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Non-Abelian geometric phase in the diamond nitrogen-vacancy center
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This paper introduces a theoretical framework for understanding the accumulation of non-Abelian geometric
phases in rotating nitrogen-vacancy centers in diamond. Specifically, we consider how degenerate states can be
achieved and demonstrate that the resulting geometric phase for multiple paths is non-Abelian. We find that the
non-Abelian nature of the phase is robust to fluctuations in the path and magnetic field. In contrast to previous
studies of the accumulation of Abelian geometric phases for nitrogen-vacancy centers under rotation we find that
the limiting time scale is T1. As such a non-Abelian geometric phase accumulation in nitrogen-vacancy centers
has potential advantages for applications as gyroscopes.
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I. INTRODUCTION

The geometric phase [1,2] is a fascinating demonstration of
how geometry affects quantum systems at the level of Hilbert
space structure. Abelian geometric phase arises in nondegen-
erate systems when the Hamiltonian evolves adiabatically and
has been observed in various systems [3–5]. Systems with
degenerate energy levels can possess a geometric phase with
a non-Abelian structure [6]. This means that different paths
of the Hamiltonian produce a geometric phase that in general
does not commute, allowing for richer dynamics, providing
a platform to implement holonomic quantum computation
[7,8], the creation of synthetic fields in quantum gases [9],
and the investigation of non-Abelian anyon statistics [10].
Recently an experiment using a superconducting circuit found
unambiguous evidence [11,12] of the non-Abelian nature of
the phase [13].

In this work, we show that the unique properties afforded
to nitrogen-vacancy (NV) defects in diamond enable the inter-
rogation, at room temperature, of the non-Abelian geometric
phase, through macroscopic physical rotation of the system.
We find that the emergence of non-Abelian geometric phases
is robust to magnetic field and path fluctuations. From this
we then demonstrate that the accumulation of non-Abelian
geometric phase in rotating NV centers can be used as the
basis for room temperature gyroscopes with a sensitivity of
≈ 5 × 10−4 rad/s/Hz1/2. This is an order of magnitude larger
than the predicted sensitivity of NV gyroscopes, based on
Abelian geometric phase accumulation [14,15].

The NV center (for a review, see Ref. [16]) is a defect
in diamond whereby a carbon is replaced by a nitrogen and
an adjacent carbon is removed. It behaves as an electronic
3A2 spin triplet system in the ground state, with an excited
3E state and a metastable 1A1 state [see Fig. 1(a)]. A laser
with a wavelength shorter than the zero phonon line (637 nm)
polarizes the system into the ms = 0 ground state and also
allows the spin to be read out via the fluorescence intensity.
The ground state has relatively long coherence times, even
at room temperature, with the inhomogeneous broadening
time T �

2 of the order of μs and the homogeneous broadening
and spin relaxation times T2 and T1 of the order of ms

[17–19]. The properties afforded to ground state offers a
robust and accessible single-spin system with applications in
quantum communications [20,21], quantum information [22],
nanoscale magnetometry [18,23–29], biosensing [30–34], and
thermometry [35–37]. Recently there has been work analyzing
the emergence of the Abelian geometric phase in the NV
center in rotating systems [14,15,38] which could lead to using
them as nanoscale gyroscopes. The ability to manipulate the
magnetic sublevels with an external magnetic field enables
the possibility of degeneracy between all possible pairs of
eigenstates. As such, a single NV system provides an ideal
platform to study non-Abelian phases.

A general non-Abelian Berry phase can be understood
in terms of a Hamiltonian with N degenerate eigenstates
|a(�λ)〉, written in terms of parameters �λ that undergo an
adiabatic evolution [11]. For an initial state given by a
coherent superposition of degenerate energy eigenstates, the
time evolution operator is

U = P exp

(
−

∫
Aαdλα

)
, (1)

whereP is the path ordering operator and α is summed over the
parameters, for example, �λ = (λ1,λ2) = (θ,φ). The effective
gauge potential Aα , is an N × N matrix:

Aabα = 〈a(�λ)| ∂

∂λα
|b(�λ)〉, (2)

where a and b label the degenerate eigenstates. The effect of U

in general will cause a mixing between degenerate eigenstates,
and unlike in the nondegenerate U (1) case, the phase cannot be
detected directly but only the trace or eigenvalues of U can be
determined through a population measurement. To rigorously
demonstrate the non-Abelian nature of the acquired phase,
two paths in parameter space can be considered (for example
those in Fig. 2, labeled 1 and 2), with equal beginning and
end points. The non-Abelian nature is seen by comparing U =
U2U1 with U ′ = U1U2. In the Abelian case U = U ′, whereas
in the non-Abelian case, in general U �= U ′.
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FIG. 1. (Color online) (a) Energy level diagram of the NV center.
(b) Geometry of the NV center. Defining the microwave pulses as the
z direction, z′ is the instantaneous direction of the NV axis, defined
with respect to the lab frame, unprimed coordinate system, by θ

and φ.

II. NON-ABELIAN GEOMETRIC PHASE IN THE
NITROGEN-VACANCY CENTER

The Hamiltonian for the NV spin triplet ground state system
in the limit of a low strain diamond and with negligible
hyperfine coupling is given by

H ′ = DS2
z′ + γ B · S, (3)

where z′ is the axis from the nitrogen atom to the adjacent
vacancy, the applied magnetic field is B, spin operator
S and γ is the gyromagnetic ratio of the NV center,

FIG. 2. (Color online) The two paths of rotation of the NV
center considered in this paper. Both start and end in the same
orientation.

D ≈ 2.87 GHz is the zero-field splitting, and � = 1. In the
lab frame, given by unprimed coordinates, the Hamiltonian
takes the form H = RH ′R−1, where R is the rotation
operator R = exp(−iφSz) exp(−iθSy) exp(iφSz), where θ and
φ map between the z and z′ axes [see Fig. 1(b)]. With no
applied field, the ms = ±1 states are degenerate. Applying a
magnetic field along the z′ axis induces a Zeeman shift of
	E = ±γBz′ . A normalized Hamiltonian will be considered
from here on, where H → H/D and ε ≡ γBz/D is a
measure of the separation of the energy levels. Applying
a field of ε = ±1 makes the ms = ∓1 and ms = 0 states
degenerate.

The effective gauge potential can be calculated for all pairs
of states using Eq. (2). For zero applied field, the gauge
potential (A is defined as

∑
α Aαdλα) has the following form

in the {|1〉,|−1〉} basis:

A =
(

−i cos θdφ 0

0 i cos θdφ

)
. (4)

This matrix is Abelian because only entries with dφ are
nonzero. In fact, upon integration around a path, the diagonal
entries are proportional to the solid angle enclosed and
the phase is identical to the Abelian Berry phase [14,15].
Applying a suitable magnetic field (ε = ∓1) along the z′ axis
results in a gauge potential in the {|±1〉,|0〉} basis that has a
non-Abelian nature, due to the presence of both dφ and dθ

terms,

A =
( ∓i cos θdφ 1√

2
(i sin θdφ ∓ dθ )

1√
2
(i sin θdφ ± dθ ) 0

)
. (5)

To unambiguously demonstrate the non-Abelian nature of
the phase we first consider a situation when the |0〉 and |1〉
states are perfectly degenerate and the paths are exactly those
as shown in Fig. 2. To maintain the degeneracy of the |0〉 and
the |1〉 states, the crystal could be affixed to a magnet that
supplies the constant magnetic field such that ε = −1. The
compound system could then be placed on a spinning device
such that the crystal and magnet rotate together and degeneracy
is maintained.

Before the whole path is considered, the mixing effect for
subpaths is examined by calculating the form of U while
holding one of θ or φ constant. For dφ = 0 the geometric
phase in the {|±1〉,|0〉} basis is

exp

(
−

∫
�

A

)
=

⎛
⎝ cos

(
�√

2

)
sin

(
�√

2

)
− sin

(
�√

2

)
cos

(
�√

2

)
⎞
⎠, (6)

where � = ∫
dθ is the polar angle through which the state is

rotated. This can be understood in the following manner: A
physical rotation of the crystal through an angle of � induces
a rotation in the eigenspace of −�/

√
2, independent of φ. In

contrast, when dθ = 0 the behavior is dependent on θ . Setting
θ = π/3 for simplicity and rotating through an azimuthal
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angle :

exp

(
−

∫


A

)
= ei/4

⎛
⎜⎝cos

(√
7
4

) + i√
7

sin
(√

7
4

) −i

√
6
7 sin

(√
7
4

)
−i

√
6
7 sin

(√
7
4

)
cos

(√
7
4

) − i√
7

sin
(√

7
4

)
⎞
⎟⎠. (7)

Expressing this in terms of the Pauli matrices, Eq. (7) can be
thought of as a rotation about the axis that makes the angle
arctan(1/

√
6) from the negative x- axis to the z- axis. With

these two segments of the paths considered, the total effect of
the two paths shown in Fig. 2 can be evaluated. The first is a ro-
tation around the sphere at θ = π/3. The phase matrix for this
is given by Eq. (7) where  = 2π . The second path is a square
in the space defined by (φ,θ ). Each leg of the path travels along
lines of constant latitude or longitude between the points given
by (φ,θ ) = {(0,π/3),(π/3,π/3),(π/3,2π/3),(0,2π/3)}. Over
each of these subpaths the phase accumulated has an Abelian
nature, since only one of dφ or dθ is nonzero over the length
of the path. The path integration can be done analytically,
but its form is not concise or enlightening. A numerical
approximation of it is

Usquare ≈
(

0.91 + 0.23i −0.11 − 0.33i

0.34 − 0.07i 0.66 + 0.67i

)
. (8)

Since both paths start and finish at the same point, they offer
the potential to show unambiguously the non-Abelian nature
of the Berry phase. Initializing the system in the ms = 1 state
and traversing the two paths in one order and measuring
the population of the ms = 1 state, then repeating with the
order of the paths interchanged results in a final population
difference between the two scenarios of 14.4%. The paths
chosen do not optimize the contrast, but do provide a proof
of principle realization of the non-Abelian nature of the phase
accumulation.

III. ROBUSTNESS OF NON-ABELIAN GEOMETRIC
PHASE TO FLUCTUATIONS

The analysis above does not deal with experimental
considerations such as decoherence, imperfect degeneracies
and whether the evolution is adiabatic. To investigate the
effect of imperfect degeneracy, the Schrödinger equation
(� = 1) is written in terms of the the reduced time s = t/T ,
i d

ds
|ψ(s)〉 = T H (s)|ψ(s)〉, where T is the total time taken for

the evolution. The general solution to this equation is |ψ(s)〉 =
T exp[−iT

∫
H (s)ds]|ψ(0)〉, where T is the time-ordering

operator. Using the rotating path defined in the previous section
(see Fig. 2), this was numerically solved for different values of
T and of the energy separation 	 = 1 + ε for ε ≈ −1 (for ε =
−1 the ms = 0 and 1 states are degenerate). These calculations,
for  = 2π are presented in Fig. 3(a) as a function of rotation
time. The maximum rotation time considered is 350 μs below
(above) usual values for T1 (T �

2 ) of ms (μs) [17–19] and also
within potentially achievable kHz range rotational frequencies.
For larger energy separations (	 > 10−4) the state quickly
reaches the result expected for a nondegenerate adiabatic
process. As 	 is reduced, the first “dip” extends for a longer
period, getting closer and closer to the result expected for true

degeneracy (solid black line). For a fixed time, the behavior
over many orders of magnitude of degeneracy were also
considered [see in Fig. 3(b)]. For |	| < 2 × 10−5 we find
that the population of the ms = 1 state is within 5% of the
degenerate value (dashed line in Fig. 3), after a complete
rotation. This limit scales with evolution time and the zero-field
splitting. This enforces the fact that perfect degeneracy is not
required, nor are extremely long periods of evolution. All that
is required is that the time of evolution is fast compared to the
near degeneracy, and slow compared to the third state.

FIG. 3. (Color online) (a) The population in the ms = 1 state
after evolution in the rotating path for varying degrees of degeneracy
as a function of rotation time. The asymptotic degenerate result (solid
black line) corresponds exactly with the expected adiabatic result. (b)
The effect of degeneracy for a rotation of ≈3.5 μs on the population in
ms = 1. The dashed line is the result expected for perfect degeneracy,
which is achieved for within 5% for |	| < 2 × 10−5.
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FIG. 4. (Color online) The effect that on-axis magnetic fluctua-
tions, such as those due to T2 processes, have on the evolution of the
ms = 1 state after a complete rotation. Error bars are ± one standard
deviation, as determined from simulations. For levels of noise with
normalized magnitude below 10−4 (for 3.5 μs this is approximately
0.1 G in the NV system), the effects of these fields becomes negligible
on the final state population.

Another experimental aspect that needs to be considered is
the effect of magnetic field fluctuations. An ensemble of 50
measurements of the same NV system was simulated in the
degenerate limit, with Gaussian white noise fluctuations in the
field along the NV axis for a range of magnitudes and number
of events over the course of the rotating evolution. The results
are summarized in Fig. 4. The primary effect of small stray
fields is to break the degeneracy and induce a difference in
the dynamic phase between the states considered. Since the
non-Abelian experiment happens in the regime whereby the
nearly degenerate states mix, this additional U (1) phase does
not influence the U (2) evolution. This is markedly different to
the Abelian experiment where fluctuations in fields increase
the variance in the dynamic phase and make the geometric
phase harder to recover. This is in line with the fact that T1,
the spin relaxation time, is the limit for measurements, not T �

2
or T2 as in the Abelian experimental design.

Besides investigating the effects of a nonideal degeneracy
and nonadiabatic motion, we also considered the effects
of nonideal paths. A perfectly known path is unobtainable
experimentally so in order to determine how errors in the path
affect the measurement, perturbations away from the expected
polar angle of π/3 were simulated for the rotating path. To
remain within 5% of the expected value, the angular divergence
required was found to be within 2◦. This result was obtained by
calculating the population of the state after a single adiabatic
rotation at angles π/3 + ε for a range of ε, and requiring that
the final population was within 5% of the π/3 result. For
the Abelian case the phase accumulated is only dependent
on the solid angle enclosed by z′ [14]. As such the Abelian
case is robust against path fluctuations [39]. In contrast, for
the non-Abelian, changes in the path have the potential to
significantly affect the measurement, as different paths mix
the states in noncommutative ways.

IV. CONCLUSIONS

Demonstrating non-Abelian phases in a single NV center
experimentally is a worthy goal, but for a single path this
approach can be applied to an ensemble of NV centers, in
a single rotating crystal, to measure rotation. Consider a
system where the θ = π/2, from Eq. (6) after initialization
and some rotation, the population remaining in the state and
hence the fluorescence will be proportional to cos2(ωt/

√
2),

where ω is the frequency of rotation and t is time. For an
ensemble of N centers with a collection efficiency of η and
contrast of R between the ms = ±1 and ms = 0 state, the
signal is given by F = Nη[1 − R sin2(ωt/

√
2)]. The small-

est detectable frequency is given by δω = (dF/dω)−1δF ,
where δF = √

Nη is photon shot noise. For a suitable t ,
dF/dω = √

2NηRt and for multiple measurements of time
τ up until the limit t = T1, the smallest frequency can be
written as

δω ≈ 1/(αR
√

NηT �
2 τ ), (9)

where α = √
2T1/T �

2 > 1 is the improvement factor over
the Abelian scheme (α ≡ 1) which is predicted to have a
sensitivity of 5.4 × 10−3 rad/s/Hz1/2 [15], for R = 0.03, η =
0.5, T �

2 = 300 ns, τ = 0.5 s, and N = 2 × 1014. In general,
T1 is significantly longer than T �

2 [17–19] and as such it is
predicted that the sensitivity can be improved by an order of
magnitude. Comparing with dynamical decoupling schemes
[40] the sensitivity for the non-Abelian case is the same order
of magnitude. The above neglects the variation in the zero-field
splitting, due to local strain, of the NV centers in the crystal.
However, this variation is of order 50 kHz [41] corresponding
to a variation in |	| ≈ 2 × 10−6, which as shown in Fig. 3(b)
results in a minimal shift in the measured geometric phase.
This discussion has so far focused on the electronic spin, but
it should be possible to use the 14N nuclear spin in a similar
fashion as it too is spin-1 [14,15,42]. For the NV center, the
required control of the Hamiltonian is carried out by rotating
the diamond in physical space. With no applied magnetic
field, a Ramsey pulse sequence allows the Abelian phase to
be detected. Applying a magnetic field along the NV axis
such that the ms = 0 state is degenerate with one of ms = ±1
allows the non-Abelian phase to be detected by reading out
the population from the spin-dependent fluorescence of the
center. From simulations of perturbations to the ideal motion
it was found that the non-Abelian phase is robust against
decohering effects from magnetic fields. An advantage of
the non-Abelian experiment over the Abelian experiment is
that the coherence time is increased from T �

2 → T1 and thus
the sensitivity to rotations is increased. We have shown that
NV centers may be used as probes for non-Abelian geometric
quantum phases, which could allow such measurements of this
phase at room temperatures. Additionally, it offers the potential
to be a more sensitive gyroscope though further research is
needed to resolve signals from multiple axes into the three-axis
rotation.
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