
Anisotropic and Long-Range Vortex Interactions in Two-Dimensional Dipolar Bose Gases

B.C. Mulkerin,1 R.M.W. van Bijnen,2 D.H. J. O’Dell,3 A.M. Martin,1 and N.G. Parker4

1School of Physics, University of Melbourne, Victoria 3010, Australia
2Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands

3Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
4Joint Quantum Centre Durham-Newcastle, School of Mathematics and Statistics, Newcastle University,

Newcastle upon Tyne NE1 7RU, United Kingdom
(Received 13 July 2013; published 22 October 2013)

We perform a theoretical study into how dipole-dipole interactions modify the properties of superfluid

vortices within the context of a two-dimensional atomic Bose gas of co-oriented dipoles. The reduced

density at a vortex acts like a giant antidipole, changing the density profile and generating an effective

dipolar potential centred at the vortex core whose most slowly decaying terms go as 1=�2 and lnð�Þ=�3.

These effects modify the vortex-vortex interaction which, in particular, becomes anisotropic for dipoles

polarized in the plane. Striking modifications to vortex-vortex dynamics are demonstrated, i.e., anisotropic

corotation dynamics and the suppression of vortex annihilation.
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Ferrohydrodynamics (FHD) describes the motion of
fluids made of particles with magnetic (or electric) dipoles
[1,2]. The interparticle dipole-dipole interactions (DDIs)
are long range and anisotropic, giving rise to behavior such
as magnetostriction and electrostriction, geometric pattern
formation and surface ripple instabilities [3]. The distinc-
tive properties of ferrofluids are exploited in applications
from tribology to information display and medicine [1].
Recently, quantum ferrofluids have been realized through
Bose-Einstein condensates (BECs) of atoms with large
magnetic dipole moments [4] such as 52Cr [5,6], 164Dy
[7], and 168Er [8]. Signatures of FHD have been observed
in these gases, including magnetostriction [9] and d-wave
collapse [10]. Pattern formation [11–13], linked to roton-
like excitations [13–15], has been predicted but not yet
seen. Superfluidity of semiconductor microcavity polar-
itons, which are inherently dipolar, has also recently been
demonstrated [16].

In this Letter we consider the interplay between DDIs
and vortices in a BEC. Vortices form the ‘‘sinews and
muscles’’ of fluids [17,18] and drive phenomena such as
mixing processes, sunspots, tornadoes, and synoptic scale
weather phenomena [19]. In a superfluid BEC the vortices
have a core of well-defined size and quantized vorticity.
Single vortices, vortex rings, pairs, lattices, and turbulent
states can be controllably generated [20] and imaged in
real time [21]. In quasi-2D geometries, the paradigm of
point vortices [22,23] can be realized. 2D Bose gases also
provide a route to the Berezinsky-Kosterlitz-Thouless
(BKT) transition [24], the thermal unbinding of vortex-
antivortex pairs (VA).

Previous theoretical studies of a vortex in a trapped 3D
dipolar BEC found density ripples about the core [25–27]
and an elliptical core [25]. Here we consider the quasi-2D
case and focus on the effective long-range and anisotropic

potentials that are generated between vortices by DDIs. We
demonstrate the striking implications of these potentials on
the motion of pairs of vortices. Our results provide insight
into the role of DDIs in large-scale superfluid phenonema,
such as the vortex lattice phases [28], the BKT transition,
and quantum turbulence.
When the dipoles are aligned by an external field, the

DDIs are described by

Uddðr� r0Þ ¼ Cdd

4�

1� 3cos2�

jr� r0j3 ; (1)

where � is the angle between the polarization direction and
the interparticle vector r� r0. For magnetic dipoles with
moment d, Cdd ¼ �0d

2, where �0 is the permeability of
free space. The strongly dipolar 164Dy BEC [7] has d ¼
10�B (Bohr magnetons). The same interaction arises
between polar molecules, which can possess huge electric
dipole moments and have been cooled close to degeneracy
[29]. A BEC with DDIs is described by the dipolar Gross-
Pitaevskii equation (DGPE) [4], in which the DDIs are
incorporated via Eq. (1), and the isotropic van der
Waals interactions (vdWIs) via a local pseudopotential
UvdWðr� r0Þ ¼ g3D�ðr� r0Þ [30]. The relative strength
of the DDIs is parametrized via the ratio "dd ¼ Cdd=3g3D
[4]. This parameter has a natural value "dd & 1. However,
the ability to tune g3D between �1 and þ1 via Feshbach
resonance has enabled the realization of a purely dipolar gas
("dd ¼ 1) [31]. Furthermore, it is predicted thatCdd can be
reduced below its natural, positive value, including to nega-
tive values, by external field rotation [32]. As such, a large
parameter space�1< "dd <1, with positive or negative
g3D and Cdd, is possible.
We consider bosonic dipoles of mass m, free in the

transverse (�) plane andwith harmonic trapping in the axial
(z) direction. The axial trap frequency !z is sufficiently
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strong that the BEC is frozen into the axial ground har-

monic state of width lz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=m!z

p
[33]. The polarization

axis is at angle � to the z axis in the xz plane. Integrating
over z gives the effective 2D DGPE for the 2D wave
function c ð�; tÞ [34],

i@
@c

@t
¼

�
� @

2

2m
r2 þ gjc j2 þ���

�
c ; (2)

with chemical potential �. The mean-field potentials
gnð�; tÞ and �ð�;tÞ¼R

U2D
dd ð���0Þnð�0;tÞd�0 account

for the vdWIs and DDIs, respectively, where n ¼ jc j2 is
the 2D particle density, U2D

dd is the effective 2D DDI

potential, and g ¼ g3D=
ffiffiffiffiffiffiffi
2�

p
lz. While an explicit

expression for U2D
dd ð�Þ exists [35], it is convenient to

work in Fourier space and use the convolution theorem
�ð�; tÞ ¼ F�1½ ~U2D

dd ðkÞ~nðk; tÞ� [34,36]. The Fourier
transform of U2D

dd ð�Þ is ~U2D
dd ðqÞ¼ð4�gdd=3Þ½FkðqÞsin2�þ

F?ðqÞcos2��, with q ¼ klz=
ffiffiffi
2

p
, FkðqÞ ¼ �1þ

3
ffiffiffiffi
�

p ðq2x=qÞeq2erfcðqÞ, F?ðqÞ ¼ 2� 3
ffiffiffiffi
�

p
qeq

2
erfcðqÞ, and

gdd ¼ Cdd=3
ffiffiffiffiffiffiffi
2�

p
lz. It follows that "dd ¼ gdd=g.

A homogeneous 2D dipolar gas of density n0 has uniform
dipolar potential �0 ¼ n0gddð3cos2�� 1Þ and chemical
potential �0 ¼ n0ðgþ gdd½3cos2�� 1�Þ [33–35]. At the
‘‘magic angle’’ �0 ¼ arccosð1= ffiffiffi

3
p Þ � 54:7�, �0 is zero.

For �< �0, �0 is net repulsive (attractive) for gdd > 0
(< 0), while for �> �0 it is net attractive (repulsive) for
gdd > 0 (< 0). The system suffers two key instabilities.
The phonon instability (PI), familiar from conventional
BECs [30], is associated with unstable growth of zero
momentum modes. It arises when the net local interactions
become attractive, i.e., when �0 < 0. In terms of "dd, it
follows that the PI arises for "dd < ½1� 3cos2���1 when
g > 0 or "dd > ½1� 3cos2���1 when g < 0 [4,15,36–38].

DDIs can induce a roton dip at finite momentum in the
excitation spectrum [14,15,27]. When this softens to zero
energy, the roton instability (RI) arises in finite momentum
modes. A collapse ensues via density ripples aligned either
along the polarization axis (for Cdd > 0) or perpendicular
to it (for Cdd < 0) due to the preferred alignment of dipoles
end to end or side by side, respectively [11]. Close to the RI
stable density ripples arise when the roton mode mixes into
the ground state [25,27]. Typically, the RI is induced by the
attractive part of the DDI. An exception arises for the 2D
gas with dipoles polarized along z; the attractive part of the
DDI lies out of the plane where the particles cannot access
it [36] but a roton can be induced via attractive local
interactions [39]. For dipoles polarized in the plane, the
particles can access the attractive part of the DDI, and the
‘‘conventional’’ dipolar roton is supported.

As a precursor to understanding the vortex-vortex (VV)
interaction we first explore single vortex solutions in
our 2D homogeneous system (in contrast to the previous
analyses in 3D [25,27]). We obtain vortex solutions and
dynamics by numerically solving Eq. (2) [40]. Density,
energy, and length are scaled in units of n0, �0 and the

corresponding healing length �0 ¼ @=
ffiffiffiffiffiffiffiffiffiffi
m�0

p
, respectively.

The vortex core size is of the order of �0, which diverges
as �0 ! 0. The 2D approximation is valid for � ¼
lz=�0 � 1; we choose � ¼ 0:5. We consider the represen-
tative cases of � ¼ 0 (dipoles parallel to the z axis) and
� ¼ �=4 (dipoles tipped partly along x axis).
� ¼ 0.—Figure 1(a) shows the vortex density along x

and y as a function of "dd. The dipolar potential, and hence
the density profile, are axisymmetric. For "dd ¼ 0 (left
inset) the vortex has the standard axisymmetric core of
vanishing density of width �0 [30]. For g > 0 the system is
stable from "dd ¼ �0:5, the PI threshold, upwards. No RI
is observed for g > 0, as expected [36]. Meanwhile, for
g < 0 we only find solutions for "dd & �1:16, the RI
threshold (red dashed line).
The vortex structure for "dd � 0 is almost identical to

the "dd ¼ 0 case [41], apart from in two regimes. As one
approaches "dd ¼ �0:5 from above, the vortex core
becomes increasingly narrow with respect to �0 (middle
inset), due to the cancellation of explicit contact interac-
tions. Meanwhile, as the RI is approached from below,
axisymmetric density ripples appear around the vortex
(like in the 3D case [25–27]), decaying with distance and
with an amplitude up to �20%n0 (see third inset). The
ripple wavelength is � 4�0 [42], implying that our treat-
ment is self-consistently 2D because � ¼ lz=�0 ¼ 0:5.
� ¼ �=4.—The axisymmetry of the dipolar potential

and density is lost [Fig. 1(b)]. For gdd > 0 (< 0) the dipoles
lie preferentially along x (y). For g < 0 we find no stable
solutions (down to "dd ¼ �20) due to the RI. For g > 0we
observe the RI, unlike for � ¼ 0, since the atoms now feel
the attractive part of Udd. The RI occurs for "dd * 14:9

FIG. 1 (color online). Vortex density profiles in the presence of
DDIs parametrized by "dd ¼ gdd=g. The left-hand (right-hand)
side of each figure shows the profile along x (y). (a) Polarization
along z (� ¼ 0). Stable density ripples form close to the onset of
the RI (dashed red line). (b) For off-axis dipoles (� ¼ �=4) the
vortex becomes highly anisotropic. Insets: Vortex density nðx; yÞ
for examples of "dd [area ð40�0Þ2 for each]. Gray bands indicate
unstable regimes where no steady state solutions exist, while the
labels g > 0 and g < 0 on the individual solution sheets indicate
that they are only stable for the specified value of g.
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(red dashed line). Below this, stable solutions exist down to
the PI threshold "dd ¼ �2. The vortex core is elongated
along x for "dd > 0, and reverses for "dd < 0. Close to the
RI, density ripples form about the vortex (of large ampli-
tude up to �40%) aligned along x.

We see the same qualitative behavior for all 0<�<�0,
albeit with shifted RI and PI thresholds. For cases with�>
�0, we see a reversal in the "dd dependence, with no
solutions for g > 0 and ripples polarized along y.

From the FHD perspective, the depleted density due to a
vortex acts like a lump of ‘‘antidipoles’’ whose charges
have been reversed [43]. Let us calculate the mean-field
dipolar potential �ð�Þ generated by such a defect located
at � ¼ 0; we shall see shortly how it modifies the vortex-
vortex interaction. For simplicity we consider � ¼ 0 and
the illustrative cases of "dd ¼ �1:2 (vortex with ripples,
g < 0) and 5 (vortex with no ripples, g > 0) [Fig. 2(a)]. As
� ! 1,� ! �0 ¼ n0gddð3cos2�� 1Þ, the homogeneous
result, while for � & 5�, � is dominated by the core
structure and ripples (where present). It is insightful to
consider � as the sum of a local term �Lð�Þ ¼
nð�Þgddð3cos2�� 1Þ and a nonlocal term �NLð�Þ
[33,35,37]. The latter is generated by variations in the
density [33,37] and vanishes for a homogeneous system.
The generic functional form of� at long range is revealed
by assuming the vortex ansatz nð�Þ ¼ n0½1� 1=ð1þ �02Þ�,
where �0 ¼ �=�0 [44,45]. We employ a first-order expan-

sion in � of ~U2D
dd ðkÞ ¼ gddð2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið9�=2Þp
k�Þ þOð�2Þ and

the Hankel transform ~nðkÞ ¼ n0�ðkÞ=kþ n0K0ðk=
ffiffiffi
2

p Þ=2,
where K0ðkÞ is a modified Bessel function of the second
kind [46]. Then, to first order in � and third order in 1=�0,

�ð�Þ
�0

�
�
1� 1

�02

�
þ

�
A ln�0 þ B

�03

�
�; (3)

with constantsA¼� ffiffiffiffiffiffiffiffiffiffiffiffi
9�=8

p ��1:88 andB¼ðln2�1ÞA�
0:577. The first term corresponds to the local contribution of

the vortex dipolar potential [Fig. 2(b), gray line]. It physi-
cally arises from the 1=�02 decay of vortex density at long
range, and is also present for nondipolar vortices (albeit
controlled by g and not gdd) [47]. The second term describes
the nonlocal contribution [Fig. 2(c), gray line]. This vanishes
in the true 2D limit� ¼ 0 since the volume of antidipoles in
the core vanishes. Equation (3) agrees with numerical cal-
culations in the limit �0 � 1 [Figs. 2(b) and 2(c)]. The
dominant scaling of�NL as ln�0=�03, and not 1=�03, shows
us that the vortex does not strictly behave as a pointlike
collection of dipoles at long range. This is due to the slow,
power-law recovery of the vortex density to n0. We have
checked that exponentially decaying density profiles, e.g.,
tanh2ð�0Þ, do lead to a 1=�03 scaling of �NL at long range.
For � � 0, � also varies anisotropically as cos2� at long
range.
We now explore the vortex-vortex interaction through

the interaction energy [40]. Figure 3 shows Eint for � ¼ 0
and [3(a)] vortex-antivortex and [3(b)] vortex-vortex pairs
as a function of their separation d. For the conventional
"dd ¼ 0 case (dashed line) Eint is negative (positive) for VA
(VV) pairs due to the cancellation (reinforcement) of ve-
locity fields at large distance. For d * 4�0, EintðdÞ �
ð2�q1q2@2n0=mÞ lnðR=dÞ, the hydrodynamic (coreless
vortex) prediction [30] for system size R. For d & 4�0,
the cores overlap causing jEintj to flatten off.
When "dd � 0, the logarithmic, hydrodynamic contri-

bution to EintðdÞ dominates the dipolar contribution for
large d. Elsewhere, significant deviations to EintðdÞ arise,
particularly at short range d & 3�0. This deviation is most
striking for �0:5< "dd < 0 (g > 0), e.g., "dd ¼ �0:45
(red lines), for which jEintj increases dramatically as d
decreases. This is due to the narrowing of the vortex core
(relative to �0) as "dd ! �0:5, reducing the core overlap as
d ! 0. Outside of this range, for small d (d & 3�0), DDIs
reduce jEintj. For values of "dd that support density ripples,
jEintj features a small peak at d� 4� due to ripple overlap.
Further out, Eint decays as 1=�

2 towards the "dd ¼ 0 result.
Note that as j"ddj is increased, EintðdÞ tends towards a fixed
behavior, independent of the sign of "dd (since both cases
become dominated by large, positive gdd).

FIG. 2 (color online). (a) The total dipolar potential � (black
lines labelled �), local component �L (blue lines labelled �L),
and nonlocal component �NL (red lines labelled �NL) for a
vortex with ripples ("dd ¼ �1:2, g < 0, dashed lines) and with-
out ripples ("dd ¼ 5, g > 0, solid lines). (b) The decay of
�L=�0, compared with 1=�02 (gray line). (c) The decay of
�NL=�0, compared with ðA ln�0 þ BÞ�=�03. Parameters are
� ¼ 0, � ¼ 0:5.

FIG. 3 (color online). Vortex interaction energy Eint versus
separation for (a) VA and (b) VV pairs with various "dd values.
Insets: Energy difference from the nondipolar case, �Eint ¼
Eintðd; "ddÞ � Eintðd; "dd ¼ 0Þ. Parameters are � ¼ 0, � ¼ 0:5.
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For � � 0, Eint depends on the orientation angle of the
pair 	, defined as the angle between the line joining the
vortices and the in-plane polarization direction. We illus-
trate this in Fig. 4 for � ¼ �=4 and "dd ¼ 5. For the VA
pair [4(a)], Eint is maximal for 	 ¼ �=2 and decreases
monotonically to 0 as 	 ! 0, �. For moderate separations
d & 6�0 (dotted red line and solid black line), the vortex
ripples dominate the vortex interaction (see inset). For
	 ¼ 0, the ripples from each vortex (aligned in x) merge
side by side. As 	 is increased, this side-by-side formation
is broken at energetic cost. For 	� �=2 one might expect,
for appropriate d, a scenario where the inner ripples from
each vortex overlap at energetic benefit. However, the
intervortex density is suppressed due to the high flow
velocity there (Bernoulli’s principle). Beyond the ripples,
Eint approaches a sinusoidal dependence on 	 (dashed
green line).

For the VV pair [4(b)] no such suppression occurs. As
the pair is rotated, and for suitably large d (d * 2�0), the
inner ripples combine at significant energetic benefit such
that Eint is minimal for 	 ¼ �=2. At smaller separations,
this overlap cannot occur and Eintð	Þ is dominated by the
effect of the outer ripples (as for the VA pair), such that the
	 ¼ 0 case is most energetically favored. For intermediate
d (d� 3�0), there is energetic competition between
the inner and outer ripples. At larger d, the modulation
becomes approximately sinusoidal with 	.

The effects of DDIs upon vortex pair dynamics are now
considered. For "dd ¼ 0, VA pairs form moving solitary
wave solutions for d * 2�0 [48]. For d & 2�0 the cores
overlap and the pair is unstable to annihilation [Fig. 5(a)].
In Fig. 1(a), we saw significant core narrowing (relative to
�0) for "dd � �0:4. These conditions can stabilize the VA
pair against annihilation [Fig. 5(a), red lines] [49]. For
"dd ¼ 0 (or � ¼ 0), VV pairs undergo circular corotation
[50] [black curve, Fig. 5(b)]. Since in-plane (� � 0) DDIs
cause Eint to vary as the VV pair rotates, the vortices
corotate in an anisotropic path [blue and magenta curves,

Fig. 5(b)]. Moreover, with strong anisotropic ripples for
small separations, the vortices are unable to corotate,
instead ‘‘wobbling’’ about their initial positions [green
curves, Fig. 5(b)].
We have shown that the interaction of two vortices can be

significantly different in quantum ferrofluids than in con-
ventional superfluids. At short range the vortex-vortex in-
teraction is strongly modified by the changed shape and
peripheral density ripples of each vortex. At longer range,
each vortex experiences the dipolar mean-field potential of
the other, with 1=�2 and lnð�Þ=�3 contributions. Thevortex-
vortex interaction is most significantly modified up to mid-
range separations (d & 10�), beyondwhich it reduces to the
usual hydrodynamic behavior. When the dipoles have a
component in the plane, the vortex-vortex interaction
becomes anisotropic. The vortex-vortex interaction is a
pivotal building block for understanding macroscopic su-
perfluid phenomena. For example, it is the key input pa-
rameter for models of quantum turbulence [51], the BKT
transition [24], and vortex crystals [52]. The striking effects
of DDIs on the dynamics of vortex pairs point to interesting
new regimes formacroscopic systems of superfluid vortices.
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