
Dynamics of two-component Bose-Einstein condensates in rotating traps

I. Corro,1 R. G. Scott,2 and A. M. Martin1

1School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
2Midlands Ultracold Atom Research Centre, School of Physics and Astronomy, University of Nottingham,

Nottingham NG7 2RD, United Kingdom
�Received 21 May 2008; revised manuscript received 22 February 2009; published 15 September 2009�

The dynamics of two-component Bose-Einstein condensates in rotating traps is investigated. In the Thomas-
Fermi limit, equations of motion are derived showing multiple static solutions for a vortex-free condensate.
Dynamic stability analysis of these solutions and comparison to truncated Wigner simulations enable us to
identify the regimes for which vortex states will occur. In addition, our analysis predicts center-of-mass
oscillations that are induced by interspecies interactions and affect each component separately. For attractive
interspecies interactions, these oscillations lead to a stable symmetry-broken state.
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I. INTRODUCTION

A two-component Bose-Einstein condensate �TCBEC�
exhibits a wide range of interesting behavior that has been
the subject of much theoretical and experimental research.
The two components may form either miscible or immiscible
phases exhibiting complex density profiles �1–5�. For repul-
sive interspecies interactions, the two components may also
form symmetry-broken states �4–10�. For rotating TCBECs,
interlocking vortex lattices �11� and vortex sheets �12� have
been predicted theoretically, with vortex lattices being con-
firmed experimentally �13�. This has led to much interest in
the dynamics and collective excitations of these systems
�14–16� and recently a number of papers have also predicted,
through thermodynamic arguments, the possibility of form-
ing giant vortices �17,18�.

This large number of phenomena is due to the numerous
experimental parameters that can be varied. For example, the
atom number, masses, interaction strengths, trapping fre-
quency, and trap ellipticity can all be varied for each com-
ponent separately. The parameter space is far too large to be
fully investigated through numerical simulations. For this
reason, we investigate the dynamics of a TCBEC through
analytic methods then investigate points of interest through
numerical simulations. For single-component Bose-Einstein
condensates �BECs�, considerable theoretical �19–25� and
experimental �26–30� �for a summary, see Ref. �22�� effort
has been applied to understanding their dynamical properties
under rotation. A major result of this work was that only
considering the thermodynamic stability of the BEC �31�
does not correctly predict the onset of vortex nucleation. It is
instead necessary for the BEC to be dynamically unstable
�dynamical instability implies thermodynamic instability, but
not visa versa: see, for example, Ref. �32��.

We study the dynamical instabilities of TCBECs in rotat-
ing traps by deriving static solutions in the rotating frame in
the Thomas-Fermi limit. We find that these solutions de-
scribe quadrupolar dynamics. Through numerical simula-
tions, we show that instabilities in these solutions lead to
phases that have already been predicted thermodynamically,
such as interlocking vortex lattices. In addition, these solu-
tions predict interspecies-interaction-mediated center-of-

mass �c.m.� instabilities. We observe these oscillations nu-
merically and find that they can settle down into a stable
symmetry-broken state. This state is different to previously
studied symmetry-broken states �4–10� in that it only occurs
for attractive interspecies interactions.

The paper is laid out as follows. In Sec. II, we derive
equations that govern the stable irrotational �vortex-free� mo-
tion of a TCBEC in a rotating trap. We employ the Thomas-
Fermi approximation to derive analytic results and find that
when stable, both components undergo quadrupolar oscilla-
tions of different magnitudes. In Sec. III, we derive stability
equations for these static solutions �critical points� in the
rotating frame. These instabilities indicate that the TCBEC
will begin to evolve dynamically. We identify four different
instabilities: �i� catastrophic instability, �ii� ripple instability,
�iii� c.m. instability, and �iv� intraspecies c.m. instability.
Types �i� and �ii� lead to turbulence and vortex nucleation.
Types �iii� and �iv� lead to c.m. motion. In Sec. IV, we detail
the results of numerical simulations used to investigate the
analytic predictions. These simulations reveal the dynamics
induced by the instabilities studied in Sec. III. They show
how turbulence in the TCBEC allows for the formation of
states with topologically distinct phase profiles which even-
tually settle down into either giant vortices, interlocking vor-
tex lattices, or vortex sheets. The simulations also show that
the c.m. instabilities do not lead to vortex nucleation, but
eventually settle down into a stable state �in the rotating
frame�, which, for the case of attractive interspecies interac-
tions, breaks the 180° rotational symmetry of the rotating-
frame Hamiltonian.

II. THOMAS-FERMI APPROXIMATION

A. Hydrodynamical equations

In practice, a TCBEC can be stirred by introducing a ro-
tating anisotropy into the confining potential. If done adia-
batically, the TCBEC will settle down into a state that oscil-
lates in unison with the rotating trap. The equations of
motion can then be found by considering static solutions in
the rotating frame. A TCBEC can be described by two mean-
field wave functions ��1 and �2� whose time evolution is
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dictated by the coupled two-component Gross-Pitaevskii
equation �GPE� �33�. In a reference frame rotating with an-
gular velocity �, these coupled equations become

i�
�� j

�t
= ��2�2

2mj
+ V j + gj�� j�2 + g12�� j��

2 − � · L̂�� j ,

�1�

where the j subscripts �j=1 or 2� refer to the component
under consideration and j�� j. mj and V j are the mass
and the potential affecting component j. gj and g12 are the
intra- and interspecies-interaction coefficients given by
gj =4n0��2aj /mj and g12=2n0��2a12�m1+m2� / �m1m2�.
Here, aj and a12 are the intra- and interspecies scattering
lengths, respectively. The n0 term allows for a rescaling such
that �� j�=Nj /n0, where Nj is the number of atoms in com-
ponent j.

As in the one-component case �19�, it is possible to derive
exact solutions in the Thomas-Fermi approximation �TFA�
�for a detailed description of the analytic methods, see �25��.
The GPE in the frame rotating with the potential is trans-
formed using � j =	� j�r , t�ei�j�r,t� �� j is the density of com-
ponent j and � j is the phase�, and the TFA �34� is applied,
giving the hydrodynamical equations of motion

�� j

�t
= � · �� j
 �

mj
� � j − � � r�� , �2�

− �
�� j

�t
= � j + gj� j + g12� j�, �3�

� j =
�2

2mj
��� j�2 + Vj − � � � j · � � r . �4�

We take �=��0,0 ,1� and Vj =
mj

2 ��1−	 j�
 j
2x2

+ �1+	 j�
 j
2y2+
zj

2 z2�. Here, 	 j, 
zj, and 
 j are, respectively,
the ellipticity in the x-y plane, the frequency in the z direc-
tion, and the frequency in the x-y plane when 	 j =0. This
gives a reference frame that is rotating around the z axis in
which the potential is static, which corresponds to modeling
a potential that is rotating around the z axis with angular
velocity −�. In what follows, we enumerate the species so
that m1

2
1
4 /g1�m2

2
2
4 /g2. We will see later that the behavior

of each component depends heavily on these criteria.
Steady state solutions in the rotating frame are obtained

by setting
�� j

�t =0 and −�
�� j

�t =� j� the chemical potential of
species j. Solving Eq. �3� gives two possible solutions for the
density: if the density of both components is nonzero, then

� j
o =

gj��� j − � j� − g12�� j� − � j��

gjgj� − g12
. �5�

If one of the components has zero density, then the solution
for the other component is

� j
s =

1

gj
�� j − � j� . �6�

Regions in the BEC where Eqs. �5� and �6� are applicable
will be referred to as the overlapping region and singular

region, respectively �indicated by superscripts o and s�. As in
the one-component case, the TFA has the effect that � j can
become negative �34�. When this is the case, we assume that
� j =0. Given the above, the total density for each component
can be expressed as

� j = � j
oH�� j

o�H�� j�
o � + � j

sH�− � j�
o �H�� j

s� , �7�

where H���=0 for ��0 and H���=1 for �0. Without ro-
tation ��=��1=��2=0�, Eq. �7� corresponds to that de-
rived in Refs. �1,2�.

B. Validity of the Thomas-Fermi approximation

In this section, we investigate the Thomas-Fermi
approximation and its validity for a nonrotating TCBEC.
A two-component BEC has two phases. When
−	g1g2�g12�	g1g2, the system is in the miscible phase
where both components interpenetrate. g12	g1g2 is the im-
miscible phase �35,36� where the two components repel each
other. In the case of a harmonic trap, the interspecies repul-
sion causes either one component to form a shell around the
other or both components to separate asymmetrically �4�
about the trap center. The asymmetric state occurs for
g1g2, m1m2, and g12	g1g2 �37�.

For BECs in a harmonic trap, the following general be-
havior can be seen from Eq. �5�. When g12�g2m1
1

2 /
�m2
2

2�, both components form overlapping density profiles
with concave down parabolic shapes �Fig. 1�I��. When g12
=g2m1
1

2 / �m2
2
2�, �1

o is a constant, and for values of g12
larger than this, �1

o begins to dip in the overlapping region at
the center of the condensate �Fig. 1�II��. As g12 is increased,
�1

o dips further until g12g2�2 /�1 where the TFA predicts
�1

o=0 at the very center of the trap �Fig. 1�III�.�
The Thomas-Fermi approximation assumes that the ki-

netic energy of the wave function is negligible compared
to the interaction and potential-energy terms. For single-
component BECs, it is valid for large g and atom number,
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FIG. 1. �Color online� Examples of one-dimensional �1D� slices
of the TF density profiles �dashed curves� and exact numerical so-
lutions of the two-component GPE �solid curves� for component 1
�black�, component 2 �green �gray��, 	1=	2=0, 
1=
2=0.1, �
=1, m1=1, m2=1.5, g1=1, g2=0.5. �I� g12=−0.5, �II� g12=0.4,
�III� g12=0.65, and �IV� g12=0.8. The horizontal �vertical� axes are
given in units of l�l−3�, where l=g1m1 /�2.
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which is satisfied for typical experimental parameters. These
criteria must also be satisfied for each component individu-
ally if the TFA is applied to a TCBEC. Moreover, it has been
shown �3� that the accuracy of the TFA in the two-
component case can have a more complicated dependence on
the parameters used. In this section, we explore the param-
eter space of a TCBEC to identify these additional con-
straints.

We have conducted extensive comparisons between the
TFA and full GPE solutions, identifying the following con-
ditions for TFA validity. For −	g1g2�g12�g2�2 /�1, we
find excellent agreement �Fig. 1�I� and Fig. 1�II�� �g12
=g2�2 /�1 is the point where the TFA predicts �1�r� reaches
0 at r=0�. As g12=g2 �2 /�1 is approached, the TFA results
deviate from the full GPE results, but remain qualitatively
correct for g2�2 /�1�g12�	g1g2 �Fig. 1�III��. For g12
	g1g2, the TFA solutions are completely different from the
full GPE solutions �Fig. 1�IV��. This is due to the intense
repulsion between the two components resulting in sharp
curvature in the wave functions and hence kinetic energy
cannot be neglected. For g12�−	g1g2, the TFA solutions are
unphysical, reflecting the fact that without kinetic energy, the
condensate is unstable. In what follows, we therefore con-
sider the TFA solutions only in the region of their validity:
−	g1g2�g12�	g1g2. In other words, the TFA is valid for
any two-component BEC that is within the miscible phase.
Equation �5� shows that in this region of validity, the com-
ponent with the smallest value of m2
4 /g �component 1 by
definition� will always sit to the outside of component 2 and,
as expected, this behavior continues into the immiscible
phase where component 1 forms an almost hollow shell
around component 2.

One should note that the condensates begin to separate
before the immiscible phase is reached and the transition as
g12 passes 	g1g2 is continuous, i.e., there is no qualitative
difference upon reaching the immiscible phase. However, as
shown by Timmermans �35�, the nature of the component
separation is different in the two phases. For g12�	g1g2, any
separation is caused purely by the potential; if no trap gradi-
ent existed then both species would overlap with constant
densities. For g12	g1g2, the two species separate irrespec-
tive of the trap. Timmermans pointed out that this situation is
much like the case for ordinary fluids. Two fluids may mix
freely but can still be separated by an external potential such
as gravity. They will, however, mix freely again once stirred.
Conversely, immiscible fluids such as oil and water always
separate and remain so even after mixing. Indeed, we find
that although initially, while the condensate is irrotational,
there is no observable crossover between the two phases,
once the BEC is stirred via rotation, the condensate displays
very different behavior depending on which phase it is in.

C. Rotation

In this section, we derive the response of the condensate
phase and density to rotation. Without rotation, the wave-
function phase is constant for both components. After intro-
ducing rotation, solutions to the equations of motion can be
found by inserting a quadrupolar oscillation ansatz for the
phase

� j =
m

�
�� j

oH�� j
o�H�� j�

o � + � j
sH�− � j�

o �H�� j
s��xy �8�

and Eq. �7� into Eq. �2� and solving for the �’s. For � j
s, this

gives

� j
s3 − 2� j

s�2 + 
 j
2�� j

s − 	 j�� = 0, �9�

which has up to three real solutions and is identical to the
one-component case �20�. For the �o’s, we get two simulta-
neous equations

− 2g12mj�
 j
2�� j�

o − 	 j�� + � j
o�� j

o� j�
o − 2�2��

+ 2gjmj��� j�
o3 − 2� j�

o
�2 + 
 j�

2 �� j�
o − 	 j���� = 0. �10�

This yields up to nine real solutions for ��1
o ,�2

o�.
The �’s are real constants representing the magnitude and

orientation �positive or negative� of quadrupolar oscillation
in the two components. Specifically, the singular and over-
lapping regions of component 1 �component 2� undergo qua-
drupolar oscillations of different magnitudes, labeled �1

s and
�1

o ��2
s and �2

o�, respectively. The density profile of each
component is heavily influenced by this oscillation, in par-
ticular its ellipticity. This dependence has the interesting
property that when � is negative, the BEC is deformed op-
positely to the elliptical deformation caused by the trap. In
other words, the BEC forms an elliptical profile that is ro-
tated 90° to that of the confining elliptical potential.

D. Discussion

An example with seven solutions to Eq. �10� for ��1
o ,�2

o�
is shown in Fig. 2. Each branch represents a different static
solution for a TCBEC in a rotating trap, each with quadru-
polar oscillations of different magnitudes and orientations.
Although these static solutions display a very complicated
dependence on the many free parameters in the system, the
situation is greatly simplified by the fact that the BEC will
prefer the branch with the lowest energy.

The energy of a given solution increases as the magnitude
of � increases. Also, for the solutions given by Eq. �5�, the
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FIG. 2. �Color online� The solutions for the �’s with �=�1

=�2=1, 
1=0.2, 
2=0.1, 	1=	2=0.1, m1=1, m2=1.5, g1=1,
g2=0.5, g12=0.1. Shown are solutions to �1

o �thick green �thick
gray��, �2

o �red dots �gray dots��, �1
s �black dashed�, and �2

s �black
line�. The branch numbering sits above the corresponding branch; it
allows matching of each �1

o solution to the corresponding �2
o solu-

tion. � and � are in units of �1 /�.
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density of component i in the overlapping and singular re-
gions does not join continuously at the boundary unless
�i

o=�i
s. This adds a large amount of kinetic energy at the

interface of the two regions as the density profile must vary
rapidly to join the two regions. The solution with the small-
est energy can therefore be determined by removing �i

o

branches that do not correspond closely to one of the �i
s

branches. One then selects the remaining branch which
has the smallest magnitude. From the figure, it is evident that
for ��0.06, branch 1 has the lowest energy, for
0.06���0.16 branch 2 has the lowest energy, and for
�0.16 branch 4 has the lowest energy.

The behavior of the BEC can then be described as fol-
lows. Initially, after condensation and before introducing ro-
tation, the BEC will be in a state that corresponds to the
stable static solution which has the lowest energy for the
given set of experimental parameters. The BEC can then be
transferred to a new state by adiabatically ramping these pa-
rameters. As this is done, the BEC will move along one of
the static solutions. In the case of Fig. 2, each of branches 1,
2, and 4 can be accessed by ramping the parameters in dif-
ferent ways. Branch 1 can be accessed by keeping 	 constant
while ramping � from 0 to some final value or by keeping
��0.06 fixed and ramping 	. Branch 2 �4� can be accessed
by fixing 0.06���0.16��0.16� and ramping 	 from 0 to
some final value. Branch 2 is also of particular interest be-
cause it leads to each BEC component undergoing quadru-
polar oscillations in opposite directions �i.e., �1

o0 and
�2

o�0�.
The BEC cannot follow these static solutions for all pa-

rameter values; eventually, one of two possibilities occurs. In
the first case, the static solution which the BEC is following
can cease to exist �catastrophic instability� �24�. This leads
to a massive disruption in the BEC’s density profile, fol-
lowed by the onset of turbulence and vortex nucleation. The
second case occurs when the BEC is still in a state described
by a static solution, but the solution itself is not stable. In this
case, either the BEC can become turbulent �ripple instabil-
ity�, which leads to the formation of vortices, or the c.m. of
the BEC can become unstable �center of mass instability�.

III. STABILITY

A. Equations

Stability can be analyzed by linearizing Eqs. �2� and �3�
about the critical points. We consider infinitesimal perturba-
tions � j→�0j +�� j and � j→�0j +�� j, with ��0i ,�0i� being a
set of static solutions to Eqs. �2� and �3�. In the overlapping
region where both condensates coexist, one obtains

�

�t�
��1

��1

��2

��2

� = � A1
0

g12

�

0 0

0
g12

�

0 0

A2 ����1

��1

��2

��2

� , �11�

Aj = � v j · �
gj

�

� · 
�0j
�

mj
�� v j · �� , �12�

and in the singular region one obtains

�

�t
��� j

�� j
� = Aj��� j

�� j
� . �13�

Here v j =
�

mj
��0j −��r is the wave-function velocity in the

rotating frame at position r. �0j is given by Eq. �5� in the
overlapping region and Eq. �6� in the singular region.

As in the one-component case �20�, we find that the
eigenfunctions of the collective-mode equations �Eqs.
�11�–�13�� are polynomials of the form �� j =�pqr� jpqrx

pyqzr,
�� j =�pqr� jpqrx

pyqzr, where � jpqr and � jpqr are constants. The
BEC is unstable when one of the eigenvalues has a positive
real part, meaning that small perturbations about the static
solutions grow exponentially.

As well as the above method, extra information can be
obtained by investigating the stability of the overlapping re-
gion of each component separately. This is done by substi-
tuting Eq. �5� �instead of Eq. �6�� into Eq. �13�. By doing so,
one can see in which component and in which region an
instability originates. This, however, neglects interspecies
cross terms; it is equivalent to treating the interaction be-
tween components as a static potential. Interestingly, we find
that this second method gives more accurate results than if
cross terms are considered. We take this to be an indication
that the collective-mode cross interactions are not well de-
scribed within the TFA framework.

B. Different types of instabilities

Calculating the eigenvalues to Eq. �11� gives the regions
of instability in the parameter space. Valuable information
regarding the nature of the instability can also be gained by
observing the corresponding eigenvectors. This allows the
instabilities of a two-component BEC in a rotating trap to be
divided into four different types based on the very different
effects they have on the overall structure of the BEC. Simu-
lations showing the effects of these instabilities in detail are
given in the next section.

1. Classical c.m. instability

In its original static configuration, the density of
BEC component j is a quadratic of the form �for simplicity
of the argument, we ignore trap anisotropy and the
distinction between the overlapping and singular regions�
� j =� j −xj

2−yj
2−zj

2. Consider the case where an eigenvalue �
corresponds to an eigenvector first order in a position coor-
dinate, e.g., one of the form �� j =�xxj. This perturbation will
have the effect of displacing the center of mass of the BEC
along the x axis, i.e., �+��= �xj +0.5�x�2+yj

2+zj
2+� j�. If �

has a positive real part then this perturbation will grow in
magnitude, displacing the center of mass of the BEC even
further and hence causing a c.m. instability. We find that
component 1 always has such an instability in the range
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1
	1−	1���
1

	1+	1 regardless of the other parameters.
This is in fact the same instability as experienced by a clas-
sical point particle in a rotating harmonic trap. It is caused by
the rotation frequency coupling to the oscillation frequency
and is also experienced by a one-component BEC �19�. In
this case, it either causes the BEC to oscillate as a whole
about the trap center or it can drive the BEC out of the trap
�25�. In a two-component BEC, it can still occur provided
there is little interaction between the components. This is
discussed in more detail in Sec. III C.

2. Intraspecies c.m. instability

The above classical c.m. instability affects each compo-
nent separately and independently of the interspecies inter-
actions. We find another class of c.m. instability that occurs
due to the interaction of the two components and can have a
profoundly different effect on the BEC. They are again pre-
dicted by the instability of a perturbation first order in a
position coordinate, but are differentiated from the first type
in that they appear in the overlapping region of the conden-
sate where both components are interacting. These intraspe-
cies c.m. instabilities are due purely to interactions of the
superfluid components and lead to instability in the c.m. of
each component separately, but the total c.m. of the conden-
sate remains stable. They result in interesting dynamics
which are described in Sec. IV.

3. Ripple Instability

Perturbations of quadratic or higher in the position coor-
dinates represent ripples through the phase and density pro-
file of the BEC. If these perturbations are unstable, they di-
rectly disrupt the smooth quadratic profile. These ripple
instabilities lead to turbulence and vortex nucleation.

4. Catastrophic Instability

In this case, the static solution that the BEC was follow-
ing during adiabatic ramping ceases to exist. Perturbations of
all orders are unstable and the BEC is torn apart in a spec-
tacular fashion �24�. After the initial onset, the BEC becomes
turbulent and, as in the ripple instability, vortices nucleate.

C. Results

Using Eq. �11�, we present two examples �Figs. 3 and 4�
of the instabilities predicted by the TFA and how they appear
in different regions of the parameter space. We have used the
second method described in Sec. III. On the same figures are
plotted the point where the BEC becomes unstable in GPE
simulations conducted for the same set of parameters. In gen-
eral, the solutions and their stability can be evaluated for any
ramping procedure, the only difference being that different
ramping paths can access different � branches. In our GPE
simulations, we fix � and then ramp 	1=	2 from 0. This
allows us to investigate regions of the phase diagram that, for
example, would not be accessible by ramping � for fixed 	.
The point of instability is then determined from the simula-
tions using the method presented in �25�.

The results of the simulations show how the TFA results
can be used to predict BEC behavior. The methods derived
above successfully pick up the different regions in the pa-
rameter space where different instabilities occur. Sometimes
the results of the GPE simulations are exactly predicted in
the TFA; at other times, the phenomenology is as predicted
but its location numerically shifted in � by as much as 15%.
As discussed above, the TFA is valid within the bulk of the
condensate. The shifting is an indication that for the chosen
parameters, the boundary of the BEC is affecting the particu-
lar instability that has been shifted.

For the case of repulsive interspecies interaction
�g120�, we find that the stability of the overlapping region
of component 1 is highly dependent on its connection to the
singular region �see, for example, the nonrotating case Fig.
1�III��. The results using the TFA on the overlapping region
of component 1 are only accurate when g12�0 and should
not be used for g120.

Figure 3 shows the instabilities found on branch 2 of Fig.
2. A BEC on this branch can, depending on the parameters,
experience either an intraspecies c.m., ripple, catastrophic, or
classical c.m. instability. The actual position of the cata-
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FIG. 3. �Color online� The instability regions within the param-
eter space for a system with �=�1=�2=1, 
1=0.2, m1=1, g1

=1, 
2=0.1, m2=1.5, g2=0.5, g12=0.1, catastrophic instability
�region I, black�, intraspecies c.m. instability �region II, red �dark
gray��, ripple instability in component 2 �region III, orange �light
gray��, ripple instability in component 1 �region IV, blue �dark
gray��, and classical c.m. instability in component 2 �green �light
gray� dashed line�. Marks show the results for instabilities found
using GPE simulations for catastrophic instabilities �circles�, in-
traspecies c.m. instabilities �squares�, classical c.m. instabilities �tri-
angles�, and ripple instabilities �crosses�. � is in units of �1 /�.
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FIG. 4. �Color online� Same as Fig. 3 but with �=�1=�2=1,

1=0.1, m1=1, g1=0.5, 
2=0.15, m2=1, g2=1, g12=−0.3.
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strophic instability is shifted to higher � from the TFA pre-
diction by �10% and the intraspecies c.m. instability is
shifted to higher � by 5%. The green dashed line indicates
the region where the classical c.m. instability would be for
component 2 if the other component was not present.

Figure 4 focuses on the c.m. instability for a different
system. This system has attractive interspecies interactions
and equal masses but different trapping frequencies, which
could correspond, for example, to two condensates of the
same atomic species but different hyperfine states. The in-
traspecies c.m. instability and ripple instability in component
2 are exactly as predicted. The catastrophic instability is
shifted to lower � from the predictions by 10%. The ripple
instability in the singular region of component 1 is similar to,
but much less influential than, the prediction. However this is
not surprising because for attractive interspecies interactions,
the two components are pulled tightly together and the sin-
gular region is almost nonexistent �see Fig. 1�I��.

The TFA predictions for both examples show that the in-
terspecies interactions should halt the onset of the classical
c.m. instabilities when both species are performing stable
quadrupolar oscillation. Interestingly, the intraspecies c.m.
instability pulls the two components apart leaving them once
again susceptible to the classical c.m. instability. If this has
occurred before reaching or whilst within the classical c.m.
instability, the component in question will exit the trap as
though the other components were not present. Likewise, the
catastrophic instability causes both components to be
wrenched apart. If one of the components is within a classi-
cal c.m. instability during the breakdown, it is free of the
other component for long enough that it will exit the trap.
This effect is clearly seen on Figs 3 and 4.

IV. SIMULATIONS

To compliment these Thomas-Fermi results, we have
adapted two-dimensional �2D� truncated Wigner simulations
�38� to the two-component case and investigated the insta-
bilities predicted. Interesting results are attained for each dif-
ferent type of instability and these can be understood in
terms of the TFA results. Also, the numerical methods allow
us to extend the investigation to the immiscible phase where
the TFA is no longer valid.

As well as the results shown in Figs. 3 and 4, we conduct
simulations for parameters that correspond to an 87Rb-133Cs
system �39� and an 87Rb-85Rb system �40�. These systems
are of particular interest because the scattering lengths of
133Cs and 85Rb can be tuned via a Feshbach resonance
�40,41�. This means that both the immiscible and miscible
phases can be accessed experimentally. The 87Rb-85Rb is
also important because it satisfies the requirements for the
creation of vortex sheets. The 87Rb-133Cs system is used to
simulate the creation of the other rotating states. For the
87Rb-133Cs system, a12 is unknown. We, therefore, give ex-
amples of simulations conducted for a number of different
choices of a12.

The truncated Wigner method simulates quantum vacuum
fluctuations by adding appropriate classical random fluctua-
tions to the coherent field of the BECs initial state. In this

system, the fluctuations serve two purposes. Firstly, the fluc-
tuations provide a seed of noise to break the BEC symmetry
when the quadrupolar oscillation becomes unstable. Sec-
ondly, they enable incoherent-scattering processes to occur,
by which condensate atoms are scattered into a thermal
cloud. This method has been used to describe, for example,
the formation of scattering halos in condensate collisions
�42,43� and the suppression of Cherenkov radiation �44�.
Hence the turbulent BEC can relax into a rotating eigenstate,
such a vortex lattice, in contrast to the bare GPE which con-
serves energy and atom number.

In practice, the fluctuations are included as follows. The
initial wave function for each species is obtained by solving
the time-independent two-component GPE. These two wave
functions are then expanded over a plane-wave basis, with a
maximum cutoff wave vector to prevent Fourier aliasing.
Quantum fluctuations are introduced into each wave function
separately by adding random complex noise to each plane-
wave mode. The amplitude of the quantum fluctuations has a
Gaussian distribution, with an average value of half a par-
ticle �42�. For a thorough description of the method, see
Refs. �38,43�.

Results

Intraspecies c.m. instability

The TFA results show that as g12 is increased or decreased
from 0, the classical c.m. instability of component 2 begins
to shift and becomes an intraspecies c.m. instability. For
g12�0, the simulations show that when this instability is
reached, the c.m. of the entire BEC is stable; however, the
c.m. of the individual components becomes unstable and the
two components separate. The instability is caused purely by
interspecies interactions, so as the components separate and
interactions decrease, the trap pushes the two components
back together again. The effect is that both components be-
gin oscillating; eventually, the BEC settles down into a stable
state with both components orbiting around one another �Fig.
5�a��. This state is static in the rotating frame and implies a
breaking of the 180° symmetry of the rotating-frame Hamil-
tonian.

For g120, component 2 sits within component 1. When
the intraspecies c.m. instability in component 2 is reached, it
is still trapped within component 1; it begins bouncing off
the surrounding shell �Figs. 5�b� and 5�c��. Eventually, the
two components disrupt each other and settle down into a
state that has component 2 still sitting within component 1,
but with both components significantly diffused into one an-
other. During these instabilities, no vortices are formed.

Classical c.m. instability

The classical c.m. instability can affect a TCBEC if both
components experience it at the same time �i.e., if 
1
2�.
However, if only one component is in a regime of classical
c.m. instability, then the TFA results predict, and simulations
confirm, that this instability is suppressed during stable rota-
tional motion. Nonetheless, as already discussed in Sec.
III C, each component can still experience its classical c.m.
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instability independently of the other component provided it
is freed from the other component first via a catastrophic or
intraspecies c.m. instability.

Another case where a classical c.m. instability can occur
is near or in the immiscible phase where both components
have a large singular region. In this case, component 2 forms
a tightly packed ball within the shell of component 1. When
component 2 reaches its classical c.m. instability, it builds up
enough momentum to break through component 1 while
component 1 remains stable. Component 2 then either exits
the trap or begins to oscillate within the trapping potential.
The result is similar to a wrecking ball as the highly dense
component 2 smashes through the dilute component 1.

Catastrophic and ripple instabilities

In the miscible phase, the simulations show that when a
ripple or catastrophic instability is reached, the BEC be-
comes turbulent and vortices enter. They then form an inter-

locking vortex lattice �Figs. 6�f� and 6�g��. This state is of the
same type as has been seen to form in experiments when a
one-component BEC with a vortex lattice already present
was split into two hyperfine components �13�.

We also investigated the behavior of the rotational insta-
bilities near to and within the immiscible phase. When g12 is
close to but less than 	g1g2, component 1 forms an almost
hollow shell around component 2 even though the immis-
cible phase has not been reached. As expected from the dis-
cussion at the end of Sec. II B, once the condensate is stirred
and turbulence reached, the two components mix together
and a vortex lattice is formed.

Once within the immiscible phase however, there is a dis-
continuous change in the behavior of a rotated BEC and,
importantly, the two components do not mix. We find that
once turbulence is induced, two different possible configura-
tions with nontrivial phase topology form. The first is a vor-
tex sheet which has been shown to be preferable thermody-
namically in regions of parameter space where g1g2, m1
m2, and g12	g1g2 �12,15� �Figs. 6�h� and 6�i��. In this
configuration, the two components form separate domains of
high density. We find that the parameters required for the
dynamical formation of a vortex sheet matches that of the
thermodynamic analysis provided an instability has been
reached; without an instability, they do not form. These con-
ditions for vortex sheet formation also coincide with the pa-
rameters required for a symmetry-broken initial state in the
absence of rotation �37�.

The second state we find is a giant vortex which has also
been predicted thermodynamically �17,18�. We find that this
state forms for any set of parameters that fall within the
immiscible phase but do not match the requirements for the
formation of vortex sheets. As with the vortex sheets, a
ripple or catastrophic instability must first be induced in or-
der for this state to form dynamically. The simulations show
that once instability is reached, multiple vortices push their
way through the outer shell of component one and into the
low-density region in the middle of the trap where they con-
gregate forming a giant vortex �Figs. 6�d� and 6�e��. Nor-
mally, two overlapping vortices are predicted to be thermo-
dynamically unstable �45�. However, in this system, the large
density of component 2 attracts them to the center while the

A1

A2

B1

B2

C1

C2

FIG. 5. �Color online� Plots of the density for BECs undergoing
intraspecies c.m. instabilities for an 87Rb �component 1, blue �pan-
els B1 B2, right half of A1, and bottom half of A2�� -133Cs �com-
ponent 2, red �panels C1 C2, left half of A1 and top half of A2��
system with a1=a2=5.4 nm and 
1=
2=3.15 Hz. Attractive case
�g12�0�: a12=−0.65 nm, �=3.66 Hz. �A2� is the density shortly
after �A1� showing the two components rotating around each other.
The black dot is the c.m. of the system. Repulsive case �g120�:
a12=3.9 nm, �=3.66 Hz. �B1� and �C1� is the density shortly after
�B2� and �C2� showing component 2 ��C1� and �C2�� bouncing of
the shell of the enclosing component 1 ��B1� and �B2��. The hori-
zontal bars denote 40 �m.
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E2
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F2
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H1
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I2

FIG. 6. �Color online� Results of 2D truncated Wigner simulations ending in vortex nucleation. Panels D–G show an 87Rb �component
1� -133Cs �component 2� system with a1=a2=5.4 nm and 
1=
2=3.15 Hz. ��D� and �E�� a12=7 nm; ��F� and �G�� a12=3.3 nm. Panels H
and I show an 87Rb �component 1� -85Rb �component 2� system with a1=5.24 nm, a2=11.27 nm, a12=11.3 nm, and 
1=
2=3.15 Hz. The
horizontal bars denote 40 �m. The number of atoms in each simulation is such that the peak density of 87Rb is 4�1018 m−3 and both
components have equal norms. D1, F1, and H1 �E1, G1, and I1� are the densities and D2, F2, and H2 �E2, G2, and I2� the phases of
component 1 �2�. The simulations are conducted by ramping 	 while fixing � at 1.75 Hz.
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outer shell of Rb holds them in. These results show how in
practice such a state could be created and that this state is a
product of the immiscibility of the two components.

In summary, the above results show that there is a direct
connection between the state of the nonrotating TCBEC and
the state the rotating TCBEC will settle down into after in-
stability has been reached. That is, a miscible phase leads to
a vortex lattice after rotating, a symmetry-broken state leads
to vortex sheets, and an immiscible phase �other than the
symmetry-broken state� leads to a giant vortex.

V. CONCLUSION

These results illustrate that BEC mixtures produce a rich
variety of dynamical regimes that may be accessed by tuning

experimental parameters. We have examined the applicabil-
ity of the TFA to a TCBEC and extended it to the rotating
case allowing us to find symmetry-breaking c.m. oscillations
that are induced by interspecies interactions. In addition, the
results give conditions under which interlocking vortex lat-
tices, giant vortices, and vortex sheets will spontaneously
form. The method allows all these phenomena to be under-
stood and classified through particular instabilities occurring
in different parts of the total condensate.
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