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Universality and itinerant ferromagnetism in rotating strongly interacting Fermi gases
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We analytically determine the properties of three interacting fermions in a harmonic trap subject to an external
rotation. Many-body thermodynamic quantities such as the entropy and energy are calculated from the third-order
quantum virial expansion. As the external rotation is increased, the regime over which the virial expansion is
valid is extended to lower temperatures. By parameterizing the solutions in the rotating frame we find that the
energy and entropy are universal for all rotations in the strongly interacting regime. Additionally, we find that
rotation suppresses the onset of itinerant ferromagnetism in strongly interacting repulsive three-body systems.
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Strongly interacting Fermi gases are thought to have
universal thermodynamic behavior [1–6]. This regime has
been accessed in experiment [7–16] and may provide insight
into the properties of neutron stars and more conventional
solid-state physics [17–20]. It is the presence of broad
Feshbach resonances in two-component atomic Fermi gases
that has made it possible to access the strongly interacting
regime. In this regime the difficulties in developing many-
body theories for these systems has motivated the study of
exact solutions to few-body problems as a means to gain
insight into the many-body problem [21–29]. Of particular
interest has been the prediction [6,27,30,31] and observation
[15,16] of universality in the strongly interacting regime of
thermodynamic quantities, such as the energy and entropy.
To date such calculations have been restricted to gases in
nonrotating, spherically symmetric harmonic traps.

In this work we consider the properties of a strongly
interacting gas in a rotating trap. In particular, we solve the
two- [32] and three-body problems and calculate the virial
expansion of the thermodynamic potential to third order,
enabling the calculation of thermodynamic quantities. We
find that the temperatures above which the virial expansion
is valid decrease as external rotation increases. Additionally,
we show in the thermodynamic limit that the second- and
third-order virial coefficients are universal with respect to an
external rotation and trapping frequencies. From this we find
that the many-body thermodynamic quantities such as energy
and entropy are universal with respect to rotation through a
simple rescaling of the Fermi energy.

In addition to these thermodynamic results, we also
examine the interplay between rotation and the emergence
of itinerant ferromagnetism in strongly interacting ultracold
Fermi gases. In the original work of Stoner [33] it was
proposed via a mean-field theory that a repulsive Fermi
gas will always exhibit a ferromagnetic phase. Experimental
work suggests the observation of a ferromagnetic phase for a
strongly interacting Fermi gas, with repulsive interactions [34],
in the absence of rotation. However, this is contradicted by the
recent experimental work of Sanner et al. [35], which suggest
the rapid formation of molecules inhibits the formation of a
ferromagnetic phase. Current theoretical work, Monte Carlo
simulations, and Tan relations [27,36–38] are also contradic-
tory. In this work we show that for the three-body problem,
rotation suppresses the emergence of itinerant ferromagnetism.
Additionally, in the thermodynamic limit we find that itinerant

ferromagnetism is suppressed for temperatures T > 10−7TF

as the rotation frequency approaches the trapping frequency.
Our starting point is the wave function ψ(r1,r2, . . .) of N

particles interacting in the s-wave channel at low energies.
This satisfies the Bethe-Peierls boundary conditions

lim
rij →0

∂(rijψ)/∂rij = −rijψ/a, (1)

where the interaction is parametrized by the scattering length a,
and rij = |ri − rj | is the separation of opposite-spin fermions.
Away from rij = 0, the wave function of N particles in
a spherically symmetric rotating harmonic trap satisfies the
noninteracting Schrödinger equation,

N∑
i=1

[
− h̄2

2μ
∇2

i + 1

2
μω2r2

i + ih̄�z∂φi

]
ψ = Eψ, (2)

where ri and μ are the position and mass of each particle, and
ω and �z are the trapping and rotation frequencies, the latter
assumed to be defined about the z axis.

The center-of-mass Hamiltonian can be decoupled from
Eq. (2) and defines the rotating harmonic motion of a particle
of mass M = Nμ with energy spectrum

Ecm = (2n + l + 3/2)h̄ω + mh̄�z, (3)

where n,l,m label the usual harmonic oscillator eigen-
states RnlY

m
l . The relative energy, Erel = E − Ec.m., in-

corporates the effects of the contact interaction but not
the effects of the external rotation, since only s-wave
states may interact. For two opposite-spin fermions
the wave function in relative coordinates that satisfies
the Bethe-Peierls boundary condition Eq. (1) is [21]
ψ rel

2b (r; ν) ∝ �(−ν)U (−ν,3/2,r2/d2) exp(−r2/d2), where U

is the confluent hypergeometric function of the second
kind. A pseudoquantum number ν parametrizes the rela-
tive energy Erel = (2ν + 3/2)h̄ω and satisfies the relation
2�(−ν)/�(−ν − 1/2) = d/a for harmonic oscillator length
d = √

h̄/(μω). In particular, for the unitary limit where
a → ±∞, the relative energy spectrum simplifies to Erel =
(2n + 1/2)h̄ω, where n is any non-negative integer.

To find the energy spectrum of three interacting fermions
in a rotating trap, we consider the configuration of two spin up
fermions and one spin down, ↑↓↑, where two opposite spin
particles interact at a point and form a pair, and the third moves
relative to the pair. We define the center-of-mass coordinate of
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the three particles as R = (r1 + r2 + r3)/3, the relative coordi-
nate between the interacting pair r = r1 − r2, and the relative
coordinate between the third noninteracting particle and the
center-of-mass of the pair as ρ = (2/

√
3)[r3 − (r1 + r2)/2]. In

this Jacobi coordinate system the center-of-mass Hamiltonian
decouples from the relative Hamiltonian

Hrel = −h̄2

μ

(∇2
r + ∇2

ρ

) + 1

4
μω2(r2 + ρ2) − ih̄�z∂φρ

, (4)

where μ/2 is the reduced mass of the interacting pair. Like
the two-body system, the angular momentum vanishes in the
interacting pair, but the third fermion can rotate around the
pair and be affected by the external rotation, �z. This couples
higher-order angular momentum states to lower energies in the
system. In order to solve the relative Hamiltonian (4) we take


rel
3b (r,ρ) = (1 − P13)

∞∑
n=0

cnψ
rel
2b (r; νnlm)Rnm(ρ)Ym

l (ρ̂) (5)

as an ansatz for the wave function, where P13 is an operator
that exchanges the spin ↑ particles. The eigenenergies of this
system are

Erel = [(
2n + l + 3

2

) + (
2νnlm + 3

2

)]
h̄ω + mh̄�z. (6)

The presence of the rotational term mh̄�z in the eigenenergy
spectrum shifts the nonrotating energy spectrum found in [26].
To solve the relative energy spectrum using the wave-function
ansatz Eq. (5), we utilize the Bethe-Peierls boundary condition
Eq. (1) and choose a set of quantum numbers nlm and
energy Erel to solve for a particular νnlm and scattering length
a [26]. The energy spectrum of three interacting fermions
is shown in Fig. 1 for a rotation of �z = 0.9ω, a relative
angular momentum of l = 2, and axial angular momentum of
m = −2,0,2. We see the energy levels for the three interacting
fermions shift for each m quantum number, lifting the (2l + 1)
fold degeneracy.

To calculate the virial coefficients and hence thermo-
dynamic properties in the unitary regime it is simpler to
generalize the method of Werner and Castin [22,23] using hy-
perspherical coordinates to obtain the relative energy spectrum

Erel = (2q + snl + 1)h̄ω + mh̄�z, (7)

where q is a non-negative integer and snl are positive and
determined by the eigenvalues of

−ϕ′′(α) + l(l + 1)

cos2(α)
ϕ(α) = s2

nlϕ(α), (8)

where α = arctan(r/ρ) is the hyperangle. The eigenval-
ues snl are determined from the Bethe-Peierls boundary
condition (1), which in hyperspherical coordinates reads
ϕ′(0) − (−1)l4/

√
3ϕ(π/3) = 0. The procedure for solving for

values of snl using the general solutions to the hyperangle
equation is given in [27].

To obtain the repulsive spectrum we omit the s0l energy
levels, which are the lowest in each l subspace. In doing
this we assume that the formation of molecules is inhibited,
which may not be the case when the scattering rate is changed
nonadiabatically [35]. The lowest energy in the repulsive
regime is then the relative energy, which is dependent upon

FIG. 1. (Color online) Energy spectrum of three interacting
fermions with l = 2 and m = −2,0, and 2 for plots (a), (b), and (c),
respectively, with a rotation of �z = 0.9ω. We can see the shifting of
the energy spectrum with the rotation included; in particular, we can
see the number of lower-energy states increase for m = −2.

the rotation �z, plus the center-of-mass energy

E↑↓↑
gs = (snl + 1)h̄ω + mh̄�z + 1.5h̄ω. (9)

This can be compared to the energy of three polarized
fermions, which is the sum of the three lowest allowed
energies:

E↑↑↑
gs = 1.5h̄ω + 2.5h̄ω + [1.5h̄ω + (ω − �z)h̄]. (10)

Comparing Eqs. (9) and (10) it is possible to find a critical
rotation �c, for which the ground-state energy of three
repulsively interacting fermions becomes lower than three
noninteracting polarized fermions. This is a rotation for which
the three noninteracting fermions are unstable with respect
to the three-interacting-fermion system. Choosing the lowest
relative energy level in the l = 2 subspace, s12 
 4.80, and
a magnetic quantum number m = −l, we find a critical
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rotation of �c 
 0.8ω. Since the ground-state energy of
three repulsively interacting fermions can be controlled by
varying an external rotation, this indicates that an itinerant
ferromagnetic transition, in the three-body system, only occurs
for a rotation �z < �c.

The two- [32] and three-body solutions can now be used
to calculate the many-body properties of strongly interacting
rotating Fermi gases. This is done via a quantum virial expan-
sion of the grand thermodynamic potential, � = −kBT lnZ ,
in terms of the fugacity z:

� = −kBT Q1
1

2

∫ ∞

0
dεε2 ln(1 + ze−ε)

− kBT Q1(z + �b2z
2 + �b3z

3 + · · · ) (11)

where

�b2 = �Q2/Q1, (12)

�b3 = �Q3/Q1 − �Q2, (13)

and �QN = QN − Q
(0)
N with QN = Tr[exp(−HN/kBT )] and

Q
(0)
N the noninteracting cluster function [39]. To first order for

dimensionless rotation ξ = �z/ω, Q1 is given by

Q1 =
(

kBT

h̄ω

)3 1

1 − ξ 2
+ · · · . (14)

Following [32], the second-order virial coefficient for a
rotating trapped gas in the high-temperature limit is

�batt
2 = 1

4
− ω̃2

32
+ · · · , (15)

�b
rep
2 = −1

4
+ ω̃

4
+ · · · , (16)

where ω̃ = h̄ω/kBT is the reduced trapping frequency and
ω̃ → 0 represents the thermodynamic limit. By extending the
work of nonrotating systems in [26] we find that �batt

3 is
universal for any rotation and given by

�batt
3 
 −0.06833960 + O(ω̃2). (17)

For a repulsive gas the third-order virial coefficient to lowest
order in ω̃ is also universal,

�b
rep
3 
 0.34976 + O(ω̃). (18)

Despite the rotational dependence of the two- and three-body
eigenspectrums, the second- and third-order virial coefficients
are independent of rotation in the thermodynamic limit.

We are now able to calculate the total energy E = −3�

and entropy S = −∂�/∂T from the thermodynamic potential
� of a strongly interacting gas [39]. To determine the ther-
modynamic potential, the fugacity z = exp(μ/kBT ) must be
calculated from the total number of particles N = −∂�/∂μ,
where μ is the chemical potential.

In Fig. 2 we plot the energy (a), (b) per particle and
entropy (c), (d) per particle as functions of rotation using
the virial expansion to third order in the strongly interacting
regime. The repulsive (b), (d) and attractive (a), (c) regimes
are plotted as functions of reduced temperature T 0

F = E0
F/kB,

where E0
F = (3N )1/3h̄ω is the Fermi energy. The hashed areas

in plots (a) and (c) correspond to solutions of the energy
and entropy that are unphysical. To quantify the regimes of

FIG. 2. (Color online) (a), (b) Energy per particle E/(NE0
F) and

(c), (d) entropy per particle S/(NkB) for dimensionless rotation ξ

as a function of reduced temperature T/T 0
F , in the strongly (a), (c)

attractive and (b), (d) repulsive regimes. For comparison we plot the
temperature at which the second- and third-order virial expansions
differ by 1% for a rotation ξ , the dashed curve. The hashed region in
plots (a) and (c) indicate an unphysical solution to the virial expansion.
(e) The temperature Tv/T 0

F , for attractive (solid black curve) and
repulsive (dashed red curve), above which the energy as determined
by the second- and third-order virial expansions differs by <1%.

validity, in Fig. 2(e) we plot the temperature Tv/T 0
F above

which the virial expansion is valid as a function of rotation for
attractive (solid black curve) and repulsive (dashed red curve)
interactions. Tv is defined via a comparison of the energy using
the second- and third-order virial expansion. Interestingly, we
observe that as the external rotation increases the regime of
validity extends to lower temperatures for both attractive and
repulsive interactions. In the limit ξ → 1 these results suggest
that the virial expansion to second order is valid to extremely
low temperatures, i.e., Tv → 0. As the rotation is changed, for
a fixed temperature, the energy (a), (b) and entropy (c), (d)
change. Hence, the thermodynamic quantities appear not to be
universal with respect to rotation.

Equations (9) and (10) show that for a three-body system
the ferromagnetic state is suppressed in the presence of strong
repulsive interactions for �z � 0.8ω. Figure 2(b) plots the total
energy in the strongly repulsive many-body regime. Figure 2(e)
shows that as ξ → 1 the validity of the solutions extends
to T → 0. In this regime, by comparing the energy of the
strongly interacting gas with the equivalent noninteracting
polarized gas, we find that the itinerant ferromagnetic phase is
suppressed for T/T 0

F � 10−7.1

1Due to numerical instabilities it is not possible to set ξ = 1. Hence
the limit ξ → 1 is evaluated at ξ = 1 − 10−7, for which the virial
expansion is valid for T/T 0

F � 10−7.
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FIG. 3. (Color online) Universal curves: chemical potential (a),
entropy per particle (b), and energy per particle (c) of a strongly
attractive (solid red curve), repulsive (dashed black curve), and ideal
Fermi gas (dotted blue curve) for dimensionless rotation 0 � ξ � 1
as a function of reduced temperature T/T

ξ

F .

Figures 2(a)–2(d) demonstrate that for a given rotation
frequency ξ there is a universal dependence of E/(NE0

F)
and S/(NkB) as a function of T 0

F with respect to particle
number and trapping frequency. However, through a simple
rescaling of the Fermi energy [temperature] of the form
E

ξ

F = E0
F(1 − ξ 2)−1/3 [T ξ

F = T 0
F (1 − ξ 2)−1/3] it is possible

to exactly remove the rotational dependence observed in

Figs. 2(a)–2(d). This generalized universality arises from the
fact that under this rescaling the functional dependence of ξ

is removed from both the single-particle cluster function Q1

[Eq. (14)] and the chemical potential. In conjunction with
the fact that the second- [Eqs. (15) and (16)] and third-order
[Eqs. (17) and (18)] virial coefficients are independent of
rotation in the thermodynamic limit, the thermodynamic
potential is analytically independent of rotation. To emphasize
the exact universal nature of the chemical potential with
respect to rotation, μ/E

ξ

F is plotted in Fig. 3(a) as a function
of T/T

ξ

F for 0 � ξ � 1 in the strongly attractive (solid red
curve), repulsive (dashed black curve), and ideal (dotted blue
curve) regimes. As a direct consequence the rescaled energy
E/(NE

ξ

F) and entropy S/(NkB) are exact universal functions
of T/T

ξ

F with respect to rotation and trapping frequency. This
property is demonstrated in Figs. 3(b) and 3(c), which plot
E/(NE

ξ

F) (b) and S/(NkB) (c) as a function of T/T
ξ

F for
0 � ξ � 1 in the strongly attractive (solid red curve), repulsive
(dashed black curve), and ideal (dotted blue curve) regimes.

In conclusion, we have examined the problem of three
ultracold fermions in a harmonic trap subject to an external
rotation. For the three-body problem we have demonstrated
that rotation suppresses the transition to a ferromagnetic state.
Explicitly we have shown that the three-body ferromagnetic
state has a higher energy than the strongly interacting repulsive
state for �z � 0.8ω and is, consequently, unstable. Addition-
ally, from the three-body solutions and the use of previous
two-body results [32], we have calculated the many-body
equations of state using the virial expansion to third order. We
find that the introduction of rotation broadens the validity of
the virial expansion to lower temperatures, and as the rotation
frequency approaches the trapping frequency the validity of
the virial expansion extends to zero temperature. An obvious
and as-yet-unanswered question is, does the validity of the
virial expansion extend to zero temperature as the rotation
frequency approaches the trapping frequency for higher-order
virial expansions? Despite the rotational dependence of the
two- and three-body eigenspectrums, we have generalized the
many-body universal nature of strongly interacting fermions
to include rotation by a simple rescaling of the Fermi energy
and temperature. These results could be used as benchmarks
in experiments to test the universal properties of strongly
interacting rotating ultracold Fermi gases and may provide
insight into the properties of rotating neutron stars.
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