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Targeting the mitochondrial electron transport chain in autism, a systematic 

review and synthesis of a novel therapeutic approach 

Abstract 

Autism is a complex developmental disorder with an unknown etiology and without any 

curative treatment. The mitochondrial electron transfer chains play a major role in the 

production of ATP, and the generation and management of reactive oxidative stress 

(ROS). This paper is a systematic review of the role of the mitochondrial electron 

transport chain in autism, and a consequent hypothesis for treating autism is 

synthesized. 

An electronic search with pre-specified inclusion criteria was conducted in order to 

retrieve all the published articles about the mitochondrial electron transport chain in 

autism. The two databases of PUBMED and Google Scholar were searched.  

From one hundred twenty five retrieved titles, 12 (three case control study and 9 case 

reports) articles met inclusion criteria. All of the included studies indicated dysfunction of 

electron transport chain in autism.  

The mitochondrial electron transfer chain seems impaired in some children with autism 

and ROS production is additionally enhanced. It is hypothesized that interventions 

involving alternative electron shuttling may improve autism through lowering the 

production of ROS. In addition, it is expected that this alternative electron shuttling to 

cytochrome c might enhance the production of ATP which is impaired in the disorder.  
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Introduction 

Electron transport chain  

Three quarters of a century ago, it was first hypothesis that neuropsychiatric disorders might 

involve abnormalities in energy generation (Looney and Childs, 1934).More than half of a 

century ago, it’s been known that energy is normatively produced thorough the oxidative 

phosphorylation process, whereby electrons are shuttled across a series of specific carriers 

(Boveris et al., 2000; Chance and Williams, 1955, 1956; Turrens, 1997, 2003). These 

carriers, the mitochondrial enzyme complexes named complex I, complex II, complex III, 

and complex IV, are located in the inner membrane of mitochondria. Electrons enter this 

chain through complex I and complex II, and cascade onto the other complexes. Finally, an 

electron is transferred to O2 to produce H2O (Chance and Williams, 1956; Mimaki et al., 

2011). These stepwise transfers lead to the serial pumping of protons into the mitochondrial 

inter-membrane space. These protons are used for ATP production by ATP synthase 

(complex V) (Mimaki et al., 2011).  

 

Electron transferring chain and Reactive oxygen species generation 

Reactive oxygen species (ROS) are mainly produced in mitochondria. But it is not clear 

exactly how ROS are produced as a result of electron transfer in the electron transfer chain 

(Selivanov et al., 2011). ROS production is enhanced in pathological conditions such as 

mitochondrial electron transport impairment (Sugioka et al., 1988). Backward electron 

transfer, in which electron is transferred from succinate to complex I and NAD+ can also 

generate ROS (Schonfeld and Wojtczak, 2007).  
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All the mitochondrial enzyme complexes can generate ROS (Jastroch et al., 2010). The 

main source of superoxide production by respiratory chain is from the redox component of 

Complex I and III (Skulachev, 2007; Vinogradov and Grivennikova, 2005). However, 

Complex III has a principal role (Chen et al., 2003). In fact, deficiency of mitochondrial 

complex I which is the first complex of the oxidative phosphorylation system is associated 

with reactive oxidative stress production (Blanchet et al., 2011). Moreover, the production of 

H2O2 is enhanced after the blockade of complex I. It oxidizes NADH which is the substrate 

of complex I. During oxidation of complex I substrates, complex III generates ROS (Chen et 

al., 2003). This production of ROS can be prevented by rotenone (Chen et al., 2003). The 

inhibition of electron transfer to cytochrome oxidase increases the production of ROS 

mainly from complex I (Chen et al., 2003). This role of complex I in the generation of ROS 

had been previously reported (Grivennikova and Vinogradov, 2006). Accordingly, more than 

50% of total ROS generation in brain homogenates is attributable to complex I (Kudin et al., 

2008). Besides, Complex I inhibition also causes depletion of ATP,  impairing all ATP 

dependent cellular activities (Gandhi and Wood, 2005).  Complex I deficiency and increased 

oxidative stress is noted in other neuropsychiatric disorders such as bipolar disorder 

(Andreazza et al., 2010), and interacts with synaptosomal-associated protein 25 (SNAP-25), 

a protein that plays a role in membrane fusion, synaptic vesicles and plasma membranes. 

 

The complex III site also contributes to superoxide production when energy load is high 

(Malinska et al., 2010). The main origin of ROS generation, when complex I is oxidized, is 

complex III (Chen et al., 2003). This complex may be targeted to decrease ROS production. 

For example, a complex dietary supplement containing ingredients such as vitamins B, E, 
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C, D, Magnesisum, Manganae, and L-Glutathione increase complex III in old age it 

decreases the generation of free radicals in mice (Aksenov et al., 2011). 

 

 

Autism 

There are many reports about the association of reactive oxygen species (ROS) and 

autism (Rossignol and Frye, 2011),  and the possible role of oxidative stress in the 

neurobiology of autism is emphasized by contemporary reviews (Ghanizadeh et al., 

2012; Villagonzalo et al., 2010). There is a higher incidence of mitochondrial dysfunction 

in autism than the controls (Haas, 2010). These data will be discussed in succeeding 

sections. 

 

ATP production and plasma level of lactate 

The activities of Na(+)/K(+)ATPase and creatine kinase (CK)  in autism are significantly 

higher than that of controls (Al-Mosalem et al., 2009), however, the activity of adenosine 

diphosphatase (ADPase), which has an important role in generation of energy, was not 

statistically higher than that of the controls. In addition, the plasma lactate level was 

higher (Al-Mosalem et al., 2009). Lactate production is enhanced when glycolysis is 

promoted not only when Complex V or IV are inhibited (Wen et al., 2011). Plasma levels 

of lactate in autism are higher than that of controls (Chugani et al., 1999). Curiously, 
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elevations in lactate in neuropsychiatric disorders is one of the first biomarkers ever 

detected(Looney and Childs, 1934). 

 

Electron transferring chain and autism  

Mitochondrial disorders are frequently reported in autism (Haas, 2010), and impairment 

of the mitochondrial respiratory chain has been noted in 7.2% of  children with autism 

(Oliveira et al., 2005). This rate in the general population was about 0.01%. An 

electronic systematic review was conducted. is the aim of this paper was to collect data 

about the association of electron transport chain with autism and raise hypotheses 

about mitochondria as a possible therapeutic target for treating autism in children and 

adolescents. 

 

Methods 

Search strategy 

A search protocol was developed for this systematic review in order to retrieve all the 

published articles regarding the mitochondrial electron transport chain in autism. The 

databases PUBMED and Google Scholar were electronically searched. No publication 

time was considered as an inclusion criterion. The search to find the publications was 

conducted on March 2012, updated on September 2012. The search terms were: 

‘autism’, ‘autistic’, ‘ASD’, ‘pervasive’, and ‘pervasive developmental disorder’ in all 

combinations with the terms ‘electron transport chain’, ‘mitochondrial respiratory chain’ 

and ‘electron’.  
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Study selection 

The titles and abstracts of the retrieved publications were reviewed. Published articles 

from peer-reviewed journals included patients with autism spectrum disorders and 

reported findings about electron transport chain were included. The flow chart of articles 

is displayed in Figure 1. Exclusion criteria were: studies did not report experimental 

findings from human or animals, no new data are reported, and lack of any report about 

the electron transport chain in autism. Overall, twelve publications presented unique 

data that met the current inclusion criteria.  

Data extraction and validity assessment 

The references of the included retrieved articles were further examined to find other 

possible publications. The abstracts were reviewed. The extracted data and 

characteristic of studies are displayed in Tables 1 and 2. 

 

Results 

From one hundred twenty five retrieved titles, 58 were duplicated. The title and abstract 

of 54 articles were irrelevant. Twelve articles met inclusion criteria. All of them were in 

English and none of them reported findings from studies included animal subjects 

(Figure 1).  

 

Study characteristics 

Case control studies 

A study showed that 6 out of 10 children with autism had low level of complex I (Giulivi 

et al., 2010). Another study investigated the levels of mitochondrial electron 
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transport chain (ETC) complexes I, II, III, IV, and V, in brain tissue of individuals with 

autism. They indicated that there was lower levels of complexes III and V in the 

cerebellum, of complex I in the frontal cortex, and of complexes II, III, and V in the 

temporal cortex of children aged 4 to 10 years with autism when compared to that of 

age-matched control children (Chauhan et al., 2011). However, these difference were 

not found in adults with autism (Chauhan et al., 2011).  

 

Case reports 

A case report of a 3 year old girl showed that a partial deficiency of complexes III and IV 

of the respiratory chain in autism (Guevara-Campos et al., 2010). Another case report of 

a 12 year old boy with mental retardation, autism, epilepsy, and leg weakness showed 

that the level of complex IV was severely decreased and complex I activity level was 

mildly decreased in a buccal swab sample (Ezugha et al., 2010). Another report, 

including two autistic children with a chromosome 15q11-q13 inverted duplication, 

showed a partial respiratory chain block, which was most prominent at the level of 

complex III (Filipek et al., 2003). Moreover, the enzymatic activities for complex I and III 

were decreased in a girl with autism (Poling et al., 2006). In addition, the activity level of 

complex IV was near 5% of the control values (Poling et al., 2006). Complex I is the 

most commonly reported abnormality in autism, with reported deficiency of up to 64%. 

The percentages for complex II, III, and IV are 8%, 20%, and 4%, respectively 

(Weissman et al., 2008). The latter study included 25 patients with ASD.  

 

Discussion and synthesis of a hypothesis for treating autism 
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As noted above, there are reports of an association between alterations in the 

mitochondrial electron transport chain and autism (Frye et al 2012; Haas 2010:). 

However, the paucity of data suggests that electron transport chain changes in autism 

are not a well-researched area, with most of the publications representing case reports. 

There are only three case control studies (Chauhan et al., 2011; Giulivi et al., 2010; 

Taurines et al., 2010). Two of these studies suggested electron transport chain 

impairment in autism (Chauhan et al., 2011; Giulivi et al., 2010). The other case control 

study included a group of children with autism and a group of children with 

schizophrenia (Taurines et al., 2010). They reported that the expression analyses of the 

mitochondrial complex I 75-kDa subunit in autism was in the normal range (Taurines et 

al., 2010). They did not investigate the different elements of the electron transport chain. 

In addition, all of the case reports supported the possible association of electron 

transport chain impairment and autism. It is clear that these findings are too preliminary 

to be generalized and it is possible that there is only a subsample of children with 

autism who suffer from electron transport chain.  

Nevertheless, these findings are of dual importance. Firstly, they point to a novel 

pathophsiological element, and secondly, they suggest the potential for novel therapies 

in autism. Considering the nature of the pathology, it is possible to hypothesize new 

therapeutic approaches for this subsample of children with autism. It is unclear if this is 

a trait or state phenomenon, or if it is an enduring or maturational one; there is for 

example a possibility that the deficits in the levels of electron transport chain complexes 

in children with autism might reach normal levels in adulthood (Chauhan et al., 2011). It 
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is also noteworthy that mitochondrial strategies are proposed for other disorders with a 

mitochondrial element (Nierenberg et al., 2012). 

Alternative carrier for shuttling of electron in mitochondrion  

Methylene blue (MB) is suggested for the treatment of Alzheimer’s disease (Oz et al., 

2009). MB passes blood brain barrier and enters into CSF (Peter et al., 2000) and 

enters the mitochondrion (Oz et al., 2009). Low doses of MB are relatively safe (Oz et 

al., 2009) and lack nonspecific behavioral adverse effects (Riha et al., 2005). However, 

MB has hormetic pharmacological effects, whereby low or very high doses causes 

opposite results (Peter et al., 2000). Very high non-therapeutic doses may produce 

Heinz body in erythrocytes, and are markers of oxidative damage to hemoglobin (Sills 

and Zinkham, 1994).  

 

It is well known that methylene blue can carry electrons in the mitochondrial electron 

transport chain (Rojas et al., 2011; Visarius et al., 1997). As an alternative electron 

carrier, MB receives electrons from NADH and shuttles them to cytochrome c (Wen et 

al., 2011). In fact, MB bypasses complex I/III while it does affect the activity of complex 

II and complex III (Wen et al., 2011).  

 

Oxidized methylene blue is reduced after receiving electrons from a donor. This 

reduced form can donate electrons to cytochrome c and oxygen. This reduced oxygen 

is used to produce water. This oxidation-reduction process of methylene blue is 
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reversible. Moreover, MB decreases superoxide and hydroxyl radical production (Kelner 

et al., 1988; Salaris et al., 1991).  

 

In addition, low dose MB enhances brain cytochrome c oxidation (Callaway et al., 2004) 

and decreases oxidant production in mitochondria (Atamna et al., 2008). Therefore, MB 

plays a potential role as an antioxidant (Rojas et al., 2011). As noted previously, 

analogous electron transport chain abnormalities are seen in bipolar disorder, and it is 

noteworthy that methylene blue has shown promise in a double blind trial in that 

disorder (Naylor et al., 1986). This provides some face validity for trials in autism. 

However, it needs to be noticed that MB can be reduced by other reductants and its 

effects on other issues should be considered.  

 

N-acetyl cysteine (NAC) is another potential therapeutic modality. It has positive trial 

data for depression in bipolar disorder, negative and extrapyramidal symptoms in 

schizophrenia, cocaine craving, smoking cessation, trichotillomania and gambling (Dean 

et al., 2011). There are a case report and a single clinical trial of NAC in autism, where 

in 33 subjects aged 3.2–10.7 years, a significant reduction in irritability was evident 

(Ghanizadeh and Derakhshan, Under Press; Hardan et al., 2012). NAC has been 

shown to reduce apoptosis secondary to mitochondrial oxidative stress. NAC reverses 

direct mitochondrial toxicity in a number of experimental models (Sandhir et al., 2012). 

Additionally, NAC has been shown to normalise pyruvate and lactate levels, which are 

mitochondria-associated factors. These data support the presence of mitochondrial 

dysfunction as an addressable target in autism (Giulivi et al., 2012), and suggests 
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potential neuroprotective stategies (Berger et al., 2007).It is also suggested that such 

therapies are initiated as promptly as possible (Berk et al., 2007), as there may be a 

process of neuroprogression (Berk, 2009) in autism. 

 

 

Hypothesis 

 

Considering that the activity of the mitochondrial electron transfer complexes I, II, III and 

IV in autism are lower than the controls (Weissman et al., 2008), that there is  increased 

oxidative stress and ROS production in autism (Ghanizadeh et al., 2012; Zoroglu et al., 

2004), and there is a  role of shuttling of electrons in mitochondria for neuroprotection 

(Wen et al., 2011), it is hypothesized that this alternative electron shuttling may 

decrease the production of ROS induced by lower ETC activity in autism. In addition, 

since this alternative shutting transfers electrons to cytochorome c, it is expected that 

the production of ATP will be enhanced. Experimental controlled studies on animal 

models need to be conducted to test these hypotheses. 

 

 

 

Conclusion 

 

The current literature support that electron transport chain is involved in the 

neurobiology of some children with autism. However, this area deserves further 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

14 

 

investigation. Targeting the electron transport chain by bypass augmenting targeted 

functions is a hypothesized potential treatment approach.  
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 Figure 1. Flowchart of studies selection process. 

 
125 potentially titles retrieved 
for more detailed evaluation 

  

  Excluded:  

(n=58) duplicated 

(n=54)  irrelevant  

(n=1) Publication with duplicate data  

(n=12) articles regarding 
electron transport chain in 
autism (Chauhan et al., 2011; 
Craig et al., 2012; Ezugha et 
al., 2010; Filipek et al., 2003; 
Frye, 2012; Giulivi et al., 2010; 
Guevara-Campos et al., 2010; 
Heilstedt et al., 2002; Oliveira et 
al., 2005; Poling et al., 2006; 
Taurines et al., 2010; 
Weissman et al., 2008)  

  

 

 

 

 (n=7) case reports (Craig et al., 2012; 
Ezugha et al., 2010; Filipek et al., 2003; Frye, 
2012; Guevara-Campos et al., 2010; 
Heilstedt et al., 2002; Poling et al., 2006) 

(n=2) Case series (Oliveira et al., 2005; 
Weissman et al., 2008) 

(n=3) Case- control studies 
(Chauhan et al., 2011; Giulivi et 
al., 2010; Taurines et al., 2010) 
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Table 1. The case-control studies met inclusion criteria for this systematic review.  

Author, 
year  

complexes Area  Diagnosis  Findings  

(Chauhan 
et al., 
2011) 

complexes 
I, II, III, IV, 
and V 

Cerebellum 
and the 
frontal, 
parietal, 
occipital, 
and 
temporal 
cortices 

Autism  Children aged 4 to 10 years old: 
lower levels of complexes III and V 
in the cerebellum (p < 0.05), of 
complex I in the frontal cortex 
(p < 0.05), and of complexes II 
(p < 0.01), III (p < 0.01), and V 
(p < 0.05) in the temporal cortex in 
autism comparing to age-matched 
control children 
 
Adults, ages 14–39 years: 
No difference between autism and 
control group. 

(Giulivi et 
al., 2010) 

complexes 
I, III, IV, 
and V 

lymphocytic 
mitochondria 

autism  Complex I activity in lymphocytic 
mitochondria 6 of 10children with 
autism was below control range 
values. 
The activities of Complex V (4 of 
10), and complex IV or cytochrome 
c oxidase (3 of 10) and complex III 
only (1 of 10 each) was below 
control range values.  

(Taurines 
et al., 
2010) 

expression 
of the 
complex I 
75-kDa 
subunit 
mRNA 

Blood  Schizophrenia 
group and 
autism 
spectrum 
disorders 
group 

The ASD group did not show a 
significantly altered expression of 
the complex I 75-kDa subunit 
mRNA in blood.  
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Table 2. The case reports and case series studies met inclusion criteria for this 
systematic review.  

Author, year  Diagnosis  Findings 
(Craig et al., 2012) Dravet syndrome, 

seizures, and 
features 
consistent with 
severe autism 

complex IV dysfunction 
 
 
 

(Ezugha et al., 2010) dysmorphic facies, 
mental retardation, 
autism, epilepsy, 
and leg weakness 

Buccal swab electron transport 
chain analysis revealed:  severe 
decrease in complex IV and mild 
reduction in complex I activity 
levels.  

(Frye, 2012) Autism spectrum 
disorder 

A marked reduction in complex II 
and II/III in fibroblasts and complex 
I/III and II/III in muscle tissue 
 
 
 
 

(Guevara-Campos et 
al., 2010) 

Autistic  A partial deficiency of complexes III 
and IV of the respiratory chain 

(Poling et al., 2006) Autism  Reduction of cytochrome c oxidase 
activity, enzymatic activities for 
complex I and III. Complex IV 
(cytochrome c oxidase) activity was 
near the 5% confidence level.  

(Filipek et al., 2003) Autism complex III activity per 
mitochondrion was reduced.  

(Weissman et al., 
2008) 

Autism spectrum 
disorders 

The most common ETC disorders: 
deficiencies of complex I (64%) 
and complex III (20%).  

(Oliveira et al., 2005) Autistic disorder 5 out of 11 patients were with 
mitochondrial respiratory chain 
disorder; most commonly 
complexes I, IV, and V  
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