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Abstract

Tumor invasion and metastasis involves complex remodeling of gene expression programs governing epithelial
homeostasis. Mutational activation of the RAS-ERK is a frequent occurrence in many cancers and has been shown to
drive overexpression of the AP-1 family transcription factor FRA1, a potent regulator of migration and invasion in a variety of
tumor cell types. However, the nature of FRA1 transcriptional targets and the molecular pathways through which they
promote tumor progression remain poorly understood. We found that FRA1 was strongly expressed in tumor cells at the
invasive front of human colorectal cancers (CRCs), and that its depletion suppressed mesenchymal-like features in CRC cells
in vitro. Genome-wide analysis of FRA1 chromatin occupancy and transcriptional regulation identified epithelial-
mesenchymal transition (EMT)-related genes as a major class of direct FRA1 targets in CRC cells. Expression of the pro-
mesenchymal subset of these genes predicted adverse outcomes in CRC patients, and involved FRA-1-dependent
regulation and cooperation with TGFb signaling pathway. Our findings reveal an unexpectedly widespread and direct role
for FRA1 in control of epithelial-mesenchymal plasticity in CRC cells, and suggest that FRA1 plays an important role in
mediating cross talk between oncogenic RAS-ERK and TGFb signaling networks during tumor progression.
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Introduction

Local invasion and metastasis of colorectal and some other

carcinoma types is thought to involve transient remodeling of the

epithelial tumor cell phenotype to an invasive mesenchymal-like

state, characterized by defects in tight and adherens junction

formation, increase in intermediate filament proteins (e.g.

vimentin), and elevated expression of proteases mediating degra-

dation of the extracellular matrix. Such epithelial-mesenchymal

transitions (EMT) and mesenchymal-epithelial transitions (MET)

involve extensive and highly coordinated changes in gene

expression, regulated by complex signalling and transcription

factor networks that engage master EMT transcription factors

belonging to the basic helix-loop-helix (bHLH), Snail, Twist and

ZEB families [1–3].

Colorectal cancer (CRC) is a genetically heterogeneous disease

whose metastatic spread to the liver, lung, peritoneal cavity and

bones poses major clinical problems [4]. More than 50% of CRCs

harbor oncogenic mutations in the KRAS or BRAF genes, which

drive persistent activation of the ERK MAPK pathway. These

mutations generally arise at a relatively early stage during

adenoma-carcinoma progression, following functional loss of the

tumor suppressor APC, and their high incidence of concordance

in primary and metastatic cancers suggests that they contribute to

both tumor initiation and progression [5–8]. At later stages, some

tumors acquire mutations (TGFBR2, SMAD2, SMAD3 or SMAD4)

that disrupt signaling via the TGFb pathway, which provides

growth inhibitory signals in the normal intestinal epithelium.

In CRC, EMT-like events are strongly associated with budding,

a pathological phenomenon observed in 20–40% of cases, in

which tumor cells detach from the invasive front and invade into

the surrounding basement membrane [9,10]. The interplay

between EMT and MET has also been suggested to underlie the

observation that basement membrane expression is often lost at

the invasive front of CRCs, but regained in metastases [11]. More

recently, several studies have identified EMT-related gene

expression signatures as a common occurrence in primary CRCs,

which are strongly associated with poor prognosis and resistance to

targeted therapies [12–15].
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One of the major pathways involved in induction and

maintenance of EMT events during development and tumorigen-

esis is the TGFb pathway. Although activation of the pathway is

growth inhibitory in normal epithelial cells, oncogenic RAS-ERK

signaling has been reported to induce a paradoxical switch in its

role from tumour suppressor to pro-metastatic factor, in part

through activation of EMT-related programs [2,16–19]. The

mechanisms underlying pro-malignant cross talk between the RAS

and TGFb pathways during CRC progression are not well

understood. Perturbation of the TGFb pathway is a frequent event

in CRC. Complete inactivation of TGFb signaling through

mutation of the type II TGFb receptor (TGFBR2) locus is a

common occurrence in the 15% of CRCs displaying DNA

microsatellite instability (MSI), which ironically are associated with

favorable prognostic outcomes [20]. The remaining 85% of

microsatellite stable (MSS) cancers display chromosomal instability

(CIN), and often (,50% of cases) harbor mutations in the SMAD4

gene, and less frequently the SMAD2 and SMAD3 genes [21].

Recent studies have shown that the TGFBR2 genotype is the major

factor determining a lack of EMT-like responses to TGFb1 in

MSI-positive tumors, whereas CRC cells with SMAD4 mutations

retain the ability to undergo EMT upon TGFb1 treatment

through coupling with the ERK pathway [22]. The nature of

ERK pathway effectors required for these responses are presently

unclear.

The Activator Protein-1 complex is a key regulator of

transcriptional responses induced by various cancer-associated

signalling pathways. It consists of homo- or hetero-dimers of Fos,

Jun, ATF and MAF family members, whose activities are strongly

influenced by oncogenic signaling events. Activating mutations in

RAS pathway components have been shown to induce overex-

pression of the Fos family member FRA1, a highly unstable

protein that is expressed at low levels in normal cells [23,24].

Transcriptional induction and post-translational stabilization of

FRA1 by oncogenic RAS-ERK signaling increases the relative

abundance of FRA1 containing AP-1 dimers, which has been

causally linked enhanced migration and invasion of CRC and

multiple other carcinoma cell types, including breast, lung,

bladder, head and neck, thyroid and brain [6,23–34]. In addition

to the RAS-ERK pathway, FRA1 expression is induced by the

Wnt/b-catenin pathway in CRC cells [40,41], suggesting that it

may play a role in integrating signaling through these pathways

during CRC progression.

In the present study, we applied a genome-wide approach to

better understand the nature of transcriptional programs under-

lying the pro-malignant actions of FRA1 in CRC. We found that

FRA1 binds and regulates expression of a clinically relevant cohort

of genes associated with EMT in invasive CRC cells, with stable

FRA1 knockdown invoking a MET-like phenotypic switch. FRA1

was strongly enriched in budding tumor cells at the invasive front

of human CRCs, and expression of its pro-mesenchymal targets

identified a subset of primary cancers with poor prognosis.

Mechanistically, we found that activation of mesenchymal genes

involved FRA1-dependent regulation and cooperation with TGFb
signaling networks. Collectively, our findings suggest that FRA1

plays a widespread and direct role in transcriptional control of

epithelial-mesenchymal programming during CRC progression.

Results

FRA1 is enriched in tumor cells at the invasive front of
human CRCs

Although it was previously reported that FRA1 is more highly

expressed in CRCs than the normal colorectal epithelium [35], its

relationship with tumor pathology has not been established. Using

immunohistochemistry, we detected FRA1 immunoreactivity in

20 out of 25 primary tumor specimens. In contrast to its weak

expression in the center of tumors, cells at the invasive front

exhibited strong FRA1 staining (Figure 1A–1C), including

cytokeratin AE1/AE3 positive clusters of cells [36] that had

detached from the tumor bulk (Figure 1D). This latter feature is

indicative of tumor budding, a phenomenon associated with the

acquisition of mesenchymal-like features by CRC cells, and is an

independent predictor of lymph node metastasis, vascular and

lymphatic invasion, distant metastasis, local recurrence and poor

disease-free survival [9].

FRA1 regulates mesenchymal-like features in CRC cells
Previous investigations on the pro-invasive actions of FRA1 in

CRC have used the BE cell line model, which comprises highly

invasive mesenchymal-like cells that harbor KRAS/BRAF muta-

tions driving high endogenous FRA1 expression [33,37]. Consis-

tent with its role as a major contributor to AP-1 activity in these

cells, stable knockdown of FRA1 using 2 distinct shRNAs

constructs reduced both basal and c-Jun stimulated AP-1 reporter

gene activation (Figure 2A and 2B). Phenotypically, FRA1

depletion invoked a striking mesenchymal to epithelial-like

morphological switch, with cells acquiring a flattened appearance,

regaining expression of the epithelial differentiation marker E-

cadherin, and forming tight junctions staining positively for ZO-1

(Figure 2A and 2C). In addition, FRA1-depleted cells almost

completely lost their capacity to migrate and invade in vitro, but

their proliferation rates remained unchanged (Figure 2D–2F).

Together, these findings suggest a requirement for FRA1 to

maintain CRC cells in a mesenchymal-like state.

Figure 1. Enrichment of FRA1 in tumor cells at the invasive
front of human CRCs. (A) Low power image of a representative
colorectal carcinoma stained with an antibody detecting FRA1. The
asterisk indicates the lumen, while the arrowheads indicate the deep
invasive front. Scale bar represents 1 mm. (B and C) High power images
of the tumor centre (TC) and invasive front (IF) shown in (A).
Arrowheads indicate tumor buds. Scale bar represents 10 mM. (D)
Relationship between the intensity of nuclear FRA1 expression and the
tumor budding marker, cytokeratin AE1/AE3 in 25 CRC cases.
doi:10.1371/journal.pone.0088950.g001
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EMT-related genes are a major class of direct FRA1
targets in CRC cells

To identify direct transcriptional targets and molecular path-

ways through which FRA1 controls mesenchymal-like features in

tumor cells, we performed genome-wide ChIP-Seq and transcrip-

tome analysis to search for genes at which FRA1 binding was

enriched, and whose expression was regulated by FRA1 in BE

cells. Despite several attempts to optimize the ChIP assay using

antibodies targeting endogenous FRA1, we were unable to recover

sufficient chromatin to perform subsequent high-throughput

sequencing. We therefore generated BE cell lines moderately

(,5-fold higher than endogenous FRA1) overexpressing a FLAG-

FRA1 protein, which was localized in the nucleus (Figure 3A,B). In

contrast to a DNA binding defective variant, wild-type FLAG-

FRA1 demonstrated strong enrichment at the promoter of VIM, a

previously identified direct FRA1 target (Figure 3C) [38].

Using microarrays, we found that FRA1 knockdown in BE cells

significantly up-regulated expression of 1392 genes while reducing

expression of 832 genes by at least 2-fold (Figure 3D). ChIP-Seq

analysis revealed that 72% percent of the FRA1-regulated genes

contained loci significantly enriched for FRA1 binding (.5-fold)

within 5 kb of their transcription start site (TSS). To identify major

functional classes of FRA1 target genes, we intersected the

microarray and ChIP-Seq data and interrogated overlapping

genes for enrichment of gene ontology terms (using GeneGo). Of

the top 6 groups identified using this approach, 3 were significantly

enriched for genes associated with EMT-related processes, while a

further 3 groups featured adhesion-related genes (Figure 3E).

These findings indicated that EMT and adhesion are two major

processes under direct FRA1 transcriptional control in CRC cells.

Based on the phenotypic changes resulting from FRA1

knockdown in BE cells, and the association between tumour

budding and EMT in CRC [9], we chose to focus on the

involvement of FRA1 in regulating EMT events in CRC.

Collectively the EMT-related genes bound and regulated by

FRA1 (herein termed FRA1EMT genes) encoded a diverse array of

proteins involved cell adhesion, signal transduction, transcription,

cytoskeletal and extracellular matrix remodeling, as well as

components of TGFb signaling networks (Figure 4A and Table

S1 in File S1). These genes broadly comprised a pro-mesenchymal

subset whose expression was promoted by FRA1 and an epithelial

subset that was repressed by FRA1. Many of the genes contained

multiple loci occupied by FRA1, which were primarily located

within intronic regions of the gene body and in distal upstream

sites (Figure 4B and Table S2 in File S1). Motif analysis revealed

that 58% of the genes contained at least one FRA1 binding site

Figure 2. FRA1 knockdown suppresses mesenchymal-like features in CRC cells. (A) Immunoblot analysis of FRA1 and E-cadherin levels in
BE cells stably transduced with a non-silencing control (shNS) or FRA1-targeting shRNAs (shFRA1-A and -B). (B) Effect of FRA1 knockdown on basal
and c-Jun-induced AP-1 reporter gene activity in BE cells. (C) Phase-contrast images (top row) and immunofluorescence staining for DAPI with ZO-1
(middle row) or vimentin (bottom row) on the cells from (A). Scale bar represents 10 mM. (D–F) Analysis of in vitro migration, invasion and
proliferation in cells from (A). Error bars represent S.E.M. for 3 independent experiments.
doi:10.1371/journal.pone.0088950.g002
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significantly enriched for a consensus AP-1 binding sequence

(p,0.0001, Table S3 in File S1). We also noted significant

enrichment (p,0.001) for putative MEF-2 motifs in the EMT-

related targets identified in the ChIP-Seq analysis. Finally, we

performed ChIP and qRT-PCR analysis to confirm enrichment of

FRA1 at several loci identified by ChIP-Seq (Figure 4C) and

FRA1-dependent regulation of selected targets in BE cells

(Figure 4D).

Expression of pro-mesenchymal FRA1 targets predicts
poor clinical outcomes

To assess the potential clinical relevance of the EMT-related

FRA1 targets, we examined the relationship between their

expression and CRC prognosis by interrogating existing micro-

array data from 185 stage B and C cases [12]. Unsupervised

clustering of the data revealed that tumors could be classified into

epithelial- and mesenchymal-like subgroups displaying gene

expression differences highly concordant with the FRA1EMT

signature (Figure 5B and Table S4 in File S1), with 77% of genes

(137 probesets) showing directional changes consistent with those

identified upon FRA1 knockdown in BE cells.

We also found that high levels of FRA1 gene (FOSL1) expression

independently predicted poor recurrence-free survival and was

associated with a higher T-stage, an index of advanced tumor

invasion (Figure 5A and Table S5 in File S1). Although FOSL1

expression was detected in both epithelial- and mesenchymal-like

tumors, its expression was significantly higher (p,0.05) in the

latter group. Expression of pro-mesenchymal FRA1 targets was

enriched in 48.6% (90/185) of primary tumours, which had an

earlier diagnosis age (median 64 vs 70 years, p = 0.005) and higher

lymph node stage (N2 76% vs 24%, p = 0.0098) compared to

epithelial-type tumors (Table S6 in File S1).

Integrating data on FOSL1 expression and the FRA1EMT

signature significantly improved prediction of recurrence risk,

broadly separating patients into 3 outcome-based groups

(Figure 5C and Table S7 in File S1): (i) A good prognosis group

consisting of FOSL1low epithelial-type cancers, (ii) an intermediate

prognosis group comprising FOSL1low mesenchymal-type cancers

and FOSL1high epithelial-type cancers, and (iii) a poor prognosis

group of FOSL1high mesenchymal-type cancers. These findings

suggest that the combination of elevated FOSL1 and pro-

mesenchymal FRA1 target gene expression in primary tumors

provides a robust predictor of adverse outcomes in CRC patients.

Cross talk between FRA1 and TGFb signalling controls
mesenchymal gene expression

Given their association with adverse clinical outcomes (Figure 5),

we next sought to gain a deeper mechanistic insight into FRA1-

dependent control of mesenchymal expression programs in CRC

cells. In particular, we wondered if in addition to directly binding

Figure 3. Genome-wide analysis of direct FRA1 transcriptional targets in CRC cells. (A) Immunoblot analysis of FRA1 expression in BE cells
stably transduced with a FLAG-FRA1 expression construct of vector (pBP) control. (B) Immunofluorescence analysis of FLAG-FRA1 localization in cells
from (A). (C) ChIP analysis comparing binding of wild-type and DNA binding defective (DBD) FLAG-FRA1 proteins to the VIM promoter in BE cells. (D)
Intersection of data from microarray (FRA1 shRNA) and ChIP-Seq (FLAG-FRA1) analysis in BE cells. The ChIP-Seq results represents genes at which
FRA1 binding was enriched .5-fold relative to input control within 5 kb of the transcription start site (TSS). Only annotated genes undergoing at
least a 2-fold change in expression upon FRA1 silencing (p,0.05) were considered, and genes associated with multiple FLAG-FRA1 peaks were only
counted once. (E) Ontological analysis of genes identified after intersection of the microarray and ChIP-Seq datasets. Genes were clustered into major
biological pathways using GeneGo.
doi:10.1371/journal.pone.0088950.g003
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and regulating their transcription, FRA1 could promote expres-

sion of pro-mesenchymal genes by modulating the activities of

EMT-associated signaling pathways whose components we had

identified as direct FRA1 targets. The most highly represented of

these were genes acting in TGFb signaling networks, including

those encoding activating (TGFB2) and inhibitory ligands (BMP4,

Figure 4. Characterization of EMT-related FRA1 transcriptional targets. (A) Heat map showing different functional groups of EMT-related
genes bound and regulated by FRA1 (FRA1EMT genes). Data from RNA-Seq analysis of two clones of BE shFRA1-A cells (n = 4 for each cell line) was
normalised relative to shControl cells. Regions shown in red represent genes associated with an epithelial state that were upregulated upon FRA1
silencing (log fold-change,21, p,0.05), while green regions represent mesenchymal-type genes repressed by FRA1 silencing (log fold-change.1,
p,0.05). (B) Distribution of genomic FLAG-FRA1 binding sites identified by ChIP-Seq relative to a corresponding gene. The number of reads identified
for each region is expressed as a percentage. (C) ChIP-qPCR analysis of FLAG-FRA1 binding to genomic regions in selected FRA1EMT genes. Data
represent relative enrichment compared to parental BE cells. A region of the miRNA-21 gene not bound by FLAG-FRA1 was used as negative control
(CTRL). (D) qRT-PCR analysis of selected FRA1EMT genes in BE cells stably transduced with one of two independent shRNAs targeting FRA1. Data are
represented relative to expression levels in cells shNS cells. Student’s t-test was used for all comparisons (*p,0.05, **p,0.01, ***p,0.001). Error bars
represent S.E.M. for 3 independent experiments. (E) FRA1 protein levels and (F) expression of epithelial and mesenchymal marker genes in a panel of
CRC cell lines.
doi:10.1371/journal.pone.0088950.g004

Figure 5. Clinical significance of FRA1 and FRA1EMT genes in CRC. (A) Kaplan-Meier plots of recurrence-free survival in stage B and C CRC
patients according to expression of the FRA1 gene (FOSL1). (B) Unsupervised clustering of stage B and stage C CRCs based on FRA1EMT genes
encompassing concordant probesets exhibiting significant expression differences between the two main groups. Clustering divides cancers into
groups with mesenchymal and epithelial profiles. Samples are arranged along the X-axis and genes along the Y-axis. Genes are grouped into those
downregulated (blue) or upregulated (orange) upon FRA1 knockdown in BE cells relative to the mean- and sample-centered scaled expression. (C)
Kaplan-Meier plots of recurrence-free survival in stage B and C CRC patients based on expression of both FOSL1 (low vs high) and mesenchymal (Mes,
dark green) or epithelial (Epi, light green) subsets of FRA1EMT genes. The log-rank test was used for comparisons.
doi:10.1371/journal.pone.0088950.g005
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BMP7), whose expression was promoted or repressed by FRA1,

respectively (Figure 4A, 4C and 4E). Being the only activating

ligand identified as a FRA1 target, we chose to investigate the

potential contribution of TGFb2 signaling in regulating expression

of a selection of FRA1EMT targets. Transient knockdown of

TGFB2 in parental BE cells significantly reduced expression of

several pro-mesenchymal (AXL, VIM) but not epithelial (CDH1,

CLDN7) FRA1 target genes (Figure 6A). Similar effects were also

observed upon transient knockdown of another FRA1 bound

target acting in the pathway, encoding the transcription factor

SMAD3 (Figure 6B). To directly examine the possibility that a

FRA1-dependent autocrine TGFb2 loop was operating in these

cells, they were treated with the type 1 TGFb receptor inhibitor

SB43152 to block transduction of TGFb2 signals. Consistent with

the effects of TGFB2 knockdown, we found that expression of

several pro-mesenchymal FRA1 targets (AXL, VIM, TGFBI) was

significantly reduced after 3 days of SB43152 treatment.

To further investigate the extent of cross talk between FRA1

and the TGFb pathway, we assessed the expression of several

mesenchymal and epithelial FRA1 targets in another KRAS

mutant TGFb-responsive CRC cell line, SW837. Despite FRA1

levels being elevated in these cells (Figure 7A), their expression of

the pro-mesenchymal genes VIM and AXL was low when

compared to BE cells, while the epithelial genes CDH1 and

CLDN7 were highly expressed (Figure 7B). Treatment with the

ligand TGFb1 robustly induced expression of VIM, a response that

was significantly impaired upon prior FRA1 knockdown

(Figure 7C). By contrast, expression of the epithelial FRA1 targets

CDH1 and CLDN7 was unaffected under the same conditions.

These results suggest that FRA1 expression modulates the extent

to which TGFb signaling can induce pro-mesenchymal transcrip-

tional responses in CRC cells.

Discussion

The local invasion and metastatic spread of cancers involves

specific, highly coordinated and dynamic remodeling of tumor cell

gene expression through bidirectional cross talk between signaling

and transcriptional networks. Much remains to be understood

about how these networks are regulated by tumor-associated

genetic and epigenetic lesions, and the mechanisms through which

they are coordinated to induce specific changes in gene expression

during invasion.

The transcription factor AP-1 has long been implicated as a

central regulator of tumor cell invasion [39]. FRA1 is one of the

most frequently overexpressed AP-1 proteins in solid cancers, and

its ability to promote migratory and invasive traits in a variety of

different tumor cell types [26–32] suggests that its actions involve

engagement of common targets and pathways. The identity of

these pathways is presently unclear, while only a handful of its

direct transcriptional targets in carcinoma cells identified to date.

Through analysis of its genome-wide chromatin occupancy and

target gene regulation, the present study identifies genes and

pathways involved in cell adhesion and EMT as major classes of

direct FRA1 targets associated with CRC progression.

Figure 6. A FRA1-dependent autocrine TGFb2 loop promotes mesenchymal gene expression in BE CRC cells. (A and B) Expression of
selected mesenchymal (TGFBI, AXL) and epithelial (CDH1, CLDN7) FRA1EMT genes upon transient knockdown of the TGFb pathway FRA1 targets TGFB2
and SMAD3 using siRNA pools in BE cells. Data are represented relative to levels of these genes in cells transfected with siRNAs targeting GFP. (C)
Effects of the TGFb receptor inhibitor SB43152 (10 mM for 72 h) on expression of a selected mesenchymal FRA1EMT (TGFBI, AXL) genes in BE cells.
Student’s t-test was used for all comparisons (*p,0.05, **p,0.01, ***p,0.001). Error bars represent S.E.M. for 3 independent experiments.
doi:10.1371/journal.pone.0088950.g006
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EMT-like gene expression signatures have been reported to

correlate with poor prognosis and resistance to targeted therapies

in CRC patients, but the mechanisms governing their genesis are

poorly understood [12–15]. Our findings suggest that FRA1-

regulated transcriptional events play an important role in this

process, with elevated levels of pro-mesenchymal FRA1 targets

associated with adverse outcomes in about half of all stage B and

stage C cancers, while high levels of FRA1 gene (FOSL1)

expression in these mesenchymal-type identifying cancers with

poorest prognosis.

Pathological EMT in CRC strongly linked with tumor budding,

an independent prognostic indicator of higher lymph node

metastasis, vascular and lymphatic invasion, distant metastasis,

local recurrence and poor disease-free survival [9]. While FRA1

expression appears relatively homogenous in tumor cell lines, we

found that it was highly enriched at invasive regions and in

budding cells but not the center of primary tumors. The

mechanism underlying this restricted expression in tumors is

presently unclear, however a similar localization pattern has been

reported for the Wnt pathway transcriptional effector, b-catenin

[40,41]. As b-catenin induces transcription of the FRA1 gene in

CRC cells, FRA1/b-catenin cooperativity may play an important

role in controlling localized transcription of pro-invasive genes in

colorectal tumors, a notion supported by our finding that FRA1

directly binds and regulates several pro-invasive b-catenin targets,

including MMP14, LAMC2, VIM and ZEB1 [11,42–46].

The induction of EMT involves remodeling of multiple cellular

processes, including adhesion, signaling, transcription, and extra-

cellular matrix remodeling. There is growing evidence that tumor

cells often exhibit only some of these changes, for example

expressing a subset of mesenchymal markers while retaining

epithelial features [3]. The ability of tumor cells to transit from an

epithelial to mesenchymal-like state is thus likely to be highly

context-specific, and require cooperativity between multiple

signaling and transcriptional networks. The ability of FRA1 to

bind and regulate genes involved in different EMT-associated

processes suggests that it may play an important role in

coordinated EMT events. Interestingly, in BE CRC cells, FRA1

binding was involved both in maintaining expression of pro-

mesenchymal genes, while repressing an epithelial subset. Several

potential mechanisms may contribute to these opposing effects of

FRA1, including its assembly into distinct FRA1/Jun complexes

within the same cells, its coupling with different signaling

networks, and ability to promote expression of the master EMT

transcriptional factors, ZEB1 and/or SNAI2. Additionally, FRA1

binding may result in localized changes in chromatin dynamics, a

role recently ascribed to AP-1 in regulating the inducibility of

glucorticoid receptor targets [47]. FRA1 may thus contribute to

the generation of permissive chromatin contexts, necessary for

both the reprogramming of CRC cells to a mesenchymal state,

and subsequently to sustain the operation of mesenchymal

programs when tumour cells disseminate. Interestingly, the major

regions of AP-1 binding identified previously near glucocorticoid

Figure 7. FRA1 controls pro-mesenchymal transcriptional responses induced by TGFb in CRC cells. (A) Immunoblot analysis of
endogenous FRA1 expression in BE and SW837 CRC cells. (B) qRT-PCR analysis comparing relative expression levels of a selection of mesenchymal
(AXL, VIM) and epithelial (CDH1, CLDN7) FRA1EMT genes in BE and SW837 CRC cells. (C) Effects of transient FRA1 knockdown on TGFb1-induced (10 ng/
mL 48 h) expression of VIM, CDH1 and CLDN7 in SW837 cells. Student’s t-test was used for all comparisons (*p,0.05). Error bars represent S.E.M. for 3
independent experiments.
doi:10.1371/journal.pone.0088950.g007
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receptor targets and in the present study occurred upstream of

target gene promoters or within introns, implicating a role for

FRA1 in transcriptional control at an enhancer level and/or

downstream of transcription initiation (e.g. elongation).

While stable FRA1 knockdown invoked a MET-like phenotypic

change in BE cells, we have noted that many FRA1-overexpress-

ing CRC cell lines retain epithelial features (ASD, unpublished).

Thus FRA1 expression alone is not sufficient to drive EMT-like

cellular changes, but may do so in cooperation with other

pathways. Indeed, we identified components of several signaling

networks as direct FRA1 targets in BE cells, with the most highly

represented acting in the TGFb pathway. We found that an

underlying function of FRA1 in CRC cells was to positively

regulate TGFb signaling, which it could do via several mecha-

nisms; in the mesenchymal-like BE cell line, its binding modulated

expression of multiple TGFb pathway components, including

maintaining operation of an autocrine TGFb2 loop that promoted

expression of mesenchymal genes. However, in epithelial-like

SW837 CRC cells where autocrine TGFb signaling was not

established, FRA1 was required for TGFb-induced mesenchymal

gene expression responses. Collectively our findings suggest that

FRA1 may play an important role in coupling oncogenic RAS-

ERK signaling with the TGFb pathway to control EMT-like

responses in CRC cells. We suggest that FRA1 may have a similar

function in other cancers where it is overexpressed such as breast,

where FRA1 has recently been shown to play an important role in

regulating EMT events and metastasis [25,48], and in which the

TGFb and RAS-ERK pathways have been reported to cooperate

during EMT induction [19].

From a clinical perspective, our findings are consistent with

recent work showing that induction of EMT is impaired in

microsatellite instable (MSI) colon cancer cells due to the presence

of TGFBR2 mutations [22]. Interestingly, CRC cells harboring

SMAD4 mutations were found to retain the ability to undergo

EMT-like changes in response to TGFb by coupling with the ERK

pathway. We suggest that FRA1 may be a critical ERK pathway

effector regulating EMT-like changes in these cells. Consistent

with this notion, we have found that TGFb-mediated induction of

SNAI2 in SMAD4 mutant SW480 CRC cells is regulated FRA1

(ASD, unpublished).

In summary, the present work reveals an unexpectedly

widespread and direct role for FRA1 in transcriptional control

of clinically relevant programs governing epithelial-mesenchymal

plasticity. We also show that these actions of FRA1 are intricately

linked with its coupling to the TGFb signaling network.

Approaches to inactivate FRA1 and/or pathways through which

its pro-malignant actions are mediated may hence provide an

approach to modulate EMT-MET balances and impede the

spread of CRC and other cancers in which the RAS-ERK

pathway is hyperactive.

Materials and Methods

Cell culture
The BE [33,37] and SW837 CRC cell lines were maintained in

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with

2 mM L-glutamine and 10% fetal bovine serum (FBS). Clonal cell

lines stably expressing shRNAs or wild-type FLAG-FRA1 or a

DNA binding defective (R112V/R123V) mutant were generated

using standard retroviral transduction procedures followed by 2

weeks of puromycin selection. Recombinant human TGFb1 and

the ALK inhibitor SB43152 were from Peprotech (New Jersey,

U.S.A.).

Plasmids and antibodies
Two shRNAmirs targeting FRA1 (shFRA1 A: 59

CCTGGTGCCAAGCATCAACA 39 and shFRA1 B: 59 TGGA-

CAGTATCCCACATCCAAC 39) were designed using the RNAi

Codex database [49] and cloned into the LMP retroviral vector

(Open Biosystems). The LMP vector containing a non-silencing

shRNA (shControl) was a gift from Dr Gretchen Poortinga. The

pBABE-puro-FLAG-FRA1 construct was generated by PCR-

mediated fusion of a FLAG epitope to the N-terminus of FRA1.

The following antibodies were used in this study: anti-FRA1 (R-

20; Santa Cruz Biotechnology), anti-FLAG M2 (Sigma-Aldrich),

anti-14-3-3 (Santa Cruz Biotechnology), anti-vimentin (Cell

Signalling Technology), anti-E-Cadherin (BD Transduction Lab-

oratories), anti-ZO-1 (BD Transduction Laboratories), anti-14-3-3

(BD Transduction Laboratories) and anti-b-catenin (BD Trans-

duction Laboratories).

RNA interference
The following siRNAs used in this study were purchased from

Dharmacon (Melbourne, Victoria, Australia): FOSL1 ON-TAR-

GETplus SMARTpool (L-004341-00), siFRA1 custom (59 CAC-

CAUGAGUGGCAGUCAG 39), GFP Duplex I (P-002048-01),

SMAD3 siGENOME SMARTpool (M-020067-00), LEF1 siGEN-

OME SMARTpool (M-015396-00), WNT5A siGENOME

SMARTpool (M-003939-01), TGFB2 siGENOME SMARTpool

(M-010544-00). Cells were transfected with siRNAs at a final

concentration of 25 nM using the DharmaFECT 1 reagent

(Dharmacon).

Immunohistochemistry and immunofluorescence
microscopy

Immunohistochemical staining for FRA1 in tumors was

performed using a rabbit polyclonal antibody (Santa Cruz sc-

605, 1:2000 dilution) and visualised using horseradish peroxidase

conjugated secondary antibody and DAB substrate (Vector

Laboratories). FRA1 expression was intensity was scored 0, 1 or

2, with 0 representing no detectable staining and 2 representing

the strongest staining observed in the sample set. A sample of

human squamous cervix epithelium was used as a positive control.

IHC for epithelial cytokeratins was performed using an AE1/AE3

antibody mix (Chemicon) at a 1:200 dilution and was visualised

with horseradish peroxidase conjugated secondary antibody and

DAB substrate (Vector Laboratories). Tumor budding was defined

as the mean number of clusters of tumor cells (containing at least 4

cells each) adjacent to the tumor front and counted in two

consecutive 406power microscopy fields, within the region of the

slide displaying most budding. FRA1 expression and the extent of

tumor budding were both scored in a blinded fashion by two

medical pathologists. For immunofluorescence analysis, cells were

cultured on glass coverslips for 24 h prior to fixation (4%

paraformaldehyde in PBS), permeabilization (0.2% Triton-X100

in PBS) and blocking (10% FBS in PBS), each for 20 min at room

temperature. The cells were stained with primary antibodies

(1:200 anti-ZO-1 or 1:75 anti-vimentin; diluted in PBS/0.1%

BSA) followed by secondary antibodies (anti-mouse IgG or anti-

rabbit IgG coupled to Alexa-488 or Alexa-594, Invitrogen), each

for 1 h at room temperature. Nuclei were stained with DAPI

(Invitrogen) prior to mounting the coverlips using Mowiol (10%

Hopval 5–88, 25% glycerol, 0.1M Tris pH 8.5). Images were

taken on an Olympus Fluoview FV1000 confocal microscope.
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Migration, invasion and proliferation assays
Seventy-five thousand cells were seeded in triplicate into 24-well

cell culture inserts (8 mm pore, BD Biosciences) for migration

assays or into BD BioCoat invasion chambers (BD Biosciences) for

invasion assays. As chemoattractant, 10% FBS was added in the

bottom chamber. After 24 hours, cells on the upper filter surface

were removed with a cotton swab, while those on the lower surface

were fixed and stained using the Diff-Quick staining kit (Lab Aids).

Cell migration or invasion was quantified by counting eight

random fields per filter using a light microscope (Olympus BX51).

To assess proliferation, 35000 cells were seeded in quadruplicate

into 24-well plates and assayed for cell density at 4 hour intervals

over 72 hours using the IncuCyteTMFLR live-cell imaging system

(Essen BioScience). The data was analysed using the IncuCyteTM

cell proliferation assay algorithm.

Microarrays, RNA-Seq and RT-qPCR
RNA was purified from cells using the Isolate RNA Mini kit

(Bioline). Microarray analysis using Affymetrix GeneChipH
Human Gene 1.0 ST Arrays was performed on 4 biological

replicates per cell line at the UNSW Ramaciotti Centre for Gene

Expression Analysis. Microarray data was analysed using the R

(http://www.R-project.org), Affy [50] and Limma packages [51].

Robust multi-array average (RMA) normalisation and background

correction was used to remove any non-biological variations in the

data, which was then fitted using a linear model. Contrasts were

used to estimate differential expression and standard errors. Next,

we filtered the data by applying a 2-fold change cut off and

selecting genes with false discovery rate (fdr) adjusted p-values [52]

of less than 0.05. RNA-Seq analysis was performed on 4 biological

replicates per cell line using an Illumina HiSeq 2000 instrument

(Illumina). The 50 bp paired-end reads generated were aligned to

the genome using Bowtie2 [53] and the reads counted using

HTSeq. The differential expression was then calculated utilizing

the DESeq package [54].Heatmaps were generated using R

package gplots. For real-time quantitative PCR (RT-qPCR), RNA

was reverse transcribed using the ThermoScript RT-PCR system

(Invitrogen) for first-strand cDNA synthesis. The cDNA was PCR-

amplified in triplicate using the Fast SYBR green dye on the

StepOnePlus Real-Time PCR system (Applied Biosystems).

Relative expression was determined using BEshControl or

BEsiGFP cells as reference samples, and GAPDH as an internal

control. Sequences of primers used in this study are provided in

Table S8 in File S1.

ChIP and ChIP-Seq
Chromatin immunoprecipitation (ChIP) was performed as

described previously [55]. For each ChIP assay, we incubated

25 ml of anti-FLAG M2 affinity beads (Sigma-Aldrich) overnight

with cross-linked chromatin fragments from 1.56107 BE cells

stably expressing pBABE-FLAG-FRA1 or empty vector (negative

control). High-throughput sequencing of immunoprecipitated

FLAG/StrepII-FRA1 and input chromatin was performed on an

Illumina Genome Analyzer II (Illumina). We used 12.5 ng of

ChIPed DNA to prepare sequencing libraries and sequenced two

flow cell lanes per sample. Selected FRA1 targets were validated

by ChIP followed by qPCR, with relative enrichment levels

calculated after normalising against background enrichment

determined in the negative control. The 36 bp ChIP-Seq reads

were aligned to the human b37/hg19 reference genome using the

Burrows-Wheeler Aligner (BWA) [56] and peaks were called using

Model-based Analysis of ChIP-Seq (MACS) [57]. Input genomic

sequences served as negative control. Statistical analysis of the

resulting bam file and peaks was performed with the R package

(http://www.R-project.org). The Bioconductor [58], Rsamtools

and ChIPpeakAnno packages [59] were used to extract data from

the bam files and to annotate the predicted peaks. Using custom

scripts, the human genome was split into 1 kb bins and the

number of tags in each bin calculated. Predicted peaks within

250 bp of each other were combined and each resulting peak

matched with a bin. The number of tags at each summit was

calculated and a normalised fold change, taking into account total

reads, was calculated for the summit, peak and bin regions. Each

peak was annotated using Ensembl GRCh37 version 61.

Subsequently, motif analysis was performed using the MEME

suite [60] and the data visualised with the Integrative Genomic

Viewer (IGV 2.0) [61]. Comparison of ChIP-Seq reads near

FRA1EMT genes to a known AP-1 motif (MA0099.1, Jaspar core

database) was performed using FIMO (MEME suite), with a p-

value threshold less than 0.0001. Further data analysis was

performed using the Galaxy platform [62]. The pie chart

illustrating the location of ChIP-Seq reads relative to the

transcription start site (TSS) of FRA1EMT was generated using

SoleSearch [63]. Gene cluster analysis of genes identified by

microarray and ChIP-Seq was performed using GeneGo. EMT-

related genes identified by GeneGo in both datasets were termed

FRA1EMT genes.

Analysis of gene expression in human tumors
Previously published gene expression data were retrieved for

primary colorectal cancers from 91 stage B and 94 stage C patients

from the Royal Melbourne Hospital, Western Hospital, and Peter

MacCallum Cancer Center in Australia, and the H. Lee Moffitt

Cancer Center in the United States [12]. The median age at

cancer diagnosis was 67 years (range 26–92 years); 98 patients

were male and 87 were female. Follow-up and adjuvant treatment

details were available from Biogrid Australia for Australian

patients and the Moffitt Cancer Center Tumor Registry for U.S.

patients. All samples had been analysed using HG-U133Plus2.0

GeneChip arrays (Affymetrix). Array data were RMA normalized

and expression values log2 transformed. For unsupervised

clustering, expression values for FRA1 silencing associated EMT

genes were mean and sample centered followed by divisive

hierarchical clustering using pair distances calculated as 1 minus

the Spearman r as distance metric. Differences in mean gene

expression values were calculated for the samples within the two

main branches of the resulting dendrogram and assessed for

statistical significance using the t-test with Benjamini and

Hochberg multiple-testing correction. Relative upregulation or

downregulation of gene expression between these two groups was

assessed for consistency with upregulation or downregulation

observed between FRA1 silencing and control cells using Pearson’s

x2 test. All data processing and analysis were conducted using the

statistical software package R and associated Bioconductor

packages. Data processing and analysis were conducted using

the statistical software package R. Differences between groups

were assessed using the x2 test for categorical variables and the

Wilcoxon rank-sum test for continuous variables. For the outcome

analysis, recurrence-free survival was defined as the time of

surgery to the first confirmed relapse. Kaplan-Meier survival

curves were generated using the PrognoScan algorithm [64].

Censoring was done when a patient died or was alive without

recurrence at last contact. Cox proportional-hazards models were

used to estimate survival distributions and hazard ratios, and were

adjusted for patient characteristics as indicted. All statistical

analyses were 2-sided and considered significant if P,0.05.
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identified in FRA1EMT genes. Table S4. Mean gene expression
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clustering of stage B and C colorectal cancers using FRA1EMT
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for FOSL1 expression levels in stage B and C CRC patients. Table

S6. Clinicopathological and molecular associations for FRA1EMT

signature in stage B and C CRC patients. Table S7. Univariate

and multivariate Cox proportional-hazards analysis of survival for

stage B and C colorectal cancer patients according to FOSL1

expression and the concordant FRA1EMT gene expression

patterns. Table S8. List of qRT-PCR and ChIP primers used in

this study.

(PDF)

Acknowledgments

We thank David Gillespie for providing the BE cell line, Rob Ramsay for

comments on the manuscript, and members of the Peter MacCallum

Molecular Genomic Core Facility for assistance with ChIP-Seq and RNA-

Seq experiments. We also thank Michael Christie and Grace Liu for

pathological analysis of colorectal tumor specimens.

Author Contributions

Conceived and designed the experiments: ASD RDH OMS. Performed

the experiments: JD ES OG CL HT NIF MA. Analyzed the data: JD JE

CL IH. Contributed reagents/materials/analysis tools: ET JMM RBP.

Wrote the paper: ASD JD.

References

1. Polyak K, Weinberg RA (2009) Transitions between epithelial and mesenchymal

states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9: 265–273.

2. Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal

transitions in development and disease. Cell 139: 871–890.

3. Thompson EW, Haviv I (2011) The social aspects of EMT-MET plasticity. Nat

Med 17: 1048–1049.

4. LeGolvan MP, Resnick M (2010) Pathobiology of colorectal cancer hepatic

metastases with an emphasis on prognostic factors. J Surg Oncol 102: 898–908.

5. Hung KE, Maricevich MA, Richard LG, Chen WY, Richardson MP, et al.

(2010) Development of a mouse model for sporadic and metastatic colon tumors

and its use in assessing drug treatment. Proc Natl Acad Sci U S A 107: 1565–

1570.

6. Pollock CB, Shirasawa S, Sasazuki T, Kolch W, Dhillon AS (2005) Oncogenic

K-RAS is required to maintain changes in cytoskeletal organization, adhesion,

and motility in colon cancer cells. Cancer Res 65: 1244–1250.

7. Cejas P, Lopez-Gomez M, Aguayo C, Madero R, de Castro Carpeno J, et al.

(2009) KRAS mutations in primary colorectal cancer tumors and related

metastases: a potential role in prediction of lung metastasis. PLoS One 4: e8199.

8. Nash GM, Gimbel M, Shia J, Nathanson DR, Ndubuisi MI, et al. (2010) KRAS

mutation correlates with accelerated metastatic progression in patients with

colorectal liver metastases. Ann Surg Oncol 17: 572–578.

9. Zlobec I, Lugli A (2010) Epithelial mesenchymal transition and tumor budding

in aggressive colorectal cancer: Tumor budding as oncotarget. Oncotarget 1:

651–661.

10. Brabletz T, Hlubek F, Spaderna S, Schmalhofer O, Hiendlmeyer E, et al. (2005)

Invasion and metastasis in colorectal cancer: epithelial-mesenchymal transition,

mesenchymal-epithelial transition, stem cells and beta-catenin. Cells Tissues

Organs 179: 56–65.

11. Spaderna S, Schmalhofer O, Hlubek F, Berx G, Eger A, et al. (2006) A transient,

EMT-linked loss of basement membranes indicates metastasis and poor survival

in colorectal cancer. Gastroenterology 131: 830–840.

12. Jorissen RN, Gibbs P, Christie M, Prakash S, Lipton L, et al. (2009) Metastasis-

Associated Gene Expression Changes Predict Poor Outcomes in Patients with

Dukes Stage B and C Colorectal Cancer. Clin Cancer Res 15: 7642–7651.

13. Loboda A, Nebozhyn MV, Watters JW, Buser CA, Shaw PM, et al. (2011) EMT

is the dominant program in human colon cancer. BMC Med Genomics 4: 9.

14. Sadanandam A, Lyssiotis CA, Homicsko K, Collisson EA, Gibb WJ, et al. (2013)

A colorectal cancer classification system that associates cellular phenotype and

responses to therapy. Nat Med 19: 619–625.

15. De Sousa EMF, Wang X, Jansen M, Fessler E, Trinh A, et al. (2013) Poor-

prognosis colon cancer is defined by a molecularly distinct subtype and develops

from serrated precursor lesions. Nat Med 19: 614–618.

16. Eger A, Stockinger A, Park J, Langkopf E, Mikula M, et al. (2004) beta-Catenin

and TGFbeta signalling cooperate to maintain a mesenchymal phenotype after

FosER-induced epithelial to mesenchymal transition. Oncogene 23: 2672–2680.

17. Huber MA, Kraut N, Beug H (2005) Molecular requirements for epithelial-

mesenchymal transition during tumor progression. Curr Opin Cell Biol 17: 548–

558.

18. Scheel C, Eaton EN, Li SH, Chaffer CL, Reinhardt F, et al. (2011) Paracrine

and autocrine signals induce and maintain mesenchymal and stem cell states in

the breast. Cell 145: 926–940.

19. Janda E, Lehmann K, Killisch I, Jechlinger M, Herzig M, et al. (2002) Ras and

TGFb cooperatively regulate epithelial cell plasticity and metastasis: dissection of

Ras signaling pathways. J Cell Biol 156: 299–313.

20. Watanabe T, Wu TT, Catalano PJ, Ueki T, Satriano R, et al. (2001) Molecular

predictors of survival after adjuvant chemotherapy for colon cancer. N Engl J Med

344: 1196–1206.

21. Fleming NI, Jorissen RN, Mouradov D, Christie M, Sakthianandeswaren A, et

al. (2013) SMAD2, SMAD3 and SMAD4 mutations in colorectal cancer.

Cancer Res 73: 725–735.

22. Pino MS, Kikuchi H, Zeng M, Herraiz MT, Sperduti I, et al. (2010) Epithelial to

mesenchymal transition is impaired in colon cancer cells with microsatellite

instability. Gastroenterology 138: 1406–1417.

23. Milde-Langosch K (2005) The Fos family of transcription factors and their role

in tumourigenesis. Eur J Cancer 41: 2449–2461.

24. Young MR, Colburn NH (2006) Fra-1 a target for cancer prevention or

intervention. Gene 379: 1–11.

25. Desmet CJ, Gallenne T, Prieur A, Reyal F, Visser NL, et al. (2013) Identification

of a pharmacologically tractable Fra-1/ADORA2B axis promoting breast

cancer metastasis. Proc Natl Acad Sci U S A 110: 5139–5144.

26. Adiseshaiah P, Lindner DJ, Kalvakolanu DV, Reddy SP (2007) FRA-1 proto-

oncogene induces lung epithelial cell invasion and anchorage-independent

growth in vitro, but is insufficient to promote tumor growth in vivo. Cancer Res

67: 6204–6211.

27. Andersen H, Mahmood S, Tkach V, Cohn M, Kustikova O, et al. (2002) The

ability of Fos family members to produce phenotypic changes in epithelioid cells

is not directly linked to their transactivation potentials. Oncogene 21: 4843–

4848.

28. Belguise K, Kersual N, Galtier F, Chalbos D (2005) FRA-1 expression level

regulates proliferation and invasiveness of breast cancer cells. Oncogene 24:

1434–1444.

29. Debinski W, Gibo DM (2005) Fos-related antigen 1 modulates malignant

features of glioma cells. Mol Cancer Res 3: 237–249.

30. Luo YP, Zhou H, Krueger J, Kaplan C, Liao D, et al. (2010) The role of proto-

oncogene Fra-1 in remodeling the tumor microenvironment in support of breast

tumor cell invasion and progression. Oncogene 29: 662–673.

31. Sayan AE, Stanford R, Vickery R, Grigorenko E, Diesch J, et al. (2012) Fra-1

controls motility of bladder cancer cells via transcriptional upregulation of the

receptor tyrosine kinase AXL. Oncogene 31: 1493–1503.

32. Tkach V, Tulchinsky E, Lukanidin E, Vinson C, Bock E, et al. (2003) Role of the

Fos family members, c-Fos, Fra-1 and Fra-2, in the regulation of cell motility.

Oncogene 22: 5045–5054.

33. Vial E, Sahai E, Marshall CJ (2003) ERK-MAPK signaling coordinately

regulates activity of Rac1 and RhoA for tumor cell motility. Cancer Cell 4: 67–

79.

34. Doehn U, Hauge C, Frank SR, Jensen CJ, Duda K, et al. (2009) RSK is a

principal effector of the RAS-ERK pathway for eliciting a coordinate promotile/

invasive gene program and phenotype in epithelial cells. Mol Cell 35: 511–522.

35. Zhang W, Hart J, McLeod HL, Wang HL (2005) Differential expression of the

AP-1 transcription factor family members in human colorectal epithelial and

neuroendocrine neoplasms. Am J Clin Pathol 124: 11–19.

36. Rettig WJ, Chesa PG, Beresford HR, Feickert HJ, Jennings MT, et al. (1986)

Differential expression of cell surface antigens and glial fibrillary acidic protein in

human astrocytoma subsets. Cancer Res 46: 6406–6412.

37. Vial E, Marshall CJ (2003) Elevated ERK-MAP kinase activity protects the FOS

family member FRA-1 against proteasomal degradation in colon carcinoma

cells. J Cell Sci 116: 4957–4963.

38. Andreolas C, Kalogeropoulou M, Voulgari A, Pintzas A (2008) Fra-1 regulates

vimentin during Ha-RAS-induced epithelial mesenchymal transition in human

colon carcinoma cells. Int J Cancer 122: 1745–1756.

39. Ozanne BW, Spence HJ, McGarry LC, Hennigan RF (2007) Transcription

factors control invasion: AP-1 the first among equals. Oncogene 26: 1–10.

40. Brabletz T, Jung A, Kirchner T (2002) Beta-catenin and the morphogenesis of

colorectal cancer. Virchows Arch 441: 1–11.

FRA1 Regulation of EMT

PLOS ONE | www.plosone.org 10 March 2014 | Volume 9 | Issue 3 | e88950



41. Tice DA, Soloviev I, Polakis P (2002) Activation of the Wnt pathway interferes

with serum response element-driven transcription of immediate early genes.

J Biol Chem 277: 6118–6123.

42. Hlubek F, Spaderna S, Jung A, Kirchner T, Brabletz T (2004) Beta-catenin

activates a coordinated expression of the proinvasive factors laminin-5 gamma2

chain and MT1-MMP in colorectal carcinomas. Int J Cancer 108: 321–326.

43. Hlubek F, Brabletz T, Budczies J, Pfeiffer S, Jung A, et al. (2007) Heterogeneous

expression of Wnt/beta-catenin target genes within colorectal cancer.

Int J Cancer 121: 1941–1948.

44. Hlubek F, Jung A, Kotzor N, Kirchner T, Brabletz T (2001) Expression of the

invasion factor laminin gamma2 in colorectal carcinomas is regulated by beta-

catenin. Cancer Res 61: 8089–8093.

45. Gilles C, Polette M, Mestdagt M, Nawrocki-Raby B, Ruggeri P, et al. (2003)

Transactivation of vimentin by beta-catenin in human breast cancer cells.

Cancer Res 63: 2658–2664.

46. Sanchez-Tillo E, de Barrios O, Siles L, Cuatrecasas M, Castells A, et al. (2011)

beta-catenin/TCF4 complex induces the epithelial-to-mesenchymal transition

(EMT)-activator ZEB1 to regulate tumor invasiveness. Proc Natl Acad Sci U S A

108: 19204–19209.

47. Biddie SC, John S, Sabo PJ, Thurman RE, Johnson TA, et al. (2011)

Transcription factor AP1 potentiates chromatin accessibility and glucocorticoid

receptor binding. Mol Cell 43: 145–155.

48. Tam WL, Lu H, Buikhuisen J, Soh BS, Lim E, et al. (2013) Protein kinase C

alpha is a central signaling node and therapeutic target for breast cancer stem

cells. Cancer Cell 24: 347–364.

49. Olson A, Sheth N, Lee JS, Hannon G, Sachidanandam R (2006) RNAi Codex: a

portal/database for short-hairpin RNA (shRNA) gene-silencing constructs.

Nucleic Acids Res 34: D153–157.

50. Gautier L, Cope L, Bolstad BM, Irizarry RA (2004) affy–analysis of Affymetrix

GeneChip data at the probe level. Bioinformatics 20: 307–315.

51. Smyth GK (2005) Limma: linear models for microarray data. Bioinformatics and

Computational Biology Solutions using R and Bioconductor: 397–420.

52. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical

and powerful approach to multiple testing. Journal of the Royal Statistical
Society Series B 57: 289–300.

53. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-

efficient alignment of short DNA sequences to the human genome. Genome Biol
10: R25.

54. Anders S, Huber W (2010) Differential expression analysis for sequence count
data. Genome Biol 11: R106.

55. Sanij E, Poortinga G, Sharkey K, Hung S, Holloway TP, et al. (2008) UBF levels

determine the number of active ribosomal RNA genes in mammals. J Cell Biol
183: 1259–1274.

56. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics 25: 1754–1760.

57. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, et al. (2008) Model-based
analysis of ChIP-Seq (MACS). Genome Biol 9: R137.

58. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, et al. (2004)

Bioconductor: open software development for computational biology and
bioinformatics. Genome Biol 5: R80.

59. Zhu LJ, Gazin C, Lawson ND, Pages H, Lin SM, et al. (2010) ChIPpeakAnno: a
Bioconductor package to annotate ChIP-seq and ChIP-chip data. BMC

Bioinformatics 11: 237.

60. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, et al. (2009) MEME
SUITE: tools for motif discovery and searching. Nucleic Acids Res 37: W202–

208.
61. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, et al.

(2011) Integrative genomics viewer. Nat Biotechnol 29: 24–26.
62. Goecks J, Nekrutenko A, Taylor J (2010) Galaxy: a comprehensive approach for

supporting accessible, reproducible, and transparent computational research in

the life sciences. Genome Biol 11: R86.
63. Blahnik KR, Dou L, O’Geen H, McPhillips T, Xu X, et al. (2010) Sole-Search:

an integrated analysis program for peak detection and functional annotation
using ChIP-seq data. Nucleic Acids Res 38: e13.

64. Mizuno H, Kitada K, Nakai K, Sarai A (2009) PrognoScan: a new database for

meta-analysis of the prognostic value of genes. BMC Med Genomics 2: 18.

FRA1 Regulation of EMT

PLOS ONE | www.plosone.org 11 March 2014 | Volume 9 | Issue 3 | e88950



 

Minerva Access is the Institutional Repository of The University of Melbourne

 

 

Author/s: 

Diesch, J; Sanij, E; Gilan, O; Love, C; Tran, H; Fleming, NI; Ellul, J; Amalia, M; Haviv, I;

Pearson, RB; Tulchinsky, E; Mariadason, JM; Sieber, OM; Hannan, RD; Dhillon, AS

 

Title: 

Widespread FRA1-Dependent Control of Mesenchymal Transdifferentiation Programs in

Colorectal Cancer Cells

 

Date: 

2014-03-21

 

Citation: 

Diesch, J., Sanij, E., Gilan, O., Love, C., Tran, H., Fleming, N. I., Ellul, J., Amalia, M., Haviv,

I., Pearson, R. B., Tulchinsky, E., Mariadason, J. M., Sieber, O. M., Hannan, R. D.  &

Dhillon, A. S. (2014). Widespread FRA1-Dependent Control of Mesenchymal

Transdifferentiation Programs in Colorectal Cancer Cells. PLOS ONE, 9 (3),

https://doi.org/10.1371/journal.pone.0088950.

 

Persistent Link: 

http://hdl.handle.net/11343/41243

 

File Description:

Published version

License: 

CC BY


