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We investigate the effect of solitons and vortices, with a range of different topologies, on the dynamics of
Bose-Einstein condensates in a one-dimensional optical lattice and a three-dimensional harmonic trap. The
solitons and vortices are imposed on the initial state of the atom cloud, which is set in oscillatory motion by a
sudden displacement of the harmonic trap. We study this motion using both quantum-mechanical calculations,
based on the nonlinear Schrédinger equation, and a semiclassical model for transport through the lowest energy
band of the optical lattice. We demonstrate that the geometry of the vortices and solitons in the initial state
plays a crucial role in the evolution of the atom cloud. In particular, we find that the center-of-mass motion of
a condensate containing a vortex is only weakly damped if the vortex core lies parallel to the optical lattice
direction, but is strongly damped when the core is orientated perpendicular to the lattice direction. Severe
damping is observed for a condensate containing a soliton whose nodal plane is perpendicular to the optical
lattice.
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[. INTRODUCTION In previous work[18,29, we considered the motion of

Recent studies of Bose-Einstein condensaBECS in ground-_state condensates that are accelerz_ited through an op-
optical lattices have been a rich source of physics, broaderfic@! lattice. We showed that Bragg reflection can generate
ing the current understanding of energy-band trangfief], sp]ltons, which decay into vortex rings via the snake insta-
condensate excitations and instabilitj€s5,6,8-14, and the  Pility [11,21, thereby damping the center-of-mass motion
role of interatomic interactiong8,4,7,10,1% By accelerating and_, for certain densities and accelere_ltlons, causing a _dra-
the condensate along the optical lattice direction, experimerNtic explosion of the atom cloud. In this paper, we examine
talists have investigated the quantum transport of BECs ifoW excited condensates move through optical lattices, by
periodic potentials, and successfully observed Bloch oscillaconsidering wave functions that initially contain a soliton or
tions[1,2,10,15. These experiments stimulated considerablea vortex. Our quantum-mechanitaind semiclassical calcu-
theoretical interest3—5,10,15—18 which focused on damp- lations demonstrate that these initial excitations have a pro-
ing and disruption of the Bloch oscillations and, in particular,nounced effect on the evolution of the atom cloud and on the
how the dynamics of the BEC are affected by the interatomiclamping of the center-of-mass motion. In particular, we
interactions, described by the nonlinear term in the Grossshow that the geometry and orientation of the initial excita-
Pitaevskii equation. Several different mechanisms have bedion is crucial for determining the damping rate and the long-
proposed for the breakdown of Bloch motion, including theterm behavior of the atom cloud.
screening of the optical potentipd], Landau Zener tunnel- We consider three condensates with different initial exci-
ing [1,2,4,10,17, looped Bloch bandglL7], dynamical insta- tations, which we refer to as condensate$3, andC. Con-
bility [10], and the production of solitons and vortidds). densateA initially contains one soliton, whose nodal plane

Previous studies of the motion of condensates in opticalies perpendicular to the axis of the optical lattice. Conden-
lattices have considered the acceleration of the condensasateB initially contains a single vortex line, whose caeis
ground statg3-5,15-18. However, more complicated con- of rotation is orientated along the optical lattice direction.
densate wave functions containing topological excitationgcondensat€ also initially contains a single vortex line, but
such as solitons and vortices have been realized experimeits core lies perpendicular to the optical lattice direction. As
tally [11,13,14,19-24 and simulated theoretically in recent experimenti8], we accelerate the condensates by
[11-14,25-2F. Solitons may be generated by phase imprint-abruptly displacing the harmonic trap along the optical lat-
ing and/or density engineering1-14,20,2], and by mag- tice axis. In response, the condensates all perform damped
netic tuning of the interatomic interactiorj49]. Vortices  Bloch oscillations. However, the extent of the damping is
have been created from the decay of solitgh,21], by

phase engineering0,27, stirring with a focused laser beam 15 “quantum-mechanical” calculations are, in fact, solutions of

[22,23, or by moving a laser beam through the atom cloudine Gross-Pitaevski equation. This equation is, strictly speaking, not
above a critical velocity24,2§. Studies of condensates that 5 full quantum-mechanical treatment, but a nonlinear Schrédinger
have been excited in these ways have examined the stabiligguation in which the effect of the interatomic interactions is ap-

and energy of the excitationgl2,21,25, their dynamics proximated by a mean-field approach. For brevity, we refer to our
within the atom cloud 14,28, and interactions between ex- solutions of the Gross-Pitaevskii equation as “quantum mechani-
citations[12]. cal.”
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different in each case..For condenthethe da_mping origi- V1(X,Y,2) = Vo (X) + Virap(X,Y,2). (3

nates from the production of solitons and vortices that evolve ) )

from the standing wave formed at the point of Bragg reflec-. Ve describe the evolution of the condensate wave func-

tion [18]. However, the damping observed for condensates 0N ¥ by numerical integration of the time-dependent

andC is far more severe than for condensBibecause the Cross-Pitaevskii equation, given by

initial_topological excitati_ons impede the fqrmation of the oW (xy,z,) [ K2 ,

standing wave at the point of Bragg reflection. As a conse- i = - —V"+V1(x,y,2)

quence, the internal structure of the condensate is strongly 2m

disrupted, leading to the formation of further topological ex- )

citations and the expansion of the atom cloud. +UgW(xy.zt)* [ ¥(xy.zt), (4
In Sec. Il we specify the geometry of the optical lattice

and the harmonic trap, together with the generic properties ofthereV?2 is the Laplacian and

the three distinct condensates. Specific features of conden- anha

satesA, B, andC and their dynamics are considered in Secs. Up= , (5)

I, 1V, and V, respectively. m

at

in whicha=5.4 nm is thes-wave scattering lengtf82]. The
condensate wave functiob is normalized so thdtV|? is the
number of atoms per unit volume. In our calculations, we
express Eq4) as a finite-difference equation, and then solve
As in previous work{18,29, we consider Bose-Einstein it numerically using the Crank-Nicolson method, incorporat-
condensates formed from,=10" 8Rb atoms in a three- ing time or operator splitting33].
dimensional harmonic trap and a one-dimensional optical lat-
tice. The optical lattice is formed by two counter-propagating
laser beams, each of wavelength=795 nm, as in recent
experimentg8]. The potential energy of a single atom inthe  The initial wave function of condensat® is chosen to
optical lattice is contain one stationary soliton, whose nodal plane lies per-
_ . pendicular to the axis of the optical lattice. Experimentally,
VoL(x) = Vo sif(mx/d), (1) this can be achieved by density and/or phase imprinting tech-
whered=\/2=397.5 nm and/,=23.3 peV(=1.55 times the niques[11-14,20,2]. The condensate has cylindrical sym-
recoil energyEr=%%k?/2m, wherek is the wave vector of the metry, and is therefore conveniently described in cylindrical
laser light andm is the mass of a singlé’Rb atom are, polar coordinates (x,r,¢), where r=y\y*+z> and ¢
respectively, the period and depth of the optical potential=tari'(y/z). Since neither the total potentis(x,r) nor the
Due to its translational symmetry, the optical lattice generdnitial condensate wave function has apydependence, the
ates an energy-band structure for motion alongxitrec-  three-dimensional Gross-Pitaevskii equati@n can be re-
tion. We calculated the energy wave vector dispersion reladuced to an effective two-dimensional equatifiB,29,
tions for the two lowest energy bands using Mathieugiven by
functions[30]. The lowest energy band of the optical lattice

II. THEORETICAL MODEL OF THE BOSE-EINSTEIN
CONDENSATE

IIl. DYNAMICS OF CONDENSATE A

. 2
lies between 0.70 anq 1.3, and the bottom of the secpnd ihoﬂlf(x,r,t) - - h_VEJrVT(X’r) +UgW(x,r, 02 [w(xr,0),
band is at 4.84&, which is well above the top of the optical at 2m

potential. In principle, the harmonic trap breaks the transla- (6)

tional symmetry of the optical potential. However, for the

parameters considered in this paper, the condensate remaigere the Laplacian in cylindrical polar coordinates is
sufficiently close to the trap center to ensure that the change 2 R 19

in trap potential across each lattice period is much less than ng — =+ . (7)
the width of the lowest energy band. Consequently, the trap gxs dre rar

potential can be treated as a pgrturbation to the optical lattice calculate the initial wave function using an imaginary
and the band structure remains intqé8,29,3]. Further-  ime aigorithm[34], and obtain the density profile shown in
more, there is a large energy gap between the first and Sefig. 1(a). Note that the solitoribroad light banyl becomes

ond bands, so Landau-Zener tunneling into the second bangiyer at the edges of the condensate, where the atom density
is negligible. n(x,r) is lower, and hence the local healing lendtR,r)

The harmon_ic tr_ap is spherically symmetrical. Its potentialz1/\/—87m(x’r)a is longer.
energy profile is given by At time t=0, we set the condensate in motion by abruptly
Mw? displacing the harmonic trap by 2om along thex axis. This
Vrrap(X,Y,2) =T(X2+y2+22), (2)  increases the atom cloud’s potential energy, which is con-
verted into kinetic energy as the condensate accelerates to-
where w=27x50 rad s is the trap frequency. The total wards the trap potential minimum. We determined the
potential energy of a single atom in the optical lattice andequivalent single-particle trajectory using the semiclassical
harmonic trap is equations of motiondx/dt=#"'dE(k,)/dk, and dk/dt
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FIG. 1. Gray scale plots of densityvhite=0, black=high in .
the x-r plane (axes insetfor condensaté at t=0 ms (a), 2.6 ms FIG. 2. Solid curves(x) vst for condensaté (), condensat&
(b), 5 ms(c), and 6.1 mgd). The crosses iic) mark solitons pro- (b), and _conde_nsat@ _(c). The dashed curve in _aII flgl_Jres: equiva-
duced by the first Bragg reflection. Arrows (d) enclose vortices lent semiclassical trajectory. The dotted curve in all figu{gsvs t

and show the direction of condensate rotation. The horizontal bafof @ condensate that is initially in its ground state, but otherwise
shows scale. identical to condensates—C.

=#"'F, [35], whereE(k,) is the energy wave-number disper- the condensate’s center-of-mass motion is damped by pro-
sion relation for the lowest energy band, afg-—-mw?x is  cesses that cannot be described in a semiclassical single-
the restoring force along theaxis due to the harmonic trap. particle model of energy-band transport.
Solving these equations of motion yields the semiclassical The dotted curve in Fig. (2) shows(x) calculated as a
x(t) trajectory shown by the dashed curve in Figa)2This  function oft for a condensate that is identical to condensate
trajectory shows that, following the trap displacement, aa except that, initially, the atom cloud is in its ground state,
pointlike particle performs regular Bloch oscillations in the and therefore contains no soliton. This curve shows that the
lowest energy band of the optical lattice. The upper turningeondensate ground state also performs damped Bloch oscil-
points in thex(t) curve occur when the particle comes to rest|ations. However, the damping, which originates from soliton
at the top of the energy ban@orresponding to the Bragg and vortex productiorisee Refs[18,29 for a detailed ex-
reflection of the matter wavgsand the lower turning points  pjanation, is much less severe than that for condengate
are due to reflection bounded by the magnetic trap. Therhis demonstrates that the presence of the initial soliton in
Bloch oscillations have a period of 5.1 ms and a peak-togondensaté strongly enhances the damping processes.
peak amplitude of 5.Gum. _ _ _ The damping mechanism can be understood by consider-
We now compare the semiclassical trajectory with the coring changes in the internal structure of the atom cloud, which
responding quantum-mechanical meaposition of conden- s shown in Fig. 1 at various key stages of the evolution. As
sateA, (x), which is shown as a function d@fby the solid  giscussed in our previous work on BECs with no initial ex-
curve in Fig. 2a). The amplitude and period of the first citations[18,29, when a condensate undergoes Bragg reflec-
Bloch oscillation are 4.um and 5.1 ms, in good agreement tion, a standing wave is formed, imprinting a density node
with the corresponding semiclassical calculation for a pointand am-phase shift in the condensate wave function at each
like particle. But the amplitude of subsequent oscillationsmaximum in the optical lattice potential. However, in con-
decreases dramatically ascreases. After three oscillations densate?, the presence of the soliton in the initial state dis-
(t=15 mg, the motion almost completely breaks down, andrupts the formation of the standing wave on Bragg reflection.
the condensate’s center-of-mass remains approximately st@io demonstrate this, we show the condensate density profile
tionary. The deviation of the quantum-mechani¢al vs t  at the point of the first Bragg reflection in Figi). Although
curve from the semiclassical trajectony(t), indicates that the standing wave does form locally in some regions of the
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condensate, the atom cloud has become fragmented, with

large areas of low atom density. This disruption allows the

production of further solitons, two of which are marked by |“ ‘l
crosses in Fig. (t). These solitons then decay via the snake

instability into vortex rings. Cross sections through two vor- ‘.W"
tex rings are shown in Fig.(d), encircled by arrows indicat-

ing the direction of quantized circulation. This rapid produc-
tion of topological excitations leads to further fragmentation
and expansion of the atom cloud, and so causes a complete
breakdown of the Bloch motion.

(00

IV. DYNAMICS OF CONDENSATE B ( ) '””ml"lm“'

Condensat® initially contains a single vortex line whose
axis of rotation is orientated along the optical lattice di-
rection. We take the associatedcomponent of each atom’s
angular momentum to b, so that in cylindrical polar co-
ordinates, the condensate wave function is

—
S um
M
W(X,1,@,t) = y(X,r,t)e? (8 (C) '" "

By substituting this wave function into E¢4), expressed in

cylindrical polar form, the three-dimensional time-dependent |"" ""
Gross-Pitaevskii equation can be reduced to an effective two- r T

dimensional equation, given by

9 P(x.1,1) h? _, h?
R R i vy
I at { 2m ¢ 2mr? Tx1)

'
+ Uo|lﬁ(X,r,t)|2] P(x,r,1). (9) (d) "' I“

The initial wave function of the condensate is obtained by '“' m
solving Eq.(9), using an imaginary time algorithfi34]. Fig-

ure Ja) shows the density profile of this initial state. As for

the soliton in condensat, the vortex(indicated by the light

band along thex direction becomes wider at the left- and

right-hand edges of the condensate, where the atom density
is lower and hence the local healing length is longer.
As for condensatd, at timet=0 we set the condensate in
motion by abruptly displacing the harmonic trap by 2& Q‘@
along thex axis. The subsequent evolution of the conden-

sate’s quantum-mechanical mean posititf), is shown by
the solid curve in Fig. @®). The corresponding semiclassical
trajectory is represented by the dashed curve in the same I .
figure. As before, the condensate performs damped Blocﬁheil? 3. Gray scale plots of densitwhite=0, black=high in
-r plane (axes insetfor condensatd att=0 ms(a), 2.6 ms

oscillations, but the damping is much less severe than fO{b) 4 ms(c), 7.8 ms(d), and 11.3 mge). The cross ird) marks a
condensaté. The Bloch motion is still clear after five oscil- .0 produced by Bragg reflection. The arrows(@ enclose
lations, although the amplitude of the oscillations has halve@ortices and show direction of condensate rotation. The horizontal
during the simulation. The rate of damping is very similar to,,5; shows scale.
that found in the(x) vst curve calculated for a condensate
that is initially in its ground state, but otherwise equivalent towithout causing any disruption to the atom density profile, as
condensat® [dotted line in Fig. 2b)]. shown in Fig. 8b). No additional topological excitations are

This behavior can be understood by studying the internaproduced, and following Bragg reflection the condensate re-
structure of condensatB, which is shown at various key gains a density profil§Fig. 3(c)] that is very similar to that
stages of the simulation in Fig. 3. As discussed in the previef the initial condensate wave function. There has been only
ous section, the standing wave formed at the point of each slight distortion and expansion of the atom cloud during
Bragg reflection imprints density nodes amephase shifts the first oscillation. However, on the second Bragg reflection,
on the condensate wave function. But in contrast to conderthe condensate has become sufficiently disrupted to allow
sateA, the standing wave forms on the first Bragg reflectiondark solitons to form in response to the density nodes and
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m-phase shifts present in the standing wave. One of these

solitons is marked by the cross in Figd3 which shows the
condensate density profile &t7.8 ms, approximately mid-
way between the second and third Bragg reflections. The (a) ‘ l

solitons then decay via the snake instability into vortex rings,
two of which are encircled by arrows in Fig(e3, indicating
the direction of circulation. It should be noted that these
vortex rings have quantized circulation around the central
vortex line, in addition to quantized circulation around their
own cores. These structures are known as skyrmiars ,
The evolution of condensat® is very similar to that re- (b) ”
ported in our previous papét8], in which we considered a l
condensate that was initially in its ground state. Hence we
conclude that a vortex whose axis of rotation is parallel to 5 um
the optical lattice axis has little effect on the condensate dy-
namics. This is because the motion of the condensate about '
the vortex is perpendicular to the optical lattice axis, and so "l "‘ '
it does not interfere with the process of Bragg reflection. (C

V. DYNAMICS OF CONDENSATE C

Condensat€ initially contains a single vortex line whose
axis of rotation lies along thedirection, perpendicular to the TR
optical lattice direction. It differs from condensat&sandB {| o
because its atom density profile does not have cylindrical ,l.'
symmetry. Consequently, it is impossible to reduce the three- (d) "“a!
dimensional problem to an equivalent effective two- I
dimensional problem by symmetry considerations. However, .
we can achieve this reduction, which is required to facilitate il
finite difference solution of the Gross-Pitaevskii equation, by |
assuming that the condensate is much more strongly con-
fined along thez direction than along th& andy directions.
In this case, we can write the Gross-Pitaevskii equadgim
the two-dimensional form FIG. 4. Gray scale plots of densityhite=0, black=high in
the x-y plane(axes insetfor condensateC at t=0 ms(a), 2.6 ms
ihﬂ\I’(X,y,t) _ ﬁz( i ) V) (b), 4 ms(c), and 11.3 mgd). The arrows in(c) enclose vortices

ot 2m\ 9x? <9y Ty and show the direction of condensate rotation. The horizontal bar
shows scale.
+ U0|q,(xay=t)|2:|qj(xayat)' (10) . . .

condensate’s quantum-mechanical mean position is shown

by the solid line in Fig. &). As before, the condensate per-
We find the initial condensate wave function using an imagi-, forms damped Bloch oscillations, but the damping is more

nary time algorithm[34], subject to the requirement that severe than for both condens@eand a condensate that is
there is a Z-phase change in the condensate wave fum:tlor‘hltlally in its ground state, which therefore contains no vor-

around the trap center, which corresponds to a quantized aps, [shown by the dotted curve in Fig(d@]. This can be

gglrzirnrg?(r)nentum ofi. The wave function is normalized ac- understood by cons_lderlng the internal structure o_f th_e atom
cloud, shown at various key stages of the simulation in Fig.
5 Np 4. Figure 4b) shows the condensate density profile at the

f [P (x,y,)|°dx dy=C= T (11)  point of the first Bragg reflectioft=2.6 m3. In contrast to

z the corresponding image for condens&geshown in Fig.
whereL, is the confinement length in the direction. We  3(b), the formation of the standing wave has disrupted the
choseC=1.7x10° m™%, so that the peak density of conden- internal structure of the condensate, imposing spatial fluctua-
sateC is identical to that of condensaR thereby ensuring tions in the atom density that extend over several lattice pe-
that the two systems can be directly compared. The resultingods. Despite this disruption, the standing wave is locally
initial state is shown in Fig. @), in which the vortex is intact in some regions of the condensate, giving the density
clearly visible at the center of the atom cloud. profile a broadly similar character to the corresponding im-

As for condensate#\ and B, the atom cloud is set in age for condensatd, shown in Fig. 1b). Shortly after the
motion by abruptly displacing the harmonic trap by 26  first Bragg reflection, these changes in the atom density pro-
along thex axis at timet=0. The subsequent evolution of the file allow the formation of solitons and vortices, as shown in
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Fig. 4(c). Two of the vortices are encircled by arrows, which cause fragmentation of the atom cloud and damping of the
indicate the direction of circulation. Bloch oscillations.

This behavior occurs because the circulation of the con- Our investigation of the dynamics of excited BECs in
densate about the initial vortex breaks the atom cloud’s symeptical lattices provides further evidence that topological ex-
metry under reflection about the axis, and, as a conse- citations play a key role in the evolution of the atom cloud
guence, disrupts the formation of the standing wave at thand in the damping of the center-of-mass motion. Following
point of the first Bragg reflection. Hence, further topologicalBragg reflection, inhomogeneities in the atom cloud can
excitations are produced, leading to an expansion of the atoigrow rapidly, thereby causing severe damping and a cata-
cloud and a damping of the Bloch oscillations. Following strophic breakdown of the transport processes. Our work
subsequent Bragg reflections, the condensate becomes ierefore has implications for understanding the transport
creasingly diffuse and fragmentedrig. 4(d)], with clear and decoherence of condensates in optical lattices. Further-
asymmetry under reflection about thexis. more, the damping is associated with complex changes in the
structure of the atom cloud, such as the formation of skyrmi-
ons. Our results suggest that accelerating excited condensates
through an optical lattice could provide a route to making

We have investigated how the presence of a single solitoand studying skyrmionic excitations, which have previously
or vortex in the initial state of a BEC affects its dynamics inbeen inaccessible to experiments on atom clouds. We hope
an optical lattice. The initial topological excitation can that our work will stimulate further experiments exploring
strongly disrupt the formation of the standing wave on Bragghow topological excitations of different types and orienta-
reflection, thereby creating additional excitations, whichtions affect the quantum transport of BECs in optical lattices.

VI. CONCLUSION
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