
MATHEMATICAL PROGRAMMING ALGORITHMS FOR EQUILIBRIUM ROAD

TRAFFIC ASSIGNMENT

by

Seungjae Lee

A thesis submitted to the University of London

for the degree of Doctor of Philosophy

Centre for Transport Studies

University College London
	

January 1995

'1	 l•



To my parents



ABSTRACT

The equilibrium approach to representing interactions between the supply and

demand sides of traffic assignment has been used widely in the estimation of traffic flows on

road networks. Although this approach is quite reasonable, there is a considerable gap

between the observed and modelled values of cost and flow. This gap can be reduced by

relaxing some of the restrictive assumptions behind the models used in order to enhance

their realism.

This study investigates the solutions of various advanced road traffic assignment

models. Priority and signal controlled junctions are modelled in traffic assignment in order

to enhance the realism of junction analysis. A multiclass assignment is modelled to represent

different groups of users. These problems are known to be non-separable because traffic

cannot be segmented in such a way that the costs incurred by any one segment vary only

with the flow within that segment. Existence, uniqueness and stability properties of solutions

to these problems are investigated. These analyses are important to know the reliability and

repeatability of any solutions that are calculated. Analyses of these properties lead to some

guidelines for using these detailed models. A number of new solution algorithms are

developed to solve the resulting traffic assignment problems. These algorithms belong to the

general category of simplicial decomposition which solves the problem by dividing it into

two subproblems: a linear and a master subproblem which are solved alternately. One of the

advantages of these algorithms is that they operate in a lower dimensional space than that of

original feasible region and hence allow large-scale problems to be solved with improved

accuracy and speed of convergence. These improved algorithms give many choices to the

traffic management studies.

Two substantial networks have been used to compare the performance of new

algorithms on the various models developed. They have performed favourably by

comparison with existing algorithms. A small example network has been used to investigate

existence, uniqueness and stability properties using the models. In a priority controlled

model, a unique stable solution has been obtained using the model whilst in a signal

controlled model, multiple and unstable solutions have been obtained. In a multiclass model,

a unique solution has been obtained in terms of the total class flow whilst multiple solutions

have been obtained in terms of each class flow. These results correspond well to the

theoretical analyses of these models, which has shown to have indeterminate behaviour and

by the nature of these models assumed, the degree of non-separability is ordered according

to priority controlled, multiclass and signal controlled models.
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CHAPTER 1. INTRODUCTION

1.1 GENERAL BACKGROUND

As urban infrastructure grows rapidly, the role of transportation systems becomes

more important to give mobility and accessibility. Its importance as a basic element of

urban areas is recognised most dramatically when it does not operate properly. A

requirement for comprehensive transportation planning has therefore emerged in order to

use urban areas effectively and efficiently.

The transportation planning process conventionally consists of four stages: trip

generation, trip distribution, modal split and traffic assignment. This process is directly

related to the behaviour of individuals decisions making. Trip generation is a stage to

estimate if travellers make a trip for some purposes. The trip distribution stage estimates

a demand for travellers going from some places (or, origins) to others (or, destinations).

The modal split stage estimates the usage of the various modes of transportation that are

available for each origin-destination pair. Finally, the traffic assignment stage estimates

traffic flows and conditions in transportation systems for each mode. The results of

traffic assignment give a transportation planner or a traffic engineer specific information

relating to estimated traffic flows and travel costs which can then be used to support

decisions on policies.

The road traffic assignment process estimates the flow pattern on the links of a

road network, given the demand associated with each origin and destination pair of the

network, and the travel cost functions for each link of the network. The equilibrium

approach to representing interactions between the supply and demand sides of the

transport process has been used widely for traffic assignment.
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Although this approach is quite reasonable, there is often a considerable gap

between observed and modelled values of costs and flows. This gap can be reduced by

relaxing some of the restrictive assumptions behind the models that are used in order to

enhance their realism. Assumptions relating to the demand side have been relaxed by

incorporating some dynamic elements into the analysis (see, Vythoulkas,1990 and

others). Assumptions concerning the supply side have been relaxed by considering the

detailed modelling of traffic behaviour that is expressed by cost functions. In this thesis,

a relaxation of these latter assumptions is investigated.

Conventionally, link travel times are represented by flow-delay functions.

However, road users choose their routes so as to minimise their whole travel costs, and

this typically involves passing through one or more junctions. Details of junction delays

are therefore required to represent traffic movements. Another feature that can be

introduced to improve realism in a conventional traffic flow-delay function is that of the

multiple user class, each with distinct behaviour. A concept of multiple user classes can

be distinctive characteristics of each class such as physical sizes and types of vehicles,

cost function types, and road network restrictions. The resulting enhanced cost functions

can lead to more accurate estimates of flow by representing more realistic congestion

effects and interactions on route choice in the traffic assignment process.

As increasingly detailed cost functions are introduced, the problem of

monotonicity of the cost function and hence existence of a unique stable solution arises.

The condition of separability, that the cost on the link is only a function of the traffic

flow on that link itself, is violated when detailed junction models are incorporated. Thus,

non-separability arises because of influential interactions between different elements of

traffic on links either when multiple user class behaviour is modelled, or at junctions

18



when priorities passing through junction or traffic responsive signal controls are

modelled. This non-separability can result in some problems because the resulting

detailed cost functions do not normally show the property of monotonicity required to

guarantee the existence of a unique stable solution and the convergence of solution

algorithms.

The good behaviour of a traffic assignment model depends on the existence of a

unique stable solution: if a model has a unique stable solution, we say that it has good

behaviour. Conditions of good behaviour have been studied by various authors. A

sufficient condition for good behaviour due to Smith (1979) is that the demand be within

capacities, and the Jacobian matrix of the cost function be positive definite or

equivalently that the cost function be strictly monotone. A corresponding necessary

condition due to Heydecker (1983) is that the Jacobian matrix of the cost functions be

everywhere a P matrix (the condition for a P matrix is that the determinants of all

principal submatrices are everywhere non-negative).

The class of simplicial decomposition algorithms has been shown to be promising

to solve the equilibrium road traffic assignment problem (Larsson and Patriksson, 1992

and others). These algorithms follow the simplicial decomposition principle of Danzig

and Wolfe (1960). They consist of two procedures: a linear subproblem and a master

subproblem which the algorithm solves alternately. The linear subproblem is obtained as

a linear approximation to the original problem and corresponds to a shortest path search.

The solutions to successive linear subproblems are used as the extreme points of a

simplex. The master subproblem then solves the original nonlinear problem over the

convex hull generated by this simplex. One of the advantages of simplicial

decomposition algorithms is that they solve the nonlinear problem in a space of lower

dimension than that of the original feasible region and hence allow large-scale network

19



problems to be solved using advanced techniques with improved properties and speed of

convergence.

1.2 OBJECTIVES

The first objective of this study is the modelling of equilibrium road traffic

assignment problems with non-separable cost functions. Non-separability arises because

of influential interactions among different elements of traffic on links or at junctions.

Link and junction interactions arise respectively when different classes of road users

share a link, and when junction priorities or signal controls are modelled. In this thesis,

multiclass traffic assignment is studied as a link interaction case, and traffic assignments

with priority and signal control junction models are studied as junction interaction cases.

In each of these non-separable cases, travel times on several links depend on the flow on

those links and also on the flow on other links.

This objective leads to the development of solution methods for equilibrium road

traffic assignment problems with non-separable cost functions. First, four new simplicial

decomposition algorithms are developed to solve the separable problem. Second, a

diagonalisation solution procedure for non-separable cost, which solves a sequence of

separable cost problems representing the non-separability property, is adopted for use in

conjunction with these simplicial decomposition algorithms. Algorithms of this kind are

of immediate importance because they are useful tools for the study of detailed analysis

of transportation systems.

The importance of these extensions stems from the recognition that separable

traffic assignment models fail to capture essential features of traffic congestion by not
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representing real phenomena. In reality, the performance of traffic on each link is

affected by vehicles of other classes, oncoming traffic and different priority rules at

junctions and signal control policies. Different kinds of vehicles have different

occupancy rates, speeds, values of time, route choice criteria and cost functions. The

model developed here has the potential to play an important role in the more accurate

estimation of travel behaviour and conditions to help to develop, manage and evaluate

transport planning policies to alleviate traffic congestion.

The second objective is to analyse some properties such as existence, uniqueness

and stability of the solutions of these models in relation to the theoretical conditions for

good behaviour. These analyses show that if a cost function of a traffic assignment model

satisfies the theoretical conditions for good behaviour, that model has a unique stable

solution. These solution properties are related to the details of the delay formulae, which

include topological and geometrical characteristics of the junctions and the effects on the

cost function. The details of the delay formulae are caused by priorities of interacting

vehicular movements, signal control policies and different perceptions of travel costs for

different classes. These analyses are important to know the reliability and the

repeatability of calculated traffic equilibria, and thus lead to some guidelines for using

detailed models.

1.3 OUTLINE OF THIS STUDY

In chapter 2, fundamentals of traffic assignment are described. The historical

development of traffic assignment is surveyed briefly. The traffic assignment process is

described in terms of demand and supply interactions. Network representations for

detailed modelling are explained in terms of nodes and links. Cost functions to represent
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effects of congestion are reviewed to select appropriate ones. Beckmann's formulation is

discussed in terms of equivalence conditions. The more powerful variational inequality

formulation is then introduced. Conditions for good behaviour are represented in terms of

the Jacobian matrix. Finally, some general solution algorithms for solving nonlinear

problems are discussed.

In chapter 3, the simplicial decomposition principle is introduced in terms of a

linear subproblem and a master subproblem. Existing algorithms including the Frank-

Wolfe and the Schittenheim algorithms are represented in terms of this principle. Four

new algorithms are introduced and discussed. The performance of these algorithms are

compared using a separable traffic assignment example.

In chapter 4, traffic assignment with priority controlled junction modelling is

presented in terms of capacity calculation, cost function analysis, formulation and

numerical analysis. In capacity calculation, the effects of junction geometry and priority

rules are explained and the 11 PICADY capacity formulae are introduced. In cost

function analysis, the steady-state Pollaczek-Khinchine formula and an extension to it are

introduced. The conditions on the Jacobian matrix for good behaviour are tested, and

some properties such as uniqueness and stability are investigated using a small network.

Two larger numerical examples are used to analyse the efficiency of the various solution

methods including the four new algorithms presented in this thesis.

In chapter 5, traffic assignment with signal controlled junction modelling is

presented in terms of historical developments, signal optimisation problems, cost

function analysis and numerical analysis. Existing methods for signal optimisation are

reviewed. Parameters of optimisation are introduced and discussed. In particular,

Webster's green time calculation method is described. In cost function analysis, Webster's
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steady-state delay formula and an extension of it are introduced. The Jacobian matrix

analysis for good behaviour is presented and compared with numerical results to analyse

uniqueness and stability of the combined signal and traffic assignment using a small

network. Two larger numerical examples are used to analyse the efficiency of the various

solution methods.

In chapter 6, multiclass traffic assignment is presented in terms of historical

developments, concepts of multiclass, cost function analysis, formulation and numerical

analysis. The concept of multiclass assignment is presented in terms of its effects and

implementation. Cost functions for multiple classes are described. The Jacobian matrix of

this problem is analysed to study uniqueness and stability in the case of a small example

network. Two larger numerical examples are used to analyse the efficiency of the various

solution methods.

In chapter 7, a general summary of these various models is outhned. General

discussion and conclusions are presented on the basis of the findings of the whole study.

Finally, some possibilities for future studies draw this chapter to a close.
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CHAPTER 2. FUNDAMENTALS OF TRAFFIC ASSIGNMENT

2.1 iNTRODUCTION

This chapter reviews the fundamentals of the traffic assignment process and

describes some existing solution methods. The historical developments of traffic

assignment and solution methods are surveyed. The traffic assignment problem is

described in terms of interactions between supply and demand. Network representations

of supply side at various levels of details are introduced. Various formulations of this

problem are descnbed as each of a convex mathematical programme and variational

inequality. The role and effect of cost functions in these formulations are reviewed. In

particular, satisfaction of conditions for good behaviour is introduced in terms of the

Jacobian matrix of the cost functions. Solution algorithms are briefly presented for each

of the separable and non-separable cases.

2.2 HISTORICAL DEVELOPMENT OF TRAFFIC ASSIGNMENT

Traffic assignment is the interactive process between travel demand and

transportation supply. Travel demand is people's (or users') desire to move from one

place (or origin) to another place (or destination). Transportation supply is a set of

facilities such as streets and junctions in road networks. This representation of travel

demand and transportation supply induces the traffic flow pattern and travel cost as an

equilibrium point. Wardrop's first principle (1952) expressed this kind of equilibrium as

a state in which for each origin-destnation pair no user can reduce their costs by selecting

a different route. Wardrop's second principle (1952) identifies a state in which the total

users' travel cost is minimised with respect to choice of routes. Beckmann, McGuire and

Winsten (1956) formulated equilibrium traffic assignment as a convex mathematical
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programme using the concept of Wardrop's first principle.

The formulation of Beckmann et a! (1956) assumed that the cost of using each

link of the network varies only with the flow on that link so that there is no interaction

between flows on different links. This is called the separable cost case. However, in

practice there are many cases in which the flow on one link affects the cost of travel on

others. This is called the non-separable cost case. Examples of the non-separability arise

at a priority-controlled junction in which the capacity of the minor stream is a decreasing

function of the major flows and hence the minor stream cost function is influenced by the

major flows, and at signal-controlled junctions in which the green time is determined

appropriately by the flows approaching them. There are also interactions between

different vehicle classes on each link that can be represented in this way.

Non-separable cost models have attracted a large amount of researches into their

properties, possible reformulations into better understood mathematical programming

problems and algorithms for their solutions. The traffic assignment problem with link

interactions was first fonnulated as a variational inequality by Smith (1979). He showed

that Wardrop's conditions of user equilibrium are equivalent to a variational inequality.

Aashtiani and Magnanti (1981) reformulated this condition as a nonlinear

complementarity. However, these two formulations were proven to be essentially

equivalent by Magnanti (1984). Smith (1979) proved that a sufficient condition for

uniqueness and stability of traffic equilibria is that the Jacobian of the link cost function

is positive definite. Heydecker (1983) presented a corresponding necessary condition for

these properties.

An extended two-way street traffic assignment problem has been suggested by

Dafermos (1971), who included a discussion of the existence, uniqueness, and stability of
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the equilibrium flow pattern when there is an interaction between flows in one direction

and flows in the opposite direction. Dafermos (1972), and Van Vliet, Bergman and

Scheltes (1986) presented multiclass user equilibrium assignment formulations in which

several classes of vehicles that have different performance and cost functions interact on

each link. Braess and Koch (1979) proved the existence of equilibria in asymmetric

multiclass user assignment in which the effect on cost C a on link a, of the flow Vb, on

link b, is not the same as the effect on cost Cb, on link b, of the flow Va on link a. This

can be represented as:

Ca	 act, 
for some a^b	 (2.1)

They proved that if the individual cost functions in the multiclass user assignment are

continuous and monotone, then there is at least one user equilibrium flow pattern. In an

elastic demand model, the demand is a function of travel costs between each origin and

destination. Dafermos (1981) presented a multimodal network equilibrium problem with

elastic demand in which the link cost depends on the entire load pattern and the travel

demands. Abdulaal and LeBlanc (1979) have studied combining modal split and

equilibrium assignment as the more general case. Fisk and Nguyen (1981) proved the

existence and uniqueness of an asymmetric two-mode (auto and public transit)

equilibrium model. Daganzo (1983) studied stochastic network equilibrium with multiple

vehicle types in which the users' perceptions of the cost are probabilistic.

Solution algorithms commonly applied to the traffic assignment problem use

successive linear approximations to the objective function. The most well known is the

Frank-Wolfe (F-W) algorithm (1956). Algorithms of this type include the PARTAN

search direction (Luenberger, 1989, pp254-257), the modified search direction of

Fukushima (1984), the modified step lengths of Weintraub, Ortiz and Gonzales (1985),

Wolfe's away step (1974) and Holloway's extension (1974), among others. These
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extensions have been derived to overcome the slow convergence of the Frank-Wolfe

algorithm in its later stages.

The simplicial decomposition principle of Dantzig and Wolfe (1960) provides an

important framework to describe many nonlinear algorithms. Solution methods

belonging to this principle solve alternately two subproblems, a linear and a master one.

The linear subproblem is to solve a linear approximation of the original problem: the

solution of this corresponds to a vertex of the feasible region. In the master subproblem,

the reduced-dimensional version of the original problem is solved in the convex hull

generated by the solutions to all previous linear subproblems.

Von Hohenbalken (1975,1977) gave a theoretical background for simplicial

decomposition methods. The convergence result obtained by Von Hohenbalken (1975)

allowed for the use of column dropping, that is the possibility of removing extreme

points from the feasible set if they have small weights in the current solutions. Heam,

Lawphongpanich and Nguyen (1984) proved finite convergence of a simplicial

decomposition method with using column dropping in the case of the bounded feasible

set. Sacher (1980) extended this bounded case to an unbounded feasible set. Shetty and

Ben Daya (1988) proposed a similar algorithm to that of Sacher (1980) but in the master

problem they use either a reduced gradient or a gradient projection method. In the master

problem, Von Hohenbalken (1977) used Newton directions, whilst Pang and Yu (1984)

approximated the master problem by a quadratic programme. Hearn et al (1984) used the

projected Newton method of Bertsekas and Gafni (1982) to solve the master problem,

Dembo and Tulowitzki (1988) used the PARTAM search direction and Larsson and

Patricksson (1992) used either a reduced gradient method or an approximated Newton's

method.
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Decomposition schemes have been applied to the non-separable problem by

Bertsekas and Gafm (1982), and Aashitiani and Magnanti (1981) using Newton type

methods. Each of them used Lemke's algorithm (1965) to solve the linear subproblem.

Smith (1983) used a column generation technique based on reformulation of the

variational inequality as a non-convex mathematical programme.

One of the heuristic algorithms that has been used for the non-separable case is

based on an iterative diagonalisation (or relaxation) procedure, where each iteration

requires the solution of a full-scale separable user equilibrium problem (Fisk and

Nguyen,1982). A proof of the convergence for this procedure is given by Dafermos

(1982) under the condition that the cost function is strictly monotone. Another approach

is a streamlined version of the first one; it performs a single iteration of the equilibrium

solution procedure at each iteration of the diagonalisation procedure. This streamlined

version has been found to be more efficient than the first one (Sheffi, 1985).

Van Vliet et al (1986) used a diagonalisation algorithm to solve traffic assignment

with multiple user classes. The formulation of this allows user-class specific network

variations to be represented, such as use restrictions of a network for some classes, and

variations in the value of travel time and perceived travel cost. In this model, the cost

incurred by travellers of each class depends on the flows of traffic in all classes on that

link. Dafermos (1981) presented a Newton projection method for calculating multimodal

equilibria within the diagonalisation framework

2.3 GENERAL DESCRIPTION OF THE EQUILIBRIUM APPROACH

A transportation system consists of two components; a transportation supply and

travel demand. The transportation supply is provided by a set of facilities for the users of
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the transportation network. The travel demand is a number of users wishing to travel via

the network. A representation of transportation supply and travel demand is necessary to

compute the flow pattern which results from the interaction between them. The

resolution of this interaction is known as traffic assignment.

2.3.1 Transportation supply

The transportation supply is a set of facilities which can be identified with the

road network. The road network includes streets and junctions through which traffic

moves. The term "network " is used to describe a structure that can be represented

mathematically by two sets: a set of nodes (or, points or vertices) and a set of directed

links (or, line segments or arcs) connecting them. A graph is used to represent the

network mathematically: a directed graph is a pair of set G=(N, L), where N is a set of

nodes and L is a set of directed links. Furthermore, the network representations of a road

system have associated with their impedance functions that represent the cost of travel.

Impedance which affects flows on the network can represent time, cost, disutility or other

measures. When the flow involves people, the term "generalised cost" is used instead.

In transportation planning, the demand for travel is represented by dividing the

study area into smaller subareas called zones. We assume that each of these zones is

homogeneous. The size of zone can vary from a small block to a whole town. Each zone

is represented by a special node called a centroid. Each centroid represents either or both

a source or a sink where trips originate and terminate respectively. Once a set of

centroids are defmed, the desired movements through the network can be expressed in

terms of an origin-destination matrix. This matrix indicates the demand per unit time for

travel between each origin and destination (O-D) pair.
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Flow-delay functions are used to represent travel costs Ca on each link a. It can be

time taken to travel along the link or some more general notions of cost. Travel Cost is a

measure of transportation supply. In general, we express the travel cost for each link as a

function of the vector of all link flows v.

Definition : supply feasibility

If there is an asymptotic capacity Qa on link a, then the set of link flow vector v is supply

feasible if 0 ^ Va < Qa for each a E L. We denote the set of all supply feasible flows by

. Note that if there is no such capacity, then all positive flows are supply feasible.

2.3.2 Travel demand

Travel demand represents the users' desire to travel. This can be categorised by

trip purposes (work, study, business, leisure), modes (private car, public transport, on

foot) and time of day. It is expressed numerically by the number of users wishing to

travel per unit time between each origin and destination pair. If travel demand depends

on the cost of travel between O-D pairs, it is described as elastic demand. Otherwise,

travel demand is assumed to be a fixed.

Travel demand can be estimated using methods belonging to these categories:

1) Direct observation methods: using field observation, extensive surveys and interviews.

Home interviews, roadside interviews, vehicle following methods and aerial photography

methods belong to this category. All of these methods are expensive.

2) Indirect methods: using synthetic methods such as trip distribution models in the four

stage transport planning process.

3) Simplified method: using partial traffic counts and conventional transport models in

the four stage transport planning process. This is an inexpensive method based on

synthetic mathematical principles.
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Associated with each (o,d)E B is a positive real number Tod called the demand

per unit time for travel between O-D pairs (o,d) where B is a set of all O-D pairs. A path

p is a set of links that connect a sequence of nodes without loop. We denote by 
od the

set of all paths for O-D pair (o,d). The flow on each path p is denoted by t i,. The path

cost C, is the sum of the costs of the links that comprise it. The flow on link a is the sum

of the flows on the paths that include the link. The link-path incidence matrix

represents the relation between links and paths, where each row is associated with link a

and each column with path p. The elements ap of the row corresponding to link a take

the value of 1 in the columns corresponding to the paths containing link a and the value

of 0 in the other cases. Thus for link a and path p,

ap {;, ifaEp
=

	

	 (2.2)
otherwise

Definition : demand feasibility

The vector, t of the path flows t is demand feasible if for each O-D pair (o,d), the sum

of flows on all paths, (rod) for that od pair equals the demand Tod from origin o to

destination d, and each path flow tp is non-negative. This is represented mathematically

as follows:

= TOd, V(o,d)eB
	

(2.3)

p€P

V PEPOd V(o,d)EB

We denote the set of all demand feasible flows by .8. This demand feasibility condition

defines a convex set because it is represented by a set of linear inequalities.

Definition: Convex set

A set E	 is convex if the convex combination of any two points in also belongs to .

Mathematically,

vo,v1 E &, E[0,1],

V2 = ( l-f)v0 +
	

(2.4)

V2 E.
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2.3.3 Demand and supply interaction

Travel demand depends on travel costs whilst travel costs depend on flows. A

mutual interaction between demand and supply is thus induced. This interaction has two

simultaneous effects; the determination of demand as a function of travel cost from

origin to destination, and the determination of a flow pattern due to the dispersion of

demand.

Through this interaction between travel demand and transportation supply the

system is in a state of equilibrium if the path flows obtained in the current iteration

according to a principle of route choice give rise to travel costs that are the same as those

in the previous iteration.

Definition : supply and demand feasibility
A set of flows is supply and demand feasible or just feasible if it is both supply feasible
and demand feasible.

2.3.4 Wardrop's principles

If users are assumed to be rational such that each of them chooses their own paths

in order to minimise their own individual costs of travel from origin to destination, an

equilibrium arises when no user can reduce his own cost by selecting a different path. In

this state, all paths used between O-D pairs have the same cost and less than that of any

unused path. This condition is expressed formally by Wardrop's first principle (1952):

"the journey times on all routes actually used are equal, and less than those which would

be experienced by a single vehicle on any unused route". As a result of this principle, the

paths actually used are minimum cost paths in the existing state. This flow pattern is

descriptive because it describes at least approximately the real phenomenon of individual

route choice in a transportation network.
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Wardrop's second principle represents the state in which the total cost of travel in

the whole network is minimised. It is known as the system optimum principle and is

prescriptive because the flows of the system optimum must usually be forced upon the

users in order to minimise the total cost.

2.4 NETWORK REPRESENTATION

There are various ways of representing a network according to the level of detail

required for the intended purpose. For example, linked intersections in Figure 2-1 can be

represented as a simple way in Figure 2-2 or a detailed way in Figure 2-3. The simplest

way is to use one node to represent a whole junction and one link to represent a road

between junctions. The detailed way of representing a network is according to the

streams in an approach and possible turning movements. This detailed way of

representing a network has an advantage that the movement of flow or even turning

movement can be estimated. In an approach, many streams are represented as links. The

node is used to distinguish among links. The level of detail depends on the data and cost

of analysis. In general, more detailed representations lead to more accurate estimations in

modelling. The analysis of impact of the level of detail used has been studied by Bovy

and Jansen (1983).

Ailsop (1992) set out some of principles describing how to represent a road

junction by a set of nodes and links in traffic assignment models:

1. Any point at which streams of traffic merge or diverge must be represented by a node.

2. Traffic travels in one direction along each link.

3. Traffic entering a node may leave the node by any link starting at the node.

4. The cost of travel is made up of costs of travel along the links traversed.

5. The cost of travel along a link is a known function of the flows of traffic on that and
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other links.

He also pointed out that the representation of traffic management measures

requires that

1. Traffic entering a junction in one stream may leave the junction only by certain

permitted exits.

2. Different streams of traffic entering a junction from the same approach road may incur

different delays at the junction.

He commented that a junction can be represented in a way that meets both of

these sets of requirements as follows:

1. Representing each stream of traffic entering the junction by a link ending at its own

entry node.

2. Representing each exit from the junction by an exit node with a link starting at it and

leading away from the junction.

3. Representing the permitted movements from each entering stream by links from its

entry node to the relevant exit nodes.

4. Where an exit node has only one link ending at it, that node is omiued and the link

starting at it is combined with the link ending at it.

5. Where an entry node has only one link starting at it, and that link ends at an exit node,

that entry node is omitted and the link ending at it is combined with the link starting at it.

The work presented in this thesis follows these principles. In particular,

Charlesworth's network is represented according to this way. In appendix 2, there is a

sketch of this network which has 6 junctions. The detailed way of representing these

junctions is shown in appendix A2.4. Junctions are represented by as few nodes as

possible without losing information of detailed movements.
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2.5 FORMULATIONS

2.5.1 Mathematical representation of Wardrop's first principle

Wardrop's first principle (1952) can be expressed mathematically as a set of path

flows t that satisfy the following relations;

t>O =Cp=Mod1
t=O	 CP^MOdJEPodV0dEB	 (2.5)

where od is the set of paths from origin o to destination d.

is the traffic flow on path p

C, is the travel cost of using path p

Mod is the minimum travel cost from origin o to destination d.

This representation makes the implicit assumptions that each traveller has perfect

information or knowledge of the travel time on each of the routes that he could use, and

each traveller has an identical route choice criterion based on the travel cost. However, in

reality each traveller chooses a route based on the perceived travel cost. The perceived

travel cost varies between people. The identical route choice criterion based on only the

travel time excludes the different preferences for components of a generalised cost.

Components of the generalised cost include distance, travel time, tolls, delay, number of

stops, and scenery. In reality, each traveller makes a route choice based on some

combinations of these attributes. We then assume that each traveller has a probabilistic

distribution for the perceived travel cost. This leads to the development of a stochastic

traffic assignment (see, Sheffi 1985, Lee 1990 and Lee et al 1990).
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2.5.2 Beckmann's formulation

Beckinann et a! (1956) formulated equilibrium assignment according to

Wardrop's first principle as a convex mathematical programme;

PROBLEM 1: Mm z(t)
	

(2.6)

S.t. tp ^ 0 V € rod' Vod E B

VodeB
peP

wherez(t) =	 1Ca('th7
aeL v=O

v =tp 6 ap Va € L,and
pEP

oap{j 

ifaEp

-	 otherwise

Equivalence of this formulation to Wardrop's first principle can be shown by

forming a Lagrangean function and fmding derivatives with respect to the path flow ti,.

First, the Lagrangean function can be written as:

L(t,) = z(t) +	 ljI (TOd -	 t)	 (2.7)

peP,

where	 is the Lagrange multiplier associated with the constraint, t, = T of the
peP

problem 1.

According to the Kuhn Tucker conditions (Taha, 1982) at the optimal point, the

Lagrangean satisfies the following conditions with respect to path flow:
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t-=0and--^0, VPEPOd,VOdEB
tp

N1od 

=0, Vod€B
	

(2.8)

t ^0, VpEP,VOdEB

Firstly, taking the first derivatives of the Lagrangean function with respect to

and equating it to zero, we have:

VPEPOd,VOdEB	 (2.9)

Secondly, taking the first derivatives of the Lagrangean function with respect to Nod and

equating it to zero, we have:

V0dEB	 (2.10)
aWod

We have thus obtained the following equations:

t(C - Vod) =0 VPEPOd ,Vod€B

(CP -VOd)^0 VpEP,VodEB	 (2.11)

0 VpePQd,V0dEB

V0dEB
p€P,

In the first equation of (2.11), we have two possibilities with respect to t.1,: t = 0

and t ^0: in view of the third equation of (2.11), the equation, t. ^0 reduces to t. >0. If t

= 0, then (Cr- N') ^ 0. if t > 0, then (C -ii ) = 0. These represent Wardrop's first

principle that if path p E 'od is used, then Ci,, the cost of travel on path p is the same as

the minimum cost,	 for that od pair. Otherwise, the path p is not used and the cost of

travel on it, C is greater than the minimum cost, 	 for that od pair. The last two
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equations of (2.11) represent the nonnegativity and flow conservation conditions

respectively.

This formulation can be used in the separable case in which each link travel cost

is an increasing function ca(va) of the flow on that link alone. In this case, the Jacobian

matrix J =	 has strictly positive diagonal elements J =	 0 and zero off-

diagonal ones = 0 (a ^ b). This increasing and separable cost function is a sufficient

condition in order to formulate Wardrop's equilibrium as a convex mathematical

programme as it guarantees the convexity of the objective function. In more realistic

modelling, we have to consider the effect on the cost function for each link of the flows

on other links. A more general formulation of equilibrium that can accommodate

interactions of this kind is introduced in the next subsection.

2.5.3 Variational inequality formulation

Smith (1979) showed that Wardrops condition of user equilibrium is equivalent

to a variational inequality formuation as:

Theorem (Smith, 1979): The feasible path flow vector t .8 m J is an equilibrium flow

if for any demand feasible path flow vector s E.&,

C(t) •(t-s) ^ 0

where C(t) is the vector of path cost at the flow t.

The related variational inequality problem is as follows:

PROBLEM 2: Find a feasible path flow vector t E .8	 such that V S E .8,

C(t) •(t-s) ^ 0
	

(2.12)

This path flow representation can be changed to the link flow representation using

the incidence relation of paths and links:
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V a = tp&, Va €L	 (2.13)
od pEP,,,

where	 4f	
ifaEp

ap	 O, otherwise

The resulting problem of the variational inequality formulation based on link is:

PROBLEM 3: Find a feasible link flow vector v E .8 ri such that V u € .8

c(v)(v-u) ^ 0
	

(2.14)

where c(v) is the link cost at the flow v.

Smith (1979) defined an assignment process using the variational inequality

formulation in equation (2.14) as: the ordered pair (v, u) with v, u € .8 is an assignment

process if v€ i'.D and

c(v)• (v-u) ^ 0

The assignment process can be interpreted as a dynamical adjustment process: v may be

thought of as today's link-flow and u may be thought of as tomorrow's link-flow. This

process of route choice is directed towards routes of lower costs until Wardrop's

equilibrium is reached. Note that v is a Wardrop's equilibrium if and only if the

assignment process starting from v is (v, v).

2.5.4 Gap functions

Heam (1982) established that any solution of the mathematical programme

mm G(v)
VE

(2.15)
whereG(v)=max c(v).(v-u), Vv€.9

UEJ

is a solution of the variational inequality formulation of the equation (2.14).

Under the condition that c(v) is an increasing and separable function, G(v) is a convex
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function (for proof, see Heam, 1982).

In order to scale the values of the gap function, we can use a mean gap function,

G(v), which is calculated as the gap function divided by the demand as:

-	 G(v)
G(v)=	 (2.16)

od€B

This gap function is useful to monitor the convergence of an algorithm irrespective of the

amount of demand because it expresses the gap value in terms of mean excess cost per

trip. In this thesis, this scaled gap function will be used in the presentation of results.

Nguyen and Dupuis (1984) considered a subtly different function. They showed

that any solution of

mm g(v)
vel

(2.17)
whereg(v)=max c(u)•(v-u), VVES

uei

is also a solution of variational inequality formulation of Wardrop's principle.

Fisk (1984) mentioned that minimisation of these gap functions corresponds to

infinitely constrained problems. However, Smith (1983) defmed a family of objective

functions,

i/p

K (v) = [[c(v)(v - E (1) )])	 (2.18)

for any integer p ^ 1 where [z]+ = max(O,z) and E 1) is an extreme point of the feasible

region .8 and J indexes all such points. Smith (1983) showed that any solution of

mm K(v)
	

(2.19)

is a solution of the variational inequality formulation (2.14) of Wardrop's principle. This
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formulation has the advantage that calculation of the objective function is a finite

process. Hearn et al (1984) pointed out that the relation of the gap function in equation

(2.15) to equation (2.18) is:
G(v) = K(v)

where	 (2.20)

K(v)=Iim K (v) VVE.
p—.,o.

2.6 COST FUNCTIONS

2.6.1 Introduction

Cost functions are used to represent the transportation supply by indicating the

impedance on each link and its variation with flow. The cost functions can be developed

by either an empirical or a theoretical relation between the flow and the cost. In general,

costs are incurred on links as well as at junctions. Links generally correspond to streets

and nodes to junctions. The properties of the cost function influence the convergence

behaviour of solution methods.

2.6.2 Link cost functions

Branston (1976) surveyed some travel cost functions and reviewed their

applicability using observed data. He reviewed cost functions in two categories:

empirical and theoretical approaches. Empirical approaches included cost functions that

were derived by fitting them to observed data. In theoretical approaches, the cost

function is derived from theoretical consideration of the relationship between flow and
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travel cost as a sum of the running time and the queuing time at junctions. In general,

physical characteristics such as length, width, parking restriction, turning movements and

signal timing determine a form of the cost function and the values of parameters in the

cost function.

The notation used to describe this is:

v is the flow on a link

c(v) is the travel cost at flow v

qj is the travel cost at zero flow

QP is the practical capacity on a link

Q5 is the steady state capacity on a link

cxi,	 CX3 and (X4 are parameters representing characteristics of a road.

Note that the subscript a for representing link a is omitted in this section.

Highway Capacity Manual (1985) defined the practical capacity as the maximum

number of vehicles that can pass a given point on a roadway or in a designated lane

during one hour without the traffic density being so great as to cause unreasonable delay,

a hazard or to restrict to the driver's freedom to manoeuvre under prevailing roadway and

traffic conditions. On the other hand, the steady state capacity is defined as the capacity

in which fluctuations such as the microscopic and stochastic characteristics of a traffic

stream are ignored over time.

When flow and capacity are measured on a lane basis, the above symbols are

denoted by a prime, e.g.,

v' is the flow per lane on a link

Q'5 is the steady state capacity per lane on a link.
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2.6.2.1 Empirical approaches

Irwin, Dodd and Von Cube (1961) proposed a cost function with two linear

segments.

c(v)ta+Oti(v'QP) if v'<Q'P

c(v) = ta + a2(v - Q'P) if v' ^ Q'P 	 (2.21)

where ta = t(J + a1Q'P

Mathematical programming has some difficulties in using these functions because they

are not smooth at Q'P. However, they can be used to provide a value of travel cost at any

level of flow. The function is shown in Figure 2-4.

c(v)

ta
to

QIP	 QS	 v

Figure 2-4. Irwin, Dodd and Von Cube's cost function

Smock (1962) proposed a cost function which is smooth. This function was used

in the Detroit Area Transportation Study:

c(v) =ti exp(v/Q5)
	

(2.22)

In application, Smock estimated the value of Q5 for each link by averaging the capacities

of the intersections at each end. This value will not be equal to the steady state capacity

unless the end intersections have capacities which are equal and less than those of all

other points on the link. This function was incorporated in a heuristic iterative capacity

restraint assignment procedure in order to use in the city of Flint, Michigan, USA.
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Mosher (1963) proposed a logarithmic cost function. He chose this function

because it has the property that the change in cost per unit flow with increasing flow is

small for low flows but increases as capacity is approached. Note that this cost has an

asymptote at v = QS:

- ln(1-v/Q5)

	
(2.23)

where v <QS

However, in a realistic network, the travel cost remains finite unless the road system fails

completely. The problem of this asymptotic function is that in an iterative assignment

computation, it is quite possible that the flows assigned on some links during the early

stages exceed the corresponding capacities so that the travel cost cannot be calculated

with functions of this kind. Figure 2-5 shows the relation between link flow and cost for

this asymptotic cost function.

c(v)

tc

U	 v

Figure 2-5. The asymptotic link cost function

The Bureau of Public Roads (BPR, 1964) developed a well known function:

(vi	 I

c(v)

	

= 1+aI—I I	 (2.24)IQP) 
j

The parameters c4=O. 15 and a2=4 that were proposed for normal use imply that the
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travel cost at capacity is 15 percent higher than the free flow travel cost. The value of a1

is the delay at capacity expressed as a proportion of free flow travel cost. The value of a

determines the slope of the curve and in turn it represents the degree of the congestion

effect. This function has no asymptote, so can be evaluated at any flow.

Soltman (1965) developed a congestion function for the Pittsburgh Area

Transportation Study:

c(v) = 0	
(2.25)

wherev/Q ^2

This function was used in Schneider's (1963) combined distribution and assignment

model in the Pittsburgh Area Transportation Study. However, there are no examples of

comparison between observed and assigned flows.

The Traffic Research Corporation (1966) used the following function for

Winnipeg area:

c(v) = a1 + a2 (v' —cL3 )+ja(v' —a3 ) 2 +a 4	(2.26)

where a1, a, a3 and a are parameters.

This function relates the travel cost per unit distance to flow per lane on the links. The

links of Winnipeg network were divided into categories according to their speed limits

and the practical capacities per lane. For each category, there were a wide scatter of

points at low flows, but there were few points at high flows. Hence, the conditions at

high flows are simulated. The cost function was then fitted to this curve. A good

comparison between assigned and observed travel costs was shown by Florian and

Nguyen (1975).
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(t +tq)

D
(2.28)

It0
c(v)=t

(vIQ^O.6)

+a(v/Q-0.6) (vIQ>0.6)
(2.29)

Overgaard (1967) generalised the cost function of Soitman (1965) and Smock

(1962):

c(v) = t 0 a1 "'2
	

(2.27)

Here the value of a1 is the ratio of the travel cost per unit distance at practical capacity to

that at zero flow. Soitman assumed a value of 2 for a1 whilst Smock assumed a value of

the base of the natural logarithm, e. Overgaard found that suitable value for a1 varied

between 1.0 and 1.7 in a Toronto network.

2.6.2.2 Theoretical approaches

In theoretical approaches, the travel cost on a link is calculated as the sum of the

average running cost (from the link entry to the tail of the exit queue) and the average

cost spent in queuing at junctions at that flow, i.e.,

where tr and tq are the running and queuing travel costs respectively, and D is the length

of the link.

Campbell, Keefer and Adam (1959) proposed a cost function which relates the

speed to the ratio of flow to capacity for a signalised urban arterial in Chicago Area

Transportation Study.
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Wardrop (1968) developed a cost function which shows the relationship between

overall speed and flow on streets in central London. Because it was formulated in terms

of overall speed in the network rather than speeds on individual links, Wardrop's original

model may be described as a network cost function. The method includes both the

queuing cost at signalised junctions and the running cost between signalised junctions.

This method differs from that of Campbell et al which used a heuristic procedure to

calculate the delay at a junction for any flow. On the other hand, Wardrop derived

approximate formulae relating average delay and flow for both vehicle-actuated and

fixed time traffic signals. For both types of signal he showed that the relation between

average delay and flow was approximately:

t o	+	 a2	
(2.30)c(v)=

(1—v/Q,) (1—vIa1)D

where D is a link length.

The role of the cost function is its use in assignment procedures. Solution

algorithms are used in order to solve traffic assignment. Solution algorithms for

Wardrop's first principle that based on the formulation of Beckmann et al (1956) require

that cost functions be easily and quickly integrable. This in turn implies that its definite

integral can be evaluated analytically. The BPR and Campbell et al functions among

others (see Table 2-1) meet this requirement. However, Overgaard and TRC functions

can be expensive in computational time. Table 2-1 shows the degree of difficulty in the

integral of cost functions c(v) reviewed in this section.
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Type of cost function	 Form of integral	 Degree of difficulty

Irwin et al	 polynomial	 easy

Smock	 exponential	 fairly easy

Mosher	 logarithmic	 fairly easy

BPR	 polynomial	 easy

Soitman	 polynomial	 easy

TRC	 polynomial	 difficult

Overgaard	 numerical	 very difficult

Campbell et al	 polynomial	 easy

Wardrop	 polynomial	 easy

Table 2-1	 The degree of difficulty in the integral of cost functions

2.6.3 Junction delay formulae

A link cost function represents the relationship between travel time and flow on

that link. This ignores any interaction with other links. In general, the junction delay is a

function of the flows on several links approaching a junction. Priority and signal

controlled junctions are typical examples of cases in which the flow on one link can have

a profound effect on the cost of using another. Estimates of junction delays can be

obtained from queuing theory.

2.6.3.1 Priority controlled junction

We now introduce some terms that are widely used in the priority junction

analysis. There are

Gap : the time interval between successive vehicles passing a point on the roadway.
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Critical gap : the duration of the shortest acceptable gap if the gap acceptance

distribution is a step function.

Gap acceptance distribution : each gap is accepted by the waiting vehicle's driver with a

probability that is related to its duration by this distribution. A decision on

accepting a gap is made at the commencement of each gap.

Tanner (1962) presented a formula for estimating the capacity of a minor road

movement at a priority junction. He assumed that arrivals on each of major and minor

roads are Poisson, a constant minimum headway for each of major and minor road

vehicles, and that a fixed critical gap in major road traffic is acceptable to a minor road

vehicle. The capacity of the minor road is then:

vb(1—pb)

exp[vb (-1 I Qb )]{1 —exp(—vb ISa))	
(2.31)

where Va is minor road flow

Vb is major road flow

Sa is the departure rate in the absence of all other traffic.

Qb is the capacity in major road b.

PbVWQb

x is the critical gap

The mean delay on the minor road can be expressed as:

E(y2 )/(2Z)-I-vZexp(—v /s a )[exp(vb Is a ) — vb /S a h/yb	
(2.32)da =

	 1—vaZ[l—exp(—vb 'Sa)1

where y denotes the duration of a block of vehicles and has first and second moments:
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exp [vb(1—l/ Qb)]	 1E(y)=	 --

Vb ( l P b )	 Vb
(2.33)

E(y2) = 2exp[v b ( ic —l / Q b )]{ exp[vb ( K— l/Qb )] — vb K(1 — p b )-1+Pb — P + /[2(i—Pb)1}
v(1—pb)2

Z=E(y)+ 1/Vb

Tanner's formula depends upon explicit knowledge of the critical gap and

minimum headways rather than geometric features. Because of this it is difficult to use in

junction design. Kimber and Coombe (1980) developed a capacity formula for minor

roads based on the empirical study of various junctions. This formula is incorporated in

PICADY (Semmen, 1985) as follows:

Ia =Ga (K a +Ha — Ya e ab vb )	 (2.34)

where Ga, Ka, Ha, ''a and eab are parameters to represent the geometric characteristics.

The mean delay incurred at a priority controlled junction can be estimated using

the Pollaczek-Khinchine formula for steady state:

d_i_[Pa
a	

2aLPa
V

where Pa =

(2.35)

2.6.3.2 Signal controlled junction

Terms that are used in the description of a signal controlled junction are as

follows:

Cycle: Complete sequence of signal indications.

Cycle length : The total time to complete one cycle, denoted by the symbol C.
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Phase: The part of a cycle allocated to any combination of traffic movements receiving

right-of-way simultaneously.

Green time: The time within a given phase during which the green indication is shown,

denoted by the symbol G.

Lost time: Time during which the intersection is not effectively used by any movement;

these times occur during the changing interval (while the intersection is clearing),

and at the beginning of each phase as the first few cars in a standing queue

experience start-up delays. Lost time is denoted by L.

Effective green time: The time during a given phase that is effectively available to the

permitted movements, denoted by the symbol g.

Green ratio: The ratio of effective green time to the cycle length denoted by ?= g/C.

Effective red: The time during which given movements or set of movements are

effectively not permiued to move. It is the cycle length minus the effective green

time, denoted by r. That is, r = C - g.

The US Highway Capacity Manual (HCM, 1985) defmed capacity at a signalised

junction for each stream as the maximum rate of flow (for the subject approach) which

may pass through the intersection from that stream under prevailing traffic, roadway, and

signal conditions. Traffic conditions include flows on each approach, the distribution of

vehicles by movements (left, through, right), the vehicle type distribution within each

movement, the location and use of bus stops within the intersection area, pedestrian

crossing flows, and parking movements within the intersection area. Roadway conditions

include the basic geometry of the intersection, including the number and width of lanes,

gradients and land-use location (including parking lanes). Signal conditions include a full

definition of the signal phasing, timing, type of control, and an evaluation of signal

progression on each approach.
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Capacity at signalised junctions is based on the concept of saturation flow and

saturation flow rates. Saturation flow rate (HCM, 1985) is defined as the maximum rate

of flow that can pass through a given intersection approach or lane group under

prevailing traffic and roadway conditions during effective green time. Saturation rate is

denoted by the symbol s, and is expressed in units of vehicles per hour of effective green

time.

The capacity of a given approach or lane group can be stated as:

Q=sg/C
	

(2.36)

The degree of saturation, X is defined as the ratio of flow rate to capacity v/Q (or,

vC/(sg), or v/(As)). Values of X range from 0.0, when the flow rate is 0.0, to 1.0 when

the flow rate equals capacity.

Signal controlled junction delay can then be estimated using Webster's two-term

formula (1958) for steady state:

d(v,A,X,C)=I1	 X2 1
	10L2(1—AX) ^ 2v(1_X)j	 (2.37)

whereX= v/(sA)

This delay does not cause a junction interaction because it does not depend on any other

links. However, if we introduce a signal control policy in order to adjust the signal

timings according to the flows, this will cause junction interactions. We now introduce

Webster's (1958) signal control policy as follows:
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mm max X aa

where X a = Va / (AaSa)
(2.38)

A a =A1

whereA = 11, ii link a has green during stage i

jO, otherwise

2.6.4 Combination of link cost and junction delay

In this study, we assume that total travel time on the link consists of the sum of

free-flow travel time, and each of link and junction based delays. The link based delay

represents any increase in running time due to congestion and the junction delay

represents the delay caused by the junction control methods such as priority or signal

control rules. We can model the total travel time as:

Ta (V) = t 0 +Y[Ca(Va)tø]+(11)da(V) VaE L (2.39)

where is the free-flow travel time, Ca(Va) is the link based travel time, da(V) is the

junction delay and 'y is a parameter in the range of [0, 1] to control the relative influence

of link and junction delays and to represent the user's perception between two delays.

That is, in addition to the free-flow time:

if 'y=O, only junction delay is considered in route choice.

If y=O.5, the balanced effect of link and junction delays is considered.

if y= 1, only link delay is considered.

2.6.5 Good behaviour

Some properties of solutions to traffic assignment such as existence, uniqueness,
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stability and sensitivity are of considerable practical importance. Good behaviour of a

traffic assignment model depends on these properties: if a model has a unique stable

solution, we say that it has good behaviour. In this section, we note some theorems

reviewed by Harker and Pang (1990). Before introducing these existing theorems, we

define some of terminology. Let Ca() be the cost function for link a and let Vb be the

traffic flow on link b.

Definition: the Jacobian matrix J of the cost function, ca(•) on the link flow, Vb is the

matrix of partial derivatives,

rabcataVb, 1^a,b^L	 (2.40)

Definition : .symmetry

A matrix J is symmetric ff abba' for all a,b

Definition : separability

A cost function is separable 1lab =0 for a ^ b

Definition : strictly monotone function

A cost vector c(v) is strictly monotone if

[c(v)-c(u)J. (v-u)>O Vv,u,v^u	 (2.41)

Definition : positive definite

A matrix M is positive definite if

xtMx>O VXE R'1,x^O	 (2.42)

Note that a cost function is strictly monotone if and only if its Jacobian is positive

definite. A separable cost function is strictly monotone if and only if it is a strictly

increasing function.

2.6.5.1 Existence of solutions

A theoretical tool for establishing the existence of equilibria is the fixed point

theorem of Brouwer. This demonstration of existence requires that the cost function be
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continuous and that the feasible region be a nonempty, compact (i.e., closed and

bounded) and convex set.

Theorem ( Smith, 1979)

Let . be a closed, convex subset of R' such that . n (2)-B) ^ø, let c:))— R be

continuous on 2)-B where B=))flR —2) is the boundary of)) in R, and let c be such that

Vv0 E))-B, kE(0,l), Vve))-k)), c(v)(v-v0) >0, then there is a Wardrop equilibrium in .

(b-B).

2.6.5.2 Uniqueness

Uniqueness of the equilibrium solution can be shown if the link cost function is

strictly monotone (or, if separable, strictly increasing). There are theorems for

uniqueness as follows:

Theorems (Karamardian, 1976; Minty, 1962; Smith, 1979)

Let)) n .B be a nonempty and convex subset of R" and let c(•) be a strictly monotone

mapping from)) into R'1 . Then the problems 2 and 3 have at most one solution.

For proofs, see the references above.

2.6.5.3 Stability

There are several studies of stability in traffic assignment. Beckmann et al (1956)

proposed a stability study to investigate how changes in initial flows and thus initial costs

affect the equilibrium travel pattern. Figures 2-6 and 2-7 respectively show examples of

stable and unstable behaviour. Horowitz (1984) followed the same concept as Beckmann

et al (1956) to investigate whether or not use of different initial flows in a solution
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procedure leads to different equilibrium travel patterns.

Smith (1984) considered the stability of a dynamic model of traffic assignment,

which is a continuous time adjustment mechanism for selecting routes. In this model, the

rate of change of flow is specified by a function that describes the swapping among

alternative paths. Using Lyapunov's theorem (see, for exmple, Zangwill 1969), Smith

(1984) was able to show that user equilibrium is stable if path costs are differentiable and

monotone.

It is necessary to define a concept of stability. In this study, we classify stability

as global and local. The concept of the global stability is similar to that of Beckmann et

al (1956) and Horowitz (1984) as follows:

A traffic assignment model is globally stable for a certain problem if any initial flows in

the feasible region lead to an equilibrium by a dynamical adjustment process of this

model.

Local stability is a weaker concept than that of global stability so that if global

stability is satisfied, local stability also satisfied. Local stability is defmed as follows:

A traffic assignment model is locally stable for a certain problem if any feasible

perturbation from an equilibrium that is sufficiently small leads to a return to that

equilibrium by a dynamical adjustment process of this model.

Note that in Figures, 2-6 and 2-7, the light line having an arrow indicates a

dynamical adjustment process. Each step of the horizontal line to reaching one of the

demand and supply curves represents a swapping rate of traffic flows whilst that of the

vertical line represents a changed cost. In Figure 2-6, this adjustment process is repeated

until it reaches an equilibrium which is stable. On the other hand, this process of Figure

2-7 fails to reach an equilibrium which is unstable.
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c(v

c(v)

V

Figure 2-6	 Example of a stable equilibrium

V

Figure 2-7	 Example of an unstable equilibrium

2.6.5.4 Sensitivity

Sensitivity analysis investigates how changes in the travel cost functions affect

the direction of the change in the equilibrium pattern and the incurred travel costs.

Dafermos and Nagurney (1983, 1984) analysed the direction of change in an equilibrium

flow pattern resulting from changes in the cost functions and from the additional

improvement of routes. Their analysis exploited the variational inequality formulations

of network equilibrium. The question of changes in the equilibrium flow pattern induced

by improvements relates directly to the network design problem. Chao and Friesz (1984),
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and Tobin (1984, 1986) investigated how to calculate efficiently the magnitude and

direction of flow pattern induced by changing the cost functions without solving the

equilibrium problem again.

2.6.5.5 Conditions for good behaviour

Good behaviour of an assignment formulation can be identified by the existence

of unique stable solution. Smith (1979) proved that a sufficient condition for good

behaviour is that the Jacobian matrix of the cost function be everywhere positive

definite. Heydecker (1983) proved that a corresponding necessary condition for good

behaviour is that the Jacobian matrix of the cost function be everywhere a P matrix.

2.6.5.6 Satisfaction of conditions for good behaviour

This thesis investigates the good behaviour conditions and their associated

properties in cases of a model of priority controlled junctions in traffic assignment, a

model of signal controlled junctions in traffic assignment, and a multiclass traffic

assignment model. First, the cost functions of these models are investigated to determine

whether or not they satisfy the conditions for good behaviour. Second, in order to

examine the uniqueness and stability aspects of good behaviour, each of these models is

investigated to see whether different initial points lead to the same equilibrium of each of

these models in a small example network. Furthermore, the values calculated using these

models are compared with a symmetric equilibrium obtained by an analytical method.

The conditions for good behaviour and their associated properties for each model

are given in Tables 2-2 and 2-3. In Table 2-2, traffic assignment models are classified

according to the necessary and sufficient conditions for good behaviour. The BPR (1964)
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function often used in separable traffic assignment formulation satisfies both of these

conditions. However, the Tanner and PICADY formulae used in priority controlled

junction modelling satisfy oniy the necessary condition when there are no hooking right

turns. On the other hand, Webster's delay formula with Webster's signal setting method

used in signal controlled modelling does not satisfy either condition.

In Table 2-3, traffic assignment models are classified according to the necessary

and sufficient conditions for good behaviour and their associated properties. In particular,

Table 2-3 shows that the necessary and sufficient conditions for good behaviour affect

their associated properties. For example, Webster's delay formula with Webster's signal

setting method in signal controlled junction modelling does not always satisfy the

necessary and sufficient conditions for good behaviour, and this results in this model

having multiple unstable equilibria. Chapters 4 and 5 will present a detailed analysis

relating to Tables 2-2 and 2-3.

Necessary condition

_____________ -	 yes	 no

Sufficient - y	 Guaranteed good	 Cannot occur

e	 behaviour

s	 eg, BPR and other

increasing separable

-	 functions	 _____________________

condition	 n Indeterminate behaviour 	 Known bad behaviour in

o depending on network	 some networks
eg, Tanner*, PICADY*	 eg, Webster s delay with

formulae	 Webster's nun max control

_______________ - _________________________ 	 policy

Table 2-2 Necessary and sufficient conditions for good behaviour

(Key: * these cases are subject to the exception of hooking right turns)
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____________	 BPR	 Tanner	 PICADY	 Webster

Necessary con.	 Yes	 Yes*	 Yes*	 Not always

Sufficient con.	 Yes	 Not always	 Not always	 Not always

Existence	 Yes	 Yes	 Yes	 Yes

Uniqueness	 Yes	 Yes*	 Yes*	 No

Global stability	 Yes	 Yes*	 Yes*	 No

Table 2-3. Test for the satisfaction of good behaviour

(Key: * these cases are subject to the exception of hooking right turns)

2.7 SOLUTION ALGORITHMS

2.7.1 Separable case

Algorithms commonly applied to the traffic assignment problem are based on a

linear approximation of an objective function. The most well known of these is the

Frank-Wolfe (F-W) algorithm (see section 2.2). The F-W algorithm is applicable to any

nonlinear optimisation problem with a pseudoconvex objective function and linearly

constrained feasible set. The performance of this algorithm is well recognised and it is

applicable to road traffic assignment in large networks using a small amount of computer

memory. Disadvantages include poor convergence in later stages and the algorithm can

generate cyclic flows (see Janson et al,1987).

The Frank-Wolfe algorithm consists of two steps: fmding a direction and fmding

a step length. The direction is obtained by optimising a linear approximation of the

objective function while maintaining feasibility. The step length is then determined in
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order to optimise the objective function by searching in this direction. In this case

feasibility is always maintained because the directions are calculated to lie within the

feasible set.

The step of finding a direction is obtained by taking the first order of Taylor's

series for the objective function. Let z( . ) be an objective function, and v and u be traffic

flows. This is written for U:

z(u) =z(v") + V z(v + f(u-v")) . (u ..v) for some € (0,1)	 (2.43)

where superscript n represents the iteration number n.

A suitable linear approximation to z(u) is achieved by setting f equal to zero

z(u) z(v) + Vz(v') . (u ...v) 	 (2.44)

The search direction can then be identified from the solution to the linear programme in

U

mm v Z(Vn). u + [z(v) - Vz(v") . Vn]	 (2.45)

Note that [ z(v) - V z(v") .v] is a constant, so we can omit it from the objective

function of the linear programme.

In order to find a steplength in a direction d11=(u - v11), we solve the uni-

dimensional problem to minimise z.

mn Z(Vn + d11), fE [0,1]	 (2.46)

Because the feasible region is convex, any point on the line segment between v and u

will satisfy the constraints and thus be feasible.

The algorithm solves these steps of direction search and step length alternately

until various convergence criteria are satisfied. As stopping criteria, the difference of an

objective value in the successive iterations or a maximum iteration number can be used.
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One good aspect of this algorithm is that at every iteration we have a lower bound on the

optimal value of objective function. Because by convexity, we have

z(v*) ^ z(v') + V z(v") .(v* - vfl) 	 (2.47)

where v is the optimal solution, and v11 is the feasible solution at iteration n.

In addition, we have that

z(v') + Vz(vn).(v* - v) ^ z(v") + V z(v) . (u - v)	 (2.48)

This is because u 1 minimises Vz(v) . 0 for every feasible u. Therefore z(v") + Vz(v11)

(u-v) for every iteration n is a lower bound on z(v*)

In other words, the step of direction search consists of finding minimum cost

paths at the current costs and assigning all of the demand between each origin and

destination to the associated path. The resulting assignment is called all-or-nothing

assignment. This usually leads to the overloading of some of links and thus corresponds

to an unrealistic travel pattern. In the all-or-nothing assignment, we assign all the demand

Tod to the shortest path from origin o to destination d. The resulting assignment

corresponds to an extreme point of the feasible region in path-space.

A minimum cost tree building algorithm is used to find the minimum costs

between origin and destination pairs. Bellman's optimality principle (1957) is applied to

calculate the minimum costs path. This is a recursive process to find the minimum cost

path to each point by comparing every possible combination of links reaching it:

M0 = mm MOb + Cb,	 VflE N	 (2.49)(b,n)

where M is the minimum cost of travel between o and n.

This leads to lengthy computing times. Many efficient algorithms have been devised to

reduce this.
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A difficulty inherent in steepest descent direction algorithms such as Frank-Wolfe

is when the optimal point is in the interior of the feasible region. If v' is an interior

optimal point, then Vz(v*) = 0. In a small neighbourhood of v, the individual

components of the gradient may oscillate from positive to negative because they are near

zero. Thus the geometric direction indicated by the gradient may change rapidly as the

sequence of points approaches the optimal solution. This can cause the solution method

to follow a zig-zag path near convergence.

2.7.2 Non-separable case

For non-separable problems, most of the algorithms that have been developed

follow the framework of linear approximation and diagonalisation methods. Pang and

Chan (1982) reviewed these methods. In this non-separable case, the cost function, ca(v)

is a function of traffic flows on other links, represented by v=(v 1 ,v2,. ..,vL). At the

beginning of these methods, an iterate v0 is given and a linear approximation A(vn) of

the function c(v) at the point of v" is made to obtain

c(v) = C(Vn) + A(v").(v-v11)	 (2.50)

The resulting variational inequality problem of finding v such that

cnl(v).(uv) ^O Vu E.8	 (2.51)

is solved at each iteration n to obtain the new iterate v 1 . The algorithms continue until a

convergence criterion is met.

Some choices of A(v'1) are as follows:

A(v11) = V c(v"): Newton type method

A(vnl) = Diagonal part of V c(vfl),(ie, A1, = ab .--): linearised Jacobi methods
aVb

A(v) is a symmetric positive definite: a projection method

64



Alternately, a diagonalisation algorithm referred to as the nonlinear Jacobi

method has been used by many authors including Abduaal and LeBlanc (1979), Ahn

(1979), Florian and Spiess (1982), Dafermos (1982), and Pang and Chan (1982) among

others. In a diagonalisation algorithm, at each iteration n, diagonalisation is performed

such that all the flows on links other than the flow on current link, v are fixed. Thus,

(2.52)

This diagonalisation algorithm gives a separable cost function that has a diagonal

Jacobian matrix which is identical with the diagonal part of the Jacobian matrix of the

full cost function. In the diagonalisation algorithm, the influence of link interaction is

ignored within each iteration, and the separable cost functions are updated in this respect

at the end of each iteration.

The following is a diagonalisation algorithm:

Step 0: Set n=0. Initialisation. Find a feasible link flow v11.

Step 1: Diagonalisation. Solve the diagonalised problem

ë(v)•(u—v)^O VUE.B	 (2.53)

This can be solved using an existing algorithm for the separable case. This step yields the

link flow yfl+l

Step 2: Convergence test. If n+1	 stop. If not, set n=n+l and go to step 1.

Sheffi (1985) showed that a streamlined version of the diagonalisation algorithm

performs better than the original one. The streamlined version performs only one

iteration within step 1 of each outer iteration. Thus Sheffi's streamlined diagonalisation

algorithm differs from the usual one in step 1 by using the following form of it.
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Step iS: Streamlined diagonalisation. Solve the scalar problem in

Vu E.	 (2.54)

where ur is the all-or-nothing assignment at cost ë" (v").

The advantage of this streamlined version of the diagonalisation method is that it

can reduce the computational time in Step 1, which includes an all-or-nothing

assignment. This all-or-nothing assignment has shortest path search which is one of the

most time consuming routines in the algorithm.
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CHAPTER 3. SIMPLICIAL DECOMPOSITION ALGORITHMS

3.1 INTRODUCTION

In this chapter, a general simplicial decomposition algorithm is introduced. This is a

solution approach for a nonlinear programme which uses a linear and a master subproblem.

Frank-Wolfe, and its variants such as PARTAN search direction (Luenberger,1989, pp254-

257; Arezki and Van Vliet, 1990), the modified search direction of Fukushima (1984), the

modified steplengths of Weintraub et a! (1985), Wolfe's away step (1974), Holloway's

extension (1974), and Schittenhelm's algorithm (1990) are each described in terms of the

general simplicial decomposition algorithm. New algorithms belonging to the simplicial

decomposition class are proposed and tested using an example of the separable traffic

assignment problem in order to compare their performance with other algorithms.

3.2 GENERAL SIMPLICIAL DECOMPOSITION ALGORITHM

3.2.1 General nonlinear problem

The following notation is adopted. Let .8 be the demand feasible region, W c .8 be a

set of points and H(W) be the convex hull of W, ie,

H(W)=( vIv=3,u1,	 =1, f ^O, u1 EW (1^i^n)}

We now introduce some of mathematical definitions:

Definition: The set of points W={ui,...,un) is affinely independent if

111 0 =j=0, (2^i^n)

In this case, W is (n-i) dimensional. We refer to W as an affine basis of H(W) and H(W) is

a simplex.
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Definition: z:R11 -4R is a convex function

if z( fu + (l-3)v) ^ z(u) + (1-f3)z(v) for any 3, O^^1 and for all v,u E R".

Definition: Let v be the unique solution of mm { z (v) I v E H (W) }and let W = { u1 I

Vz(v*)(uj - v*) = 0, Uj EW }. We refer to H(W*) as the optimal face of H(W).

Definition: A set, W is said to be compact if any sequence of points in W contains a

convergent subsequence whose limit is also in W. More explicitly, given a sequence {Zn} in

W, where W is compact, there exists a subsequence {z" I flE N') where N' c N such that

z—*z, nEN'and

ZE W.

In Euclidean space, Zangwill (1969, ppl54) showed that compact sets correspond to closed

and bounded sets. Thus a compact set must contain all of its edges and cannot extend

infinitely in any direction. The points generated by most solution algorithms to the traffic

assignment problems can be contained in such sets.

We then consider the following general nonlinear convex problem that includes

various formulations of traffic assignment. This problem, P1 is to find v so as to minimise

an objective function z(v).

P1: mm { z(v)I vE.B}

where z(v) is a continuously differentiable convex function and .8 is the feasible region.

In the traffic assignment problem the function z(v) can have the following form:

z(v)=	 Jca(v)dv
v=O

where ca(v) is a link cost.

The nonlinear convex problem, P1 over a bounded polyhedral set,.8 can be written in a
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simpler way as follows:

vk = arg mm z(v)
v€i

3.2.2 General simplicial decomposition algorithm

Simplicial decomposition (SD) algorithms are based on Caratheodory's theorem

which can be stated as follows.

Caratheodory's Theorem: Let WcR be a nonempty set and let H(W) be its convex hull,

then every v E H(W) lies in the relative interior of at least one of finite numbers of

simplexes whose vertexes are points of W. The union of this collection of simplexes equals

w.

For proof, see Rockafellar (1970, pp 155-170).

The result of this theorem is that any point in a bounded polyhedral set, P can be described

by a convex combination of the extreme points of P.

The general form of the simplicial decomposition (SD) algorithm for the solution of

the problem, mm {z(v)Iv E .B} is as follows:

General simplicial decomposition algorithm

Step 0:(Initialisation)

Iteration n=0

Identify a feasible point, 	 E .8.

Set W={v1'}.

Step 1 :(Linear subproblem)
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Let c(v'1)=Vz I	 and

u'1 =arg min{c(vtl)u:u€ .8)

If C(Vn)(n - v") ^ 0, stop: optimum solution is v11.

Otherwise	 =W" u (un)

Step 2:(Master subproblem)

Letv 1 =arg min{ z(v):vE H(W) }

n=n+1

Return to step 1.

In step 1, the linear subproblem is obtained by taking linear approximation of the

objective function to obtain extreme points of .8. In traffic assignment, this corresponds to

the all-or-nothing assignment to minimum cost routes. This is solved by finding a minimum

cost path from each origin to each destination and assigning all the associated travel demand

onto it. The computational time is taken mainly in the minimum path search because it

examines many possible way to reach the destination from origin.

Some properties of the simplex generated by the linear subproblem are as follows:

1. if v is an element of n-i simplex, H(W), then v can be expressed uniquely as an

interior combination of the points, U1,...,Un,

v=f31 u 1 ,	 II =1, f3 ^0, i=1,...,n

2. if v is an element of n-i simplex, H(W), and the weight, f3 for some i=l,...,n is

positive in the unique expression of v as a convex combination of u 1 ,...,u, then H(u1,...,u.1,

v, uj+i,...,un) is also n-simplex.

3.	 if H(ui,...,un) is n-i simplex, then H(ui,..,ui,uj+i,...,un), for each i is n-2 simplex.
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Corollary to Caratheodory's theorem: if the demand feasible region of P1 denoted as .8 is

bounded, then any element of .8 is expressible as a convex combination of its extreme

points, of which there are only finite numbers. P1 can be rewritten in tenns of the extreme

points as

P2: mn { z(A3):	 13 =1, 13 ^ 0, i = 1,...,n)

where n is the total number of extreme points, and u1 corresponding to column i of the

matrix A is the th extreme point of.8.

The master subproblem of the simplicial decomposition algorithm is a reduced-

dimensional version of original one that is solved over the convex hull of the points that

have been generated by the linear subproblem. This problem can be solved using various

techniques available for nonlinear programmes. Well known examples include uni-

dimensional search techniques such as golden section search, Newton's method and the

secant method. Von Hohenbalken (1977) used Newton directions, whilst Pang and Yu

(1984) approximated the master program by a quadratic program. Ream et al (1984) used

the projected Newton method. Dembo and Tulowitzki (1988) used the PARTAN search

direction. Shetty and Ben Daya (1988) proposed to use either a reduced gradient or a

gradient projection method. Larsson and Patricksson (1991) solved this using either a scaled

reduced gradient method or an approximated Newton's second order method.
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3.3 REPRESENTATION OF SOME EXISTING ALGORITHMS USING

SIMPLICIAL DECOMPOSITION

3.3.1 Introduction

In this section, we review some of existing algorithms, which are represented as

simplicial decomposition forms. These algorithms are Frank-Wolfe variants and have been

developed to overcome the slow convergence of the Frank-Wolfe algorithm. We will use an

example of a simple figure to compare the progress of these algorithms.

3.3.2 Frank-Wolfe algorithm

The Frank-Wolfe algorithm is well recognised and widely adopted to solve large-

scale traffic assignment. However, it has a slow zigzagging convergence in its later stages

(Janson et al, 1987). This is mainly because search directions generated by solving the

linear subproblem tend to be normal to the steepest descent directions of the objective

function as the iteration proceeds. The Frank-Wolfe algorithm can be described in terms of

a general simplicial decomposition algorithm. In this case, the linear subproblem is the

same as for the general SD.

Frank-Wolfe algorithm as a SD algorithm

StepO: (Initialisation)

n=O

same as general simplicial decomposition algorithm

Slepi :(Linear subproblem)

same as general simplicial decomposition algorithm
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Step2:(Master subproblem)

Let 13" = argrnin { z ([3 Un + (1-13) v11 ) I 0 ^13 ^ 1)

Set v 1 = 13* Un + (1- [3* )vfl

n=n+1

Return to step 1.

The convergence of this algorithm is depicted on the graph of the example (see

Figure 3-1). At first, the point v° is obtained in the initialisation step. In the linear

subproblem, u° is obtained by all-or-nothing assignment. This generated point lies at the

extreme point of the feasible region. The internal point v 1 is obtained by minimising the

objective function value between v° and u°. In this case, a uni-dimensional search

technique is used to minimise the original objective function. In the next iteration process,

the extreme point u1 is obtained by the linear subproblem and then internal point v 2 is

calculated as the optimal linear combination of v 1 and u. As the iteration proceeds, v

tends to the optimal value v" and the descent direction becomes orthogonal to the gradient

vector of the objective function and thus converges in a zigzag manner.

3.3.3 PARTAN search direction

The PARTAN technique (Luenberger, 1989, pp254-257 and Arezki and Van Vliet,

1990) introduces an extra line search into the Frank-Wolfe algorithm. After each iteration

other than the first, a line search is calculated in the usual Frank-Wolfe direction and then a

second one is calculated in the direction of the last but one iterate. This method can

overcome the slow convergence approach in the final stages of the Frank-Wolfe algorithm.

The PARTAN search algorithm can also be described in terms of a simplicial

decomposition form as follows:
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PARTAN search algorithm

StepO: (Initialisation)

same as general simplicial decomposition algorithm

n=0

Identify a feasible point, v° E .8.

Step 1: (Linear subproblem)

same as general simplicial decomposition algorithm

Step2: (Master subproblem)

If (n=0), Line-search as in the Frank-Wolfe to give

If (n^l) then, PARTAN search direction as:

Let f3* = arg min{ z(3	 +(113)vfl2 ) :0 ^^ 1 }

Setv	 = 13*un+(l f3*)n-2

n—n+1

Return to step 1.

The convergence of this algorithm is depicted in the Figure 3-2. Up to the iteration

one, the process of convergence in the PARTAN search is the same as the Frank-Wolfe

algorithm. However, from iteration two, the internal point is obtained by the linear

combination of u2 and v°. This changed direction avoids the slow convergence at the later

stages in the Frank-Wolfe algorithm.
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Figure 3-1. Graphical representation of the Frank-Wolfe algorithm

02

Figure 3-2	 Graphical representation of PARTAN search direction
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3.3.4 Fukushima's modified search direction (1984)

This algorithm modified the search direction by introducing components of earlier

solutions. Every iteration a directional derivative value of the objective function is

calculated to choose either the ordinary Frank-Wolfe direction or a modified one. This

algorithm can be described in temis of general simplicial decomposition algorithm:

Fukushima's algorithm

StepO: (Initialisation)

same as general simplicial decomposition algorithm

n=O

Step 1 :(Linear subproblem)

same as general simplicial decomposition algorithm

Step2:(Master subproblem)

choose f, i=n-q,.. . ,n, such that

::13 ' =l , 3'^O,i=n-q,...,n
i=u-q

and put

?=	 13(u1 — v)
i=n-q

where q = min{n,L} -1, ie, q=n-1 for n ^L and q= L-1 for n>L, where L is the

number of links in the network, put

wn = Un Vn
Lompute tfle directional dlenvauves

't' =Vz(v)s 'IIH (t =0 ii? =0)

and

= Vz(v)w 1IlwII
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and set

s,ift' <

d= x,if'r=t

w,if'r >'r

where is any vector on the line segment [v11,w].

Solve the uni-dimensional problem to obtain the step size f3

*= arg min{v' + d'}

and put

v11 = + *dfl

n=n+1

Go to the step 1.

3.3.5 Weintraub, Ortiz and Gonzalez's (1985) modified step size

This algorithm modifies the step-size defined as a form of compensation for

deficiencies in the search directions of the Frank-Wolfe algorithm. The modification of this

algorithm involves increasing the step size of the uni-dimensional optimisation while

maintaining feasibility and assuring monotonic improvement in the objective function. This

algorithm can be described in terms of a simplicial decomposition algorithm as follows.

Weintraub and Ortiz and Gonzalez's algorithm

StepO: (Initialisation)

same as general simplicial decomposition algorithm

n=O

Step! :(Linear subproblem)
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same as general simplicial decomposition algorithm

Step2:(Master subproblem)

Let f3*= argmin{z(3un +(l-t3)v):O ^f3^1 )

Let f3" = max(1, *fl)

where T is a predetermined modification for the step size in iteration n.

Set	 = f3fl u + (1- 3I )v11

n=n+l

Return to step 1.

3.3.6 Holloway's extension (1974)

In this method, the uni-dimensional search in the master subproblem of the Frank-Wolfe

algorithm is replaced as follows:

Holloway's algorithm

StepO:(Initialisation)

same as general simplicial decomposition algorithm

n=O

Step 1 :(Linear subproblem)

same as general simplicial decomposition algorithm

Step 2: (Master subproblem)

Letf3* = argmin { z(	 f'u'):	 1' =1, ' ^O, Vu 1 eW}
ieH W)	 i€}1 W)

Set	 =	 + (1- 13* )v11
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n=n-f 1

Return to step 1.

3.3.7 Wolfe's away step

Florian (1977) proposed the use of Wolfe's away step in the Frank-Wolfe algorithm.

This step includes determining the maximum cost path from each origin to each destination

and reducing the flows along the maximum cost path by transferring them proportionally to

other paths that are used. The difficulty, however, is in identifying the maximum cost path

because of the existence of cycles. The modified way of implementing the away's step is to

adopt Holloway's restriction strategy where computations are restricted to previously

generated extreme points.

3.3.8 Schittenhelm's algorithm

Schittenhelm's algorithm (1990) can be described in terms of simplicial

decomposition as follows:

Schittenheim's algorithm

StepO: (Initialisation)

same as general simplicial decomposition algorithm

n=O

Step 1 :(Linear subproblem)

same as general simplicial decomposition algorithm
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Step 2: (Master subproblem)

Let u = arg min{c(v)uju E W}

Let p = arg max{c(v)ulu E W}

Let*=argmin{z(vn+3(u*p*))O ^fE^ 1 }.

where u is a minimum cost point of W and p is a maximum cost point of W.

SetvI=vfl+ 13*(u*p*)

n=n+1

Return to step 1.

The convergence progress of Schittenheim's algorithm is depicted in Figure 3-3. In

the initialisation step of iteration 0, the point v° is obtained. In the linear subproblem, the

point u° is obtained by all-or-nothing assignment: this point lies at an extreme of the

feasible region. In the master subproblem, the internal point v 1 is obtained by equilibrating

the costs between v0 and u° using a uni-dimensional search technique to minimise the

original objective function. In iteration 1 of the linear subproblem, the new extreme point,

u' is obtained and the set of retained points is augmented to, W 1 ={v°, u°, u 1 }. In the

master subproblem, the minimum cost extreme point, = u 1 and the maximum cost

extreme point, p = v° of the retained set, W 1 are identified. A one-dimensional search

technique is then used to obtain the internal point, v2 by searching from v 1 in the direction

u 1 -v° so as to equilibrate the assignments. In iteration 2 of the linear subproblem, the new

extreme point, u2 is obtained by all-or-nothing assignment and the updated convex hull is

made by the extreme points, v°, u°, u 1 and u2. The master subproblem equilibrates the

maximum point, p = u0 and minimum point, u = u2 in the convex hull, H(v°, u°, u1,

u2), and obtain the internal point v3 by equilibrating between u2 and u°. This is repeated

until the process finds an optimal point v.

80



-	

:_ - - - -	 - - - - - . - - - - S	 -

1.

U

V

Figure 3-3	 Graphical representation of Schittenheim's algorithm

3.4 FOUR NEW ALGORITHMS

3.4.1 Introduction

In this section, we propose four new algorithms which have the simplicial

decomposition form. They have been developed on the basis of observations of the

convergence behaviour of existing algorithms. Algorithm 1 has been developed as

an elaboration to Schittenheim's algorithm. Algorithm 2 has been made by

combining Schittenheim's algorithm in the initial stage and Algorithm 1 in the later

stages. Algorithm 3 combines column generation, which generates a predetermined

number of extreme points, in the initialisation step and Schittenheim's algorithm

afterwards. Algorithm 4 is similar to Algorithm 3 but in the later stages, Algorithm

1 is used rather than Schittenheim's algorithm. We now consider each of these

algorithms in detail.
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3.4.2 Algorithm 1

This algorithm (Lee 1992a) belongs to the simplicial decomposition class and can be

specified as follows. Note that the steps 0 and 1 are the same as those of the general

simplicial decomposition algorithm.

Algorithm 1

Step O:(Initialisation)

Iteration n=0

Identify a feasible point, v1 E £'. Set Wr={vn}.

Step 1:(Linear subproblem)

Let c(vnl)=Vz	 n and

ulT=arg min{c(v11)u:uE .8)

If c(v")(u" - v11) ^ 0, stop: optimum solution is v

Otherwise W^ 1 =W' '.i u}

Step 2: (Master subproblem)

Letv 1 =argrnin{z(v), VE H(W1)}

n=n+1

Return to step 1.

In the master subproblem, 	 is obtained by repeating the master subproblem of

Schittenheim's algorithm until the assignments are equilibrated approximately within the

convex hull, H(Whhl1)
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In Figure 3-4, the convergence of Algorithm 1 is depicted. In the initialisation step

of iteration 0, the point v° is obtained. In the linear subproblem, the point u° is obtained by

all-or-nothing assignment. In the master subproblem, the internal point v 1 is obtained by

equilibrating the costs between v° and u°. At that time, a one-dimensional search technique

is used to minimise the original objective function. In iteration 1 of the linear subproblem,

the new extreme point, u' is obtained and the generated extreme points, W={vO, u°, u 1 }

are retained in order to make a convex hull. In the master subproblem, the minimum

extreme point, u 1 and the maximum extreme point, v° are identified in this convex hull,

H(v°, u°, u 1 ). A one-dimensional search technique is then used to obtain the internal point,

v2 between these points, v° and u 1 . Up to this step, this algorithm is the same as

Schittenheim's algorithm. However, Algorithm 1 repeats this process of equilibration. In

this case, it identifies the minimum point, u 1 and the maximum point, u° in the convex hull,

H(v°, uO, u 1 ). In this step, the one-dimensional search makes the problem converge to the

optimal value.

Figure 3-4 Graphical representation of Algorithm 1

83



Convergence of Algorithm I in the separable case

Theorem. Suppose that

(1) Algorithm 1 generates the sequence, {v}fleN, and a solution set, W, is in a non-

empty convex compact set, .8, where W .8.

(2) ca(v) is a positive strictly increasing continuous separable cost function. This in turn

z(v) 
=	

Jc (v)dv is a continuously differentiable strictly convex function.
a

Algorithm 1 either terminates at an equilibrium v or generates a sequence {v}flEN that

has a limit point, v, which is an equilibrium, as n -3 oo.

Proof (It is acknowledged that Dr ID Addison proved this theorem)

We assume that the algorithm does not terminate. As the algorithm does not

terminate, it follows that Vz(vt1) ^ 0 for all n. Let H = u H(W") .8. H is closed,

convex and compact. It is closed and convex by construction. As .8 is compact so is H.

Let v°° be such that

z(v)=inf z(v)=lim z(v)
veil

The second equality follows from the definition of H and the definition of as the

solution of the master subproblem on H(W fl). Because the is the successive solutions

to the master subproblem, the sequence { z(vn) } decreases monotonically. The strict

convexity of z means that v°° is unique.

We show that urn v = v. Suppose that {v} has an accumulation point w,

which must lie in H as H is closed. Then there is a subsequence vhlJ which converges to

w. Now by continuity, z(w) = lim z(v'J) =z(v°°) and so w = v°°.

It remains to prove that v' lies in H where v* minimises z in .8, ie
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z(v*) = infz(v)

For v in H, Vz(v )(v - v) ^ 0. To see this, suppose that there is a u in H such that

Vz(v )(u - v) <0. Then the derivative of the function c(t) = z((1-t)v°° + tu) at t=0

shows it is decreasing there. Since the segment [v°°, u] lies in H, this contradicts the

choice of v°°.

Suppose that v is not in H. Since vc is not in H, it cannot be v°°, so it follows

from convexity that there exists u in .8 for which Vz(v )(u - v) <0. Since

lim v' = v, it follows from the continuity of Vz that there is a n such that

Vz(v )(u - v) < Vz(v )(u - v) <0. This contradicts the choice of u. We must

have v*E H and so v°° = v* . Proof is completed.

3.4.3 Algorithm 2

This algorithm (Lee, 1992b) is a hybrid algorithm of the Schittenheim and

Algorithm 1. In the initial stages, Schittenhelm's algorithm is faster than Algorithm 1

because Schiuenhelm's algorithm equilibrates the convex hulls in exact. Usually, the convex

hull becomes bigger as the iterations progress so that the minimum point in the convex hull

changes accordingly. On the other hand, Algorithm 1 performs better in the later stages

because it saves computational time in the linear subproblem. This is because Algorithm 1

equilibrates the convex hulls exactly so that the algorithm repeats the linear subproblem and

the master subproblem fewer times than Schittenheim's algorithm. The proposed Algorithm

2 has some advantages of each of the Schittenheim algorithm and Algorithm 1.

Algorithm 2

StepO: (Initialisation)

same as general simplicial decomposition algorithm
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Step 1 :(Linear subproblem)

same as general simplicial decomposition algorithm

If a predetermined parameter is greater than iteration number of the master subproblem in

the Schiuenhelm algorithm, go to step 3.

Step 2: (Master subproblem in Schittenheim's algorithm)

Let u" = arg rnin{c(v)ulu E W}

Let p' = arg max{c(v)uu E W}

Let*=argmin{ z(vn +3(u*p*))IO ^1^ 1 }.

where u' is a minimum cost point of W and p$ is a maximum cost point of W.

Letvfl=vI+ *(u*...p*)

n=n+1

Return to step 1.

Step 2: (Master subproblem in Algorithm 1)

Letv 1 =argrnin(z(v), YE H(W)}

n=n+1

Return to step 1.

The convergence proof of Algorithm 2 is essentially the same as the Algorithm 1 as

follows:

Convergence of Algorithm 2 in the separable case

Theorem. Suppose that

(1) Algorithm 2 generates the sequence, {v)flEN, and a solution set, W is in a non-

empty convex compact set, .8, which is W .8.

(2) ca(v) is a positive strictly increasing continuous separable cost function. This in turn
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z(v) =	 f C a (v)dv is a continuously differentiable strictly convex function.
a

Algorithm 2 either terminates at an equilibrium v" or generates a sequence {v}flEN that

has a limit point, v' which is an equilibrium, as n —* oo.

Proof (It is acknowledged that Dr JD Addison proved this theorem)

We assume that the algorithm does not terminate. As the algorithm does not

terminate, it follows that Vz(v") ^ 0 for all n. Let H = u, H(W") .8. H is closed,

convex and compact. It is closed and convex by construction. As .8 is compact so is H.

Let v°° be such that

z(v) = inf z(v) = lim z(v")
VER

The second equality follows from the definition of H and the definition of v as the

solution of the master subproblem on H(W"). Because the v is the successive solutions

to the master subproblem, the sequence z(v") } decreases monotonically. The strict

convexity of z means that v°° is unique.

We show that lim v = v. Suppose that {v} has an accumulation point w,

which must lie in H as H is closed. Then there is a subsequence v11J which converges to

w. Now by continuity, z(w) = limj z(vJ) =z(v°°) and so w = v°°.

It remains to prove that v lies in H where v* minimises z in .8, ie

z(v*) = infz(v)
YE'

For v in H, Vz(v )(v — v) ^ 0. To see this, suppose that there is a u in H such that

Vz(v )(u - v) <0. Then the derivative of the function c(t) = z((1-t)v°° + tu) at t=0

shows it is decreasing there. Since the segment [v°°, u] lies in H, this contradicts the

choice of v°°.
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Suppose that v is not in H. Since v is not in H, it cannot be v°°, so it follows

from convexity that there exists u in .8 for which Vz(v )(u - v s') <0. Since

lim v' = v, it follows from the continuity of Vz that there is a n such that

Vz(v )(u - v) < Vz(v )( - v" ) < 0. This contradicts the choice of u. We must

have v*E H and so v°° = v. Proof is completed.

3.4.4 Algorithm 3

This algorithm (Lee, 1992b) is a hybrid of column generation in the initial stages

and Schittenheim's algorithm in the later stages. Column generation generates a

predetermined number of extreme points in the initialisation step. These points are used to

generate a convex hull within which the algorithm equilibrates flows using Schittenheim's

method. This algorithm can reduce the computational time by generating a number of

extreme points before equilibrating convex hulls in the initial stages.

Algorithm 3

Step 0: (Initialisation)

n=0

A feasible point vn E .8. Set W={v}.

Step 0-1: (Column generation)

Repeat step 0-1 until a predetermined number of extreme points are obtained.

Let c(v)=Vz	 and

u11 = arg min{c(v1')u: UE .8)

W=Wu{u)

= Un

n=n+l
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Step 1: (The linear subproblem)

Let c(vn)=Vz I v=v and

= arg m {c(v")u : u e .8)

If c(v")(u'' - vfl) ^ 0, Stop: optimum solution is v.

Otherwise W=Wu{ufl}

Step 2: (Master subproblem as in Schittenhelm's algorithm)

Let u = arg min{c(v)ulu E W}

Let p = arg rnax{c(v)ulu e W}

Letf*=argmin{ z(vhl +13(u*p*))I0 ^3^1 }.

where u is a minimum cost point of W and p is a maximum cost point of W.

Let v 1 = + 13* (u* - p*)

n=n+1

Return to step 1.

3.4.5 Algorithm 4

This algorithm (Lee, 1992b) is a hybrid algorithm of oolumn generation in its initial

stages and Algorithm 1 in its later stages. As with Algorithm 3, this algorithm generates a

predetermined number of extreme points in the initialisation step. The generated points

make a convex hull and then the algorithm equilibrates the convex hulls by Algorithm 1.

Algorithm 4

Step 0:(Initialisation)

A feasible point v E .8. Set W={v").
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Iteration n=O

Step 0-1: (Column generation)

Repeat step 0-1 until a predetermined number of extreme points are obtained.

Let c(v)=Vz I v=1 and

= arg mm {c(v')u : u €

W=Wu{u}

vn-I-1 = un

n=n+ 1

Step 1: (The linear subproblem)

Let c(v11)VzIvvI1 and u = arg min{c(v)u : u E

If c(v")(u - v) ^ 0, Stop: optimum solution is

Otherwise W =W u {Un}

Step 2: (Master subproblem in Algorithm 1)

Let	 = arg mm { z (v), VE H(W) }

n=n+ 1

Return to step 1.

The convergence proof of Algorithm 4 is essentially the same as the Algorithm 1 as

follows:

Convergence of Algorithm 4 in the separable case

Theorem. Suppose that

(1) Algorithm 4 generates the sequence, {v)flEN, and a solution set, W is in a non-

empty convex compact set, 8, which is W ç

(2) Ca(V) is a positive strictly increasing continuous separable cost function. This in turn
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z(v) =	 5 C a (v)dv is a continuously differentiable strictly convex function.
a v=O

Algorithm 4 either terminates at an equilibrium v* or generates a sequence {}flEN that

has a limit point, v which is an equilibrium, as n - oo.

Proof (It is acknowledged that Dr JD Addison proved this theorem)

We assume that the algorithm does not terminate. As the algorithm does not

terminate, it follows that Vz(v") ^ 0 for all n. Let H = u, H(W') ç .8. H is closed,

convex and compact. It is closed and convex by construction. As .8 is compact so is H.

Let v°° be such that

z(v)=inf z(v)=lim z(v")
VEH	 n—

The second equality follows from the definition of H and the definition of v as the

solution of the master subproblem on H(Wn1). Because the is the successive solutions

to the master subproblem, the sequence { z(v") } decreases monotonically. The strict

convexity of z means that v°° is unique.

We show that urn v = v°. Suppose that {v} has an accumulation point w,

which must lie in H as H is closed. Then there is a subsequence vJ which converges to

w. Now by continuity, z(w) = lim z(vJ) =z(v°°) and so w = v°°.

It remains to prove that v* lies in H where v* minimises z in .8, ie

z(v*) = infz(v)
VEJ

For v in H, Vz(v )(v - v) ^ 0. To see this, suppose that there is a u in H such that

Vz(v )(u - v) <0. Then the derivative of the function c(t) = z((l-t)v°° + tu) at t=O

shows it is decreasing there. Since the segment [v°°, u] lies in H, this contradicts the

choice of v°°.

91



Suppose that v is not in H. Since v is not in H, it cannot be v°°, so it follows

from convexity that there exists u in .8 for which Vz(v )(u - v) <0. Since

lim v = v, it follows from the continuity of Vz that there is a n such that

Vz(v )(u - v) < Vz(v )(u - v) <0. This contradicts the choice of u. We must

have v*E H and so v°° = v. Proof is completed.

The advantage of the proposed new algorithms is to reduce the number of shortest

path searches, which is the main time consuming part to solve the traffic assignment

problem, as well as the number of the master subproblem. In particular, Algorithms 1, 2 and

4 reduce the number of shortest path searches whilst Algorithms 3 and 4 reduce the number

of the master subproblem by using column generation. A sensitivity analysis can be readily

performed due to the fact that much of the required information is stored routinely as part

of the algorithm.

The related class of SD algorithms has the following advantages:

(1) The linear subproblem produces a set of feasible points within the convex hull of which

the master subproblem calculates equilibrium.

(2) All the constraints of the original problem are satisfied by the linear subproblem; thus

the generated points are always primal feasible.

(3) A sensitivity analysis may be easier than other algorithms due to retention of much of

information that is required for such calculation, especially with respect to changes in O-D

flows and network topology, and more complex models where traffic assignment arises as

subproblems.

3.5 NUMERICAL EXAMPLE

The proposed simplicial decomposition algorithms, Schittenheim's algorithm (1990)

and the F-W algorithm have been coded in FORTRAN to test and compare their
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performance on a NESS 286 personal computer running at 8 MHz clock speed, using the

Microsoft compiler version 4.0 and mathematical coprocessor with 80287. The Sioux Falls

network shown in Figure 3-5 (Vythoulkas, 1990) is used for this numerical test. The origin-

destination matrix is given in Table 3-1 and the network data in Table 3-2. The separable

Bureau of Public Roads (BPR, 1964) link cost function (see equation 2.24 in chapter 2) is

used.

Dijkstra's algorithm (1959) is used in the shortest path routine. In the master

subproblem of Schittenhelm's algorithm and the new algorithms a secant method is used to

equilibrate the minimum and maximum cost paths in the retained set W. To store paths

efficiently, the forward star data structure is used (see Sheffi 1984, ppl25-l29). The

objective function, z(v) is used as a minimand (see section 2.5.2). As stopping criteria,

either the relative difference of the objective function, z(v) value in the successive iterations

as Jz(v' ) - z(v1 )I ^ , or the maximum iteration number of an algorithm are used.

Table 3-3 shows a summary of the performance of each algorithm. Note that there

are two objective values: Beckmann's z(v) and the mean gap function, 0(v) (see equation

2.16). However, the z(v) is only an appropriated measure here because in the master

subproblem of each algorithm, z(v) is used to calculate the move size, f3 rather than 0(v).

Algorithm 1 terminates fastest at an objective value (or, z(v)) of 3923 vehicle-seconds in

154.9 seconds of CPU time. The furthest convergent point is an objective value of 3863

vehicle-seconds which is achieved by Algorithm 4. Algorithms 2, 3 and 4 have similar

convergent points in terms of the number of column generation whilst the CPU time is

taken more as the number of column generations increases.
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Figure 3-5	 The Sioux Falls network

(Key:	 ' link number n)
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O-D pair	 Demand

	

1-17	 2900

	

2-19	 2800

	

3-20	 2600

	

4-20	 2800

	

5-19	 2600

	

6-17	 2300

	

7-15	 2200

	

8-13	 2800

	

9-14	 2700

	

10-15	 2800

	

11-20	 2600

	

12-18	 2700

Table 3-1	 Origin-destination pairs and demand.

Link	 Capacity	 Link	 Capacity	 Link	 Capacity

	

1	 3800	 25	 2400	 49	 2600
2	 3200	 26	 2600	 50	 2800
3	 3400	 27	 2700	 51	 2200

	

4	 3000	 28	 2400	 52	 2500
5	 3200	 29	 2800	 53	 3200
6	 3400	 30	 3800	 54	 2700
7	 3000	 31	 3400	 55	 2200
8	 2700	 32	 3200	 56	 2700
9	 2800	 33	 3400	 57	 3000

	

10	 2400	 34	 3600	 58	 2700

	

11	 3800	 35	 3000	 59	 2400

	

12	 3600	 36	 3000	 60	 3000

	

13	 3400	 37	 2800	 61	 2700

	

14	 3800	 38	 2800	 62	 2500

	

15	 3400	 39	 2600	 63	 2400

	

16	 2800	 40	 2600	 64	 2400

	

17	 3000	 41	 2700	 65	 2400

	

18	 2400	 42	 2400	 66	 2400

	

19	 2800	 43	 2600	 67	 3400

	

20	 3200	 44	 2700	 68	 2400

	

21	 3200	 45	 3200	 69	 3000

	

22	 3200	 46	 3400	 70	 2400

	

23	 2600	 47	 3800	 71	 2800

	

24	 3000	 48	 2800	 72	 3000

Table 3-2	 Network data
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Figure 3-6 shows the objective function values for F-W, Schittenhelm's algorithms,

and Algorithm 1 in terms of cumulative CPU time. In this case, Schittenhelm's algorithm

runs faster than Algorithm 1 in the initial stages. However, in the later stages, Algorithm 1

runs faster than Schittenheim's algorithm. That is because of the number of iterations in the

master subproblem of Schittenheim's algorithm. Schittenheim's algorithm equilibrates only

once the maximum and minimum paths in the retained set W for each origin-destination

pair. This reduces computational time in the initial stages whilst this causes more

computational time in the later stages because it results in more frequently calculation of

minimum paths. On the other hand, Algorithm 1 overcomes this disadvantage of

Schittenheim's algorithm by equilibrating the maximum and minimum paths repeatedly

until the retained minimum set is equilibrated. In addition, the most time consuming part of

traffic assignment is the minimum path search. In the later stages, Algorithm 1 reduces the

number of the minimum path searches.

Figure 3-7 shows the values of the cumulative CPU time in each of the Frank-

Wolfe, Schittenhelm's algorithm and Algorithm 1 as the iterations proceed. The Frank-

Wolfe algorithm has a constant slope which is less than for either of the other algorithms.

That is because in each execution of the master subproblem of the Frank-Wolfe algorithm,

the objective function is minimised only once in the master subproblem. Similarly,

Schittenhelm's algorithm has an approximately constant slope. This is because the time

taken in finding minimum and maximum paths is similar in each iteration. The slope of

Algorithm 1 is not constant. The maximum CPU usage is during iteration 8, and the slope

of Algorithm 1 is variable. In the initial stages, the slope of Algorithm 1 is higher than the

other algorithms. However, as iterations proceed, the slope becomes lower than the others.

In addition, Algorithm 1 terminates after fewer iterations than the other algorithms so the

total CPU usage is less.

Figure 3-8 shows the results of Algorithms 2, 3 and 4 when one column generation
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is used. Algorithm 3 performs better than the others in the initial stages whilst each of

Algorithms 2 and 4 terminates to further points after 110 and 78 seconds respectively of

CPU time. In Figure 3-9, the objective values of these algorithms are depicted when two

column generations are used. Algorithms 3 and 4 perform better than when one column

generation is used in the initial stages. The pattern in the convergence of these algorithms is

similar in this case. The terminating points lie in the similar region. Figure 3-10 shows the

results of these algorithms when three column generations are used. Algorithm 2 performs

better than the others in the initial stages. After 142 CPU seconds, all of the algorithms have

similar terminating points. In Figure 3-11, these algorithms are plotted when four column

generations are used. Algorithm 2 again performs better than Algorithms 3 and 4 in the

initial stages. After 100 seconds of CPU time, the pattern of convergence of these

algorithms becomes similar. However, Algorithm 4 runs a further point.

Figure 3-12 shows the value of the objective function in Algorithm 2 according to

the number of Schittenhelm's master subproblems performed before switching to Algorithm

1. Algorithm 2 runs quickly when Schittenhelm's master subproblem is used once.

However, use of some iterations more than once of Schittenheim's master subproblem leads

to a further terminated point in the long run. Figure 3-13 shows the change of objective

function in Algorithm 3 according to the number of column generations performed.

Algorithm 3 with one and two column generations runs better in the initial stages whilst

Algorithm 3 with three and four column generations terminates further after 90 seconds of

CPU time. Figure 3-14 shows the value of the objective function in Algorithm 4 according

to the number of column generations. Algorithm 4 with one column generation runs quickly

in the initial stages. After 90 seconds of CPU time, these algorithms have similar patterns of

convergence.
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In summary, the new simplicial decomposition Algorithm 1 has been shown to run

quickly when solving a separable equilibrium traffic assignment problem. The advantage of

this algorithm is that it reduces the number of shortest path searches which are the main

time-consuming part of solving the traffic assignment problem. In terms of furthest

terminated point, Algorithm 4 reaches an objective value of 3863 vehicle-seconds whilst

Algorithms 2 and 3 tenninate at 3876 and 3878 vehicle-seconds respectively. Algorithm 3

performs very well to terminate at 3878 vehicle-seconds when two column generations are

used initially. When fewer than two column generations are used, Algorithm 3 terminates at

3920 vehicle-seconds. Algorithm 4 has shown no evidence to speed up when column

generation is used in the initial stage. The behaviour of Algorithm 4 differs according to

whether or not column generation is used. However, the number of column generation used

makes relatively little difference to the values in this test network beyond a small change in

the CPU time used. In some cases, the ultimate value of the objective function was achieved

well before the algorithm terminated.

Number of column Algorithms	 Iterations	 CPU	 Objective values
generation	 -

(Seconds) Beckmann z(v) Mean gap G(v)
_________________ ______________ __________ _________ (Vehicle-seconds) (Seconds)

Frank-Wolfe	 51	 315.2	 3922	 0.012
Schitteithehn	 37	 261.9	 3922	 0.026

_____________ Algorithm 1	 18	 154.9	 3923	 0.017
1 column	 Algorithm 2	 40	 159.6	 3876	 0.015
generation	 Algorithm 3	 50	 351.3	 3920	 0.026
_____________ Algorithm 4	 40	 257.8	 3863	 0.010
2 column	 Algorithm 2	 40	 160.0	 3876	 0.015
generations	 Algorithm 3	 50	 490.3	 3878	 0.025

_____________ Algorithm 4	 40	 258.7	 3863	 0.010
3 column	 Algorithm 2	 40	 160.0	 3876	 0.015
generations	 Algorithm 3	 50	 481.0	 3878	 0.025

_____________ Algorithm 4	 40	 259.7	 3863	 0.010
4 column	 Algorithm 2	 40	 159.0	 3876	 0.015
generations	 Algorithm 3	 50	 472.0	 3878	 0.026

_______________ Algorithm 4 	 40	 260.2	 3863	 0.010

Table 3-3 Summary of performance of each of algorithms
(Note * ; CPU time includes each of input and output times)
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Figure 3-6	 Results of Frank-Wolfe, Schittenheim and Algorithm 1

Figure 3-7 Comparison of CPU time in Frank-Wolfe, Schittenheim and Algorithm 1
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Figure 3-8	 Comparison of Algorithm 2,3, 4 when one column generation is used

Figure 3-9	 Comparison of Algorithm 2,3,4 when two column generations are used.
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Figure 3-10 Comparison of Algorithm 2, 3, 4 when three column generations are used.

Figure 3-11 Comparison of Algorithm 2, 3, 4 when four column generations are used.
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Figure 3-12 Results of Algorithm 2 in terms of the number of Schittenheim's algorithm
(Key: SO, S1,S2 and S3: one, two, three and four Schitteheim's algorithm is used
respectively before switching to the master subproblem in Algorithm 1)

Figure 3-13 Results of Algorithm 3 in terms of the number of column generation
(Key: CO 3C1,C2 and C3: one, two, three and four colunm generations
are used respectively as initial extreme points)
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Figure 3-14 Results of Algorithm 4 in terms of the number of column generation
(Key: CO 3C1,C2 and C3: one, two, three and four column generations
are used respectively as initial extreme points)
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CHAPTER 4 TRAFFIC ASSIGNMENT WITH PRIORITY-CONTROLLED

JUNCTION MODELLING

4.1 INTRODUCTION

This chapter shows how traffic assignment incorporating a detailed model of

priority controlled junctions can be solved using a diagonalisation algorithm. Priority

controlled junctions are modelled in which the capacity of the non-priority movements

depends on the flows on the priority stream. In particular, the empirical capacity formula

developed by Kimber and Coombe (1980) is used in the calculation of the capacity of the

minor streams. Traffic assignment with priority controlled modelling is a non-separable

problem because in some cases the capacity, and hence the cost, for each link depends on

the flow on some other links. The convergence behaviour of this kind of assignment

model is here investigated in terms of analytical and experimental analysis. This shows

how detailed modelling plays an important role in influencing the stability and

uniqueness of solutions.

4.2 CAPACITY CALCULATION

The concept of the capacity on a minor road differs from that of a major road.

The capacity on a minor road is related to the controlling flow on the major road. There

are two approaches to calculate the capacity on the minor road in terms of the flows on

the major road. The empirical approach for this is based on analysing survey data whilst

the gap-acceptance approach is based on the mathematical description of individual

drivers' behaviour. In this section we review these two approaches in turn.
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4.2.1 Empirical approach

The empirical approach consists of observing the capacity and possible

explanatory variables at a number of intersections, and then analysing these data. One of

the well-known models is PICADY (Priority Intersection Capacity And DelaY) which

has been established by Transport Research Laboratory (TRL) in the UK. The PICADY

program models capacities, queues and delays at priority-controlled junctions. In

particular, three-arm junctions, four-arm junctions, and left-right and right-left staggered

junctions are accommodated.

The PICADY model has a relationship expressing the capacity on the minor

stream as a function of the junction geometry and flows on the major stream: this is due

to Kimber and Coombe (1980). They derived fonnulae to estimate the capacity on the

minor road as functions of traffic flows in the priority streams and functions of the

geometric features of the junction. The formula for a three-arm junction is based on

deriving the formulae of other types appropriately. The PICADY program incorporates

these formulae so that the capacity, Pa of the non-priority stream is related to the flows

of priority flows as follows:

Ma = G a (K a +H a	 a eabvb)
bEB,

where Ga, Ha and "'a are constants which depend on the geometry of the junction, Ka is

a constant which depends on the stream, eab is the coefficient for the appropriate major

flow vb, and Ba is the set of links b that has priority over link a.

Figure 4-1 shows a simple example of a priority controlled junction. Major flow

Vb influences the capacity of the minor flow Va. In other words, Vb is the controlling

flow and Va is the controlled flow. The capacity of link a is determined by the flow on

link b as shown in Figure 4-2.
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Figure 4-1	 The major stream vs. minor stream

Figure 4-2	 Relation of capacity on the minor stream and a flow on the major stream

As a detailed example, the PICADY model represents capacities for three-arm

junctions such as that shown in Figure 4-3 as follows:

= G { K +	 - Y(ebc, V + ebc,ab "ab) I

I'ba = 0ba ( Kba + Hba Yba(eba,acv + eba,abvab + eba,cavca + eba,cbvcb))

1kb = Gcb { Kcb + '1cb - Ycb(ecb,abvab + ecb, v) I
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Figure 4-3	 The layout of three-arm junction

One of the advantages of this empirical relationship for capacity is that it can be

used in either a steady-state or a time dependent delay formulae. This also leads to an

analysis of queue lengths and delays. PICADY uses Whiting's co-ordinate transformation

method (Kimber and Hollis, 1979) to estimate queue length and delay. This

transformation method is based on an approximation to M/G/1 queues in a simple

queuing theory. This method estimates queue lengths and delays for a peak period during

which the steady-state is not achieved, and arrival rates might possibly exceed capacity

for some of the time period.

4.2.2 Gap-acceptance approach

The gap-acceptance approach is based on a probabilistic analysis of drivers'

behaviour. Catchpole and Plank (1986) defined two important concepts of driver

behaviour: consistency and homogeneity. We review the gap-acceptance approach using

these concepts of driver behaviour. A driver on the minor road, on reaching the head of

the queue, can choose to cross (or merge with) the major stream only if the time to the

next major arrival is greater than a certain value (critical gap). If delayed, this driver
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either retains the same critical gap for subsequent gaps (headways) in the major stream,

in which case the driver is consistent in his choice of critical gap, or chooses a new

independent critical gap, in which case the driver is inconsistent. After the departure of

the lead vehicle, the next lead vehicle moves up to the head of queue, and the process of

rejecting and accepting major stream gaps is repeated. Drivers on the minor stream may

choose critical gaps either from the same distribution as others, in which case the drivers

are homogeneous with respect to critical gaps, or from different distributions depending

on the driver and vehicle type, in which case the drivers are heterogeneous.

Four distinct models arise according to the possible combinations of consistency

and homogeneity.

Consistent and homogeneous model

Given the headway distribution, h(t) of the major flow vb, it is possible to derive

a capacity fonnula. The capacity, p on the minor road can be expressed as the ratio of

the mean number of vehicles inserting into a single gap over the mean length of a gap:

Ra %'bfh(t)n(t)(lt

where n(t) is the number of vehicles able to leave the queue during a gap duration t.

Louah (1991) reviewed the capacity by classifying this according to whether n(t)

is a discrete or a continuous function. In the discrete gap-acceptance model, one vehicle

can leave if the gap duration is between t and t + tf, where tf is the time necessary for

the second vehicle in the queue to reach the give-way line after the first one has left the

queue, which is called the follow-up time or the move-up time. Two vehicles can insert
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illff
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into a gap in the range [t + tf, t + 2tf) and so on (see Figure 4-4), so that n vehicles can

insert into a gap in the range [tc + (n-l)tf, t + ntf). On the other hand, in the continuous

gap-acceptance model, this step function can be approximated with a continuous line

such that no vehicle can insert into a gap until a threshold tj and a non-integer number of

vehicles varying linearly with t beyond ti can insert into a gap with a slope equal to the

saturation flow lltf. The correspondence between the two models occurs when t = -

tf/2.

Number

of
Vehicles
departing

t	 t	 t +t f	t+2tf0	 c	 c

duration

Figure 4-4	 Number of vehicles able to insert into a gap (Source: Louah, 1991)

From the discrete n(t) function, we find the capacity on the minor road to be:

tc+it(

Pa .—•V b 1 Jh(t)dt
1=1

From the continuous n(t) function, we get the capacity on the minor road to be:

Pa VbJI)1(t)dt
f

If it is assumed that the headway distribution, h(t) is exponential, then the

capacity formula in the discrete case is obtained:

109



V b exp(—vbtC)

Pa = l—exp(—vbt()

The capacity formula in the continuous case is obtained:

exp(—vbtO)
tf

The former of these two formulae is the basis of the German guidelines and the

latter one is US Highway Capacity Manual (1985, pplO.32 - 10.37). A formula

generalised by the discrete one is the regular-random distribution. This combines a

proportion P of bunched vehicles with a uniform headway H, and the remaining (1 -P)

vehicles with a shifted exponential distribution. The particular case when P=vH leads to

Tanner's formula (1962) (See section 2.6.3.1).

Inconsistent and homogeneous model

Each minor road vehicle samples from a common critical gap distribution. For

each decision concerning the acceptability of a major-stream gap, a new critical gap is

sampled independently from this distribution.

Evans, Herman and Weiss (1964) solved this problem for fixed move-up time and

for arbitrary distributions of critical gap and major headway. Plank and Catchpole (1984)

gave a solution for arbitrary move-up time, critical gap and headway distributions.

Consistent and heterogeneous model

Each individual minor vehicle has a constant critical gap which is distributed

between the population of vehicles. This is usually treated as a special case of the

inconsistent and heterogeneous model.
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Inconsistent and heterogeneous model

Each minor vehicle samples from a critical-gap distribution. The distribution used

depends on the type of vehicle involved. This model includes each of the previous

models as a special case. Catchpole and Plank (1986) developed a general formula for

capacity.

4.3 DELAY FUNCTIONS

Delay at priority junctions consists of two main components: geometric and

congestion delay. The geometric delay arises from the layout of the junction whilst the

congestion delay arises from the vehicle by vehicle interactions. Kimber, Summersgill

and Burrow (1986) defined the geometric delay as the delay that a vehicle would incur if

it passed through the junction in complete isolation, but the driver does not know this in

advance. Kimber et al (1986) defined the congestion delay as that delay generated by the

queuing and service processes for non-priority vehicles. For the remainer of this section,

we consider only the congestion delay.

Tanner's delay formula (1962) is obtained by assuming that arrivals on each of

the major and minor roads are Poisson, a constant minimum headway for each of major

and minor road vehicle, and that a fixed critical gap in major road traffic is acceptable to

all minor road vehicles: this is a consistent and homogeneous model. For the resulting

capacity and delay formulae, see section 2.6.3.1.

The steady-state delay, however, is valid only when the mean arrival rates are

stationary. If traffic exceeds the capacity, then no steady-state delay can arise: this non-
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stationary condition occurs often in the real world. For the non-stationary condition,

Kimber and Hollis (1979) developed a sheared delay formula that combines a steady

state stochastic delay with a deterministic queuing delay. The steady state delay can be

obtained by queuing theory. Kimber et al (1979) derived the steady state formula for the

MIMI! and MJG/1 cases. The deterministic queuing delay represents the growth and

decay of the queue for the condition that traffic flow exceeds the capacity. Figure 4-5

shows that the sheared delay is transformed such that the distances Y and Z of steady

state and deterministic delays respectively are equal.

Figure 4-5	 The sheared delay formula (Source: Kimber and Hollis,1979)

The formula due to Kimber and Hollis (1979) for sheared delay is:

da =j(A2+B)_A

where

A=!(1_X)_!(L0 —C+2)
2

B g!1__'L0 +1)(1c)]
42	 2
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in which X is traffic intensity, t is duration, L0 is initial queue length and C is a constant.

Assume that the arrival distribution of vehicles is Poisson and service is regular,

then delay in the minor stream for steady state, according to the Pollaczek-Khinchine

formula is:

1 rXa
da(vaa)=[]

where Xa=Va/l.La

For the initial stages of traffic assignment, the traffic flow often exceeds the

capacity for some links. To deal with this case, the original Pollaczek-Khinchine formula

can be extended for the oversaturated region. In this region, an increase in the flow will

cause a big increase of the delay. In this study, we will use the linearly approximated

delay formula about an intensity X as (see Figure 4-6):

IX

I2p(1—X),
d(X)=1 1 r__x

iL_x*

X^X*

(X_X* 1
+ '_' I, (X>X*)

2(1_X*)2]

which gives the objective function of traffic assignment (see section 2.5.2) as follows:

2j1
z(X) {

	

X^X*

= --1 —ln(1 _X*)_ X * 
+ (X— X*) 2 1

2j.t[	 4(1_X*)2]' 
(X>X*)
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Figure 4-6	 Approximated delay curve for junction delay.

4.4 FORMULATION

We will adopt the mathematical model proposed by Smith (1982) in order to

formulate priority controlled junction modelling in road traffic assignment. The network

consists of a set of n nodes and a set of L links. Each link has a start and a terminal node.

We can group links according to their terminal nodes. Let junction n be

= Uai Ja2'"''am, I

corresponding to the set of links terminating at node Tia, where m is the number of links

in junction n. Then the set of links, L is

L=JiuJ2u... UJn

In road networks, the journey time is spent at junctions and on links. We

therefore represent that the link cost is a weighted combination of running time on links

and junction delays. The cost incurred in using link a, Ta(V), is a weighted summation of

link cost, Ca(Va) and junction delay, da(V) (see section 2.6.4):

Ta ( V ) =t0 +Y[ C i ( V a ) t o] + (1-y)d(v)

where 'y represents a relative magnitude of two delays and a user's perception on travel
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cost.

In this study, link cost is calculated from the BPR (1965) function steady state

formula. Junction delay, da(V), depends on the junction type, and is calculated from the

approximated Pollaczek-Khinchine formula (see section 4.3).

In this cost function, the link Cost, Ca(Va) is only a function of the flow on link a,

whereas the junction delay, da(V) is a function of several flows approaching junction a in

order to reflect any interacting movements. This relaxation makes the cost function non-

separable:

aT
^O	 forsomea^b

aVb

This non-separability can be accommodated by Smith's variational inequality

formulation of an equilibrium assignment. Let .8 and be the demand and supply feasible

sets respectively: these are convex subsets of R (see section 3.2). Then v E 2 n .8 is a

Wardrop equilibrium if and only if

T(v)(v—u)^O

The equilibrium route choice model allocates flow to paths in the network so that

at the solution, used paths between each o-d pair have the same travel costs, and unused

paths have higher costs. Smith (1982) proved that if the cost function is monotone and

continuous in the feasible region, the set of Wardrop equilibria is convex.

4.5 SOLUTION METHOD

An iteration of a dynamic adjustment process for solving this combined priority

controlled junction modelling and traffic assignment is the combination of the calculation
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of minor road capacities for the given feasible traffic flows, and the assignment of travel

demand using these minor road capacities. The dynamic adjustment process continues

until a convergence criterion is satisfied. In this dynamic adjustment process we adopt a

diagonalised procedure because capacities on minor links are calculated whilst traffic

flows are assumed to be fixed, and traffic flows are calculated whilst minor road

capacities are fixed and so on. An existing diagonalisation procedure can therefore be

used and the following is a diagonalisation of Algorithm 1.

A diagonalisation of Algorithm 1 for the combined priority control and traffic
assignment

Step 0: (Initialisation)
Iteration n = 0
Identify a feasible point, n e .
Set W= {Vn}

Step 1: (Linear subproblem)
1-1. Calculate minor road capacities based on the PICADY formula

t : = G a (K a +Ha Ya eabv)
beB

1-2. Calculate the total link cost

Ta(V,I1:)=to

where Ca(Va) is the BPR function and d(vr,p.I) is the approximated Pollaczek-
Khinchine formula

1-3. Perform all-or-nothing assignment based on the total link cost

u" arg min{T(vt) . 0 ; u€.8}

1-4. Convergence test

IfG(v 11 ,p)= T(v,t)•(v -) 0, stop: optimum solution is n
Otherwise Wn^1 = \AJfl U (Ut')

Step 2: (Master subproblem)

Let v' = arg min{G(v,lO; v E H(W)}

n=n+1
Return to step 1.
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The other simplicial decomposition algorithms introduced in chapter 3 can also be

represented as a diagonalisation form as the case of Algorithm 1. For example, the

Schittenheim algorithm is represented as a diagonalisation form by replacing the master

subproblem of the diagonalised version of Algorithm 1 into that of Schittenhelm's. For

Algorithms 3 and 4, the initialisation step of Algorithm 1 is replaced by each of

initialisation steps in Algorithms 3 and 4. For a detailed description of these algorithms,

see section 3.4.

We will prove that a diagonalisation of Algorithm 1 converges to an equilibrium,

under the condition that the cost function is mostly separable: strictly convex. This proof

is similar to that of the separable case. The convergence of the other algorithms can be

proved in a similar way to this algorithm. This convergence proof is related with the

global stability. In other words, if an algorithm converges to a solution from any

arbitrary initial feasible point, this shows that the assignment is globally stable.

Convergence of a diagonalisation of Algorithm 1

Theorem.

Suppose,

condition (1), that .8 is non-empty, convex compact set, and the diagonalisation of

Algorithm 1 generates the sequence t v" } N where v' € .8.

condition (2), that the cost T(v, ji(v)) is a positive strictly monotone continuous cost

function of v. Then the diagonalisation of Algorithm 1 either terminates at an

equilibrium point, (v*4L*) where L*=p(v*) or generates a sequence {v, JLLM that has a

limit point as n - oo which is an equilibrium, {v*, p,*}

117



Proof (It is acknowledged that Dr JD Addison proved this theorem)

Let G(v) = max{T(v,,i(v)). (v - u)}. We assume that the algorithm does not

terminate. As the algorithm does not terminate, it follows that G(v) ^ 0 for all n.

Let H = u H(W) ç .8. H is closed, convex and compact. It is closed and convex

by construction. As .8 is compact so is H. Let v°° be such that

G(v)=inf G(v)=lim G(v)
veH

The second equality follows from the definition of H and the definition of as the

solution of the master subproblem on H(W11). Because the v is the successive

solutions to the master subproblem, and from the condition (2) G(v) is a

continuously differentiable strictly convex function (Heam, 1982), so the sequence

{G(vfl)} decreases monotonically. The strict convexity of G means that v°° is unique.

We show that urn v = v. Suppose that {v"} has an accumulation point w,

which must lie in H as H is closed. Then there is a subsequence v'U which converges

to w. Now by continuity, G(w) = lim G(vJ) = G(v°°) and so w = V00.

It remains to prove that v lies in H where v' minimises G in .8, ie

G(v*) = infG(v)
VEJ

For v in H, T(v ) . (v - v) ^ 0. To see this, suppose that there is a u in H such that

T(v )• (u - v) <0. Then the gap function G((1-t)v°° + tu) at t=O shows it is

decreasing there. Since the segment [v°°, u] lies in H, this contradicts the choice of

V00.

Suppose that v is not in H. Since v is not in H, it cannot be v°°, so it

follows from convexity that there exists u in.8 for which T(v ) (u - v) < 0. Since
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urn v" = v, it follows from the continuity of G that there is a n such that

T(v )•(u -	 <T(v) . (u - v) < 0. This contradicts the choice of u 11 . We must

have v4 e H and so v°° = v. Proof is completed.

4.6 COST FUNCTION ANALYSIS FOR GOOD BEHAVIOUR

4.6.1 Introduction

The existence, uniqueness and stability of solutions are important properties when

traffic assignment is analysed. Smith (1979) proved the uniqueness and stability of traffic

equilibria under the sufficient condition that the Jacobian matrix of the cost function is

everywhere positive definite. We can test the Jacobian matrix using existing

mathematical properties: a matrix M is positive definite if and only if the determinants of

all principal submatrices of the symmetric matrix M + M T are everywhere strictly

positive. A principal submatrix M1 is derived by deleting the corresponding ith row and

jth column from the matrix.

Heydecker (1983) introduced the necessary condition that the Jacobian matrix of

the cost function is everywhere a P matrix. The condition for the P matrix is that the

determinants of all principal submatrices of the matrix are everywhere non-negative. This

condition is necessary to prove the existence of a unique stable solution. When non-

separable cost functions are analysed, the necessary condition may fail in respect of a

principal submatrix representing some junctions or part of a junction. Heydecker (1983)

showed how to test for such a case as described in section 4.4. The Jacobian matrix is

blocked into each junction. The test of the Jacobian matrix can be done by testing each
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block in turn. If any block fails to satisfy the necessary condition, then the assignment

can behave badly.

Analysis of detailed modelling at priority controlled junctions shows that they

produce a cost function which does not satisfy the sufficient condition: the good

behaviour condition may not be satisfied by the junction delay term. We calculate the

total travel time consisting of free flow travel time, and link and junction delays:

Ta (V) = tø +y[ C a( Va) to] + (l-'y) da(V)

where y represents a relative weighting of the two delays.

When this travel time is used, the resulting Jacobian matrix can be expressed as below:

aC a	 da
ab Tab +(l–y)-

1, ifa=b

where ab = {o, otheise

Note that the link travel time function, ca(va) contributes only to the diagonal

elements of this matrix. Note that da(V) is the original Pollaczek-Khinchine formula in

this study of good behaviour: this is appropriate because we are concerned only with

equilibrium assignments that are within capacity. Convergence behaviour of the problem

depends on the relative weighting allocated to the junction and link delay terms, which

are controlled by the parameter y.

4.6.2 Jacobian matrix analysis using some examples

We will show that the Jacobian matrix of a priority controlled junction is not in

general positive definite. However, apart from hooking right-turn movements at a cross-

roads, it is a P-matrix. The general form of the Jacobian matrix is:
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0

junction JJ=

Apart from the case of hooking right-turn movements, the matrix can be

rearranged by numbering the movements in order of decreasing priority so that all

elements above the diagonal have value 0 thus:

(+small	 0

J=I 1arge +medium

Thus, as the determinant of all principal sub-matrices will be non-negative, and thus the

matrix is P, so the necessary condition is satisfied. This means that this priority

controlled junction modelling can behave well in all known example networks.

1

T7

64

Figure 4-7	 Priority junction layout
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For a specific case, the Jacobian matrix of a priority controlled junction in Figure 4-7,

which is clearly a P matrix, can be represented as follows:

JI'

o j22	 p
o	 j32 j33

-	 J41 J 42	 0 J44

J51 J52 J53 J54 J56

o j62 0 J64 0 J66

We now test the two stream case in the priority junction shown in Figure 4-1. If

we assume the PICADY capacity relationship (see, Semmens, 1985, ppl2-l3) between

link a and b as follows:

The delay on link a is

d :=_i_1 Va
a	

2ltaItjtaVa

Then, the Jacobian matrix can be obtained as follows:

ad a ada

_ a
1 aV,,

- adb ad,,

aV a	 'b

The Jacobian matrix J is positive definite if and only if det(J + JT) > 0, ie

>0
av 1 avb	 aV

where the derivatives are obtained as follows:

i.	 _!	 1	 2.	 L_L.E_ 0.189Va(2ta—va) 3
av a 2Q..a —va ) 2	avbalIaavb	 2	 .LLaVa)2
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We can use these partial derivatives in the left-hand side of the above formula as:

1	 1	 (0.189'\2X(2Xa)2

(a	 a)2 (b —vb)	 2	 (a	 'a)	
>0

where Xa=Va4ta

Thus, if (1b - yb)2 < 100 ( jt - a)2' the condition for good behaviour is satisfied so

that the existence of unique and stable solution is guaranteed. In other words, too much

spare capacity on the major road can lead to bad behaviour of equilibrium assignments.

4.6.3 Stability test

In this section, we will test the priority control model to see whether the

theoretical conditions for good behaviour work well with respect to the experiments. For

this test, firstly, we derive and analytically obtain the values and signs of the Jacobian

matrix of the model. Secondly, we run the priority control model using different initial

points and see whether or not the model obtains a unique stable solution. Thirdly, we

compare the first and second test results to see if the theoretical conditions for good

behaviour correspond well with the results of the experiments using the model.

We use the simple symmetric network shown in Figure 4-8 to test these. It has 2

origins, 2 destinations, 6 nodes and 8 links. The demand from origin 1 is entirely to

destination 5 and from origin 2 to destination 6. Each of nodes 3 and 4 represents a

priority controlled junction in which each of links 3 and 4 is non-priority. The capacity

of each priority link is 2000 vehicles / hour. We vary the demand for each origin-

destination pair, and the weighting factor 'y, and the initial traffic flows in order to

calculate the Jacobian value as well as to test uniqueness and stability.
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Figure 4-8	 Example network
Key :	 origin or destination n

noden

In this example, an equilibrium solution of traffic flows and non-priority

capacities is clearly provided by the symmetric values:

= (v*1, V2, V*3 , V*4) l/2(T15, T15, T26, T26)

Jj*(v*) = (j*3(v*), p*4(v*))

Tables 4-1 and 4-2 show the symmetric equilibrium traffic flows and capacities on a non-

priority link respectively calculated at various levels of demand T15 and T26. The

lower-left parts of the tables are empty becatse the values of the upper-right parts are

symmetric to those of the lower-left parts due to the symmetric example network. The

symbol -, in the lower-right parts indicates that the region is overloaded so that steady-

state values cannot be calculated appropriately here because we are using only the

original Pollaczek-Khinchine formula in good behaviour study.

O/D	 ______ ______ T6	 ______ ______ ______
_______ v/v	 200	 800	 1400	 2000	 2600
T15	 200	 100/100 100/400 100/700 100/1000 100/1300

800	 _______ 400/400 400/700 400/1000 400/1300
1400	 ________ ________ 700/700 700/1000 -
2000	 ________ _________ _________ - 	 -

________ 2600	 ________ _________ _________ - 	 -
Table 4-1	 The symmetric equilibrium traffic flows for calculating Jacobian

matrix
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OlD ______ ______ T76 ______ ______ ______

________ 200	 800	 1400	 2000	 2600
T15	 200	 791	 791	 791	 791	 791

800	 ________ 724	 724	 724	 724
1400	 ________ ________ 658	 658	 -
2000	 ________ ________ ________ -	 -

_________ 2600	 ________ ________ ________ -	 -

Table 4-2	 The symmetric equilibrium capacity on non-priority link 3 for
calculating the Jacobian matrix

The values in Tables 4-1 and Table 4-2 are used to calculate the Jacobian matrix

in Table 4-3 which gives the signature of the Jacobian matrix in terms of the sign of the

determinant of its symmetric part, det(J+Jt) and its diagonal elements J1 'and J22 as the

value of the parameter 'y is changed from 0.0 to 0.75 by an increment of 0.25. In this

table, when y=O corresponding to the maximum junction effect, the value of det(J+Jt) is

negative, whilst in all other cases, the values of det(J+Jt) and its elements J1 and J22 are

all positive. The values of the determinants of the Jacobian increase as the weighting

factor, 'y, approaches 1.0.

O/D _______ _______ T	 _______ _______ _______

y=0.0	 200	 800	 1400	 2000	 2600
0.25
0.5

________ 0.75 ________ ________ ________ ________ ________

	

-1+1+	 -1+1+	 -1^1^	 -1+1+	 -1+1+

	

+1+1+	 +1+1+	 +1+1+	 +1+1+	 +1+1+
200	 +1+1+	 +1+1+	 +1+1+	 +1+1+	 +1+1+

	

_______ +1+1+	 +1+1+	 +1+1+	 +1+1+	 +1+1+

	

-1+1+	 -1+1+	 -1+1+	 -1+1+
T1	 +1+1+	 +1+1+	 +1+1+	 +1+1+

800	 +1+1+	 +1+1+	 +1+1+	 +1+1+

	

_______ _______ +1+1+	 +1+1+	 +1+1+	 +1+1+

	

-1+1+	 -1+1+

	

+1+1+	 +1+1+	 -
1400	 +1+1+	 +1+1+

	

_______ _______ +1+1+	 +1+1+ _______

Table 4-3	 The signs of the Jacobian
(Key: the signs of each symbol indicate respectively the signs of det (J.iJt) / Ji if J22
and the signature - in the bottom right corner indicates overloaded region)
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We define global stability as:

Definition: global stability: An equilibrium of the combined priority control and traffic

assignment model is globally stable if any initial flow in the feasible region leads to that

equilibrium traffic flows and the associated minor road capacities by the dynamic

adjustment process.

Note that in this study of stability, minor road capacities were calculated according to the

PICADY formula and the assignment was calculated by a diagonalisation of the Frank-

Wolfe algorithm. Note also that if an equilibrium is globally stable, then it is also locally

stable because global stability implies local stability.

In order to test global stability, we use three extreme assignment cases as initial

starting values. In all these tests, the value 'y = 0, which gives the maximum junction

effect in the cost function, is used.

Test 1. When initial flows are given as: (v1, v2, v, v4)=(T15, 0, 0, T26)

We obtain the calculated traffic flows and minor capacities on the links by a

diagonalisation of the Frank-Wolfe algorithm. These results are shown respectively in

Tables 4-4 and 4-5 using initial traffic flow v°=(T15, 0, 0, T26). We compare the

resulting calculated equilibrium traffic flows with those symmetric values in Table 4-ito

test the global stability of that equilibrium. To determine the stability or otherwise, we

followed the definition of the global stability given above. The conclusions drawn from

this global stability test are in Table 4-6. Table 4-7 represents the number of iterations

used by the diagonalisation of the Frank-Wolfe algorithm to terminate and the gap

function value in equation (2.15) at that termination.
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OlD______ ______ T26	 ______ ______ ______
________ v'1 1 /v'	 200	 800	 1400	 2000	 2600
T15	 200	 100/100 100/400 100/700 100/1000 100/1300

800	 _______ 400/400 400/700 400/1000 400/1300
1400	 _______ _______ 700/700 700/1000 -
2000	 _________ _________ _________ - 	 -

________ 2600	 _________ _________ _________ - 	 -
Table 4-4	 The calculated traffic flows by F-W in global stability test 1

(Key:	 is traffic flow on link after iteration n which is shown in Table 4-7)

O/D ______ ______ T,6 ______ ______ ______
_______ 11n3	 200	 800	 1400	 2000	 2600

115	 200	 791	 791	 791	 791	 791
800	 _________ 724	 724	 724	 724
1400	 _________ ________ 658	 658	 -
2000	 _________ _________ _________ -	 -

________ 2600	 ________ ________ ________ - 	 -
Table 4-5	 The results of calculated capacity on non-priority link 3 by F-W in global

stability test 1.
(Key: trl is capacity on non-priority link after iteration n which is shown in Table 4-7)

O/D ____ ____ 176 ____ ____ ____
_____ _____ 200 800 1400 2000 2600
T15 200 S	 S	 S	 S	 S

	

800 _____ S	 S	 S	 S

	

1400 _____ _____ S	 S	 -

	

2000 _____ _____ _____ - 	 -
_____ 2600 _____ _____ _____ _____ -

Table 4-6	 The result of global stability test 1
(Key: S represents stability that symmetric equilibrium is obtained in the test)

O/D	 ______ ______ T26	 ______ ______ ______
________ n/gap	 200	 800	 1400	 2000	 2600

115	 200	 15/0.0	 5/0.0	 10/0.0	 50/21.0	 9/0.0
800	 ________ 8/0.0	 50/0.47	 10/0.0	 16/0.0
1400	 ________ ________ 50/2.5	 50/2.0	 -
2000	 _________ ________ ________ - 	 -

________ 2600	 _________ ________ ________ - 	 -
Table 4-7	 The number of iteration used by F-W in global stability test 1

(Key: n represents the number of iteration used; and gap represents the gap value)
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Test 2. When initial flows are given as: (v1, v2, v3, v4)=(T15/2, T1512, 126/2, T26/2)

We obtain the calculated traffic flows and minor capacities on link by a

diagonalisation of the Frank-Wolfe algorithm. These results are shown respectively the

same as in Tables 4-4 and 4-5 using initial traffic flows v°=(T15/2, T15/2, T26/2,

T26/2). We compare the resulting calculated traffic flows in Table 4-4 with those

symmetric values in Table 4-ito test the global stability of that equilibrium. The results

of global stability test are the same as in Table 4-6. Table 4-8 represents the number of

iterations used by the diagonalisation of the Frank-Wolfe algorithm to terminate and the

gap function value in equation (2.15) at that termination.

O/D	 ______ _____ T26	 ______ ______ ______
________ n/gap	 200	 800	 1400	 2000	 2600
T15	 200	 12/0.0	 9/0.0	 24/0.0	 50/21.0	 6/0.0

800	 _______ 50/0.03	 50/0.72	 50/2.0	 16/0.0
1400	 _______ ________ 50/14.0 50/4.0 	 -
2000	 ________ ________ ________ - 	 -

________ 2600	 ________ ________ ________ - 	 -
Table 4-S	 The number of iteration used by F-W in global stability test 2

(Key: n represents the number of iteration used; and gap represents the gap value)

Test 3. When initial flows are given as: (v1, v2, v3, v4)=(T15, 0, 126, 0)

We obtain the calculated traffic flow and non-priority capacities on link by a

diagonalisation of the Frank-Wolfe algorithm shown respectively the same as in Tables

4-4 and 4-5 using initial traffic flow v°=(T15, 0, T6, 0). We compare the resulting

calculated traffic flows in Table 4-4 with those symmetric values in Table 4-ito test the

global stability of that equilibrium. To determine the stability or otherwise, we followed

definition of global stability given above. The results of the global stability test are the
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same as in Table 4-6. Table 4-9 represents the iteration number used by the

diagonisation of the Frank-Wolfe algorithm to terminate and the gap function value in

equation (2.15) at that termination.

O/D	 ______ ______ Tç	 ______ ______ ______
_______ n/gap	 200	 800	 1400	 2000	 2600
Ti	 200	 37/0.0	 5/0.0	 34/0.0	 50/11.0	 39/0.0

800	 ________ 11/0.0	 30/0.0	 26/0.0	 25/0.0
1400	 ________ ________ 50/11.8 50/28.0 -
2000	 _________ _________ ________ -	 -

________ 2600	 _________ _________ ________ -	 -
Table 4-9	 The number of iteration used by F-W in global stability test 3

(Key: n represents the number of iteration used; and gap represents the gap value)

These global stability tests show that the combined priority control and traffic

assignment model appears to have a unique solution which is independent on the initial

values. Thus this problem appears to be globally stable and in particular the symmetric

equilibrium is obtained by all three global stability tests, and these solutions are

associated with a P matrix of the Jacobian analysis. Global stability indicates that local

stability is also satisfied in traffic assignment with priority controlled modelling.

4.7 NUMERICAL EXAMPLES

4.7.1 Introduction

In this section, the solution methods developed in chapter 3 under the

diagonalisation procedure described in chapter 2 are applied to two example networks

each of which includes several priority controlled junctions. The results of this help us to

compare the performance of these various algorithms when used in networks with this

kind of the non-separable cost function. As the first example, the network and travel

demand devised by Charlesworth (1977) are used: this has 5 origins, 5 destinations, 46
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nodes and 78 links (for the figures and data of the network, see Appendix 2). The Sioux

Falls network (see Figure 3-6) is used as the second example: this has 12 origins, 12

destinations, 23 nodes and 72 links. In each case, capacities on minor links are obtained

using the PICADY model. The values used for the parameters Ga, Ka, Ha, 'va' ea are

those determined empirically by Semmens (1985, ppl2-l3) in accordance with the

structures of the networks. As stopping criteria in each algorithm, either a required level

of the gap value as G(v") ^ E, or a maximum number of iterations are used.

Algorithms 1, 2, 3 and 4, the Frank-Wolfe and the Schittenhelm algorithms have

been tested to compare their performance. In particular, Algorithm 2 used one iteration

of the master subproblem of Schittenhelm's before switching to the master subproblem of

Algorithm 1. Algorithms 3 and 4 also used one column generation in the initialisation

step. In these tests, the weighting factor y, which is used to combine junction and link

delays, is varied from 0.0 to 1.0 in increments of 0.25. In Tables 4-10, 11, 12, 13 and 14,

the final values of each algorithm are compared in terms of the iteration number, CPU

time on SUN Sparc station (model 370 GX) and the mean gap value from equation (2.16)

as the weighting factor 'y is varied on Charlesworth's network. In the same way, Tables 4-

15, 16, 17, 18 and 19 show the final values for each algorithm for the Sioux Falls

network. The performance of each algorithm as a whole is shown in Figures 4- 9, 10, 11,

12 and 13 as the weighting factor 'y is varied on Charlesworth's network. In the same

way, the performance of each algorithm is shown in Figures 4-14, 15, 16, 17 and 18 on

the Sioux Falls network.

4.7.2 Charlesworth's network

In Table 4-10, the performance of the algorithms on Charlesworth's network is

shown when the weighting factor is y =0.0 which means that junction delay but not link
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delay is considered in the choice of routes. Algorithm 3 runs fastest ending with a mean

gap value of 12.768 seconds in 14.82 CPU seconds of SUN Sparc station 370 GX.

However, Algorithm 1 runs furthest ending with a mean gap value of 0.386 seconds in

84.08 CPU seconds. Note that each algorithm is stopped by the maximum iteration

number. Figure 4-9 shows the whole process of convergence for each algorithm. The

pattern for each algorithm except the Frank-Wolfe includes fluctuations in gap. In fact,

the Frank-Wolfe algorithm improves the mean gap value by about 0.06 1 seconds with

each iteration. However, the value is too small to see in this large scale figure. Figure 4-

19 shows the final traffic flows obtained by each algorithm compared with those of

Algorithm 3, and Figure 4-20 shows the final minor road capacities for this case. These

figures show close agreement between in flows and capacities on most links calculated

by each of the algorithms except the Frank-Wolfe. In this case, all of the algorithms

performed reasonably well except for the non-convergence of the Frank-Wolfe

algorithm, as indicated by the substantial final gap value.

In Table 4-11, the performance of the algorithms is shown when the weighting

factor 'y =0.25, which includes some allowance for link delays. Algorithm 3 again runs

fastest terminating with a small mean gap of 2.698 seconds in 14.75 CPU seconds. In this

case, the Schittenhelm algorithm runs slightly further to a mean gap value of 2.633

seconds in just 15.01 CPU seconds. Note that each of the algorithms is stopped by the

maximum iteration number. Figure 4-10 shows the whole process of the convergence for

each algorithm. The pattern of each algorithm except the Frank-Wolfe algorithm includes

fluctuations in gap. Note that Algorithms 1 and 2 stabilise after 30-40 CPU seconds.

Figure 4-21 shows the final traffic flows obtained by each algorithm compared with

those of Algorithm 3, and Figure 4-22 shows the final minor capacities for this case. As

in the case 'y=0, these figures show close agreement between in flows and capacities

estimated by algorithms except the Frank-Wolfe.
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In Table 4-12, the performance of the algorithms is shown when the weighting

factor y =0.5. This case corresponds to equal weight being given to link and junction

delays. Algorithm 3 again runs fastest to a mean gap value of 7.117 seconds in 14.73

CPU seconds. However, Algorithm 2 runs furthest to a mean gap value of 0.971 seconds

in 82.37 CPU seconds. Figure 4-11 shows the whole process of the convergence for each

algorithm. Note that Algorithm 1 stabilises after 20 seconds of CPU, and Algorithm 2

also stabilises for a while and then fluctuates. Figure 4-23 shows the final traffic flows

obtained by each algorithm compared with those of Algorithm 3, and Figure 4-24 shows

the final minor road capacities for this case. These figures show substantial differences

between the new algorithms and the Frank-Wolfe algorithm in flows and capacities on

some links and close agreement on others. In particular, there appear to be three groups

of flows: F-W, Algorithm 4 and the others. In the case of the F-W, this can be attributed

to non-convergence, as indicated by the substantial final gap value. On the other hand,

the final gap values for the other algorithms are similar, and it is not clear why Algorithm

4 should have distinct flows.

In Table 4-13, the performance of algorithms on the Charlesworth network is

shown when the weighting factor y =0.75 which corresponds to 1/3 weighting on

junction delay. Algorithm 3 again runs fastest to a mean gap value of 7.297 seconds in

14.75 CPU seconds. However, Algorithm 2 runs furthest to a mean gap value of 0.55 1

seconds in 82.47 CPU seconds. In Figure 4-12, the pattern of each algorithm except the

Frank-Wolfe algorithm includes fluctuations in gap. Note that the cycle of fluctuations in

Algorithm 4 is larger than previous weighting values, and Algorithm 2 reduces the gap

value after 40 seconds of CPU. Figure 4-25 shows the final traffic flows obtained by

each algorithm compared with those of Algorithm 3, and Figure 4-26 shows the final

minor road capacities for this case. In these figures, there are more close agreements

132



between in flows and capacities by each algorithm than earlier cases.

In Table 4-14, the performance of the algorithms is shown when the weighting

factor = 1.0 which corresponds to the separable case in which only link delay is

considered. In this case, Algorithm 2 converges fastest to a mean gap value of 0.000

seconds in 11.80 CPU seconds. Algorithms 1, 4 and the Schittenheim algorithm also

converge to a mean gap of zero whilst Algorithm 3 terminates after 31 iterations with a

mean gap close to zero. Note that Algorithms 1, 2 and 4, and Schittenheim algorithm

terminate by the required level of the gap value. In Figure 4-13, each algorithm except

the Frank-Wolfe algorithm converges to a mean gap value of zero, though this cannot be

shown explicitly on a logarithmic scale. Figure 4-27 shows the final traffic flows

obtained by each algorithm compared with those of Algorithm 3, and Figure 4-28 shows

the final minor road capacities for this case. These figures show that apart from F-W the

final values differ slightly because in each case the gap value converges to near zero and,

due to separability, the equilibrium is unique.

In Figure 4-39, final mean gap values of each algorithm are depicted for the

Charlesworth network as the weighting factor y is changed. An expectation of the effect

of 'y on the final gap value is to reduce the final gap as the weighting factor becomes 1.0

which means only the link based cost. In particular, Algorithm 2 reduces the final gap

value steadily as the weighting factor increases to 1. However, due to non-monotonic

patterns in gap value, the final gap values in the other algorithms have been increased

when the weighting factors are 0.5 and 0.75. In terms of performance of the algorithms,

Algorithm 3 runs quickly in all the cases as does the Schittenheim algorithm. Algorithms

1, 2 and 4 run with a further convergent value of gap. Note that the Schittenheim

algorithm works well for y = 0 and 0.25 and fairly well at other values.
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4.7.3 Sioux Falls network

In Table 4-15, the performance of the algorithms on the Sioux Falls network is

shown when the weighting factor 'y =0.0. Algorithm 3 runs fastest to a mean gap value of

0.932 seconds in just 3.74 CPU seconds. However, Algorithm 1 runs furthest to a slightly

lower mean gap value of 0.9 14 seconds in 39.61 CPU seconds. Figure 4-14 shows the

whole process of the convergence for each algorithm. The pattern of each algorithm

except the Frank-Wolfe algorithm includes fluctuations in gap in the first stage and slight

changes in the later stages. Figure 4-29 shows the final traffic flows obtained by each

algorithm compared with those of Algorithm 3, and Figure 4-30 shows the final minor

road capacities for this case. These figures show substantial differences between flows

and capacities on some links and close agreement on others calculated by each

algorithms.

In Table 4-16, the performance of the algorithms is shown when y =0.25.

Algorithm 3 again runs fastest to a mean gap value of 1.387 seconds in 3.61 CPU

seconds. However, Algorithm 1 terminates with the smallest mean gap value of 0.108

seconds in 39.90 CPU seconds. Figure 4-15 shows the whole process of the convergence

for each algorithm. The pattern of each algorithm is broadly similar to that in the

previous case. Note that in Algorithm 2 the gap value increases in the final stages. Figure

4-31 shows the final traffic flows obtained by each algorithm compared with those of

Algorithm 3, and Figure 4-32 shows the final minor road capacities for this case. Note

that the Frank-Wolfe, Algorithms 1, 3 and 4 have distinct different flow groups, and

minor road capacities range mostly from 500 to 800.

In Table 4-17, the performance of the algorithms is shown when the weighting

factor y =0.5. Algorithm 3 again runs fastest to a mean gap value of 0.199 seconds in
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3.74 CPU seconds. However, Algorithm 2 runs furthest to a mean gap value of 0.069

seconds in 39.68 CPU seconds. Figure 4-16 shows the whole process of the convergence

for each algorithm. The pattern of each algorithm is broadly similar to that in the

previous cases. Note that Algorithm 2 has stabilised more than in the previous case.

Figure 4-33 shows the final traffic flows obtained by each algorithm compared with

those of Algorithm 3, and Figure 4-34 shows the final minor capacities for this case.

Note that by comparison with previous cases, the minor road capacities have more cluster

values.

In Table 4-18, the performance of the algorithms is shown when y =0.75.

Algorithm 3 again runs fastest to a mean gap value of 0.265 seconds in 3.45 CPU

seconds. However, Algorithm 2 runs furthest to a mean gap value of 0.137 seconds in

38.40 CPU seconds. Figure 4-17 shows the whole process of the convergence for each

algorithm. The pattern of each algorithm except the Frank-Wolfe algorithm includes

fluctuations of gap in the first stage and slight changes in the later stage. Note that

Algorithm 1 reduces the gap value dramatically in the initial stage whilst it goes up

afterwards. Figure 4-35 shows the final traffic flows obtained by each algorithm

compared with those of Algorithm 3, and Figure 4-36 shows the final minor road

capacities for this case. Note that traffic flows and minor road capacities are closer to the

diagonal line than in the cases with the smaller weighting values.

In Table 4-19, the performance of the algorithms on the Sioux Falls network is

shown when the weighting factor ' =1.0 which means that only link delay is considered

in the choice of routes. In this case, Algorithm 3 converges fastest to a mean gap value of

0.000 seconds in 3.26 CPU seconds, and all the algorithm except F-W also converge to a

mean gap value of 0.000 seconds. Figure 4-18 shows the whole process of the

convergence for each algorithm. The pattern of each algorithm except the Frank-Wolfe
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algorithm includes fluctuations in the first stage and slight changes in the later stage.

Figure 4-37 shows the final traffic flows obtained by each algorithm compared with

those of Algorithm 3. Figure 4-38 shows the final minor road capacities for this case.

These figures show that the final values differ slightly as a gap value converges to zero,

and as the equilibrium is unique due to separability of the cost function.

In Figure 4-40, final gap function values of each algorithm are depicted as the

weighting factor y changes on the Sioux Falls network. An expectation of effects of 'y on

a final gap value is to reduce the final gap as the weighting factor becomes 1.0 which

means only link cost. In particular, all but Algorithms 2 and 3, and the Schittenhelm

algorithm reduce the final gap value steadily as the weighting factor increases to 1. In

terms of performance of the algorithms, Algorithm 3 runs quickly all cases. Algorithms

1, 2 and 4 run with a further convergent value of gap.

4.7.4 Discussion and summary

The numerical tests show that the new algorithms run quickly. Furthermore, they

terminate with substantially smaller gap values than those achieved by the Frank-Wolfe

algorithm. However, they have non-monotonic patterns of the gap value in their

iterations. These non-monotonic fluctuations are cyclic and arise during the solution of

the master subproblem. Although we have to treat these non-monotonic patterns with

care, the final gap values are close to zero, which means that the solution is near an

equilibrium. For additional information on the convergence to an equilibrium, the

estimated link flows and minor road capacities of the new algorithms are all similar to

each other but differ substantially from those of the Frank-Wolfe algorithm. On the other

hand, the Frank-Wolfe algorithm converges only slowly but steadily decreases an

objective value at each iteration. The Frank-Wolfe algorithm requires much more
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computational time to achieve any given level of convergence than do the new

algorithms. Furthermore, the new algorithms reach a convergent level in few iterations as

shown in the Figures from 4-9 to 4-18. These results correspond well to the convergence

behaviour explained in Chapter 3: the new algorithms were developed to overcome the

slow convergence of the Frank-Wolfe algorithm.

In summary of these test results, Algorithm 3 performs best in all the cases in

terms of CPU time. However, Algorithms I and 2 run furthest in terms of gap value in

most cases. In terms of both measures of CPU time and gap value, Algorithms 2 and 3,

and the Schittenhelm algorithm perform well in most cases. The convergence pattern of

each algorithm includes fluctuations. In particular, the pattern fluctuates mostly as the

weighting value approaches zero. When the weighting value is unity, which corresponds

to the case of only link cost, the gap value converges to zero. The pattern of convergence

on the Charlesworth network fluctuates more than on the Sioux Falls. This can be

explained according to the characteristics and structure of each network. Charlesworth's

network has two main roads that provide alternate routes: choice between them can then

cause gap values to fluctuate. On the other hand, the Sioux Falls network has a grid form

so that many route choices are possible and the demand is spread more widely and the

fluctuation is less.
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__________________	 Iterations	 CPU(Second)	 Mean gap (Second)

Algorithm 1	 31	 84.08	 0.386

Algorithm 2	 31	 81.17	 5.063

Algorithm 3	 31	 14.82	 12.768

Algorithm 4	 31	 81.40	 3.289

Frank-Wolfe	 100	 53.46	 115770.500

Schittenhelm	 31	 15.03	 0.819
Table 4-10 Performance of algorithms in Charlesworth's network when y =0.0

__________________	 (Maximum unction effect)	 __________________

__________________	 Iterations	 CPU(Second)	 Mean gap (Second)

Algorithm 1	 31	 82.38	 4.094

Algorithm 2	 31	 82.65	 5.102

Algorithm 3	 31	 14.75	 2.698

Algorithm 4	 31	 80.40	 3.433

Frank-Wolfe	 100	 53.42	 87268.500

Schittenheim	 31	 15.01	 2.633
Table 4-11 Performance of algorithms in Charlesworth's network when y =0.25

__________________	 Iterations	 CPU(Second)	 Mean gap (Second)

Algorithm 1	 31	 81.96	 2.229

Algorithm 2	 31	 82.37	 0.971

Algorithm 3	 31	 14.73	 7.117

Algorithm 4	 31	 80.55	 5.797

Frank-Wolfe	 100	 53.37	 29102.200

Schittenhelm	 31	 14.99	 6.502
Table 4-12 Performance of algorithms in Charlesworth's network when 'y =0.5
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__________________	 Iterations	 CPU(Second)	 Mean gap (Second)

Algorithm 1	 31	 82.43	 3.908

Algorithm 2	 31	 82.47	 0.551

Algorithm 3	 31	 14.75	 7.297

Algorithm 4	 31	 81.92	 3.407

Frank-Wolfe	 100	 53.38	 58185.300

Schittenheim	 31	 14.96	 6.993
Table 4-13	 Performance of algorithms in Charlesworth's network when y =0.75

__________________	 Iterations	 CPU(Second)	 Mean gap (Second)

Algorithm 1	 14	 13.56	 0.000

Algorithm 2	 13	 11.80	 0.000

Algorithm 3	 31	 14.57	 0.000

Algorithm 4	 14	 13.00	 0.000

Frank-Wolfe	 100	 52.72	 2.320

Schittenhelm	 27	 12.62	 0.000
Table 4-14 Performance of algorithms in Charlesworth's network when y = 1.0

____________________	 (No junction effect) 	 ___________________

_________________	 Iterations	 CPU(Second)	 Mean gap (Second)

Algorithm 1	 31	 39.61	 0.914

Algorithm 2	 31	 39.57	 1.440

Algorithm 3	 31	 3.74	 0.932

Algorithm 4	 31	 40.48	 2.156

Frank-Wolfe	 100	 14.51	 8956.096

Schittenhelm	 31	 3.92	 1.023
Table 4-15 Performance of algorithms in Sioux Falls network when 'y =0.0

(Maximum junction effect)
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_________________	 Iterations	 CPU(Second)	 Mean gap (Second)

Algorithm 1	 31	 39.90	 0.108

Algorithm 2	 31	 42.01	 1.962

Algorithm 3	 31	 3.61	 1.387

Algorithm 4	 31	 42.33	 0.212

Frank-Wolfe	 100	 14.35	 4957.153

Schittenhelm	 31	 3.71	 1.285
Table 4-16	 Performance of algorithms in Sioux Falls network when 'y =0.25

_________________	 Iterations	 CPU(Second)	 Mean gap (Second)

Algorithm 1	 31	 40.06	 0.139

Algorithm 2	 31	 39.68	 0.069

Algorithm 3	 31	 3.61	 0.199

Algorithm 4	 31	 39.87	 0.098

Frank-Wolfe	 100	 14.19	 1096.495

Schittenhelm	 31	 3.79	 0.193
Table 4-17 Performance of algorithms in Sioux Falls network when y =0.5

_________________	 Iterations	 CPU(Second)	 Mean gap (Second)

Algorithm 1	 31	 37.33	 0.163

Algorithm 2	 31	 38.40	 0.137

Algorithm 3	 31	 3.45	 0.265

Algorithm 4	 31	 39.68	 0.255

Frank-Wolfe	 100	 14.41	 601.049

Schittenhelm	 31	 3.57	 0.265
Table 4-18 Performance of algorithms in Sioux Falls network when y —0.75
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__________________	 Iterations	 CPU(Second)	 Mean gap (Second)

Algorithm 1	 27	 24.28	 0.000

Algorithm 2	 13	 4.15	 0.000

Algorithm 3	 31	 3.26	 0.000

Algorithm 4	 31	 34.80	 0.000

Frank-Wolfe	 100	 14.02	 0.012

Schittenhelm	 31	 3.35	 0.000
Table 4-19	 Performance of algorithms in Sioux Falls network when 'y = 1.0

(No junction effect)
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CHAPTER 5 TRAFFIC ASSIGNMENT WITH SIGNAL-CONTROLLED

JUNCTION MODELLING

5.1 INTRODUCTION

This chapter presents signal-controlled junction modelling in road traffic

assignment. Signal optimisation is reviewed according to a single junction, linked

junctions, and a combined signal control and traffic assignment. Delay functions that are

used to analyse the performance of the signal-controlled junction are introduced. Solution

algorithms are presented to solve this problem and to analyse some properties such as

uniqueness and stability. A numerical analysis of this problem is presented.

5.2 SIGNAL OPTIMISATION

5.2.1 Introduction

The coverage of traffic control systems can be classified as one of:

1. individual junction control, when a junction is operated independently from other

junctions;

2. arterial systems, when some junctions along a corridor are co-ordinated; and

3. network systems, when the road systems are controlled as a whole.

The style of traffic control systems can be classified as one of:

1. fixed time control, when it is based on the average conditions regardless of

time and characteristics of traffic flows;

2. pre-timed control, when it is operated according to the period and day; and

3. actuated control, when it is operated by characteristics of traffic flow
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measured at that time.

We will review signal control in the cases of an independent junction, linked

junctions, and a combined signal control and traffic assignment in a fixed time control

only.

5.2.2 Single junction

Webster (1958) provided systematic mathematical frameworks for signal timing

calculation at a single junction. In his method, the arrival pattern of traffic is assumed to

be a Poisson type, and green times are calculated according to the maximum ratio of

arrival flow to saturation flow for the streams that have right of way during each stage.

An approximate formula for the optimal cycle time to minimise overall junction delay

was also developed.

AlIsop (1971) formulated this signal timing calculation as a convex mathematical

programming problem to minimise the total rate of delay on all approaches. Alisop

(1972) presented an alternative formulation as a linear programme to maximise capacity.

This approach is called stage-based because the variables of optimisation are the stage

duration, and the stage sequence has to be specified in advance.

Zuzarte Tully (1976) developed a procedure to identify all possible stage

sequences at a junction by using a graph theory. Gallivan and Heydecker (1988), and

Heydecker and Dudgeon (1987) formulated the signal control problem, within which

stage sequences are identified, as a linear programme and a convex mathematical

programme to maximise capacity and to minimise delay respectively. This approach is
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called phase-based because the variable of optimisation is the phase duration, and the

stage sequence can be determined partially within the programme itself.

5.2.3 Linked signal control

Network co-ordination is a key issue in linked signal systems. As optimisation

criteria, the number of vehicular stop and delay become important. The resulting

formulation of this problem is mostly a nonlinear objective function and a non-convex

constraint set. Little (1966) proposed a general formulation of arterial co-ordination as a

mixed integer programme. Gartner and Little (1972) proposed a dynamic programming

approach to solve the network-wide problem. Improta and Sforza (1982) formulated this

problem as a binary integer programme. These mathematical methods are thus limited in

the size of network that they can accommodate and only give sub-optimal solutions.

TRANSYT (Vincent, Mitchell and Robertson, 1980) is used as an alternative to

the mathematical approach. TRANSYT simulates the motions of traffic in the network to

obtain cyclic flow profiles. TRANSYT uses a heuristic procedure called hill-climbing to

minimise approximately a weighted sum of delay and stops on the networks. This

method can be used in a large network but gives only sub-optimal solutions.

5.2.4 Combined signal control and traffic assignment

5.2.4.1 Introduction

Traffic assignment and signal control have played important roles in the

transportation planning and traffic engineering. Traffic assignment is used to represent

users' behaviour in selecting routes so as to minimise their individual travel costs. A
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signal control policy determines the optimal signal settings based on the total travel cost

in the system.

These problems have been tackled independently even though the interaction

between traffic assignment and signal control problems exists clearly. When the traffic

assignment problem is solved in detail, signal control data are required in the cost

functions. On the other hand, when signal control is solved, traffic flow is necessary to

calculate signal control variables and a cost function.

To improve their realism, the mutual interaction between these two problems

should be considered: signal setting gives a delay which will affect the drivers' route

choice whilst changes in route choice can cause changes in signal settings.

There are two main approaches to the solution of this combined problem. Firstly,

the global optimisation method is for solving the signal optimisation problem and the

traffic assignment problem as a whole. Secondly, the iterative approach is to solve signal

control and traffic assignment alternately.

5.2.4.2 Global solution approach

This approach is known as the network design problem in which the decision

variables correspond to signal timings and the flows are constrained to be in equilibrium

condition and consistent with those timings. The cycle time, stage matrix and offsets in

some cases are usually assumed to be known values. Only the green split is considered to

be a variable. The objective function of this model is the total travel cost expressed as a

formulation of the green time and traffic flows. At the solution, the users' behaviour such

as Wardrop's first principle should be met.
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A bilevel approach can be used to solve the network design problem. This

approach consists of upper and lower levels. The upper level concerns the decision of

traffic controller with the objective to minimise the total costs on the systems. The total

travel cost, expressed as a formulation of the green time and traffic flows, can be used as

an objective function. The lower level represents the users' behaviour of selecting their

routes. Wardrop's first principle can be used to solve the equilibrium flow pattern for

given signal timings. This bilevel approach is a form of Stackelberg game (Fisk, 1984).

In this game, a traffic controller decides a signal setting based on which a driver will

choose his or her best route from each origin to destination pair.

Tan et al (1979) solved this as a hybrid optimisation using a special nonlinear

programming technique. In this method, green splits were calculated, and other variables

such as cycle time and offsets were assumed to be fixed. Fisk (1984) formulated this

problem as a max-mm game theory and proposed a penalty approach for its solutions.

Marcotte (1983) suggested a constraint relaxation method, whilst Sheffi and Powell

(1983) proposed a feasible descent method to solve this problem. Heydecker and Khoo

(1990) developed an iterative method, which used a sequence of linear approximations to

the assignment constraints and solved each of the resulting sub-problems by a direct

search method.

Each of these methods in this solution approach suffers from their limitations.

Firstly, they are restricted to the small size of the network problem. Secondly, they can

represent only approximate unrealistic modelling because they need strong assumptions

of a cost function and a network structure for better behaviour. Thirdly, their solutions

guarantee only local solutions because the problem has a non-convex constraint and a

non-linear objective function.
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5.2.4.3 Iterative approach

An iterative approach is to solve signal control and traffic assignment alternately.

The signal control problem yields some decision variables such as green time and cycle

time which are calculated to optimise some measures of performance when flows are

fixed. These can then be passed to the traffic assignment problem as fixed input values.

The traffic assignment problem solves the user behaviour condition to give traffic flows

which are calculated to optimise some measures of performance when some decision

variables in signal control are fixed. These can then be passed to the signal control

problem as fixed input values. This iterative procedure is repeated until mutually

consistent values of the variable are obtained (see Figure 5-1).

Assignment

Green time
	

Traffic flow

Signal control

Figure 5-1	 Iterative approach between traffic assignment and signal control

Alisop and Charlesworth (1977) introduced this iterative computational procedure

for the combined signal setting and road traffic assignment problem. They used the

TRANSYT (Vincent, Mitchell and Robertson, 1980) program to calculate the signal

timing control parameters and the TRAFFIC (Nguyen and James-Lefebre, 1975)

program to calculate the equilibrium assignment pattern.
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Gartner, Gershwin, Little and Ross (1980) also used this iterative procedure for

the combined signal control and road traffic assignment problem. They included the

calculation of offsets in the signal control problem by formulating this as a mixed integer

linear programme. The solution of this formulation thus requires a great computational

effort.

Smith (1981) introduced a signal control policy that guarantees the existence of a

traffic equilibrium that is consistent with it. Smith, Van Vuren, Heydecker and Van Vliet

(1987) carried out a comparative stability test between Smith's policy and Webster's

policy. They compared the difference in signal settings at equilibrium which results from

different initial settings. They found that both Smith's policy and Webster's policy have a

stable equilibrium under the low congestion case. However, at the high cogestion case,

different initial settings give rise to a significant difference in the ultimate green times by

Webster's policy whilst some difference by Smith's policy.

Cantarella, Improta and Sforza (1991) proposed an iterative procedure in which

traffic signal setting is calculated in two successive steps: green timing and scheduling at

each junction, and signal co-ordination on the network. Green timing and scheduling at a

single junction are calculated according to a mixed binary linear programme. Signal co-

ordination for the network is calculated by using a branch and bound technique.

5.3 COST FUNCTION

5.3.1 Introduction

The notation that is used here is as follows. Let

da be the junction delay on link a
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Ca be the link based travel cost on link a

Ta be total cost on link a, corresponding the weighted sum of da and Ca

'a be the total volume of traffic on link a

J be junction n

Tod be the total demand for travel from o to d

T be the matrix of ( Tod)

C be cycle time

ga be effective green time for link a

5a be saturation flow on link a

Xa be degree of saturation on link a [va / (Xa sa)]

be green time proportion for link a (ga/C)

We need some definitions of the terms that are used in the signal control of road

junctions. A junction can be described by a set of approaches. An approach is a part of a

road leading to the junction such that all the traffic in the approach has a right of way

simultaneously. The traffic at a junction is divided into streams. A stream is formed by

all the users who cross the junction from the same approach, and form a single queue.

It is assumed that vehicles depart from a queue at a constant rate when they have

right of way. The effective green time, g is the duration of the interval in which vehicles

cross the stop line constantly. An effective red time, r represents the period during which

vehicles cannot cross. The saturation flow, s is defined for each stream as the average

flow that can cross the junction in unit time when a queue exists at the approach.

The cycle time, C is defined to be the sum of the effective green and red time as

follows:

C=g+r
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The cycle can be divided into stages during which the signal indications are constant at

either red or green.

Alisop (1992) defined the traffic capacity of a stream with given signal timing as

the average departing flow of traffic per unit time when every green time is saturated.

This can be calculated as As where A is the proportion of cycle effective green (gIC) and s

is the saturation flow in vehicles per unit time.

5.3.2 Delay function

We can denote the total travel time consisting of free-flow travel time, and link

and junction delays:

Ta(V) = to +[ C a( Va)to1 + (l-y) da(V)

where t0 is the free-flow travel time; da(v) is junction delay depending on the junction

type and calculated from Webster's formula; Ca(Va) is the link cost function and

calculated from the BPR function; and 'y is a parameter to control the relative influence of

link and junction delays, and represents a user's perception on the travel cost.

Webster's two term delay is used commonly to estimate the mean delay at a fixed-

time signal controlled junction for steady state:

_______ x2

1OL2(l—)2v(l—X)]	 (5.1)

whereX = v/(sX)

Webster's delay can be decomposed into two components: uniform and random

delay. The first term of the delay represents the uniform delay which is due to the
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alternation of green and red intervals when vehicles arrive regularly at a rate less than

capacity. The second term of the delay represents the random delay which is due to the

randomness of arrivals of vehicles at the stop line and the consequent overflow of

vehicles at the end of some effective green periods (see Figure 5-2).

Lverage	 Random delay	 Uniform dela

delay

0	 1.0

Degree of saturation, X

Figure 5-2	 Uniform and random delay (Source: Alisop, 1992)

During the initial iterations of equilibrium assignment solution methods, the

traffic flow may exceed the capacity on some links. To avoid numerical difficulties in

this case, Webster's delay function should be extended into the oversaturated region. We

approximate linearly this delay formula about a saturation rate, X < 1. Thus, for v ^

X*g s IC, we use the approximation

= O.9[d(X*,"*>1c)+(v - X*g/)4 x*gs]
	 (5.2)dv C

=Ø•9[(C—g)2	
(_x*g/)(_g)2	 x*2	 (v_)/c)(2X*_X*2)l

+
[(c_gx*)	 2(C_gX*)	 2(1_X*))% ^	 2)c*/c(1_X*)2	 ]
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Webster's method (1958) to calculate the cycle time and green time is used in this

study. The cycle time that gives the minimum delay is given approximately by:

co= 1.5L+5

where

L=L1

where

yj* is the flow ratio v/s for the representative (or, maximum value) approach

for stage i,

L is the total lost time per cycle,

n is the number of stages,

L1 is the duration of the effective intergreen time following stage i.

Green times are calculated according to the ratio of y values as follows:

g1

r1 = C - g

5.4 FORMULATION AND SOLUTION METHOD

5.4.1 Introduction

The formulation and solution method in signal controlled junction modelling are

very similar to those of priority controlled junction modelling. For the formulation, see

section 4.4. We will repeat some of the parts in the priority case for a solution methocL
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5.4.2 Solution method

An iteration of a dynamic adjustment process for solving this combined signal

controlled junction modelling and traffic assignment is the combination of the calculation

of green times for the given feasible traffic flows, and the assignment of travel demand

using these green times. The dynamic adjustment process continues until a convergence

criterion is satisfies. We can say that the dynamic adjustment process of this model has a

diagonalised procedure. This is because signal parameters are calculated whilst traffic

flows are assumed to be fixed, and traffic flows are calculated whilst signal parameters

are fixed and so on. An existing diagonalisation algorithm therefore can be used and the

following is a diagonalisation of Algorithm 1.

A diagonalisation of Algorithm 1 for the combined signal control and traffic
assignment

Step 0: (Initialisation)
Iteration n = 0
Identify a feasible point, v11 E .8
Set W" = { vfl}

Step 1: (Linear subproblem)
1-1. Calculate green times based on the Webster's mm-max policy
(see equation 2.38 in chapter 2)
1-2. Calculate the total link cost

Ta (v°,?)= t o +'y[C (v) —t0]+(1—T)d (" 'X"a)

where ca(va') is the BPR function and da(V,Xa) is the approximated Webster's
formula
1-3. Perform all-or-nothing assignment based on the total link cost

u'=arg min{T(v,r)•u ;u€.8}

1-4. Convergence test

If G(v ,?) = T(v , ?)•( - u) 0, stop: optimum solution is VT1

Otherwise W" 1 = W u {u}
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Step 2: (Master subproblem)

Letv" =arg min{G(v,?); vEH(W")}

n=n+1
Return to step 1.

The other simplicial decomposition algorithms in chapter 3 are similarly

represented as the diagonalisation of Algorithm 1. For example, the diagonalisation of

the Schittenheim algorithm is represented by replacing the master subproblem of

Algorithm 1 into that of Schittenheim's. For Algorithms 3 and 4, the initialisation step of

Algorithm 1 is replaced by each of initialisation steps in Algorithms 3 and 4. For the

detailed description of the algorithms, see section 3.4.

5.5 COST FUNCTION ANALYSIS FOR GOOD BEHAVIOUR

5.5.1 Introduction

In this section, the good behaviour conditions for the combined signal control and

traffic assignment are tested in a similar way to that of the priority control modelling.

Firstly, we calculate symmetric equilibrium values of traffic flows and green times on the

small example network, and obtain the values and signs of the Jacobian matrix.

Secondly, we run the model to test whether or not the model obtain a unique stable

equilibrium by using different initial points. Thirdly, we compare the two test results to

see whether the theoretical conditions for good behaviour correspond well with the

experimental results using the model.

The condition for good behaviour may not be satisfied by the junction delay term.

When the travel-time formula,

Ta( V ) =to+T[ c 1 (v)—t0 ] + (1-y) da(V)
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is used, the resulting Jacobian matrix can be expressed as:

ada
J ab	

aVb

f-i, ifa=b
where öab 

= 10 otherwise

Note that the link travel time function, ca(va) contributes only to the diagonal elements

of the Jacobian matrix. In this study of good behaviour, the delay function, da(v) used is

the original Webster's formula. Convergence behaviour of this problem depends on the

relative magnitude of the junction and link delay terms and the size of the parameter y.

The Jacobian matrix analysis in the signal controlled junction is similar to that of

the priority junction case. The Jacobian matrix of a signal controlled junction is not in

general positive definite (see Heydecker, 1983). We can construct the Jacobian matrix by

arrangement in the following form. The rectangles each represent signal controlled

junctions while the circles each represent the zero vectors of derivatives of costs that are

not related with other flows.

where n has magnitude of elements in the two stream junction as follows:
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Ta 	Ta

	

J -
	 b

	

-	
"b

a aVb

The Jacobian matrix J is positive definite if and only if the symmetric part J + J is, and

hence:

aTa >, alb
—>0 and

aVa 	 aVb

>0
aV a aV b 	 aVb ava

We can rewrite Webster's two term delay in order to calculate its derivatives more

conveniently as:

	

C(1_?a)2	

1	 1

	

da = (1_%)	 aa V a XaSa)

where according to Webster's signal settings policy (1958),

= (C—L)%

C%
k

In signal controlled junction modelling, the partial derivatives can be obtained by

the following relation:

dda - ad a 	ada	 a-	 abE
dv b 	 ''1a	 CVb

where

ada-2C(1—?a)	 Sa	 + Sa

(1—))	 ('aa —v a ) 2 (a5a)2

For Webster's signal control policy,
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(C—L)

aV b - (Cg) 2 SaSb

k

In addition,

&laC(1Aa)2	 1

a'1a - s a (1— V7/)2 + 
( 'aa - Va 

)2

For the BPR link-cost function,

r	 'a1
dc
--=a1cx2t0 _)
dV a 	 Qa

We can indicates the relative values of the elements in the Jacobian matrix as:

[Jil Jl21 rsman largelLI	 J22] [large small]L 21

This indicates that the Jacobian matrix is not a P-matrix and thus cannot be positive-

definite. Thus, neither the necessary nor the sufficient conditions for good behaviour of

assignment in arbitrary networks will be satisfied when signal-controlled junctions are

modelled in this way. Because of this, the behaviour of equilibrium assignment with

signal controlled junctions modelled in this way is indeterminate.

We now use a simple symmetric network (see Figure 5-3) which is the same as

that used in a priority controlled problem to test the model. It has 2 origins and 2

destinations, 6 nodes and 8 links. The demand from origin 1 is entirely to destination 5

and from origin 2 to destination 6. Each of nodes 3 and 4 represents a signal controlled

junction. The capacity of each link is 2000 vehicles I hour. We assume that signal is

operated in two stages. The cycle time is taken as fixed at 60 seconds with a lost time of

4 seconds following each stage. Minimum green for each stage is 7 seconds and

maximum green time for each stage is therefore 45 seconds. We vary the demand for
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each origin-destination pair, the weighting factor 'y, and the initial green times in order to

calculate the Jacobian value as well as to test uniqueness and stability.

Stage

Stage

Figure 5-3	 Example network
Key :	 J origin or destination n

noden

In this example, an equilibrium solution of green time and traffic flows is clearly

provided by the symmetric values:

v = (v* 1, v2, v3, v*4)= l/2(T15, T15, T26, T)

g*(v*) = (g*(v*), g*(v*), g*3(v*) , g*4(v*)) =(26, 26, 26, 26)

Tables 5-1 and 5-2 show the symmetric equilibrium traffic flows and green times

respectively which are calculated at various levels of demands T15 and T26. The lower-

left parts of the tables are empty because the values of the upper-right parts are

symmetric to those of the lower-left parts due to the symmetric example network. The
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sign - in the lower-right parts indicates that the region is overloaded so that the values

cannot be calculated appropriately because in the Jacobian analysis, we use only the

original Webster's delay formula (equation 5.1).

OlD______ _______ T6	 ______ _______ _______I
________ v*1/v*1 200	 800	 1400	 2000	 2600
T15	 200	 100/100 100/400 100/700 100/1000 100/1300

800	 ________ 400/400 400/700 400/1000 400/1300
1400	 ________ _______ 700/700 700/1000 -
2000	 _________ _________ _________ -	 -

________ 2600	 ________ ________ ________ - 	 -
Table 5-1	 The symmetric equilibrium traffic flows for calculating Jacobian

matrix

O/D	 ______ ______ T76	 _____ ______ ______
________ g*/g*	 200	 800	 1400	 2000	 2600
T15	 200	 26/26	 10/42	 7/45	 7/45	 7/45

800	 ________ 26/26	 19/33	 15/37	 12/40
1400	 ________ ________ 26/26	 21/31	 -
2000	 ________ ________ ________ -	 -

________ 2600	 ________ ________ ________ -	 -
Table 5-2	 The symmetric equilibrium green times for calculating Jacobian

matrix

Table 5-1 and Table 5-2 are used to calculate the Jacobian matrix in Table 5-3

which gives the signature of the Jacobian matrix in terms of the sign of each of its

determinant, and its diagonal elements J11 and J22 as the value of the parameter 'y is

changed from 0.0 to 0.75 in increments of 0.25. In this table, a different signature of the

Jacobian matrix is obtained only when the value of y is 0.75 with the demand

(T15,T26)=(200,2600) which is lightly shaded. However, the values of the determinant

of the Jacobian and its diagonal elements differ as the value of y is varied. In the lower

demand cases, which are upper-left parts of the table, the Jacobian values are positive

whilst its elements J11 and J22 are negative. In the higher demand cases, which are the

lower-right parts of the table, the Jacobian values are negative whilst its elements J11 and
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are positive. In shaded parts, all the values are negative. From this table, we can see

that the Jacobian is not a P-matrix at the symmetric equilbrium in this network for any

level of demand.

O/D ______ ______ T26 ______I______ ______

y=0.O	 200	 800	 1400	 2000	 2600
0.25
0.5

________ 0.75 ________ ________ ________ _______ _______

	

+1-I-	 +1-I-	 +1-I-	 .-I-J-	 44-

	

+1-I-	 +1-I-	 ^1-I-	 *1+.f+

200	 -i-I-I-	 +1-I-	 +1-I-

	

__________ __________ +1-I-	 ^1-1-	 +1-I-	 _________	 4-14-

-1+1+
Tj	 ^1-I-	 4-/-	 44	 -1+1+

800	 +1-I-	 4I	 -M	 -1+1+
_________ _________ _________	 ^1-I-	 -.14-	 -.14- /	 -1+1+

:+:1:1	 -1+1+
-.1-1-	 -1+1+	 -

1400	 44	 -1+1+
_________ _________ _________ _________	 '-1-1-	 -1+1+ _________

Table 5-3	 The signs of the Jacobian
(Key: the signs of each symbol indicate respectively the signs of det (J+Jt) / J11/ J22
and the signature - in the bottom right corner indicates overloaded region)

We define global and local stability as:

Definition: global stability: An equilibrium of the combined signal control and traffic

assignment model is globally stable if any initial flow in the feasible region leads to that

equilibrium traffic flow and the associated green time by the dynamic adjustment process

of this model.

Definition: local stability: An equilibrium of the combined signal control and traffic

assignment model is locally stable if any initial perturbation from an equilibrium that is

sufficiently small leads to a return to that equilibrium by the dynamic adjustment process

of this model.
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Note that in the present study of stability, green times are calculated according to the

Webster's method and the assignment is calculated by a diagonalisation of the Frank-

Wolfe algorithm.

5.5.2 Global stability test

In order to test the global stability, we use three extreme cases as initial values

and run a diagonalisation of the Frank-Wolfe algorithm starting with these initial values

to calculate the green time and the traffic flows. These calculated values by the F-W

algorithm are compared with the symmetric equilibrium value in the small example

network described above to see whether or not the calculated values correspond to the

symmetric equilibrium value. In all these tests, the value ' y = 0 is used.

Test 1. When initial flows are given as: (v1, v, v, v4)=(T15, 0, 0, T26)

We obtain the calculated traffic flow and green time on the links by a

diagonalisation of the F-W algorithm shown respectively in Tables 5-4 and 5-5 using

initial traffic flow v°=(T15, 0, 0, T26). The number of iterations used by this algorithm,

and the final gap value from equation (2.15) are shown in Table 5-6. We compare the

calculated equilibrium traffic flow in Table 5-4 by the diagonalisation of the F-W with

those symmetric value in Table 5-ito test the global stability of that equilibrium. The

results of this global stability test are shown in Table 5-7. To determine the stability or

otherwise, we used definition of global stability given above. In this case, only three of

the cases lead to the calculation of a symmetric equilibrium: these are the cases where the

demand is most asymmetric.
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O/D	 ______ ______ T26	 ______ ______ ______
_______ v1/v	 200	 800	 1400	 2000	 2600
T1	 200	 200/0	 200/0	 200/14	 100/1000 116/1302

800	 _______ 800/0	 800/14	 800/603 578/1122
1400	 _______ ________ 1386/14 700/1000 -
2000	 ________ _________ ________ - 	 -

________ 2600	 ________ _________ ________ _________ -
Table 5-4	 The calculated traffic flows by the F-W in global stability test 1
(Key: v is traffic flow on link after iteration n which is shown in Table 5-6)

O/D	 ______ ______ T2	 ______ ______ ______
_______ gflj/g	 200	 800	 1400	 2000	 2600
T1	 200	 45/7	 45/7	 45/7	 7/45	 7/45

800	 ________ 45/7	 45/7	 30/22	 18/34
1400	 _______ ________ 45/7	 21/31	 -
2000	 ________ _________ ________ - 	 -

________ 2600	 _________ _________ _________ _________ -
Table 5-5	 The calculated green times by F-W in global stability test 1

(Key: gn is green time after iteration n which is shown in Table 5-6)

O/D	 ______ ______ T26	 ______ ______ ______
________ n/gap	 200	 800	 1400	 2000	 2600

Ti	 200	 1/0.0	 1/0.0	 50/16.12 50/4.25	 50/589.2
800	 ________ 1/0.0	 50/16.12 15/0.0	 50/74.25
1400	 ________ _________ 50/32.25 50/5.25 	 -
2000	 ________ _________ ________ - 	 -

________ 2600	 ________ _________ ________ _________ -
Table 5-6 The iteration number used by F-W in global stability test 1

(Key: n is the number of iteration used; and gap is the gap value)

O/D ___ ____ T26 ____ ____ ____
____ ____ 200 800 1400 2000 2600
T15 200 U	 U	 U	 S	 S

800 ___ U U U S
1400 ___ ___ U U -

	

2000 _____ _____ _____ - 	 -
_____ 2600 _____ _____ ______ _____ -

Table 5-7	 The result of global stability test 1
(Key: U and S represent stability and unstability whether symmetric equilibrium is

obtained in the test respectively)
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Test 2. When initial flows are given as: (vi, v2, V3, v4)_—(T1512, T15/2, T26/2, T2612)

We obtain the calculated traffic flow and green time on the link by a

diagonalisation of the F-W algorithm shown respectively in Tables 5-8 and 5-9 using

initial traffic flows v°=(T15/2, 115/2, T26/2, T26/2). The number of iterations used by

this algorithm, and the final gap value are shown in Table 5-li. We compare the

calculated traffic flows from the F-W in Table 5-8 with those symmetric values in Table

5-ito test the global stability of that equilibrium. The results of this global stability test

are in Table 5-10. To determine the stability or otherwise, we followed the definition of

the global stability given above. In this case, the symmetric assignments were all stable.

OlD______ ______ T2 16	 _______ ______ _______I
________ vrl i /v	 200	 800	 1400	 2000	 2600
Tjj	 200	 100/100 100/400 100/700 100/1000 100/1300

800	 _______ 400/400 400/700 400/1000 400/1300
1400	 ________ ________ 700/700 700/1000 -
2000	 ________ ________ _________ - 	 -

________ 2600	 ________ ________ _________ ________ -
Table 5-8	 The calculated traffic flows by F-W in global stability test 2

(Key: iteration n is shown in Table 5-10)

O/D	 _______ _______ T2(c	 _______ _______ _______I
________ gn1/gfl 	 200	 800	 1400	 2000	 2600
T15	 200	 26/26	 10/42	 7/45	 7/45	 7/45

800	 ________ 26/26	 19/33	 15/37	 12/40
1400	 ________ ________ 26/26	 21/31	 -
2000	 ________ ________ _________ - 	 -

________ 2600	 ________ ________ ________ ________ -
Table 5-9	 The calculated green times by F-W in global stability test 2

(Key: iteration n is shown in Table 5-10)
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O/D	 ______ ______ T,6 ______ ______ ______
________ n/gap	 200	 800	 1400	 2000	 2600
T15	 200	 2/0.0	 3/0.0	 2/0.0	 3/0.0	 4/0.0

800	 ________ 3/0.0	 4/0.0	 4/0.0	 50/0.06
1400	 ________ ________ 50/0.06 50/4.38 -
2000	 _________ ________ _________ - 	 -

________ 2600	 _________ ________ _________ _________ -
Table 5-10 The iteration number used by F-W in global stability test 2

O/D ____ ____ T26 ____ ____ ____
_____ _____ 200 800 1400 2000 2600
T15 200 S	 S	 S	 S	 S

	

800 _____ S	 S	 S	 S
	1400 _____ _____ S	 S	 -

	

2000 _____ _____ _____ - 	 -
_____ 2600 _____ _____ ______ _____ -

Table 5-11	 The result of global stability test 2

Test 3. When initial flows are given as: (v1, v2, v3, v4)=(T15, 0, T26, 0)

We obtain the calculated traffic flows and green times by a diagonalisation of the

F-W algorithm which are shown respectively in Tables 5-12 and 5-13 using initial traffic

flow v°=(T15, 0, T26, 0). The number of iterations required to converge or terminate,

and the final gap value are shown in Table 5-14. We compared the calculated traffic flow

by the F-W in Table 5-12 with those symmetric value in Table 5-1 to test the global

stability of that equilibrium. The results of this global stability test are in Table 5-15. To

determine the stability or otherwise, we followed the definition of the global stability

given above. In this case, the calculated equilibria are symmetric in all but two cases.

O/D	 ______ ______ T26	 ______ ______ ______
________ v1/v	 200	 800	 1400	 2000	 2600
T15	 200	 200/200 0/800	 0/1386	 100/1000 84/1302

800	 ________ 400/400 400/700 400/1000 222/1478
1400	 ________ ________ 700/700 700/1000 -
2000	 ________ ________ ________ -	 -

________ 2600	 ________ ________ ________ _________ -
Table 5-12	 The calculated traffic flows in global stability test 3

(Key: iteration n is shown in Table 5-14)
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O/D	 ______ _______ T26	 ______ _______ _______I
_______ gfl1/gfl	 200	 800	 1400	 2000	 2600
T15	 200	 26/26	 7/45	 7/45	 7/45	 7/45

800	 _________ 26/26	 19/33	 15/37	 7/45
1400	 ________ ________ 26/26	 21/31	 -
2000	 _________ _________ _________ - 	 -

________ 2600	 _________ ________ ________ _________ -
Table 5-13	 The calculated green times by F-W in global stability test 3

(Key: iteration n is shown in Table 5-14)

O/D	 ______ ______ T26	 ______ ______ ______
________ n/gap	 200	 800	 1400	 2000	 2600
T15	 200	 1/0.0	 1/0.0	 50/0.06	 50/3.75	 50/555.4

800	 ________ 3/0.0	 4/0.0	 5/0.0	 50/20.75
1400	 _______ _______ 3/0.0	 50/2.12 -
2000	 ________ ________ ________ - 	 -

________ 2600	 ________ ________ _________ ________ -
Table 5- 4 The iteration number used by F-W in global stability test 3

O/D ____ ____ T26 ____ ____ ____
_____ _____ 200 800 1400 2000 2600
T15 200 S	 U	 S	 S	 S

	

800 _____ S	 S	 S	 U

	

1400 _____ _____ S	 S	 -

	

2000 _____ _____ _____ - 	 -
_____ 2600 _____ _____ _____ _____ -

Table 5-15	 The result of global stability test 3
(Key: U and S represent stability and unstability whether symmetric equilibrium is

obtained in the test respectively)

These global stability tests show that this combined signal control and traffic

assignment model appears to have multiple solutions which are dependent on the initial

values. Thus this model is not always globally stable and in particular the symmetric

equilibrium is not obtained. In the global test 2, good initial values such as those of

equilibrium solutions allow returning to the symmetric equilibrium. In the cases of

demands (T15, T26) = (200, 2000) and (200, 2600), stable solutions are obtained in all

three global stability tests even though these cells are not associated with a positive

definite Jacobian matrix. In the cases of demands (200,200), (800,800) and (1400,1400),
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multiple solutions are obtained in these tests as (g, g3)=(26,26) and (45,7). In the

demand (800,1400), multiple green times, (19,33), and (45,7) are obtained whilst in the

demand (800,2000), multiple green times, (15,37) and (30,22) are obtained via the global

stability test. In each case, the final gap values indicate a good degree of convergence to

equilibrium whether it is obtained symmetric equilibrium or not. The main exception to

this is the demand (200,2600) in test 3 where the final gap value is more than 500

seconds after 50 iterations.

5.5.3 Local stability tests

To test local stability as defined above, we make a small perturbation of traffic

flow about the symmetric equilibrium value and run the diagonalisation of the Frank-

Wolfe algorithm using these values. In this case, we use the initial values vK + E with

each of the perturbations c=(+1,-1,+1,-1), (+1,-1,-i,+l) and (-1,+1,+1,-i).

Test 1. When the perturbation is c=(+ 1,-i ,+ 1,-i)

We obtain the calculated traffic flow and green time on the link by a

diagnalisation of the F-W algorithm shown respectively in Table 5-16 and Table 5-17

using initial traffic flow v° = v + (+1,-1,+i,-1). The number of iterations required to

converge or terminate, and the final gap value are shown in Table 5-18. We compare the

calculated traffic flows in Table 5-16 by the F-W with those symmetric values in Table

5-ito test the local stability of that equilibrium. The results of the local stability test are

Table 5-i9. To determine the stability or otherwise, we followed the definition of the

local stability given above. In this case, stability appears to obtain all cases except for the

demand (200, 800) which converges to an all-or-nothing solution in just 5 iterations.
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O/D	 ______ ______ T76	 ______ ______ ______
________ v1/v1	 200	 800	 1400	 2000	 2600
T15	 200	 100/100 200/0	 100/700 100/1000 100/1300

800	 _______ 400/400 400/700 400/1000 400/1300
1400	 ________ ________ 700/700 700/1000 -
2000	 ________ ________ ________ - 	 -

________ 2600	 ________ ________ ________ ________ -
Table 5-16	 The calculated traffic flows by F-W in local stability test 1

(Key: iteration n is shown in Table 5-18)

O/D	 ______ _______ T76	 _______ _______ _______
________ gfl1/gn	 200	 800	 1400	 2000	 2600
T1	 200	 26/26	 45/7	 7/45	 7/45	 7/45

800	 _________ 26/26	 19/33	 15/37	 12/40
1400	 ________ ________ 26/26	 21/31	 -
2000	 ________ ________ ________ - 	 -

________ 2600	 ________ ________ ________ ________ -
Table 5-17	 The calculated green time by F-W in local stability test

(Key: iteration n is shown in Table 5-18)

O/D ______ ______ T6 ______ ______ ______
________ n/gap	 200	 800	 1400	 2000	 2600

Ti	 200	 3/0.0	 5/0.0	 2/0.0	 3/0.0	 4/0.0
800	 ________ 2/0.0	 4/0.0	 4/0.0	 50/4.06
1400	 ________ ________ 50/0.06 4/0.0	 -
2000	 ________ ________ ________ - 	 -

________ 2600	 ________ ________ _________ ________ -
Table 5-18 The iteration number used by F-W in local stability test 1

O/D ____ ____ T26 ____ ____ ____
____ _____ 200 800 1400 2000 2600
T15 200 S	 U	 S	 S	 S

	

800 _____ S	 S	 S	 S

	

1400 _____ _____ S	 S	 -

	

2000 _____ _____ _____ - 	 -
_____ 2600 _____ _____ _____ _____ -

Table 5-19	 The result of local stability test 1
(Key: U and S represent stability and unstability whether symmetric equilibrium is

obtained in the test respectively)
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Test 2. When the perturbation is =(+ 1,-I,- 1 ,+1)

We obtain the calculated traffic flow and green time on link by a diagonalisation

of the F-W algorithm shown respectively in Table 5-20 and Table 5-21 using initial

traffic flow v° = v + (+i,-1,-1,+1). The number of iterations required to converge or

terminate, and the final gap value are shown in Table 5-22. We compare the calculated

equilibrium traffic flows in Table 5-20 with those symmetric values in Table 5-ito test

the local stability of that equilibrium. The results of local stability test are in Table 5-23.

To determine the stability or otherwise, we followed the definition of the local stability

given above. In this case, only the cases with strongly asymmetric demands appear to be

locally stable.

O/D	 _______ _______ T26	 _______ _______ _______I
________ v11 1/v	 200	 800	 1400	 2000	 2600
T1	 200	 200/0	 200/0	 100/700 100/1000 100/1300

800	 ________ 800/0	 800/14	 686/640 402/1298
1400	 _________ ________ 1386/14 702/998 -
2000	 _________ _________ _________ -	 -

_________ 2600	 _________ _________ _________ _________ -
Table 5-20 The calculated traffic flows by F-W in local stability test 2

(Key: iteration n is shown in Table 5-22)

O/D	 _______ _______ T26	 _______ _______ _______
________ gfl1/gn	 200	 800	 1400	 2000	 2600
T15	 200	 45/7	 45/7	 7/45	 7/45	 7/45

800	 ________ 45/7	 45/7	 27/25	 12/40
1400	 ________ ________ 45/7	 21/31	 -
2000	 _________ _________ _________ -	 -

_________ 2600	 _________ _________ _________ _________ -
Table 5-21	 The calculated green times by F-W in local stability test 2

(Key: iteration n is shown in Table 5-22)
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O/D ______ ______ T26	 ______ ______ ______
________ n/gap	 200	 800	 1400	 2000	 2600
T15	 200	 4/0.0	 5/0.0	 2/0.0	 3/0.0	 4/0.0

800	 _______ 7/0.0	 16/0.0	 50/2374 50/1 103
1400	 ________ ________ 23/0.0 	 50/1006 -
2000	 ________ ________ ________ -	 -

________ 2600	 ________ ________ ________ ________ -
Table 5-22 The iteration number used by F-W in local stability test 2

OlD____ ____ T26 ____ ____ ____
_____ _____ 200 800 1400 2000 2600
T15 200 U	 U	 S	 S	 S

800 ___ U U U S

	

1400 ___ ___ U	 S	 -

	

2000 _____ _____ _____ -	 -
_____ 2600 _____ _____ _____ _____ -
Table 5-23	 The result of local stability 2

(Key: U and S represent stability and unstability whether symmetric equilibrium is
obtained in the test respectively)

Test 3. When the perturbation is c=(- 1 ,+1 ,+ 1,-i)

We obtain the calculated traffic flow and green time on link by a diagonalisation

of the F-W algorithm shown respectively in Table 5-24 and Table 5-25 using the initial

traffic flow v° = v + (-1 ,+ 1 ,+ 1,-i). The number of iterations required to converge or

terminate, and the final gap value are shown in Table 5-26. We compare the calculated

equilibrium traffic flows in Table 5-24 by the F-W with those symmetric values in Table

5-1 to test the local stability of that equilibrium. The results of the local stability test are

in Table 5-27. To determine the stability or otherwise, we followed the definition of the

local stability given above. As in the previous case, only the cases with strongly

asymmetric demands appear to be locally stable.
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O/D	 ______ ______ T26	 ______ _______
________ v"1 /v'	 200	 800	 1400	 2000	 2600
T15	 200	 0/200	 0/800	 100/700 100/1000 100/1300

800	 ________ 0/800	 0/1386	 114/1361 398/1302
1400	 ________ ________ 14/1386 698/1002 -
2000	 _________ ________ ________ -	 -

________ 2600	 _________ ________ ________ _________ -
Table 5-24	 The calculated traffic flows by F-W in local stability test 3

(Key: iteration n is shown in Table 5-26)

O/D	 _______ _______ T2ç	 _______ _______ _______I
________ gfl/gfl. 200	 800	 1400	 2000	 2600
T15	 200	 7/45	 7/45	 7/45	 7/45	 7/45

800	 ________ 7/45	 7/45	 7/45	 12/40
1400	 ________ ________ 7/45	 21/31	 -
2000	 ________ ________ ________ - 	 -

_________ 2600	 _________ _________ _________ _________ -
Table 5-25	 The calculated green time by F-W in local stability test 3

(Key: iteration n is shown in Table 5-26)

O/D	 _______ _______ T26	 _______ _______ _______
________ n/gap	 200	 800	 1400	 2000	 2600
T1ç	 200	 3/0.0	 5/0.0	 2/0.0	 5/0.0	 4/0.0

800	 ________ 7/0.0	 16/0.0	 50/2374 50/1 103
1400	 ________ ________ 23/0.0 	 50/1005 -
2000	 ________ ________ ________ - 	 -

________ 2600	 ________ ________ ________ ________ -
Table 5-26 The iteration number used by F-W in local stability test 3

O/D ____ ____ ____ ____ ____ ____
____ _____ 200 800 1400 2000 2600
T15 200 U	 U	 S	 S	 S

	

800 ___ U U U	 S

	

1400 _____ _____ U	 S	 -

	

2000 _____ _____ _____ - 	 -
_____ 2600 ______ _____ ______ ______ -
Table 5-27 The result of local stability 3

(Key: U and S represent stability and unstability whether symmetric equilibrium is
obtained in the test respectively)
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These local stability tests show that the symmetric equilibrium solution to this

combined signal control and traffic assignment is often locally unstable. However, in the

cases of demands (T15, T26) = (200, 1400), (200, 2000), (200, 2600), (800, 2600) and

(1400, 2000), the solutions were found to be locally stable even though these cells are

not associated with positive definite Jacobian matrix. In the cases of demands (200,200),

(800,800) and (1400,1400), different perturbations lead to convergence to different

solutions with (g, g3)=(26,26), (45,7) and (7,45). In the case of demand (800, 1400),

multiple green times, (19,33), (45,7) and (7,45) are obtained whilst in the demand

(800,2000), multiple green times, (15,37), (27,25) and (7,45) are obtained in these local

stability tests. These tests indicate that good initial starting values are required to obtain

the symmetric equilibrium solutions. They also indicate that caution is required in

interpreting the solution to any traffic assignment in a network with traffic responsive

signal control as the calculated values might be only one of several possible ones.

5.6 NUMERICAL EXAMPLES

5.6.1 Introduction

In this section, the solution methods developed in chapter 3 under the

diagonalisation procedure detailed in chapter 2 are applied to two example networks each

of which includes several signal controlled junctions. The results of this help us to

compare the performance of these various algorithms when used in networks with this

kind of the non-separable cost function. As the first example, the network and travel

demand devised by Charlesworth (1977) are used here: this has 5 origins, 5 destinations,

46 nodes and 78 links (for the figures and data of the network, see Appendix 2). The

Sioux Falls network (see Figure 3-6) is used as the second example: this has 12 origins,
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12 destinations, 23 nodes and 72 links. In each case, Webster's method detailed in section

5.3 is used to obtain green times. As stopping criteria for each algorithm, either a

required level of gap value as G(v") ^ £ or a maximum number of iterations are used.

Algorithms 1, 2, 3 and 4, the Frank-Wolfe and the Schittenheim algorithms have

been tested to compare their performances. In particular, Algorithm 2 used one number

of the master subproblem of Schittenhelm's algorithm before switching to the master

subproblem of Algorithm 1. Algorithms 3 and 4 also used one column generation in the

initialisation step. In this test, the weighting factor 'y, which is used to combine junction

and link delays, is varied from 0.0 to 1.0 in increments of 0.25. Tables 5-28, 29, 30, 31

and 32 show that the final values for each algorithm are compared in terms of the

iteration number, CPU time on SUN Sparc station 370 GX and mean gap value in

equation (2.16) as the weighting factor 'y is varied on the Charlesworth network. In the

same way, Tables 5-33, 34, 35, 36 and 37 show the final values of each algorithm on the

Sioux Falls network. The performance of each algorithm as a whole is shown in Figures

5-4, 5, 6, 7 and 8 as the weighting factor 'y is varied on the Charlesworth network. In the

same way, the performance of each algorithm is shown in Figures 5-9, 10, 11, 12 and 13

on the Sioux Falls network.

5.6.2 Charlesworth's network

In Table 5-28, the performance of the algorithms on the Charlesworth network is

shown when the weighting factor =0.0 which means that junction delay but not link

delay is considered in the choice of routes. Algorithm 3 runs fastest to a mean gap value

of 12.239 seconds in 17.10 CPU seconds of SUN Sparc station 370 GX. However,

Algorithm 4 runs furthest to a mean gap value of 6.429 seconds in 95.52 CPU seconds.

Note that each algorithm is stopped by the maximum iteration number of 31. Figure 5-4
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shows the whole process of the convergence for each algorithm. The pattern of each

algorithm except the Frank-Wolfe algorithm fluctuates slightly in the initial stage and

stabilises afterwards. Figure 5-15 compares the final traffic flows obtained by each

algorithm with those of Algorithm 3, and Figure 5-16 shows the final green times for this

case. These figures show substantial differences between flows and green times on some

links and close agreement on others. Note that values from the Frank-Wolfe, Algorithm 4

and the others form three distinct flow groups.

In Table 5-29, the performance of the algorithms is shown when y =0.25.

Algorithm 3 again runs fastest to a mean gap value of 15.223 seconds in 17.08 seconds of

CPU time. However, Algorithm 4 runs furthest to a mean gap value of 10.653 seconds in

96.60 seconds of CPU time. Note that each algorithm is stopped by the maximum

iteration number. Figure 5-5 shows the whole process of the convergence for each

algorithm. The pattern of each algorithm is more stable than in the earlier case. Figure 5-

17 compares the final traffic flows obtained by each algorithm with those of Algorithm

3. Figure 5-18 shows the final green times for this case. Note that the pattern of values is

more concentrated than the case when 'y =0 as shown in Figures 5-15 and 5-16. These

figures show substantial differences between algorithms in terms of flows and green

times on some links and close agreement on others.

In Table 5-30, the performance of the algorithms is shown when 'y =0.5.

Algorithm 3 again runs fastest to a mean gap value of 11.996 seconds in 17.24 seconds of

CPU time. However, Algorithm 2 runs furthest to a mean gap value of 0.783 seconds in

96.14 seconds of CPU time. Figure 5-6 shows the whole process of the convergence for

each algorithm. The pattern of each algorithm is similar to the earlier cases. However,

Algorithm 2 undergoes a sudden reduction in gap in the initial stage, then stabilises for a

period before being reduced suddenly again. Figure 5-19 compares the final traffic flows

189



obtained by each algorithm with those of Algorithm 3, and Figure 5-20 shows the final

green times for this case. These figures show substantial differences between the new

algorithms and the Frank-Wolfe in terms of flows and green times on some links and

close agreement on others.

In Table 5-31, the performance of the algorithms is shown when the weighting

factor y =0.75. Algorithm 3 again runs fastest to a mean gap value of 0.923 seconds in

16.91 seconds of CPU time. However, Algorithm 1 runs furthest to a mean gap value of

0.562 seconds in 93.22 seconds of CPU time. Figure 5-7 shows the whole process of the

convergence in each algorithm. The pattern of each algorithm except the Frank-Wolfe

algorithm fluctuates more than previous cases in the initial stages whilst the gap values

reduce to about 1.0 second. Figure 5-21 compares the final traffic flows obtained by each

algorithm with those of Algorithm 3. Figure 5-22 shows the final green times for this

case. These figures show that differences between algorithms in terms of flows and green

times are less than the earlier cases, and the final values are more on the diagonal line.

In Table 5-32, the performance of the algorithms on the Charlesworth network is

shown when the weighting factor y =1.0 which means that only link cost is considered in

the choice of routes. Algorithm 4 converges fastest to a mean gap value of 0.000 seconds

in 10.93 seconds of CPU time. Algorithms 1 and 2 also converge to a mean gap value of

0.000 seconds in 22.27 and 14.83 seconds of CPU time respectively. Figure 5-8 shows

the whole process of the convergence for each algorithm. The pattern of each algorithm

except the Frank-Wolfe algorithm fluctuates whilst converging to a smaller mean gap

value near zero. Figure 5-23 compares the final traffic flows obtained by each algorithm

with those of Algorithm 3. Figure 5-24 shows the final green times for this case. These

figures show that the final values differ only slightly with the exception of the F-W

190



algorithm. This occurs because in this case of the separable cost function, the solution is

unique and all the new algorithms converge towards it.

In Figure 5-35, final gap function values of each algorithm are depicted on the

Cbarlesworth network as the weighting factor 'y is changed. An expectation of the effects

of'y on a mean gap function is to reduce a final gap value as 'y is moved to 1.0 which

means only link cost. All algorithms reduces the final gap value steadily as 'y increases

towards 1.0 except for the weighing factor y =0.25. In terms of performance of

algorithm, Algorithm 3 runs quickly all the cases. All the algorithms except the Frank-

Wolfe converge or terminate at similar assignments.

5.6.3 Sioux Falls network

In Table 5-33, the performance of the algorithms on the Sioux Falls network is

shown when the weighting factor 'y =0.0. Algorithm 3 runs fastest to a mean gap value of

0.194 seconds in 3.63 CPU seconds. However, Algorithm 4 runs furthest to a mean gap

value of 0.096 seconds in 37.96 CPU seconds. Note that each algorithm is stopped by the

maximum iteration number of 31. Figure 5-9 shows the whole process of the

convergence for each algorithm. The pattern of each algorithm fluctuates slightly in the

initial stage and then stabilises afterwards. Figure 5-25 compares the final traffic flows

obtained by each algorithm with those of Algorithm 3, and Figure 5-26 shows the final

green times for this case. These figures show substantial differences between algorithms

in terms of flows and green times on some links and close agreement on others. In

particular, distinct flow groups are calculated by the Frank-Wolfe, Algorithm 4 and the

others.
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In Table 5-34, the performance of the algorithms is shown when y =0.25.

Algorithm 3 again runs fastest to a mean gap value of 0.234 seconds in 3.60 CPU

seconds. However, Algorithm 4 runs furthest to a mean gap value of 0.196 seconds in

36.51 CPU seconds. Figure 5-10 shows the whole process of the convergence in each

algorithm. The pattern of each algorithm is more stable than the earlier one. Note that it

is all over by 2 seconds of CPU time. Figure 5-27 compares the final traffic flows

obtained by each algorithm with those of Algorithm 3, and Figure 5-28 shows the final

green times for this case. Note that when the other algorithms have zero link flows, the

Frank-Wolfe ranges from 0 to 600. These figures show substantial differences between

the new algorithms and the Frank-Wolfe in terms of flows and green times on some links

and close agreement on others.

In Table 5-35, the performance of the algorithms is shown when y =0.5.

Algorithm 3 runs fastest to a mean gap value of 0.239 seconds in 3.66 CPU seconds.

However, Algorithm 4 runs furthest to a mean gap value of 0.049 seconds in 36.82 CPU

seconds. Figure 5-11 shows the whole process of the convergence in each algorithm. The

pattern of each algorithm is similar to the previous cases. Note that Algorithm 4

outperforms the others with the mean gap value of 0.049 seconds, and the Frank-Wolfe

algorithm also performs well with the mean gap value of 0.192 seconds. Figure 5-29

compares the final traffic flows obtained by each algorithm with those of Algorithm 3. In

this figure, the final traffic flows by Algorithms 1, 2, 3 and the Schittenhelm are close

agreements on most links whilst those by Algorithm 4 and the Frank-Wolfe are different

on some links. Figure 5-30 shows the final green times for this case. These figures show

that differences between algorithms are less in flows than green times on some links.

In Table 5-36, the performance of the algorithms is shown when y =0.75.

Algorithm 3 runs fastest to a mean gap value of 0.075 seconds in 3.68 CPU seconds.
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However, Algorithm 4 runs furthest to a mean gap value of 0.005 seconds in 36.81 CPU

seconds. In this case again, the Frank-Wolfe algorithm performs well. Figure 5-12 shows

the whole process of the convergence in each algorithm. The pattern of each algorithm is

similar to the previous cases. Note that Algorithm 3, the Frank-Wolfe and the others

converge to separate degrees. Figure 5-31 compares the final traffic flows obtained by

each algorithm with those of Algorithm 3. Figure 5-32 shows the final green times for

this case. These figures still show substantial differences between the new algorithms

except Algorithm 4 and the Frank-Wolfe in terms of flows and green times on some links

and close agreement on others.

In Table 5-37, the performance of the algorithms on the Sioux-Fall network is

shown when the weighting factor y = 1.0. Algorithm 3 converges fastest to a mean gap

value of 0.000 seconds in 4.01 CPU seconds. Algorithms 1, 2 and 4, and Schittenhelm

algorithm converge also to a mean gap value of 0.000 seconds in 8.42, 13.98, 9.19 and

4.16 CPU seconds respectively. Note that Algorithms 1, 2, 4 are stopped by the

convergence criterion of gap value whilst Algorithm 3, the Schittenheim and the Frank-

Wolfe algorithms are stopped by the maximum iteration number. Figure 5-13 shows the

whole process of the convergence for each algorithm. The pattern of each algorithm

except the Frank-Wolfe algorithm fluctuates whilst it converges to zero gap value. Figure

5-33 compares the final traffic flows obtained by each algorithm with those of Algorithm

3. Figure 5-34 shows the final green times for this case. These figures show that the final

values differ slightly, as a mean gap value converges to zero, and as the equilibrium is

unique due to separability.

In Figure 5-36, final gap function values of each algorithm are depicted as the

weighting factor 'y is changed on the Sioux Falls network. An expectation of effects of 'y

on a mean gap function is to reduce the final gap value as y approaches 1.0 which means
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only a link based cost. All the algorithms reduce the final gap value as y is changed to 1.0

although there is an increase of the value at 0.25 and 0.5. In terms of performance of

algorithm, Algorithm 3 runs quickly all the cases. All the algorithms except the Frank-

Wolfe converge or terminate at similar assignments. However, when y = 0.5 and 0.75,

the Frank-Wolfe algorithm outperforms some other algorithms.

5.6.4 Discussion and summary

In these examples, the new algorithms run quickly and reach a good level of the

convergence in relatively few iterations. For example, in the case of y = 0.5 in

Charlesworth's network, the gap is reduced to below 12 seconds by each of the new

algorithms during iterations 1 to 4, and further iterations serve only to make marginal

further reductions. Furthermore, final traffic flows and green times calculated by the new

algorithms agree closely to show additional confirmation for the convergence.

Nonetheless, in some cases, the new algorithms cannot improve their gap values

with further iteration and terminate with non-zero gap values. In particular, the gap

values become constant at low but non-zero values after just few seconds of CPU time on

the Sioux Falls network. Each of the new algorithms terminates with a gap value that is

substantially smaller than that achieved by the Frank-Wolfe algorithm, although the

Frank-Wolfe algorithm outperforms some other algorithms in the cases of ' y = 0.5 and

0.75 on the Sioux Falls network.

There are three distinct groups of CPU time usage by the various algorithms.

Algorithms 1, 2 and 4 use the greatest amount of CPU time typically about 95 seconds

for Charlesworth's network and 36 seconds for the Sioux Falls network, the Frank-Wolfe

algorithm uses a medium amount of about 28 seconds for Charlesworth's and 11 seconds
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for the Sioux Falls network, and Algorithm 3 and Schittenheim's algorithm use least

about 17 seconds for Charlesworth's and 3 seconds for the Sioux Falls network. The

usage of CPU time is closely related with the behaviour of each algorithm described in

chapter 3. In accordance with this behaviour, the levels of convergence for each

algorithm are ordered: the smallest gap values achieved by Algorithms 1, 2 and 4, and a

medium gap value by Algorithm 3 and Schittenheim and the largest gap value by the F-

W algorithm. In summary, Algorithm 3 performs best in all the cases in terms of CPU

time. However, Algorithm 4 terminates with a consistently small mean gap value, though

each of Algorithms 1 and 2 has a slightly smaller gap in some cases. In terms of both

measures of CPU time and the gap value, Algorithms 3 and 4 perform well in most cases.

The convergence pattern of the new algorithms fluctuates. The pattern fluctuates

more as the weighting value, y, approaches zero, which gives the maximum junction

effect. Because the weighting factor in the cost function represents the degree of

junction effects, it is indicative of the degree to which junction interactions are

influential. As the junction effect increases, the non-separability increases so that the

final gap value is higher. On the other hand, when there is no junction effect, the cost

function becomes separable and the final gap value is closer to zero. In particular, when

the weighting value is unity which is the case of link cost only, the gap value of each

new algorithm converges to zero.

The pattern of convergence in the Charlesworth network shows more

fluctuations than in the Sioux Falls one. This can be explained according to the

characteristics and structure of each network. Charlesworth's network has two main

roads that provide alternative routes: choice between them can then cause gap values to

fluctuate. On the other hand, the Sioux Fall network has a grid form so that many route
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choices are possible and thus the demand is spread more widely and the fluctuation

reduces.

_________________	 Iteration	 CPU(Second)	 Mean gap (Second)

Algorithm 1	 31	 95.43	 10.953

Algorithm 2	 31	 94.36	 9.529

Algorithm 3	 31	 17.10	 12.239

Algorithm 4	 31	 95.52	 6.429

Frank-Wolfe	 50	 28.23	 4988.523

Schittenhelm	 31	 17.41	 12.209
Table 5-28	 Performance of algorithms in Charlesworth's network when 'y=O.O

(Maximum junction effect)

__________________	 Iteration	 CPU(Second)	 Mean gap (Second)

Algorithm 1	 31	 96.30	 12.215

Algorithm 2	 31	 93.80	 11.709

Algorithm 3	 31	 17.08	 15.223

Algorithm 4	 31	 96.60	 10.653

Frank-Wolfe	 50	 28.37	 37 13.087

Schittenhelm	 31	 17.26	 14.997
Table 5-29 Performance of algorithms in Charlesworth's network when y=O.2S

_________________	 Iteration	 CPU(Second)	 Mean gap (Second)

Algorithm 1	 31	 95.92	 4.387

Algorithm 2	 31	 96.14	 0.783

Algorithm 3	 31	 17.24	 11.996

Algorithm 4	 31	 96.96	 4.674

Frank-Wolfe	 50	 28.53	 2444.345

Schittenheim	 31	 17.56	 10.965
Table 5-30 Performance of algorithms in Charlesworth's network when 'y=0.5
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__________________	 Iteration	 CPU(Second)	 Mean gap (Second)

Algorithm 1	 31	 93.22	 0.562

Algorithm 2	 31	 90.95	 0.865

Algorithm 3	 31	 16.91	 0.923

Algorithm 4	 31	 94.46	 1.222

Frank-Wolfe	 50	 28.18	 1181.512

Schittenhelm	 31	 17.07	 0.928
Table 5-31	 Performance of algorithms in Charlesworth's network when 'y=0.75

Algorithm 1

Algorithm 2

Algorithm 3

Algorithm 4

Frank-Wolfe

Schittenheim
Table 5-32

-	 Iteration	 CPU(Second)	 Mean gap (Secon

-	 17	 22.27	 0.000

-	 14	 14.83	 0.000

-	 31	 16.54	 0.001

-	 12	 10.93	 0.000

-	 50	 27.49	 2.320

-	 31	 16.79	 0.001
Performance of algorithms in Charlesworth's network when y= 1.0

______________	 Iteration	 CPU(Second)	 Mean gap (Secoi

Algorithm 1	 31	 36.22	 0.146

Algorithm 2	 31	 36.09	 0.191

Algorithm 3	 31	 3.63	 0.194

Algorithm 4	 31	 37.96	 0.096

Frank-Wolfe	 50	 11.91	 0.594

Schittenhelm	 31	 3.80	 0.193
Table 5-33 Performance of algorithms in Sioux Falls network when y=0.0

_______________	 (Maximum junction effect)	 _______________

______________	 Iteration	 CPU(Second)	 Mean gap (Secoi

Algorithm 1	 31	 35.87	 0.205

Algorithm 2	 31	 35.9	 0.234

Algorithm 3	 31	 3.60	 0.234

Algorithm 4	 31	 36.51	 0.196

Frank-Wolfe	 50	 11.88	 0.393

Schittenhelm	 31	 3.77	 0.234
Table 5-34 Performance of algorithms in Sioux Falls network when y=0.25
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__________________	 Iteration	 CPU(Second)	 Mean gap (Second)

Algorithm 1	 31	 36.28	 0.238

Algorithm 2	 31	 36.18	 0.238

Algorithm 3	 31	 3.66	 0.239

Algorithm 4	 31	 36.82	 0.049

Frank-Wolfe	 50	 11.92	 0.192

Schittenhelm	 31	 3.82	 0.238
Table 5-35	 Performance of algorithms in Sioux Falls network when 'y=0.5

_________________	 Iteration	 CPU(Second)	 Mean gap (Second)

Algorithm 1	 31	 36.38	 0.077

Algorithm 2	 31	 36.26	 0.074

Algorithm 3	 31	 3.68	 0.075

Algorithm 4	 31	 36.81	 0.005

Frank-Wolfe	 50	 11.69	 0.029

Schittenhelm	 31	 3.75	 0.075

Table 5-36	 Performance of algorithms in Sioux Falls network when 'y=O.7S

__________________	 Iteration	 CPU(Second)	 Mean gap (Second)

Algorithm 1	 16	 8.42	 0.000

Algorithm 2	 20	 13.98	 0.000

Algorithm 3	 31	 4.01	 0.000

Algorithm 4	 17	 9.19	 0.000

Frank-Wolfe	 50	 11.58	 0.012

Schittenhelm	 31	 4.16	 0.000
Table 5-37	 Performance of algorithms in Sioux Falls network when y=l .0

(No junction effect)
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CHAPTER 6 A MULTICLASS TRAFFIC ASSIGNMENT PROBLEM

6.1 INTRODUCTION

This chapter presents multiclass traffic assignment. Multiclass representation is

introduced to represent variations in physical properties, route choice criteria and

network restrictions. A cost function in the multiclass is discussed by considering

interactions between different user classes. This will be related with the impact of

congestion and different perceptions of cost when different vehicles and users are

selecting their routes. A formulation of this problem is presented as a variational

inequality. Solution method to this multiclass will be given in terms of a diagonalisation

algorithm. A numerical example is analysed to test algorithms and properties such as

existence of solution, and uniqueness and stability.

6.2 MULTICLASS REPRESENTATION

6.2.1 Introduction

In the multiclass traffic assignment as a link interaction, travel times on each link

depend on the flows of different classes. The recognition of this stems from the reality

that the performance of the link is affected by vehicles of many classes. The different

vehicles have different occupancy rates, speeds, values of time and route choice criteria

so that they affect the total cost function.

Some studies have been done to incorporate this concept of multiple classes into

road traffic assignment. The historical development of multiclass models is here
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reviewed briefly. Dafermos (1972), and Van Vliet, Bergman and Scheltes (1986)

presented the multiclass user equilibrium assignment problem in which there are several

classes of vehicles interacting on each link. In these models, the Jacobian matrix was

taken as having a symmetric form which indicates that the impact on the cost of class i

by class j equals to the impact on the cost of class j by class i. This is represented as J 1 =

J 1 . Braess and Koch (1979) gave the condition of equilibria in asymmetric multiclass

user assignment without the hypothesis of symmetry. This condition is that if a cost

function for each class in the multiclass user assignment is continuous and monotone,

then there is at least one user equilibrium flow pattern. Dafermos (1981) presented the

general multimodal network equilibrium problem with elastic demand. In her paper the

link cost for each class depends on the entire load pattern and the travel demands. For the

more general asymmetric case, Abdulaal and LeBlanc (1979) studied the combination of

modal split and equilibrium assignment. Fisk and Nguyen (1981) gave the existence and

uniqueness properties of an asymmetric two-mode (auto and public transit) equilibrium

model. Daganzo (1983) studied a stochastic user equilibrium model with multiple vehicle

types in which he discussed a family of general link cost functions that can be used to

model a multimodal transportation network.

6.2.2 Concept of class

The introduction of the concept of class into road traffic assignment allows us to

categorise drivers and vehicles according to some features that affect route choice

behaviour. The class can be categorised by the physical properties of vehicles, criteria of

route choice and road network restrictions.
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The physical properties of vehicles can be illustrated by the comparison between

passenger car and heavy goods vehicles. Their marginal effect on congestion differs.

Heavy goods vehicles are larger than passenger cars and thus occupy more road space.

Heavy goods vehicles have poorer operating capabilities than passenger cars, particularly

with respect to acceleration, braking, and the ability to maintain speed on uphill

gradients.

Criteria of route choice also can be classified by the class of drivers. Some drivers

select their routes according to distance or travel time or scenery or some combination of

these. In particular, this is distinguished by the purpose of the trip. Work trips are mainly

affected by travel time. However, trips for leisure are influenced by scenery or distance

as well as travel time. Route guidance control can be classified into this category. It is

because in the view of a system manager, an objective would be to direct traffic so as to

minimise the total system cost of travel. However, the users are generally able only to

make unilateral decisions so they try to minimise their own individual costs of travel.

Network restrictions can be one of the categories which occurs often in practice.

Public transport (e.g., bus) has priority in order to boost its usage. In particular, in some

urban areas right of way is given only to buses. In the bus lanes, the interaction is only

between buses as all other vehicles are excluded. In this case, we need to consider only

the interaction within the class of buses running in bus lanes.

6.2.3 Passenger car units (PCU's)

Heavy vehicles such as trucks and buses use different amounts of capacity from

passenger cars. Some adjustments for vehicles other than passenger cars are required to

obtain the value of capacity and delay functions. The US HCM (US Department of
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Transport, 1985) computed adjustment values for these vehicles. The values represent the

number of passenger cars that would consume the same amount of the highway capacity

as one truck or bus under prevailing roadway and traffic conditions.

The prevailing roadway and traffic conditions are classified as:

1. Level terrain concerns any combination of grades, and horizontal or vertical

alignment, that permits heavy vehicles to maintain approximately the same speed as

passenger cars.

2. Rolling terrain concerns any combination of grades, and horizontal or vertical

alignment, that causes heavy vehicles to reduce their speeds substantially below those of

passenger cars, but not causing heavy vehicles to operate at crawl speeds for any

significant length of time.

3. Mountainous terrain concerns any combination of grades, and horizontal or

vertical alignment, that causes heavy vehicles to operate at crawl speeds for significant

distances or at frequent intervals.

Crawl speed is the maximum sustained speed which trucks can maintain on a

given extended uphill gradient. Passenger car units (PCU) for heavy vehicles on various

highway segments are given in Table 6-1. More detailed adjustments of the passenger car

units are calculated according to specific gradients and vehicular weight and length. For

the values, see HCM (1985, pp3.11-l'7).
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Factors	 Type of terrain

__________________	 Level	 Rolling	 Mountainous

PCU for trucks	 1.7	 4.0	 8.0

PCUforbuses	 1.5	 3.0	 5.0

Table 6-1	 PCU values for trucks and buses (Source: US DoT, 1985, pp3.l3)

6.2.4 Generalised travel cost

Generalised cost is used to describe some factors that affect drivers' route choice.

We then model drivers' behaviour by assuming that each of them selects their routes so as

to minimise their own generalised travel cost. Some of these factors include in-vehicle

time, excess time, distance, out-of pocket cost, value of travellers' time, comfort and

convenience. A form of generalised cost, ck for journey from zone ito zone j for class

k can be as follows:

Cjjk =aIjjk +ejjk +djjk +cD(ojjk +9 t1k

Where

i1k is in-vehicle time for the journey

ejjk is excess time for the journey such as walking and waiting time

dk is distance for the journey

ojjk is out-of pocket cost such as toll and petrol cost

t1 k is travel time for the journey

o is a parameter to represent different values of travel time

k (k 0,k and k are parameters to represent characteristics of each user.
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Among components in the generalised cost, travel time can be estimated

relatively easily and varies with flow. Moreover, the different values of travellers' time

can be reflected by using different parameters in the travel time.

Value of time can be classified by working time values, and by non-working time

values. The working time values are related to the costs of hiring an employee. These

costs can include overhead costs such as insurance and pensions, and other costs which

vary with working hours. These values can be measured by the gross wage rate of the

employee. In 1985/6 National Travel Survey (see, COBA, 1989, pp8L3-8.'7), values for

occupational groups were obtained as Table 6-2 and Table 6-3. Note that these values are

mainly for evaluation rather than behaviour analysis. In the survey, the non-working time

values are related to all non-working journey purposes. This includes commuting time,

and personal business, shopping and leisure travels by all modes.

Working time

Classification	 Value of time (unit: pence per hour)

Car driver	 849.7

Car passenger	 705.3

Bus passenger	 701.2

Rail passenger	 1066.1

Underground passenger	 1050.0

All workers

	

	 841.6

Non-working time

Standard appraisal value	 207.5

Table 6-2	 Resource values of time per person (Source: COBA, 1989)
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Classification	 Value of time (unit: pence per hour)

Working car	 990.8

Light goods vehicle 	 859.0

Other goods vehicle	 622.5

Public service vehicle 	 3213.7

Non-working car	 383.9

Table 6-3	 Resource values of time per vehicle (Source: COBA, 1989)

6.3 FORMULATION

It is assumed that there are K classes of vehicles on a link indexed by k=1,2,...,K.

A transportation system extended to include multiclasses consists of two components: an

extended transportation supply and an extended travel demand. The extended

transportation supply is a set of facilities for the K classes of the transportation network.

The extended travel demand is a number of K user classes using the network. A

representation of the extended transportation supply and travel demand is necessary to

compute the flow pattern which depicts the interaction between classes because delays

are identified and depend on the weighted sum of flows. This is known as the extended

traffic assignment process.

The extended traffic assignment problem is to determine the flow pattern on each

path of the network, given specific demand associated with each class for each origin-
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destination (O-D) pair in the road network, and travel cost functions for each user class

on each link of the network.

6.3.1 An extended transportation supply

The extended transportation supply is a set of facilities for K user classes

provided by the road network which can be represented by a directed graph. A directed

graph for user class k is a pair of sets Gk=(Nk, Lk), where Nk is a set of nodes for user

class k and Lk is a set of directed links for user class k. This can be reduced to single

network G=(N, L) where N=NxK and L=LxK (where the symbol x denotes the

Cartesian product of sets). A subset Bk of NkxNk, where (0k, dk)E Bk implies that 0k

dk, designates the set of origin-destination pairs for users in class k.

Volume-delay function represents travel costs cak , k=l,2...,K, on link a of K user

classes, which is a measure of transportation supply. Travel cost can be time spent to

travel along the link or even a more generalised cost. In the simplest case of this, travel

cost for each link is assumed to be a function of flow yak, k=1,2,...,K, in each class on

that link. This represents the number of users in each class entering the link in a time

unit.

In this study, we assume that travel cost on each link of each class consists of a

fixed and a variable component. The example of the fixed component is a distance,

which is not changed by the amount of traffic flow on link. The example of the variable

component is the BPR function, which is changed by the amount of traffic flow on link.

The total link cost on link a of the class k is expressed as:

cak = Fk + t(v

222



where cak is the total link cost on link a and Fk is a fixed cost for the class k and t(va) is

a travel time function for the total link flow on link a.

The traffic flow on link a is the summation of each class k on link a,

Va

where 0k is the PCU value for class k.

Cost functions for each class represent the behaviour of travellers. This means

that the strength of the influence of users of class i on users of class j is indicated by the

corresponding cell of the Jacobian matrix. The strength of the influence of users of class j

on those of class i according to the Jacobian amount is not always the same, because the

effects on the congestion between classes can differ.

6.3.2 An extended travel demand

The extended travel demand represents the K user classes' desire to travel, which

can be categorised by purpose (work trip, study trip, business trip, leisure trip) and time

of day. It is numerically expressed by the number of K user classes travelling between

each origin-destination pair. if travel demand is a decreasing function of travel cost

between O-D pairs, it is an elastic demand. Otherwise, the travel demand is assumed to

be a fixed.

Associated with each (0k, d")E Bk is a positive real number T called the

demand for O-D pair (o,d) of user class k. The flow on each path p of user class k is

denoted tk. A flow conservation equation for user class k has to be satisfied for each

pair (0k, dk);
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V(ok,dk)EBk,VkEK

where od is the set of all available paths for O-D pair and K represents user class.

6.3.3 An extended demand and supply interaction

The extended travel demand depends on travel costs and travel costs on links

and hence paths depend on the flow pattern. A mutual interaction between demand and

cost as a measure of supply is thus induced. This interaction has two simultaneous

effects: the determination of demand as a function of travel costs, and the determination

of flow pattern due to the dispersion of demand. If demand is assumed to be fixed, the

interaction yields only the latter effect.

Through this interaction between travel demand and transportation supply the

system is in a state of equilibrium if the path flows obtained in the current iteration give

rise to travel costs that are consistent with those in the previous iteration according to a

principle of route choice.

6.3.4 Extended assignment principles

If each user class is assumed to be homogeneous with respect to the route choice

criterion which is to minimise their generalised travel costs, an equilibrium condition is

reached, if at all, when no user can reduce his own cost by selecting different paths. In

this condition, all paths used by each class between O-D pairs have the same cost. This

condition can be stated as a formal extension of Wardrop's first principle (1952): "The

journey times on all routes actually used by users of each class are equal and less than
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those which would be experienced by a single vehicle of that class on any unused route'.

As a result of this principle, the paths actually used by each user class are shortest paths

at the existing condition. This flow pattern is called descriptive because it describes at

least approximately the real phenomenon of a transportation network.

Wardrop's second principle is known as the system optimum principle which

represents the situation in which the total travel cost in the whole transportation system is

minimised. This flow pattern is called prescriptive because the flows of the system

optimum must be forced upon the K user classes.

The extended version of Wardrop's first principle(1952) for user class k can be

expressed by the following relations;

t>O=C=M od I

t =O=C

where Ck is the travel cost of using path p by class k and M cod is the minimum travel cost

from origin o to destination d by class k.

The extended traffic assignment problem can be formulated as a variational

inequality. The extended Wardrop equilibrium conditions for user class k is equivalent to

the following variational inequality formulation. The feasible path flows of user class k,

tk is an equilibrium if for each k and any feasible path flows of other users belonging to

class k, 5k,

(slLtk)Ck(t)^O

Using the link and path incidence relation, we can represent the path oriented

variational inequality as the link oriented variational inequality as:

(ukvk)ck(v)^O
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In general, we can use a gap function as an objective function, which shows the

difference between current and previous assigned flows. The gap function could be the

following form:

G(v)=max {c(v)(v -u)}
uei

if the value of the gap function is zero, that is G(v)=O, the assigned value is an

equilibrium.

6.4 SOLUTION METHOD

One of the heuristic algorithms for this non-separable case is based on an iterative

diagonalisation (or relaxation) procedure, where each iteration requires the solution of a

full-scale standard user equilibrium problem (Fisk and Nguyen, 1982). Another approach

is a streamlined version of the first one; it uses a single iteration of the user equilibrium

solution procedure to be performed at each iteration of the diagonalisation procedure.

This streamlined version has been found to be more efficient (Sheffi, 1985, pp22O-228).

Van Vliet, Bergman and Scheltes (1986) used a diagonalisation algorithm for

traffic assignment with multiple user classes. The computation is done by assuming that

every class of traveller has an individual copy of a network and that class uses only the

network belonging to it. However, the calculations for individual networks include the

interaction that the cost on each link depends on the flow assigned to corresponding links

in other copies of the network. Dafermos (1981) presented a Newton projection method

for solving the general multimodal equilibrium problem in the framework of the

diagonalisation method.
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In this study, the diagonalisation procedure is used to solve a sequence of

separable cost problems for each class in turn, and we adopt the computational approach

of Van Vliet et al (1986). The simplicial decomposition algorithms introduced in chapter

3 are used as the basis of a diagonalised strategy. In the case of Algorithm 1, this is as

follows.

A diagonalisation of Algorithm 1 in multiclass assignment

Step 0: (Initialisation)

Iteration n=0

For each class k=l, 2,..., K

Identify a feasible assignment, yO')	 (k)

where (n,k) represents iteration n and class k

Set '\W(n,k) = {V(n.k)}

Repeat steps 1 and 2for each class, k=1,...,K until convergence:

Step 1: (Linear subproblem)

1-1 Update link cost for class k, cak(vafl) based on a fixed cost for class k, Fk, and

traval time function (here BPR function) for the total link flow on link a, t(va)

ca1 (a1) = Fk + t(va)

where

K

v: =ukv1k)
k—I

where .ük is a PCU value for class k.

1-2 Perform all-or-nothing assignment based on Ca k( Va1)
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0

Link,! a

L

=arg min{ck(vn)u ; u

1-3 Convergence test

If G(v' k)) = ck (v°' k) )(v" - u') 0, stop: optimum solution is V(n.k)

Otherwise, %1J(n+I k) ='\XJ(n.k) u { U(n,k) }

Step 2: (Master subproblem)

Let	 = arg min{G(v); v e H(W"
V

n=n+1

6.5 ANALYSIS FOR GOOD BEHAVIOUR

We will investigate a form of the Jacobian matrix in a multiclass assignment. The

genera! form of the Jacobian matrix is:

where 'a has a form of non-zero elements. In the two class case, the link a has an

interaction between class 1 and class 2 as follows:
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Total traffic flow on link a is the summation of volumes of class 1 and 2 on link a as:

Va =

where Uk is the pcu value of class k.

The cost on link a has the form of generalised cost of travel time and distance as:

c =O'd +OkOta(Va)

where 0k and QI represent parameters of the values of time in imposing the preferences

between distance dka and travel time ta by class k.

The Jacobian matrix of the two class case in the above figure is:

ac

-	 av
n -

av av

where the derivative is a following form:

_Ok0 ata(va)
-

..OkOUJ &a(va)
ava

The resulting Jacobian matrix is:
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J=[O'°u' 010U21

020U1 020U2]

(u' ii2"
det (J)=0200'°deti 1	 2 1=0

) U)

Furthermore, the symmetric part of the Jacobian matrix is

F	 29'°	 O'°U2 +9201)1
J+JT 

_	

+0201)1	 20201)2

and this has determinant

det(J + JT) = 49101)19201)2 - (9101)2 
+ 

9201)1)2

= (9101)2 - 9201)1)2 ^ 0

So, the Jacobian matrix is not a P-matrix and therefore cannot be positive definite,

although it is on the boundary of having the P property. That is, the Jacobian matrix can

never be positive definite, although if (0 10 02 _020D1) =0, it is positive semi-definite.

Even though this is analysed on two class case, this can apply to the K class case in the

same way.

In this study, we assume that the pcu value of each class is given as 01=02=1, and

the parameter in the travel time for each class is 0 10=020 =20 SO that the determinant of

the Jacobian is zero. However, to represent the heterogeneity of the user by class, we

assume that the parameters for the distance differ as 01 = 10 and 92 = 100. This means that

the users in class 1 take account of the distance factor 10 times less than those of class 2

when they decide on their route choice.

To examine a unique solution property of this model, we use a simple symmetric

network in Figure 4-1. It has 2 origins and 2 destinations, 6 nodes and 8 links. There are
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two classes of users. The demands of class 1 and class 2 from origin 1 are the same as in

Table 6-4, and are entirely to destination 5 and from origin 2 to destination 6. The

capacity of each link is 2000 vehicles I hour. The generalised cost on link is a summation

of distance and travel time. The distance of each link is 80 metre. The parameters of

distance and travel time are the same as above.

it: vehicles /

/ Destination	 5	 6

1	 800	 0

2	 0	 800

Table 6-4	 Demands for class 1 and class 2 in the small network in Figure 4-1

In this example, a symmetric equilibrium solution of traffic flow is clearly

provided by:

= (v* 1 , v*2, v, v*4)

=1/2(T1 15 + T2 15, 1 1 15 + 12 15, 1 126 ^ T226, T 1 26 + T226)

Table 6-5 shows that the calculated values using different solution algorithms on

the small contrived network in Figure 4-1 are the same as the symmetric equilibrium

solution in the total link cases whilst for each class the calculated values have two kinds:

one is the same as those of the symmetric equilibrium solution, and the other is an all-or-

nothing result for each class on link. Table 6-6 shows the performances of algorithms in

terms of the used iteration number and cumulative CPU time to converge or terminate.

Algorithms 3 and 4, and the Frank-Wolfe converge to gap function of 0.0. Algorithm 4

converges fastest in less than 0.01 seconds on a Sun Sparc station 370 GX.
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___________ ___________ Algorithms ___________ ___________ ___________

_______ 1	 2	 3	 4	 F-W	 Schtthlm

	

______ 800
	 800	 800	 800	 800	 800

	

800	 800	 800	 800	 800	 800

	

v(*,l)1 400	 400	 400	 400	 400	 400

	

v(h1 ' 1 ) i 400	 800	 800	 400	 800	 400

	

v(*,2) i 400	 400	 400	 400	 400	 400

	

v(n,2) j 400	 0	 0	 400	 0	 400

v	 800	 800	 800	 800	 800	 800

v	 800	 800	 800	 800	 800	 800

	

v(*,1) 400	 400	 400	 400	 400	 400

	

(n,1) 400	 800	 800	 400	 800	 400

	

v(*,2)i 400	 400	 400	 400	 400	 400

	

v(n,2) 400	 0	 0	 400	 0	 400

Table 6-5	 The symmetric equilibrium solution and calculated values using different

algorithms when demands T1 15 = T2 15 =800, Demands T 1 26 = T226=800 are used.

total traffic flow on link a

v	 II Calculated total traffic flow on link a by the

(*Jç	 Symmetric equilibrium traffic flow for class k on link a

vO 1 ,kL Calculated traffic flow for class k on link a b y the alor

*
V
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Iterations	 CPU (Second)	 Gap (Vehicle-

__________________ __________________ _________________ 	 second)

Algorithm 1	 6	 0.21	 0.12

Algorithm 2	 8	 0.34	 0.12

Algorithm 3	 1	 0.01	 0.00

Algorithm 4	 1	 0.00	 0.00

Frank-Wolfe	 1	 0.01	 0.00

Schittenhelm	 10	 0.15	 0.25

Table 6-6	 Performances of algorithms in the small network shown in Figure 4-1 in

multiclass assignment

6.6 NUMERICAL EXAMPLES

6.6.1 Charlesworth's network

The network and travel demands devised by Charlesworth (1977) are used as a

first example to compare the performance of the various algorithms in multiclass

assignment (for the figures and data of the network, see Appendix 2). In this case there

are two user classes: the demands for each class are the same as shown in the Appendix

A2. 1 so that the total demand is doubled. Note that the BPR function is used here so that

the capacity on the link is not limited (see section 2.6.2). The generalised cost function

and parameters are the same as the preliminary example. In Table 6-7, the performance

of each of the algorithms is shown in terms of iteration number, cumulative CPU time on
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SUN Sparc station 370 GX and the mean gap value when they terminate. Algorithm 3

runs quickest to a mean gap value of 1.739 seconds in 32.43 CPU seconds. The other

algorithms including the Frank-Wolfe perform well in this test. Note that each algorithm

is stopped by the maximum number iteration criterion rather than the required level of

gap value.

Figure 6-1 shows the comparative performances of each of algorithms in terms of

CPU time and the mean gap value. The gap value changes only slightly as the iteration

number increases. Figure 6-2 compares the final total link flows obtained by each of the

algorithms with those of Algorithm 3. The differences in values between them are

relatively small. Figures 6-3 and 6-4 respectively compare the final link flows of class 1

and class 2 obtained by each algorithm with those of Algorithm 3. The difference in

values of class 1 flow occurs on only few links. In class 2, the difference is bigger in

some cases. Figures 6-5, 6, 7, 8, 9 and 10 show that the proportion of class 1 link flow in

terms of the total link flow plotted for each of Algorithms 1, 2 , 3 and 4, the Frank-

Wolfe, and the Schittenheim algorithm respectively. These figures indicate that the class

1 link flows are similar for each of algorithms. Most proportions of class 1 link flows in

terms of the total link flows are around half.

__________________	 Iterations	 CPU (Second)	 Mean gap (Second)

Algorithm 1	 31	 166.86	 1.935

Algorithm 2	 31	 169.85	 1.739

Algorithm 3	 31	 32.43	 1.739

Algorithm 4	 31	 163.85	 2.129

Frank-Wolfe	 100	 87.06	 2.258

Schittenhelm	 31	 33.32	 1.885

Table 6-7	 Performances of algorithms in the Charlesworth network in multiclass

assignment
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6.6.2 Sioux Falls network

As a second example, the network and travel demands of the Sioux Falls are used

to compare the performance of the various algorithms in multiclass assignment (for the

figures of the network, see Figure 3-6). In this case there are two user classes: the

demands for each class are the same as shown in Table 3-1 resulting in the doubled

demand with the BPR function. The generalised cost function and parameters are the

same as the preliminary example. In Table 6-8, the performance of each of the

algorithms is shown in terms of iteration number, cumulative CPU time on SUN Sparc

station 370 GX and the mean gap value when they terminate. Algorithm 3 runs quickest

to a mean gap value of 0.049 seconds in 6.63 CPU seconds. As in the first example, the

other algorithms perform well and reach a similarly good level of convergence, as

indicated by the mean gap value. However, as before each algorithm is stopped by the

maximum iteration number criterion. Note that in this case, all of the gap values are

similarly small, although the CPU time usage varies up to 10 times between algorithms.

Figure 6-11 shows the comparative performance of each of the algorithms in

terms of CPU time and gap value. The gap value fluctuates in the initial stages and then

stabilises. Figure 6-12 compares the final total link flows obtained by each of the

algorithms with those of Algorithm 3. The difference in values between them is

relatively small. Figures 6-13 and 6-14 compare the final link flows of class 1 and class 2

obtained by each of the algorithms with those of Algorithm 3 respectively. The

difference in values of class 1 is relatively small while that of class 2 is larger in some

cases with the Frank-Wolfe algorithm. Figures 6-15, 16, 17, 18, 19 and 20 show the

proportion of class 1 link flow plotted against the total link flow when Algorithms 1, 2,

3 and 4, the Frank-Wolfe, and the Schittenheim algorithm are used respectively. These
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figures indicate that the class 1 link flows are similar for each of the algorithms, though

the flow on some links by the Frank-Wolfe algorithm is cluster. Most proportions of

class 1 link flows in terms of the total link flows are shown to be around half with

substantially more variation in this network than in the case of the Charlesworth network.

In summary, Algorithm 3 performs best in both the Charlesworth and the Sioux

Falls networks in terms of CPU time. The Schittenhelm algorithm is good in terms of

CPU time and level of convergence as indicated by gap value. The convergence pattern

of each of the algorithms fluctuates in the initial stage and changes slightly afterwards.

The proportion of class 1 link flow in terms of the total link flow on the Charlesworth

network is less diverse than that of the Sioux Falls network because the Sioux Falls

network has more possible route choices than Charlesworth's.

__________________	 Iterations	 CPU (Second)	 Mean gap (Second)

Algorithm 1	 31	 65.00	 0.047

Algorithm 2	 31	 64.78	 0.048

Algorithm 3	 31	 6.63	 0.049

Algorithm 4	 31	 63.94	 0.054

Frank-Wolfe	 100	 18.57	 0.064

Schittenheim	 31	 6.86	 0.048

Table 6-8	 Performances of algorithms in the Sioux Falls network in multiclass

assignment
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Figure 6-5	 Link flows obtained by Algorithm 1 in Charlesworth's network

Figure 6-6	 Link flows obtained by Algorithm 2 in Charlesworth's network
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Figure 6-7	 Link flows obtained by Algorithm 3 in Charlesworths network

Figure 6-8	 Link flows obtained by Algorithm 4 in Charlesworths network
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Figure 6-9	 Link flows obtained by Frank-Wolfe algorithm in Charlesworth's network

Figure 6-10 Link flows obtained by Schittenheim algorithm in Charlesworth's network

241



Algorithm 1

Algorithm 2

Algorithm 3

Algorithm 4

Frank-Wolfe

SchittenhelmI

Algorithm 1
+

Algorithm 2
D

Algorithm 3
z

Algorithm 4

Frank-Wolfe

Schittenheim

0

0

0	 20	 40	 60
Sun Sparc CPU time (Second)

Figure 6-11 The performance of algorithms in Sioux Falls network

0	 1000	 2000
Link flows in Algorithm 3 (Vehicles/hi)

Figure 6-12 The comparison of total link flows obtained by algorithms on Sioux Falls
network

242



Algorithm 1

Algorithm 2
D

Algorithm 3
K

Algorithm 4

Frank-Wolfe
x

Schittenhelm

1

I

0

0

1

Algorithm 1
+

Algorithm 2
0

Algorithm 3
K

Algorithm 4

Frank-Wolfe

Schittenhelm

1

I

0

0

1

0	 400	 800	 1200
Link flows in Algorithm 3 (Vehicles/hr)

Figure 6-13 The comparison of link flows of class 1 obtained by algorithms on Sioux Falls
network

0	 400	 800	 1200
Link flows in Algorithm 3 (Vehicles/hi)
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Figure 6-15 Link flows obtained by Algorithm 1 in Sioux Falls network

Figure 6-16 Link flows obtained by Algorithm 2 in Sioux Falls network
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!-igure b-Il Link Ilows obtained by Algorithm 3 in Sioux Falls network

Iigure b-I	 Link Ilows obtained by Algorithm 4 in Sioux Falls network
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Figure 6-19 Link flows obtained by Frank-Wolfe algorithm in 'Sioux Falls network

Figure 6-20 Link flows obtained by Schittenheim algorithm in Sioux Falls network
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CHAPTER 7 CONCLUSIONS AND SUGGESTIONS FOR FURTHER

STUDIES

7.1 INTRODUCTION

In this study, a general model has been presented for equilibrium road traffic

assignment problems with non-separable cost functions. Prime examples of non-

separability are the multiclass traffic assignment as a link interaction, and the traffic

assignment problem with priority and signal controlled junctions as junction

interactions. Modelling of these cases has been chosen as study areas.

The importance of these extensions stems from the recognition that standard

models fail to capture important features of traffic congestion by not representing real

phenomena on roads. In reality, the performance of the link is affected by vehicles of

other classes, oncoming traffic and different priority rules at junctions, and by signal

control policies. The different vehicles have different occupancy rates, speeds, values

of time and route choice criteria and total cost functions. The model developed here

has the potential to play an important role in the estimation of real phenomena to help

to develop, manage and evaluate transport planning policies to alleviate traffic

congestion.

Four solution methods for the equilibrium road traffic assignment have been

presented. These solution algorithms are based upon the simplicial decomposition

principle. A diagonalisation solution procedure, which solves a sequence of separable

cost problems representing the non-separability property, has been developed on the

basis of the simplicial decomposition algorithm in order to use them in the equilibrium

road traffic assignment in non-separable cost cases. These developed algorithms

performed well in separable and non-separable cases on two example networks. In
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particular, Algorithm 3 ran quickly in most cases. However, the other algorithms also

performed favourably by comparison with the Frank-Wolfe algorithm, and terminated

with further converged values of the objective function.

We have analysed some properties such as existence, uniqueness and stability

of solutions using the models developed. Detailed delay formulae, which include

topological and geometric characteristics of road junctions, and the effects on the cost

function caused by priorities of interacting movements, signal controlled policies and

different perceptions of travel costs for different classes, have also been analysed.

These were studied in terms of the degree of detailed modelling. In priority controlled

junction modelling, a stable unique solution has been obtained in experiments where

different initial solutions were used to test whether or not the symmetric equilibrium

solution is obtained. By contrast, in signal controlled junction modelling, the

corresponding tests resulted in multiple and unstable equilibria. In multiclass traffic

assignment, we obtained a unique solution in terms of total link flows, but in terms of

each class of link flows, we obtained multiple solutions. The results of these tests have

been related to theoretical sufficient and necessary conditions for good behaviour

based upon the Jacobian matrix. The summaries of these results are shown in Tables 2-

2 and 2-3.

In the section 7.2, summaries and conclusions of this study are presented in

terms of chapters. In section 7.3, various suggestions are made for further studies

related to this one.
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7.2 SUMMARIES AND CONCLUSIONS

In chapter 2, we have presented fundamentals of traffic assignment. Brief

historical development of this problem was surveyed in terms of separable and non-

separable cases. The traffic assignment problem was explained as interactions between

supply and demand. As transportation supply, network representation using graph

theory, and zone, centroid, link, node and cost function were described. As travel

demand, estimation methods of travel demand were described. Wardrop's principles

were explained as demand and supply interactions. Good behaviour conditions, and

their properties such as existence, uniqueness, stability and sensitivity were reviewed.

Network representation to use traffic assignment was reviewed according to the degree

of detail. Formulations of this problem were described as a conventional convex

mathematical programme and variational inequality. Kuhn-Tucker conditions were

derived to show equivalence of these formulations. Cost functions were reviewed in

terms of link cost and junction delay. Link cost functions were further divided into

empirical and theoretical approaches. In junction delay, priority and signal control

cases were reviewed. Combination of link cost and junction delay was proposed to use

in the detailed modelling. Tests for satisfaction of necessary and sufficient conditions

for good behaviour were introduced. Solution algorithms were briefly presented for

each of the separable and non-separable cases.

In chapter 3, the simplicial decomposition principle was introduced in terms of

a linear subproblem and a master subproblem. Existing algorithms including the

Frank-Wolfe and the Schittenheim algorithms were described in terms of this

principle. Four novel algorithms were presented and explained. The performance of

each of these algorithms was compared using an example of the separable traffic

assignment. The new simplicial decomposition Algorithm 1 has been shown to run

quickly when solving a separable equilibrium traffic assignment problem. The
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advantage of this algorithm is in reducing the number of shortest path searches which

are the main time-consuming part of solving the traffic assignment problem. In terms

of furthest convergence point, Algorithm 4 reaches 3863 vehicle-seconds whilst

Algorithms 2 and 3 terminate at 3876 and 3878 vehicle-seconds respectively.

Algorithm 3 performs very well to terminate 3878 vehicle-seconds when two column

generations are used initially. When fewer than two column generations are used,

Algorithm 3 terminates to 3920 vehicle-seconds. Algorithm 4 has shown no evidence

to speed up when column generation is used in the initial stage.

In chapter 4, the traffic assignment problem with priority controlled junction

modelling was presented in terms of capacity calculation, cost function analysis,

formulation and numerical analysis. In capacity calculations, the effects of geometry

in junctions and priority rules were explained. The TRL PICADY capacity formulae

were used to calculate the minor capacities. In cost function analysis, the steady-state

Pollaczek-Khinchine formula and an extended version of it were used to calculate the

junction delay for the steady-state case and an initial overloaded case due to all-or-

nothing assignment respectively. The Jacobian matrices for good behaviour were

analysed. Some properties such as uniqueness and stability were investigated using a

small example network. In this analysis, we have found that the priority controlled

modelling in traffic assignment is globally stable. In other words, irrespective of

initial solutions, it converged to a symmetric equilibrium value. Numerical examples

are analysed in terms of the efficiency of solution methods. Algorithm 3 performed

best in most cases but Algorithms 1, 2 and 4 terminated further in terms of gap values.

The sensitivity of delay functions was tested by changing the weighting factor which

combine link and junction delays. In general, the final gap values decrease as

increasing emphasis was placed on link delays. The pattern of convergence in all

algorithms except the Frank-Wolfe included fluctuations in gap. In particular, when

they are applied to the Charlesworth example network, the pattern of convergence
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included more fluctuations than in the Sioux Falls example network. The comparison

of final traffic flows and capacities on minor links resulting from each of algorithms

showed that some results are quite similar whilst others are not whether any attention

is paid to junction delays. In particular, the results from the new algorithms are

matched well among them but are separated from those of the Frank-Wolfe. However,

when only link delays are considered, the final flows and capacities agree closely

because a zero value of gap is achieved by all the algorithms except the Frank-Wolfe.

In chapter 5, the traffic assignment with signal controlled junction modelling

has been presented in terms of historical developments, signal optimisation problems,

cost function analysis, formulation, and numerical analysis. In signal optimisation,

existing methods were reviewed and parameters of optimisation were explained. In

particular, Webster's green time calculation method was explained. In cost function

analysis, Webster's steady-state delay formula and an extended version of it were used

to calculate the junction delay for steady-state case and an initial overloaded case due

to all-or-nothing assignment respectively. Jacobian matrices were analysed in terms of

good behaviour condition. Some properties such as uniqueness and stability were

investigated using a small example network. In this analysis, we have found that when

signal control is included in traffic assignment model, neither local nor global stability

were satisfied. However, using good initial solutions, the assignment process

converged to a symmetric equilibrium value. Numerical examples are analysed in

terms of the efficiency of solution methods. Algorithm 3 performed best in most cases

but in some Algorithms 1, 2 and 4 terminated to smaller values of gap. The sensitivity

of the cost function was tested by changing the weighting factor which combine link

and junction delays. In general, the final gap values decrease as increasing emphasis

was placed on link delays. The pattern of convergence in all algorithms except the

Frank-Wolfe included fluctuations in gap. In particular, when they are applied to the

Charlesworth example network, the pattern of convergence included more fluctuations
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than in the Sioux Falls example network. The comparison of final traffic flows and

green times resulting from each of algorithms showed that some results are quite

similar whilst others are not whether any attention is paid to junction delays. However,

when only link delays are considered, the final flows and green times agree closely

because a zero value of gap is achieved by all the algorithms except the Frank-Wolfe.

In chapter 6, a multiclass traffic assignment was presented in terms of

historical developments, concepts of multiclass, cost function analysis and formulation

and numerical analysis. This model represents an influential relationship between

multiple vehicle classes. Travel units of the multiclass assignment consist of two

classes, each of which has an individual cost function and influences other class's cost

function. The multiclass traffic assignment was described in terms of extension to the

supply and demand model. A variational inequality formulation to represent the

extended Wardrop's condition was proposed. Cost functions for multiple classes were

specified and described. The Jacobian matrix of this problem was analysed to study

properties such as stability and uniqueness. This analysis showed that this problem can

be formulated so as to satisfy at least the necessary condition for good behaviour. In a

small example network, we have found that there was a unique equilibrium solution in

terms of total link flows but multiple equilibria in terms of each class link flows. The

computing method used in the algorithm was developed by assuming that each class of

road users has an individual copy of the network and the single problem uses only the

network belonging to it. However, the way of calculating the individual network is

included the interaction that the cost of using a link not only depends on the volume

on that link but also on the corresponding link of each other networks. Extended

simplicial decomposition algorithms are developed in this framework. Numerical

examples were analysed in terms of the efficiency of solution methods and good

convergence behaviour. Algorithm 3 performed best and others also performed
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favourably by comparison of the Frank-Wolfe. The pattern of convergence has a

fluctuations in the initial stage and then in later stage stabilised.

Overall, the new algorithms for the various models developed have performed

favourably by comparison with existing algorithms on two example networks. A small

example network has been used to investigate existence, uniqueness and stability

properties using the models. In the priority controlled model, a unique stable solution

has been obtained whilst in signal controlled model, multiple and unstable solutions

have been obtained. In the multiclass model, a unique solution has been obtained in

terms of the total link flow whilst multiple solutions have been obtained in terms of

flow in each class. These findings correspond well with the nature of the models

assumed because we can classify the degree of non-separability according to the order

of priority controlled model, multiclass model and signal controlled model. In Table 2-

3, hypotheses were made for these results and they were showed in Chapters 4, 5 and

6.

We can conclude that new simplicial decomposition algorithms are of

immediate importance because they outperform existing algorithms, are accurate, and

these give many choices to analyse transport systems. We can also conclude that

detailed modelling is an indispensable tool for managing and operating transport

systems. However, we have to use these modelling with care because the Jacobian

matrix analysis of these models shows that they do not usually satisfy the sufficient

condition for good behaviour and thus can have multiple solutions: in such cases, the

algorithms developed here will calculate at most one such solution and hence can be

unreliable.
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7.3 SUGGESTIONS FOR FURTHER STUDIES

A variety of networks should be tested further. In addition, an existing theory

shows that if even one junction delay function in a network does not satisfy the

monotonicity property, the whole network could fail to have a unique and stable

solution. The validity of this theory should be studied in terms of network topology

and the degree of detailed modelling. We also note that link and junction delays have

different effects on the cost function. This different magnitude of costs by changing

flows should be considered further in the sensitivity analysis.

The trade off between the detailed non-separable cost modelling and

conventional separable cost modelling should be analysed in terms of the accuracy of

estimation and the implementing cost of the enhanced model. Data preparation of

modelling becomes costly according to the degree of detailed modelling. In the

analysis of urban congestion, detailed junction modelling gives more accurate

estimation of flows and more useful tool of traffic management and operation. On the

other hand, data requirements become huge and costly if we use detailed modelling.

We therefore choose a model according to the purpose and scope of studies.

These detailed models can be improved by incorporating more realistic

components. In priority controlled modelling, we can include a roundabout case to

give the model more general uses. In the signal controlled case, we can include more

parameters of signal optimisation such as offsets for co-ordinated road networks. In

the multiclass case, we can include the effects of route guidance by representing users

of route guidance equipment separately. To use these models in traffic operation and

management more powerfully, we can also include road pricing techniques.

254



REFERENCES

AASHTIANI, H.Z. AND T.L. MAGNANTI (1981) Equilibria on a congested
transportation network. SIAM journal on Algebraic and Discrete Methods
2,213-226.

ABDUAAL, M., AND L.J. LEBLANC (1979) Methods for combining modal split
and equilibrium assignment models. Transportation Science Vo113(4), 292-
314.

ALLSOP, R.E. (1971) Delay-minimising settings for fixed time traffic signals at a
single road junction. J. Inst. Math. Its Appi. 8, 164-85.

ALLSOP, R.E. (1972) Estimating the traffic capacity of a signalised road junction.
Transp. Res. 6, 245-55.

ALLSOP, R.E. (1992) Inroduction to modelling for the design and evaluation of area-
wide traffic management schemes. PTRC Course, London, June.

ALLSOP, R.E. AND J.A. CHARLESWORTH (1977) Traffic in a signal controlled
road network. Traffic Eng. Control 18, 262-4.

AREZKI, Y. AND D. VAN VLIET (1990) A full analytical implementation of the
PARTANIFrank-Wolfe algorithm for equilibrium assignment. Transp. Sci.
24(1), 58-62.

BECKMANN, M, C. MCGUIRE AND C.B. WINSTEN (1956) Studies in the
Economics of Transportation, Yale University Press, New Haven.

BELLMAN, R. (1957) Dynamic programming. Princeton University Press.

BERTSEKAS, D.P. AND E.M. GAFNI (1982) Projection methods for variational
inequalities with application to the traffic assignment problem. Mathematical
Programming Study 26.167-196.

BOVY, P.H.L. AND G.R.M. JANSEN (1983) Network aggregation effects upon
equilibrium assignment outcomes. Transp. Sci. 17(3), 240-62.

BRAESS, D AND G. KOCH (1979) On the existence of equilibria in asymmetrical
multiclass user transportation networks, Transportation Science 13, 56-63.

BRANSTON, D. (1976) Link capacity functions: a review. Transp. Res. 10, 223-6

CAMPBELL, E.W., L.E. KEEFER AND R.W. ADAMS (1959) A method for
predicting speeds through signalised street sections. Highway Research Board
Bulletin 230, 112-5.

CANTARELLA, G.E., A. IMPROTA AND A. SFORZA (1991) A procedure for
equilibrium network traffic signal setting. Transp. Res. A 25.

255



CATCHPOLE, E.A. AND A.W. PLANK (1986) The capacity of a priority
intersection. Transp. Res. B 20, 441-56.

CHAO, G.S. AND T.L. FRIESZ (1984) Spatial price equilibrium sensitivity analysis.
Transp. Res. 18B(6), 423-40.

CHARLESWORTH, J.A. (1977) The calculation of mutually consistent signal
settings and traffic assignment for a signal-controlled road network.
Proceedings of the 7th International Symposium on Transportation and Traffic
Theory, Tokyo.

COBA (1989) COBA Manual 9, Department of Transport in U.K.

DAFERMOS, S.C. (1971) An extended traffic assignment model with application to
two-way traffic. Transportation Science Vol 5 (4),106-1 18.

DAFERMOS, S.C. (1972) The traffic assignment problem for multiclass user
transportation networks, Transportation Science.367-3 89.

DAFERMOS, S.C. (1981) The general multimodal network equilibrium problem with
elastic demand. Networks, 56-72.

DAFERMOS, S.C. (1982) Relaxation algorithms for the general asymmetric traffic
equilibrium problem. Transportation Science Vol 16(2), 231-240.

DAFERMOS, S.C. AND A. NAGURNEY (1982) Sensitivity analysis for the
asymmetric network equilibrium problem. Math. Programm. 28(2), 191-217.

DAFERMOS, S.C. AND F.T. SPARROW (1969) The traffic assignment problem for
a general network. Journal of Research of the National Bureau of Standards
73B,91-1 18.

DAGANZO, C.F. (1983) Stochastic network equilibrium with multiple vehicle types
and asymmetric, indefinite link cost Jacobians. Transportation Science 17,
282-300.

DANTZIG, G.B. AND P. WOLFE (1960) The decomposition algorithm for linear
programming. Operations Research 8.101-111.

DEMBO, R.S. AND U. TULOWITTZKI (1988) Computing equilibria on large
multicommodity networks: an application of truncated quadratic programming
algorithms. Networks 18,273-284.

DIJKSTRA, E.W. (1959) Note on two problems in connection with graphs. Numer.
Math.,1, 269-27 1.

EAVES, B.C. (1971) On the basic theorem of complementarity. Math. Progrmm.1.
68-75.

256



FISK, C.S. (1984) Optimal signal controls on congested networks. Proc. of the 9th
mt. Sym. on Transp. and Traffic Theory. 197-2 16.

FISK, C.S. AND S. NGUYEN (1981) Existence and uniqueness properties of an
asymmetric two-mode equilibrium model. Transportation Science 15, 318-
329.

FISK, C.S. AND S. NGUYEN (1982) Solution algorithms for network equilibrium
models with asymmetric user costs. Transportation Science Vo116(3), 361-
381.

FLORIAN, M. (1977) An improved linear approximation algorithm for the network
equilibrium problem. Proc. of 1977 IEEE conf. on Decision and Control, 812-
8.

FLORIAN, M. AND H. SPIESS (1982) The convergence of diagonalisation
algorithms for asymmetric network equilibrium problems. Transp. Res.
16B(6), 447-83.

FRANK, M. AND P. WOLFE (1956) An algorithm for quadratic programming.
Naval Research Logistics Quarterly 3,95-110.

FUKUSHIMA, M. (1984) A modified Frank-Wolfe algorithm for solving the traffic
assignment problem. Transportation Research 18B,169-177.

GALLIVAN, S. AND B.G. FIEYDECKER (1988) Optimising the control
performance of traffic signals at a single junction. Transp. Res., 22B (5), 357-
70.

GARTNER, N.H., S.B. GERSHIN, J.D.C. LITTLE AND P. ROSS (1980) Pilot study
of computer-based urban traffic management. Transp. Res. B 14, 203-17.

HARKER, P.T. AND J.S. PANG (1990) Finite-dimensional variational inequality and
nonlinear complementarity problems: a survey of theory, algorithms and
applications. Math. Progrmm. 48, 161-220.

HEARN, D.W. (1982) The gap function of a convex program. Oper. Res. Let. 1. 67-
71.

HEARN, D.W., S. LAWPHONGPANTCH AND S. NGUYEN (1984) Convex
programming formulations of the asymmetric traffic assignment problem.
Transportation Research 18B,357-365.

HEYDECKER, B.G. (1983) Some consequences of detailed junction modelling in
road traffic assignment. Transportation Science, 17(3), 263-81.

HEYDECKER, B.G. (1990) Junction interactions in capacity-restrained traffic
assignment. Note, University College London, unpublished.

FLEYDECKER, B.G. AND I.W. DUDGEON (1987) Calculation of signal settings to

257



minimise delay at a junction. Proc. of the 10th mt. Sym. on Transp. and Traffic
Theory, 159-78.

HEYDECKER, B.G. AND T.K. KHOO (1990) The equilibrium network design
problem. the 22nd Conference of Universities Transport Studies Group,
January.

HCM (1985) Highway Capacity Mannual, SR 209, Transp. Res. Board.

HOLLOWAY, C.A. (1974) An extension of the Frank and Wolfe method of feasible
directions, Mathematical Programming 6,14-27.

HOROWITZ, J.L. (1984) The stability of stochastic equilibrium in a two-link
transportation network. Transp. Res. 18B(1), 13-28.

IRWIN, N.A., N. DODD AND H.G. VON CUBE (1961) Capacity restraint in
assignment programs. Highway Res. Board Bulletin, 297, 109-27.

JANSON, B.N. AND ZOZAYA-GOROSTIZA,C. (1987) The problem of cyclic
flows in traffic assignment. Transportation Research 21B,4,299-310.

KARAMARDIAN, S. (1969) The nonlinear complemetarity problem with
applications, part I and II. Journal of Optimisation Theory and Applications 4,
87-98 and 167-18 1.

KIMBER, R. M. AND COOMBE, R.D. (1980) The traffic capacity of major/minor
priority junctions. Transport Research Laboratory, SR 582.

KIMBER, R.M. AND HOLLIS, E.M. (1979) Traffic queues and delays at road
junctions. Transport Research Laboratory, SR 810.

KIMBER, R.M., I. SUMMERSGILL AND I.J. BURROW (1986) Delay processes at
unsignalised junctions. Transp. Res. B 20, 457-76.

LARSSON, T AND M. PATRIKSSON (1992) Simplicial decomposition with
disaggregated representation for the traffic assignment problem.
Transportation Science 26(1),4-17.

LAWPHONGPANICH, S. AND D.W. HEARN (1984) Simplicial decomposition of
the asymmetric traffic assignment problem. Transportation Research 17B,123-
133.

LEE, S. (1990) A study on stochastic user equilibrium assignment. Master thesis,
Seoul National University.

LEE, S. (1992a) A simplicial decomposition algorithm to solve the traffic assignment
problem. Paper presented to the 24th Conference of Universities Transport
Studies Group, January.

LEE, S. (1992b) Novel algorithms for solving the traffic assignment problem, PTRC

258



European Transport, Highways and Planning 20th Summer Annual Meeting,
Seminar E, 22 1-232.

LEE, S. (1992c) A simplicial decomposition algorithm to solve the traffic assignment
problem with non-separable costs. Transfer Report to PhD, Transport Studies
Group, University College London, Unpublished.

LEE, S. (1993a) Detailed junction modelling in road traffic assignment. Paper
presented to the 25th UTSG conference, Southampton, January.

LEE, S. (1993b) Mathematical programming algorithms for equilibrium road traffic
assignment problems. The Korean Federation of Science and Technology
Society, August, 8 18-826.

LEE, S. (1993c) An analysis of detailed junction modelling in road traffic assignment.
PTRC European Transport, Highways and Planning 21st Summer Annual
Meeting, Seminar D, 295-306.

LEE, S., K. S. CHON AND K. W. LIM (1990) Stochastic user equilibrium
assignment problems. J. of Transp. Res. Soc. of Korea, Vol 8(1), 55-72.

LEMKE, C.E. (1965) Bimatrix equilibrium points and mathematical programming.
Management Science 11,681-689.

LEVENTHAL, T.G. NEMHAUSER AND L. TROTTER (1973) A column
generation algorithm for optimal traffic assignment. Transportation Science
7,168-176.

LITTLE, J.D.C. (1966) The synchronisation of traffic signals by mixed integer linear
progranirning. Oper. Res. 14, 568-94.

LOUAH, G. (1991) Priority intersection: modelling. In Concise Encyclopedia of
Traffic and Transp. Systems edited by Papageorgiou. 331-35.

LUENBERGER, D. (1989) Linear and nonlinear programming. Addison-
Wesley,Reading.

MAGNANTI, T. L. (1984) Models and algorithms for predicting urban traffic
equilibria. Transportation Planning Models Edited by M.Florian, Elsevier
Publication.

MARCOTTE, P. (1983) Network optimisation with continuous control parameters.
Transp. Sci. 17, 181-97.

MINTY, G.J. (1962) Monotone operators in Hubert space. Duke Math. Jou. 29, 341-
46.

MOSI-IER, W.W. (1963) A capacity restraint algorithm for assigning flow to a
transportation network.

259



NGUYEN, S. AND C. DUPUIS (1984) An efficient method for computing traffic
equilibria in network with asymmetric transportation costs. Transp. Sci. 18(2),
185-202.

OVERGAARD, K.R. (1967) Urban transportation planning: traffic estimation. Traffic
Quaterly, 197-218.

PANG, J.S. AND D. CHAN (1982) Iterative methods for variational and
complementarity problem. Math. Progmm. 24, 284-3 13.

PANG, J.S. AND C.S. YU (1984) Linearized simplicial decomposition methods for
computing traffic equilibria on networks. Networks 14,427-438.

PLANK, A.W. (1982) The capacity of a priority intersection-two approaches. Traffic
Eng. Control 23, 88-92.

PLANK, A.W. AND E.A. CATCHPOLE (1984) A general capacity formula for an
uncontrolled intersection. Traffic Eng. Control 25, 327-9.

ROCKAFELLAR, R.T. (1970) Convex analysis. Princeton Univ. Press, NJ,155-170.

SACHER, R.S. (1980) A decomposition algorithm for quadratic programming.
Mathematical Programming 18,16-30.

SCHITTENHELM, H. (1990) On the integration of an effective assignment algorithm
with path and path-flow management in a combined trip distribution and
traffic assignment algorithm. PTRC European Transport, Highways and
Planning 18th Summer Annual Meeting, Seminar E, 203-2 14.

SEMMENS, M. C. (1985) PICADY 2 : An enhanced program to model capacities,
queues and delays at major and minor priority junction. Transport Research
Laboratory, RR 36.

SHEFFI, Y. (1985) Urban transportation networks: Equilibrium analysis with
mathematical programming methods. Prentice Hall,New Jersey.

SHEFFI, Y AND W. B. POWELL (1983) Optimal signal settings over transportation
networks. J. Transp. Eng. 109, 824-39.

SHE1TY, C.M. AND M. BEN DAYA (1988) A decomposition procedure for convex
quadratic programs. Naval Research Logistics Quarterly 35,111-118.

SMITH, M.J. (1979) The existence, uniqueness and stability of traffic equilibria.
Transportation Research 13B,295-304.

SMiTH, M.J. (1981) A theoretical study of traffic assignment and traffic control.
Proceedings of the 8th International Symposium on Transportation and Traffic
Theory, Toronto.

SMITH, M.J. (1982) Junction interactions and monotonicity in traffic assignment.

260



Transportation Research 16B(1),1-3.

SMiTH, M.J. (1983) An algorithm for solving asymmetric equilibrium problems with
a continuous cost-flow function. Transportation Research 17B(5),365-371.

SMITH, M.J. (1984) The stability of a dynamic model of traffic assignment-an
application of a method of Lyapunov. Transp. Sci. 18(4), 385-94.

SMITH, M.J., VAN VUREN, 1., HEYDECKER, B.G. AND VAN VLIET, D. (1987)
The interaction between signal-control policies and route choice. Proceedings
of the 10th International Symposium on Transportation and Traffic Theory.
Cambridge, Mass.

SMITH, M.J. AND T. VAN VUREN (1993) Traffic equilibrium with responsive
traffic control. Transp. Sci. 27(2), 118-132.

SMOCK, R.J. (1962) An iterative assignment approach to capacity restraint on
arterial networks. Highway Res. Board Bulletin, 347, 60-66.

SOLTMAN, T.J. (1965) Effects of alternate loading sequences on results from
Chicago trip distribution and assignment model. Highway Res. Board, 114,
122- 140.

TAHA, H. (1984) Operations research. Macmillan Publishing Co.

TAN, H., S.B. GERSHWIN, M. ATHANS (1979) Hybrid optimisation in urban
traffic networks. Massachusetts Institute of Technology Report No. DOT-
TSC-RSP-79-7.

TANNER, J.C. (1962) A theoretical analysis of delays at an uncontrolled intersection.
Biometrika 49, 163-70.

TAYLOR, N.B. (1990) CONTRAM 5: an enhanced traffic assignment model. TRRL
Research Report RR 249, Crowthorne: Transport and Road Research
Laboratory.

TOB1N, R.L. (1986) Sensitivity analysis for variational inequalities. J. Opt. Theor.
Appi. 48(1), 191-204.

TRAFFIC RESEARCH CORPORATION (1966) Winnipey Area Transportation
Study. Technical Report.

U.S. BUREAU OF PUBLIC ROADS (1964) Traffic assignment manual. U.S.
Department of Commerce, Washington, D.C.

VAN VLIET, D. (1982) SATURN-a modern assignment modeL. Traffic Engineering
and Control 23, 578-58 1.

VAN VLIET, D. (1987) The Frank-Wolfe algorithm for equilibrium traffic
assignment viewed as a variational inequality. Transp. Res. 21B(1), 87-9.

261



VAN VLIET, D., T. BERGMAN, W.H. SCHELTES (1986) Equilibrium traffic
assignment with multiple user classes, PTRC European Transport, Highways
and Planning l3rd Summer Annual Meeting, Seminar E. 1-12.

VON HOHENBALKEN, B. (1975) A finite algorithm to maximise certain
pseudoconcave functions on polytopes. Mathematical Programming 9,189-
206.

VON HOHENBALKEN, B. (1977) Simplicial decomposition in nonlinear
programming algorithms. Mathematical Programming 13,49-68.

VYTHOULKAS, P.C. (1990) A dynamic stochastic assignment model for the
analysis of general networks. Transportation Research 24B(6), 153-469.

WARDROP, J.G. (1952) Some theoretical aspects of road traffic research.
Proceedings of the Institution of Civil Engineers, 1(2), 325-378.

WARDROP, J.G. (1968) Journey speed and flow in central London. Traffic Eng.
Control 9, 528-32.

WEBSTER, F.V.(1958) Traffic signal settings. Road Research Technical Paper
No.39. H.M.S.O.

WEINTRAUB, A.C. ORTIZ AND J. GONZALES (1985) Accelerating convergence
of the Frank-Wolfe algorithm. Transportation Research 19B,1 13-122.

WOLFE, P. (1974) Algorithm for a least-distance programming problem.
Mathematical Programming Study 1,190-205.

ZANGWILL, W.I. (1969) Nonlinear programming: A unified approach. Prentice
Hall.

ZUZARTE TULLY, I.M. (1977) Synthesis of sequences for traffic signal controllers
using techniques of the theory of graphs. PhD thesis, Univ. of Oxford.

262



APPENDIX 1. LIST OF MAJOR NOTATION

A1.1 Roman letters

Aja Kronecker value for green time on link a and stage i
B	 Set of all O-D pair
C	 Cycle time for signal controlled junction
Ca	 Cost on link a
cak	Total link cost on link a for class k

Cost on using path p
d	 Destination node
da	 Mean junction delay on link a
dak Perceived distance on link a by class k

Demand feasible set

eab
	

Parameter to represent the geometric characteristics on link a
f(v) Pseudoconvex function
Fk
	

Fixed cost for the class k
g
	

Effective green time on link a
G
	

A directed graph
G(v) Gap function
Ga
	 Parameter to represent the geometric characteristics on link a

h(t)
	

Headway distribution
H(W) Convex hull of W

Ha
	 Parameter to represent the geometric characteristics on link a

Junction a
ab The Jacobian matrix

Ka
	 Parameter to represent the geometric characteristics on link a

L
	

A set of links
Mod The minimum travel cost from origin 0 to destination d
N
	

A set of nodes
0	 Origin node

od Set of all paths for O-D pair
Qa
	 Capacity on link a

QP
	

Practical capacity on link
Q'P
	

Practical capacity per lane on link
QS	 Steady state capacity on link
QIS
	

Steady state capacity per lane on link
r
	

Effective red time
Supply feasible set

S
	

Feasible convex set
Saturation flow on link a

to	 Free flow travel time
tp	 Path flow on path p
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T(v) Total link cost
Tod Demand for O-D pair
v	 Vector of traffic flow on link
v'	 Flow per lane on link a

a	 Traffic flow on link a
Xa	 Degree of saturation rate on signal controlled junction on link a
'a	 Parameter to represent the geometric characteristics on link a
y*j	 Representative approach for stage i
z(t) The Beckmann's objective function

A1.2 Greek letters

Parameter for characteristics for travel cost function
Parameter for combining extreme points
Parameter for combining link and junction delay
Kronecker delta for repesenting link and path relation

8k	 Parameter of value of time for class k
Ratio of effective green time
Capacity on minor link

Vod Langrange multiplier for each origin and destination pair

Pa	 Degee of saturation rate on link a in priority controlled junction
PCU value for class k
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APPENDIX 2:CHARLES WORTH'S NETWORK AND DATA (Source: Charesworth, 1977)

A2.1 Origin and destination matrix of the network

O\D	 A	 B	 D	 E	 F	 Total
A	 -	 250	 700	 30	 200	 1180
C	 40	 20	 200	 130	 900	 1290
D	 400	 250	 -	 50	 100	 800
E	 300	 130	 30	 -	 20	 480
G	 550	 450	 170	 60	 20	 1250

Total	 1290	 1 100	 1100	 270	 1240	 5000

A2.2 Capacity of the network

Link	 Capacity	 Link	 Capacity	 Link	 Capacity
1012*	 1800	 1014	 1600	 1222	 1600
1227	 1600	 1314	 2000	 1315	 1500
1461	 1800	 2231	 1600	 2234	 1600
2321	 2000	 2326	 2000	 2421	 2000
2422	 2000	 2521	 2000	 2526	 2000
2613	 1400	 2615	 1500	 2721	 2000
2722	 2000	 3032	 1400	 3033	 1400
3134	 2000	 3136	 2000	 3236	 2000
3237	 2000	 3334	 2000	 3336	 2000
3443	 1800	 3445	 1850	 3536	 2000
3537	 2000	 3651	 1600	 3652	 1600
3723	 1300	 3726	 1300	 4042	 2000
4044	 1800	 4142	 2000	 4143	 2000
4143	 2000	 4145	 2000	 4235	 1600
4237	 1600	 4445	 2000	 4447	 2000
4642	 2000	 4647	 2000	 4754	 1700
5046	 2200	 5155	 2000	 5156	 2000
5253	 2000	 5255	 2000	 5341	 2200
5455	 2000	 5456	 2000	 5665	 1700
6162	 2000	 6163	 2000	 6224	 1600
6225	 1600	 6364	 1850	 6453	 1850
6455	 1700	 6562	 2000	 6568	 2000
6662	 2000	 6663	 2000	 6762	 2000
6768	 2000	 6815	 1500	 7066	 1800
7067	 1800	 1510	 20000	 2120	 20000
4340	 20000	 4550	 20000	 5560	 20000

(Key:* Link number is represented by joining nodes xy where x is the label of the upstream
node and y the label of the downstream node)
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