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We present a general method for obtaining the exact static solutions and collective excitation frequencies of
a trapped Bose-Einstein condensate (BEC) with dipolar atomic interactions in the Thomas-Fermi regime. The
method incorporates analytic expressions for the dipolar potential of an arbitrary polynomial density profile,
thereby reducing the problem of handling nonlocal dipolar interactions to the solution of algebraic equations.
‘We comprehensively map out the static solutions and excitation modes, including non-cylindrically-symmetric
traps, and also the case of negative scattering length where dipolar interactions stabilize an otherwise unstable
condensate. The dynamical stability of the excitation modes gives insight into the onset of collapse of a dipolar
BEC. We find that global collapse is consistently mediated by an anisotropic quadrupolar collective mode,
although there are two trapping regimes in which the BEC is stable against quadrupole fluctuations even as
the ratio of the dipolar to s-wave interactions becomes infinite. Motivated by the possibility of a fragmented
condensate in a dipolar Bose gas due to the partially attractive interactions, we pay special attention to the scissors
modes, which can provide a signature of superfluidity, and identify a long-range restoring force which is peculiar
to dipolar systems. As part of the supporting material for this paper we provide the computer program used to

make the calculations, including a graphical user interface.
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I. INTRODUCTION

Since the realization of atomic Bose-Einstein condensates
(BECs) in 1995 [1], there has been a surge of interest
in quantum degenerate gases [2,3]. Despite the diluteness
of these gases, interatomic interactions play an important
role in determining their properties. In the majority of
experiments, the dominant interactions have been isotropic
and asymptotically of the van der Waals type, falling off as
1/r5. At ultracold temperatures this leads to essentially pure
s-wave scattering between the atoms. An exception to this
rule is provided by gases that have significant dipole-dipole
interactions [4—7]. In comparison to van der Waals type inter-
actions, dipolar interactions are longer range and anisotropic,
and this introduces rich, new phenomena. For example,
a series of experiments that have revealed the anisotropic
nature of dipolar interactions are those on >Cr BECs in an
external magnetic field. These have demonstrated anisotropic
expansion of the condensate depending on the direction of
polarization of the atomic dipoles [8,9], collapse and d-wave
explosion [10], and an enhanced stability against collapse in
flattened geometries [11]. Meanwhile, an experiment with
K atoms occupying different sites in a one-dimensional
optical lattice has demonstrated the long-range nature of
dipolar interactions in BECs through dephasing of Bloch
oscillations [6]. Dipolar interactions have also been shown
to be responsible for the formation of a spatially modulated
structure of spin domains in a 3’Rb spinor BEC [7].

In order to incorporate atomic interactions into the Gross-
Pitaevskii theory for the condensate one should use a pseu-
dopotential [2,3]. In the presence of both dipolar and van
der Waals interactions the pseudopotential can be written
as the sum of two terms U(r) = Uy(r) + Ugy(r) [12-15],
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where r is the relative interatomic separation. The long-range
dipolar interaction can be treated accurately within the Born
approximation providing one is not close to a scattering
resonance [14,15]. This first-order approximation means that
the effective interaction is replaced by the potential itself.
This is quite different from the shorter-range van der Waals
interaction, for which the Born approximation is not valid
at low temperatures, and where one rather uses the contact
potential

Us(r) = g4(r). (D

The s-wave coupling constant g = 47hi’ay/m is given in terms
of the scattering length as and the atomic mass m. For the
dipolar interaction, we consider two atoms whose dipoles
are aligned by an external field pointing along the direction
specified by the unit vector €. The potential is then given by
Una) = $844,5, 8 =070, @)
4 7
where Cg4q parametrizes the strength of the dipolar interactions,
I is a unit vector in the direction of r, and summation over
repeated indices is implied. A key figure of merit is the ratio
of the two coupling strengths, defined as [16]

gad = Cuaa/38. 3)

Dipole-dipole interactions can be either magnetic or electric in
origin. To date, the dipolar interactions seen in ultracold atom
experiments [4—7] have all been magnetic dipolar interactions,
for which Cyqq = pod 2 where d is the magnetic dipole moment
and p is the permeability of free space. In terms of the Bohr
magneton up, the magnetic dipole moment of a >Cr atom is
d = 6up giving 49 =~ 0.16 [4]. Although this is 36 times larger
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than the typical value of g4q found in the alkali-metal atoms, it
is still small. Thus, unless the system is in a configuration that
makes it particularly sensitive [6], and/or is specially prepared
[7], the magnetic dipolar interactions in the atomic gases made
so far tend to be masked by stronger s-wave interactions.
In order to make dipolar interactions in BECs more visible,
the Stuttgart group have succeeded in implementing magnetic
Feshbach resonances [17] in 2Cr [11,18]. These allow g to be
tuned from positive to negative and even to zero. Moreover,
the sign and amplitude of the effective value of Cgyq can also
be tuned by rapidly rotating the external polarizing field [16].
Polar molecules can have huge electric dipole moments, and
these systems are now close to reaching degeneracy [19-24].
By appropriately tuning an external electric field, a large
degree of control can be exerted over these systems [24].
Combined with what has already been achieved in >>Cr, a
large parameter space of interactions can now be realistically
explored in dipolar BECs.

The ground state of a trapped dipolar BEC has already
been investigated theoretically by a number of authors, e.g.,
[12-15,25-32], with most studies focusing on the regime
where g > Oand Cyq > 0. The presence of dipolar interactions
was widely predicted to lead to certain distinctive effects,
some of which have recently been seen experimentally. For
example, if the dipoles are aligned in the z direction, then
a condensate will elongate along z and become more cigar
shaped, i.e., undergo magnetostriction, in order to benefit
energetically from the attractive end-to-end interaction of
dipoles. As g4q is increased, for example, by reducing g with
a Feshbach resonance, the BEC eventually becomes unstable
to collapse, and this striking behavior has been realized in the
experiment [10]. Conversely, a condensate that is flattened by
strong trapping along z will be mostly composed of repulsive
side-by-side dipoles, and so this pancake-shaped geometry is
more stable, as confirmed experimentally [11]. In the limit
that g44 becomes large but the BEC remains in the pancake
configuration due to tight trapping, remarkable density wave
structures have been predicted for certain regions of parameter
space close to the collapse threshold [29-31].

In this paper we work in the Thomas-Fermi (TF) regime,
which is of rather general interest because it is formally
equivalent to the hydrodynamic regime of zero-temperature
superfluids [33]. The TF regime may be viewed as the semi-
classical approximation to the full Gross-Pitaevskii theory. A
stationary condensate enters the TF regime when the zero-
point kinetic energy of the atoms due to the confinement by
the trap becomes negligible compared to the total interaction
and trapping energies. For BECs with repulsive interactions
in a harmonic trap, this generally occurs in the large N
limit, where N is the number of atoms. However, for dipolar
BEC:s the picture is considerably complicated by the partially
attractive and partially repulsive nature of the interactions.
The question of the validity of the TF regime in static dipolar
BECs has been addressed in [34]. The validity of results
for collective excitations, which is the major theme of this
paper, rests primarily on the validity of the underlying static
solution about which they are a perturbation (we are interested
in small amplitude excitations here). Theoretical results [32]
demonstrate that if the static solution closely approximates the
true Gross-Pitaevskii solution, then the TF equations of motion
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(the superfluid hydrodynamic equations) give a remarkably
robust account of the dynamics. For example, excellent
agreement was observed between the TF model and full
simulations of the Gross-Pitaevskii equation for a dipolar BEC
even for extreme perturbations to the condensate, including the
initial dynamics of collapse. Thus, for the small perturbations
considered here, we can be confident of consistent results,
providing the underlying static solution is valid.

The TF regime is theoretically simpler to handle than
the full Gross-Pitaevskii theory, thereby facilitating analytical
results. For example, under harmonic trapping it can be
shown that the exact density profile of a dipolar condensate
in the TF regime is an inverted parabola [26,27], similar to
the usual s-wave case but distorted by the magnetostriction.
Furthermore, the stability of the ground state to collapse can be
estimated simply in the TF regime and reasonable agreement
with experiment has been reported [11]. Rotational instabilities
of dipolar BECs are also amenable to analysis in the TF
regime [35,36]. The current paper builds on these earlier works
by applying the exact results available in the TF regime to
collective excitations.

The excited states of a BEC can be accurately calculated
within the TF regime provided they are of sufficiently long
wavelength. The most basic collective excitations of a trapped
BEC are the dipole (center-of-mass), monopole (breathing),
quadrupole, and scissors modes, illustrated schematically in
Fig. 1. Their characterization offers important opportunities
for measuring interaction effects, testing theoretical models,
and even detecting weak forces [37]. Specifically, the scissors
mode provides an important test for superfluidity [38—41],
while the quadrupole mode plays a key role in the onset of vor-
tex nucleation in rotating condensates [35,36,42-46]. An in-
stability of the quadrupole mode is also thought to be the mech-
anism by which collapse of dipolar BECs proceeds when it
occurs globally [14,25,32,47] (rather than locally [32]). While
the collective modes of a dipolar BEC have been studied

M Q, Q,
FIG. 1. (Color online) Schematic illustration of the basic collec-
tive modes under consideration: the dipole mode D (shown here in
the x direction D, ), scissors mode Sc (shown here in x-z plane Sc,.),

the monopole mode M, and the quadrupole modes QO and Q,. These
modes are discussed in more detail in Sec. III.

033612-2



COLLECTIVE EXCITATION FREQUENCIES AND ...

previously [25,26,28,48-51], key issues remain at large, for
example, the regimes of Cgg < 0 and g < 0, and the behavior
of the scissors modes. This provides the motivation for the
current work.

In this paper we present a general and accessible method-
ology for determining the static solutions and excitation
frequencies of trapped dipolar BECs in the TF limit. We
explore the static solutions and low-lying collective excitations
throughout a large and experimentally relevant parameter
space, including positive and negative dipolar couplings Cgq,
positive and negative s-wave interactions g, and cylindrically-
and non-cylindrically-symmetric systems. Moreover, our ap-
proach enables us to unambiguously identify the modes
responsible for global collapse of the condensate. We would
like to point out that there is a freely available MATLAB
implementation of the calculations presented in this paper,
complete with a graphical user interface, which can be found
in the supporting material [52].

Section II is devoted to the static solutions of the system.
Beginning with the underlying Gross-Pitaevskii theory for
the condensate mean field, we make the TF approximation
and outline the methodology for deriving the TF static
solutions. We then use it to map out the static solutions
with cylindrical symmetry, for both repulsive and attractive
s-wave interactions, and then present an example case of the
static solutions in a non-cylindrically-symmetric geometry. We
compare to recent experimental observations where possible.

In Sec. III we present our methodology for deriving the
excitation frequencies of a dipolar BEC. This is an adaption
of the method that Sinha and Castin applied to standard
s-wave condensates [42] where one considers perturbations
around the static solutions (derived in Sec. II) and employs
linearized equations of motion for these perturbations. At the
heart of our approach is the exact calculation of the dipolar
potential of a heterogeneous ellipsoidal BEC, performed by
employing results from gravitational potential theory known
in astrophysics [53-58] and detailed in Appendices B and C.

In Sec. IV we apply this method to calculate the frequencies
of the important low-lying modes of the system, namely,
the monopole, dipole, quadrupole, and scissors modes, for
cylindrically symmetric traps. We show how these frequencies
vary with the key parameters of the system, £44 and trap ratio
y, and give physical explanations for our observations. In
Sec. V we extend our analysis to non-cylindrically-symmetric
traps. Although the parameter space of such systems is very
large, we present pertinent examples. An important feature of
non-cylindrically-symmetric ground states is that they support
a family of scissors modes which can be employed as a test for
superfluidity. As such, in Sec. VI, we focus on these scissors
modes and show how they vary with key parameters. Finally,
in Sec. VII, we summarize our findings.

There are three appendices included in this paper. Ap-
pendix A contains a plot of the frequencies of the collective
modes of the BEC as a function of £49. Appendix B outlines
the method by which we calculate dipolar potentials due to
arbitrary polynomial density distributions of atoms. This is
the main technical advance of this work over our previous
papers which were limited to the dipolar potentials associated
with strictly paraboloidal density distributions, i.e., those of
the same symmetry class as the static solution. In Appendix C
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we give a closed formula in terms of elliptic integrals for the
dipolar potential inside a triaxial ellipsoid with a parabolic
density profile. This is a special but important case of the
general theory outlined in Appendix B.

II. STATIC SOLUTIONS

A. Methodology for obtaining static solutions

At zero temperature the condensate is well described by a
mean-field order parameter, or “wave function,” ¥ (r,?). This
defines an atomic density distribution via n(r,t) = | (r,1)|>.
Static solutions, denoted by v (r), satisfy the time-independent
Gross-Pitaevskii equation (GPE) given by [3]

n? ~ ~ _
<—%V2 + V() + Paa(r) + glw(r)lz) Y(r) = uy(r),
4

where u is the chemical potential of the system. The external
potential V (r) is typically harmonic with the general form

V() = smai [(1 —x* + (1 +e)y* +y*2*]. (5)

Here w, is the average trap frequency in the x-y plane and the
trap aspect ratio y = w,/w, defines the trapping in the axial
(z) direction. The trap ellipticity € in the x-y plane defines the
transverse trap frequencies via wy = +/1 —€ w; and w, =
1+ € w;. When € = 0 the trap is cylindrically symmetric.

The ®g44 term in Eq. (4) is the mean-field potential arising
from the dipolar interactions

Baa(r) = f n(t)Uaa(r — t)dr ©)

This term is a nonlocal functional of the density and is the
source of the difficulties associated with theoretical treatments
of dipolar BEC:s: it turns the GPE into an integro-differential
equation. A key feature of the approach taken by us in
this paper is to calculate this term analytically. To this end
we express the dipolar mean field in terms of a fictitious
electrostatic potential ¢(r) [26,27,59]

a2 1
Dya(r) = —Cyq (8—Z2¢(1‘) + gn(l')) , (N
where
o= - [ e ®)
T r — 1|

¢(r) satisfies Poisson’s equation V2¢(r) = —n(r). Note that
in (7) we have taken the dipoles to be aligned along the
z direction. The term n(r)/3 appearing on the right-hand
side of (7) cancels the Dirac § function which arises in the
8%¢(r)dz? term [59,60]. This means that ®yq includes only
the long-range (r~3) part of the dipolar interaction, exactly as
written in Eq. (2).

We assume the TF approximation where the zero-point
kinetic energy of the atoms in the trap is neglected. Dropping
the relevant V2 term in Eq. (4) leads to

V(r) + Pyq(r) + gn(r) = p. ©)

For an s-wave BEC under harmonic trapping, the exact density
profile in the TF approximation is known to be an inverted
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parabola [3] with the general form

2
n(r) = ng (1 L Z—) for n(r) > 0, (10)

where ny = 15N/(8m R, R,R;) is the central density, and
R:,R,, and R are the condensate radii. In order to obtain
the dipolar potential arising from this density distribution, one
must find the corresponding electrostatic potential of Eq. (8).
References [26,27] follow this procedure and arrive at the
remarkable conclusion that the dipolar potential ®4q is also
parabolic. Therefore, a parabolic density profile is also an exact
solution of the time-independent TF equation (9) even in the
presence of dipolar interactions. In Sec. III and Appendices B
and C we point out that this result can be extended using results
from 19th-century gravitational potential theory [53,54,57]
to arbitrary polynomial densities yielding polynomial dipolar
potentials of the same degree. For the parabolic density profile
at hand, the internal dipolar potential is given by [27,35]

3g8ddnonKy

2
x [Boor — (Biorx” + o1 y” + 3oz )R]
(11)

where «, = R,/R; and «, = R, /R, are the aspect ratios of
the condensate, and

Dyy(r) = —gegan(r) +

o ds
ﬂijk = i+l j+l 1’ (12)
0 () g )
where i,j,k are integers. Explicit expressions for

BootsPBio1,Bor1, and Pyoy in terms of elliptic integrals are
given in Appendix C. Note that for a cylindrically symmetric
trap € = 0, the static condensate profile is also cylindrically
symmetric with aspect ratio k, = «x, =: k. In the cylindrically
symmetric case the integrals §;;; of Eq. (12) can be evaluated
in terms of the , F; Gauss hypergeometric function [61,62] for
anyi,j,k

2P (k43 50+ Ak 551 =)
(14 2i +2j + 2k)c2+D)
For the parabolic density profile of Eq. (10), the static TF
Eq. (9) becomes

oK Ky
M = 38€ad 21;2} [R2Boor — Bro1x” — Bonry” — 3Bon2z”]

Bijk =2 (13)

gno 5 2 2 5
YO+ - Ts (R -5 -5 =2). (4

2
Ky

Inspection of the coefficients of x2,y?, and z* leads to three
self-consistency relations, given by
K2 _ w_g ! + de(%K)?Kyﬂlol B 1) (15)
x Ok Ky ’
oy 1 — gaa(1 — =5 Bonz)
2 a)g 1+ de(%Kng,Bou - 1) 16)
Toep - eaa(1 — QKEK’ Booz)

) 9%,
R = =520 [l—sdd (1— szyﬂom)] a7
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Solving Egs. (15)—(17) gives the exact static solutions of the
system in the TF regime.

The energetic stability of the condensate is determined by
the TF energy functional

E = / |:V(r) + %cbdd(r) + %gn(r)] n(md’r.  (18)

Inserting the parabolic density profile (10) yields an energy
landscape

15N2g 3
E= ——5|(0~- 2 kekeyeaa(7Boor — 3
2871k, K3 |:( &4d) + g icy€ad (7 Boot — 3Booz

N
_K)%/gIOI - K)%,Bon)] + ﬁmR?(Kf‘“i + K)zwf + )/2)-

19)

Static solutions correspond to stationary points in the energy
landscape. If the stationary point is a local minimum in
the energy landscape, it corresponds to a physically stable
solution. However, if the stationary point is a maximum or a
saddle point, the corresponding solution will be energetically
unstable. The nature of the stationary point can be determined
by performing a second derivative test on Eq. (19) with
respect to the variables «.,ky, and R;. This leads to six
lengthy equations that will not be presented here. Note that
this only determines whether the stationary point is a local
minimum within the class of parabolic density profiles. In
other words, with the three variables «,k,, and R, we are
only able to determine stability against “scaling” fluctuations,
so named because they correspond to a rescaling of the static
solution [63,64]. However, the class of scaling fluctuations
includes important low-lying shape oscillations such as the
monopole and quadrupole modes. Although higher order
(beyond quadrupole) modes can become unstable in certain
regimes, as a criterion of stability we will use the local minima
of (19). This assumption is supported by the recent experiments
by Koch et al. [11], where dipolar BECs were produced with
e4a > 1 that were stable over significant time scales.

B. Cylindrically symmetric static solutions for g > 0, and the
critical trap ratios .5, and y

We have obtained the static solutions for a cylindrically
symmetric BEC by solving Egs. (15)-(17) numerically. The
solutions behave differently depending on whether the s-
wave interactions are repulsive or attractive. We begin by
considering the g > 0 case. The ensuing static solutions,
characterized by their aspect ratio «, are presented in Fig. 2 as
a function of g4q9 with each line representing a different trap
ratio y. While the TF solutions in the regime g49 > 0 have
been discussed previously [26,27], the regime of g49 < O has
not been studied. Be aware that when we fix g > 0, the regime
&4d < 0 (left-hand side of Fig. 2) corresponds to Cgq < 0O
where the dipolar interaction is reversed, repelling along z
and attracting in the transverse direction. This can be achieved
by rapid rotation of the field aligning the dipoles about the z
axis [16].

Before we examine the question of stability, let us first
interpret the structure of the solutions shown in Fig. 2.
Imagine an experiment in which the magnitude of g4q is
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FIG. 2. (Color online) Aspect ratio « of the g > 0 cylindrically
symmetric static solutions as a function of e44 according to Eqs. (15)-
(17). Note that e49 < O corresponds to Cyqg < 0. The solid lines
indicate the static solutions for specific trap ratios y which are
equally spaced on a logarithmic scale in the range y = [0.1,10].
The parameter space of global, metastable, and unstable solutions is
denoted by white, light gray, and dark gray regions, respectively.

slowly increased from zero. At 4¢ = 0 we have purely s-wave
interactions, and all solutions have the same aspect ratio as the
trap, i.e. kK = y. As gqq 1s increased above zero, k decreases
so that k¥ < y for all solutions. This is because standard
magnetostriction causes dipolar BECs to be more cigar shaped
than their s-wave counterparts. Conversely, if g49 iS made
negative, then « increases so that x > y for all solutions.
This is because when Cyqq < 0 we have nonstandard (reversed)
magnetostriction which leads to a more pancake-shaped BEC.

Consider now the stability of the solutions, beginning with
the range —1/2 < 49 < 1 (white region in Fig. 2). We find
that the energy landscape (19) has only one stationary point,
namely, a global energy minimum, and it occurs at finite values
of the radii R, (=Ry) and R.. This global minimum persists
for all trap ratios (outside of the range —1/2 < g4q9 < 1 the
existence of stable static solutions depends on y). Thus, in the
range —1/2 < gqq < 1 the static TF solution is stable against
scaling fluctuations. Other classes of perturbation could lead
to instability, but there is good reason to believe that in this
range the parabolic solution is also stable against these. Take,
for example, phonons, i.e., local density perturbations. These
have a character that can be considered opposite to the global
motion involved in scaling oscillations. The local character of
phonons means that considerable insight can be gained from
the limiting case of a homogeneous dipolar condensate. The
energy of a plane wave perturbation (phonon) with momentum
p is given by the Bogoliubov energy Ep [12],

2\ 2 2
El = (p—> +2gn[l + e(Beos?0 — DIL—,  (20)
2m 2m
where 6 is the angle between the momentum of the phonon
and the polarization direction. The perturbation evolves as
~exp(—i Egt /h), and so when E} < 0 the perturbations grow
exponentially, signifying a dynamical instability. Dynamical
stability requires that E3 > 0 which, for g > 0, corresponds to
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the requirement that [1 4 €44(3 cos?6 —1)] > 0 in Eq. (20).
This leads once again to precisely the stability condition
—1 / 2 < Edd < 1.

Outside of the regime —1/2 < eqq < 1 the global energy
minimum of the TF system is a collapsed state where at least
one of the radii is zero, just like in the uniform dipolar BEC
case. However, unlike the uniform case, in the presence of
a trap the energy functional can also support a local energy
minimum corresponding to a metastable solution (light gray
region in Fig. 2). The existence of a metastable solution means
there must also be a saddle point connecting the metastable
solution to the collapsed state, and this is indicated by the dark
gray region in Fig. 2.

In general, the occurrence of metastable solutions depends
sensitively on g49 and y. Remarkably, however, there are
two critical trap ratios, .5, = 5.17 and y;, = 0.19, beyond
which the BEC is stable against scaling fluctuations even
as the strength of the dipolar interactions becomes infinite.
First consider e49 > 1, for which there is a susceptibility
for collapse toward an infinitely narrow line of end-to-end
dipoles (R, = R, — 0). Providing y > y.f, i.e., if the trap
is pancake enough, condensate solutions metastable against
scaling fluctuations persist even as €49 — oo [13,14,27].
Referring to Fig. 2, these curves are located in the upper
right-hand portion of the plot and asymptote to horizontal
lines as &q4q is increased (see Fig. 3 in [27] for a plot which
extends g4q to much higher values than shown here so that this
behavior is clearer). However, if the trap is not pancake-shaped
enough, i.e., y < ., then as eyq is increased from zero the
local energy minimum eventually disappears and no stable
solutions exist. Referring again to Fig. 2, these are the curves
that turn over as gqq is increased, and in so doing enter the
dark gray region. Second, consider 49 < —0.5, for which the
system is susceptible to collapse into an infinitely thin pancake
of side-by-side dipoles (R, — 0). If the trap is sufficiently
cigarlike with y < y_;,, then collapse via scaling oscillations
is suppressed even in the limit £4¢ — —oo. These curves are
located in the lower left-hand portion of Fig. 2 and asymptote
to horizontal lines. However, if the trap is not cigar-shaped
enough, i.e., ¥ > Y4 then for sufficiently large and negative
€44 the metastable solution disappears, bending upward to enter
the dark gray region on the left-hand portion of Fig. 2 and the
system becomes unstable to collapse.

In a recent experiment Lahaye er al. [10] measured the
aspect ratio of the dipolar condensate over the range 0 < g49 <
1, using a Feshbach resonance to tune g, and found very good
agreement with the TF predictions. Similarly, Koch et al. [11]
observed the threshold for collapse in a y = 1 system to be
&4a ~ 1.1, in excellent agreement with the TF prediction of
&4qa = 1.06. Using various trap ratios, it was also found that
collapse became suppressed in flattened geometries, and the
critical trap ratio was observed to exist in the range y.5, ~ 5
10, which is in qualitative agreement with the TF predictions.

C. Cylindrically symmetric static solutions for g < 0,
and the nature of dipolar stabilization

We now consider the case of attractive s-wave interactions
g < 0. Negative values of g can be achieved using a Feshbach
resonance. The static solutions are presented in Fig. 3. Be
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FIG. 3. (Color online) Aspect ratio « of the g < 0 cylindrically
symmetric static solutions as a function of £44. Note that the regime of
&daa > Ocorresponds to Cyq < 0. The solid lines denote static solutions
for specific trap ratios y, equally spaced on a logarithmic scale in the
ranges y = [0.010,y.; ] (lowerright set of curves) and y = [y.5,,100]
(upper left set of curves). Arrows indicate direction of increasing y .
The black lines in the light gray regions correspond to local minima
(metastable) points in the energy landscape, while the red lines in
the dark gray region correspond to saddle (unstable) points. At the
extreme left- and right-hand sides of the figure the stable solutions
become horizontal lines as they tend asymptotically to the trap aspect
ratio k — y (see text).

aware that because g < 0, 49 < 0 (€44 > 0) now corresponds
to Cqa > 0 (Cyq < 0). The stability diagram differs greatly
from the g > 0 case and, in particular, no TF solutions exist
in the range —1/2 < g4q9 < 1. Nevertheless, TF solutions can
exist outside of this range in regions of parameter space
determined by the two critical trap ratios y.; and y.5
introduced in the previous section. We find that for 49 > O,
solutions only exist for significantly cigar-shaped geometries
with y < y5 = 0.19; while for 49 < 0, solutions only exist
for significantly pancake-shaped geometries with y > yf =
5.17. Furthermore, the attractive s-wave interactions always
cause the global minimum to be a collapsed state. This means
that static TF solutions are only ever metastable (light gray
region in Fig. 3) when g < 0.

Although our TF model predicts that no solutions exist
for —1/2 < €49 < 1, it is well known that stable condensates
with attractive purely s-wave interactions (corresponding to
e4a = 0) can be made in the laboratory [65]. The zero-point
energy of the atoms (ignored in the TF model) induced by
the trapping potential stabilizes the condensate up to a critical
number of atoms Nx = kayo/|ag|, where ago = +/h/(mw) is
the harmonic oscillator length obtained from the mean trapping
frequency @ = (w,w,w,)"/3, and k &~ 1/2 is a constant [66].
One can expect, therefore, that for a finite number of atoms
the presence of zero-point energy enhances the stability of
the condensate beyond the TF solutions [32]. This will extend
somewhat the light gray regions in both Figs. 2 and 3 into the
dark gray regions, the amount depending upon N/ N. The
TF regime corresponds to the N — oo limit and so is in a
sense a universal regime that can always be realized with a
large enough condensate.
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Insight into the TF stability diagram shown in Fig. 3 can
once again be gleaned from the Bogoliubov spectrum for a
uniform system given by Eq. (20), this time with g < 0. First,
for the purely s-wave case we recall the well-known result
[3] that a homogeneous attractive BEC is always unstable
to collapse. With dipolar interactions the uniform system
is stable to axial perturbations (6 = 0) for g9 < —1/2 and
to radial perturbations (0 = w/2) for €44 > 1. This is the
exact opposite of the g > 0 case and corroborates the lack
of solutions given by the TF equations for —1/2 < g4 < 1.
Of course, g4¢ < —1/2 and g49 > 1 cannot be simultaneously
satisfied, and so a uniform dipolar system with g <0 is
always unstable. However, when the system is trapped the
condensate can be stabilized even in the TF regime. The
mean dipolar interaction depends on the condensate shape
and can become net repulsive in cigar-shaped systems when
&4d > 0 (for which Cyq < 0), and in pancake-shaped systems
when g49 < 0 (for which Cy4q > 0). Remarkably, in these cases
it is the dipolar interactions that stabilize the BEC against
the attractive s-wave interactions and lead to the regions of
metastable static solutions observed in Fig. 3. Without the
dipolar interactions the BEC would collapse.

The metastable TF solutions shown in Fig. 3 have a
counter-intuitive dependence upon g44. Take, for example, the
family of metastable solutions (black curves) in the lower
right-hand portion of the figure. We see that as g4q increases,
k decreases (condensate becomes more cigar shaped). This is
in contradiction to what one might naively expect, because on
this side of the figure Cy4g < 0, and so the dipolar interaction
has an energetic preference for dipoles sitting side-by-side not
end-to-end! In order to appreciate what is happening in this
region of Fig. 3, observe that for each value of g4q there is a
critical value of the condensate aspect ratio « below which the
system is metastable, and above which it is unstable. As g4q is
increased from this point the net repulsive dipolar interactions
favor elongating the BEC so that atoms sit farther from each
other, thereby lowering the interaction energy and decreasing
k. Inthe limitk — 0, one can show that the dipolar mean-field
potential tends to ®qq = —geqqn(r) [34]; i.e., it behaves like
a spherically symmetric contact interaction which is repulsive
when g < Oand g4q > 0. This means that when &4 is increased
in a strongly cigar-shaped configuration the condensate aspect
ratio tends asymptotically toward that of the trap k — y, as
it must for a system with net-repulsive spherically symmetric
contact interactions. This behavior can be seen in Fig. 3 where
the black curves all tend to straight lines as &4q is increased,
and the asymptotic value of k they tend to is exactly the trap
aspect ratio y .

A parallel argument holds for the upper left-hand portion
of Fig. 3 where the condensate is quite strongly pancake
shaped (y > yf;,): in the limit k — 00, one can show that the
dipolar mean-field potential tends to ®q4q = 2geqan(r) [34];
i.e., it behaves like a spherically symmetric contact interaction
which is repulsive when g < 0 and 49 < 0. In this portion
of the figure, one therefore also finds that as |eqq| — 00 the
condensate aspect ratio tends asymptotically toward that of the
trapxk — y.

It is tempting to conclude that when g < 0 the collapse that
occurs as the strength of the dipolar interactions is reduced
relative to the s-wave interactions is an “s-wave collapse” of
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the type encountered in BECs with attractive purely s-wave
interactions [65], which typically occurs through an unstable
monopole mode [67]. However, from Fig. 3 we see that
the magnitude of the dipolar interaction is always finite at
the collapse point. Furthermore, we shall find in subsequent
sections that it is always a quadrupole mode that is responsible
for collapse in a TF dipolar BEC. Collapse via a quadrupole
mode has a one- or two-dimensional character, depending on
the sign of Cq4q [32], and is distinct from collapse via the
monopole mode which has a three-dimensional character.

In the experiment by Koch et al. [11], where the critical
scattering length a4 at which collapse occurs in a dipolar
BEC was measured for different trapping ratios y, there are
a few data points corresponding to negative values of g for
strongly oblate condensates, and are thus of relevance to this
section. We infer from their Fig. 3 that collapse occurred when
&4d 2 —7 in a trap with y = 10. However, for this trap the TF
static solutions only disappear at £49 > —1.5 and the inclusion
of zero-point motion cannot explain this discrepancy between
theory and experiment since it should increase the critical value
of e49 above —1.5, not decrease it. Furthermore, including
the zero-point motion by using a Gaussian ansatz leads to an
almost identical theoretical prediction [11]. Possible explana-
tions for the discrepancy include (i) the errors bars on their
data imply that —5 > ait/ag 2 1 which, due to the inverse
relation between £4q and g, leads to a huge uncertainty in q4q;
(ii) they report an uncertainty in their trapping frequencies of
0.94 < w,/w, < 1.04, which translates into an uncertainty in
the ellipticity of the trap in the x-y plane of —0.04 < ¢ < 0.06
(as we shall see in Sec. IID below, this can have an effect
upon the stability); and (iii) very close to collapse the dominant
dipolar interactions may lead to significant deviations of the
density profile from a single-peaked inverted parabola or
Gaussian profile; for example, Ronen et al. [29] have predicted
biconcave density structures. These may alter the stability
properties of the condensate.

Having indicated how the static solutions behave for
attractive s-wave interactions g < 0, for the remainder of the
paper we will concentrate (although not exclusively) on the
more common case of repulsive s-wave interactions.

D. Non-cylindrically-symmetric static solutions

We now consider the more general case of a non-
cylindrically-symmetric system for which the trap ellipticity €
is finite and «, and «, typically differ. Note that we perform
our analysis of non-cylindrically-symmetric static solutions
for repulsive s-wave interactions g > 0. In Fig. 4 we show
how k, and «, vary as a function of g4q in a non-cylindrically-
symmetric trap. Different values of trap ratio are considered
and generic qualitative features exist. The splitting of «,
and k, is evident, with «, shifting upward and «, shifting
downward in comparison to the cylindrically symmetric
solutions. Furthermore, the branches become less stable to
collapse. For example, for y = 0.18 < y; [Fig. 4(a)], in the
cylindrically symmetric system there exist stable solutions for
&4d — —O00, but in the anisotropic case, stationary solutions
only exist up to gqg >~ —11.

We already noted in the Introduction that for a cylindrically
symmetric dipolar BEC, magnetostriction causes the radial
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FIG. 4. Stable static solutions, characterized by the aspect ratios
ky (dotted lines) and k, (dashed lines), in a non-cylindrically-
symmetric trap with ellipticity € = 0.75 and (a) y = 0.18, (b) y =
0.333, (¢) y = 3, and (d) y = 5.5. Stable (unstable) static solutions
are indicated by black (gray) lines. The corresponding static solutions
for € = 0 are indicated by solid lines.

versus axial aspect ratio k = R, /R, to differ from the trap
ratio y, in contrast to a pure s-wave BEC for which « = y.
It is therefore interesting to note that we find that when the
trap is not cylindrically symmetric, a dipolar BEC also has an
ellipticity in the x-y plane which differs from that of the trap,
although the deviation is generally small. This occurs despite
the fact that dipolar interactions are radially symmetric.

III. CALCULATION OF THE EXCITATION SPECTRUM

Now that we have exhibited some of the features of the static
solutions in the TF regime, we wish to determine their excita-
tion spectrum. The methods which have been previously used
for finding the excitation spectrum of a dipolar BEC include
(i) a variational approach applied to a Gaussian approximation
for the BEC density profile [14,25,48,68], which allows one to
derive equations of motion for the widths of the Gaussian;
(i1) using the equations of dissipationless hydrodynamics,
namely, the continuity and Euler equations, to obtain equations
of motion for the TF radii [26,51]; this method is exact in the
TF limit (recall that the TF regime is mathematically identical
to the hydrodynamics of superfluids at zero temperature);
(iii) solving the full Bogoliubov equations [28,49,50]; and
(iv) solving for the time evolution of the full time-dependent
GPE under well-chosen perturbations [14,25,48].

Methods (i) and (ii) are simple but yield only the three
lowest energy collective modes (the monopole and two
quadrupole modes). However, in the pure s-wave case these
methods do have the advantage of giving analytic expressions
for the frequencies, and in the dipolar case the frequencies
are given by the solution of the algebraic equations (15)—(17),
which are simple to solve. This is to be contrasted with the
other methods which, although more general, require much
more sophisticated numerical approaches. Furthermore, the
nonlocal nature of the dipolar interactions make numerical
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calculations considerably more intensive than their s-wave
equivalents. Therefore, the approach we adopt here is semian-
alytic, incorporating analytic results for the nonlocal dipolar
potential, thereby reducing the problem to the solution of
(local) algebraic equations.

In our approach we generalize the methodology previously
applied by Sinha and Castin [42] to pure s-wave BECs,
where linearized equations of motion are derived for small
perturbations about the mean-field stationary solution. One
strength of this method, in contrast to some of those mentioned
above, is that it is trivially extended to arbitrary modes of
excitation and unstable modes or dynamical instability. For
example, extension of the variational approach to higher-order
modes (e.g., to consider the scissors modes of an s-wave
BEC [69]) requires that this is “built in” to the variational
ansatz itself. We outline our approach below.

The dynamics of the condensate wave function ¥ (r,7) is
described by the time-dependent Gross-Pitaevskii equation

2
ih% = (—h—V2+V+d>dd+g|1ﬁ|2> v, (21)
ot 2m
where, for convenience, we have dropped the arguments r and
t. By expressing ¥ in terms of its density n and phase S as

¥ = Vne',
one obtains from Eq. (21) the well-known hydrodynamic
equations
on

i
o=V (nVS). (22)

EXY n?
h— = ——|VSP> =V — gn — dy. 23
o7 2m| | gn dd (23)

We have dropped the term (7/2m./n)V?/n arising from
density gradients—this is synonymous with making the TF
approximation [3]. Note that static solutions satisfy the
equilibrium conditions dn/d¢t = 0 and 0S/0t = —u/h.

We now consider small perturbations of the density én and
phase 85 about the TF static solutions found in Sec. II. The
static solutions for a nonrotating condensate have S = 0 and
n = neq, Where neq is the parabolic density profile given in
Eq. (10) and is obtained by solving Eqgs. (15)—(17). Linearizing
the hydrodynamic equations (22) and (23) in the perturbations,
we find that the dynamics are governed by

0 [8S 58S
5[5ni|:£|:5ni|’ 24
where

g1 +8ddK)/h:| . 25)

e 0
T LEV neV 0

Note that some of the constants appearing in Eq. (25) were
misquoted in our previous papers, although the results given
in those papers are not affected [70]. The operator K in Eq. (25)
is defined via its action upon dn as

92 /(Sn(r/)d3r/
0z2 ] 4m|r —r/|

The integral in the above expression is carried out over the
domain where the unperturbed density given by Eq. (10)

(K8n)(r) = —3 — 8n(r). (26)
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satisfies neq > 0, that is, the general ellipsoidal domain with
radii R,,R,,R;. Extending the integration domain to the
region where n¢q + 8n > 0 would only add O(8n?) effects,
since it is exactly in this extended domain that n = O(dn),
whereas the size of the extension is also proportional to
dn. Clearly, to first order in én, the quantity e40KSn is the
dipolar potential associated with the density distribution én.
To obtain the global shape excitations of the BEC, one has
to find the eigenfunctions én and §S and eigenvalues A of
operator £ of Eq. (25). For such eigenfunctions, Eq. (24)
trivially yields an exponential time evolution of the form
~exp(At). When the associated eigenvalue X is imaginary, the
eigenfunction corresponds to a time-dependent oscillation of
the BEC. However, when A possesses a positive real part, the
eigenfunction represents an unstable excitation which grows
exponentially. Such dynamical instabilities are an important
consideration, for example, in rotating condensates where
they initiate vortex lattice formation [42,43]. However, in the
current study we will focus on stable excitations of nonrotating
systems.

To find such eigenfunctions and eigenvalues we consider a
polynomial ansatz for the perturbations in the coordinates x,y,
and z, of a total degree v [42], that is,

S =3 apgx’y'z’, 85 =Y bpux’y'z, (27)

pg.r p.gq.r
where
V= maxo{p—i-q—}-r}. (28)

Apgr

bpgr#0

All operators in Eq. (25), acting on such polynomials of
degree v, result again in polynomials of the same order.
For the operator K this property might not be obvious, but
a remarkable result known from 19th-century gravitational
potential theory states that the integral in Eq. (26) evaluated
for a polynomial density n, yields another polynomial in x, y,
and z. Its coefficients are given in terms of the integrals B,
defined in Eq. (12), and the exact expressions are presented
in Appendix B. The degree of the resulting polynomial is
v + 2, and taking the derivative with respect to z twice yields
another polynomial of degree v again. Thus, operator (25) can
be rewritten as a matrix mapping between scalar vectors of
polynomial coefficients. Numerically finding the eigenvalues
and eigenvectors of such a system is a simple task, which
computational packages can typically perform.

We present only the lowest lying shape oscillations cor-
responding to polynomial phase and density perturbations
of degrees v =1 and v =2. These form the monopole,
dipole, quadrupole, and scissors modes. These excitations are
illustrated schematically in Fig. 1 and described below, where
we state only the form of the density perturbation §n, since
it can be shown that the corresponding phase perturbation §.5
always contains the same monomial terms. Note that a, b, ¢
and d are positive real coefficients.

(1) Dipole modes Dy, Dy, and D;: A center-of-mass motion
along each trap axis [71]. The D, mode, for instance, is
characterized by én = +ax.

(2) Monopole mode M: An in-phase oscillation of all radii
with the form 6n = +a + (bx* + cy* + dz?).
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(3) Quadrupole modes Q7", Q7 and Q7°: The Q) modes
feature two radii oscillating in phase with each other (denoted
in superscripts) and out of phase with the remaining radius.
For example, the Q7 mode is characterized by én = +a +
bx? + cy? — dZ).

(4) Quadrupole mode Q,: This two-dimensional mode is
supported only in a plane where the trapping has circular
symmetry. For example, in the transverse plane of a cylin-
drically symmetric system the transverse radii oscillate out
of phase with each other, with no motion in z, according to
én = talx £ iy)z.

(5) Scissors modes Scyy, Scy,, and Sc,: Shape-preserving
oscillatory rotation of the BEC over a small angle in the xy, xz,
and yz plane, respectively. The Sc,, mode is characterized by
én = +axy. Note that a scissors mode in a given plane requires
that the condensate asymmetry in that plane is nonzero,
otherwise no cross terms exist. Furthermore, the amplitude
of the cross terms should remain smaller than the condensate
or trap asymmetry, otherwise the scissors mode turns into a
quadrupole mode [38].

Note that in order to confirm the dynamical stability of the
solution, one must also check that positive eigenvalues do
not exist. We have performed this throughout this paper and
consistently observe that when Im(A) # 0 then Re(A) = 0, and
when Im(A) = 0, Re(}) # 0. It is also possible to determine
excitation frequencies of higher-order excitations of the BEC
by including higher-order monomial terms. Such modes, for
example, play an important role in the dynamical instability of
rotating systems [35,42].

We would like to remind the reader that they can download
the MATLAB program [52] used to perform the calculations
described in this section. It includes an easy-to-use graphical
user interface.

IV. EXCITATIONS IN A CYLINDRICALLY
SYMMETRIC TRAP

In this section we present the oscillation frequencies of
the lowest lying stable excitations of a dipolar condensate
in a cylindrically symmetric trap. Through specific examples
we indicate how they behave with the key experimental
parameters, namely, the dipolar interaction strength e49 and
trap ratio y. Note that we will discuss the scissors modes in
more detail in Sec. VI. Here we will just point out that two
scissors modes exist, corresponding to Sc,, and Sc,., while
the Scy, mode is nonexistent due to the cylindrical symmetry
of the system.

A. Variation with dipolar interactions g44q for g > 0

In Fig. 5 we show how the collective-mode frequencies
vary with the dipolar interactions for the case of g > 0.
Although it would seem experimentally relevant to present
these frequencies as a function of e44, we plot them as a
function of the aspect ratio « instead. We do this for the
following two reasons: (i) plotting the frequencies as a function
of €44 18 problematic since two static solutions (metastable
local minima and unstable saddle points) can exist for a given
value of gq44, and (ii) in the critical region of collapse at the
turning point from stable to unstable, the excitation frequencies
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FIG. 5. (Color online) Excitation frequencies as a function of
condensate aspect ratio ¥ for a cylindrically-symmetric trap with
aspect ratio (a) y = 0.18, (b) y = 1, and (c) y = 5.5. Shown are the
results for the modes M (orange, circles), D (black, stars), Q; (red,
diamonds), Q> (purple, squares), and Sc,, (=Sc,.) (green, triangles).
(d) Static solutions «x for y = 0.18, 1, and 5.5. Vertical dashed lines
mark the transition from stable to unstable for the static solution, and
this coincides with the point at which one of the frequencies tends to
zero. Vertical dotted lines mark the point at which the static solution
ceases to exist altogether.

vary rapidly as a function of 44, but much more smoothly
as a function of «, and so it is easier to view the behavior
as a function of «. For completeness we have included the
corresponding plot of the frequencies, but as a function of eqq,
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in Appendix A. Also, analytic expressions for the frequencies
of the M and @ modes in a cylindrically symmetric dipolar
BEC in the TF regime can be found in [26].

It is worth pointing out that the condensate shape accounts
for a significant part of the physics of these systems, and so «
is a good variable to work with. For example, in the problem of
arotating dipolar BEC, the critical rotation frequency at which
a vortex becomes energetically favorable is exactly the same
as that in a purely s-wave BEC providing one corrects for the
change in the aspect ratio due to the dipolar interactions [72].
However, k alone does not contain all the physics. In the case of
the calculation of the excitation frequencies, this is clear from
Eq. (25) which depends upon both (V - n¢4V)4S and 4K 6n.
The former term has a direct dependence upon « via the equi-
librium density profile ny(r), whereas the latter term does not.

We consider three values of trap ratio y, which fall
into three distinct regimes: (1) ¥ < Yait» (2) Yerit < ¥V < Velits
and (3) y, < y. Recall that y (v, is the critical value
above (below) which there exist stable solutions for ggqg —
+o00(—00), see also Fig. 2. In each case, the aspect ratio of
the stable solutions exists over a finite range k = [k~ ,kT]. We
will now discuss each regime in turn.

Ly <Vai

In Fig. 5(a) we present the excitation frequencies for
y = 0.18 as afunction of x. The corresponding static solutions
are shown as the left-hand curve in Fig. 5(d) and confirm that
the stable static solutions (solid black part of curve) exist only
over arange of k = [k~ ,k "], with k= ~ 0.03 and «* ~ 0.25
indicated by vertical lines (dashed and dotted, respectively).
For k¥ > k™, no static solutions exist and so the excitation
frequencies are not plotted beyond this point [dotted vertical
line in Fig. 5(a) and leftmost dotted vertical line in 5(d)]. For
k < Kk~ ,the static solution is no longer a local energy minimum
but becomes instead a saddle point or maximum that is unstable
to collapse [transition marked with dashed, vertical line in
Fig. 5(a) and leftmost dashed vertical line in 5(d)]. Although
this solution is not stable we can still determine its excitation
spectrum. Crucially, this will reveal which modes are respon-
sible for collapse and which remain stable throughout.

Three dipole modes (stars) exist. Dipole modes, in general,
are decoupled from the internal dynamics of the condensate
[3] and are determined by the trap frequencies w,,w,, and
.. This provides an important check on our code. For the
cylindrically symmetric case, oy = w, = w, and hence only
two distinct dipole modes are visible. For k < x~ the dipole
frequencies remain constant, indicating the dynamical stability
of this mode.

In general, the remaining modes vary with the dipolar
interactions. Perhaps the key mode here is the quadrupole
Q1 mode (diamonds). At the point of collapse the Q;
frequency decreases to zero. This is connected to the dynamical
instability of this mode since Re(A) > 0 for ¥ < k~. The
physical interpretation of this is that the Q; mode, which
comprises an anisotropic oscillation in which the condensate
periodically elongates and then flattens, mediates the collapse
of the condensate into an infinitely narrow cigar-shaped BEC.
In the energy landscape picture, this occurs because the
barrier between the local energy minimum and the collapsed
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R,y =0 state disappears for x < «~. The Q> quadrupole
mode (squares) decreases to zero, and becomes dynamically
unstable, after one passes into the unstable regime as indicated
in Fig. 5(d). The monopole M mode (circles) remains stable
for k < k™ and increases with k above this point.

2. yc;it <y < yg:it

In Fig. 5(b) we present the excitation frequencies for y = 1
as a function of eq4q. Since Y, < ¥ < ¥oh» the solutions exist
over a finite range of £44. In terms of «, collapse occurs at both
limits of its range, i.e., for k < k™ and ¥ > k™, where k= ~
0.3 and k+ =~ 2.5 [dashed vertical lines in Figs. 5(b) and 5(d)].

Since the trap is spherically symmetric, the dipole modes
(stars) all have identical frequency, i.e., w, . The Q| quadrupole
frequency (diamonds) decreases to zero at both points of
collapse, ¥~ and «*. In the former case, this corresponds to
the anisotropic collapse into an infinitely narrow BEC, while
in the latter case, collapse occurs into an infinitely flattened
BEC. In the low « regime, the O, quadrupole mode (squares)
becomes unstable just past the point of collapse, but shows no
instability in the opposite limit for x > «™.

It is interesting to note that the monopole mode (circles)
shows no dependence on « and therefore the dipolar inter-
actions, in agreement with [26]. Additionally, we find that
the aspect ratio of the density perturbation remains fixed at
precisely 1 for all values of the condensate aspect ratio «.
These observations are specific to the case of y = 1.

3. Y >V c-:'-it

In Fig. 5(c) we plot the excitation frequencies for y =
5.5. For k < k~, no static solutions exist, and for x > k*, no
stable solutions exist. Here k = &~ 3.3 and k™ &~ 54 [dotted and
dashed vertical lines, respectively, in Figs. 5(c) and 5(d)].

Again, the dipole modes are constant, while the remain-
ing modes vary with dipolar interactions. Apart from the
quadrupole Q; mode, all modes are stable past the point of
collapse, including the Q, quadrupole mode. The Q; mode
decreases to zero at the point when the condensate collapses to
an infinitely flattened pancake BEC, which is again consistent
with this mode mediating the anisotropic collapse.

In real experiments with a finite number of atoms, the zero-
point kinetic energy can be expected to extend the region of
stability of the BEC. Therefore, in systems that deviate from
the TF limit, we expect the O frequency to go to zero at a
smaller value of « than that shown in Fig. 5(a), to go to zero at
smaller and larger values of « at the left- and right-hand sides,
respectively, than those shown in Fig. 5(b), and to go to zero
at a larger value of « than shown in Fig. 5(c). In this context,
we note that previous calculations of collective excitations in
dipolar BECs by Géral and Santos [25] using a Gaussian ansatz
(which takes account of zero-point energy and so is expected
to be more accurate close to collapse but less accurate in the
TF regime) also found that instabilities of the Q; mode were
responsible for collapse when g > 0.

B. Variation with dipolar interactions 44 for g < 0

We now consider the analogous case but with g < 0. As
shown in Sec. I1 C, stable solutions only exist for y > yf;, =
5.17and y < yi = 0.19, with no stable solutions existing in
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FIG. 6. (Color online) Excitation frequencies as a function of
condensate aspect ratio « for a g < 0 cylindrically symmetric trap
with aspect ratio (a) y = 0.18 and (b) y = 5.5, with corresponding
static solutions shown in (c). Included are the results for the modes M
(orange, circles), D (black, stars), Q; (red, diamonds), Q, (purple,
squares), and Sc (green, triangles). Dashed vertical lines indicate the
critical point at which the stable static solutions turn into unstable
ones, dotted vertical lines indicate endpoints of branches where static
solutions cease to exist.

the range y;; < ¥ < Yo Hence we will only consider the
two regimes of (1) y < yo; and 2) y > vt

Ly < Ve

In Fig. 6(a) we present the excitation frequencies in a highly
elongated trap y = 0.18. Stable static solutions exist only for
k™ <k <kt wherex™ ~ 0.25and k™t & 0.29. In this regime
we find that all collective frequencies are purely imaginary and
finite, and therefore stable. At the critical point for collapse
k =~ 0.29 the Q| mode frequency passes through zero and
becomes purely real, signifying its dynamical instability. This
shows that, as for g > 0, the Q; mode mediates collapse, and
therefore collapse proceeds in a highly anisotropic manner
due to the anisotropic character of the dipolar interactions.
The remaining modes do not become dynamically unstable
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past the critical point, and only vary weakly over the range of
k shown. It should also be remarked that higher-order modes
with polynomial degree v > 2 also become unstable within
the range Kk~ < k < kT where no stable parabolic solutions
lie, further highlighting the metastability of the g < O states
and confirming the relevance of the predictions made by the
uniform-density Bogoliubov spectrum (20) for a system in the
TF regime.

2.9 > Vel

Figure 6(b) shows the mode frequencies in a highly flattened
trap y = 5.5, for which stable static solutions exist only
in the regime k= < k < k™ where k= ~ 2.7 and k* ~ 3.3.
Similarly, at the point of collapse x ~ 2.7 the O mode has
zero frequency and is dynamically unstable. Well below the
critical point the Q, mode frequency also becomes zero and
dynamically unstable.

C. Variation with trap ratio y

Having illustrated in the previous section how the excitation
frequencies behave for g < 0, from now on we will limit
ourselves to the case of g > 0. In Fig. 7 we plot the excitation
frequencies as a function of y for various values of g49. A
common feature is that the dipole frequencies scale with their
corresponding trap frequencies, such that wp = wp, = w1
and wp, = yw,. We now consider the three regimes of zero,
negative, and positive £qq.

1. €dd =0

For g4q9 = 0 stable solutions exist for all y and the corre-
sponding mode frequencies are plotted in Fig. 7(a). Our results
agree with previous studies of nondipolar BECs where analytic
expressions for the mode frequencies can be obtained, see,
e.g., [2] and [3]. The @, quadrupole mode has fixed frequency
wg, = V2w, . The scissors-mode frequency corresponds to
Wse,, = Wse,, =/ 1+ y2w,, and the remaining modes obey
the equation [3]

3,1
e (2 + 3y E V16— 16y + 9)/4) . (29

where the “4” and “—"" solutions correspond to wy and wy,,
respectively.

2. €dad < 0

For e44 = —0.75 [Fig. 7(b)], stable solutions and collective
modes exist up to a critical trap ratio y™** & 0.56. Beyond that,
the attractive nature of side-by-side dipoles (recall Cy4g < 0)
makes the system unstable to collapse.

For all of the modes except the Q; quadrupole mode
we see the same qualitative behavior as for the nondipolar
case (gray lines) with the modes extending right up to the
point of collapse with no qualitative distinction from the
nondipolar case. The Q; quadrupole mode, on the other
hand, initially increases with y, like the nondipolar case, but
as it approaches the point of collapse, it rapidly decreases
toward zero. Above y™¥*, the Q; mode is dynamically
unstable.
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FIG. 7. (Color online) Excitation frequencies in a cylindrically
symmetric trap as a function of the trap aspect ratio y for (a) eg¢ = 0,
(b) egq¢ = —0.75, and (c) eq4¢ = 1.5. Shown are the results for the
modes M (orange, circles), D (black, stars), Q; (red, diamonds),
Q, (purple, squares), and Sc (green, triangles). In (b) and (c) the
frequencies for e49 = 0 are included as dashed, gray lines.

3. €d4d > 0

For 49 = 1.5 [Fig. 7(c)], stable solutions exist only above a
lower critical trap ratio y™" ~ 2.3. For y < y ™" the attraction
of the end-to-end dipoles becomes dominant and induces
collapse. Indeed, we find that the frequency of the O mode
passes through zero and is dynamically unstable for y < y™n.
Above this, the O and Q, frequencies increase toward the
limiting values of the nondipolar frequencies of 1.82w; and
V2w, because in a very pancake-shaped trap the atoms cannot
sample the anisotropy of the interactions. The remaining
modes behave qualitatively like the nondipolar modes for

y > ymin.

V. EXCITATIONS IN A
NON-CYLINDRICALLY-SYMMETRIC TRAP AND
RELEVANCE TO ROTATING-TRAP SYSTEMS

In this section we will apply our approach to the most gen-
eral case of non-cylindrically-symmetric traps. An important
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experimental scenario where this occurs is when condensates
are rotated in elliptical harmonic traps. This has provided a
robust method for generating vortices and vortex lattices in
condensates (see Ref. [73] for a review). While the trap ellip-
ticity in the x-y plane is typically small (in most experiments
it is of the order of a few percent), the rotation accentuates the
ellipticity induced in the condensate. Indeed, one can derive
effective harmonic trap frequencies for the condensate which
show that the effective ellipticity can be orders of magnitude
greater than the static ellipticity [35,42,44].

The O, mode can be pictured as a surface wave traveling
around the edge of the condensate. It has a similar shape to
the rotating elliptical deformation of the trap, and when the
trap is rotated at frequencies close to that of the O, mode
then even a perturbatively small trap deformation strongly
couples to this mode. When viewed from the frame of reference
rotating with the trap, the excitation of the O, mode appears
as a bifurcation of the stationary condensate into a new
stationary state which mixes in some of the O, mode, and
the condensate therefore develops an elliptical shape in the x-y
plane. For some ranges of rotation speeds this new stationary
state is in turn dynamically unstable to the excitation of higher
order modes [35,36,42]. This dynamical instability disrupts
the condensate and is the first step in the process by which
vortices enter. Although this process is complex, the dynamical
instability that initiates it is accurately described within the TF
approximation because the modes which are initially excited
are of sufficiently long wavelength. The predictions obtained
within the TF approximation are in excellent agreement with
both experiments [45] and numerical simulations of the GPE
[43,46]. Although we will not specifically consider rotation
further here, our methodology can be easily extended to this
scenario [35].

Asin Sec. II D, we consider finite trap ellipticity € in the x-y
plane. In Fig. 8 we present the mode frequencies as a function
of ellipticity € for three different examples. There are some
important generic differences to the cylindrical case. Due to the
complete anisotropy of the trapping potential, the dipole mode
frequencies (stars) all differ and are equal to the corresponding
trap frequencies w, = /1 —ew,wy =1+ €ew;,andw, =
yw . The monopole mode is present (circles) and its frequency
increases with €. Strictly speaking the O, mode is no longer
present due to the breakdown of cylindrical symmetry. Instead
we find a new Q) mode appearing (upper diamonds) which
corresponds to the Q7° mode for e4q > 0 and the Q7% mode
for 44 < 0. The usual quadrupole mode Q7 is also present.
The reader is reminded that the superscript in the Q; mode
notation refers to the in-phase radii, the remaining radius
oscillates out of phase with the other two. Although there
are actually three permutations of @, only two appear
for any given value of gqq since linear combinations of
these and the monopole mode can form the remaining Q,
mode.

We will now consider the specific features for the cases
presented in Fig. 8. For ¢49 = 0 and y = 1 [Fig. 8(a)], the
solutions are stable right up to € = 1. At this limit the x
direction becomes untrapped, and this causes the system to
become unstable with respect to the dipole D, mode, as well
the Q7" mode which can now expand freely along the x axis.
For 49 = —0.6 and y = 0.8 [Fig. 8(b)], the solutions become
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FIG. 8. (Color online) Excitation frequencies in a non-
cylindrically-symmetric trap as a function of the trap ellipticity €
in the x-y plane for the cases of (a) ¢g¢¢ =0 and y =1, (b) g9 =
—0.6 and y = 0.8, and (c) g4¢ = 1.25 and y = 2. Shown are the
modes D (black, stars), M (orange, circles), Q; (red, diamonds),
Sc,y (blue, triangles pointing down), Sc,. (green, triangles pointing
up, upper branch), and Sc,, (green, triangles pointing up, lower
branch).

unstable to collapse at € &~ 0.425. Only the lower Q7" mode
becomes dynamically unstable at this point, indicating that it is
the mode responsible for collapse, which is toward a pancake-
shaped system. For 49 = 1.25 and y = 0.2 [Fig. 8(c)], the
solutions become unstable to collapse at € ~ 0.45. We again
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observe that the same Q; mode mediates the collapse, only
this time the collapse is toward a cigar-shaped system. The
other modes remain stable.

VI. SCISSORS MODES

In this section, we study the so-called scissors modes of
the condensate, which describe an oscillatory rotation of the
condensate in response to a sudden rotation of an elliptic trap
about a small angle. The importance of the scissors modes is
that they clearly distinguish between superfluid and nonsuper-
fluid systems and can thus be used to gain information about
the nature of the quantum state of a trapped ultracold gas [38].
The special relevance of this to ultracold dipolar Bose gases
is that when the attractive portion of the dipolar interactions
becomes important, such as in cigar-shaped systems aligned
along the external polarizing field, it is possible that simple
Bose-Einstein condensation (macroscopic occupation of a
single quantum state) is no longer energetically favored. Some
time ago [74,75], it was realized that due to quantum exchange
effects, repulsive interactions in spatially uniform Bose gases
favor simple Bose-Einstein condensation over fragmented
Bose-Einstein condensation (macroscopic occupation of two
or more quantum states) [76]. The converse is expected to
be true in the presence of attractive interactions, although
attractive interactions in a uniform system lead to mechanical
collapse. The experimental realization of trapped ultracold
gases with attractive s-wave interactions [65] was therefore
a significant event: fragmentation could potentially be studied
in systems with attractive interactions which are stabilized by
their zero-point energy. However, the consensus now seems
to be that in attractive s-wave systems, the magnitude of the
interactions required to see significant fragmentation is too
great for the zero-point energy to stabilize the system [77].
Dipolar interactions, on the other hand, are partially attractive
and partially repulsive, the net balance being tunable via
the shape of the atomic cloud. Recent work by Bader and
Fischer [78] suggests that fragmentation can occur before
collapse in low-dimensional trapped systems with anisotropic
interactions. A comprehensive investigation of fragmentation
in dipolar BECs is beyond the scope of the current paper,
but below we take a step in this direction by calculating the
properties of scissors modes of a dipolar BEC.

Experimentally, one of the simplest indicators of whether
or not an atomic cloud is Bose-Einstein condensed is to
examine the momentum distribution following free expansion
after the trap is turned off [1]. For example, according
to the equipartition theorem, a gas at thermal equilibrium
will expand isotropically even if the trap was anisotropic.
This is not true for a BEC which, due to its zero-point
energy, expands most rapidly in the direction which was most
tightly confined. However, for dipolar BECs the situation is
complicated by the anisotropy of the long-range interactions
which continue to act at some level even as the gas expands
[8,9]. Quantized vortices are another “smoking gun” indicating
the presence of a BEC, but these are not easy to controllably
generate in the cigar-shaped systems which would be of
primary interest (although they might be useful in cases where
Cgq < 0, for which pancake-shaped BECs have dominant
attractive interactions). Furthermore, in cigar-shaped systems
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with Cy4q > 0, the rotation speed at which a vortex becomes
energetically favorable diverges as €44 increases [72]. Scissors
modes, on the other hand, offer an alternative vehicle for the
investigation of superfluidity in dipolar systems which does
not suffer from the difficulties mentioned above.

A detailed account of the scissors mode in a pure s-wave
BEC can be found in [38]. The scissors mode of a trapped
atomic cloud (thermal or Bose-Einstein condensed) is excited
by suddenly rotating the anisotropic trapping potential over a
small angle. Consequently, the atomic cloud will experience a
restoring force exerted by the trap; and provided the angle of
rotation is small, it will exhibit a shape-preserving oscillation
around the new equilibrium position. The exact response of
the atomic cloud to the torque of the rotated trapping potential
depends strongly on the moment of inertia of the cloud. Since
a superfluid is restricted to irrotational flow, it will have a
significantly different moment of inertia compared to a thermal
cloud. In particular, when the trap anisotropy vanishes, the
moment of inertia of a superfluid also vanishes, whereas in a
thermal cloud this is not the case. The superfluid scissors-mode
frequency will consequently approach a finite value, whereas
in a thermal cloud it will vanish as the trap anisotropy
approaches zero [38]. A measurement of the scissors-mode
frequency therefore constitutes a direct test for superfluidity
[3,38], as has been verified experimentally for nondipolar
BECs [39,41].

In the following, we will consider the scissors mode to
be excited by rotating the trapping potential as well as the
external aligning field of the dipoles (except for the Sc,,
mode which does not require a rotation of the external field)
simultaneously and abruptly through a small angle, such
that the condensate suddenly finds itself in a rotationally
displaced configuration. Three scissors modes now appear
due to the three distinct permutations of this mode, namely,
Scy, (triangles pointing down in Fig. 8), Sc,, (triangles
pointing up), and Sc, (triangles pointing up). Clearly, from
Fig. 8, the oscillation frequencies of the scissors modes are
affected by the dipolar interactions. The effect of the dipolar
interactions is twofold. First, since the dipolar interactions
change the aspect ratio of the condensate, both the moment
of inertia of the condensate and the torque from the trapping
potential acting on it will be altered, which will consequently
alter the oscillation frequency. Second, for the Sc,, and Sc,,
modes, there is an additional force present which is related to
the relative position of the dipoles. This effect is most easily
understood when considering a cigar-shaped condensate.
When such a condensate is rotated with respect to the aligning
field, the dipoles are on average slightly more side-by-side than
in the equilibrium situation. As a result, there will be a dipolar
restoring force trying to realign the dipoles, which in turn is
expected to affect the scissors-mode frequencies. Figure 9
schematically illustrates this process for the Sc,, mode. For
a pancake-shaped condensate, the effect is opposite. Since the
dipolar interaction potential is rotationally invariant in the x-y
plane, the dipolar restoring force is absent for the Sc,, mode.

Explicit expressions for the scissors frequencies can be
obtained by performing the procedure outlined in Sec. III an-
alytically rather than numerically. We start with the frequency
w;yy of the Sc,, mode, in which case we only expect an influ-
ence of dipolar interactions through changes in the geometry,
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FIG. 9. Schematic illustration of the dipolar restoring force for
the Sc,, mode. When the condensate is rotated with respect to the
dipole alignment axis Z as in situation (b), the dipoles will on average
be more side-by-side than in the aligned case, situation (a). Since this
is an energetically unfavorable configuration compared to the aligned

case, there will consequently be a dipolar restoring force present in
(b) trying to realign the condensate, illustrated by arrows.

and find

2 — 2\ 7!
2 2 x Ky
c o =2wie| —— , 30
Dsxy “1 (K‘Z + Kf) (30)

where it should be noted that the quantity in brackets is
precisely the ellipticity of the condensate. The Sc,, frequency
does not depend explicitly on the strength of the dipolar
interactions &qq, but merely on the condensate ellipticity,
which is an indication of the absence of a dipolar restoring
force as discussed above. The condensate ellipticity turns out
to be approximately proportional to the trap ellipticity, where
the constant of proportionality is dependent on the dipolar
interaction strength e49 and axial trapping strength y. As
a result, the Sc,, scissors frequencies shown in Fig. 8 are
(almost) independent of the trap ellipticity for fixed values of
€44 and y . Figure 10(a) shows the Sc,, frequency as a function
of the axial trapping strength y, for various dipolar interaction
strengths e44. In the presence of dipolar interactions, the
condensate ellipticity deviates from the trap ellipticity € (see
Sec. IID), and hence the Sc,, frequency also changes when
dipolar interactions are switched on. In the absence of dipolar
interactions [dashed line in Fig. 10(a)], the trap and condensate
ellipticity are equal, and the Sc,, frequency is independent
of the condensate size, trap ellipticity, as well as the s-wave
interaction strength [38]. For very prolate (y < 1) and very
oblate (y > 1) traps, the dipolar interactions become either
mainly attractive or mainly repulsive and lose their anisotropic
character. The dipolar potential becomes contactlike and can
be renormalized into the s-wave interactions (see Sec. IIC
or [34]), which do not influence the scissors-mode frequency.
This effect is visible in Fig. 10(a) in the form of the scissors
frequency returning to the nondipolar value for extremal
values of y. Finally, we would like to point out a remarkable
similarity between the scissors frequencies shown in Fig. 10(a)
and the trap rotation frequencies at which the static solution
diagram of a rotating dipolar BEC shows a bifurcation point,
as investigated in Ref. [36] [see Fig. 1(b) therein]. For all
values of y and eq4q the scissors frequency is precisely twice the
bifurcation frequency. Presumably, the underlying connection
is the fact that the scissors mode Sc,, has the same superfluid
field as a stationary state of a BEC in a rotating trap.
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FIG. 10. (Color online) Scissors frequencies as a function of the
axial trapping strength y for various values of g44, with —0.45 <
eda < 0.9 and increasing in the direction of the arrow in steps of 0.15.
The dashed line indicates €49 = 0. (a) Frequency of Sc,, mode for
fixed trap ellipticity of € = 0.1. For very prolate (y < 1) or very
oblate (y > 1) systems, the dipolar interactions renormalize into
the s-wave interactions and w;,, returns to the nondipolar value.
(b) Frequency w;,, of the Sc,, mode as a function of y for a
cylindrically symmetric trap, scaled to the nondipolar frequency wigl

Turning our attention to the Sc,, and Sc,. frequencies, the
analytical calculation yields

w?xz — i + 1 — de( % KyﬂlOZ) (31)
w7 K3 1—eqa(1 = Sy Bonz)
w3y, 1 1 —eqa(1 - 9KxK Boiz)
2 =|5+5 (32)
wy K2 k2 ) 1 —eaa(1 = SkekyBoz)

Here, the quantity e4q appears explicitly, and as such the
frequencies depend directly on the strength of the dipolar
interactions, an effect we attribute to the dipolar restoring
force. Figure 10(b) shows the above frequencies for a cylin-
drically symmetric trap and as a function of the axial trapping
strength y, for various values of g44. There are two distinct
effects to be noted. First, when g44 > 0 (€494 < 0) the scissors
frequencies go up (down) for cigar-shaped systems and down
(up) for pancake-shaped systems. This behavior is consistent
with what one would expect in the presence of a dipolar
restoring force. Second, for y < 1 and y > 1 we see that
the w;y, frequency approaches the nondipolar value again.
For the wy,, frequency this effect could be explained solely by
the fact that for such values of y the condensate aspect ratios
return to the nondipolar values. However, for the Sc,; and Sc,,
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modes we have to account for the apparent vanishing of the
dipolar restoring force as well. To see why it plays no part
here, we have to analyze the expectation values of the quantity
R =./x2+4+y2+ 72 For y <« 1, we have (R) >~ {|z]) — oo,
and for y > 1 we have (R) ~ (/x2 + y2) — oo. Although
in both cases the torque exerted by the dipolar restoring force
is proportional to (R) and in principle approaches infinity, it
vanishes relative to the other two quantities contributing to
the scissors frequencies, namely, the moment of inertia of the
condensate and the torque exerted by the trap, which both
scale as (R?) [40]. In Fig. 10(b), this behavior can be observed
for the extremal values of y, where the scissors frequencies
approach those of the nondipolar case.

VII. CONCLUSIONS

In this paper we have performed an investigation into the
static and dynamic states of trapped dipolar Bose-Einstein
condensates in the Thomas-Fermi regime. We have extended
our previous work in this area by examining new regimes
of dipolar and s-wave interactions (namely, positive and
negative values of Cy4q and g), non-cylindrically-symmetric
traps, and different classes of collective excitation, including
the scissors modes. Our approach is based upon the analytic
calculation of the nonlocal dipolar mean-field potential inside
the condensate, for an arbitrary polynomial density profile, and
exploiting the fact that this potential is again of polynomial
form. Using this method, we have examined the stability of
static states and collective excitations, including the behavior
of the collective excitations as a function of the trap aspect
ratio and ellipticity, and as a function of the relative strength
of the dipolar and s-wave interactions. We consistently find
that an instability of the Q| quadrupole mode mediates global
collapse of a dipolar BEC whether g > 0 or g < 0. However,
there are two critical trap ratios, y.5, = 5.17 and y; = 0.19,
beyond which the BEC is stable against scaling fluctuations
(monopole and quadrupole excitations) even as the strength
of the dipolar interaction overwhelms the s-wave one, i.e.,
when 49 — Zo00. In the case of attractive s-wave interactions
(g <0), where the dipolar interactions can stabilize an
otherwise unstable condensate, the magnetostriction seems
to act counterintuitively (see Fig. 3), although upon closer
examination the behavior can be explained by understanding
how dipolar interactions behave in highly confined geometries.

We have paid special attention to the scissors modes because
of their sensitivity to superfluidity, which we identify as an
issue of particular interest in cigar-shaped dipolar condensates
due to the possibility of fragmentation when the attractive part
of the dipolar interaction becomes significant. Our expressions
for the frequencies of the scissors modes include a term due to
a restoring force which is not present in the pure s-wave case,
and which we identify as arising due to an anisotropic dipolar
realignment force. A freely available MATLAB implementation
of the calculations outlined in this paper, including a graphical
user interface, can be obtained online [52].

Note added. Recently a paper [79] has appeared
announcing the results of an experiment measuring the
collective excitations of a dipolar BEC. The authors state that
they find good agreement with the results obtained previously
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by one of us in the Thomas-Fermi regime [26], of which the
current work is an extension.
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APPENDIX A: COLLECTIVE MODE FREQUENCIES AS A
FUNCTION OF &44

In Sec. III we considered the effect of the dipolar interac-
tions on the mode frequencies and plotted this as a function of
k rather than g44 to remove the problem of the static solutions
being double valued. However, since €44 is a more obvious
experimental parameter, we have plotted the corresponding
frequency plots of Fig. 5, but as a function of g4q in Fig. 11.

APPENDIX B: CALCULATING THE DIPOLAR POTENTIAL
INSIDE A HETEROGENOUS ELLIPSOIDAL BEC

In this appendix we will concern ourselves with the
calculation of integrals of the form

o)
v —r|

BloIr) = - axdyds, @B
4r
where the domain of integration is a general ellipsoid with
semiaxes Ry,Ry,R;, and the point r = (x,y,z) is an internal
point of the ellipsoid. The square brackets indicate a functional
dependence. When computing the dipolar potential in Egs. (7),
(8), and (26), we need to evaluate this integral in order to obtain
the fictitious electrostatic potential ¢[p;;x](r) arising from a
particle density of the form
pijk = x'y'2, (B2)

with i, j,k nonnegative integers. By taking linear combinations
of the general term p;;; we can calculate the internal dipolar
potential created by an arbitrary density distribution because
Eq. (B1) defines a linear integral operator acting upon o(r).

The physically relevant density distributions can naturally
be divided into two classes:

(1) The inverted parabola n(r) given by Eq. (10) which
corresponds to the static ground state of the BEC.

(2) The excitations §n(r) and §S(r) given by Eq. (27) which
can be written as linear combination of terms xy/z*.

Actually, these two classes have some overlap because certain
low-lying excitations (monopole, quadrupole, and scissors
modes), which would otherwise seem to fall into class 2,
can be described in terms of the parabolic density profile of
class 1 but with time-oscillating radii (in the case of monopole
and quadrupole modes) or time-oscillating symmetry axes (in
the case of the scissors modes). In this appendix we give the
general theory which works for all density distributions of the
form (B2). In Appendix C we focus on the parabolic density
distributions of class 1, which is a particular case of the general
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FIG. 11. (Color online) Excitation frequencies as a function of
&£4a for a cylindrically symmetric trap with aspect ratios (a) y = 0.18,
(b) y =1, and (¢) y =5.5. Shown are the results for the dipole
mode D (black, stars), monopole M (orange, circles), quadrupoles
Q; (red, diamonds) and Q, (purple, squares), and scissors Sc (green,
triangles). (d) Static solutions x for y = 0.18 (bottom curve), 1 (center
curve), and 5.5 (top curve). Stable solutions are marked with a solid
line, unstable solutions are marked with a dashed (red) line. Dashed
vertical lines mark the transition point from stable to unstable.

theory, and we present the results in terms of well-known
special functions (the elliptic integrals).

In the context of calculating gravitational potentials in
astrophysics, one encounters exactly the same integrals as here,
and as such, the problem attracted considerable interest even
in the 19th century. Among others, significant contributions
to the topic were made by MacLaurin, Ivory, Green, Poisson,
Cayley, Ferrers, and Dyson. A detailed historical overview
can be found, for instance, in Refs. [56,58]. However, for our
purposes the most important contribution came from N. M.
Ferrers, who showed that the potential (B1) associated with
the density (B2) evaluates exactly to a polynomial in the
coordinates x,y, and z [53]. As a matter of general interest,
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we will outline the method employed by Ferrers to arrive at
this remarkable result.

In his 1877 paper, Ferrers first shows how the internal
(gravitational) potential of an ellipsoid with semiaxes R, R,,
and R, with a density of the form

p:p(s):sn’ n= 112735'-'7 (B3)
with
2 2 2
X y Z
s=1- = - = — -, (B4)
R? R% R?

can be calculated, using integration over so-called homoeoidal
shells, to be

n v, n+l ==, BS
BLs"(r.y.2) = 4(+1)/ 0 (B5)
where
2 2 2
O=1-—F—-2 <
Ri+0 R}+o0 RiZto
and
A= /(R +0)(R2+0)(R? +0). (B6)

Homoeoidal shells are shells situated inside the ellipsoid,
bounded by equidensity surfaces of the density (B3). Using
infinitesimally thin homoeoidal shells, the triple integral (B1)
can be reduced to a single integral over the variable o. For a
detailed account on this integration process, see, for instance,
Refs. [27,55,56] or, of course, the original work by Ferrers
[53]. Notably, the right-hand side of Eq. (B5) evaluates to a
polynomial in x,y, and z.

Next, Ferrers noted that whenever p = 0 at the boundary
of the ellipsoid, then differentiation of the potential with
respect to any of the Cartesian coordinates, for example, x,
yields

d dp
d—¢[p](x,y12) =¢ [d_} (x,y,2), (B7)
x X
which can easily be checked with integration by parts.
Finally, he noted that any monomial, such as p;;; defined in
Eq. (B2), can be expressed by means of a series of differential
coefficients of powers s of the variable s defined in (B4),

dartatr

AR s
Pijk = Z Z mpqr g xpdyqdz ’

m  p+q+r<m

(B8)

where the A,(,',jpkq),. are constants, and whereby it should be noted
that the order of differentiation never exceeds m. By virtue
of the latter observation, we can calculate the potential of
the above density by repeatedly applying the step (B7) in
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the opposite direction, transferring all differential operators
appearing in (B8), from inside the integral ¢[p;j;] to the
outside, since at each step we are ensured that the density
being integrated over contains at least a factor of s, and hence
is always equal to O on the boundary. Thus, we arrive at the
following result:

ptq+r

g d
Slpiji)(x.y.2) = ¢ [Z A%'Z)rmsm] (x..2)
mpqr

+q+r

(ljk) m
- Z mpqrdxpdyqdz Pls

mpgqr

1(x,y,2),

in which the ¢[s™] terms are known through Eq. (B5). Recall-
ing that the potentials ¢[s™] are in fact polynomial in x,y, and
z, and hence also any differential quotient, we can conclude
that the potential ¢[p;jr] is also a polynomial. A crucial
point in the above derivation is the observation expressed in
Eq. (B8) that any monomial can be written as a series of
differential coefficients of a function of the homoeoidal shell
index variable s, which is specific to ellipsoids only. In different
geometries, some monomial densities might yield polynomial
potentials, but in general this is not the case.

The precise coefficients of this polynomial remain to be
determined, a task undertaken by Dyson who found a compact
and elegant general expression [54]. Through the efforts of
Ferrers and Dyson, the triple integral of (B1) which depended
on the coordinate r, is reduced to a finite number of single
integrals appearing in the coefficients of a polynomial only.

Although Dyson’s formula in principle solves the problem,
it is not particularly suited to numerical computation because
it still contains differential operators. We therefore employ
results from a more recent paper by Levin and Muratov [57],
which computes the polynomial coefficients of the potential
@[ piji] explicitly. Levin and Muratov make use of generalized
depolarization factors defined as

KxK ﬁlmn
y

Miyn = m’

@l —-DN"2m — DH!'2n — D! (BY)
wherem,l,n = 0,1,2...,and By, i is deﬁned in Eq. (12). Next,

we write the exponents of Pijk = x'y’ ZF as
i =20+08,, j=2u+46, k=2v+$,
with A, e,V positive integers such that the §,,,8,,5, are either
0 or 1 for i, j,k even or odd (respectively), and define
oc=i+u+v+l.

In the particular case of calculating the dipolar potential, we
are interested in the second derivative with respect to z, rather
than the potential ¢ p; «] itself. Using the results of Levin and
Muratov then, this quantity is given by

2 J pk o 0—po—p—q 2485\ 2q+8, 20 +8,—2
8_¢[pl. 20, y,2) = m k! Z Spgr(2r 4+ 8,)(2r + 8, — 1)x 2P+ y2atouz2rt ” B10)
072 / 40 o (0 —p—q—nr!2ps + 1D(2qs, + 1)2rs, +1) P
where
moov Simn Rzl+,sA R2m+5u R2n+a

G —

=0 m=0 n=0

pqr Z Z Z (}\. I)V(M m)'(v _ n)'(zl(s}\ + 1)(2}’”8 + 1)(2718 T 1) l+P+5A m+q+8, ,n+r+38,»
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and
(_ 2)1 +m+n

Simn = B TEmIG

APPENDIX C: CALCULATING THE DIPOLAR POTENTIAL
INSIDE AN INVERTED PARABOLOIDAL ELLIPSOID

In this appendix we calculate the dipolar potential inside
an ellipsoidally shaped BEC with a density profile of the
form

where ng is the density in the center of the BEC. This is a
particular case of the more general density profile p(r) = s”
discussed in Appendix B above, see Eq. (B3). Comparing with
Eq. (10) in the main part of the text, we see that density profile
(C1) corresponds exactly to the static solutions discussed
in Sec. II. Note that the results in this appendix generalize
those found in Appendix A of Ref. [27] for the cylindrically
symmetric case to a triaxial ellipsoid.

In the case n(r) = ngs considered in this appendix, it is
straightforward to see that the integral (BS) for the fictitious
electrostatic potential ¢(x,y,z) inside the ellipsoid can be
expressed as

R (f; -5 R

5 2

n 2x2y28(T8(Ry2) + 2X2Z2W
) 2

+ 2y2zza(R3§a<Rz) #5¢ a(izf

; %y%(ifz)z " §a<i)> PR

where

I = fow dXO’ (C3)

with A defined in Eq. (B6). For a prolate (cigar-shaped)
condensate, defined as being when R, > R, > R,, we

find
2 R, || R - R

I = ——F l|arccos | — | | —— (c4)
R? — R? R. || R? — R?

where F(0|m) is an elliptic integral of the first kind
whose properties are well known [62]. In the opposite case
of an oblate (pancake-shaped) condensate, R, > R, > R,

then
2 R; Ri — R)%
I, = ———F |arccos | — == |- (C5)
/R)z, — R? Ry || Ry — R

The cylindrically symmetric case of R, = R, is given in
Appendix A of Ref. [27]. Thus, the problem of calculating the

PHYSICAL REVIEW A 82, 033612 (2010)

electrostatic potential ¢(r) reduces to one of finding derivatives
of elliptic integrals, both with respect to the argument 6 and
the parameter m. To evaluate the derivatives of /4 needed in
Eq. (C2) we shall make use of the results

d 1

—_F - -

RV = (0
0 E(0|m) F(6|m)
—F(@|m) = -
om 2m(1 — m) 2m

sin 26
(C7)

40 —m)V1 —msin2h

where E(0|m) is an elliptic integral of the second kind [62],
and

9
g E@Im) = V1 —msin?6, (C8)

E@|m) — F(6|m)

. (C9)

0
—E@©|m) =
om

When the external polarizing field is aligned along the z
axis, then the mean-field dipolar potential ®44(r) is given by
Eq. (7) as

92 1
Dya(r) = —Cyq (3_z2¢(r) + 5n(r)> .

Taking ¢(r) from Eq. (C2), one has

92 noRRyR, 3 , 2
2 b= ) 42—
022 2 Ty T a(ra(RY)
vap— 2 T N RoRRY
y B(Rf)E)(Rg) Z B(RZ 2 A Xy dvysdrz ).

(C10)

Thus, the dipolar mean-field potential ®g44(r) inside the
inverted parabola density profile (C1) is itself a quadratic
function of position (x,y,z), as given in Eq. (11),

38&danokky
2
x [Boor — (Bro1x” + Boiry” + 3Bz )R],

where k; = R;/R;, and the coefficients f; defined in Eq. (12)
can be seen to be

Dyq(r) = —geqan(r) +

d
Boor = —2R}——I4(R,R,R,),

8(R§) (C11)
X 2
18101 = 4RZ a(Rz—)(Rz)IA(vaRvaZ)v (C12)
X z
2
Boir = 4RSWIA(RX7Ry7RZ)7 (C13)
y z
2
4 5 0
Booz = ng—IA(RXyRvaz)~ (C14)

I(R2)’
Using (C6)—(C9) to perform the required derivatives, an
explicit expression for the dipolar mean-field potential ®yq
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can be given in terms of elliptic integrals. In the prolate case,
when R, > R, > R,, then

1-— K)2)
T— )~ F | arccos[k,]

X

2
Boor = —m {E <arccos[/cx]

-4 C15
et (C15)
Ky 1 L+ =26
Ky _ E | arccos[k,]
e (=) (=) (1—k2) (k2 = 2) (1 - 42)

l—K)z,
1—«?
x y
1—Ky
— )i (C16)
Ky 1 1 =26} + ]

Bo =21 -5 + E | arccos[k,] | ——
o :Ky(l—x,%)('f%—xf) VT=i2 (e =) (1 = i3)’ (

! K)% C17
1—«2 ’ (€17
3 (1 - Ky)(] — KX) (l — K2) (1 — K2)

Bio1 = 2{

1
- F [ x]
(1 _ K2)3/2(1 _ K)%) (arccos K

X

2 5 F (arccos[icx]
J1- K)%(l — K%)

[\

KxKy 212 — k2 — Kf)

5 E (arccos[/cx]

l—K}Z,
2 2 1 —«2
3 — 22 — k2 1 — 2
( £ ) 2]t (C18)
1 —«2

(1—x2)(1 = k2

x y

_I_

)2 F (arccos[/cx]

While in the oblate case, when R, > R, > R;, we have

- 2 1 — 2 /k2 — 1E N il C19
Boor = — (1 — K)%)(] - Kf,)/(y Kx( — Ky) + Ky Ky — arccos Z ;c)z——l , ( )
Bio1 =2 I L + K3_2K§+1 E mccos[i} K}Z_Kf
T e (=) (2 — ) - 1) S o1 -1
1 - 17|67 —x; 20
+ Y — arccos |:K_v:| P , ( )
(Ky ICX)(KX 1) Ky 1 ) y
p N 1 N 2Kf—/<)2,—1 E |:1]K$—/cf
=21= arccos | — | | =
T @) @) e -1 ][ —1
- ! F | arccos [ij| Kyz i (C21)
(3 =) (3 = 1) el =1 )

22 22— 32 +4) 22 +k2 -2
,3002=z K—X(KXK)Y sz 57 )+ (Kx—iz_K} )3/2E arccos [i]
o @) e e

K= c22
)| (C22)
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