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Specific heat and μSR study on the noncentrosymmetric superconductor LaRhSi3
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We have investigated the superconducting properties of the noncentrosymmetric superconductor LaRhSi3 by
performing magnetization, specific heat, electrical resistivity, and muon spin relaxation (μSR) measurements.
LaRhSi3 crystallizes with the BaNiSn3-type tetragonal structure (space group I4 mm), as confirmed through our
neutron diffraction study. Magnetic susceptibility, electrical resistivity and specific heat data reveal a sharp and
well-defined superconducting transition at Tc = 2.16 ± 0.08 K. The low-temperature specific heat data reveal that
LaRhSi3 is a weakly coupled bulk BCS superconductor and has an s-wave singlet ground state with an isotropic
energy gap of ∼0.3 meV, 2�0/kBTc = 3.24. The specific heat data measured in an applied magnetic field strongly
indicate a type I behavior. Type I superconductivity in this compound is also inferred from the Ginzburg-Landau
parameter, κ = 0.25. Various superconducting parameters, including the electron-phonon coupling strength,
penetration depth, and coherence length, characterize LaRhSi3 as a moderate dirty-limit superconductor. A
detailed study of the magnetic field-temperature (H − T ) phase diagram is presented and from a consideration
of the free energy, the thermodynamic critical field, Hc0, is estimated to be 17.1 ± 0.1 mT, which is in very good
agreement with that estimated from the transverse field μSR measurement that gives Hc0 = 17.2 ± 0.1 mT. The
transverse field μSR results are consistent with conventional type I superconductivity in this compound. Further,
the zero field μSR results indicate that time-reversal symmetry is preserved when entering the superconducting
state, also supporting a singlet pairing superconducting ground state in LaRhSi3.
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I. INTRODUCTION

The inversion symmetry of a crystal structure plays a central
role in the formation of Cooper pairs in conventional super-
conductors. Therefore, with the advent of superconductivity in
CePt3Si (Refs. 1 and 2), which lacks inversion symmetry along
the c-axis, noncentrosymmetric superconductors have evolved
as a hot topic of current research from both experimental
and theoretical points of view. The superconducting ground
state of CePt3Si presents many unusual features due to the
presence of an antisymmetric spin-orbit coupling (ASOC) as
a consequence of the lack of inversion symmetry, as is well
summarized in Ref. 2 . The solid solutions Li2(PdPt)3B (Refs. 3
and 4) and the intermetallic compounds CeRhSi3 (Refs. 5 and
6), CeIrSi3 (Ref. 7), CeCoGe3 (Ref. 8), LaNiC2 (Refs. 9 and
10), BaPtSi3 (Ref. 11), T2Ga9(T = Rh,Ir) (Refs. 12 and 13),
and Mg10Ir19B16 (Ref. 14) are other major examples of known
noncentrosymmetric superconductors. Among these CeRhSi3,
CeIrSi3 and CeCoGe3 show superconductivity only under the
application of pressure, while others have a superconducting
ground state at ambient pressure.

The lack of inversion symmetry leads to a nonuniform
lattice potential which is sensed by the conduction electrons,
resulting in a splitting of spin-up and spin-down energy
bands and hence a split Fermi surface. In a conventional
superconductor Cooper pairs are formed by two electrons
having a symmetric orbital state and an antisymmetric spin
state, both of which belong to the same Fermi surface.
In contrast, in noncentrosymmetric superconductors the two
electrons forming Cooper pairs belong to two different
Fermi surfaces corresponding to the spin-up and spin-down
bands. This makes the physics of superconductivity in non-
centrosymmetric systems substantially different from that
in centrosymmetric systems to which most of the known
superconductors belong. From theoretical considerations, the
lack of inversion symmetry introduces an ASOC which
removes the spin degeneracy of the conduction band electrons
and therefore in noncentrosymmetric superconductors the
spin and orbital parts of the Cooper pairs cannot be treated
independently.15–19 Further, parity is no longer a good quantum
number and a parity mixing is expected, whereby the Cooper
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pairs of noncentrosymmetric superconductors may contain an
admixture of spin-singlet and spin-triplet states.

The symmetry of the superconducting order parameter is
very important for understanding the nature of the super-
conducting ground state. Both time-reversal symmetry and
inversion symmetry are critical in determining the parity
states. While time-reversal invariance provides the necessary
conditions for spin-singlet pairing, for spin-triplet pairing
inversion symmetry is required additionally. In the absence
of inversion symmetry, spin-triplet pairing is forbidden: This
leads to a contradictory situation in the noncentrosymmetric
heavy fermion superconductor CePt3Si, where the absence
of paramagnetic limiting favors spin-triplet pairing.2 There-
fore, a two-component order parameter consisting of mixed
spin-singlet and spin-triplet states seems to be appropriate
for CePt3Si. However, despite extensive efforts by many
condensed-matter physicists working on noncentrosymmetric
superconductors, very little is known so far about the super-
conducting order parameter in these systems. For example,
key issues such as whether they possess a common unusual
pairing symmetry, and, if this is the case, what is the nature of
the superconducting-gap symmetry remain unsettled. Further
investigations on noncentrosymmetric superconductors are
therefore required to address such issues.

The Ce-based noncentrosymmetric superconductors
CePt3Si, CeRhSi3, CeIrSi3, and CeCoGe3 all are situated close
to a magnetic quantum critical point, where the presence of
magnetic order and heavy fermion behavior makes it more
complicated to extract the physics of inversion symmetry
breaking and superconductivity. Therefore, a system that is
situated far away from a magnetic quantum critical point
is predicted to yield significant information and should
enable a better understanding of the problem in Ce-based
noncentrosymmetric superconductors. From this standpoint,
the noncentrosymmetric superconductor LaRhSi3 is an ideal
system for extensive investigations. We have therefore in-
vestigated LaRhSi3 with the expectation that it will provide
information to enrich our understanding of the relationship
between the superconductivity and the lack of symmetry in
general. This will also provide comparative results for the
superconducting state of CeRhSi3.

The preliminary report based on resistivity measurements
by Lejay et al. reveals an onset of superconductivity between
1.9 K and 2.7 K in LaRhSi3 (Ref. 20). This compound
forms in the BaNiSn3-type tetragonal structure (space group
I4 mm) in which Rh and Si atoms lack inversion symmetry
along the c-axis. Recently de Haas–van Alphen (dHvA)
studies have been carried out on single-crystal LaRhSi3 to
investigate the Fermi surface properties21,22 which, together
with electronic structure calculations, predict the Fermi surface
to consist of three asymmetry-split sheets. dHvA results also
show effective masses up to 1.6me for different frequency
branches and spin-orbit coupling of the order of 102 K in
LaRhSi3. In this paper we present our results obtained from
detailed investigations by neutron diffraction, magnetization,
resistivity, specific heat, and muon spin relaxation (μSR)
measurements on LaRhSi3 and characterize it as a moderate
dirty-limit s-wave weakly coupled type I superconductor with
an isotropic superconducting gap and singlet pairing ground
state.

II. EXPERIMENTAL

The polycrystalline sample of LaRhSi3 was prepared
by the standard arc melting technique on a water-cooled
copper hearth under an inert argon atmosphere using the
high-purity elements (99.9% and above) in stoichiometric
ratio. To improve the homogeneity and reaction among the
constituent elements, the sample was flipped several times
during the melting process and subsequently annealed at
900 ◦C for a week under a dynamic vacuum. The crystal
structure was determined by Cu-Kα powder x-ray diffraction.
The magnetic susceptibility was measured by a commercial
SQUID magnetometer (MPMS, Quantum-Design, San Diego)
with an iQuantum 3He outfit (Quantum-Design, Japan). The
specific heat was measured by the relaxation method in a physi-
cal property measurement system (PPMS) (Quantum-Design,
San Diego). The electrical resistivity was measured by the
standard four-probe ac technique using the PPMS. The μSR
measurements were carried out using the MuSR spectrometer
at the ISIS Facility at the Rutherford Appleton Laboratory,
Didcot, UK, in both longitudinal and transverse geometry.
The powder sample was mounted on a silver holder (purity
4N) with GE varnish to improve thermal equilibrium. The use
of silver ensures a time-independent background contribution
to the μSR spectra as silver gives only a nonrelaxing muon
signal. The stray fields at the sample position were canceled to
within 1 μT by using correction coils. The neutron diffraction
experiment was performed on a powdered sample at 300 K
using the ROTAX diffractometer at the ISIS Facility.

III. RESULTS AND DISCUSSION

The x-ray-diffraction data collected from a powdered sam-
ple of LaRhSi3 at room temperature were analyzed by Rietveld
refinement using FULLPROF software. The crystal structure
was confirmed to be BaNiSn3-type tetragonal structure (space
group I4 mm with lattice parameters a = 4.2694(03) Å and
c = 9.8357(10) Å, in very good agreement with the literature
value.20 For the best fit using the least-squares refinement
method χ2 had the value of 1.24. No impurity phase was
detected in powder x-ray-diffraction data. To characterize the
whole bulk volume of the sample, we carried out a neutron
diffraction study. Figure 1 shows our neutron diffraction
pattern of LaRhSi3 recorded at room temperature together
with the structural Rietveld refinement profile using the GSAS

software for the BaNiSn3-type tetragonal structure (space
group I4 mm) model. The results obtained from a least-squares
refinement of neutron diffraction are listed in Table I. During
the refinement the occupancy of all the elements was kept fixed
as its variation was not improving the fit quality. The lattice
parameters are in perfect agreement with those obtained from
the powder x-ray diffraction, and the neutron results confirmed
the single-phase nature of the bulk sample.

Figure 2 shows the low-temperature magnetic susceptibility
χ (T ) data measured at a field of 1.0 mT. Both the zero
field cooled (ZFC) and field cooled (FC) χ (T ) data exhibit
a large Meissner signal below 2.2 K, demonstrating the
onset of superconductivity (Tc = 2.16 K). An estimate of the
superconducting phase fraction using the ZFC magnetization
data yields a Meissner volume fraction of ∼100(±10)%,
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FIG. 1. (Color online) Neutron diffraction pattern of LaRhSi3

recorded at room temperature. The solid line through the experimental
points is the Rietveld fit profile using the BaNiSn3-type tetragonal
structure (space group I4 mm). The short vertical bars mark the
theoretical Bragg diffraction positions. The bottom curve represents
the difference between the experimental and the calculated results.

indicating bulk superconductivity in this compound. The inset
of Fig. 2 shows the isothermal magnetization as a function
of magnetic field measured at a constant temperature of
0.5 K. The hysteresis of the magnetization curve follows a
near-typical type I superconducting behavior. The departure
from the ideal step transition at critical field can be attributed
to the geometrical shape effect of our sample (demagnetization
factor). The temperature dependence of the thermodynamic
critical field Hc(T ) determined from the low field magnetiza-
tion measurements at different temperatures is shown in Fig. 7,
together with that determined from the specific heat data.
Hc(T ) fits well to the relation Hc(T ) = Hc0[1 − (T/Tc0)α]
with the fitting parameters Hc0 = 18.1 ± 0.2 mT and

FIG. 2. (Color online) Temperature dependence of low tem-
perature zero field cooled (ZFC) and field cooled (FC) magnetic
susceptibility χ (T ) data of LaRhSi3 measured at 1.0 mT. The inset
shows the isothermal magnetization as a function of magnetic field
measured at 0.5 K. Arrows indicate the directions for the magnetic
field cycle between the normal (N) and superconducting (S) states.

α = 1.85 ± 0.06 using the value of Tc0 = 2.16 K. The value of
α = 1.85 thus obtained is very close to the conventional value
of α = 2. The Hc(T ) data can also be fitted to the conventional
relation with α = 2, that is, Hc(T ) = H ∗

c0[1 − (T/Tc0)2], the
resulting parameter H ∗

c0 being 17.6 ± 0.2 mT. However, the
quality of fit is better with α = 1.85. Thus, from magnetization
data, we estimate the thermodynamic critical field to be
18.1 mT subject to the correction due to the demagnetization
factor.

Figure 3 shows the electrical resistivity data of LaRhSi3
measured in zero field. While the high-temperature resistivity
exhibits metallic behavior, at low temperature (despite the

TABLE I. Crystallographic and refinement parameters of LaRhSi3 determined from the full structural refinement of neutron diffraction
data using the GSAS program.

Structure BaNiSn3-type tetragonal
Space group I4 mm (No. 107)
f.u./unit cell 2

Crystal parameters
a 4.2693(4) Å
c 9.8292(9) Å
Vcell 179.15(5) Å3

Vmole 53.94 cm3/mole
Refinement quality Parameters

Rp 3.03%
Rwp 3.51%

Atomic coordinates
Atom x y z Mult Occupancy Uiso (Å2)
La 0 0 0.00265(11) 2 1.0 0.00680(34)
Rh 0 0 0.65771(13) 2 1.0 0.00202(35)
Si1 0 0 0.41350(20) 2 1.0 0.00772(42)
Si2 0 0.5 0.26503(18) 4 1.0 0.01077(34)
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FIG. 3. (Color online) Electrical resistivity of LaRhSi3 as a
function of temperature measured in zero magnetic field. The solid
line represents our fit to the Bloch-Grüneisen model. The inset
shows the expanded view of the low-temperature data showing the
superconducting transition. The lines are drawn as a guide to the eye.

presence of noise) a sharp transition at 2.16 K (the transition
midpoint, with an onset temperature 2.24 K) to a zero
resistance state clearly indicates superconductivity in this
compound. The normal-state resistivity is well described by
the Bloch-Grüneisen model,

ρ(T ) = ρ0 + 4B

θD

(
T

θD

)5 ∫ θD

0

z5dz

(ez − 1)(1 − e−z)
,

where ρ0 is the residual resistivity due to static defects in
the crystal lattice and the spin-disorder resistivity due to the
presence of disordered magnetic moments, and the second
term represents the phonon-assisted electron scattering (θD is
the Debye temperature and B is the electron-phonon coupling
constant). A least-squares fitting of resistivity data above
2.5 K to this expression (solid line in Fig. 3) gives ρ0 =
1.08 μ� cm, B = 24.8 m� cm K, and θD = 348 K. The low
value of the residual resistivity ρ0 of ∼1 μ� cm just above
the superconducting transition and a residual resistivity ratio
of about 60 clearly reflect the good quality of our sample.
This value of residual resistivity together with the electron
carrier density can be used to estimate the mean free path,
l = vF τ , where the Fermi velocity vF = h̄kF /m∗ and τ is
the scattering time given by τ−1 = ne2ρ0/m∗ for the Drude
model. The effective mass m∗ as estimated from the relation
for the electronic specific heat coefficient γ = π2nm∗k2

B/h̄2k2
F

turns out to be m∗ = 2.14me using γn = 6 mJ/mole K2 (as
discussed in the following paragraphs), which is slightly larger
than that observed in dHvA measurements (m∗ ∼ 1.6me)
(Ref. 22). Since the space group I4 mm contains two formula
units per unit cell, for our compound there are two La ions,
each contributing three conduction electrons, and hence six
conduction electrons per unit cell. Therefore, the electron
density can be roughly estimated as n = 6/Vcell = 3.349 ×
1028 m−3. These values of n and m∗ together with ρ0 yield

FIG. 4. (Color online) Specific heat C(T ) data of LaRhSi3 as a
function of temperature measured in zero field. The solid line (above
Tc) is a fit to C = γ T + βT 3. The inset shows the expanded view near
the superconducting transition, plotted as C/T vs T . The solid line
in the inset represents the theoretical temperature-dependent spin-
singlet fully gapped superconductor according to the weak coupling
BCS model as tabulated by Mühlschlegel (Ref. 23).

a Fermi velocity vF = 5.39 × 105 m/s and mean free path
l = 122 nm.

Figure 4 shows the specific heat data of LaRhSi3. A sharp
transition in the specific heat confirms the intrinsic nature
of superconductivity in this compound, in agreement with
the magnetization measurements discussed above. We define
the critical temperature as the approximate midpoint of the
transition, Tc = 2.16 K. Above the transition temperature,
that is, in the normal state, the specific heat data is well
represented by C = γ T + βT 3. A linear fit to C/T vs T 2 plot
in the temperature range 2.25 K to 7 K gives the Sommerfeld
coefficient γn ≈ 6.0 mJ/mole K2 and β ≈ 213.6 μJ/mole K4.
From the value of β we estimate the Debye temperature
to be 357 K using the relation θD = (12π4NArkB/5β)1/3,
where r is the number of atoms per formula unit, which is
consistent with the θD value estimated from the resistivity
data. Further, from the observed jump in the specific heat
at Tc, �Cel = 16 mJ/mole K, the ratio �Cel/γnTc ≈ 1.25,
which is comparable to 1.43, the BCS expected value in the
weak coupling limit. The electronic specific heat coefficient
in the superconducting state is estimated from the difference
between the specific heats observed in the superconducting
state in zero field and that under an applied magnetic field
of 15.0 mT (a field of 15.0 mT suppresses the Tc to below
0.45 K, as is discussed later), γs ≈ 5.4 mJ/mole K2 giving
�C/γsTc ≈ 1.37, which is very close to the weak coupling
BCS value of 1.43. Further, the values of γn and γs suggest
a superconducting volume fraction of at least 90% signifying
the bulk nature of BCS superconductivity in LaRhSi3. The
BCS-type superconductivity in this compound also follows
from the temperature dependence of the specific heat in the
superconducting state. The experimentally observed data in
the superconducting state could be reasonably reproduced by
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FIG. 5. (Color online) Temperature dependence of the electronic
part of the specific heat, Cel(T ) of LaRhSi3, the solid line is the fit
assuming an isotropic s-wave BCS superconducting gap, Cel(T ) ∼
T 1/2exp(−�0/kBT ). The inset shows the field dependence of γ ,
where the solid line represents an exponential evolution of γ under
the application of magnetic field.

the generalized weak coupling BCS dataset of Mühlschlegel23

(solid line in the inset of Fig. 4) suggesting a fully gapped spin-
singlet BCS superconductivity in this compound. To achieve a
better agreement between the theoretical Mühlschlegel dataset
and experimentally observed data we have adjusted the values
of γ and Tc. The solid line in the inset of Fig. 4 corresponds
to γ ∗ = 5.28 mJ/mole K2 (which is close to our γs value for
the superconducting state) and T ∗

c = 2.14 K, which gives us a
thermodynamic mean value of the critical temperature. Even
though the specific heat data are well interpreted with a full
BCS gap by adjusting γ and Tc, to estimate the supercon-
ducting energy gap more precisely we analyze the electronic
part of the specific heat in the superconducting state (plotted
in Fig. 5) which is obtained from the difference between the
specific heat data measured in zero field and that measured
in 15.0 mT, that is, Cel(T ) = �C(T ) = C(T )0 − C(T )15. As
expected for the BCS ground state, the electronic part of the
specific heat Cel below Tc exhibits an exponential temperature
dependence, confirming the s-wave pairing. The solid line in
Fig. 5 represents the fit to Cel(T ) ∼ T 1/2exp(−�0/kBT ), with
an energy gap of �0 = 3.50 ± 0.06 K (∼0.3 meV). This gives
2�0/kBTc = 3.24, which is in reasonable agreement with
the weak coupling BCS expected value of 3.52. An estimate
of the superconducting gap �0 from the relation μ0H

2
c0 =

(3γ /2π2k2
B)�2

0 gives �0 = 3.73 K (using Hc0 = 17.2 mT),
which is equivalent to 2�0/kBTc = 3.45, in better agreement
with the BCS value. We thus see that the specific heat data
provide compelling evidence for an s-wave isotropic BCS
superconducting gap in the electronic density of states right at
the Fermi energy level.

We also measured the specific heat of LaRhSi3 under the
application of selected magnetic fields of 2.5, 3.5, 5.0, 7.5,
11.2, 12.5, and 15.0 mT (Fig. 6) to see the effect of a magnetic
field on the transition temperature and obtain information

FIG. 6. (Color online) Temperature dependent specific heat
C(T )H data below 3 K measured under the application of different
fields ranging from 0 to 15.0 mT, plotted as C/T vs T .

on the temperature dependence of the critical field. As seen
from Fig. 6 the superconducting transition temperature, Tc,
decreases rapidly with the application of field, for example,
at a field of 5.0 mT, Tc is reduced to 1.62 K from its value
of 2.16 K at zero field, and superconductivity is suppressed
to below 0.45 K at a field of 15.0 mT. To see the evolution
of γ with the magnetic field we plot γ (H ) = C(T )H/T at
0.45 K as a function of magnetic field (see inset of Fig. 5).
The experimentally observed data exhibit an exponential
field dependence, γ (H ) ∼ exp(−H ∗/H ) with H ∗ ≈ 17 mT,
which is similar in magnitude to the thermodynamic critical
field Hc0. This clearly suggests that γ , and hence the
nonsuperconducting density of states, evolves exponentially
with magnetic field. For an isotropic gapped superconductor
one would expect a linear field dependence of γ (H ). We
suspect that the superconducting gap which is isotropic in zero
field becomes anisotropic with the field, and the anisotropy
gets stronger with increasing field, which would then imply
that the mechanism for superconductivity in LaRhSi3 may
be different from the conventional BCS picture. Another
interesting feature observed in the specific heat data under the
application of magnetic field is that the jump in specific heat at
the transition is larger for 2.5 mT than that for zero magnetic
field (Fig. 6), the characteristic of a first-order transition. That
the application of magnetic field drives the superconducting
transition from second-order in zero magnetic field to a first-
order transition in nonzero magnetic fields strongly suggests a
type I superconductivity in this compound.

In Fig. 7 we have plotted the magnetic field vs temperature,
H − T phase diagram determined from the field dependence
of the superconducting transition temperature, Tc, as obtained
from the specific heat measurements in an applied magnetic
field. The apparent upward curvature near Tc0 in H (T ) for the
case of the specific heat measurement under magnetic field
in Fig. 7 can be attributed to the effect of the demagnetizing
field. The magnitude of the latter effect is clearly visible on
the isothermal magnetization M(H ) displayed in the inset
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FIG. 7. (Color online) Temperature dependence of thermody-
namic critical field Hc(T ) for LaRhSi3 determined from the low field
magnetization measurements at different temperatures and specific
heat measurement under the application of magnetic field as well
as that calculated from free energy considerations from zero field
specific heat data. The solid lines represent the parabolic fit to
Hc(T ) = Hc0[1 − (T/Tc0)α] as discussed in the text. The dashed line
is a guide to the eye (following a polynomial behavior for T < 0.8Tc).

of Fig. 2 and corresponds approximately to the spread of
critical fields from the three data sets displayed in Fig. 7.
We estimate the thermodynamic critical field Hc0 of LaRhSi3
using the zero field specific heat data by integrating the
entropy difference between the superconducting and normal
states, that is, by �F (T ) = Fn(T ) − Fs(T ) = H 2

c (T )/8π =∫ T

Tc

∫ T ′

Tc

Cn−Cs

T ′′ dT ′′dT ′, where Fn and Fs are the free energies
per unit volume in the normal and superconducting states,
respectively. Hc(T ) obtained from free energy considerations
is also shown in Fig. 7. The critical field Hc0 is obtained from
a fit to the conventional relation Hc(T ) = Hc0[1 − (T/Tc0)α]
below 2.1 K only to avoid the error due to the curvature near
Tc0. The best fit gives Hc0 = 17.1 ± 0.1 mT and α = 1.66 ±
0.02. The value of α is slightly reduced compared to what we
have deduced from the magnetization (α = 1.85). Thus, from
free energy calculations we obtain the thermodynamic critical
field Hc0 = 17.1 mT.

An estimate of the upper critical field following the WHH
approach24 for a conventional type II superconductor, which
predicts Hc2 ≈ 0.69[dHc2(T )/dT ]Tc0, yields Hc2 ≈ 17 mT
using the slope of Hc(T ) in the temperature range 0.6Tc <

T < 0.8Tc, dHc(T )/dT = 11.4 mT/K, and Tc0 = 2.16 K.
This value of the upper critical field is very close to the
thermodynamic critical field estimated from free energy
considerations, implying a type I behavior in LaRhSi3. The
WHH model, which estimates the critical field in terms of
orbital pair breaking, accounts for both spin-orbit scattering
and Pauli spin paramagnetism (or Maki parameter). The Pauli
paramagnetic limiting field corresponds to the field at which
Fn(H ) equals the condensation energy of the superconducting
state, and, for the weak coupling case, the Pauli-Clogston
limiting field is given by HP = 1.86Tc (Refs. 25 and 26).

The Pauli-limiting field of 4.02 T for LaRhSi3 is very high
compared to the estimated field of 17.1 mT, suggesting the
absence of a Pauli-limiting field in Hc of this compound. The
value of the Maki parameter α, which provides information
about the relative strength of orbital and spin pair-breaking, can
be estimated from the Sommerfeld coefficient γn and residual
resistivity ρ0, α = (3e2h̄γρ0)/(2mπ2k2

B) (Refs. 24 and 27),
giving α = 0.003. Alternatively, using the slope of the Hc(T )
curve, α = 5.2758 × 10−5( dHc(T )

dT
)|T =Tc

= 0.006, which is the
same order of magnitude as the above estimated value. The
value of α obtained for LaRhSi3 is clearly very low, suggesting
that the critical field is essentially determined by the orbital
pair breaking.

The electron-phonon coupling λe–ph, which determines the
attractive part of the Cooper pair bonding, was estimated using
the value of θD and Tc following McMillan’s theory,28

λe–ph = 1.04 + μ∗ln(θD/1.45Tc)

(1 − 0.62μ∗)ln(θD/1.45Tc) − 1.04
,

where μ∗ represents the repulsive screened Coulomb part,
which is usually taken between 0.1 and 0.15. Setting μ∗ =
0.13, λe–ph for our compound comes out to be ≈0.5, which
implies LaRhSi3 is a weak coupling superconductor.

The coherence length in the clean limit is obtained by
the BCS relation ξ0 = 0.18h̄vF /kBTc, which gives ξ0 =
343 nm. Alternatively, the coherence length for T →
0 can be estimated by using the relation ξ0 = 7.95 ×
10−17[n2/3(S/SF )](γ Tc)−1 cm, where n is the conduction
electron density in units of cm−3, γ is expressed in erg/cm3

K2, and S/SF is the ratio of the Fermi surface area (S) of
the superconducting electron density to the Fermi surface
(SF ) of the free electron gas density n (Ref. 29). Assuming
a simple model of a spherical Fermi surface (S/SF = 1), we
obtain ξ ∗

0 = 344 nm, similar to the above value. Within this
approach we can also estimate the mean free path from the
relation ltr = 1.27 × 104[ρ0n

2/3(S/SF )]−1, ρ0 being in � cm,
and for S/SF = 1 we obtain ltr = 122 nm, which is precisely
the same as obtained above within the Drude model. It is clearly
inferred that the mean free path is considerably smaller than the
BCS coherence length (l/ξ0 ≈ 0.36), which in turn suggests
that LaRhSi3 can be classified as a moderately dirty-limit
superconductor. The estimated value of Gorkov’s impurity
parameter, αG = 2.5, further supports this classification.

The London penetration depth estimated from λ2
L =

m∗c2/4πne2 comes out to be 43 nm, which is in good
agreement with the alternative estimate from λL = 1.33 ×
108γ 1/2[n2/3(S/SF )]−1 giving λ∗

L = 44 nm for S/SF = 1.
The ratio λL/ξ0 = 0.12 < 1/

√
2, clearly classifying LaRhSi3

as a type I superconductor. Further, using the relation for
the Ginzburg-Landau parameter κ = 7.49 × 103γ 1/2ρ0 for a
dirty-limit superconductor, we get κ = 0.25, consistent with
the type I superconductivity in LaRhSi3. In the dirty limit, the
Ginzburg-Landau coherence length can be obtained from the
relation ξGL = 8.57 × 10−7(γρ0Tc)−1/2. This gives ξGL = 175
nm, which in turn from the definition κ = λGL/ξGL, gives a
Ginzburg-Landau penetration depth λGL = 44 nm.

The enhanced density of states is found from the relation
N∗(EF ) = 0.2121γ /N , where N is the number of atoms
per formula unit and γ is expressed in mJ/mole K2, which
gives N∗(EF ) = 0.25 states/[eV atom spin-direction]. The
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TABLE II. Measured and derived superconducting parameters of
the noncentrosymmetric superconductor LaRhSi3.

Tc (K) 2.16 ± 0.08
Hc (mT) 18.1 ± 0.2—magnetization

17.1 ± 0.1—specific heat
17.2 ± 0.1—μSR

γn (mJ/mole K2) 6.04 ± 0.01
β (μJ/mole K4) 213.63 ± 0.04
θD (K) 357
γs (mJ/mole K2) 5.4
�Cel/γnTc 1.25
�Cel/γsTc 1.37
2�0/kBTc 3.24
m∗ 2.14me

kF (nm−1) 9.97
vF (m/s) 5.39 × 105

EF (eV) 3.54
λe–ph 0.499
ξ0 (nm) 343
l (nm) 122
λL (nm) 43
ξGL(0) (nm) 175
λGL(0) (nm) 44
κ 0.25
N∗(EF ) 0.25 states/eV atom spin
N (EF ) 0.17 states/eV atom spin

bare density of states, given by N (EF ) = N∗(EF )/(1 + λe–ph),
is 0.17 states/[eV atom spin-direction]. The measured and
derived superconducting parameters of LaRhSi3 are listed in
Table II. In deriving the various superconducting parameters
we have assumed a spherical Fermi surface. To verify the
self-consistency of our assumption, we evaluate the electronic
coefficient of specific heat, γ , from the thermodynamic critical
field, using the relation γ = 2.12μ0H

2
c0/T 2

c0. Taking Hc0 =
17.2 mT as obtained from the μSR measurements (discussed in
the following paragraphs), we obtain γes = 5.76 mJ/mole K2,
which is very close to the experimentally observed value
of γob = 6.04 mJ/mole K2. This agreement between the
electronic specific heat coefficient derived from the thermody-
namic critical field and that observed experimentally validates
our assumption of a spherical Fermi surface. Therefore, we
can safely say that the error introduced on account of the
shape of Fermi surface in deriving the parameters listed in
Table II must be small and does not affect our conclusions
of the essential physics deduced from our data. However, to
obtain the precise values of the derived parameters, one would
need to have a better estimate of the electron density n, such
as by Hall-effect measurements. Given that the band structure
calculations for LaRhSi3 clearly reveal a band splitting due to
the noncentrosymmetric structure and spin-orbit coupling22,
one would expect that the superconducting properties will be
dictated by ASOC. However, it seems that it is not strong
enough to demonstrate its effect on the superconducting
properties of LaRhSi3, as is the case with CeRhSi3, CeIrSi3,
and CePt3Si. The reinforcement of ASOC with magnetic field
might be responsible for the exponential evolution of γ with
magnetic field causing a field-dependent anisotropic order
parameter in the superconducting state.

FIG. 8. (Color online) Zero field μSR spectra measured in
longitudinal geometry below (50 mK, squares) and above (2.5 K,
circles) the superconducting transition temperature. The solid line is
the fit to the Gaussian Kubo-Toyabe function as described in the text.

In order to further characterize the nature of the supercon-
ducting ground state of LaRhSi3 we have used both muon spin
relaxation and rotation measurements. Muon spin relaxation
measurements were carried out in zero field (longitudinal
geometry) to investigate whether time reversal symmetry is
broken as has been seen in the noncentrosymmetric supercon-
ductor LaNiC2 (Ref. 10) as well as in a transverse field to
characterize the superconducting ground state by estimating
characteristic parameters. Our zero field μSR results above and
below Tc do not reveal any noticeable change in the relaxation
rate (see Fig. 8), which indicates the absence (within the
sensitivity of μSR) of a spontaneous internal field at the muon
site when entering the superconducting state. This confirms
the preservation of time-reversal symmetry when entering the
superconducting state of LaRhSi3.

The time evolution of muon polarization in zero field is best
described by the Gaussian Kubo-Toyabe function,

Gz(t) = A0

[
1

3
+ 2

3
(1 − σ 2t2)exp

(
−σ 2t2

2

)]
exp(−λt)

+Abck, (1)

where σ/γμ is the local field distribution width, γμ =
13.553 MHz/T being the muon gyromagnetic ratio, and λ

is the electronic relaxation rate, A0 is the initial symmetry,
and Abck is the background. The best fit was obtained for
σ = 0.067(3) s−1 representing the random local field from
nuclear moments, and a relaxation rate due to the electronic
moments λ = 0.013(4) s−1.

The transverse field μSR data were collected after cooling
the sample in an applied field from the normal state into the
superconducting state. In Fig. 9 we show the μSR spectra
for applied magnetic fields of 5.0 and 15.0 mT, both below
(T = 0.2 K) and above (T = 2.5 K) the transition temperature.
It is to be noted that the spectra in each of the detectors were
decomposed into real and imaginary components: Here we
show only the real components. The spectra in 5.0 mT above
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FIG. 9. (Color online) The transverse field μSR spin precession
signals recorded in transverse applied magnetic fields at (a) 0.2 K
and 15 mT (intermediate state), (b) 0.2 K and 5 mT (Meissner state),
(c) 2.5 K and 15 mT (normal state), and (d) 2.5 K and 5 mT (normal
state). The solid lines are the fit to two oscillatory damped Gaussian
functions for 15 mT (only one oscillatory function for 5.0 mT) as
described in the text. The inset in (b) shows the 0.2 K and 5 mT
spectra analyzed by the different method discussed in the text.

Tc reveals full initial asymmetry, while below Tc there is a
considerable reduction in the initial asymmetry. Further, the
spectra in 5.0 mT can be described using a single Gaussian
oscillatory component, which gives a very similar frequency
above and below Tc. The loss of initial asymmetry as observed
in our μSR spectra of LaRhSi3 can be compared with that
of LaNiSn, which also exhibits type I superconductivity.30 In
LaNiSn there is also a considerable reduction in the initial
asymmetry at lower applied fields and then the asymmetry
recovers in higher applied field, which is very similar to what
we have seen in LaRhSi3. However, if we use a different
grouping method [(F − αB)/(F + αB), where F and B are
the forward and backward detectors and α is a calibration
constant] to analyze the 5.0 mT spectra at 0.2 K, we observe
an offset in asymmetry instead [see inset of Fig. 9(b)].

On the other hand, the spectra in a 15.0 mT field clearly
reveal the presence of two oscillatory terms. The spectra are
best described by two oscillatory functions each damped with
a Gaussian, that is,

Gz(t) =
2∑

i=1

Aicos(ωit + ϕ) exp

(
−σ 2

i t2

2

)
, (2)

where Ai is the partial asymmetry (A1 + A2 = A), σi is the
relaxation rate, and ωi = γμHi is the central frequency for
the respective components, γμ being the gyromagnetic ratio.
Solid lines in the spectra show the best fit with this model,
the fit parameters (for spectra at 0.2 K) are A1 = 0.115, σ1 =
0.02 μs−1, and ω1 = 2.02 MHz for component 1 and A2 =
0.096, σ2 = 0.08 μs−1, and ω2 = 2.28 MHz for component
2. From these parameters, we obtain the value of the internal
magnetic field and weight fraction, which are 15.0 mT and
54.5% for the slow component and 17.2 mT and 45.5% for the
fast component. The former value of the field is the same as

FIG. 10. (Color online) The maximum entropy spectra for (a)
15.0 mT at 0.2 K and (b) 5.0 mT at 0.2 K. Inset in (b) shows an
expanded view to show the increase in P (B) near B = 0.

the applied field (from the silver holder), while the latter value
can be taken as an estimate of the critical field coming from
the intermediate state of the superconducting fraction of the
sample for type I behavior.

It is worth mentioning here that normally one would expect
the μSR spectra to show the Kubo-Toyabe behavior associated
with nuclear fields; however, the data reduction used, which
rotates the spectra, effectively removes this contribution. We
have also analyzed the μSR data of 5 mT at 0.2 K with a
different method as mentioned above and the resultant spectra
are shown in the inset of Fig. 9(b). With this method an offset
is observed in μSR asymmetry for T = 0.2 K, B = 5 mT
(Meissner state). The spectra in the inset of Fig. 9(b) were fitted
using the sum of Eqs. (1) and (2), but with only one component
in Eq. (2). The decay is very weak because of the small nuclear
moments. The quality of the fit can be seen from the figure.
The maximum entropy spectra for the 5 mT data at 0.2 K is
shown in Fig. 10. As is expected for a sample in Meissner state,
we observe an increase in P (B) near B = 0. However, we do
not see increase in P (B) near B = 0 from Meissner volume in
the intermediate state (for T = 0.2 K, B = 15 mT) of sample.
We suspect that it is due to the effect of demagnetizing field,
which is significant for a polycrystalline sample.

In Fig. 10 we have also plotted the maximum entropy
spectra for 15.0 mT at 0.2 K. Two sharp peaks in the maximum
entropy spectra clearly demonstrate that the two oscillatory
components of our model are at significantly different frequen-
cies, one at ∼15.0 mT and the other at a somewhat higher value
of ∼17.2 mT. For a type II superconductor the establishment
of a flux line lattice shows that the average field shifts to a
lower frequency,31 whereas for a type I superconductor while
entering the intermediate state (the regions of the sample are
partially in normal and partially in superconducting states)
the regions which are normal have an internal field which
is equivalent to critical field. Thus, μSR data give us a
thermodynamic critical field Hc0 = 17.2 ± 0.1 mT in good
agreement with the magnetization and specific heat data.

IV. CONCLUSION

We have examined the physical properties of the noncen-
trosymmetric superconductor LaRhSi3 by detailed magneti-
zation, specific heat, and electrical resistivity measurements
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and found a sharp superconducting transition at Tc = 2.16 K.
While the zero field specific heat data provide evidence of
bulk BCS superconductivity in a weak coupling regime, the
specific heat data measured under the applied magnetic field
strongly reflect a type I superconductivity in this compound, as
is also revealed by the field dependence of the magnetization.
Superconducting parameters estimated within the framework
of BCS theory from the electronic specific heat coefficient
and residual resistivity not only provide conclusive evidence
of type I superconductivity, but also specify that LaRhSi3
is a moderately dirty-limit superconductor. The microscopic
study of superconductivity in LaRhSi3 using μSR confirms
conventional s-wave singlet pairing and a type I supercon-
ductivity with a thermodynamic critical field of 17.2 mT. An
ASOC that is not sizable enough to dictate the superconducting
properties in zero field, becomes reinforced in magnetic field

leading to an exponential evolution of γ with magnetic field
and a field-dependent anisotropic order parameter in the
superconducting state is speculated. Further investigations,
preferably on single crystals of LaRhSi3, would be highly
desirable to understand better the microscopic details of the
superconductivity in this compound.
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H. H. Wen, Phys. Rev. B 79, 052506 (2009).

15V. M. Edelstein, Sov. Phys. JETP 68, 1244 (1989).
16L. P. Gor’kov and E. I. Rashba, Phys. Rev. Lett. 87, 037004 (2001).
17K. V. Samokhin, E. S. Zijlstra, and S. K. Bose, Phys. Rev. B 69,

094514 (2004).
18P. A. Frigeri, D. F. Agterberg, A. Koga, and M. Sigrist, Phys. Rev.

Lett. 92, 097001 (2004).
19S. Fujimoto, J. Phys. Soc. Jpn. 76, 051008 (2007).
20P. Lejay, I. Higashi, B. Chevalier, J. Etourneau, and P. Hagenmuller,

Mater. Res. Bull. 19, 115 (1984).
21N. Kimura, Y. Umeda, T. Asai, T. Terashima, and H. Aoki, Physica

B 294-295, 280 (2001).
22T. Terashima, M. Kimata, S. Uji, T. Sugawara, N. Kimura, H. Aoki,

and H. Harima, Phys. Rev. B 78, 205107 (2008).
23B. Mühlschlegel, Z. Phys. 155, 313 (1959).
24N. R. Werthamer, E. Hefland, and P. C. Hohenberg, Phys. Rev. 147,

295 (1966).
25A. M. Clogston, Phys. Rev. Lett. 9, 266 (1962).
26B. S. Chandrasekhar, Appl. Phys. Lett. 1, 7 (1962).
27K. Maki, Phys. Rev. 148, 362 (1966).
28W. McMillan, Phys. Rev. 167, 331 (1968).
29T. P. Orlando, E. J. McNiff, Jr., S. Foner, and M. R. Beasley, Phys.

Rev. B 19, 4545 (1979).
30A. J. Drew, S. L. Lee, F. Y. Ogrin, D. Charalambous, N. Bancroft,

D. Mck Paul, T. Takabatake, and C. Baines, Physica B 374-375,
270 (2006).

31S. L. Lee, S. H. Kilcoyne, and R. Cywinski, Muon Science (Muons in
Physics Chemistry and Materials) (Institute of Physics Publishing,
Bristol/Philadelphia, 1999).

064522-9

http://dx.doi.org/10.1103/PhysRevLett.92.027003
http://dx.doi.org/10.1103/PhysRevLett.92.027003
http://dx.doi.org/10.1143/JPSJ.76.051009
http://dx.doi.org/10.1143/JPSJ.76.051009
http://dx.doi.org/10.1103/PhysRevLett.93.247004
http://dx.doi.org/10.1103/PhysRevLett.97.017006
http://dx.doi.org/10.1103/PhysRevLett.97.017006
http://dx.doi.org/10.1103/PhysRevLett.95.247004
http://dx.doi.org/10.1143/JPSJ.76.051010
http://dx.doi.org/10.1143/JPSJ.76.051010
http://dx.doi.org/10.1143/JPSJ.76.051010
http://dx.doi.org/10.1143/JPSJ.75.043703
http://dx.doi.org/10.1016/j.jmmm.2006.10.717
http://dx.doi.org/10.1016/j.jmmm.2006.10.717
http://dx.doi.org/10.1103/PhysRevB.58.497
http://dx.doi.org/10.1103/PhysRevB.58.497
http://dx.doi.org/10.1103/PhysRevLett.102.117007
http://dx.doi.org/10.1103/PhysRevLett.102.117007
http://dx.doi.org/10.1103/PhysRevB.80.064504
http://dx.doi.org/10.1103/PhysRevB.80.064504
http://dx.doi.org/10.1143/JPSJ.76.073708
http://dx.doi.org/10.1143/JPSJ.78.034710
http://dx.doi.org/10.1143/JPSJ.78.034710
http://dx.doi.org/10.1103/PhysRevB.79.052506
http://dx.doi.org/10.1103/PhysRevLett.87.037004
http://dx.doi.org/10.1103/PhysRevB.69.094514
http://dx.doi.org/10.1103/PhysRevB.69.094514
http://dx.doi.org/10.1103/PhysRevLett.92.097001
http://dx.doi.org/10.1103/PhysRevLett.92.097001
http://dx.doi.org/10.1143/JPSJ.76.051008
http://dx.doi.org/10.1016/0025-5408(84)90017-5
http://dx.doi.org/10.1016/S0921-4526(00)00659-1
http://dx.doi.org/10.1016/S0921-4526(00)00659-1
http://dx.doi.org/10.1103/PhysRevB.78.205107
http://dx.doi.org/10.1007/BF01332932
http://dx.doi.org/10.1103/PhysRev.147.295
http://dx.doi.org/10.1103/PhysRev.147.295
http://dx.doi.org/10.1103/PhysRevLett.9.266
http://dx.doi.org/10.1063/1.1777362
http://dx.doi.org/10.1103/PhysRev.148.362
http://dx.doi.org/10.1103/PhysRev.167.331
http://dx.doi.org/10.1103/PhysRevB.19.4545
http://dx.doi.org/10.1103/PhysRevB.19.4545
http://dx.doi.org/10.1016/j.physb.2005.11.072
http://dx.doi.org/10.1016/j.physb.2005.11.072

