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We investigate the effect of solitons and vortices, with a range of different topologies, on the dynamics of
Bose-Einstein condensates in a one-dimensional optical lattice and a three-dimensional harmonic trap. The
solitons and vortices are imposed on the initial state of the atom cloud, which is set in oscillatory motion by a
sudden displacement of the harmonic trap. We study this motion using both quantum-mechanical calculations,
based on the nonlinear Schrödinger equation, and a semiclassical model for transport through the lowest energy
band of the optical lattice. We demonstrate that the geometry of the vortices and solitons in the initial state
plays a crucial role in the evolution of the atom cloud. In particular, we find that the center-of-mass motion of
a condensate containing a vortex is only weakly damped if the vortex core lies parallel to the optical lattice
direction, but is strongly damped when the core is orientated perpendicular to the lattice direction. Severe
damping is observed for a condensate containing a soliton whose nodal plane is perpendicular to the optical
lattice.

DOI: 10.1103/PhysRevA.69.063607 PACS number(s): 03.75.Kk, 05.45.Yv, 32.80.Pj, 42.50.Vk

I. INTRODUCTION

Recent studies of Bose-Einstein condensates(BECs) in
optical lattices have been a rich source of physics, broaden-
ing the current understanding of energy-band transport[1–7],
condensate excitations and instabilities[3,5,6,8–14], and the
role of interatomic interactions[3,4,7,10,15]. By accelerating
the condensate along the optical lattice direction, experimen-
talists have investigated the quantum transport of BECs in
periodic potentials, and successfully observed Bloch oscilla-
tions [1,2,10,15]. These experiments stimulated considerable
theoretical interest[3–5,10,15–18], which focused on damp-
ing and disruption of the Bloch oscillations and, in particular,
how the dynamics of the BEC are affected by the interatomic
interactions, described by the nonlinear term in the Gross-
Pitaevskii equation. Several different mechanisms have been
proposed for the breakdown of Bloch motion, including the
screening of the optical potential[4], Landau Zener tunnel-
ing [1,2,4,10,17], looped Bloch bands[17], dynamical insta-
bility [10], and the production of solitons and vortices[18].

Previous studies of the motion of condensates in optical
lattices have considered the acceleration of the condensate
ground state[3–5,15–18]. However, more complicated con-
densate wave functions containing topological excitations
such as solitons and vortices have been realized experimen-
tally [11,13,14,19–24] and simulated theoretically
[11–14,25–27]. Solitons may be generated by phase imprint-
ing and/or density engineering[11–14,20,21], and by mag-
netic tuning of the interatomic interactions[19]. Vortices
have been created from the decay of solitons[11,21], by
phase engineering[20,27], stirring with a focused laser beam
[22,23], or by moving a laser beam through the atom cloud
above a critical velocity[24,26]. Studies of condensates that
have been excited in these ways have examined the stability
and energy of the excitations[12,21,25], their dynamics
within the atom cloud[14,28], and interactions between ex-
citations[12].

In previous work[18,29], we considered the motion of
ground-state condensates that are accelerated through an op-
tical lattice. We showed that Bragg reflection can generate
solitons, which decay into vortex rings via the snake insta-
bility [11,21], thereby damping the center-of-mass motion
and, for certain densities and accelerations, causing a dra-
matic explosion of the atom cloud. In this paper, we examine
how excited condensates move through optical lattices, by
considering wave functions that initially contain a soliton or
a vortex. Our quantum-mechanical1 and semiclassical calcu-
lations demonstrate that these initial excitations have a pro-
nounced effect on the evolution of the atom cloud and on the
damping of the center-of-mass motion. In particular, we
show that the geometry and orientation of the initial excita-
tion is crucial for determining the damping rate and the long-
term behavior of the atom cloud.

We consider three condensates with different initial exci-
tations, which we refer to as condensatesA, B, andC. Con-
densateA initially contains one soliton, whose nodal plane
lies perpendicular to the axis of the optical lattice. Conden-
sateB initially contains a single vortex line, whose core(axis
of rotation) is orientated along the optical lattice direction.
CondensateC also initially contains a single vortex line, but
its core lies perpendicular to the optical lattice direction. As
in recent experiments[8], we accelerate the condensates by
abruptly displacing the harmonic trap along the optical lat-
tice axis. In response, the condensates all perform damped
Bloch oscillations. However, the extent of the damping is

1Our “quantum-mechanical” calculations are, in fact, solutions of
the Gross-Pitaevski equation. This equation is, strictly speaking, not
a full quantum-mechanical treatment, but a nonlinear Schrödinger
equation in which the effect of the interatomic interactions is ap-
proximated by a mean-field approach. For brevity, we refer to our
solutions of the Gross-Pitaevskii equation as “quantum mechani-
cal.”
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different in each case. For condensateB, the damping origi-
nates from the production of solitons and vortices that evolve
from the standing wave formed at the point of Bragg reflec-
tion [18]. However, the damping observed for condensatesA
andC is far more severe than for condensateB because the
initial topological excitations impede the formation of the
standing wave at the point of Bragg reflection. As a conse-
quence, the internal structure of the condensate is strongly
disrupted, leading to the formation of further topological ex-
citations and the expansion of the atom cloud.

In Sec. II we specify the geometry of the optical lattice
and the harmonic trap, together with the generic properties of
the three distinct condensates. Specific features of conden-
satesA, B, andC and their dynamics are considered in Secs.
III, IV, and V, respectively.

II. THEORETICAL MODEL OF THE BOSE-EINSTEIN
CONDENSATE

As in previous work[18,29], we consider Bose-Einstein
condensates formed fromNA=104 87Rb atoms in a three-
dimensional harmonic trap and a one-dimensional optical lat-
tice. The optical lattice is formed by two counter-propagating
laser beams, each of wavelengthl=795 nm, as in recent
experiments[8]. The potential energy of a single atom in the
optical lattice is

VOLsxd = V0 sin2spx/dd, s1d

whered=l /2=397.5 nm andV0=23.3 peV(=1.55 times the
recoil energyER="2k2/2m, wherek is the wave vector of the
laser light andm is the mass of a single87Rb atom) are,
respectively, the period and depth of the optical potential.
Due to its translational symmetry, the optical lattice gener-
ates an energy-band structure for motion along thex direc-
tion. We calculated the energy wave vector dispersion rela-
tions for the two lowest energy bands using Mathieu
functions[30]. The lowest energy band of the optical lattice
lies between 0.70 and 1.37ER, and the bottom of the second
band is at 4.84ER, which is well above the top of the optical
potential. In principle, the harmonic trap breaks the transla-
tional symmetry of the optical potential. However, for the
parameters considered in this paper, the condensate remains
sufficiently close to the trap center to ensure that the change
in trap potential across each lattice period is much less than
the width of the lowest energy band. Consequently, the trap
potential can be treated as a perturbation to the optical lattice
and the band structure remains intact[18,29,31]. Further-
more, there is a large energy gap between the first and sec-
ond bands, so Landau-Zener tunneling into the second band
is negligible.

The harmonic trap is spherically symmetrical. Its potential
energy profile is given by

VTRAPsx,y,zd =
mv2

2
sx2 + y2 + z2d, s2d

where v=2p350 rad s−1 is the trap frequency. The total
potential energy of a single atom in the optical lattice and
harmonic trap is

VTsx,y,zd = VOLsxd + VTRAPsx,y,zd. s3d

We describe the evolution of the condensate wave func-
tion C by numerical integration of the time-dependent
Gross-Pitaevskii equation, given by

i"
] Csx,y,z,td

] t
= F−

"2

2m
¹2 + VTsx,y,zd

+ U0uCsx,y,z,tdu2GCsx,y,z,td, s4d

where¹2 is the Laplacian and

U0 =
4p"2a

m
, s5d

in which a=5.4 nm is thes-wave scattering length[32]. The
condensate wave functionC is normalized so thatuCu2 is the
number of atoms per unit volume. In our calculations, we
express Eq.(4) as a finite-difference equation, and then solve
it numerically using the Crank-Nicolson method, incorporat-
ing time or operator splitting[33].

III. DYNAMICS OF CONDENSATE A

The initial wave function of condensateA is chosen to
contain one stationary soliton, whose nodal plane lies per-
pendicular to the axis of the optical lattice. Experimentally,
this can be achieved by density and/or phase imprinting tech-
niques[11–14,20,21]. The condensate has cylindrical sym-
metry, and is therefore conveniently described in cylindrical
polar coordinates sx,r ,wd, where r =Îy2+z2 and w
=tan−1sy/zd. Since neither the total potentialVTsx,rd nor the
initial condensate wave function has anyw dependence, the
three-dimensional Gross-Pitaevskii equation(4) can be re-
duced to an effective two-dimensional equation[18,29],
given by

i"
] Csx,r,td

] t
= F−

"2

2m
¹c

2 + VTsx,rd + U0uCsx,r,tdu2GCsx,r,td,

s6d

where the Laplacian in cylindrical polar coordinates is

¹c
2 =

]2

] x2 +
]2

] r2 +
1

r

]

] r
. s7d

We calculate the initial wave function using an imaginary
time algorithm[34], and obtain the density profile shown in
Fig. 1(a). Note that the soliton(broad light band) becomes
wider at the edges of the condensate, where the atom density
nsx,rd is lower, and hence the local healing lengthlsx,rd
=1/Î8pnsx,rda is longer.

At time t=0, we set the condensate in motion by abruptly
displacing the harmonic trap by 25mm along thex axis. This
increases the atom cloud’s potential energy, which is con-
verted into kinetic energy as the condensate accelerates to-
wards the trap potential minimum. We determined the
equivalent single-particle trajectory using the semiclassical
equations of motion dx/dt="−1dEskxd /dkx and dkx/dt
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="−1Fx [35], whereEskxd is the energy wave-number disper-
sion relation for the lowest energy band, andFx=−mv2x is
the restoring force along thex axis due to the harmonic trap.
Solving these equations of motion yields the semiclassical
xstd trajectory shown by the dashed curve in Fig. 2(a). This
trajectory shows that, following the trap displacement, a
pointlike particle performs regular Bloch oscillations in the
lowest energy band of the optical lattice. The upper turning
points in thexstd curve occur when the particle comes to rest
at the top of the energy band(corresponding to the Bragg
reflection of the matter waves), and the lower turning points
are due to reflection bounded by the magnetic trap. The
Bloch oscillations have a period of 5.1 ms and a peak-to-
peak amplitude of 5.0mm.

We now compare the semiclassical trajectory with the cor-
responding quantum-mechanical meanx position of conden-
sateA, kxl, which is shown as a function oft by the solid
curve in Fig. 2(a). The amplitude and period of the first
Bloch oscillation are 4.7mm and 5.1 ms, in good agreement
with the corresponding semiclassical calculation for a point-
like particle. But the amplitude of subsequent oscillations
decreases dramatically ast increases. After three oscillations
st<15 msd, the motion almost completely breaks down, and
the condensate’s center-of-mass remains approximately sta-
tionary. The deviation of the quantum-mechanicalkxl vs t
curve from the semiclassical trajectory,xstd, indicates that

the condensate’s center-of-mass motion is damped by pro-
cesses that cannot be described in a semiclassical single-
particle model of energy-band transport.

The dotted curve in Fig. 2(a) showskxl calculated as a
function of t for a condensate that is identical to condensate
A, except that, initially, the atom cloud is in its ground state,
and therefore contains no soliton. This curve shows that the
condensate ground state also performs damped Bloch oscil-
lations. However, the damping, which originates from soliton
and vortex production(see Refs.[18,29] for a detailed ex-
planation), is much less severe than that for condensateA.
This demonstrates that the presence of the initial soliton in
condensateA strongly enhances the damping processes.

The damping mechanism can be understood by consider-
ing changes in the internal structure of the atom cloud, which
is shown in Fig. 1 at various key stages of the evolution. As
discussed in our previous work on BECs with no initial ex-
citations[18,29], when a condensate undergoes Bragg reflec-
tion, a standing wave is formed, imprinting a density node
and ap-phase shift in the condensate wave function at each
maximum in the optical lattice potential. However, in con-
densateA, the presence of the soliton in the initial state dis-
rupts the formation of the standing wave on Bragg reflection.
To demonstrate this, we show the condensate density profile
at the point of the first Bragg reflection in Fig. 1(b). Although
the standing wave does form locally in some regions of the

FIG. 1. Gray scale plots of densityswhite=0, black=highd in
the x-r plane (axes inset) for condensateA at t=0 ms (a), 2.6 ms
(b), 5 ms(c), and 6.1 ms(d). The crosses in(c) mark solitons pro-
duced by the first Bragg reflection. Arrows in(d) enclose vortices
and show the direction of condensate rotation. The horizontal bar
shows scale.

FIG. 2. Solid curves:kxl vs t for condensateA (a), condensateB
(b), and condensateC (c). The dashed curve in all figures: equiva-
lent semiclassical trajectory. The dotted curve in all figures:kxl vs t
for a condensate that is initially in its ground state, but otherwise
identical to condensatesA–C.
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condensate, the atom cloud has become fragmented, with
large areas of low atom density. This disruption allows the
production of further solitons, two of which are marked by
crosses in Fig. 1(c). These solitons then decay via the snake
instability into vortex rings. Cross sections through two vor-
tex rings are shown in Fig. 1(d), encircled by arrows indicat-
ing the direction of quantized circulation. This rapid produc-
tion of topological excitations leads to further fragmentation
and expansion of the atom cloud, and so causes a complete
breakdown of the Bloch motion.

IV. DYNAMICS OF CONDENSATE B

CondensateB initially contains a single vortex line whose
axis of rotation is orientated along the optical latticesxd di-
rection. We take the associatedx component of each atom’s
angular momentum to be", so that in cylindrical polar co-
ordinates, the condensate wave function is

Csx,r,w,td = csx,r,tdeiw. s8d

By substituting this wave function into Eq.(4), expressed in
cylindrical polar form, the three-dimensional time-dependent
Gross-Pitaevskii equation can be reduced to an effective two-
dimensional equation, given by

i"
] csx,r,td

] t
= F−

"2

2m
¹c

2 +
"2

2mr2
+ VTsx,rd

+ U0ucsx,r,tdu2Gcsx,r,td. s9d

The initial wave function of the condensate is obtained by
solving Eq.(9), using an imaginary time algorithm[34]. Fig-
ure 3(a) shows the density profile of this initial state. As for
the soliton in condensateA, the vortex(indicated by the light
band along thex direction) becomes wider at the left- and
right-hand edges of the condensate, where the atom density
is lower and hence the local healing length is longer.

As for condensateA, at timet=0 we set the condensate in
motion by abruptly displacing the harmonic trap by 25mm
along thex axis. The subsequent evolution of the conden-
sate’s quantum-mechanical mean position,kxl, is shown by
the solid curve in Fig. 2(b). The corresponding semiclassical
trajectory is represented by the dashed curve in the same
figure. As before, the condensate performs damped Bloch
oscillations, but the damping is much less severe than for
condensateA. The Bloch motion is still clear after five oscil-
lations, although the amplitude of the oscillations has halved
during the simulation. The rate of damping is very similar to
that found in thekxl vs t curve calculated for a condensate
that is initially in its ground state, but otherwise equivalent to
condensateB [dotted line in Fig. 2(b)].

This behavior can be understood by studying the internal
structure of condensateB, which is shown at various key
stages of the simulation in Fig. 3. As discussed in the previ-
ous section, the standing wave formed at the point of each
Bragg reflection imprints density nodes andp-phase shifts
on the condensate wave function. But in contrast to conden-
sateA, the standing wave forms on the first Bragg reflection

without causing any disruption to the atom density profile, as
shown in Fig. 3(b). No additional topological excitations are
produced, and following Bragg reflection the condensate re-
gains a density profile[Fig. 3(c)] that is very similar to that
of the initial condensate wave function. There has been only
a slight distortion and expansion of the atom cloud during
the first oscillation. However, on the second Bragg reflection,
the condensate has become sufficiently disrupted to allow
dark solitons to form in response to the density nodes and

FIG. 3. Gray scale plots of densityswhite=0, black=highd in
the x-r plane (axes inset) for condensateB at t=0 ms (a), 2.6 ms
(b), 4 ms(c), 7.8 ms(d), and 11.3 ms(e). The cross in(d) marks a
soliton produced by Bragg reflection. The arrows in(e) enclose
vortices and show direction of condensate rotation. The horizontal
bar shows scale.
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p-phase shifts present in the standing wave. One of these
solitons is marked by the cross in Fig. 3(d), which shows the
condensate density profile att=7.8 ms, approximately mid-
way between the second and third Bragg reflections. The
solitons then decay via the snake instability into vortex rings,
two of which are encircled by arrows in Fig. 3(e), indicating
the direction of circulation. It should be noted that these
vortex rings have quantized circulation around the central
vortex line, in addition to quantized circulation around their
own cores. These structures are known as skyrmions[27].

The evolution of condensateB is very similar to that re-
ported in our previous paper[18], in which we considered a
condensate that was initially in its ground state. Hence we
conclude that a vortex whose axis of rotation is parallel to
the optical lattice axis has little effect on the condensate dy-
namics. This is because the motion of the condensate about
the vortex is perpendicular to the optical lattice axis, and so
it does not interfere with the process of Bragg reflection.

V. DYNAMICS OF CONDENSATE C

CondensateC initially contains a single vortex line whose
axis of rotation lies along thez direction, perpendicular to the
optical lattice direction. It differs from condensatesA andB
because its atom density profile does not have cylindrical
symmetry. Consequently, it is impossible to reduce the three-
dimensional problem to an equivalent effective two-
dimensional problem by symmetry considerations. However,
we can achieve this reduction, which is required to facilitate
finite difference solution of the Gross-Pitaevskii equation, by
assuming that the condensate is much more strongly con-
fined along thez direction than along thex andy directions.
In this case, we can write the Gross-Pitaevskii equation(4) in
the two-dimensional form

i"
] Csx,y,td

] t
= F−

"2

2m
S ]2

] x2 +
]2

] y2D + VTsx,yd

+ U0uCsx,y,tdu2GCsx,y,td. s10d

We find the initial condensate wave function using an imagi-
nary time algorithm[34], subject to the requirement that
there is a 2p-phase change in the condensate wave function
around the trap center, which corresponds to a quantized an-
gular momentum of". The wave function is normalized ac-
cording to

E uCsx,y,tdu2dx dy= C =
NA

Lz
, s11d

where Lz is the confinement length in thez direction. We
choseC=1.73109 m−1, so that the peak density of conden-
sateC is identical to that of condensateB, thereby ensuring
that the two systems can be directly compared. The resulting
initial state is shown in Fig. 4(a), in which the vortex is
clearly visible at the center of the atom cloud.

As for condensatesA and B, the atom cloud is set in
motion by abruptly displacing the harmonic trap by 25mm
along thex axis at timet=0. The subsequent evolution of the

condensate’s quantum-mechanical mean position is shown
by the solid line in Fig. 2(c). As before, the condensate per-
forms damped Bloch oscillations, but the damping is more
severe than for both condensateB and a condensate that is
initially in its ground state, which therefore contains no vor-
tex [shown by the dotted curve in Fig. 2(c)]. This can be
understood by considering the internal structure of the atom
cloud, shown at various key stages of the simulation in Fig.
4. Figure 4(b) shows the condensate density profile at the
point of the first Bragg reflectionst=2.6 msd. In contrast to
the corresponding image for condensateB, shown in Fig.
3(b), the formation of the standing wave has disrupted the
internal structure of the condensate, imposing spatial fluctua-
tions in the atom density that extend over several lattice pe-
riods. Despite this disruption, the standing wave is locally
intact in some regions of the condensate, giving the density
profile a broadly similar character to the corresponding im-
age for condensateA, shown in Fig. 1(b). Shortly after the
first Bragg reflection, these changes in the atom density pro-
file allow the formation of solitons and vortices, as shown in

FIG. 4. Gray scale plots of densityswhite=0, black=highd in
the x-y plane(axes inset) for condensateC at t=0 ms (a), 2.6 ms
(b), 4 ms (c), and 11.3 ms(d). The arrows in(c) enclose vortices
and show the direction of condensate rotation. The horizontal bar
shows scale.
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Fig. 4(c). Two of the vortices are encircled by arrows, which
indicate the direction of circulation.

This behavior occurs because the circulation of the con-
densate about the initial vortex breaks the atom cloud’s sym-
metry under reflection about thex axis, and, as a conse-
quence, disrupts the formation of the standing wave at the
point of the first Bragg reflection. Hence, further topological
excitations are produced, leading to an expansion of the atom
cloud and a damping of the Bloch oscillations. Following
subsequent Bragg reflections, the condensate becomes in-
creasingly diffuse and fragmented[Fig. 4(d)], with clear
asymmetry under reflection about thex axis.

VI. CONCLUSION

We have investigated how the presence of a single soliton
or vortex in the initial state of a BEC affects its dynamics in
an optical lattice. The initial topological excitation can
strongly disrupt the formation of the standing wave on Bragg
reflection, thereby creating additional excitations, which

cause fragmentation of the atom cloud and damping of the
Bloch oscillations.

Our investigation of the dynamics of excited BECs in
optical lattices provides further evidence that topological ex-
citations play a key role in the evolution of the atom cloud
and in the damping of the center-of-mass motion. Following
Bragg reflection, inhomogeneities in the atom cloud can
grow rapidly, thereby causing severe damping and a cata-
strophic breakdown of the transport processes. Our work
therefore has implications for understanding the transport
and decoherence of condensates in optical lattices. Further-
more, the damping is associated with complex changes in the
structure of the atom cloud, such as the formation of skyrmi-
ons. Our results suggest that accelerating excited condensates
through an optical lattice could provide a route to making
and studying skyrmionic excitations, which have previously
been inaccessible to experiments on atom clouds. We hope
that our work will stimulate further experiments exploring
how topological excitations of different types and orienta-
tions affect the quantum transport of BECs in optical lattices.
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