSB. Duplicate
508	measurements were obtained prior to dry heat treatment and storage at aw 0.33 or 0.70.
509	
510	Figure 3: Thermal isotherms of HAMS ($\)$, HAMSA (\Box), HAMSP (Δ) and HAMSB (\bigcirc)
511	illustrating the water sorption properties of raw starches (prior to dry heat treatment and
512	storage at a_w 0.33 or 0.70). Duplicate measurements were obtained with the error of
513	duplicated isotherms within 3 %.
514	
515	Figure 4: T ₂ distribution of dried and non-dried HAMS and modified HAMS after 19 days of
516	storage at a_w of (A) 0.33 and (B) 0.7 as obtained using a CPMG sequence. The y-dimension is

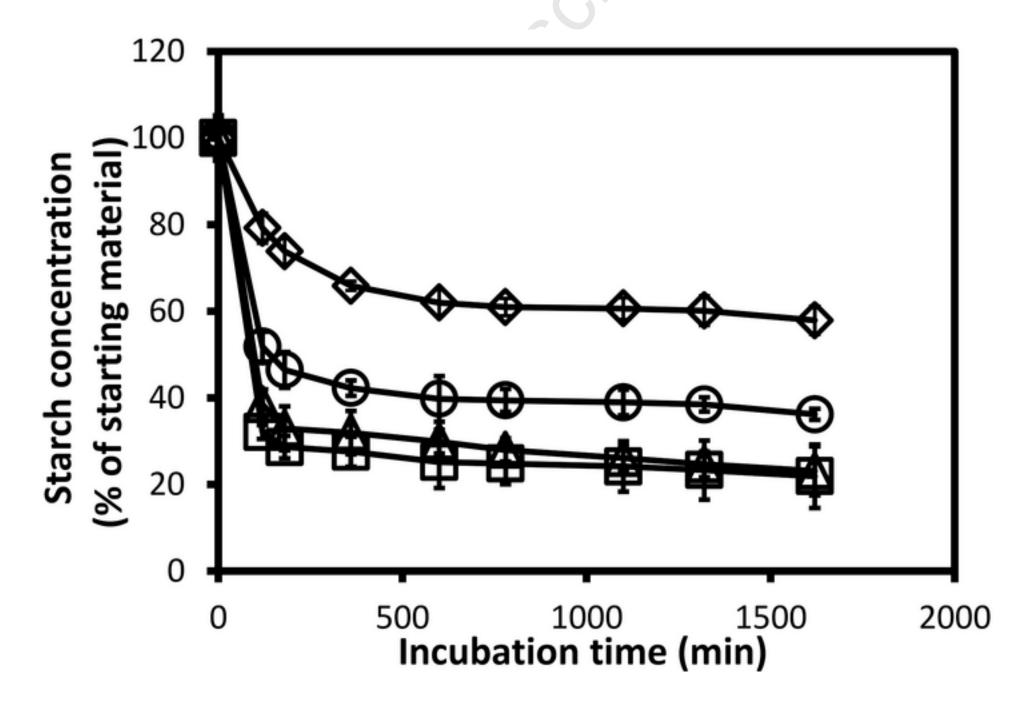

517 off-set for clarity. Poor resolution of T₂ short and T₂ long as seen at a_w 0.33 is discussed in-

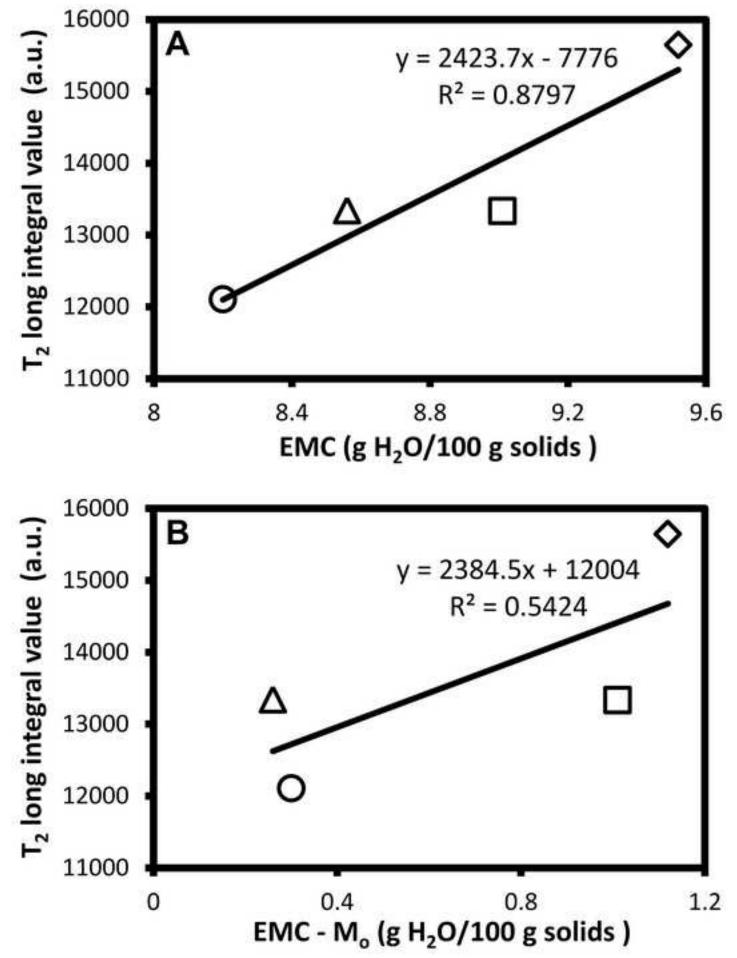
518 text.


Page 26

- **Figure 5:** Digestion of HAMS (), HAMSA (\Box), HAMSP (Δ) and HAMSB (\bigcirc) by α-amylase as
- 521 a function of starting concentration. Error bars represent ±SEM of four independent
- 522 measurements.
- 523
- 524 **Figure 6:** Correlation between T₂ long integral value and (A) equilibrium moisture content
- 525 and (B) equilibrium moisture content less monolayer moisture content at a_w of 0.33 for
- 526 HAMS (), HAMSA (\Box), HAMSP (Δ) and HAMSB (\bigcirc).






Page 28 of 32

Page 29 of 32

University Library

A gateway to Melbourne's research publications

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:

Lim, Y-M; Hoobin, P; Ying, D; Burgar, I; Gooley, PR; Augustin, MA

Title:

Physical characterisation of high amylose maize starch and acylated high amylose maize starches

Date:

2015-03-06

Citation:

Lim, Y. -M., Hoobin, P., Ying, D., Burgar, I., Gooley, P. R. & Augustin, M. A. (2015). Physical characterisation of high amylose maize starch and acylated high amylose maize starches. CARBOHYDRATE POLYMERS, 117, pp.279-285. https://doi.org/10.1016/j.carbpol.2014.09.068.

Persistent Link:

http://hdl.handle.net/11343/44152