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“It’s not the size of the dog in the fight,

it’s the size of the fight in the dog.”

Mark Twain



Abstract

This thesis focuses on the use of the Nitrogen-Vacancy (NV) defect centre in diamond

as a single spin sensor of nanoscale magnetic fields. The NV system has attracted

considerable interest in recent years due to its unique combination of sensitivity,

nanoscale resolution, room temperature operation, and stable fluorescence, together

with the inherent biocompatibility of diamond; making it ideal for measuring coherent

quantum processes in biological, chemical and condensed matter systems.

Existing NV-based sensing techniques, however, are ultimately limited by sources

of magnetic noise that act to destroy the very resource required for their operation:

the quantum phase coherence between NV spin levels. We address this problem

by showing that this noise is a rich source of information about the dynamics of the

environment we wish to measure. We develop protocols by which to extract dynamical

environmental parameters from decoherence measurements of the NV spin, and a

detailed experimental verification is conducted using diamond nanocrystals immersed

in a MnCl2 electrolyte. We then detail how sensitivities can be improved by employing

sophisticated dynamic decoupling techniques to remove the decoherence effects of the

intrinsic noise, whilst preserving that of the target sample.

To characterise the effects of pulse errors, we describe the full coherent evolution

of the NV spin under pulse-based microwave control, including microwave driven

and free precession intervals. This analysis explains the origin of many experimental

artifacts overlooked in the literature, and is applied to three experimentally relevant

cases, demonstrating remarkable agreement between theoretical and experimental

results.
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We then analyse and discuss two important future applications of decoherence

sensing to biological imaging. The first involves using a single NV centre in close

proximity to an ion channel in a cell membrane to monitor its switch-on/switch-off

activity. This technique is expected to have wide ranging implications for nanoscale

biology and drug discovery. The second involves using an array of NV centres to

image neuronal network dynamics. This technique is expected to yield significant

insight into the way information is processed in the brain. In both cases, we find the

temporal resolution to be of millisecond timescales, effectively allowing for real time

imaging of these systems with micrometre spatial resolution.

We analyse cases in which environmental frequencies are sufficiently high to result

in a mutual exchange of energy with the NV spin, and discuss how this may be used

to reconstruct the corresponding frequency spectrum. This analysis is then applied

to two ground-breaking experiments, showing remarkable agreement.

Protocols for in-situ monitoring of mobile nanodiamonds in biological systems are

developed. In addition to obtaining information about the local magnetic environ-

ment, these protocols allow for the determination of both the position and orientation

of the nanocrystal, yielding information about the mechanical forces to which it is

subjected. These techniques are applied in analysing a set of experiments in which

diamond nanocrystals are taken up endosomally by human cervical cancer cells.

Finally, we focus our attention on understanding the microscopic dynamics of

the spin bath and its effect on the NV spin. Many existing analytic approaches

are based on simplified phenomenological models in which it is difficult to capture

the complex physics associated with this system. Conversely, numerical approaches

reproduce this complex behaviour, but are limited in the amount of theoretical insight

they can provide. Using a systematic approach based on the spatial statistics of the

spin bath constituents, we develop a purely analytic theory for the NV central spin

decoherence problem that reproduces the experimental and numerical results found

in the literature, whilst correcting the limitations and inaccuracies associated with

existing analytical approaches.
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Chapter 1

Introduction

Whilst the physical realisation of a quantum computer remains a somewhat elusive

goal, the quest has yielded a remarkable increase in our knowledge of physics at the

sub-nanometre scale. Not only has our ability to control, characterise and manipulate

quantum systems lead us to speak of manufacture and fabrication in terms of single

atoms, so too have we deepened our understanding of the way in which open quantum

systems interact with their external environment; perhaps to the point where we are

on the verge of understanding just how the macroscopic world emerges from the

microscopic world of quantum superpositions, correlations and uncertainties.

The basic operating element of any quantum-based technology is the qubit (quan-

tum bit), which is, in principle, an isolated two-level system that can be accurately

initialized, controlled and measured. We represent a qubit as a two-level quantum

system with basis states
∣∣0⟩ and ∣∣1⟩. Whereas classical bits may take only the values

0 or 1, qubits have a distinct advantage in that they may be prepared in an arbitrary

superposition of these basis states. The quantum phase relationship, or coherence,

between these states is the resource that is used to process and store quantum in-

formation, and gives rise to not only the possibility of quantum computation, but a

1
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Figure 1.1: Quantum decoherence imaging of biological ion channel operation, as
explored in chapter 8.

multitude of quantum based devices; their utility hinging on the lifetime of the phase

coherence between these basis states, with the ‘decoherence’ arising from the unavoid-

able interaction between the system and its surrounding environment. In particular,

we focus on the use of solid state spin qubits to measure nanoscale magnetic fields, as

the phase interference between the basis states of a spin qubit is directly proportional

to the strength of this field, by virtue of the Zeeman interaction. Such systems have

remarkable advantages over traditional magnetometry techniques, as single spins offer

a platform that is both highly sensitive and highly localised, permitting the detection

of nanoscale magnetic fields with atomic spatial resolution. Furthermore, certain sys-

tems, such as the Nitrogen-Vacancy (NV) defect centre in diamond, are capable of

room temperature operation.

Whilst theoretical and experimental investigations focussed on NV centre spin

probes are showing great promise for the successful resolution of static nano-scale
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magnetic structures within both condensed-matter and biological systems, decoher-

ence presents a major obstacle in the improvement of the detection sensitivity. In

each new proposal, the sensitivity of the imaging technique is ultimately limited by

the coherence time of the associated quantum system. Thus decoherence is ubiqui-

tously looked upon as a pathological phenomenon whose effects must be controlled

and mitigated as far as possible. In this work we offer an inversion of this viewpoint:

the focus of this thesis is to show that by exposing a ‘Quantum Probe’ to a sample

environment in a controlled manner, the induced decoherence may be used to im-

age dynamic characteristics not evident with the use of existing techniques. Such a

device would employ current solid state qubit technology, thus ensuring comparable

sensitivity to current techniques.

1.1 Layout and publication of material in this the-

sis

The material in this thesis is organised by topic, rather than chronologically, to im-

prove the clarity of the presentation. In chapter 2 we provide a brief overview of the

central themes of this thesis and review the relevant literature. In chapter 3, our focus

shifts to consideration of Nitrogen Vacancy (NV) centres exclusively, and outlines the

various protocols used to control the NV Quantum spin state, and how these may be

employed to measure specific classes (DC and AC) of magnetic fields. In chapter 4,

we discuss the limitations of these techniques and how they may be overcome by per-

forming measurements on the decoherence properties of the NV centre. The material

in this chapter is published in reference [HCHH09].

Chapter 5 provides a detailed theoretical analysis of an experimental investigation
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into the techniques developed in chapter 4. The system chosen for this investigation

is a diamond nanocrystal containing an NV centre which is exposed to an electrolyte

containing manganese electronic spins. Experiments were performed by L.P. McGuin-

ness and D.A. Simpson at the University of Melbourne, and show excellent agreement

with our theoretical predictions. The material in this chapter is published in reference

[MHS+13].

Chapter 6 is focused on using more sophisticated dynamical decoupling and quan-

tum control techniques to improve the magnetometer sensitivity of the NV spin, and

investigates the optimality and efficiency of various control pulse sequences in the

literature. The findings of this analysis were published in reference [HHCH10]. An

experimental investigation of these techniques was performed by B. Naydenov and F.

Dolde at the University of Stuttgart, and the corresponding analysis is described in

section 4 of this chapter. These results were published in reference [NRB+10].

Due to the high precision of microwave control required for the protocols in chap-

ters 4-6, and some experimental artifacts uncovered in chapter 5, chapter 7 details an

investigation into the fundamental limitations associated with the fidelity of pulsed

microwave control. These results explain many of the noise features observed in pre-

vious experiments that cannot be explained by shot noise effects alone. The material

in this chapter is being prepared for publication.

In chapters 8 and 9, we analyse and discuss two important applications of deco-

herence sensing techniques to biological imaging. The first involves using a single NV

centre in close proximity to an ion channel in a biological cell membrane to moni-

tor the switch-on/switch-off activity of the channel. This technique is expected to

have wide ranging implications for nanoscale biology and drug discovery. The second
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involves using a high density ensemble of NV centres to facilitate widefield imag-

ing of the dynamics of a biological neuronal network grown on the diamond surface.

This technique is expected to yield significant insight into the way information is pro-

cessed in the brain. The material in chapters 8 and 9 has been published in references

[HHC+10] and [HBT+12] respectively.

In chapter 10 we shift our focus from pure dephasing interactions to systems that

exchange energy with the NV centre. A detailed analysis of the response of the

NV spin state to an arbitrary spectral density is performed, and is used to develop

a protocol by which the frequency spectrum of an arbitrary magnetic system can

be measured. This material is currently under preparation for publication. This

chapter also details and analyses two experimental investigations. In section 4, we

analyse the results of an experiment performed by S. Steinert at the University of

Stuttgart, in which the relaxation rate of an ensemble of NV centres was modified

via coupling to an environment of Gadolinium electron spins of a controlled, variable

density. These findings and the corresponding analysis of this chapter were published

in reference [SZH+]. In section 5, we analyse the results of an experiment performed by

S. Kaufmann and D.A. Simpson at The University of Melbourne in which individually

addressable nanodiamonds containing single NV centres are used to detect small

clusters of gadolinium atoms in an artificial cell membrane. These findings and the

corresponding analysis of this chapter have been published in reference [KSH+13]. In

both cases, these experiments are in excellent agreement with the theoretical analysis.

In chapter 11, we analyse two separate experiments performed by L.P. McGuin-

ness and D.A. Simpson at The University of Melbourne, which demonstrate the use

of these protocols inside living human cervical cancer cells. In the first experiment,
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we perform an analysis of the first intracellular coherence measurement of a single

quantum system, in which both Rabi and spin-echo signals are monitored, providing

a foundation for further quantum nanobiomagnetometry studies. In the second ex-

periment, we discuss how the the unique optical and spin properties of the NV centre

allow for simultaneous nano-scale spatial and orientational tracking of nano-crystals

in living biological systems. This material was published in reference [MYS+11].

In chapter 12, we return to the decades-old central spin problem outlined in chap-

ter 2. We develop an analytic solution to this problem, and demonstrate excellent

agreement with both numerical and experimental results. The material in this chapter

is being prepared for publication.



Chapter 2

Background

2.1 Decoherence and open quantum systems

In the early years of our education in quantum physics, we are taught to think in

terms of closed quantum systems, in which the degrees of freedom are sufficiently

simple to permit a complete mathematical description of the system. However, in

most cases of practical relevance, the system(S) of interest is coupled to a much

larger quantum reservoir (referred to hereafter as a bath or the environment, E),

whose presence has a non-trivial effect on its evolution (figure 2.1). Since we typically

have no means by which to directly measure the properties of the bath, the system

dynamics become non-unitary and irreversible when viewed in isolation. The central

system is then referred to as an open quantum system, and we refer to the loss of

quantum information from the system to the bath via their interaction (and resulting

entanglement) as decoherence.

Typically we decompose the Hamiltonian of the complete system (S+E) into terms

describing the explicit evolution of the system and the environment under their respec-

tive native processes, HS and HE respectively, and a term describing their interaction,

7
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Figure 2.1: Schematic of an open quantum system (S) interacting with its external
environment (E). The open quantum system can be viewed as a distinguished division
of a larger closed quantum system. Because measurements can only be performed on
the system, any information encoded in the environment via their interaction is then
irreversibly lost.

Hint. Thus we have that

H = HS +HE +Hint, (2.1.1)

and the unitary evolution of the entire system is described by the Liouville equation

dρ

dt
= −

[
H, ρ

]
. (2.1.2)

Because we have individual control over the system, it may be initialised in a

known state (meaning the complete system is in a product state between the system

and the environment), however entanglements are generated between their respective

quantum states, resulting in the information that was initially confined to the system
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becoming partially encoded in the environment, and hence non-local. A complete

wave function describing both the system and the bath still exists and evolves unitar-

ily, however the loss of phase coherence between the basis states of the system means

that certain elements of the system are no longer able to interfere with each other.

This ultimately leads to probabilistically additive behaviour, an inherently classical

property, and thus gives the appearance of ’wave function collapse’. Operationally,

this means we must trace over the environmental degrees of freedom, to obtain the

reduced density matrix of the central system

ρS(t) = TrE
{
ρ(t)

}
= ρs(0)− TrE

{∫ t

0

[
H, ρ(t′)

]
dt′
}
. (2.1.3)

Given the above discussion, the general solution of this equation is intractable because

the evolution of the reduced system (which contains, by definition, all the information

we can possibly know) depends on the past history of total the system, something

we are not privy to. Ultimately, we seek a master equation separating the unitary

evolution of the reduced system from the non-unitary evolution arising from the

system-bath interaction,

d

dt
ρS(t) = −i

[
H′

S, ρS(t)
]
+D

[
ρS(t)

]
. (2.1.4)

We briefly point out here, for the sake of completeness, that H′
S ̸= HS. Rather, H′

S

contains a correction (referred to as the Lamb shift) to the unitary part of the reduced

system’s evolution due to the interaction with the bath (see, for example, [BP06]).

Many open quantum systems are described by the Born-Markov master equation,

which is obtained by applying the Born-Markov approximation to the full density

matrix in Eq. 2.1.2 under the assumption that
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• The interaction is assumed to be sufficiently weak, and the environment suffi-

ciently large, that changes in the density matrix of the environment due to the

system are negligible (the ‘Born’ bit).

• The self interactions taking place within the bath are sufficiently fast to ensure

that any correlations caused by the interaction are dissipated rapidly compared

with the evolution of the system (the ‘Markov’ bit), essentially rendering the

environment ‘memoryless’ with respect to the motion of the system.

Whilst both being extremely well understood theoretically and finding application

in a large number of practical systems (see, for example, [BP06] for an extensive

overview), these approximations are of little use in describing systems of interacting

spins, where environmental couplings are typically weaker than, or of similar order

to the interaction between the central system and the environment. This leads to

the environmental evolution being heavily conditioned upon on the trajectories of the

central system, thereby invalidating the Born-Markov approximation. As a detailed

understanding of spin-spin environments is critical to the development of quantum

devices based on solid-state spin architectures, the so-called central-spin problem is

the primary focus of this work, and is discussed in greater detail below.

2.2 The Central Spin Problem

The central spin problem is a special class of open quantum system, and involves the

study of the dynamics of a central spin interacting with a large number of strongly

coupled spins in the environment, referred to as the spin bath. In most practical

cases the central spin is electronic, and the surrounding bath is comprised of either
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electron or nuclear spins, and in some cases, both. We are primarily concerned with

the investigation of two effects:

1. Relaxation processes, in which the central system dissipates energy via its inter-

action with the environment. In the case of a central spin, these processes cause

the projection (not necessarily coherent) of the spin state along its quantisation

axis to decay with time.

2. Dephasing processes, in which quantum information is transported from the

central spin via the generation of quantum entanglement between the system

and the environment. This process is made irreversible due to interactions

between environment constituents. in which the phase coherence between two

quantum states comprising a superposition decays with time.

The timescales associated with these processes are referred to as T1 and T2 respec-

tively. These designations arise by analogy with traditional NMR and ESR experi-

ments investigating the decay of axial and lateral components of the magnetisation

vector of a large spin ensemble.

This problem has received renewed attention over the last decade, due in no

small part to localised electrons in solids being promising candidates for qubits in

quantum computation, metrology and communication systems; a result of their long

coherence times, ease of quantum control and already well established fabrication

techniques. In the context of quantum information processing, the utility of these

systems hinges upon the requirement for spin coherence times to be sufficiently long

to ensure that the necessary number of quantum operations (typically of order 104

for fault tolerant quantum computation [Pre98]) can be performed within the as-

sociated coherence time. Examples of such systems that have been suggested as
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building blocks for quantum computer architectures include spins qubits in quan-

tum dots [LD98, LYS10], donor impurities [Kan98, dSDS04, HGAW06, ML11], and

Nitrogen-Vacancy (NV) centers in diamond [WJ06]. In the context of metrology, with

particular regard to parameter estimation, the NV centre has emerged as a unique

physical platform for nanoscale magnetometry [Deg08, TCC+08, BCK+08, MSH+08,

HHCH10], nano-NMR [PHS+13, SSP+13, MKS+13], bio-imaging [HHC+10, MYS+11,

HBT+12], electrometry [DFD+11], thermometry [NJD+13], and decoherence imag-

ing [CH09, HCHH09, SZH+, KSH+13, MHS+13]. In each case, the associated sen-

sitivity is ultimately limited by the coherence properties of the NV spin that arise

from the strong coupling to the surrounding bath of electron and/or nuclear spins.

In all of these applications and platforms, a comprehensive understanding of the cen-

tral spin problem is therefore necessary to make accurate predictions of the quantum

properties and behaviour of the central spin arising from the material properties of

the surrounding environment.

As noted in chapter above, the decoherence behaviour of many open quantum

systems has been modeled using the Born-Markov master equations, which are predi-

cated on the assumption of weak system-environment couplings and Markovian envi-

ronment dynamics. Such approaches are not valid here, particularly in the case of a

central electron coupled to a bath of nuclear spins, as the environmental dynamics are

some three orders of magnitude slower than the central spin. Furthermore, because

every spin present in the system is coupled to every other spin, non-commuting com-

ponents of the Hamiltonian make finding even approximate solutions of the central

spin’s dynamics extremely challenging, particularly on timescales of similar order to

those of the bath’s dynamics.
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Figure 2.2: Schematic of the central spin problem. Groups of proximate spins (blue)
form strongly interacting clusters, in which the constituents perform spin flip-flops as
mediated by their magnetic dipole-dipole interaction. The central spin, being coupled
to all environmental spins, thus constitutes an open quantum system, with the ‘spin
bath’ playing the role of the environmental reservoir. Depending on their proximity
to the central spin, the evolution of the environment is conditioned upon the state
of the central spin, and hence cannot be treated as a semi-classical fluctuating field
(See chapter 12).

2.3 Spin-based magnetometry

Given the already well established research effort devoted to the understanding of

how single spins respond to their magnetic environments, Chernobrod and Berman

[CB05] put forth the first theoretical proposal for a magnetometer based on optically

detected interference of spin sub-levels of an atomic system. Monitoring of the spin

state was to be based upon Optically Detected Magnetic Resonance (ODMR) of the

spin system, in which the intensity of the resulting fluorescence gives some measure

of the associated spin state populations; and scanning capabilities would be achieved

by implanting the photo-luminescent nano-probe into the tip of an AFM or STM.

The tip would be scanned in close proximity to the target sample, facilitating

angstrom scale resolution with the use of a single fluorescent molecule. A permanent

magnet is used to split the magnetic sublevels of the spin system, and an RF coil
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produces an oscillating field in resonance with the desired transition. The possibility

of a resonant excitation is reduced by the presence of a magnetically active target,

which acts to shift the transition frequency between the magnetic sublevels, and this

reduction is monitored via a change in the photoluminescent intensity.

Fields from single electron spins located a few nanometres from the probe are

typically of the order of 10mT, which is significantly larger than the width of the

narrowest intrinsic features of a typical ODMR spectrum in a spin-1 quantum dot

at temperatures lower than 4K. As such, the presence of a target sample would be

detected via the corresponding shift and splitting of the ODMR spectrum.

In a theoretical proposal in 2008, Degen applied this method to the ground-state

spin-1 system of the Nitrogen Vacancy centre in diamond [Deg08]. This system ex-

hibits rather sharp spectral features of roughly 1-10MHz (5-50 nT) in width, and has

the additional advantage of room temperature operation (See chapter 3 for a detailed

technical overview of the NV centre). As such, Degen showed that an ODMR based

NV magnetomoeter would be capable of resolving magnetic fields resulting in shifts

larger than the natural linewidth of a chosen centre.

Typically this linewidth is the result of intrinsic quasi-static processes occur-

ring within the NV system and is therefore inhomogeneously broadened, implying

a substantial reduction may be achieved with the application of controlled microwave

pulses. In particular, a ‘spin-echo’ (SE) sequence employing a bit-flip at the halfway

point of the NV’s free-evolution acts to re-focus the phase accumulation resulting from

any quasi-static magnetic processes. As a result, spin lifetimes may be extended from

∼ 1µs [PGD+04] to 0.1-1ms [JW06], equivalent to linewidths of 1-10 kHz, depending

on the local magnetic environment of the diamond crystal (a more detailed study of
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higher-order pulse sequences capable of refocusing more complicated dynamic effects

is the focus of chapter 6). This would ultimately permit the resolution of fields as

small as tens of nT, however it is necessary that the target fields oscillate on these

timescales to ensure maximal phase accumulation. Fields with slower dynamics will

be subject to refocussing, whilst the effects of faster fields will effectively average

themselves out.

Given its sensitivity, this scheme was predicted to be capable of resolving single

proton and electron spins at distances of 5 and 40 nm respectively. These predictions

sat favourably with the size of the then smallest reported diamond nanocrystals con-

taining stable NV centres, 15 nm, meaning the required probe-sample separation for

single proton detection was less than an order of magnitude from being achieved in

practice [Deg08]. Such a magnetic field sensor was therefore expected to out-perform

MRFM, without the additional requirement of cryogenic operation, and would there-

fore have the potential to permit the imaging of nano-scale biological processes under

physiological conditions.

At the same time, Taylor et-al[TCC+08] investigated the use of pulse based proto-

cols, namely FID, spin-echo and higher order CPMG sequences, to make theoretical

predictions of the achievable sensitivity of an NV magnetometer. FID and spin-echo

based sensitivities were predicted to be of order ηfid ∼ µTHz−1/2 and ηse ∼ nTHz−1/2

respectively, with higher order CPMG sequences achieving a n−1/3 scaling in the

sensitivity with the number of pulses, n.

In both works noted above, the application of a spin echo pulse sequence acts to

refocus any static fields in the system, meaning that, despite an increased sensitivity,

DC fields are no longer measurable. As such, detailed knowledge and control over the



16

target field is required for it to be measured, reducing the utility of these methods.

Methods to measure and characterise more realistic randomly fluctuating fields are

detailed in chapter 4.

The first experimental demonstrations of NV magnetometer capability came si-

multaneously from Balasubramanian et-al[BCK+08] and Maze et-al[MSH+08]. In the

former, a magnetic tip was used to create a strong magnetic field gradient near a sin-

gle NV centre, and showed its position could be located to within a few nanometres

by monitoring the NV fluorescence as dependent on the NV-tip separation. This was

an improvement of 2 orders of magnitude below the optical diffraction limit. In the

latter, AC sensitivities were experimentally demonstrated at the ηse = 30 nTHz−1/2

level in bulk diamond, and 0.5µTHz−1/2 in 30 nm diamond nanocrystals. Improve-

ments to the sensitivity have also been experimentally demonstrated by employing

isotopically pure diamond crystals to further increase the intrinsic coherence time of

the NV spin to 1.8ms, yielding an AC field sensitivity of 3 nTHz−1/2 [BNT+09].

These sensitivity figures were based on implementations of single NV spins, how-

ever it was pointed out in [TCC+08] that an array of Np independent NV spins would

give a
√
Np improvement in the sensitivity due to a much greater rate of data acqui-

sition, albeit at the cost of spatial resolution. The first experimental implementation

of this idea was given in [SDN+10], where both spatial mapping and full vectorial

reconstruction of the magnetic field were demonstrated. Using an ODMR protocol,

the sensitivity was determined to be at the 20 nT /
√
Hz, an improvement of 2-3 orders

of magnitude over the single spin case.
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2.4 Decoherence Microscopy

As mentioned above, much like the effectiveness of a qubit in quantum computation

protocols, the sensitivity of a spin-qubit magnetometer depends primarily on the

coherence time of the spin system employed. As such, one usually seeks to isolate

the qubit from its environment so as to suppress the effects of decoherence as much

as possible. In 2008, Cole and Hollenberg [CH09] proposed an inverted view where,

by exposing a qubit to an environment in a controlled manner, one could use the

resulting decoherence to obtain information about dynamic processes taking place in

the environment itself. By scanning such a system over this environment, one can

then produce a spatial map of both the strength and timescale of the environmental

fluctuations. An example of this process (as taken from [CH09]) is shown in figure 2.3,

where the qubit is scanned over a distribution of bistable fluctuators.

As many of the interesting processes taking place in both condensed matter and

biological systems at the micro/nano scale produce fields that fluctuate about zero-

mean, such a method holds a considerable advantage over existing techniques. In

chapter 4, we show that the sensitivity with which fluctuating fields may be measured

is effectively identical to existing magnetometry techniques based on spin qubits,

and methods by which this may be improved are investigated in chapter. 6. By

virtue of their high sensitivity and, in principle, universal applicability, decoherence

microscopy techniques represent a revolutionary means by which to investigate, image

and characterise nanoscale processes in the physical and life sciences. In this work,

we extend these techniques to include processes such as self diffusing atoms in an

electrolyte (chapter 5), ion flow through biological cell membranes (chapter 8), the

propagation of neural information in microscale biological neural networks (chapter 9),
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Figure 2.3: Schematic of a scanning decoherence microscopy set-up, as taken
from [CH09]. (a) The probe qubit is scanned across the sample while its quantum
state is (weakly) monitored. (b) At each point (x, y) a measurement record Ixy(t)
is obtained. Using the time-correlated signal, the spectral response Sxy(ω) of the
qubit probe is determined. (c) From this data, a measurement of the effective qubit
Hamiltonian Hxy (static magnetometer or electrometer) field map and decoherence
rate Γxy map as a function of probe position is obtained. In this figure, the sample
consists of fluctuators with a nonuniform distribution in both spatial density and
fluctuation rate. The decoherence map reveals the fluctuator distribution not visible
in the static field map. (d) Combining this information provides a direct window into
the distribution and character of the sources of field fluctuations in both space and
time. In this image, the vertical scale is given by the strength of the field, whereas
the colouration is given by the effective decoherence rate.
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microscale fluidic flows (chapter 10.4), atoms embedded in biological lipid membranes

(chapter 10.5) and intra-cellular fluid dynamics in living cells (chapter 11).



Chapter 3

The Nitrogen Vacancy Centre-

Technical overview and basic

control protocols

In this chapter we discuss in detail the spin degrees of freedom of the Nitrogen Vacancy

(NV) centre optical groundstate, and the various means by which we can control and

manipulate this spin using optical and microwave fields. The development is intended

to have a pedagogical focus, rather than a historical one. We begin with a brief

discussion on the physical origin of the centre, and move into a detailed quantitative

description of the basic control protocols that will be employed and extended in later

chapters.

20
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Figure 3.1: (a) NV-centre diamond lattice defect. (b) NV spin detection through
optical excitation and emission cycle. Magnetic sublevels |0⟩ and | ± 1⟩ are split by
a D=2.88 GHz crystal field. The degeneracy between the | ± 1⟩ sublevels is lifted
by a Zeeman shift, δω. Application of 532 nm green light induces a spin-dependent
photoluminescence and pumping into the |0⟩ ground state. (c) Microwave and optical
pulse sequences for coherent control and readout.

3.1 Introduction

The Nitrogen Vacancy (NV) centre is a point defect in a diamond lattice comprised of

a substitutional atomic nitrogen impurity and an adjacent crystallographic vacancy

(figure 12.2 (a)). For cases where the nitrogen atom is greater than a few nanometres

from the crystal boundary, it is thermodynamically favourable for the impurity and

the vacancy to exist as a nearest-neighbour pair. Vacancies will therefore migrate

through the lattice until either an impurity or crystal boundary is encountered.

The centre exhibits an axial, trigonal (C3V ) symmetry on account of the degenerate

roles played by the three adjacent carbon atoms. Three of the five nitrogen valance

electrons are covalently bonded to adjacent carbon atoms, leaving two free to form

a lone-pair. Of the three unpaired electrons from the vacancy, two form an effective

covalent bond, leaving a single unpaired electron. Owing to its neutral charge state,

this configuration is referred to as the NV0, and behaves as a spin-1
2
paramagnetic

point defect. As the ground-state EPR signals are too broad, NV0 must be optically
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pumped into an electronic excited state to make EPR studies possible. The finite

lifetime of excited states and the practical resources required make the NV0 centre

undesirable for magnetometry applications.

On the other hand, the NV− configuration has a charge state of -1, resulting from

the presence of an additional electron at the vacancy site, thus behaving as a spin-1

paramagnetic point defect in its ground state. In contrast to NV0, the relatively

narrow spectral properties of the NV− ground state make it an ideal candidate for

applications as a spin-based magnetometer, and is therefore the primary physical

system with which we concern ourselves for this study. For this reason, we refer to

the NV− centre hereafter as simply the NV centre.

The energy level scheme of the C3v-symmetric NV system (figure 12.2 (b)) consists

of ground (3A), excited (3E) and meta-stable (1A) electronic states. The ground state

spin-1 manifold has 3 spin sub-levels
(∣∣ 0⟩, ∣∣±1

⟩)
, which in zero field are split by

2.88GHz. An important property of the NV system is that under optical excitation

the spin levels are distinguishable by a difference in fluorescence, hence spin-state

readout is achieved by purely optical means [JPG+02, JW06] as described below.

The degeneracy between the
∣∣±1

⟩
states may be lifted with the application of a

background field, with a corresponding separation of 17.6MHzGauss−1 permitting

all three states to be accessible via microwave control, however the
∣∣±1

⟩
states are

not directly distinguishable from one another via optical means. By isolating either

the
∣∣ 0⟩ ↔ ∣∣+1

⟩
or
∣∣ 0⟩ ↔ ∣∣−1

⟩
transitions, we have a controllable, addressable spin

qubit.
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3.2 Optical and Microwave Control of the Quan-

tum Spin State

The spin state of the NV centre may be determined by utilising optically active

transitions from the ground state to the relevant electronic excited states. At low

temperature, a resonant laser (637 nm) may be tuned to the spin conserving optical

|0⟩ transition, resulting in fluorescence only if the spin is in the |0⟩ state [JPG+02].

This process may be performed of order ∼ 105 times before relaxation of the spin state

occurs, thereby facilitating what is effectively a single shot readout mechanism. The

small probability of a spin-flip occurring during the read out process leads to a slight

reduction in fidelity to 95%, as can be determined via the comparative heights of the

peaks associates with the |0⟩ and | ± 1⟩ states during photon counting experiments

[WJ06].

This readout mechanism is not possible at room temperature, as thermal broad-

ening of excited state energy levels makes resonant excitation impossible. Instead,

a broadband laser (532 nm) is used to non resonantly excite optical transitions, in-

volving both the |0⟩ and | ± 1⟩ sublevels, to higher lying energy states. If initially

in the |0⟩ state, the system will transitions to the 3E excited state and then returns

to the ground state via the spontaneous emission of a photon. The same is true for

the | ± 1⟩ states, however there is a chance that the system will instead undergo

a non-radiative decay by emission of a phonon. We may thus infer the initial spin

state by virtue of the fact that fluorescence rates are substantially lower for | ± 1⟩

states than for the |0⟩, resulting in a contrast of fluorescence intensity; however, the

non-radiative decay is also a non spin conserving processes and eventually leads to
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polarisation into the |0⟩ state. As a result, the means by which the spin state is read

out also acts to initialise the system. Unlike the resonant excitation method above,

poor collection efficiencies and a reduced contrast make it difficult to detect a photon

before the system is polarised, significantly reducing the signal to noise ratio. As

such, this technique does not constitute a ‘single-shot’measurement process.

The full groundstate spin Hamiltonian of the NV centre (S), the nuclear spin of

the substitutional Nitrogen (IN) and the surrounding spin-bath environment is given

by

H = S⃗ · ⃗⃗D · S⃗ + S⃗ · ⃗⃗AN · I⃗N + I⃗N · ⃗⃗QN · I⃗N +Hint +HE, (3.2.1)

where S⃗ · ⃗⃗AN · I⃗N describes the NV-N hyperfine interaction. The nitrogen quadrupole

term, I⃗N · ⃗⃗QN · I⃗N , is present for cases where the nitrogen nucleus exists in its 99.64%

abundant spin-1 14N isotopic configuration, whereas the 0.36% abundant spin-1
2

15N

isotope has no quadrupole term.

By choosing the z axis to coincide with the quantisation axis of the NV spin (as

defined by the zero-field splitting tensor,
⃗⃗
D), we may make the secular approximation

in which we ignore all couplings to the x and y components of S. This is justified

by the fact that all lateral couplings in the proximate mesoscopic environment are

typically, at most, of order ∼1MHz and are hence unable to flip S with respect to the

direction of
⃗⃗
D. In cases where the dynamics of the environment give rise to processes

occurring at GHz timescales, these lateral couplings may become important. This is

the basis of all microwave control techniques for NV spin state, and is described in

detail below. In the secular limit, the Hamiltonian becomes

H ≈ DS2
z + AN,zSzIN,z +QI2

N,z +Hint +HE. (3.2.2)
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The axial component of the NV-N hyperfine coupling shows that the magnetic sub-

levels of the nitrogen nuclear spin present an effective magnetic field to the axial

component of the NV spin of order AN,z ≈ 2.2MHz. Furthermore, in the case where

the nitrogen isotope present is 14N, having nuclear spin IN = 1, there exists a large

quadrupole moment of Q ≈ 5MHz [CK01], ensuring the NV spin cannot flip that of

the nitrogen. The NV-N coupling therefore presents a static Zeeman shift to the NV,

an idea that will become important in the discussion below.

The relationship between the NV control protocols discussed in this chapter is

depicted in figure 3.2.

3.2.1 Optically Detected Magnetic Resonance (ODMR)

In an Optically Detected Magnetic Resonance (ODMR) experiment, both laser and

microwave fields are continuously applied to the NV centre at constant power. The

microwave field is swept across a broad range of frequencies, and will excite one of

the
∣∣0⟩ ↔

∣∣±1
⟩
transitions when on resonance. In the absence of the laser field

(see below), this would cause the spin to periodically flip between the two states.

The presence of the laser field acts to constantly re-polarise the system, hence a

steady-state level of fluorescence is reached as a result of the competition between

the microwave field trying to drive the system out of the
∣∣0⟩ state, and the laser field

trying to drive it back. As we will see, the ODMR protocol is somewhat unique in that

both the measurement and evolution of the system are taking place simultaneously.
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Figure 3.2: Flow map outlining the measurement of the dynamic parameters of a tar-
get environment using the NV centre. In an ODMR experiment, a broadband laser
is used to excite the optical transition, whilst the microwave frequency is scanned
to determine the resonant frequencies corresponding to transitions between magnetic
sublevels. These frequencies are then used to resonantly drive these transitions dur-
ing a Rabi cycle. By employing Rabi cycles of a particular duration, various control
pulses may be constructed and used for pulsed-microwave spin resonant experiments
such as FID and spin-echo. These represent the most natural measure of the local
magnetic environment, and may be used to determine parameters such as effective
axial magnetic field strengths, ⟨B⟩, ⟨B2⟩, and fluctuation rates, fe = 1/Tc (see chap-
ter 4). Microwaves are not required to measure longitudinal relaxation rates, which
may be used to sample high frequency regions of the environmental spectral density
(see chapter 10).
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Large magnetic fields and the qubit approximation

The static Hamiltonian, responsible for the axial splitting of the magnetic sublevels

is given by

H0 = DS2
z + (ωz + b)Sz, (3.2.3)

where we will work in units of frequency from here on to both simplify the analysis

and facilitate a convenient means by which to compare various timescales. Note that

we have included both the static background field, ωz, and an effective axial field,

b, to account for the random fluctuations in the Zeeman levels, which arise from

interactions of the NV centre with its proximate environment. By virtue of these

relatively weak couplings (∼MHz), compared with the zero field splitting (∼GHz),

we may ignore the components of the bath that couple to the Sx and Sy components

of the NV centre, since these are too weak to cause the NV spin to flip.

We also assume initially that the coupling to the laser field is not strong enough

to induce any NV polarisation. This is, of course, an idealisation, since without

polarisation we would have no fluorescence, and hence no means by which to monitor

the spin state, but one we will proceed with for now. The case of a non-trivial coupling

to the laser field is dealt with in section 3.2.1.

The Harmonic interaction with the microwave field is given by, V = ωx cos (ωt)Sx,

where, owing to the axial symmetry, we choose the lateral component of the microwave

field, ωx, to lie along the x axis. To simplify the analysis, we transform to the inter-

action picture by transferring the time dependence due to the influence of the static

Hamiltonian, H0, to the state vector, leaving the state to evolve exclusively under

the influence of the harmonic interaction term (see appendix A). The Hamiltonian
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in the interaction picture is then given by

VI = ωx cos (ωt) e
iH0tSxe

−iH0t (3.2.4)

≈ ωx

2
√
2


0 e−iδ+t 0

eiδ+t 0 eiδ−t

0 e−iδ−t 0

 , (3.2.5)

where δ± = ω− [D ± (ωz + b)] is the detuning between the qubit transition frequency

and the frequency of the applied oscillating field. Note that in this approximation we

have we ignored all terms of the form e±i(ω+D±ωz)t, since these oscillate too rapidly

to have any effect on the NV spin. Similarly, we assume the microwave field is

significantly detuned from the |0⟩ → | − 1⟩ transition, such that we may ignore any

population of the | − 1⟩ state, thereby leaving us confined to an effective 2 state

system (to order O (ω2
x/ω

2
z)). The breakdown of this assumption and the resulting

implications for the various microwave control protocols are discussed in chapter 7.

The equation of motion for the density matrix of the effective qubit in the interaction

picture is then

dρI
dt

= −i [VI , ρI ] , (3.2.6)

where VI =
ωx

2
√
2

(
0 e−iδt

eiδt 0

)
,

and ρI =

(
ρ11 ρ10

ρ01 ρ00

)
,

where we have put δ ≡ δ+ for notational clarity.

Rescaling t via τ = ωxt/2
√
2 and δt = κτ , and rewriting the above system of

four coupled first order linear differential equations as a single third order differential

equation in ρ00 (using ρ11 = 1− ρ00), we have

d3

dτ 3
ρ00 +

(
4 + κ2

) d

dτ
ρ00 = 0. (3.2.7)
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Solution and ensemble averaging

As the ODMR spectrum is a measure of the extent to which the system undergoes

transitions between the various spin states (| 0⟩ ↔ |+ 1⟩ in the present context), the

initial state of ρ is of no consequence since it is merely the amplitude of the oscillations

we are seeking. As such, we just take ρ00(0) = 1 (ie, the laser was switched on before

the microwave field), which implies ρ′00(0) = 0 and ρ′′00(0) = −2. The solution to this

system is the well known Rabi solution,

ρ00 = 1− 4

κ2 + 4
sin2

(τ
2

√
κ2 + 4

)
(3.2.8)

= 1− 1

2

ω2
x

Ω2
sin2

(
Ωt

2

)
, (3.2.9)

where Ω =

√
ω2
x

2
+ δ2. (3.2.10)

The ODMR signal is a long-time average over these oscillations, implying that we

simply take the average of the oscillatory term as t→ ∞,

1

t

∫ t

0

sin2

(
Ωt′

2

)
dt′ → 1

2
, (3.2.11)

giving a signal contrast of

CODMR =
1

4

ω2
x

Ω2
=

1

2

ω2
x

ω2
x + 2δ2

, (3.2.12)

which has a Lorentzian shape centred about δ = 0, whose width is defined by the

microwave field strength, ωx (specifically, the FWHM =
√
2ωx). This shows that

increasing the microwave field strength increases the probability that the |0⟩ → |+1⟩

transition may be excited at a given detuning.

At this point, it is important make the distinction between the intended detuning,

given by δI = ω −D − B0, and the actual detuning due to the presence of the spin
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bath, δ = ω − D − B0 − b = δI − b. As the bath detuning is the result of the NV

coupling to a large number of paramagnetic impurities in the environment (of spin

E), we take b to follow a normal distribution, with variance given by

⟨
b2
⟩

=
∑
n,s

A2
z,n

≈
∑
s

2πnE(E + 1)

∫ ∞

RE

[
~
µ0

4π

γNVγE
r3

(
1− 3 cos2 θ

)]2
r2 d cos θ dr

=
∑
s

E(E + 1)
4

5

[
4~πn
3

µ0

4π
γNVγE

]2
, (3.2.13)

where Az,n is the axial component of the spin-spin coupling between the NV centre

and the nth spin of species E; γNV is the gyromagnetic ratio of the NV centre; n,

E and γE are the spatial density, spin and gyromagnetic ratio of species E; and we

have replaced the sum by an integral due to the large numbers of spins present. The

integral has been taken from RE =
(

3
4πn

)1/3
, which is the radius of the largest possible

sphere in which we expect to find less than one spin impurity.

Typically, the species encountered will be the 1.1% abundant 13C isotope, and

in some cases, electron spins of naturally occurring N impurities at roughly ppm

concentrations. In either case, both species give rise to an RMS zeeman shift of order√
⟨b2⟩ ∼ 1− 10MHz.

Furthermore, we assume that there is an additional zero-mean shift due to the

strong hyperfine coupling between the NV electron spin and the nuclear spin of its

nitrogen atom, which may be either spin-1 or spin-1
2
, with isotopic abundances of

99.64% and 0.36% respectively. Despite its relatively low natural abundance, we

mention 15N here since it is specifically chosen for magnetic resonance applications due

to its much narrower NMR linewidth and lack of a quadrupole moment as compared

with the spin-1 14N . Note that we have essentially assumed that the bath adopts a
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√
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is reduced from 4 to 2 to 1MHZ, the individual peaks become increasingly apparent.
(c) Full ODMR spectrum including both

∣∣ 0⟩↔ ∣∣±1
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quasi-static behaviour, where each particular realisation of b is considered static, but

we sample all possible realisations of b when computing the ensemble average. This

approximation is valid since the timescales of both the Rabi oscillations and the NV

polarisation are much faster than the fluctuation rate of the axial coupling to the

bath (typically of order kHz or less).

The ensemble average of the contrast is then

⟨
CODMR

⟩
=

1

2
√
2π ⟨b2⟩

∫
ω2
x

ω2
x + 2 (δT − b)2

exp

[
−(b− ⟨b⟩)2

2 ⟨b2⟩

]
db.

Note that this integral has no closed-form solution, however we may investigate its

asymptotic limits for the typical case where b ≪ ωx (in experimental situations, we

typically have b ∼ 1− 10MHz and ωx ∼ 100MHz), from which we find

CODMR ∼ ω2
x

2 (ω2
x + 2δ2T )

+
2bδTω

2
x

(ω2
x + 2δ2T )

2
+
b2 (6δ2ω2

x − ω4
x)

(ω2
x + 2δ2) 3

+O
{
b3
}
,

giving an ensemble average of

⟨
CODMR

⟩
∼ ω2

x

2ω2
x + 4δ2T

−
⟨
b2
⟩ ω2

x (ω
2
x − 6δ2T )

(ω2
x + 2δ2T )

3
, (3.2.14)

and showing a fractional contrast change of

∆⟨C⟩
⟨C⟩

∼ 2
⟨
b2
⟩ (ω2

x − 6δ2)

(ω2
x + 2δ2) 2

, (3.2.15)

corresponding to a fractional reduction in the peak height (δT = 0) of 2 ⟨b2⟩ /ω2
x, and

an increase in the heights of the distribution tails (δT ≫ ωx) of 3 ⟨b2⟩ /δ2T . As such,

we conclude that the presence of the spin bath has resulted in a broadening of the

ODMR response to the frequency of an oscillatory microwave field. These effects are

illustrated in figure 3.3(a).

Finally, we add the shifts due to the nuclear spin of the 14N nuclear spin, as shown

figure 3.3(b). To deduce the splittings, we refer back to the relevant terms of the full
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NV Hamiltonian (equation 3.2.2), which implies that the NV spin will experience

mean axial shifts of 0 and ±AN,z, resulting in a translation of the ODMR by the

same amount. The full ODMR spectrum including both
∣∣ 0⟩ ↔ ∣∣±1

⟩
transitions, as

split by a static field of 50MHz, is shown in figure 3.3(c).

Including optical polarisation

The above interaction of the NV centre with the microwave field alone constitutes

an idealised case in which the presence of the readout laser field has no effect on

the NV centre. In reality this is not possible, since the laser must cause the NV

centre to polarise into the
∣∣ 0⟩ state in order to produce the photons required for

the measurement process. Rather than go into unnecessary detail about the true

mechanism behind this process (see [MDH11] for and extensive overview), we will

simply add a Linbladian relaxation term to the evolution of the density matrix to

model the laser induced population transfer from the |+ 1⟩ state to the | 0⟩ state,

dρ

dt
= −i

[
H, ρ

]
+D, (3.2.16)

where the Lindbladian operator describing the population transfer is given by [BP06],

Di = −Γ

2

(
2ρ11 ρ10

ρ01 −2ρ11

)
, (3.2.17)

and Γ is the population transfer rate, or polarisation rate, from the
∣∣+1

⟩
state into

the
∣∣ 0⟩ state.
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The equations of motion for the elements of the density matrix are then

d

dt
ρ11(t) = −Γρ11 +

i

2
√
2
ωxρ10e

itδ − i

2
√
2
ωxρ01e

−itδ, (3.2.18)

d

dt
ρ10(t) =

i

2
√
2
ωxe

−itδρ11 −
1

2
Γρ10 −

i

2
√
2
ωxe

−itδρ00, (3.2.19)

d

dt
ρ01(t) = − i

2
√
2
ωxe

itδρ11 −
1

2
Γρ01 +

i

2
√
2
ωxe

itδρ00, (3.2.20)

d

dt
ρ00(t) = Γρ11 −

i

2
√
2
ωxρ10e

itδ +
i

2
√
2
ωxρ01e

−itδ, (3.2.21)

which may be reduced to

d3

dt3
ρ00 + 2Γ

d2

dt2
ρ00 +

1

4

(
5Γ2 + 4δ2 + 2ω2

x

) d

dt
ρ00 +

Γ

4

(
Γ2 + 4δ2 + ω2

x

)
ρ00

=
Γ

8

(
2Γ2 + 8δ2 + ω2

x

)
. (3.2.22)

By seeking solutions of the form ρ00 = Aeλt, we obtain

ρ00 =
etλ2 (ω2

x − 4λ3λ1)

4 (λ1 − λ2) (λ2 − λ3)
+

etλ1 (ω2
x − 4λ2λ3)

4 (λ1 − λ2) (λ3 − λ1)

+
etλ3 (ω2

x − 4λ1λ2)

4 (λ3 − λ1) (λ2 − λ3)
+

1

2

2Γ2 + 8δ2 + ω2
x

Γ2 + 4δ2 + ω2
x

. (3.2.23)

The full solution for arbitrary Γ and t is straightforward, but rather unsightly and

not particularly enlightening, however we note that in all scenarios the steady state

result is the same. In the case of low laser power, we expand the λi for small Γ, giving

λ1 = −Γ

(
1

2
+

δ2

2δ2 + ω2
x

)
, (3.2.24)

λ2 = −Γ

(
ω2
x/4

2δ2 + ω2
x

+
1

2

)
+ i

√
δ2 +

ω2
x

2
, (3.2.25)

λ3 = −Γ

(
ω2
x/4

2δ2 + ω2
x

+
1

2

)
− i

√
δ2 +

ω2
x

2
, (3.2.26)
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and in the case of high laser power, where Γ ≫ ωx, we have

λ1 = −Γ

2
− ω2

2Γ
− iδ, (3.2.27)

λ2 = −Γ +
ω2

Γ
, (3.2.28)

λ3 = −Γ

2
− ω2

2Γ
+ iδ. (3.2.29)

As we can see, the presence of even a weak laser field causes the oscillating terms to

decay on a timescale of ∼ 1/Γ, leaving only the static term in equation 3.2.23. This

is somewhat different to the case of having no laser field (as discussed above) where

the average was calculated by integrating over the persistent oscillating terms. The

steady state contrast in the presence of the laser field is then

CODMR = 1− 1

2

2Γ2 + 8δ2 + ω2
x

Γ2 + 4δ2 + ω2
x

=
ω2
x/2

ω2
x + Γ2 + 4δ2

, (3.2.30)

showing that the presence of the laser field acts to broaden the ODMR spectrum

and reduce its contrast. Instead of the width being defined by the microwave power

alone, ω2
x, the spectrum is now also broadened as a result of the optical power, which

is proportional to Γ2. The FWHM of the ODMR spectrum is now 1
2

√
ω2
x + Γ2.

3.2.2 Rabi cycling

A Rabi cycle employs the same experimental apparatus and physical conditions as the

ODMR protocol outlined above, yet differs in the manner in which both the laser and

microwave fields are applied. Instead of being applied to the NV continuously, the

laser is pulsed only after specified fixed periods of microwave-driven evolution to read-

out the subsequent quantum state of the NV spin, and the microwave field is employed
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at a fixed, resonant frequency rather than being swept across a broad frequency range

as in the ODMR case. The microwave frequency is chosen by examining the ODMR

spectrum to find the frequency giving rise to the maximum possible contrast. As there

is no laser field present during the microwave driven evolution, a Rabi cycle provides

a much more natural measure of the environment surrounding the NV centre.

Specifically, a Rabi cycle involves an initial laser pulse to polarise the NV in the

| 0⟩ state. The laser is then turned off and a microwave pulse is used to drive the

spin state between one of the available spin transitions, say | 0⟩ ↔ | + 1⟩, for a fixed

time interval, t. A final laser pulse allows us to measure the population of the | 0⟩

state and acts to repolarise the spin state for the next measurement. By repeating

this for different intervals of t, and then repeating many times for each value of t, we

may build up a shot noise-limited ensemble of the time dependent population of the

| 0⟩ state under the influence of the microwave field. As opposed to the continuous

(CW) ODMR method, Rabi cycling represents the first of our Pulsed Wave (PW), or

initialise-evolve-measure, spin resonance protocols.

From the ODMR analysis above, the time dependent population of the | 0⟩ state

for a given detuning, δ, is described by

ρ00(t) = 1− ω2
x

ω2
x + 2δ2

sin2

(
t

2

√
ω2
x

2
+ δ2

)
, (3.2.31)

where, again, we have assumed that the | 0⟩ ↔
∣∣−1

⟩
transition is so far detuned that

the |−1⟩ state is never populated (again, this is the subject of chapter 7). To compute

the ensemble average, we again make the quasi-static approximation, which is valid in

this case because the time required for a typical Rabi signal to decay (≈ 10µs) is much

less than the timescale on which the effective axial 13C field fluctuates (≈ 1− 10ms),

thus, over the course of each individual quantum trajectory of its spin state, the NV
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sees a static field, however the amplitude of this field changes over long timescales,

thus ensuring the NV samples the entire ensemble over some 105 − 106 repetitions

for each time interval, t. Such an approximation would not be valid in the case of

an electron spin bath, whose fluctuation rate is of the same order as the detuning

(≈ 1MHz). For a solution to this case, we refer the interested reader to the work in

[DFHA09].

To compute the ensemble average of expression 3.2.31, we use the same probability

density for the normally distributed detuning as was employed in the ODMR case,

P(δ) =
1

σ
√
2π

1

2IN + 1

2IN+1∑
i=1

exp

(
−(δ − µi)

2

2σ2

)
, (3.2.32)

where the µi correspond to the equally probable hyperfine shifts induced by the

coupling of the NV spin to the spin-IN proximate nitrogen atom, and σ is the spread

in these shifts due to the coupling to the surrounding bath. Depending on the isotope,

these hyperfine shifts may take values of µi = {0,±AN}, or µi = {±AN}, where

AN ≈ 2MHz [JW06]. The resulting integral of equation 3.2.31 over this distribution

has no known solution for general δ; however, as typical microwave field strengths are

ωx ∼ 100MHz and δ ∼ 1− 10MHz, we may expand equation 3.2.31 to second order

in δ/ωx, giving

ρ00(t) ≈ 1−
(
1− 2

δ2

ω2
x

)
sin2

[
ωxt

2
√
2

(
1 + 2

δ2

ω2
x

)]
, (3.2.33)

which we integrate over the probability distribution above to give

⟨
ρ00
⟩
Rabi

=
1

2
+

1

2IN + 1

2IN+1∑
i=1

1

2

(
2σ4t2

ω2
x

+ 1

)−1/4

exp

(
− t2µ2

iσ
2

2t2σ4 + ω2
x

)
× cos

[
tωx√
2

(
µ2
i

2t2σ4 + ω2
x

+ 1

)
+ tan−1

(
tσ2

√
2ωx

)]
. (3.2.34)
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This expression exhibits a number of interesting characteristics. Firstly, the popula-

tion with a non-zero hyperfine shift, µi ̸= 0, experience an initially Gaussian decay

to a final amplitude of exp
(
− µ2

i

2σ2

)
, which is then damped further by the (hyperfine

state independent) power law decay. The component having µi = 0 experiences only

the power law decay, and therefore remains visible for much longer. This can be seen

in figures 3.4 (a)&(b). This power law decay is only valid for as long as the N nuclear

spin remains polarised, beyond which we would expect further Gaussian decay for

the same reasons as the other two components, as discussed above.

Secondly, as the system evolves, a phase difference of

∆ϕ =
tωx√
2

µ2
i

2t2σ4 + ω2
x

(3.2.35)

develops, resulting in an interference between the oscillatory components associated

with each of the µi. Depending on the relative magnitudes of the parameters describ-

ing the bath, this can lead to a dip in the overall population, from which it later

recovers (figure 3.4 (d)). These dips have been observed experimentally in [HDF+08].

3.2.3 Free evolution- relaxation and dephasing

In the protocols discussed above, we have monitored the evolution of the NV spin

under the influence of a laser field and/or a microwave field (in the case of ODMR

and Rabi cycles respectively). Despite their utility, these methods arguably do not

give the most accurate insight into the natural spin environment surrounding the NV

centre, as the presence of the control fields obscure many of the physical processes

taking place. In the following section, we consider protocols designed to measure the

influence of the environment on the NV as apart from the external influence of these

laser and microwave fields.
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Figure 3.4: (a) Individual population components of a Rabi cycle corresponding to
hyperfine shifts µi = 0 (green) and µi = ±AN (blue) arising from the coupling between
the NV spin and the spin of a proximate nitrogen nucleus. The non-zero components
exhibit a much faster initial Gaussian decay. Parameter values are σ = 4MHz,
AN = 2MHz and ωx = 10MHz. (b) As in (a), but with σ = 1MHz, AN = 2MHz and
ωx = 20MHz. The power law decay is comparably slower, as the value of σ/ωx is less
than that of (a). The Gaussian decay is also slower because µ/ωx is less than that
of (a), however the final value is also much less because µ/σ is greater. (c) Average
over all three nitrogen hyperfine states for the components shown in (a). (d) Average
over all three nitrogen hyperfine states for the components shown in (b). A dip in
the overall population arises due to interference between the individual population
components associated with the three hyperfine states.
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Measuring the relaxation time (T1)

Relaxation protocols are designed to measure the time dependent projection of the

spin along its quantisation axis, and thus investigate the manner in which the spin

exchanges energy with its environment. The timescale on which this projection de-

cays from its initial non-equilibrium state is referred to, by analogy with the NMR

literature, as T1. In the case of an NV centre, the initial state is prepared by op-

tically polarising the spin into the | 0⟩ state and simply letting it evolve for given

amount of time before measuring the | 0⟩ state population. In this way, a T1 focused

protocol measures the time required for the NV polarised in the | 0⟩ state to reach a

state of equilibrium between all 3 spin sublevels. The population of each sublevel at

equilibrium will depend on the relative rates of the transitions between each state.

Given the simplicity of the relaxometry protocol and the lack of an applied mi-

crowave field, it may seem odd that we have delayed its discussion until after the

comparatively complex Rabi protocol. However, the T1 process may be described

using a very similar formalism to what was developed for the Rabi case.

The Rabi protocol measures the rate at which the longitudinal spin projection

changes in response to a single applied frequency, ω (ie, the microwave frequency).

A general fluctuating field however will possess a distribution of frequencies, each of

which couples to the NV spin depending on its relative proportion and respective

detuning. Specifically, to determine the response of the NV to an arbitrary field,

we compute the average of equation 3.2.31 over the field’s spectral density. Clearly

the component of the field that has the largest effect on the evolution of the NV

spin will be that for which δ = 0, implying that the T1 protocol essentially ‘filters’

the spectral component matching the energy separation of the spin states (the filter
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function being the Lorenztian dependence on the detuning). We do not discuss this

in detail here, however, as there are a number of other competing factors which

determine the width of this filter function and hence the rate at which the NV spin

will relax. To illustrate this briefly, consider a particular environment that has caused

the originally polarised NV spin to evolve having a non-zero lateral projection of its

spin vector. As per the discussion of the spin bath in chapter 2, the rates at which

longitudinal and lateral spin projections decay will in general differ, hence even T2

processes can have a significant impact on the longitudinal spin projection. Thus

we must also understand the behaviour of the lateral spin projection in response to

its environment, as discussed in the following. We return to the full discussion of

relaxation processes in chapter 10.

Measuring the dephasing time (T2)

By virtue of the large zero-field splitting of the NV groundstate spin, many of the

processes we are interested in measuring are unable to affect the longitudinal spin

component unless they exhibit dynamic properties at the GHz regime. Thus, following

the initial polarisation into the | 0⟩ state, we need a means by which to rotate the

spin to a state that will be sensitive to environmental processes coupling to Sz. By

employing a 1
4
Rabi cycle, otherwise known as a π

2
pulse, we transform the NV spin

into an equal superposition of | 0⟩ and |+1⟩ states. As the sum of all axial couplings

consititute an effective magnetic field, b(t), to which only the |+1⟩ state is sensitive,

a phase difference will develops between the two states. This phase difference may

then be transformed into a population difference using another π
2
pulse, allowing us

to deduce the phase shift by optically measuring the population of the | 0⟩ state. This
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phase shift is given by ϕ(t) =
∫ t

0
b(t′) dt′, giving a resulting population difference of

ρ00(t) =
1

2
+

1

2
cos(ϕ(t)), (3.2.36)

where we have assumed, for the purposes of this discussion, that the microwave

pulses are instantaneous and result in no excitation of the
∣∣−1

⟩
state. These effects

are treated in chapter 7.

As was the case for the environment-induced detuning in the ODMR and Rabi

protocols above, the value of ϕ(t) at a particular instant in time will be normally

distributed with, by definition, mean ⟨ϕ⟩ and variance ⟨ϕ2⟩. The ensemble averaged

population is then

⟨
ρ00
⟩

=
1

2
+

1

2

1√
2π⟨ϕ2⟩

∫ ∞

−∞
exp

[
−(ϕ− ⟨ϕ⟩)2

2⟨ϕ2⟩

]
cos(ϕ) dϕ

=
1

2
+

1

2
e−⟨ϕ2⟩/2 cos⟨ϕ⟩. (3.2.37)

Thus we may relate the statistics associated with the phase shifts directly to the

dynamic statistics of the magnetic field, by noting that

⟨ϕ⟩ =

⟨∫ t

0

b(t′) dt′
⟩

=

∫ t

0

⟨
b(t′)

⟩
dt′,

⟨
ϕ2
⟩

=

⟨∫ t

0

b(t′) dt′
∫ t

0

b(t′′) dt′′
⟩

=

∫ t

0

∫ t

0

⟨
b(t′)b(t′′)

⟩
dt′ dt′′,

where we recognise
⟨
b(t′)

⟩
to be the average static Zeeman shift of the NV spin,

and
⟨
b(t′)b(t′′)

⟩
to be the dynamic autocorrelation function of the effective axial field

between times t′ and t′′. Because this protocol essentially measures the decay of the
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Figure 3.5: (a) Free Induction decay (FID) signal of the NV spin due to a proximate
nuclear spin bath. Oscillations are due to the interaction with the nuclear spin of
the adjacent nitrogen atom, and the overall Gaussian decay is due to a quasi-static
(sub-kHz internal dynamics) 13C nuclear spin bath of 1MHz RMS amplitude. (b)
FID signal with the same amplitude as in (a), but for an electron spin bath. The
much faster internal dynamics of an electron spin bath (occurring on a MHz scale)
result in the transition to an exponential decay within the overall FID time.

lateral components of the NV spin, with no influence from the microwave or laser

fields during its free evolution, it is referred to as a Free-Induction Decay (FID), or

sometimes Ramsey interferometry.

Typically in the literature (see the discussion in chapter 2), the autocorrelation

function,
⟨
b(t′)b(t′′)

⟩
is approximated by a simple decaying exponential,

⟨
b(t′)b(t′′)

⟩
=

⟨
b2
⟩
exp

(
−|t′ − t′′|

Tc

)
, (3.2.38)

where Tc is referred to as the correlation time of the environment. This approximation

is, in fact, not valid in many cases, however a detailed analytic discussion regarding

this issue is deferred until chapter 12. For the purposes of this illustration we will

assume that equation 3.2.38 holds.

If we consider again the case of the 13C nculear spin bath, we have that Tc ∼ 10ms,
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whereas
√⟨

b2
⟩
∼ 1MHz. As such, the FID is effectively the result of a normally

distributed ensemble of quasi-static realisations of b (see equation 3.2.32), giving

⟨
ρ00
⟩
FID

≈ 1

2
+

1

4IN + 2

2IN+1∑
i

exp

[
−1

2

⟨
b2
⟩
t2
]
cos (µit) , (3.2.39)

The decay rate, ΓFID ≡
√⟨

b2
⟩
/2 is referred to as the inhomogeneous linewidth, and

the decay time is denoted T ∗
2 = 1/ΓFID, by analogy with the FID time of the lateral

spin projection from the NMR literature.

In the case of an electron spin bath, we again have
√⟨

b2
⟩
∼ 1MHz, however

now we also have that Tc ∼ 1µs, hence the bath becomes ‘motionally narrowed’

as a result of the comparatively rapid bath dynamics (owing to the much stronger

electron-electron couplings in the environment), and the FID is now enveloped by a

simple exponential, as given by

⟨
ρ00
⟩
FID

≈ 1

2
+

1

4IN + 2

2IN+1∑
i

exp
[
−
⟨
b2
⟩
Tct
]
cos (µit) . (3.2.40)

Despite providing an accurate measure of both the static hyperfine shifts due to

the nitrogen nuclear spin and the RMS strength of the quasi-static 13C nuclear spin

field, the FID protocol does not grant us an insight of the dynamic structure of

the environment because it decays on timescales much shorter than the timescales

associated with these dynamics (note that there is no mention of the quantity Tc in

equation 3.2.39). To investigate the dynamic properties of the 13C environment, we

must employ more complicated pulse sequences to remove the effects of the static

components of the bath (See figure 3.5(b)).
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Multi-pulse sequences- dynamic decoupling

The simplest multi-pulse sequence we can imagine to refocus static noise is the Spin-

Echo (SE), or Hahn-echo, pulse sequence. Such a sequence involves the two π
2
pulses

from the Ramsey sequence, but employs an additional bit flip at the halfway point of

the evolution (essentially, this is a concatenation of two FID pulse sequences). This

bit-flip is achieved using a microwave pulse of twice the duration of the π
2
pulses, and

is thus referred to as a π pulse.

Because the effect of the π pulse is to invert the amplitudes of the | 0⟩ and |+ 1⟩

states, its application essentially changes the sign of the effective axial magnetic field

seen by the NV centre. As such, the relative phase accumulation becomes

ϕSE =

∫ t/2

0

b(t′) dt′ −
∫ t

t/2

b(t′) dt′, (3.2.41)

the most immediate consequence of which is that the oscillations due to persistent

static shifts are removed due to ⟨ϕSE⟩ = 0. Of more importance however, is the effect

on the dynamic components,⟨
ϕ2
SE

⟩
=

[∫ t/2

0

dt′ −
∫ t

t/2

dt′

][∫ t/2

0

dt′′ −
∫ t

t/2

dt′′

] ⟨
b(t′)b(t′′)

⟩
= −2

⟨
b2
⟩
T 2
c

[
3− t

Tc
+ exp

(
− t

Tc

)
− 4 exp

(
− t

2Tc

)]
≈ ⟨b2⟩ t3

4Tc
, (3.2.42)

giving a spin-echo population of⟨
ρ00
⟩
SE

≈ exp

[
−
⟨
b2
⟩

8Tc
t3

]
. (3.2.43)

This implies that the SE signal decays on a timescale of T2 = 2
(
Tc/
⟨
b2
⟩)1/3 ≈ 43µs

(using
√

⟨b2⟩ = 1MHz and Tc = 10ms), representing a factor of 19 improvement over

the coherence time of an FID sequence.
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Though it serves as a useful exercise in the relevant physics, the expression is not

an accurate depiction of the true story. Despite the accuracy of a pure exponential

autocorrelation function in predicting T ∗
2 , from experiment, we know that the appli-

cation of a π pulse typically yields (conservatively, we remark) T2 times of around

200-400µs. These problems are addressed in detail in Chapters 4, 6 and 12, how-

ever we merely remark here that if we replace the simple exponential form of the

autocorrelation with a Gaussian form,

⟨
b(t′)b(t′′)

⟩
=

⟨
b2
⟩
exp

[
−
(
t′ − t′′

Tc

)2
]
, (3.2.44)

and apply the same method, we find the phase variance to be

⟨
ϕ2
SE

⟩
=

⟨
b2
⟩
Tc

(√
πt
[
1− 2erf

(
t

2Tc

)
+ erf

(
t
Tc

)]
+Tc

[
4 exp

(
− t2

4T 2
c

)
− exp

(
− t2

T 2
c

)
− 3
])
,

which yields the same expression for T ∗
2 as in the simple exponential case, however for

spin-echo we obtain T2 = 2
[
T 2
c /
⟨
b2
⟩]1/4

= 200µs, showing instead an improvement

of a factor of ∼280, as consistent with the experimental case. Even if we were to

retain the pure exponential and simply argue for a redefinition of Tc, we would still

require Tc ∼ 8 s to provide results that are consistent with experimental observations,

which is nonsense. Furthermore, Nuclear Magnetic Resonance (NMR) experiments

conducted on pure 1.1% 13C diamond crystals show linewidths in the 1-10 kHz range

[LBP+94], as consistent with Tc ∼ 1ms (the slight discrepancy was attributed to

electronic paramagnetic centres, although the species was not identified). The choice

of autocorrelation function has been the source of some debate for decades, however,

as we will discuss in chapter 12, the concept of an autocorrelation function has little
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merit in the presence of a central spin strongly coupled to its surrounding environ-

ment.

These techniques may be extended to include multiple π pulses, with the free

evolution intervals between each pulse defining the sequence in question. Typical

examples include

• Carr-Purcell-Meiboom-Gill (CPMG)

During a total evolution time of t, the jth π pulse in a total of n pulses is applied

at

tn,j =
t

n

(
j − 1

2

)
. (3.2.45)

• Uhrig Dynamic Decoupling (UDD) [Uhr07]

During a total evolution time of t, the jth π pulse in a total of n pulses is applied

at

tn,j = t sin2

(
jπ

2n+ 2

)
. (3.2.46)

• Concatenated spin-echo

The sequence is constructed by using a concatenated series of τ − π − τ − π

sequences, where each successive level is reached by sandwiching this sequence

inside the free-precession intervals of the previous level. Note that the uninter-

rupted application of an even number of π pulses results in a full rotation, and

is thus disregarded. By the same reasoning, an odd number of π pulses is just

treated a single π pulse.

CPMG and UDD protocols will be the primary focus of chapter 6.



Chapter 4

Sensing of Fluctuating Nanoscale
Magnetic Fields via Dephasing of
Electron Spins in solids

New magnetometry techniques based on Nitrogen-Vacancy (NV) defects in diamond

allow for the detection of static (DC) and oscillatory (AC) nanoscopic magnetic fields,

yet are limited in their ability to detect fields arising from randomly fluctuating (FC)

environments. We show here that FC fields restrict DC and AC sensitivities, and that

probing the NV dephasing rate in an FC environment permits the characterisation

of FC fields inaccessible to DC and AC techniques. FC sensitivities are shown to be

comparable to those of AC magnetometry, and require no additional experimental

overheads or sample control. The material of this chapter has since been published

in [HCHH09].
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4.1 Introduction

The exploitation of controlled quantum systems as ultra-sensitive nanoscale detectors

has tremendous potential to advance our understanding of complex processes occur-

ring in biological and condensed-matter systems at molecular and atomic scales (see

section 2.3 for a brief overview of spin based magnetometry). However, many im-

portant biological and condensed matter systems exhibit non-sinusoidal fluctuating

magnetic fields with extremely low or zero mean values (figure 4.1). An important

question is therefore to what extent these quantum based magnetometry techniques

are applicable to such situations. In this chapter we address this by quantifying the

detection sensitivities for these modes for samples with fluctuations characterized by

the RMS field and dominant spectral frequency. The results indicate that by probing

the dephasing rate of a spin qubit placed in such environments one can characterize

the underlying fluctuation rates and RMS field strengths that would be otherwise

inaccessible with the use of DC and AC magnetometry techniques, thereby opening

the way for non-invasive nanoscale imaging of a range of biological and condensed

matter systems using NV centres in diamond.

The theory behind the detection of magnetic fields using quantum systems is heav-

ily reliant on the phase estimation program of quantum metrology, particularly the

determination of coupling parameters that are constant in time. In the context of

DC magnetometry, this corresponds to measurement of the first moment (the mean)

of the magnetic field strength. For zero mean fields, complex microwave control pulse

sequences are necessary. For fields exhibiting oscillatory (AC) time dependence with
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Figure 4.1: Schematic of a scanning NV qubit magnetometer/decoherence probe for
the detection of nanoscale field fluctuations. (a) NV-centre diamond lattice defect.
(b) NV spin detection through optical excitation and emission cycle. (c) Microwave
control of the NV spin state and 532 nm optical pulse for read-out. (d) Simulated
magnetic field signals at the NV probe corresponding to regions I-IV of an inho-
mogeneous test sample with different fluctuation amplitudes and frequency spectra.
(e) The corresponding NV ground state populations show that the regions can be
distinguished by the dephasing information: I: Strong, rapid fluctuations → fast ex-
ponential dephasing. II: Strong, slow fluctuations → fast Gaussian dephasing. III:
Weak, rapid fluctuations → slow exponential dephasing. IV: Weak, slow fluctuations
→ slow Gaussian dephasing.



51

which either a spin-echo or CPMG [MG58] sequence may be synchronised, sensitivities

are predicted to be as low as 3 nTHz−1/2 [TCC+08], based on the standard quantum

limit. Excellent agreement between theory and experiment has been demonstrated in

[MSH+08]. Such techniques require accurate knowledge of the field dynamics which

may not be available, or more commonly, the field may exhibit a stochastic time de-

pendence. Examples include nuclear dipole fields of ion channels [Hil05] (figure 4.2(a))

and lipid bi-layers in biological cell membranes [PKH+03], Overhauser fields in Ga-As

quantum dots [RTL+08], and even self-diffusing water molecules [TV02, RS71] (fig-

ure 4.2(b)). In what follows, we investigate the effects of a more general fluctuating

(FC) field on the dephasing of a spin qubit as the primary detection mechanism, and

the implications for the characterisation of the magnetic field from the surrounding

environment. In this sense, we are estimating the second moment of the field strength,

and the corresponding temporal dynamics.

4.2 Modeling the response of a spin qubit to a ran-

domly fluctuating magnetic field

A spin qubit placed in a randomly fluctuating magnetic environment will experience

a complex sequence of phase kicks, leading to an eventual dephasing of the population

spectrum. For an NV centre, this will be in addition to the intrinsic sources of de-

phasing, which are due to paramagnetic impurities in the diamond lattice [CDT+06].

The dephasing rate can be quantified via repeated projective measurements of the

qubit state, and the corresponding dephasing envelope, L(τ), can be determined via

a suitably chosen quantum state reconstruction technique. We use the technique
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of Hamiltonian characterisation [CSG+05] rather than quantum tomography tech-

niques, as it requires only a single measurement basis yet is robust in the presence of

dephasing [CGO+06].

The motivation for the environment model used here comes from consideration

of magnetic dipoles in motion. Other models in which a two level system is coupled

to a bath of bistable fluctuators have been previously considered [SSMM05, SMS06,

PFFF02, GABS06]. These models, however, do not capture the dephasing effects

due to gradual transitions between environmental states in slowly fluctuating fields.

Later we will show this to be of particular importance in the case of spin-echo based

experiments. Additionally, these models require a large number of fluctuators to

model a continuous signal. In contrast, we wish to consider the dephasing effects of

small numbers of spins in motion.

Consider a qubit with gyromagnetic ratio γp undergoing a π
2
− τ − π

2
Ramsey

sequence in the presence of a classical FC magnetic field, B(t). An example of such a

field due to a uni-directional spin current is shown in figure 4.2(a), and that of a bath of

self-diffusing spins in figure 4.2(b). The field has mean ⟨B⟩ ≡ B0, standard deviation√
⟨B2⟩ − ⟨B⟩2 ≡ B′, and typical fluctuation rate fe ≡ 1/τe, where τe is the self

correlation time of the field (figure 4.2(c)). This gives rise to two natural frequency

scales, given by ω0 = γpB0 and ω′ = γpB
′. The average precession frequency of

the qubit is set by ω0, and is decoupled from all dephasing effects for cases where

ω′, fe ≪ ω0. Additional relaxation processes may dominate the qubit evolution when

this condition is violated, however such cases are not considered here since we are

interested in the characterisation of weak magnetic fields. The nature of the dephasing

will depend on the fluctuation rate of the environment, fe, or more specifically the
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Figure 4.2: Simulated magnetic field traces, B(t)/B′, for (a) a channel of dipoles in
unidirectional motion, and (b) a self diffusing dipole bath. (c) Temporal correlation
function ⟨B(t)B(t′)⟩/⟨B2⟩ . Time axes are rescaled by τe.

magnitude of the quantity defined by Θ ≡ fe/ω
′.

4.2.1 Rapidly fluctuating fields

In the case of Θ ≫ 1, or fast-fluctuation limit (FFL), the qubit will experience

many environmental fluctuations during its natural timescale. Whilst B′ need not

necessarily be normally distributed, the accumulated phase error of the qubit at some

time t ≫ 1/fe will be, by way of the Central Limit Theorem. As such, the variance

of the phase error at time t≫ 1/ω′ will be ⟨∆ϕ2⟩ ∼ tγ2pB
′2/fe, giving rise to an FFL

dephasing rate of

Γfast (B
′, fe) =

γ2pB
′2

2fe
. (4.2.1)

This is akin to the motional narrowing result from NMR and reproduces the ubiqui-

tous exponential dephasing envelope given by Lfast(t) = exp (−Γfastt).
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4.2.2 Slowly fluctuating fields

In the slow-fluctuation limit (SFL), where Θ ≪ 1, we note that the magnetic field

may be locally approximated by a Taylor expansion in t about some initial time t0:

B(t) =
∑N

k=0
1
k!

dkB
dtk

∣∣∣
t0
(t− t0)

k ≡
∑N

k=0 ak (t− t0)
k, where each of the ak has a specific

statistical distribution containing information about the kth order derivative of B(t),

and thus gives rise to a different dephasing channel.

For the special case where the ak are normally distributed with mean µk and

variance σ2
k (as consistent with random dipole motion), the resulting density matrix

following the free evolution time τ , but prior to the second π/2 pulse is defined by

ρ11 = ρ22 = 1/2, and ρ12 = ρ∗21 =
∏∞

k=0 L
(k)
slow(τ)Ω

(k)
slow(τ); where

L
(k)
slow(t) = exp

[
−
(
Γ
(k)
slowt

)2k+2
]
, (4.2.2)

and

Ω
(k)
slow(t) = exp

[
−i
(
ω
(k)
slowt

)k+1
]
. (4.2.3)

Thus we see the emergence of a hierarchy of dephasing and beating channels, with

the dephasing rates and beat frequencies of the kth channel given by

Γ
(k)
slow =

(
1√
2

σkγp
k + 1

)1/(k+1)

, (4.2.4)

and

ω
(k)
slow =

(
µkγp
k + 1

)1/(k+1)

, (4.2.5)

respectively. In the case of the zeroth order channel this corresponds to the rigid

lattice result from NMR, and we have σ2
0 = ⟨B2⟩−⟨B⟩2. This effect will be suppressed
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by a spin echo pulse sequence. For the first order channel, we may approximate

σ2
1 ∼ (⟨B2⟩ − ⟨B⟩2) f 2

e .

The relative contributions of each channel to the overall dephasing rate of the

qubit depend explicitly on the dynamics of the field, however, dominance of the

zeroth order channel (ie Γ
(0)
slow > Γ

(j)
slow, ∀ j ≥ 1) is a necessary and sufficient condition

for the system to exist in the slow fluctuation regime, Θ ≪ 1. This justifies the use

of the Taylor expansion, since the resulting polynomial may be well approximated by

a low-order truncation.

4.2.3 Intermediate regime

The intermediate regime of Θ ∼ 1 is more complicated. Figure 4.3(a) shows dephasing

envelopes for various values of Θ. For times much longer that τe, pure exponential

dephasing behaviour is observed in all cases (with dephasing rate Γfast), however

fast fluctuating environments still exhibit slow (Gaussian) dephasing behaviour on

timescales τ where ω′τ <
√
2/Θ. If Θ is large, contributions to L from the Γ

(k)
slow will

decay rapidly. The abrupt transition from Lslow → Lfast is shown more clearly in the

corresponding insert.

4.3 Sensitivity

Before proceeding to the specific NV implementation, we summarize the different field

detection protocols. While DC detection involves letting the qubit evolve under the

influence of a constant, or near static, background field, AC detection requires driving

the sample at a particular frequency ν while timing the spin-echo pulse synchronously.
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In both cases the qubit phase shift, proportional to the time integral of the magnetic

field, is detected. For FC fields, the accumulated phase is instead random, and

detection is achieved via a change in the qubit decoherence rate[CH09], which can be

obtained from a spin-echo measurement in a similar manner to the AC case, albeit

with no synchronization required.

For the purpose of comparison with existing spin-based magnetometer proposals,

we take the NV centre as our example qubit. The Hamiltonian used to describe the

time evolution of an NV-centre is given by H = S⃗ ·D · S⃗ + ~γpB · S⃗ +Hother, where

Hother describes higher order effects such as hyper-fine splittings, etc. which can be

ignored in the present context. We consider weak external fields such that |γpB′| ≪ D,

thereby ensuring the crystal-field splitting tensor, D, sets the quantisation axis of the

NV centre, and that ω′ ≪ ω0.

The shot-noise-limited DC sensitivity for an NV-based magnetometer subject to a

Ramsey-style pulse sequence is given by [TCC+08] ηdc ≡ Bmin

√
T ≈ (γpC

√
τ)

−1
,where

√
T and C represent the combined effects of spin projection and photon shot noise

for Ns measurements (C → 1 for the ideal case), τ is the free evolution time of the

qubit, and T = Nsτ is the total averaging time. Dephasing times due to nearby

paramagnetic lattice impurities will in general be different for different centres and

will thus require individual characterisation. For comparison with [TCC+08], we take

τ = T ∗
2 ∼ 1µs. We emphasise that the expression for ηdc applies solely to the de-

tection of DC magnetic fields where the dephasing of the qubit is exclusively due to

intrinsic crystal effects. If the sample produces a fluctuating field of sufficient am-

plitude, the dephasing time (1/Γ) may be shorter than T ∗
2 , resulting in poorer static

field sensitivity. In this context, ηdc refers to the sensitivity with which the mean
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Figure 4.3: (a) Plot of simulated dephasing envelopes for Ns = 104 runs, show-
ing agreement with Eqs. (4.2.1) & (4.2.2). Time is in units of (γpB

′)−1. (insert)
Zoomed plot showing that fast fluctuating environments still exhibit non-exponential
dephasing for short timescales τ : ω′τ <

√
2/Θ. (b) Magnetic field sensitivities

of DC (blue) and AC (red-dashed) protocols as a function of fe for different con-
tours of B′. The largest effect on ηac comes from FC regimes in which Θ ∼ 1,

away from which ηac → π exp(τ/T2)3

2γpC
√
τ

= 3nTHz−1/2. Assumed parameter values are

T ∗
2 = 1µs, T2 = 300µs, andC = 0.3.

field, ⟨B⟩, may be measured as the field fluctuates over the course of the experiment.

To gain insight into the effect of FC fields on the DC field sensitivity, we consider

again a π
2
− τ − π

2
sequence. The DC sensitivity as a function of B′ and fe is shown in

figure 4.3 (b). From this, we see that fluctuating environments can have a dramatic

effect on the DC field sensitivity of an NV based magnetometer, depending on both

field strength and fluctuation frequency.

As detailed in chapter 3, we may extend the dephasing time of the NV-centre to

T2 ∼ 300µs, as dictated by the 1.1% carbon-13 content in the lattice, using coherent

control techniques. The case of perfectly oscillatory magnetic fields, in which the π

pulse coincides with the first zero-crossing of the magnetic field, has been considered
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in detail in [TCC+08], giving AC sensitivities as low as ηac ≈ π exp(τ/T2)3

2γpC
√
τ

≈ 3 nT

Hz−1/2 (figure 4.4(b)). As with DC magnetometry, the AC sensitivity will be strongly

dependent on the FC characteristics of the environment, as shown in figure. 4.3 (b)

as a function of B′ and fe.

We now study the magnetometer’s sensitivity to a more general class of fluctuating

fields via consideration of the induced dephasing rate. For a π
2
− τ

2
− π − τ

2
− π

2

pulse sequence, the probe will show decreased sensitivity to environments for which

fe < 1/τ . For Θ ≫ 1, the effect will be negligible. For Θ ≪ 1, this may appear

problematic, however complete insensitivity only comes with fe → 0. A spin echo

sequence will modify the L
(k)
slow via Γ

(k)
slow 7−→

(
1− 2−k

) 1
k+1 Γ

(k)
slow, thus only the effects

of the zeroth order dephasing channel will vanish. Perturbations on the dephasing

rate may be measured from (1− L)min =
exp[(τ/T2)

3]
C
√
Ns

[TCC+08, CDT+06]. This implies

an optimal free-evolution time of τ ∼ T2/
3
√
6. Thus we find that perturbations on

the 1/T2 dephasing rate as slow as 200 Hz for exponential dephasing and 800 Hz for

Gaussian dephasing may be detected by this method after 1 s of averaging time. By

performing measurements of the total dephasing rate, Γ, both the field variance and

average fluctuation rate may be inferred from Eqs. (4.2.1) & (4.2.4). Of course, the

question remains of which fluctuation regime a given sample system resides in. In

the absence of any prior knowledge of the environment being measured, this question

may be answered via determination of the shape of the dephasing envelope, a task to

which the Hamiltonian characterisation method is well suited [CH09].
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Figure 4.4: (a) Minimum resolvable FC field strength using FC detection protocol,
Bmin, vs environmental fluctuation rate, fe, for T = 1 s averaging time. In contrast to
the AC case, an FC detection requires no prior knowledge of fluctuation timescales.
(b) Minimum resolvable AC field amplitude using AC detection protocol, Bac

min, vs field
oscillation frequency, νe, for T = 1 s averaging time in the absence of environmental
noise (B′ = 0). Here we have assumed that the AC field is initialised in phase with
the probe qubit, and that the π pulse of a spin-echo sequence coincides with the first
zero-crossing of the field.
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4.4 Discussion and conclusions

The optimal FC sensitivity will occur when Θ ∼ 1, since this ensures maximal de-

phasing for a given field variance. Considering the special case of pure exponential

decay, we therefore expect an optimal sensitivity of ηFC = e1/6

Cγp
√
T2

= 1.7 nTHz−1/2.

However, such sensitivity may be difficult to realise due to memory effects in the

fluctuating environment. For systems that satisfy Θ ≫ 1, thus exhibiting long-time

exponential dephasing behaviour, Gaussian dephasing is still exhibited for τ < 1/fe

(figure 4.3(a)). For spin-echo experiments, the effect is worsened as the dominant

contribution to Lslow comes from k = 1. Taking this into consideration, the mini-

mum resolvable field obtained after T = 1 s averaging time is plotted in figure 6.4(a)

against fe. We see that FC field strengths as low as 4.5 nT may be achievable after

T = 1 s averaging time (Ns ∼ 3000), and that the qubit will be sensitive to FC fields

fluctuating on timescales much slower than 1/T2. This is in direct contrast with the

AC case, which shows poor sensitivity to fields oscillating with periods less than T2

(figure 4.4(b)).

We have theoretically investigated the effects of a fluctuating magnetic field on

an NV centre spin qubit. This analysis was used to place new limits on the sensi-

tivity with which the mean field strength may be measured. Furthermore, we have

built upon the idea of decoherence microscopy [CH09] to theoretically demonstrate

the ability of an NV centre to measure field strengths and fluctuation rates of ran-

domly fluctuating magnetic fields. This analysis shows that the methods presented

here require no experimental resources beyond those of existing techniques, no prior

control or knowledge of the external field, and thus may be implemented with current

technology.



Chapter 5

Experimental Investigation:
Ambient Nanoscale Sensing with
Single Spins Using Quantum
Decoherence

In this chapter we discuss an application of the analytic techniques developed in the

previous chapter: the characterisation of physical and chemical properties of spin rich

aqueous solutions. We begin by developing the theory of the different processes to

which the NV will be exposed, and make predictions about its resulting behaviour.

These predictions are validated via an experimental demonstration1 where 45 nm di-

amond nanocrystals containing NV centres are exposed to an aqueous solution of

spin-5
2
Mn2+ ions. The influence of the Mn spins on the NV, resulting from both

freely diffusing and accreted Mn atoms, yielded changes in the NV decoherence rate

of up to 60%. Furthermore, drastic changes in the shape of the decoherence envelope

indicate remarkable changes in the dynamical behaviour of the local environment. We

apply the analytic techniques developed in this chapter to characterise the dynamic

1All NV-based experiments described in this chapter were performed by L.P. McGuinness and
D.A. Simpson at the University of Melbourne. Atomic Force Microscopy (AFM) of the diamond
nanocrystals was performed by B.C. Gibson at the University of Melbourne.
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parameters describing the Mn environment, and use these findings to make conclu-

sions about the physical processes giving rise to these dynamic processes, specifically

ruling out the possibility of magnetic dipole-dipole mediated relaxation of spins on

the nanocrystal surface. The material of this chapter has since been published in

[MHS+13].

5.1 Introduction

In this study, we report on the changes in decoherence of NV centre spins arising

from the controlled introduction of electron spin-rich magnetic nanoscale environ-

ments, each of which exhibit remarkably different dynamic behaviour. We begin by

characterizing the native environment of the NV spin, including the coupling to elec-

tron spins both within the crystal itself, resulting from nitrogen donor impurities, and

delocalised electrons within the graphitic layer on the crystal surface. This character-

isation processes is then repeated in water and finally in an aqueous MnCl2 solution.

The crystals are removed from the solution, with subsequent decoherence measure-

ments showing the accretion of atomic Mn onto the nanocrystal surface. Finally,

treating the crystals with hydrochloric restores the original decoherence properties,

showing NV spins in diamond nanocrystals to be not only highly sensitive, but an

extremely robust magnetic detection system.
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Figure 5.1: Overview of nanoscale decoherence sensing with NV spins, as taken from
ref. [MHS+13]. (a) Experimental set-up: NV nanodiamonds are immersed into a spin-
rich MnCl2 solution (spin target). The NV spin is controlled by an RF microwave
line and read-out optically using a confocal system. (b) Quantum control protocols
to measure the decoherence of the NV spin in response to the local magnetic field
fluctuations. (c) The decoherence contribution from internal spins (green), external
spins (grey), and total effect (red) on NV coherence (T2) time measured in spin-echo.
Environmental spin baths can be detected by their effect on the NV coherence. (d)
Magnetic sources local to the NV centre include diffusing Mn2+ spins (red), surface
spins (blue) and internal nitrogen spins (green). (e) Physical and electronic energy
structure of the NV centre in diamond.
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Figure 5.2: Schematic showing the attenuation of the effective NV-environment cou-
pling strength as a function of lateral distance from the NV position with the NV a
distance h below the diamond surface. .

5.2 Background

As in the previous chapter, we define the fluctuation regime of the various nanoscale

magnetic environments to which the NV spin is exposed via the dimensionless pa-

rameter Θ = fe/B, where fe is the characteristic fluctuation rate (defined by the

inverse of the correlation time, fe = 1/Tc), and B =
√
⟨B2⟩ is the RMS field strength

of the effective magnetic field operator, B. Rapid and slowly fluctuating fields are

characterised by the conditions Θ ≫ 1 and Θ ≪ 1 respectively.

5.2.1 Determination of dynamic environmental parameters

In this section, we theoretically derive the natural timescales associated with the

various physical processes taking place in this system and their effect on the dephas-

ing rate of the NV spin. These theoretical predictions will be validated below via

comparison with experimental results.
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NV-Environment Interaction

We relate the effective environmental RMS magnetic field strength (in Hz, not Tesla)

due to the presence of Mn spins in solution to the components of the corresponding

axial magnetic field operator via,

B ≡
√

⟨B2
z⟩, (5.2.1)

where Bx, By and Bz are defined by the total dipolar coupling of the effective environ-

mental fields to the x, y and z components of the NV spin respectively. The magnetic

field operators from an arbitrary Mn spin, S⃗i, are then

Bi
x =

µ0

4π

γnvgEµB

R3
i

[
Si,x −

3

Ri

sin(Θi) cos(Φi)
(
Ri · S⃗i

)]
, (5.2.2)

Bi
y =

µ0

4π

γnvgEµB

R3
i

[
Si,y −

3

Ri

sin(Θi) sin(Φi)
(
Ri · S⃗i

)]
, (5.2.3)

Bi
z =

µ0

4π

γnvgEµB

R3
i

[
Si,z −

3

Ri

cos(Θi)
(
Ri · S⃗i

)]
, (5.2.4)

where Ri = Ri

(
sin(Θi) cos(Φi), sin(Θi) sin(Φi), cos(Θi)

)
denotes the separation vector

between the NV and a given Mn spin. Squaring these operators and taking the trace

over the spin degrees of freedom, the variance of the axial field is given by

⟨
B2
i,z

⟩
=

1

3
S(S + 1)A21 + 3 cos2 (Θi)

R6
i

, (5.2.5)

where A = µ0

4π
γnvgEµB = µ0

4π
~γ2. Finally, the total variance is found by summing

over all spins in the system for an NV located a distance h below the diamond

surface. Because of the relatively small separation of environmental spins compared

with R, we may treat the environmental spins as a continuum. Furthermore, given

the relatively large size of the nanocrystals as compared with R, we regard the surface

of the nanocrystal as being locally flat. This allows us to replace this sum with an



66

integral over x and y from −∞ to ∞, and z from h to ∞, giving

⟨
B2
z

⟩
=

∫
n
⟨
B2
i,z

⟩
d3R

= S(S + 1)A2 nπ

6h3
, (5.2.6)

which then implies an RMS field strength due to all Mn spins of

BMn =
µ0

4π
~γ2
√
S(S + 1)

nπ

3h3

= 317MHznm3 ×
( n
h3

)1/2√
S(S + 1)

= 246MHznm3/2 M−1/2 × c1/2

h3/2

√
S(S + 1), (5.2.7)

where c is the concentration in M, or mol/L, of a particular chemical species in the

electrolyte.

We may use this result to determine both the effective number of aqueous spins,

and the effective electrolytic volume to which the NV is sensitive. If we consider a

single spin placed at directly above the NV at height h, its variance is

⟨
B2
0,z

⟩
=

4

3
S(S + 1)

A2

h6
. (5.2.8)

The effective number of such spins due to the entire environment is then

Neff =
⟨
B2
z

⟩
/
⟨
B2
0,z

⟩
=

nπh3

8
, (5.2.9)

with corresponding effective volume

Veff =
πh3

8
. (5.2.10)

This quantity is a measure of the effective sensing volume of environmental spins to

which the NV is exposed, which implies the effective spatial resolution of this sensing
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protocol is ∆L ∼ h, which is ultimately limited by how closely an NV centre may

reside to the diamond surface.

Environmental Dipole-Dipole Relaxation

The coupling between a pair of environmental spins is described by the following

Hamiltonian

Hij =
µ0

4π~
g2µB

r3

S⃗i · S⃗j − 3

(
r · S⃗i

)(
r · S⃗j

)
r2

 . (5.2.11)

The time evolution operator is given by

Uij = exp (−iHijt) .

Using this, we find the autocorrelation function for the axial magnetisation using the

corresponding Heisenberg picture operator to be,

⟨
Mz(t)Mz(0)

⟩
=

1⟨
S2
j

⟩⟨Uij(t)
†SjUijSj

⟩
=

1

2

(
cos(2θ) sin2

(
2
S(S + 1)bt

r3

)
+ cos2

(
2
S(S + 1)bt

r3

))
,

and averaging over θ, we obtain

⟨
Mz(t)Mz(0)

⟩
=

1

3

[
2 cos

(
4S(S + 1)

bt

r3

)
+ 1

]
, (5.2.12)

where b = µ0

4π~g
2µB. The probability distribution for the separation distance between

a given spin and its nearest neighbour, r, is given by2

P (r) = 4πnr2 exp

(
−4πnr3

3

)
. (5.2.13)

2See chapter 12 for the derivation of this distribution.
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Integrating the autocorrelation function over this distribution yields∫ ∞

0

4πnr2 exp

(
−4πnr3

3

)
1

3

[
2 cos

(
4S(S + 1)

bt

r3

)
+ 1

]
dr

=
1

6
+

1

3

∫ ∞

0

exp (−v) cos
(τ
v

)
dv

=
1

3
+

2

3
G3,0

0,4

(
τ 2

16

∣∣∣∣ 0, 1
2
, 1, 1

2

)
, (5.2.14)

where v = 4πnr3

3
and

4S(S + 1)
bt

r3
4πnr3

3
≡ τ

v
, (5.2.15)

implying that

τ = 4S(S + 1)bt
4πn

3
; (5.2.16)

and G is the Meijer-G function. Hence, for τ ≪ 1

⟨
Mz(t)Mz(0)

⟩
≈ 1

3
+

2

3

[
1− π

2
τ +O

(
τ 2
)]

≈ 1

3
+

2

3

[
1− 2S(S + 1)bt

4π2n

3
+O

(
(bnt)2

)]
. (5.2.17)

Therefore the relaxation rate of the axial component of the magnetisation vector for

a 2-spin pair due to their mutual dipolar coupling is given by

fdip = 2S(S + 1)
µ0

4π
~γ2

4π2n

3

= 8.1GHz nm3 × n× S(S + 1)

= 4.9GHzM−1 × c× S(S + 1), (5.2.18)

which we take for the dipole-dipole contribution to the total fluctuation rate, fe.

We mention briefly that this analysis is only valid for the case where the dipolar

interaction sets the quantisation axis for the environmental spins. As will be dis-

cussed in chapter 12, if their quantisation axis is set by their Zeeman interaction with
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the background field, their axial magnetisation must be a constant of motion (ie,

conserved). When this is true, the overall decay will not be exponential. Discussion

of this behaviour is postponed until chapter 12, as it does not apply to the systems

considered here.

Spatial Diffusion of Environmental Spins

At low concentrations the interactions between adjacent MN spins become less im-

portant, and fluctuation rates of the effective field as seen by the NV are instead

determined the self diffusion of aqueous Mn spins. Consider a single Mn spin residing

at an arbitrary position x = (x, y, z) at time t, where x, y ∈ (−∞,∞) and z > h. At

some time later, t + ∆t, much greater than the collision time of fluid constituents,

the Mn ion will have moved an RMS distance r =
√
D∆t, where D is the associated

self diffusion coefficient. The magnetic field at time t is given by

Bi
x(t) =

µ0

4π

γnvgGµB

(z2 + x20 + y20)
3/2

[
Sx − 3

x20Sx + x0y0Sy + x0zSz

z2 + x20 + y20

]
,

≡ bxx(t)Sx + bxy(t)Sy + bxz(t)Sz, (5.2.19)

Bi
y(t) =

µ0

4π

γnvgGµB

(z2 + x20 + y20)
3/2

[
Sy − 3

x0y0Sx + y20Sy + y0zSz

z2 + x20 + y20

]
,

≡ byx(t)Sx + byy(t)Sy + byz(t)Sz, (5.2.20)

Bi
z(t) =

µ0

4π

γnvgGµB

(z2 + x20 + y20)
3/2

[
Sy − 3

x0zSx + y0zSy + z2Sz

z2 + x20 + y20

]
,

≡ bzx(t)Sx + bzy(t)Sy + bzz(t)Sz. (5.2.21)

During the time interval ∆t, the system evolves to (x, y, z, t) 7→ (x+∆x, y+∆y, z +

∆z, t+∆t), where ∆x, ∆y and ∆x are distributed according to a Brownian diffusion
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process. At time t+∆t the magnetic field operators become

Bi
x(t+∆t) ≡ bxx(t+∆t)Sx + bxy(t+∆t)Sy + bxz(t+∆t)Sz, (5.2.22)

Bi
y(t+∆t) ≡ byx(t+∆t)Sx + byy(t+∆t)Sy + byz(t+∆t)Sz, (5.2.23)

Bi
z(t+∆t) ≡ bzx(t+∆t)Sx + bzy(t+∆t)Sy + bzz(t+∆t)Sz. (5.2.24)

Hence, the autocorrelation function of the axial field produced by a single diffusing

Mn spin is given by⟨
Bi
z(t)Bi

z(t+∆t)
⟩

=
21

4
[bzx(t)bzx(t+∆t) + bzy(t)bzy(t+∆t) + bzz(t)bzz(t+∆t)] ,

where we have used the fact that Tr (SiSj) = 0 for i ̸= j.

Expanding for ∆x, ∆y, ∆z ≪ h, we find, to second order in ∆x, ∆y and ∆z

⟨Bz(t)Bz(t+∆t)⟩ =
21nπA2

16h3
− 189nπA2

256

⟨∆x2⟩+ ⟨∆y2⟩+ ⟨∆z2⟩
h5

=
21nπA2

16h3
− 189nπA2

256

D∆t

h5p

=
21nπA2

16h3

[
1− 9

16

D∆t

h2

]
. (5.2.25)

To obtain the autocorrelation for long times, T = N∆t, we apply this geometric

scaling N times,

Bz(t)Bz(t+N∆t) = Bz(t)Bz(t+ T ) =
21nπA2

16h3

[
1− 9

16

DT

h2
1

N

]N
, (5.2.26)

which for large N becomes

⟨Bz(t)Bz(t
′)⟩ =

21nπ

16h3

(µ0

4π
γnvgGµB

)2
exp

[
− 9

16

D(t− t′)

h2

]
. (5.2.27)

The fluctuation rate of the effective field due to translational diffusion is then

fdiff = D

(
3

4h

)2

. (5.2.28)

Taking the diffusion coefficient to be bounded above by that of water at 298K

(DH2O = 3× 10−9 m2s−1), and h = 5nm, we find fdiff = 68MHz.
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Rotational Diffusion of Environmental Spins

The relaxation rate due to molecular rotation is equal to the rotational diffusion rate

as given by Stokes’ law,

frot =
kBT

8πd3η
∼ 10 kHz, (5.2.29)

for freely diffusing nanodiamonds of d=45nm diameter in water at 300K. The actual

relaxation rate is expected to be lower, as such massive crystals would be most likely

confined to regions near the sample boundary, rather than freely diffusing. We thus

neglect the effects of rotational diffusion in what follows.

Motional Narrowing of the Dipole-Dipole fluctuation rate

Because of the diffusive motion of spins in the electrolyte, the effective fluctuation

rate due to dipolar flip-flops may, in some cases, be reduced significantly. This is

because any two spins may not interact long enough for a magnetisation exchange

to occur with an appreciable probability. We may use a semi-classical argument to

estimate this revised relaxation timescale.

Whilst two spins are in contact (ie, they exist temporarily as a nearest-neighbour

pair before the diffusion process redistributes them), we assume they are sufficiently

close that no terms from the full dipolar interaction may be ignored. If the spins are

in contact for a time δt, the rate of rotation of the polar angle of one of the spin

vectors may be taken straight from equation 5.2.17, and the total polar angle rotation

during this time will be

δθ = 4S(S + 1)
b

⟨r⟩3
δt, (5.2.30)
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where ⟨r⟩ is the average separation of spins in the electrolyte, and is found from

equation 5.2.13 to be ⟨r⟩ ≈ 1
2
n−1/3. Over a long period of time, t≫ δt, these angular

shifts will accumulate in a fashion reminiscent of a random walk. Hence, by the central

limit theorem, the total accumulated angular shift will be normally distributed with

variance of N = t/δt times the variance of a single shift, that is

∆θ2 =
t

δt
(δθ)2

= t δt

[
4S(S + 1)

b

⟨r⟩3

]2
. (5.2.31)

Using the above analysis of diffusive motion, the effective dwell time over which the

interaction takes place is

δt =
1

DMn

(
4 ⟨r⟩
3

)2

. (5.2.32)

Hence, the motionally narrowed relaxation rate is then

fnarr =
1

2

δθ2

δt

=
1

5

Γ2
dip

n2/3D
. (5.2.33)

This analysis, of course, hinges on the assumption that the ‘hopping rate’, Rhop =

1/δt, is much faster than the dipolar flipping rate, Γdip, otherwise the fluctuation

can be attributed to dipolar flip-flops alone. The crossover point at which motional

narrowing becomes important occurs when 1/δt ∼ Γdip, or when

D

(
3

4 ⟨r⟩

)2

= 2S(S + 1)
µ0

4π
~γ2

4π2n

3

⇒ n =

[
D

S(S + 1)

3

32

(µ0

4π
~γ2
)−1
]3
. (5.2.34)

For the specific case of MnCl2, we have S = 5/2. To estimate the diffusion coefficient

of manganese, we note that atomic manganese has a mass 55/18 times that of water.
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Given that the number density of water molecules is roughly 3 orders of magnitude

greater than that of Mn, most collisions involving an Mn atom will be with a water

molecule, thus each molecular collision will result in a Mn atom changing its velocity

by a factor 18/55 less than that of the corresponding water molecule. Thus if the

expected translational variance of a water molecule during time interval t is
⟨
r2H2O

⟩
=

DH2Ot, that of the Mn atom will be ⟨r2Mn⟩ = (18/55)2
⟨
r2H2O

⟩
= (18/55)2DH2Ot. Thus

the effective diffusion constant for Mn is DMn = (18/55)2DH2O ≈ 0.3 nm2 ns−1 at

300K. Thus, the density at which motional narrowing becomes important is

nc ≈ 1µM, (5.2.35)

which is well below the regimes considered in this work. This result is essentially

due to the fact that both dipolar relaxation and effective hopping rates increase

with the aqueous spin concentration (see figure 5.3), albeit with a differing power-

law dependence. Motionally narrowed behaviour is regularly observed in the realm

of NMR, as can be appreciated from examination of equation 5.2.34. Noting that

the nuclear magneton is a factor of 2000 less than that of an electron, motionally

narrowed behaviour will occur for all practically realisable nuclear spin densities in

aqueous solutions.

Combined dynamics

The total autocorrelation function is the product of the functions associated with

spin-spin, self diffusion and, by extension, rotational dynamics,

⟨B(t)B(t′)⟩ =
⟨
B2
⟩
exp
(
−fMn |t− t′|

)
cos (ω0t) , (5.2.36)
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Figure 5.3: Graph showing the dependence of the diffusional hopping rate, RMn, and
the dipolar relaxation rate, RMn, on the concentration of manganese spins in an elec-
trolytic solution. At sub-µM concentrations the hopping rate dominates, resulting in
the dipolar relaxation rate being reduced via motional narrowing. At higher concen-
trations, spins are in contact long enough for dipole mediated flip-flops to occur and
thus exhibit behaviour essentially identical to that of a frozen lattice of spins.

with a total decay rate given by the sum of the respective decay rates, fMn = fdip +

fdiff + frot. The corresponding normalised spectral density is then given by

S(ω) =

√
2

π

fdip + fdiff + frot

(ω − ω0)
2 + (fdip + fdiff + frot)

2 , (5.2.37)

and is centred about the Larmor frequency of the Gd spins, ω0.

5.2.2 Decoherence of NV spins due to both intrinsic sources

and external Mn spins.

The decoherence of the NV spin is due to its interaction with the numerous spin baths

present. In what follows, we discuss the separate contributions from the graphitic

surface layer, electron spins from nitrogen donor impurities, and the external spins

from the aqueous spin bath.

The field produced by spins on the nanocrystal surface fluctuate rapidly due to
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their extremely fast relaxation rate, and therefore present an environment in the rapid

fluctuation regime in which Θ ≫ 1, or fs ≫ Bs. As such, their decoherence rate is

given by Γs =
1
2
B2

s/fs (See chapter 4), which provides an exponential damping to the

overall decoherence envelope of

Ls(t) = exp

(
−B2

s

2fs

)
. (5.2.38)

The Nitrogen donor spins are somewhat more difficult to describe, owing to their

existence in a Θ ∼ 1 regime, however we do know from equation 4.2.2 that at short

times, their decoherence behaviour follows an L(t)N ∼ exp
[
−
(
Γshort
N t

)4]
dependence,

whereas at long times, we have L(t)N ∼ exp
(
−Γlong

N t
)
. As such, we employ a hybrid

function that provides an asymptotic match to these two regimes,

LN(t) ≡ exp

− 1(
Γshort
N t

)−4
+
(
Γlong
N t

)−1

 , (5.2.39)

where Γshort
N = fN/

√
2
√
2ΘN , and Γlong

N = B2
N/2fN , as defined in the previous chapter.

The complete decoherence envelope is then a product of expressions 5.2.38 and 5.2.39.

Theoretically calculated spin-echo profiles are shown in figure 5.4(c) for different NV

depths below the crystal surface. When the NV is close to the diamond surface, it is

heavily exposed to the rapidly fluctuating field from the surface spins, meaning the

spin-echo profile will exhibit a predominantly exponential decay. On the other hand,

when the NV resides deep below the crystal surface, the surface spins will have less

of an effect and will modulate the N-dominated curve only slightly.

Introduction of the MnCl2 solution provides an additional channel by which the

NV spin may decohere. By virtue of the fast internal dynamics of the Mn bath and

the large NV-Mn standoff as compared with the average Mn-Mn separation distance,
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this process also exists in the Θ ≫ 1 regime, and like the surface spins, will introduce

an additional damping of the decoherence envelope, as given by

LMn(t) = exp

(
−B2

Mn

2fMn

)
. (5.2.40)

There is some evidence to suggest that this is in fact a relaxation effect, rather than

the result of dephasing processes we have considered so far, however the resulting

expression (equation 5.2.40) is independent of this distinction, as relaxation processes

must also necessarily result in simultaneous dephasing (one way to decrease the lateral

projection of the Bloch vector is to rotate out of the lateral plane). We defer discussion

of relaxation process and their effects until chapter 10.

Combining these results, we have that the full envelope in the presence of the Mn

target spins is given by

L(t) ≡ exp

−Γext −
1(

Γshort
N t

)−4
+
(
Γlong
N t

)−1

 , (5.2.41)

where Γext = Γs + ΓMn.

5.3 Results and discussion

The Rabi and spin-echo traces for NV centres 1-4 are shown in figure 5.5, with immer-

sion in air, water and MnCl2 being depicted by blue, green and red curves respectively.

Very little change occurs upon immersion in water, due to the size of the nano dia-

mond size, and that hydrogen nuclear spins have a magnetic moment roughly 2000

times smaller than that of the Mn electron spins. Despite this, a small change in the

decoherence envelope is both expected and observed, but is not statistically signifi-

cant within the bounds of experimental errors. The associated decoherence rates are
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Figure 5.4: Topology of nanodiamond sensors, inherent spin baths, and their effect
on the NV spin coherence. (a) Atomic Force Microscope (AFM) profile (blue curve
and insert) of an agglomeration resulting from spin-coating nanodiamond (45 nm
median diameter) onto a glass substrate. Overlaid with the AFM data is a schematic
depicting the intrinsic crystal spin-baths comprising strongly interacting clusters of
internal nitrogen (green) and surface spins (red). (b) Simulation of the resulting
typical magnetic fields felt by an NV centre (depth h = 5nm in this case) due to the
various intrinsic spin-bath sources. Surface spins are distributed with a much greater
density than the internal spins, and the fluctuation frequency of the surface spins is
much faster than the nitrogen spin bath. In these simulations we have assumed a
mean fluctuation rate of 100MHz and a spin density of 1 nm−2 for the surface spins.
(c) NV spin-echo envelopes corresponding to NV depths of 5 nm and 15 nm below the
nanocrystal surface. NV centres closer to the surface have a shorter coherence time,
due to proximity to surface spin bath.
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Figure 5.5: Decoherence properties of NV centres under various immersion conditions
and exposure to Mn2+ spins in solution. Top row: Measured spin-echo decoherence
profiles for four NV centres, performed on nanocrystals in air (green), deionised wa-
ter (blue), and 1MMnCl2 (red). Fits to the data-points (shown as the solid lines)
allow the decoherence rates under the various immersion conditions to be determined.
Bottom row: Rabi measurements corresponding to the spin-echo data for each NV.

given in table 5.1.

5.3.1 Analysis of the initial surface spin bath

Using the results above, me may characterise the physical processes occurring on the

nanodiamond surface giving rise to the decoherence of the NV spin, and use this to

draw conclusions regarding their physical origin. By integrating over the surface spin

density, we find the RMS field strength to be

Bs = 48.8MHznm3 × σ1/2

h2
, (5.3.1)
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ΓExt[Air] ΓExt[H2O] ΓExt[MnCl2] ΓExt[HCl] Evaporated
NV1 410 (60) 350 (15) 660 (20) 470 (20) -
NV2 120 (20) 140 (10) 200 (40) 90 (30) -
NV3 270 (20) 240 (30) 280 (10) - -
NV4 1,140 (100) 1,130 (70) 1,600 (70) - -
NV5 136 (100) - 160 - 260

Table 5.1: Decoherence rates, Γext (kHz), due to environmental sources both on and
outside the nanodiamond surface. Values are extracted from fits to the data in figures
5.5 and 5.6. Fitting uncertainties in parentheses at the 95% confidence level.

where σ is the effective surface spin density and h is the depth of the NV below

the surface. We may combine this with equation 5.2.38 to compare the relative

depths of each NV below the surface via Γ
(i)
s /Γ

(j)
s = (hj/hi)

4. As the NV depths are

large compared with the average separation of spins on the surface, we may assume

that each of the nanocrystal surface fields exhibit equivalent surface densities and

fluctuation rates.

Despite not knowing the exact mechanism responsible for the relaxation of the sur-

face spins, we may use these measurements to provide insight into its physical origin,

thereby ruling out certain processes. If we consider a magnetic dipole-dipole medi-

ated relaxation mechanism, we find the surface relaxation rate to have a dependence

on the surface spin density of fs = 5.56GHz nm3 × σ3/2. Combining this expression

with equation 5.2.38 together with the Θ ≫ 1 ⇒ fs ≫ Bs condition, we find the

following upper limit for the NV depth as a function of the surface contribution to

the decoherence rate,

h ≪
(
2.28MHz

Γs

)1/3

. (5.3.2)

From this expression, we see that under the assumption of dipole-dipole mediated

surface spin relaxation, even a decoherence rate as small as 100 kHz would imply
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an NV depth much less than 2 nm. As these NV depths are well below those at

which either the NV vacancy or electron will leave the centre and migrate to the

surface [BGN+10], we have ruled out the possibility of surface spin relaxation being

caused by this mechanism. Rather, we suggest that the more likely cause of surface

spin relaxation is the spin-orbit coupling of dangling electron spins of sp2 hybridised

carbon layers at the nanocrystal surface, which causes surface spins to relax at rates

of 0.1 to 10GHz at 300K [PS11], and is independent of the surface spin density.

5.3.2 Analysis of MnCl2 spin bath

As a means by which to probe the response of the NV spin to a controllable external

spin bath, nanodiamonds were immersed in a 1M MnCl2 aqueous solution dissolved

in 1M HCl to prevent oxidation of the Mn2+ ions. A noticeable increase in the

decoherence rate, together with a transition to a more exponentially shaped decoher-

ence envelope was exhibited by NVs 1,2 and 4. This change in shape is indicative

of a rapidly fluctuating environmental regime, as expected from the analysis in the

previous section.

Very different behaviour is exhibited by NV3. The predominantly exponential

shape of NV3’s envelope in both air and water suggests that its environment is dom-

inated by a rapidly fluctuating field, implying NV3 resides very close to the nanodi-

amond surface, as compared with, say, NV2. Very little change is apparent with the

addition of the MnCl2 solution however, which suggests that the proximate surface

is not exposed to the solution. As such, we conclude that NV3 must reside close to

a surface (see figure 5.4(a)) that has adhered to the glass substrate, rather than a

surface exposed to the solution.
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a)a) b) c)

Figure 5.6: (a) & (b) Restoration of NV quantum coherence after washing in spin-
free acid. Measured spin-echo decoherence profiles for NV1 and 2, performed in air
(green), 1M MnCl2 (red), 1M HCl (orange). Fits to the data-points using Eq. (2)
are shown as the solid lines. The same spin-echo profiles in air and HCl confirm Mn
spins are responsible for the observed changes in decoherence. (c) Measurements on
NV5 showing detection of Mn2+ spin accretion on the nanodiamond surface. Rabi
and spin-echo measurements in air (green), 1M MnCl2 solution (red), accreted MnCl2
(black).

Following the immersion, NV1 and NV2 were subsequently immersed in an equiv-

alent 1M HCl solution to remove any residual Mn spins. As shown in Figures 5.6

(a)&(b), this results in the restoration of the original decoherence properties observed

prior to immersion. This constitutes a control experiment, and confirms that changes

in decoherence observed upon immersion are solely attributable to the presence of

the Mn bath, rather than to changes in pH levels or surface charge transfer in the

presence of an acid.

As discussed in the theoretical anlysis above, both free-diffusion and dipole-dipole

mediated relaxation amongst Mn spins are possible mechanisms for the fluctuating

Mn field experience by the NV. Which mechanism dominates depends on the depth of

the NV below the nanodiamond surface, a quantity that was not able to be measured
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during this experiment. Shallow centres essentially experience a more rapidly fluctu-

ating field, as each Mn atom takes less time to traverse the smaller area of sensitivity

(recall fdiff = D (3/4h)2 from the analysis of spatial diffusion above). Dipolar relax-

ation on the other hand is independent of height. To find the NV depth at which an

NV would experience the crossover between these two regimes, consider fdiff = fdip,

which occurs at

h =
3

4

√
DMn

43GHz
, (5.3.3)

for a 1M solution of MnCl2. Again taking the diffusion coefficient of Mn2+ to be

DMn ≈ 0.3 nm2 ns−1 at 300K, and substituting this result into equation 5.3.3, we

find the crossover height to be at h ∼ 0.1 nm. Thus we conclude that, for all sensi-

ble standoff heights, the dominant physical mechanism responsible for the Mn field

fluctuations is dipolar-dipole induced relaxation.

We may use this result to interrogate the effective standoff height between the NV

centre and the surface exposed to the electrolyte. By combining expressions 5.2.7,

5.2.18 & 5.2.40, we find the contribution to the decoherence rate from the Mn bath

to be

ΓMn =
1

h3
(
246MHznm3/2

)2/
2× 4.9GHz

= 3.95MHznm3 × 1

h3
. (5.3.4)

To experimentally determine the contribution from the Mn bath to the decoherence,

we subtract the external decoherence rate measured in HCl from the external deco-

herence rate measured in the MnCl2 solution. For NV1, we have

Γ
(1)
Mn = ΓExt[MnCl2]− ΓExt[HCl] = 190 kHz, (5.3.5)
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implying an NV depth of h(1) = 2.8 nm, with a 95% confidence interval of (2.6 nm -

3.0 nm). Similarly, for NV2, we have

Γ
(2)
Mn = 110 kHz, (5.3.6)

implying an NV depth of h(2) = 3.3 nm, with a 95% confidence interval of (2.8 nm -

4.6 nm). These depths are consistent with previous decoherence measurements made

on nanocrystals of 10 nm [TBN+] and 5 nm [BGN+10] in diameter. Upon determining

the depths of NV1 and NV2, together with equation 5.2.9, we find the effective number

of detected spins to be approximately 5 and 8 respectively.

To determine the sensitivity of this technique, recall that to measure an arbitrary

signal change, ∆S, we require that the signal change is greater than the shot-noise

resulting from some Ns measurements, that is

∆S >
1

C
√
Ns

, (5.3.7)

where C is the effective contrast as defined in the previous chapter, and Ns is the

number of repeated measurements performed at a given timepoint in the signal, ts,

which may be related to the total measurement time, T , via T = Nsts. The signal

change is the result of the additional decoherence induced by the presence of the Mn

bath, thus ∆S = ΓMnts. The sensitivity with which an external decoherence rate may

be measured is then

η ≡ ΓMn

√
T =

1

C
√
ts
, (5.3.8)

which appears to suggest that the sensitivity may be improved indefinitely by un-

boundedly increasing the free-precession interval before the point of measurement,

however this is ultimately limited by the intrinsic coherence time of the system, and
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going beyond this will drastically reduce the contrast associated with the shot noise.

We therefore take ts = T2, where in this case T2 represents the intrinsic coherence

time of the NV centre as unperturbed by the presence of an external decoherence

source.

The temporal resolution of the sensor, or minimum total time required to detect a

decoherence source via its induced decoherence rate, Γ, is then readily obtained from

∆T =
1

T2 (CΓ)
2 . (5.3.9)

Using a conservative value of C = 0.05 [TCC+08], the time taken to detect the 5 spins

of NV1 is 4ms. Similarly, the 8 spins detected by NV2 required 9ms for detection,

due to its deeper position below the surface.

As a final experiment, the MnCl2 solution surrounding a fifth NV centre (NV5) was

left to evaporate, leaving behind an adsorbed layer of Mn spins on the nanodiamond

surface. Spin echo measurements were then repeated, and the decoherence rate due

to external sources was observed to have increased from 135 kHz in air to 160 kHz in

MnCl2, to a final rate of 260 kHz upon evaporation (see table 5.1 and figure 5.6 (c)).

These observations show that decoherence sensing techniques could be used monitor

the changes in surface spin densities of during various chemicals reactions, and help

gain an understanding of the way nano-surfaces are functionalised and controlled.

5.4 Summary and Conclusion

This combined experimental and theoretical study has demonstrated the effective-

ness of decoherence based sensing in studying the effects of external nanoscale mag-

netic environments on a central quantum system. These techniques have allowed
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us to probe the physical origins of the dynamic magnetic processes taking place in

nanoscale quantum environments at ambient conditions, revealing both quantitative

and qualitative information that would not be accessible with traditional magnetom-

etry techniques, even at cryogenic temperatures. Furthermore, the sub-10 nm spatial

resolution reported here represents an improvement of more than 4 orders of magni-

tude over what is currently available with state of the art magnetic resonance based

detection.

Using these techniques, we have characterised the decoherence resulting from a

number of magnetic systems proximate to individual NV centres, and used this in-

formation to answer a number of critical questions, including the physical origins

of fluctuating magnetic phenomena on the nanodiamond surface, and the depths at

which a given NV centre resides below the surface. Given the high sensitivity, spa-

tial resolution, robustness and broad applicability of these techniques, decoherence

based sensing represent an exciting new methodology for investigating magnetic based

phenomena in physical, chemical and biological environments.



Chapter 6

Ultra-sensitive diamond
magnetometry using optimal
dynamic decoupling

The sensitivity of a single NV magnetometer is primarily determined by the trans-

verse spin relaxation time, T2. Current approaches to improving the sensitivity employ

crystals with a high NV density at the cost of spatial resolution, or extend T2 via the

manufacture of isotopically pure diamond crystals. In this chapter, we adopt a com-

plementary approach, in which optimal dynamic decoupling techniques are used to

extend NV coherence times, allowing for a greater phase acquisition. The effectiveness

of this approach is verified via an experimental demonstration1. Our analysis suggests

single spin, room temperature magnetometer sensitivities as low as 5 pTHz−1/2 may

be possible with current technology. The theoretical developments of this chapter

have since been published in [HHCH10], and the experimental demonstration and

corresponding analysis were published in [NDH+11].

1All experiments described in this chapter were performed by B. Naydenov and F. Dolde at the
University of Stuttgart.
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Figure 6.1: (a) NV-centre diamond lattice defect. (b) NV spin detection through
optical excitation and emission cycle. Magnetic sublevels |0⟩ and | ± 1⟩ are split
by a D=2.88 GHz crystal field. Degeneracy between the | ± 1⟩ sublevels is lifted
by a Zeeman shift, δω. Application of 532 nm green light induces a spin-dependent
photoluminescence and pumping into the |0⟩ ground state. (c) Examples of controlled-
AC fields (solid) as seen by the NV centre (dashed) in the presence of the 1st, 2nd

and 5th UDD sequence. Negative regions of the AC trace are mapped to positive,
ensuring maximal phase accumulation of the NV spin. Slow FC fields, such as the
surrounding nuclear spin bath, will be suppressed, permitting the detection of AC
and fast FC fields with greater sensitivity.

6.1 Introduction

It is well known that coherence times may be improved with the use of Carr-Purcell-

Meiboom-Gill (CPMG), concatenated (CDD)[KL07a], random and periodic dynamic

decoupling schemes [WD07, KL07b]. The more recent Uhrig (UDD) scheme was

shown to be optimal for decoupling a spin qubit from a bosonic bath [Uhr07], and has

since been shown to be optimal for all systems in which dephasing is the dominant

decoherence channel [UL10]. This optimality stems from the required UDD resources
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scaling linearly with the order to which the environmental effects are suppressed.

However, UDD is unable to suppress longitudinal relaxation, whereas CDD can. The

use of UDD is ideally suited to the NV centre owing to long relaxation times (T1 > 1 s

[BNT+09]), even at room temperature. The large Debye temperature allows for

negligible decoherence via phonon excitation of the crystal lattice, and a large zero

field splitting (2.88 GHz) of the ground state magnetic sublevels prevents longitudinal

spin-spin relaxation. Hence longitudinal relaxation may be neglected, ensuring UDD

is the optimal decoupling method.

Both AC and FC magnetometry schemes are based upon a spin-echo microwave

control sequence, in which a π pulse is used to flip the qubit at the half way point

of its evolution (figure. 6.1(c)), suppressing any quasi-static effects of the spin bath.

The AC scheme is concerned with detection of fields of the form bac sin(νt), where

the π pulse coincides with t = π/ν, ensuring a non-zero integral of the field trace,

and hence maximal phase shift of the NV spin. In this chapter, we incorporate UDD

into AC and FC magnetometry schemes and show that the sensitivity of a single

NV centre magnetometer may be as low as 5 pTHz−1/2 with the use of existing

technology. Furthermore, we show that UDD yields superior results to CPMG, a

theoretical analysis of which is given in [TCC+08].

In chapter 4 it was shown that a particularly intuitive analysis of a spin qubit

placed in a slowly fluctuating classical magnetic field could be performed by expanding

the effective time dependent field as a Taylor series [HCHH09]. Whilst this may seem

like a special case, this technique applies to a more general class of pure-dephasing

quantum problems in which longitudinal relaxation may be ignored. We investigate

the effect of UDD on a spin qubit placed in such a field, and show that it is the nth
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UDD sequence that suppresses the effect of all terms up to and including order n in

the Taylor expansion of the field. These results are applied to the NV centre and

used to obtain improved sensitivities for NV based magnetometry.

An NV centre interacting with an external magnetic field is described by the

Hamiltonian H = Hzfs+Hext+Hint. The first term describes the zero field splitting of

the ground state Zeeman levels, Hzfs = ~DS2
z , where D = 2.88GHz. The interaction

with an external magnetic field Bext(t) is described by Hext. The fields we consider

here are small relative to D and are hence unable to induce a spin-flip, permitting

us to ignore all Sx,y terms, giving Hext ≈ γB
(z)
extSz, where γ is the NV gyromagnetic

ratio. For simplicity, we put B
(z)
ext ≡ Bext. The final term describes the interaction with

the paramagnetic environment of the diamond crystal. As we will see, for resolving

the non-unitary dynamics of the reduced density matrix of the NV centre, these

interactions may be subsumed into a single ‘internal magnetic field,’ Bint(t). We define

the fluctuation regime of the external/internal environment via the dimensionless

numbers, Θext = (γσext
0 τext)

−1 and Θint = (γσint
0 τint)

−1, where σext
0 /σint

0 are the RMS

field strengths, and τext/τint are the correlation times of the internal and external

environments respectively. Rapidly and slowly fluctuating fields satisfy Θ ≫ 1 and

Θ ≪ 1 respectively.

6.2 Dephasing in the presence of dynamic decou-

pling

In this section, we make a quantitative comparison of two commonly used dynamic

decoupling sequences, namely Uhrig Dynamic Decoupling (UDD) and the CPMG
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pulse sequence.

6.2.1 Uhrig Dynamic Decoupling (UDD)

An arbitrary time-dependent magnetic field may be decomposed as a Taylor series

in t: B(t) =
∑∞

k=0 akt
k (See chapter 4). The validity of this expansion rests upon

the condition that ak+1t
k+1 < akt

k for all k. This is satisfied for t < τint/
√
2. For

times t ≫ τint the qubit will exhibit motional-narrowing behaviour. In many cases

of practical interest, Bint is the sum of fields from a large number of dipoles. This

implies, by the central limit theorem, that the {aj} are normally distributed, with

zero mean at room temperature and variance σ2
j =

⟨
a2j
⟩
. This leads to the following

dephasing envelope,

L(t) =
∞∏
j=0

exp
[
− (Γjt)

2j+2
]
,

where

Γj =

(
1√
2

γσj
j + 1

)1/(j+1)

. (6.2.1)

Since Γ0 ≫ Γk ∀ k ≥ 1, Γ0 serves to define the free induction decay time, T ∗
2 = 1/Γ0.

For a 1.1% 13C bath, the variance of the magnetic field is given by σ2
0 =

∑
i⟨B2

i ⟩. For

a 13C density nc and gyromagnetic ratio γc, σ0 ≈
√

2π
3

µ0

4π
nc~γc ≈ 2µT, and T ∗

2 ≈ 4µs,

in good agreement with [TCC+08, MNR+09]. Similarly, using an 0.3% 13C bath yields

T ∗
2 ≈ 15µs, in agreement with [BNT+09].

The Hahn-echo sequence removes the effect of a static field on the system as each

π pulse effectively sends B → −B. For a field described by
∑

k akt
k, this will remove

the effect of the a0 term, and modify all other terms as aj 7→ (1− 2−j) aj [HCHH09].
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For an NV centre, the correlation time of the environment is dictated by interactions

between 13C nuclei. A straight-forward calculation shows

τint ∼
√

6

π

4π

µ0

/(nc~γ2c ) = 15ms. (6.2.2)

Using this in equation (6.2.1) for j = 1 gives Γ1 = 2.1 kHz. We identify T2 = 1/Γ1 =

400 µs, in agreement with [TCC+08, MNR+09]. For an 0.3% 13C bath we achieve

T2 = 1.5ms as seen in [BNT+09]. We do not define τint via interaction between 13C

nuclei and any background fields, B0, since this manifests as decays and revivals on

timescales of τr ∼ 1/γcB0 and does not represent a true loss of information. Such

effects may be mitigated by aligning B0 along the NV axis.

The phase shift of the NV spin, ∆ϕ, is proportional to the time integral of the

applied field. If pulses m are applied at the instants t1, t2, . . . tm, the effect of the

pulse sequence on the phase shift will be

∆ϕ = γ

(∫ t1

0

−
∫ t2

t1

+ . . .+ (−1)m
∫ τ

tm

)
B(t) dt. (6.2.3)

The effect of an arbitrary sequence of pulses on the jth term in the Taylor expansion

is then

ak 7→ ak

(∫ t1
0

−
∫ t2
t1
. . .+ (−1)m

∫ τ

tm

)
tk dt∫ τ

0
tk dt

= ak

[
2

m∑
j=1

(−1)j+1

(
tj
τ

)k+1

+ (−1)m

]
. (6.2.4)

For a pulse sequence to suppress the effect of a field to order n, the instants at which

the pulses are applied must be chosen to ensure(∫ t1

0

−
∫ t2

t1

+ . . .+ (−1)m
∫ τ

tm

)
tj dt = 0, (6.2.5)
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not only for j = n, but for all j < n.

For example, we may wish to modify our τ
2
− π − τ

2
pulse sequence in order to

remove the effect of the a1t term. If we apply pulses at t = τ
4
and t = 3τ

4
, we find

that the effects of both a0 and a1 terms are suppressed. In general, suppression of all

terms up to and including order n will require at least n+ 1 π-pulses. We define τn,k

as the time at which the kth pulse is applied in the sequence that suppresses all field

components up to, and including, order n. Evaluation of equation (6.2.4) implies that

determination of the n + 1 elements of the set Pn =
{
τn,0 , . . . , τn,n+1

}
will require

the solution of the following set of n+ 1 algebraic equations for τn,k:

a0 : 2
n+1∑
k=1

(−1)k−1 τn,k + (−1)n+1 τ = 0,

a1 : 2
n+1∑
k=1

(−1)k−1 τ 2n,k + (−1)n+1 τ 2 = 0,

...

am : 2
n+1∑
k=1

(−1)k−1 τm+1
n,k + (−1)n+1 τm+1 = 0. (6.2.6)

To this point, there is some freedom in our choice of pulse sequence, as equations (6.2.6)

are satisfied to n = 1 by both CDD and UDD. However, if we solve equations (6.2.6)

to n = 2, we find P2 =
{

τ
4

(
2−

√
2
)
, τ

2
, τ

4

(
2 +

√
2
)}

, which is the third UDD se-

quence. It is reasonable to conjecture that the nth component of the field, ant
n, will

be suppressed by the (n+ 1)th UDD sequence, which we prove below.

For an interrogation time of τ , the time of application of the jth pulse in the nth

UDD sequence is given by

τn,j = τ sin2

(
πj

2n+ 2

)
, (6.2.7)

where 1 ≤ k ≤ n [Uhr07]. Substituting these times into the expression in 6.2.4, we
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find

UDD1 ak 7→ ak
[
2−k − 1

]
UDD2 ak 7→ ak

[
2 (1/4)k+1 − 2 (3/4)k+1 + 1

]
UDD3 ak 7→ ak

[
2
[
sin2

(π
8

)]k+1

− 2
[
sin2

(π
4

)]k+1

+ 2

[
sin2

(
3π

8

)]k+1

− 1

]
...

UDDn ak 7→ ak

[
2

m∑
j=1

(−1)j+1

[
sin2

(
πj

2n+ 2

)]k+1

+ (−1)m

]
. (6.2.8)

We wish to show that the (n + 1)th UDD sequence suppresses the effect of all

terms up to and including the nth term in the Taylor expansion of a time dependent

magnetic field; and that the effect of all terms beyond n will be reduced.

The phase accumulation of a spin qubit is proportional to the time integral of the

magnetic field to which it is exposed. Each π pulse exchanges the basis states of the

qubit Hilbert space, which has the same effect on their relative phase as mapping B 7→

−B. Recall from equation (6.2.6) that the action of the (n+1)th Uhrig pulse sequence

will be to modify each of the aj via aj 7→
[
2
∑n+1

k=1(−1)k−1 sin2j+2
(

πk
2n+4

)
+ (−1)n+1

]
aj.

To prove our claim, we must firstly show that,

2
n+1∑
k=1

(−1)k−1 sin2m

(
πk

2n+ 4

)
= (−1)n . (6.2.9)

Using N ≡ n+ 2, sin(x) = 1
2i
(eix − e−ix) and expanding as a binomial series in j, we

arrive at

LHS = 21−2m

2m∑
j=0

(−1)j+m

(
2m

j

)
n−1∑
k=0

eiπajmNk, (6.2.10)

where ajmN = m−j−N
N

. Note that we have added the k = 0 term, since

2m∑
j=0

(
2m
j

)
(−1)j = 0. (6.2.11)
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Figure 6.2: (a) Dephasing envelopes, L(n), for an NV centre in a 1.1% 13C bath for n π
pulses. As n→ ∞, L(n) approaches the Heaviside step function, H(τext−t). (b) Effect
of the number of π pulses on NV coherence times for different 13C concentrations. In
each case, the coherence time is limited by τint.

Since we have restricted ourselves to m ≤ N − 1, we have that eiπajmN ̸= 1, so we

are free to sum over k as a geometric series in equation (6.2.10), which is not possible

for m ≥ N . This gives LHS = 2−2m(−1)2m+N
∑2m

j=0

(
2m
j

)
, which is just the sum

of terms in the (2m + 1th) row of Pascal’s triangle, and evaluates to 22m, proving

equation (6.2.9).

Replacing N with n + 2, we can see that aj 7→ 0 , ∀ j ≤ n. Hence all terms in

the Taylor expansion of B(t) up to and including order n are zero. Furthermore,

since 0 ≤ sin2(x) ≤ 1, the term in the square brackets is always less than 1, hence

the effect of the remaining aj is reduced. Two immediate consequences are that the

(n + 1)th UDD sequence will suppress dephasing to nth order; and that dephasing

effects beyond nth order will be reduced. If a0, . . . , an = 0, then ⟨a20⟩ , . . . , ⟨a2n⟩ = 0.

By equation (6.2.1) all rates, Γ0, . . . , Γn, are zero.

From the above analysis, we see that the application of a UDD sequence of any
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order will decrease the intrinsic NV dephasing rate. This allows us to extend the in-

terrogation time, thus improving the sensitivity to an external magnetic field, Bext(t).

Clearly the dynamics of Bext will be an important factor in ensuring that the effect

of the external field is not also suppressed by the pulse sequence. Simple examples

include telegraph signals switching in sync with the UDD sequence, or an AC field

of controllable frequency whose nodes coincide with each π pulse, which could be re-

alised by a single spin or ensemble of spins being driven by a controllable microwave

field. FC sensitivities to rapidly fluctuating fields will also be improved, since fields

with correlation times shorter than the interrogation time will not be refocussed by

the UDD sequence.

6.2.2 CPMG Dynamic Decoupling

As for the UDD case above, we expand the effective magnetic field as a Taylor series

in t,

B(t) =
∞∑
k=0

akt
k. (6.2.12)

For a CPMG sequence, the time of application of the jth pulse in an n pulse sequence

is

tj =
2j − 1

2n
τ, (6.2.13)

where j ∈ {1, 2, . . . , n}, and τ is the full free-precession time. For 1 pulse (spin-echo),

the effect on the kth Taylor term is

ak 7→ (1− 2−k)ak, (6.2.14)
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and in general, we have

CPMG2 ak 7→ ak
1

4k+1

[
2− 2 (3)k+1 + 4k+1

]
CPMG3 ak 7→ ak

1

6k+1

[
2− 2 (3)k+1 + 2 (5)k+1 − 6k+1

]
...

CPMGn ak 7→ ak
1

(2n)k+1

[
2− 2 (3)k+1 + . . .+ 2(−1)n−1(2n− 1)k+1 + (−1)n(2n)k+1

]
= ak

1

(2n)k+1

[
2 + (−1)n(2n)k+1 + 2

n−1∑
j=1

(−1)j(2j + 1)k+1

]
.

(6.2.15)

From this expansion we can see that, unlike the UDD case above, the CPMG pulse

sequence does not entirely suppress the leading order terms of the expansion (with the

exception of UDD2 and CPMG2, which are equivalent). This is explored in greater

detail below.

6.2.3 Comparison of UDD and CPMG pulse sequences

To compare the performance of both UDD and CPMG techniques, we plot the effect

of both sequences in the suppression of the first 20 terms in the Taylor expansion of

an arbitrary magnetic field (figure. ??). From this we can see that an n pulse UDD

sequence will fully suppress the first n terms in the expansion, a0 to an−1, and more

importantly, UDD is shown to greatly outperform CPMG by this measure. We remind

the reader that this result hinges on the assumption that the magnetic environment

exists in the slow-fluctuation regime, or equivalently, that the spectral distribution

has a hard cutoff at high-frequency, as is the case for a nuclear spin bath. Where this

is not true, it is no longer valid to expand the field as Taylor series about t = 0, as the
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increases. By ‘relative scaling’, we refer to the ratio of the Taylor coefficient in the
presence of a given sequence to that in the presence of no pulse sequence. A relative
scaling of one therefore implies no effect, whereas a scaling of 0 implies full suppression
of that particular channel. Note the change of scale in (f).
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truncated series will not converge, as even short times will exceed the autocorrelation

time of the field (as in the case of an electron spin bath). This is consistent with recent

findings which show that the UDD sequence is optimal in suppressing decoherence in

the presence of a noise source with a hard cutoff at high frequencies [CLNS08]. Despite

these findings, the regular spacing of CPMG sequences not only makes its practical

implementation more straightforward, but also makes it the optimal sequence for use

in AC magnetometry. This is explored in the experimental section (6.4) below.

6.3 Sensitivity analysis

We denote the dephasing envelope in the presence of the (n + 1)th pulse sequence

as L(n)(t) =
∏∞

k=n L
(n)
k (t) [figure. 6.2(a)]. In the presence of background dephasing

described by equation (6.2.1), the minimum induced phase from Bext(t) that may be

measured is ∆ϕ(b) = [C
√
NL(n)(τ)]−1, where C describes photon shot noise and im-

perfect collection [TCC+08], and N is the number of measurements taken. Typically

C < 0.3, however vast improvements have recently been demonstrated by entangling

the NV spin with proximate nuclear spins, permitting repetitive readout of the NV

spin state [SNB+10, JHM+09]. We now discuss the relevant detection protocols and

sensitivities for different fields to which these techniques apply.

6.3.1 Sensitivity limits: Controlled telegraph signals

For a telegraph signal (ts) synchronously switching between ±B0 with each π pulse,

the qubit will acquire the maximum possible phase for a given interrogation time,
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∆ϕ = γB0τ . This gives a magnetic field sensitivity of

η
(n)
ts = B0

√
T

=
[
Cγ

√
τL(n)(τ)

]−1
. (6.3.1)

For all cases where Θint ≪ 1, we have that Γk ≫ Γk+1, and Γk > Γ
(n)
k [HCHH09], so

we may approximate the total dephasing envelope, L(n), by the its leading order con-

tribution. That is L(n)(t) ∼ exp
[
− (Γn+1t)

2n+4], implying the optimal interrogation

time is τ = Γ−1
n+1 (4n+ 8)1/(2n+4). We then find the sensitivity to be bounded above

by

η
(n)
+ =

1

Cγ

√
feΘ

−1/n
int . (6.3.2)

This upper bound, together with the actual sensitivity (see below), is plotted in

figure 6.4(a) for an NV. Notice that, as Θint → 1, there is little to be gained by

applying UDD.

We now compute the sensitivity of the probe by taking into account the effect

of the nth order pulse sequence on the nth order Taylor coefficient. This results in

improved sensitivity beyond that indicated above, as a reduction in the ak leads to a

reduction in the total decoherence rate, and hence an extended interrogation time.

The dephasing rates are found via equation (6.2.1), where the σj obey the same

mapping as the Taylor coefficients in equation 6.2.8.

σ(n) 7→

∣∣∣∣∣2
n+1∑
k=1

(−1)k−1 sin2j+2

(
πk

2n+ 4

)
+ (−1)n+1

∣∣∣∣∣σj ≡ σ
(n)
j . (6.3.3)

The actual dephasing time due to the combined effect of all the Γ
(n)
k will be given by

the solution to
∑∞

k=n+1

(
Γ
(n)
k t
)2k+2

− 1 = 0 for t, and are plotted against the number

of pulses used in the sequence in figure 6.2(b). From this we see that dephasing
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times asymptote to the correlation time of the bath. This is to be expected, since

information lost to the bath cannot be recovered by control of the NV spin alone.

Retaining all terms, the sensitivity is then

η(n)(τ) =
1

γ
√
τ
exp

[
∞∑

k=n+1

(
Γ
(n)
k τ
)2k+2

]
. (6.3.4)

By minimising this expression with respect to τ we determine the optimal sensitivity,

η
(n)
ts , as shown in figure 6.4(a).

6.3.2 AC fields

In many proposals [Deg08, TCC+08] magnetic resonance techniques are used to drive

the sample magnetisation at some controlled frequency. For a general sinusoidal

field, given by Bac sin (νt+ χ), the corresponding sensitivity with which Bac may be
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measured is

η(n)ac = η
(n)
ts

π

2

[
n∑

k=0

(−1)k
∫ τn,k+1

τn,k

sin (νnt+ χn) dt

]−1

, (6.3.5)

where νn and χn are the frequency and ac phase offset that minimise η
(n)
ac . For

example, for n = 1, the NV spin will acquire maximum phase when ν = 2π/τ and

χ = 0. For n = 5, ν5 = 9π/2τ and χ5 = 3π/4. The optimal AC sensitivity is plotted

as a function of the number of pulses in figure. 6.4(a).

Alternatively, by controlling the power of a proximate microwave field source, we

may synchronise environment NMR/ESR control frequencies with the chosen pulse

sequence. This allows a piecewise continuous sinusoidal signal to be produced whose

nodes coincide with the time of application of each π pulse [figure. 6.1(c)], giving a

sensitivity of

η(n)cac =
π

2
η
(n)
ts . (6.3.6)

6.3.3 Randomly fluctuating (FC) fields

Many typical biological samples have a high nuclear spin density, which can result

in significant additional dephasing. If the dynamics are fast (Θext ≫ 1), as in the

case of Brownian motion for example, the additional dephasing may be detected

as a perturbation in the dephasing rate [HCHH09]. The dephasing envelope will

be modified by a factor of Lext (τ) = exp (−Γextτ), where Γext = 1
2
γ2pσ

2
extτext. The

sensitivity with which σext =
√

⟨B2
ext⟩ − ⟨Bext⟩2 may be measured is then [HCHH09]

ηfc = 2Θextη
(n)
ts , (6.3.7)

making the field more difficult to detect as the fluctuation rate increases. This is

consistent with motional narrowing phenomena in NMR, in which high frequency
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noise is known to have a reduced effect on the sample T2 as compared with quasi-

static noise. If the dynamics are slow (Θext ≪ 1), the dephasing will be suppressed,

permitting the application of the AC methods outlined above.

6.3.4 Effects of finite width pulses

Coherent manipulation of the NV is achieved via a resonant ESR transition, or Rabi

cycle. Instantaneous π pulses cannot be achieved in practice, and lead to additional

decoherence effects. For a Rabi frequency of Ω, the decoherence envelope is given

by LR = [1 + (γ2σ2
0t/Ω)

2]−1/4 (see chapter 3), and typical pulse errors are ≈ 1%

[TCC+08]. Hence for n π pulses, the sensitivity will be worsened by a factor of

∼ 0.99−n−1[1+ n+1
4
(
√
πγσ0/Ω)

4], as shown in figure. 6.4(b). For a typical pulse width

of 50 ns, 13 π pulses is found to be optimal, with η
(13)
ts ≈ 5.5 pTHz−1/2.

Cases where the total pulse time is significant compared with the total interroga-

tion time have been considered [UP10], however, since we are dealing with extremely

long coherence times and short pulse times, these effects have been neglected in this

analysis.

6.4 Experimental Investigation

In this section, we experimentally demonstrate the effects of multi-pulse sequences

on both the decoherence and sensitivity of an NV spin based magnetometer. As

noted above, by virtue of its comparative ease of experimental implementation and

suitability to measuring controlled AC fields (which represent the simplest control

case), we consider only CPMG pulse sequences in what follows.
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measurement time t, δBmin = k/

√
t. Oscillations in the NV fluorescence intensity due

to the applied ac magnetic field are shown in the insert.
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The diamond sample used was a chemical vapour deposition (CVD) grown with a

natural 1.1% 13C abundance and low (less than ppb) nitrogen impurity concentration.

The spin echo decay is shown in the inset of figure. 6.5(a), and the decoherence time

was measured to be T SE
2 = 400µs, showing excellent agreement with our theoretical

prediction (published months before this experiment was conducted) made at the

beginning of this chapter. The modulations are the result of strong coupling between

the NV spin and proximate 13C spins, and occur at a rate equal to their Larmor

frequency.

By increasing the number of pulses from 1 to n = 90, we are able to increase the

decoherence time to 2.44ms, as consistent with the hard limit predicted in this work

(see figure 6.2), although an upper limit exists to the number of pulses that may be

employed. As discussed above, due to finite pulse widths, the total evolution time of

the NV under microwave control will eventually dominate the total evolution time.

At this point, the NV spin has entered the ‘spin locking’ regime, meaning that the

decoherence is instead limited by the Rabi decay time, T ρ
1 . This does not represent

a fundamental limit however, and may be increased further by employing a stronger

microwave field (see chapter 3). In the limit of an infinite Rabi frequency, T ρ
1 simply

approaches the true relaxation time of the NV, T1.

To demonstrate the utility of CPMG sequences in AC magnetometry, a gold nanos-

tructure was deposited onto the diamond surface. An oscillatory current was passed

down this structure using an arbitrary waveform generator, and the resulting control-

lable AC magnetic field was used to determine the sensitivity of the NV. Changes in

the NV fluorescence are plotted in the insert of figure 6.5(b) as a function of AC field
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amplitude. At points where the slope is steepest, the fluorescence will show a maxi-

mal linear dependence on the field strength, corresponding to best possible magnetic

field sensitivity. As such, we may write

δBmin =
dB

dS
δS, (6.4.1)

where the uncertainty in the measured fluorescence, δS, is determined by the stan-

dard deviation associated with its measurement statistics, σS, for a given pulse se-

quence. We expect σS to be shot-noise limited, implying a 1/
√
T dependence on the

overall measurement time, and this is indeed shown to be the case from the fits in

figure 6.5(b). By choosing a free-precession time of τ = 2 × 115µs, the magnetic

field sensitivity under a spin-echo pulse sequence was found to be ηSE = δBmin

√
T =

19.4± 0.4 nTHz−1/2. Note that this does not represent the optimal operating regime

for the spin echo case, for which we would choose τ ∼ T2. A similar analysis of the

CPMG case for 10 pulses and a total free precession time of τ = 11× 27µs shows the

corresponding sensitivity to be ηCPMG10 = 11.0 ± 0.2 nTHz−1/2. This shows a slight

improvement, and is close to what is expected from the analysis (recall that a factor

of 4 suppression in the relevant Taylor co-efficient produces only a factor of two in

the sensitivity due to the
√
τ dependence of the shot noise), as can be seen from the

comparison of figures ?? (a)& (f) for the CPMG case.

We note that the sensitivity was not improved by using more than 10 pulses in

the CPMG sequence. This is due to a combination of noise inherent in the applied

ac magnetic signal, andsub-shot noise (ie sub-
√
T ) improvements as the full NV evo-

lution approaches the spin-locking regime. The latter of these is readily addressed by

employing UDD instead of CPMG, as significantly less pulses are required to achieve

the same degree of decoherence suppression.
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The minimum magnetic field detected in this experiment was 0.4 nT, which was

performed using a total sensing time of T = 10min, and corresponds to the coupling

between the NV spin and that of a proton a distance of 5 nm away. The optimal

sensitivity scaling associated with the UDD sequence will result in orders of magnitude

improvements to this acquisition time, and hence the sensitivity, even when the proton

spin is driven in an ac fashion (see figure 6.4 (a)). Further improvements will be

achieved if the Rabi frequency of the proton spin can be dynamically controlled to

coincide with the non-uniform spacing of the UDD pulses.

6.5 Conclusions

We have theoretically investigated the improvements associated with the application

of UDD and CPMG sequences to an NV-based magnetometer, with UDD proving to

be optimal in this case. Results show that dephasing times are ultimately limited

by the self correlation time of the fluctuating environment, thus NV magnetometer

interrogation times may be extended by nearly four orders of magnitude beyond the

free-induction decay time. An experimental investigation was conducted, and results

were shown to be consistent with theoretical predictions. In light of these results,

we have shown that incorporation of UDD into current single NV magnetometer

protocols may yield sensitivities below 5 pTHz−1/2 at room temperature in the near

future. Such techniques have the potential to yield great improvements to nano-scale

sensing, particularly nano-biological processes occurring at room temperature.



Chapter 7

Fundamental limits of achievable
fidelity in pulsed-wave spin
resonance experiments

As detailed in chapter 3, control of the NV spin state is achieved by tuning the fre-

quency of an oscillatory microwave field to one of the transitions within the ground-

state {|0⟩, | − 1⟩, |+ 1⟩} spin manifold, say |0⟩ ↔ |+ 1⟩. To this point, our analysis

has assumed that perfect, instantaneous pulses are possible and that we may be com-

pletely detuned from the |0⟩ ↔ | − 1⟩ transition. In reality, the presence of the

microwave field and the adjacent spin bath results in a broadening of these transi-

tions, meaning that not only is it impossible to perfectly tune to the |0⟩ ↔ | + 1⟩

transition, we also achieve a non-resonant excitation of the |0⟩ ↔ | − 1⟩ transition,

leading to a population leakage into the |−1⟩ state. In this chapter, we quantify these

effects, and the associated loss of fidelity, in the context of an NV centre coupled to

three different proximate spin baths: the ppm nitrogen electron donor spin bath in

type 1b diamond, the 1.1% 13C nuclear spin bath in ultra-pure low nitrogen diamond,

and the surface electron spin bath of diamond nanocrystals.

107
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7.1 Introduction

In discussing NV spin resonance processes so far, we have assumed that errors in

our measurements are solely due to the influence of spin impurities, both within the

diamond crystal and on the crystal surface, during the free precession intervals of

the NV spin’s evolution. In doing so, we have implicitly assumed that no errors are

introduced during the relatively short periods of microwave control. From the dis-

cussion of ODMR in chapter 3, we know that a broadening of the NV ground state

spin transitions are caused by both microwave and laser fields, and the coupling to

a proximate spin bath. As we will show, this broadening results in both incomplete

spin rotations and population leakage into the third spin sublevel via excitation of

the second, non-resonant transition. Suppression of pulsing errors is shown to be

achievable by simultaneously employing a sufficiently strong microwave field, capable

of exciting the target transition, despite the detunings caused by couplings to adja-

cent spins; together with a sufficiently strong background magnetic field, capable of

detuning the second non-resonant transition beyond any appreciable excitation.

In what follows, we consider the full coherent evolution of the NV spin under FID

and spin echo pulse sequences, including a full quantum mechanical description of

microwave driven and free precession intervals. The errors are quantified in terms of

both experimental parameters and physical properties of the spin bath, and are shown

to explain the origin of a number of features whose discussion has been overlooked in

the literature to date. This analysis is then applied to three experimentally relevant

cases, including a comparison of our findings with experiment1.

1All experiments described in this chapter were performed by L.P. McGuinness and D.A. Simpson
at the University of Melbourne.
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7.2 Modeling

In order to model this system, we must consider the evolution of the NV spin under

both continuous and pulsed microwave sequences. Firstly, we use ODMR to determine

the optimal microwave frequency for use in the microwave control of the spin state.

A Rabi sequence is then used to determine the pulse duration required to produce π

and π/2 control pulses. The full evolution is then performed using initial and final

π/2 pulses, encapsulating alternating periods of free evolution and π control pulses.

7.2.1 Continuous microwave-driven evolution

We firstly consider cases in which the evolution of the NV spin state is driven by

a continuous, oscillating lateral microwave field, namely ODMR and Rabi cycling.

When the frequency of the microwave field is resonant with one of the spin transitions,

the population of the NV spin will cycle between the two states associated with the

transition. However, because of the broadening of these transitions due to both the

presence of the surrounding spin bath, and the microwave field itself, not only are

we almost never perfectly on resonance with the desired transition, we also manage

to excite the non-resonant transition to a lesser degree. ODMR provides us with a

convenient protocol by which to quantify these undesired effects prior to discussing

pulsed-based microwave evolution, whereas the Rabi protocol allows us to probe the

resultant transition rates for a given microwave frequency.

During periods of microwave driven evolution, we take the static, axial Hamilto-

nian to be H0 = DS2
z + ωzSz, where ωz is the total coupling to the axial component

of the NV spin, including the static background field used to split the ±1 states, B0,
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and all Ising (z− z) type interactions between the NV and the environment. The in-

teraction with the microwave field, whose amplitude and frequency may be controlled

externally, is given by V = ωx cos (ωt)Sx (taking ω > 0). Switching to the interaction

picture, we have

VI = ωx cos (ωt) e
iH0tSxe

−iH0t

≈ ωx

2
√
2


0 eit(D+ω0−ω) 0

e−it(D+ω0−ω) 0 e−it(D−ω0−ω)

0 eit(D−ω0−ω) 0



=
ωx

2
√
2


0 e−iδ+t 0

eiδ+t 0 eiδ−t

0 e−iδ−t 0

 , (7.2.1)

where δ± = ω − (D ± ωz) is the detuning between the qubit transition frequencies

(D ± ωz) and the frequency of the microwave field. Note that in this approximation

we have we ignored all terms of the form e±i(ω+D±ωz)t, since their rapid oscillation

yields corrections of order ωx

ω+D
≪ 1, which are much lower than the errors with which

we concern ourselves in this chapter (which are of the order O (ω2
x/B

2
0), O

(
δ2±/ω

2
x

)
).

In addition, since we are interested in errors accumulated during microwave evolution

on timescales of t ∼ 1/ωx, time-dependent perturbation theory is not appropriate,

hence we must solve the evolution of the spin state exactly.

The equation of motion of the state in the interaction picture is given by

d

dt
|ψ⟩I = −iHI |ψ⟩I , (7.2.2)

where |ψ⟩I = A+ |+1⟩+A0 |0⟩+A−1 |−1⟩. This system may be simplified further by
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substituting A+ = e−iδ+ta+ and A− = e−iδ−ta−, and rescaling with τ = ωx

2
√
2
t, giving

da+
dτ

= iκ+a+ − iA0

d

dτ
A0 = −ia+ − ia−

da−
dτ

= iκ−a− − iA0, (7.2.3)

where κ±τ ≡ δ±t. This system of three first-order linear differential equations may

be reduced to a single third-order differential equation for A0,

d3

dτ 3
A0 − i (κ+ + κ−)

d2

dτ 2
A0 + (2− κ+κ−)

d

dτ
A0 − i (κ+ + κ−)A0 = 0. (7.2.4)

We proceed by seeking solutions of the form A0 = eiλt. In the case of either an ODMR

or a Rabi experiment, where the system is initially optically polarised in the |0⟩ state

(A0 = 1, A+ = A− = 0), we have

A0(t) = − eiλ1t (2 + λ2λ3)

(λ1 − λ2) (λ3 − λ1)
− eiλ2t (2 + λ1λ3)

(λ1 − λ2) (λ2 − λ3)
− eiλ3t (2 + λ1λ2)

(λ1 − λ3) (λ3 − λ2)
.

(7.2.5)

For the more general case of an arbitrary initial state,
∣∣ψ(0)⟩ ≡ a+

∣∣+1
⟩
+ a0

∣∣0⟩ +
a−
∣∣−1

⟩
, which will be required for discussions regarding pulse-based microwave con-

trol, the initial conditions for equation 7.2.4 are

A0(0) = a0,

dA0

dt

∣∣∣∣
t=0

= −ia+ − ia−,

d2A0

dt2

∣∣∣∣
t=0

= κ+a+ + κ−a− − 2a0, (7.2.6)
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giving the following solution for the amplitude of the |0⟩ state,

A0(τ) =
a− (κ− − λ2 − λ3) + a+ (κ+ − λ2 − λ3)− (2 + λ2λ3) a0

(λ1 − λ2) (λ3 − λ1)
eiλ1τ

+
a− (κ− − λ1 − λ3) + a+ (κ+ − λ1 − λ3)− (2 + λ3λ1) a0

(λ1 − λ2) (λ2 − λ3)
eiλ2τ

+
a− (κ− − λ1 − λ2) + a+ (κ+ − λ1 − λ2)− (2 + λ1λ2) a0

(λ3 − λ1) (λ2 − λ3)
eiλ3τ .

(7.2.7)

The amplitudes of the other two states may be evaluated using equation 7.2.3,

a±(t) = a±(0)− i exp
(
iκ±τ

) ∫ t

0

A0(τ
′) exp

(
−iκ±τ

)
dτ , (7.2.8)

where the normal modes of the system are given by

λ1 =
1

3
(κ− + κ+) +

1

3
22/3α

[
sin

(
1

3
tan−1 β3

)]
λ2 =

1

3
(κ− + κ+) +

1

6
22/3α

[√
3 cos

(
1

3
tan−1 β3

)
− sin

(
1

3
tan−1 β3

)]
λ3 =

1

3
(κ− + κ+)−

1

6
22/3α

[√
3 cos

(
1

3
tan−1 β3

)
+ sin

(
1

3
tan−1 β3

)]
,

(7.2.9)

and

α2 = 4
(
6 + κ2− − κ−κ+ + κ2+

)
(7.2.10)

β3 =

[
1− 4

(
κ2− − κ+κ− + κ2+ + 6

)3
(κ− + κ+) 2 (−2κ2− + 5κ+κ− − 2κ2+ + 9) 2

]−1/2

. (7.2.11)

Typically, we are interested in two limiting cases, as dictated by the strength of

the static axial field. In the low field limit, B0/ωx ≪ 1, the degeneracy between

the ±1 states is lifted ever only so slightly by the presence of the spin bath. As

such, the microwave field is still able to excite both |0⟩ ↔ | + 1⟩ and |0⟩ ↔ | − 1⟩
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Figure 7.1: ODMR and corresponding Rabi profiles for various detuning parameters,
κ+ and κ−. The detuning from the adjacent, non-resonant |0⟩ ↔ | − 1⟩ transition
increases from left to right, and the Rabi profiles correspondingly show decreasing
population of the | − 1⟩ state (red curve). Dashed red curves in the upper plots
represent the idealised Lorentzian profiles associated with each transition and give
an indication of the degree of excitation of the non-resonant transition. In the lower
plots, the populations of the |0⟩, |+1⟩ and | − 1⟩ states are shown in blue, green and
red respectively.

transitions. Pulsing errors arise as a result of the increased broadening, and hence

reduced contrast of the transition rate (See figure 7.1 (a)& (b)). In this case, we have

κ+, κ− ≪ 1.

More commonly, when the background field is large, the microwave field will be

tuned close to resonance with one of the transitions and far detuned from the other,

giving κ+ ≪ 1, κ− ≫ 1. Pulsing errors will arise not only due to broadening of the

|0⟩ ↔ |+ 1⟩ transition, but also due to population leakage into the | − 1⟩ state via a

slight excitation of the |0⟩ ↔ | − 1⟩ transition (See figure 7.1 (c)& (d)).

As the λi are real, we simply have (iλi)
∗ = −iλi. The time dependent population
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at time t is then

P0(t) = A∗
0(t)A0(t) (7.2.12)

=
(2 + λ2λ3)

2

(λ1 − λ2)
2 (λ3 − λ1)

2 +
(2 + λ1λ3)

2

(λ1 − λ2)
2 (λ2 − λ3)

2 +
(2 + λ1λ2)

2

(λ3 − λ1)
2 (λ2 − λ3)

2

+
2 (2 + λ2λ3) (2 + λ1λ3)

(λ1 − λ2)
2 (λ3 − λ1) (λ2 − λ3)

cos
[
(λ1 − λ2) t

]
+

2 (2 + λ2λ3) (2 + λ1λ2)

(λ3 − λ1)
2 (λ1 − λ2) (λ2 − λ3)

cos
[
(λ1 − λ3) t

]
+

2 (2 + λ3λ1) (2 + λ1λ2)

(λ2 − λ3)
2 (λ1 − λ2) (λ3 − λ1)

cos
[
(λ2 − λ3) t

]
. (7.2.13)

Optically detected magnetic resonance

The ODMR spectrum allows us to see the degree to which each of the two transitions

will be excited as a function of the microwave frequency, ω. Since the monitored flu-

orescence is proportional to a long-time (t ≫ 1/ωx) summation over equation 7.2.13,

the contribution of the cosine terms vanishes, and we are left with the following DC

contribution

SODMR =
(2 + λ2λ3)

2

(λ1 − λ2)
2 (λ3 − λ1)

2 +
(2 + λ1λ3)

2

(λ1 − λ2)
2 (λ2 − λ3)

2 +
(2 + λ1λ2)

2

(λ3 − λ1)
2 (λ2 − λ3)

2 .

(7.2.14)

To illustrate the effect of the detuning, the contrast is plotted in figure 7.1 for a range

of values for the detuning parameters, κ+ and κ−. These curves show the response for

a particular realisation of the axial field, ωz, however this field will vary slightly about

D±B0 due to the axial components of the coupling to the spin bath. Computing the

ensemble average over these couplings will lead to a broadening of the ODMR curve,

and consequently, a reduced contrast. In the case that we are far detuned from one
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of the transitions, say |0⟩ ↔ | − 1⟩, we have κ− ≫ κ+, giving

SODMR ≈ 1

2

(
1 +

κ2+
κ2+ + 4

)
+

4

κ−

κ+
(κ2+ + 4) 2

− 2

κ2−

κ6+ + 9κ4+ + 31κ2+ + 28

(κ2+ + 4) 3
,

(7.2.15)

which shows the correction to the Lorentzian profile associated with the resonant

transition to second order in 1/κ−, resulting from excitation of the non resonant

transition.

Rabi Oscillations and determination of pulse duration

Instead of examining the long-time averaged behavior of the NV fluorescence in re-

sponse to the microwave field under constant optical illumination, we may allow the

system to evolve under the action of the microwave field for a predetermined time,

and then stop the evolution and readout the population of the |0⟩ state using a pulsed

laser (see chapter 3 for a review). By varying the microwave evolution time, we may

determine the time dependent population of the |0⟩ state.

As in the ODMR case, the presence of additional axial couplings due to a proxi-

mate spin bath leads to a broadening of the effective Rabi frequencies, in turn leading

to an eventual decay of the Rabi profile. A full, long-time description of this decay

is not necessary for this work, however a description of the behaviour for t ∼ 1/ωx is

sufficient to determine the errors accumulated during pulsed evolution of the system.

In the high field case, the ODMR transitions are split due to the presence of a

large static magnetic field, B0 ≫ ωx, making simultaneous resonant excitation of both

transitions impossible. As such, we tune the microwave frequency to the |0⟩ ↔ |+1⟩

transition. As we will show, leakage of the NV spin population into its | − 1⟩ state
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via small excitation of the |0⟩ ↔ | − 1⟩ transition is a significant source of error in

many practical cases.

For cases where the splitting is large, we may expand equation 7.2.13 for large κ−,

giving

PRabi = 1− 4

Ω2
sin2

(
ξτ

2

)
+

1

κ−

8κ+
Ω2

sin2

(
ξτ

2

)
+

2

κ2−

[
cos(κ−τ) cos

(
ξτ

2

)
−
κ− sin(κ−τ) sin

(
ξτ
2

)
Ω

+
2 (3Ω4 − 7Ω2 + 16) sin2

(
ξτ
2

)
Ω6

− 1

]
,

(7.2.16)

where Ω =
√
κ2+ + 4 is the bare ‘Rabi’ frequency with respect to the |0⟩ ↔ | + 1⟩

transition, and ξ is the modified Rabi frequency, resulting from excitation of the

|0⟩ ↔ | − 1⟩ transition. To second order in 1/κ−, we have

ξ = Ω

(
1 +

2

κ2−Ω
4
+

κ+
κ−Ω2

− 2

κ2−Ω
2

)
. (7.2.17)

In addition to being a means by which to demonstrate the quantum coherence of

the NV, a Rabi experiment is used to obtain the appropriate pulse widths for pulse

based manipulation and control of the quantum state. This is done by using a Fourier

transform of the Rabi profile to determine the associated Rabi Frequency, and hence

the time required to perform the desired rotation. The Rabi profile in equation 7.2.16

is true for a given realisation of κ+ and κ−, however, whilst the detuning with respect

to D and B0 may be controlled externally, the presence of a proximate spin bath

introduces a spread in the detuning that cannot be controlled. To determine our best

chance of achieving the desired rotation, we must determine the resulting ensemble

averaged Rabi profile.

Since the pulse width is typically short on the timescale of the correlation time

of the bath, we may assume the spread in the detuning due to the spin bath is quasi
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static. Bath dynamics are thus only important for the much longer free-precession

intervals, and are dealt with in section 7.2.2 below. Furthermore, owing to the large

number of field sources present, the probability density function associated with the

detuning will be normally distributed via

P (ωz) =
1

2IN + 1

k=IN∑
k=−IN

1

b
√
2π

exp

[
−(ωz − ω0 − kAN)

2

2b2

]
, (7.2.18)

where kAN is the hyperfine shift due to the kth spin state of the spin-IN nitrogen

nuclear spin of the NV centre, which may be either spin-1
2
or spin-1 depending on the

isotope present, all states of which will be equally populated at room temperature; and

b is the spread in coupling strengths from the bath as a whole. We define ω0 ≡ D+B0

to be the total static background magnetic field.

Since we are interested in exciting the |0⟩ ↔ |+1⟩ transition as much as possible,

we tune the microwave field to ω = ω0. The detuning associated with this transition

is then simply δ = ωz − ω0, and since δ ≪ ωx ≪ ω0, we may expand equation 7.2.16

for small κ+, giving,

PRabi ≈ cos2
(
ξτ

2

)
+

1

4

(
κ+ +

1

κ−

)2

sin2

(
ξτ

2

)
+

2

κ2−

[
cos(κ−τ)− cos

(
ξτ

2

)]
cos

(
ξτ

2

)
, (7.2.19)

from which we see that the corresponding Fourier decomposition will contain three

dominant frequency components: one centred near ξ, and two more at κ−±ξ; however

only the former is non-zero for vanishing 1/κ−. We therefore choose this frequency

component to deduce the necessary pulse durations. Since the second order correc-

tions only affect the contrast, and not the Rabi frequency itself, we may determine
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the Rabi frequency from the zeroth order component alone,⟨
1

2
+

1

2
cos(ξτ)

⟩
	

=
1

2
+

1

2

1

2IN + 1

k=IN∑
k=−IN

1

σωx

√
2π

∫
exp

[
−(κ+ − kµ)2

2σ2

]
× cos

[(
2 +

κ2
+

4
+ κ+

2κ−
− 3

4κ2
−

)
τ
]
dκ+

≈ 1

2
+

1

2

1

2IN + 1

k=IN∑
k=−IN

cos

[
τ

(
2− 3

4κ2−
+

kµ

2κ−
+
kµ2

4
+
σ2

4

)]
,

(7.2.20)

where σ = 2
√
2b/ωx and µ = 2

√
2AN/ωx; and the 	 subscript denotes an ensemble

average over the degrees of freedom present during the application of the microwave

field. This will become an important distinction later, when we wish to distinguish

between averages over periods of microwave control and periods of free evolution.

Depending on the nitrogen isotope in the NV centre, the Fourier spectrum of the

Rabi profile will exhibit two or three peaks, associated with each possible realisation

of µi, the width of which will be roughly ωx due to aliasing effects. Since ωx ≫ In, the

modal component of the spectrum will occur at the centroid of the dominant peaks,

namely

ξ̄ = 2− 3

4κ2−
+
µ2

6
+
σ2

4
, (7.2.21)

for the spin-1 14N nucleus, and

ξ̄ = 2− 3

4κ2−
+
µ2

4
+
σ2

4
, (7.2.22)

for the spin-1
2

15N nucleus. Note also that

1

κ−
=

ωx

2B0 + b
≈ ωx

2B0

. (7.2.23)

For comparison with experiments involving diamond nanocrystals and native NV

centres in single crystal diamond, we restrict ourselves to the 99.6% abundant 14N
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isotope from this point forward. Thus, to achieve a quantum state rotation though

an angle of θ, we require a time interval of

τ = θ/ξ̄

≈ θ

2

(
1 +

3

8κ2−
− µ2

12
− σ2

8

)
, (7.2.24)

or in dimensionalised units,

t ≈ θ
√
2

ωx

[
1 +

3

32

(
ωx

B0

)2

− 2

3

(
AN

ωx

)2

−
(
b

ωx

)2
]
. (7.2.25)

7.2.2 Pulsed microwave-driven evolution

In cases of pulse-based microwave control, the NV spin is typically optically polarised

in the |0⟩ state, and subsequently driven into an equal superposition of |0⟩ and |+1⟩

states using using a microwave pulse of suitable length (otherwise known as a π/2

pulse, or a Hadamard gate in the language of quantum computing). This is followed

by n+1 (not necessarily equal) periods of evolution separated by n-π pulses, each of

which is applied at time tn. A final π/2 pulse is used to convert the resulting phase

interference into a population difference. The total evolution operator is given by

U = Rπ
2
U(t, tn)Rπ . . .RπU(0, t1)Rπ

2
. (7.2.26)

Following the optical polarisation of the NV spin in the |0⟩ state, the resultant spin

state at time t may be evaluated using

|ψ⟩ = U |0⟩ , (7.2.27)

from which we may determine the resulting population of the |0⟩ state after a total

free-precession time, t. In this section, we will combine the results for both microwave
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driven and free precession intervals, to determine how the pulse errors manifest as

abberations in the resulting FID and spin-echo envelopes. For notational clarity we

will adopt κ ≡ ⟨κ+⟩, κ2 ≡
⟨
κ2+
⟩
, K ≡ ⟨1/κ−⟩ and K2 ≡

⟨
1/κ2−

⟩
.

Periods of imperfect microwave control

Here we consider the effects of the detunings on the evolution of the NV spin under

pulsed microwave control. Since we are slightly detuned from the |0⟩ ↔ | − 1⟩ tran-

sition and greatly detuned form the |0⟩ ↔ |− 1⟩ transition, we expand the frequency

modes of equation 7.2.9 for small κ+ and large κ− to second order, giving

λ1 ≈ 1 +
κ2+
8

+
κ+
4κ−

− 3

8κ2−
+
κ+
2

− 1

2κ−
, (7.2.28)

λ2 ≈ κ− +
1

κ−
, (7.2.29)

λ3 ≈ −
(
1 +

1

8
κ2+ +

κ+
4κ−

− 3

8κ2−

)
+
κ+
2

− 1

2κ−
. (7.2.30)

In the case of the second normal mode, λ2, we note that the angular frequency grows

without bound for an arbitrarily large detuning.

Having determined the Rabi frequency in the previous section, we substitute the

pulse duration to achieve a rotation of θ (equation 7.2.24) into the equations of motion

(equation 7.2.7 and equation 7.2.8) and make the same asymptotic expansion for small

κ+ and large κ−, giving a rotation operator of

R(θ) = R(0) +R(1) +R(2), (7.2.31)

where the zeroth order solution for the transformation matrix is

R(0) =


C −iS 0

−iS C 0

0 0 e
1
2
iθκ−

 , (7.2.32)
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the first order terms are

R(1) =
κ+
4


i(2S + θC) θS 0

θS i(θC − 2S) 0

0 0 0



+
1

4κ−


2iS − iCθ −Sθ −4iS

−Sθ −2iS − iCθ 4C − 4e
1
2
iθκ−

−4iS 4C − 4e
1
2
iθκ− 2ie

1
2
iθκ−θ

 ,

(7.2.33)

and the second order terms are

R(2) =
ϵ2

2


−Sθ −iCθ 0

−iCθ −Sθ 0

0 0 0
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+

32
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(
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+
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−
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)
i
(
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))
2Sθ + 32e

1
2
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(
θ2 + 32

)
−8i

(
−2S + 2e

1
2
iθκ−θ + Cθ

)
−8

(
4C − 4e

1
2
iθκ− + Sθ

)
−8i

(
−2S + 2e

1
2
iθκ−θ + Cθ

)
32C − 4e

1
2
iθκ−

(
θ2 + 8

)
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+
κ+

16κ−


θ(Cθ − 2S) −i

(
2Cθ + S

(
θ2 − 4

))
4Sθ

−i
(
2Cθ + S

(
θ2 − 4

))
θ(Cθ − 2S) 4i(Cθ − 2S)

4Sθ 4i(Cθ − 2S) 0

 .

(7.2.34)

where ϵ2 ≡ 3
8κ2

−
− µ2

12
− σ2

8
is the error in the pulse duration from equation 7.2.24,

C ≡ cos(θ/2) and S ≡ sin(θ/2). To zeroth order, we can see that θ = π/2 and θ = π

correspond to the Hadamard and bit-flip operations between |0⟩ and |+1⟩ states, as

required.

Periods of free precession

Following any fixed period of microwave evolution, the NV spin state will be in a

superposition of its magnetic sublevels. The compartiviely weak couplings to the lat-

eral components of the environmental magnetic fields are unable to induce transitions
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between these states, and are therefore ignored. As such, free evolution under the

axial couplings to the proximate environment will not change the population of the

magnetic sublevels, but will change the relative phase between each of them.

The true nature of this free evolution under the influence of a proximate spin bath

has been the focus of an extensive research effort in recent years and is the subject of

chapter 12. Since, for the purposes of this chapter, we are only interested in modeling

the effect of imperfect pulsing on the free evolution, rather than the underlying cause

of the free evolution itself, we do not attempt to reproduce these results here. Instead,

we are content to subsume the cause of the evolution into an overall effective semi-

classical axial field, B(t). The time-dependent free evolution Hamiltonian is then

H = B(t)Sz, giving a corresponding evolution operator of

U =


e−iϕ 0 0

0 1 0

0 0 eiϕ

 , (7.2.35)

where ϕ =
∫
B(t) dt is the resulting phase accumulation during some time interval.

For cases of higher order pulse sequences, there will be two or more periods of free

evolution separated by (not necessarily ideal) π pulses. We denote the phase accumu-

lation of the nth free evolution period ϕn. Depending on the pulse sequence chosen,

the overall evolution of the quantum state will involve linear combinations of these

phases, which must be averaged over the statistical properties of the effective axial

field, as detailed below in section 7.2.3.
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The imperfect free induction decay pulse sequence

An ideal free induction decay (FID) sequence involves the initialisation of the NV

spin into the |0⟩ state followed by a π/2 rotation to produce an equal superposition

of |0⟩ and | + 1⟩ states. A phase shift of ϕ1 then develops on the | + 1⟩ state during

the free-precession interval, which is followed by a second π/2 pulse to convert this

phase shift into a population difference. Using equations 7.2.26 and 7.2.27 we find

the subsequent population of |0⟩ state, to order O (κ2, K2), to be

⟨
P fid
0

⟩(0)
	 =

1

2
− cos (ϕ1)

2⟨
P fid
0

⟩(K,1)

	 =
1

2
K sin (ϕ1)⟨

P fid
0

⟩(κ,2)
	 = −1

4
κ2 cos (ϕ1)⟨

P fid
0

⟩(K,2)

	 = −K2
[√

2 cos
( π

4K
+ 2ϕ1

)
− 2

√
2 cos

( π

4K
+ ϕ1

)
+ cos

( π

2K
+ ϕ1

)
− cos

( π

2K
+ 2ϕ1

)
+
√
2 cos

( π

4K

)
+

9 cos (ϕ1)

4
− 1

2
cos (2ϕ1)−

3

2

]
,

(7.2.36)

where the 	 subscript denotes an ensemble average being taken over the CW degrees

of freedom only. In the absence of any errors (κ = K = 0), the population of the

|0⟩ state simply oscillates between 1 and 0. Decoherence caused by the external

environment will result in this oscillation being damped on a timescale of T ∗
2 , driving

the population of the |0⟩ state to a steady state value of 1/2.

The magnitudes of the O (K2) error changes with with the particular realisations

of ϕ1 and K, as shown in figure 7.2, with the extreme error cases occurring for ϕ1 = π

and ϕ1 = ±π/2. Thus, we find the O (K2) error to be enclosed within an envelope
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Figure 7.2: Errors introduced during a FID pulse sequence due to excitation of the
|0⟩ ↔ |−1⟩ transition. Different curves represent contours of constant phase accumu-
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entirely to the |+1⟩ state (ϕ1 = π), the deviation can be as large as 12K2. At points
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given by

max
{⟨
P fid
0

⟩(K,2)

	

}
= 2K2 (7.2.37)

min
{⟨
P fid
0

⟩(K,2)

	

}
= −12K2. (7.2.38)

We note some important cases of the error behaviour in an FID sequence. In the

absence of any phase accumulation due to free-precession (ie, where ϕ1 = 0), we have⟨
P fid
0

⟩
	 = 1− K2

4
− κ2

4
. (7.2.39)
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This shows an immediate reduction in contrast by an amount (K2 + κ2) /4, due to

both broadening of the |0⟩ ↔ |+ 1⟩ transition, and leakage into the |0⟩ state via the

|0⟩ ↔ | − 1⟩ transition during the pulsing intervals.

At points of maximal phase interference, where ϕ1 = π, we find

⟨
P fid
0

⟩
	 =

1

4
κ2 +

1

4
K2
[
17− 16

√
2 cos

( π

4K

)
+ 8 cos

( π

2K

)]
, (7.2.40)

which, depending on the exact value of K, lies somewhere between a lower bound of

(κ2 +K2) /4 and an upper bound of κ2/4 + 12K2. Whereas before, in the absence

of any pulsing errors, we had 0 ≤
⟨
P fid
0

⟩
≤ 1, these results show that in a best case

scenario, we now have that the FID profile will oscillate between

0 +
K2

4
+
κ2

4
≤
⟨
P fid
0

⟩
	 ≤ 1− K2

4
− κ2

4
, (7.2.41)

and in a worst case scenario we have

0 + 12K2 +
κ2

4
≤
⟨
P fid
0

⟩
	 ≤ 1− K2

4
− κ2

4
. (7.2.42)

When the system has fully dephased, all sine and cosine terms involving ϕ1 will have

averaged to zero, giving

⟨
P fid
0

⟩t→∞
	 =

1

2
+
K2

2

(
3− 2

√
2 cos

( π

4K

))
. (7.2.43)

This implies that the steady state population of the |0⟩ state will be somewhere

between 1
2
+ K2

2

(
3± 2

√
2
)
, instead of 1

2
.

The imperfect spin-echo pulse sequence

An ideal spin-echo pulse sequence is essentially a concatenation of two FID sequences,

resulting in two equal periods of free evolution, separated by a π pulse, whose presence
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Figure 7.3: Spin echo errors due to population leakage of the NV spin into its | − 1⟩
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|0⟩ state after the NV spin has completely dephased, as a function of K = ωx/2B0.
In the absence of any errors, the steady state value would be 1/2.
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refocuses the effect of any static magnetic noise, thereby increasing the coherence time

from T ∗
2 to T2. As we will show, pulse errors result in a non-trivial component of the

spin-echo profile behaving as a FID, which decays on a timescale of T ∗
2 , resulting in

a further reduction in contrast.

Using equations 7.2.26 and 7.2.27 we find the subsequent population of |0⟩ state,

to order O (κ2, K2), to be

⟨P se
0 ⟩(0)	 =

1

2
+

1

2
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0 ⟩(κ,2)	 =

κ2

8

[
cos (ϕ1 + ϕ2)− cos (ϕ1 − ϕ2)

]
⟨P se

0 ⟩(K,2)
	 =

K2

8

[
−4

√
2 cos

(
π
4K

+ ϕ1

)
− 4 cos

(
π
2K

+ ϕ1

)
+ 4 cos

(
π
2K

+ 2ϕ1

)
+4

√
2 cos

(
π
4K

+ ϕ1 − ϕ2

)
− 4

√
2 cos

(
π
4K

+ 2ϕ1 − ϕ2

)
+ 4

√
2 cos

(
π
4K

− ϕ1 + ϕ2

)
−4

√
2 cos

(
3π
4K

+ 2ϕ1

)
− 4

√
2 cos

(
π
4K

+ ϕ2

)
− 4 cos

(
π
2K

+ ϕ2

)
+ 4 cos

(
π
2K

+ 2ϕ2

)
+8 cos

(
π
2K

+ ϕ1 + ϕ2

)
− 8

√
2 cos

(
3π
4K

+ ϕ1 + ϕ2

)
− 4 cos

(
π
2K

+ 2ϕ1 + ϕ2

)
+8

√
2 cos

(
3π
4K

+ 2ϕ1 + ϕ2

)
− 8 cos

(
π
K
+ 2ϕ1 + ϕ2

)
− 4

√
2 cos

(
π
4K

− ϕ1 + 2ϕ2

)
−4 cos

(
π
2K

+ ϕ1 + 2ϕ2

)
+ 8

√
2 cos

(
3π
4K

+ ϕ1 + 2ϕ2

)
− 8 cos

(
π
K
+ ϕ1 + 2ϕ2

)
−4

√
2 cos

(
3π
4K

+ 2ϕ2

)
+ 8

√
2 cos

(
π
4K

)
+ 4 cos (ϕ1) + 4 cos (ϕ1 − 2ϕ2)

−17 cos (ϕ1 − ϕ2) + 4 cos (2ϕ1 − ϕ2) + 4 cos (ϕ2) + cos (ϕ1 + ϕ2)− 16

]
.

(7.2.44)

Errors of order O(κ) and O(K) are zero. The error arising in the absence of any free

precession (ϕ1 = ϕ2 = 0) is

⟨P se
0 (0)⟩	 = 1− 2K2 − 2K2 cos2

( π
K

)
, (7.2.45)

yielding a worst-case error and corresponding decrease in contrast of −4K2. When
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the system has fully dephased, it will do so to a final value of

lim
t→∞

⟨P se
0 ⟩	 =

1

2
+

1

2
K2

(√
2 cos

( π

2K

)
+ cos

(
2π

K

)
− 1

)
, (7.2.46)

yielding an error range of 1√
2

(
ωx

B0

)2 [
−(1 +

√
2), 1

]
. As κ does not appear in either of

the t = 0 or t = ∞ expressions, both of the associated errors are directly attributable

to population of the | − 1⟩ state.

Of perhaps more interest however, is the non-zero DC phase accumulation that

arises due to the non-ideal pulses. Whereas in an ideal spin-echo experiment, the

π pulse is used to refocus any DC couplings, the imperfect π-pulse causes a small

component of the otherwise ideal spin-echo sequence to behave as a FID sequence.

This effect can be seen in equation 7.2.44 in all terms that do not have a phase

accumulation of ϕ1−ϕ2, ensuring the DC phase accumulation is non-zero. The phases

alone, ϕ1 and ϕ2, as well as their sum, ϕ1 + ϕ2, however, contain static contributions

involving frequency components of order B0, I, etc. As such, the spin-echo curve

will show rapid oscillations at these frequencies with amplitudes of order ⟨κ2⟩ and

⟨K2⟩. Such behaviour has been observed in experiments, particularly those detailed

in chapter 5, and is discussed in the following section.

By definition, this FID like behaviour decays on timescales of T ∗
2 , beyond which,

but prior to complete decoherence (T ∗
2 < t < T2) we are left only with terms involving

differences in ϕ1 and ϕ2,

⟨P se
0 ⟩(0)	 = 1

⟨P se
0 ⟩(κ,2)	 = −κ

2

8

⟨P se
0 ⟩(K,2)

	 =
K2

8

[
16
√
2 cos

(
π
4K

)
− 17− 16

]
. (7.2.47)

To see the effects of errors at all timescales in full detail, we must include a model
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of decoherence to account for the dynamic behaviour of the phase accumulations

arising from the surrounding spin bath during periods of free precession.

7.2.3 Including decoherence

As the pulse times are extremely short compared with the environmental correlation

time, we may assume the environment is effectively quasi static over each pulse dura-

tion, and employ the same probability distribution for the bath-induced detunings as

was used in the Rabi analysis (equation 7.2.18). For evaluation of the phase interfer-

ences that develop during free precession, we are interested in evaluating the ensemble

averages of quantities of the form cos (aκ + Φ) (see equations 7.2.36 and 7.2.44), where

aK is an additional phase shift (possibly 0) resulting from population leakage of the

NV spin into the | − 1⟩ state; and Φ may represent any linear combination of the ϕn

(this statement will be made exact in what follows).

Because the effective field arises from a large number of individual sources, by

the central limit theorem, the amplitude of the resulting phase shift will be normally

distributed, by definition, according to

Pr(Φ) =
1

∆Φ
√
2π

exp

[
−(Φ− ⟨Φ⟩)2

2∆Φ2

]
, (7.2.48)

where ∆Φ2 = ⟨Φ2⟩ − ⟨Φ⟩2. Thus

⟨
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cos (aκ + Φ) dΦ

= exp

(
−⟨Φ2⟩ − ⟨Φ⟩2

2

)
cos
(
aκ + ⟨Φ⟩

)
, (7.2.49)

We therefore wish to relate the statistical moments of the phase shifts developed

during the free-precession intervals, Φ, to the dynamic properties of the field. To
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do this, we decompose the field into its static and fluctuating components, B(t) =

Bdc +
∑

i bi(t), where bi(t) is normally distributed with zero mean at any instant

in time, t, as above. The summation index represents the fact that more than one

fluctuating field may be present, for example, due to the internal spin bath, surface

spins, and external target systems. In the case of electron spin baths, the associated

autocorrelation function will exhibit an exponential decay2,

⟨
be(t

′)be(t
′′)
⟩

=
⟨
b2e
⟩
e−fe| t′−t′′|, (7.2.50)

where 1/fe is the correlation time for the electron bath. This is not true for nuclear

spin baths however, where, for reasons detailed in chapter 12, a linear exponential

decay does not describe the autocorrelation function of the environment. For this

case, following the analysis of chapter 4, we employ a Gaussian shaped autocorrelation

function

⟨
bn(t

′)bn(t
′′)
⟩

=
⟨
b2n
⟩
e−f2

n( t
′−t′′)2 , (7.2.51)

If we restrict ourselves to FID and spin-echo pulse sequences, we will only be

interested in evaluating sums and differences of at most two phase shifts, ϕ1 and ϕ2.

For the first moments of the phase shifts, we have
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= 2
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= 2
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= 0,⟨

ϕ1 + 2ϕ2
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=
⟨
2ϕ1 + ϕ2

⟩
=

3

2
Bdct,

2This is a commonly accepted result in the literature (see, for example, refs. [dSD03a, dSD03b,
TCC+08, HDF+08, DFHA09, HHCH10, LWR+10]), although a complete quantum mechanical proof
has never been produced. Such a proof is given in chapter 12
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and for the second moments, we assume that the distinct spin baths are uncorrelated

with each other, ie ⟨bi(t′)bj(t′′)⟩ = 0 if i ̸= j. Thus, for an electron spin bath we find

⟨B(t′)B(t′′)⟩ = ⟨[Bdc + b(t′)] [Bdc + b(t′′)]⟩

= B2
dc +

⟨
b2e
⟩
e−fe| t′−t′′|, (7.2.52)

Hence, the resulting second moments of the phase shifts are given by
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(7.2.53)

This approach gives us all of the tools required to perform a full analysis of the errors

exhibited by pulse-based NV experiments, which is the focus of the following section.

7.3 Applications to physical systems and compar-

ison with experiment

We now apply the analysis developed in the preceding sections to three practically

relevant NV based systems: the ppm nitrogen electron donor spin bath in type 1b

diamond, the 1.1% 13C nuclear spin bath in ultra-pure low nitrogen diamond, and

the surface electron spin bath of diamond nanocrystals. In the case of the latter,
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we make a direct comparison between theory and experiment, which demonstrate

excellent agreement.

7.3.1 Type 1-b bulk diamond crystal (ppm nitrogen-donor

electron spin bath)

In this section, we focus on the specific case of a spin echo experiment in the pres-

ence of a naturally occurring electron bath. This bath arises due to the presence

of naturally occurring nitrogen electron donor impurities, and yields an inhomoge-

nous linewidth of approximately be ≈ 2MHz (see chapter 3). Similarly, the width

of the frequency spectrum will be of roughly the same magnitude, fe ≈ 1MHz, due

to the distance between nearest neighbour pairs of electrons having the same spatial

distribution as that from the NV to its nearest electron.

The choice of microwave field strength, ωx, will have complementary effects on the

two sources of error. For a given B0, increasing ωx will broaden the Rabi frequency,

thereby more broadly encompassing the detunings associated with the |0⟩ → | + 1⟩

transition, and reducing κ. On the other hand, having a broader excitation range will

increase the overlap between the two NV spin state transitions, increasing K, and

consequently, the probability of leakage into, the | − 1⟩ state. Typical π pulse times

are of the order of 0.1µs, but may be as fast as a few nanoseconds [FDT+09]. We

firstly consider two limiting test cases in which errors may be exclusively attributed

to either detuning or population leakage effects, as depicted by figures 7.4(a) and

(b) respectively, and then follow with an example employing a typical experimental

parameter regime.

In the first case (figure 7.4(a)), we choose a sufficiently large magnetic field strength
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(1000G, or 2800MHz) to almost completely detune the |0⟩ ↔ | − 1⟩ transition from

excitation by the 50MHz microwave field. As such, we see that the steady state

population of the |0⟩ and |+1⟩ states are both effectively 0.5, meaning the population

of the |−1⟩ state is negligible. Additionally, the choice of a narrow microwave field only

just encompasses the dipolar-broadened |0⟩ ↔ |+1⟩ transition, leading to significant

detuning errors, and a significant reduction in contrast for times of T ∗
2 < t < T2

(recall from chapter 4 that T ∗
2 =

√
2/be = 700 ns).

In the second case (figure 7.4(b)), we choose a comparatively large microwave field

(200MHz), and small magnetic field (150G, or 420MHz). In this cased we manage

to sufficiently encompass the dipolar-broadened |0⟩ ↔ |+1⟩ transition, meaning that

detuning errors are suppressed to a large degree, as evidenced by the fact that the

rapid oscillations persist for times greater than T ∗
2 = 700 ns. At the same time, we

achieve an appreciable excitation of the |0⟩ ↔ | − 1⟩ transition, leading to significant

population of | − 1⟩ state, to the point where the population is appreciably shared

amongst the three NV spin states (P+1 = P0 = 0.44, P−1 = 0.12).

As our final example in type 1-b diamond (figure 7.4(c)-(e)), we take the π pulse

time to be tπ = 72ns, and π
2
= 36ns, giving a microwave field strength of ωx ≈

2
√
2 π
tπ

= 123MHz, together with a background field strength of 80G=225MHz.

This regime shows that both sources of error are present under typical experimental

conditions, resulting in both a large reduction in contrast and a large population

leakage into the | − 1⟩ state.
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Figure 7.4: Analytic spin-echo profiles for a typical nitrogen spin bath, with b =
2MHz f = 0.5MHz. (a) Spin echo profile for the case of ωx = 50MHz, and B0 =
2800MHz (1000G), demonstrating a large detuning error, but negligible population
leakage into the NV |−1⟩ state. (b) Spin echo profile for the case of ωx = 200MHz, and
B0 = 420MHz (150G), demonstrating a very small detuning error, but a significant
population leakage into the NV |−1⟩ state. (c) Spin echo profile for the experimentally
relevant case of ωx = 123MHz (tπ = 72ns), and B0 = 225MHz (80G), showing the
contrast between the ideal cases and that with errors introduced via broadening of
the resonant transition and excitation of the non-resonant transition. (d) Close up of
the short time modulation of the spin echo profile from (c). (e) Error introduced to
the spin echo profile. Whist the full profile decays on a timescale of T2, the majority
of the error decays on a timescale of T ∗

2 = 0.7µs due to the imperfect π pulse.
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Figure 7.5: Results for a naturally occurring 13C spin bath with b = 1MHz f =
0.5MHz, ωx = 123MHz (tπ = 72ns), and B0 = 80MHz (12G), showing the contrast
between the ideal cases and that with errors introduced via broadening of the resonant
transition and excitation of the non-resonant transition. (b) Error introduced to the
spin echo profile. Whist the full profile decays on a timescale of T2, the majority of
the error decays on a timescale of T ∗

2 = 0.7µs due to the imperfect π pulse.

7.3.2 Ultra-pure bulk diamond (13C nuclear spin bath)

As a second example system, we consider the case of a naturally occurring 1.1% 13C

nuclear spin bath in ultra-pure diamond crystal. Despite having a similar NV-bath

couplings as the nitrogen case considered above, the intra-bath couplings are roughly

4 orders of magnitude slower. As a result, spin-echo decay times, T2, are 2 orders

of magnitude longer than FID times, T ∗
2 , allowing us to make a clear distinction be-

tween errors associated with microwave detuning and those associate with population

leakage.

The analytic spin-echo results for the 13C nuclear spin bath are plotted in fig-

ure 7.5(a) for the case of microwave and background field strengths of ωx = 123MHz

and B0 = 80G = 225MHz respectively. In this case, we can see that the rapid

oscillatory motion decays on a timescale of T ∗
2 = 1.4µs (figure 7.5(b)), and the full
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profile decays to a final value of P0(t→ ∞) = 0.404, implying a resulting | − 1⟩ state

population of P−1(t→ ∞) = 0.192.

7.3.3 Diamond nanocrystals

As a final example, we consider the case of an NV centre residing sufficiently close to

a nanodiamond surface, such that the surface spin bath is predominantly responsible

for its decoherence. Following the investigation conducted in chapter 5, we choose a

surface spin relaxation rate of 200MHz and an RMS surface field strength of 10MHz,

corresponding to an effective surface spin density of 10 nm−2 and an NV depth of 4 nm.

The experimental results are shown in figure 7.6(a) for the case of ωx = 123MHz and

B0 = 100G = 280MHz, and the corresponding analytic results for these conditions

are shown in figure 7.6(b). From this we can see that the non-resonant |0⟩ ↔ | − 1⟩

transition has been sufficiently excited to give a final |−1⟩ state population of P−1(t→

∞) = 0.06. By evaluating the analytic result at the same timepoints used in the

experiment (multiples of 49 ns), as shown in figure 7.6(c), we see excellent agreement

between theory an experiment.

7.4 Discussion and conclusions

In this chapter, we have investigated the effects of non-ideal pulses on ODMR, Rabi,

FID and spin-echo based protocols as applied to the NV spin. The associated errors

were found to arise from two effects:

1. Detuning errors arising from the presence of both the nitrogen nuclear spin in

the NV centre and the surrounding spin bath, resulting in incomplete π/2 and
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Figure 7.6: Comparison of analytic and experimental spin-echo results for the case
of a diamond nanocrystal with ωx = 123MHz, and B0 = 100G. (a) Analytic results
showing the discrepancy between an ideal spin-echo pulse sequence (purple), and that
containing pulse errors due to population leakage and microwave detuning (green).
(b)Experimental results for a spin-echo pulse sequence conducted on an NV centre
in a diamond nanocrystal at ωx = 123MHz, and B0 = 100G. (c) Analytic curve
(green), as evaluated at the same time points as the experimental curve (purple),
showing excellent agreement between experiment and theory.
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π pulses in the {|0⟩, |+1⟩} manifold, leading to a small component of the spin-

echo sequence behaving as a FID. As such, the resulting spin-echo envelope

will contain rapidly oscillating components associated with DC shifts due to

the hyperfine coupling to the adjacent nitrogen nuclear spin, eventually leading

to a reduction in contrast on timescales beyond which the FID component has

decayed (t > T ∗
2 ).

2. Population leakage into the NV | − 1⟩ state due to non-resonant excitation of

the |0⟩ ↔ | − 1⟩ transition, resulting in an overall reduction in the population

associated with the {|0⟩, |+1⟩}manifold, and hence a reduction in measurement

contrast.

The results of this chapter not only give a accurate description of previously unex-

plained experimental artifacts, but also detail the manner in which these artifacts,

and the associated errors, may be suppressed. Namely, we have shown that, by using

a large microwave field to encompass the broadened features of |0⟩ ↔ |+1⟩ transition,

we may eliminate the likelyhood of incomplete control pulses; and by simultaneously

incorporating a sufficiently large DC field, we may detune the |0⟩ ↔ |− 1⟩ transition,

thereby suppressing population leakage into the | − 1⟩ state.



Chapter 8

Monitoring ion channel function in
real time through quantum
decoherence

In drug discovery there is a clear and urgent need for detection of cell membrane ion-

channel operation with wide-field capability. Existing techniques are generally inva-

sive, or require specialized nano-structures. This is an important problem in biology

and which may lend itself to the sensing capabilities of the NV centre. In previous

chapters we have shown the nitrogen-vacancy (NV) centre in nano-diamond to be of

great interest as a single-atom quantum probe for nanoscale processes. However, until

now we have not addressed the quantum behaviour of a NV probe in a complex bio-

logical environment. In this chapter we explore the quantum dynamics of a NV probe

in proximity to the ion channel, lipid bilayer and surrounding aqueous environment.

Our theoretical results indicate that real-time detection of ion channel operation at

millisecond resolution is possible by directly monitoring the quantum decoherence of

the NV probe. With the potential to scan and scale-up to an array-based system

this conclusion may have wide ranging implications for nanoscale biology and drug

discovery. The results of this chapter have been published in reference [HHC+10].

139



140

8.1 Introduction

The cell membrane is a critical regulator of life. Its importance is reflected by the

fact that the majority of drugs target membrane interactions [RTL+08]. Ion channels

allow for passive and selective diffusion of ions across the cell membrane [ITAY02],

while ion pumps actively create and maintain the potential gradients across the mem-

branes of living cells [BSS+08]. To monitor the effect of new drugs and drug delivery

mechanisms a wide field ion channel monitoring capability is essential [Lun06]. How-

ever, there are significant challenges facing existing techniques stemming from the fact

that membrane proteins, hosted in a lipid bilayer, require a complex environment to

preserve their structural and functional integrity [RTL+08, FFL02, YSS+05, JS09].

Patch clamp techniques are generally invasive, quantitatively inaccurate, and difficult

to scale up [Dam05, Qui02], while black lipid membranes [MRTW62, MWRT63] often

suffer from stability issues and can only host a limited number of membrane proteins.

Instead of altering the way ion channels and the lipid membrane are presented or

even assembled for detection, our approach is to consider a novel and inherently non-

invasive in-situ detection method based on the quantum properties of a single-atom

probe. The atomic probe is a single nitrogen-vacancy (NV) centre in a nanodia-

mond crystal which is highly sensitive to magnetic fields, and shows great promise

as a magnetometer for nano-bio sensing (see chapters 2 and 3 for a review, and

chapter 4 for the specific case of fluctuating magnetic fields). The NV centre in

nanodiamond has already been used as a fluorescence marker in biological systems

[YKC+05, NZJ+07, FLC+07, CPC+07, FGJ+08]. However, up to now there has been

no analysis of the effect of the biological environment on the quantum dynamics of the

NV centre – such considerations are critical to nano-bio magnetometry applications.
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We explore these issues in detail, and furthermore show that the rate of quantum

decoherence of the NV centre is sufficiently sensitive to the flow of ions through the

channel to allow real-time detection, over and above the myriad background effects.

In this context, decoherence refers to the loss of quantum coherence between magnetic

sub-levels of the NV atomic system due to interactions with an environment. Such

superpositions of quantum states are generally fleeting in nature due to interactions

with the environment, and the degree and timescale over which such quantum coher-

ence is lost can be measured precisely. The immediate consequence of the fragility

of the quantum coherence phenomenon is that detecting the loss of quantum coher-

ence (decoherence) in such a single atom probe offers a unique monitor of biological

function at the nanoscale.

The NV probe (figure 8.1) consists of a diamond nano-crystal containing a nitrogen-

vacancy (NV) defect at the end of an AFM tip, as recently demonstrated [BCK+08].

For biological applications a quantum probe must be submersible to be brought within

nanometers of the sample structure, hence the NV system locked and protected in the

ultra-stable diamond matrix (figure 8.1 (a)) is the system of choice. The NV centre

alone offers the controllable, robust and persistent quantum properties such room tem-

perature nano-sensing applications will demand, as well as zero toxicity in a biological

environment [YKC+05, NZJ+07, FLC+07]. As has been discussed in previous chap-

ters, theoretical proposals for the use of diamond nanocrystals as sensitive nanoscale

magnetometers [CB05, Deg08, TCC+08] have been followed by proof-of-principle ex-

periments [MSH+08, BCK+08, BNT+09]. However, such nanoscale magnetometers

employ only a fraction of the quantum resources at hand and do not have the sensi-

tivity to detect the minute magnetic moment fluctuations associated with ion channel
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operation. In contrast, our results show that measuring the quantum decoherence of

the NV induced by the ion flux provides a highly sensitive monitoring capability for

the ion channel problem, well beyond the limits of magnetometer time-averaged field

sensitivity [HCHH09]. To determine the sensitivity of the NV probe to the ion channel

signal we describe the lipid membrane, embedded ion channels, and the immediate

surroundings as a fluctuating electromagnetic environment and quantitatively assess

each effect on the quantum coherence of the NV centre. We consider the diffusion of

nuclei, atoms and molecules in the immediate surroundings of the nanocrystal and the

extent to which each source will decohere the quantum state of the NV. We find that,

over and above these background sources, the decoherence of the NV spin levels is

highly sensitive to the ion flux through a single ion channel. Our theoretical findings

demonstrate the potential of this approach to revolutionize the way ion channels and

potentially other membrane bound proteins or interacting species are characterized

and measured, particularly when scale-up and scanning capabilities are considered.

This chapter is organized as follows. We begin by describing the quantum de-

coherence imaging system (figure 8.1) implemented using an NV centre in a realistic

technology platform. The biological system is described in detail, and estimates of the

sensitivity of the NV decoherence to various magnetic field sources are made which

indicate the ability to detect ion channel switch-on/off events. Finally, we conduct

large scale numerical simulations of the time evolution of the NV spin system includ-

ing all magnetic field generating processes. This acts to verify the analytic picture,

and provides quantitative results for the monitoring and scanning capabilities of the

system.
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Figure 8.1: Quantum decoherence imaging of ion channel operation (simulations).
(a) A single nitrogen-vacancy (NV) defect in a diamond nanocrystal is placed on an
AFM tip. The unique properties of the NV atomic level scheme allow for optically
induced readout and microwave control of magnetic (spin) sub-levels. (b) The nearby
cell membrane is host to channels permitting the flow of ions across the surface. The
ion motion results in an effective fluctuating magnetic field at the NV position which
decoheres the quantum state of the NV system. (c) This decoherence results in a
decrease in fluorescence, which is most pronounced in regions close to the ion channel
opening. (d) Changes in fluorescence also permit the temporal tracking of ion channel
dynamics.
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Figure 8.2: (a) NV-centre diamond lattice defect. (b) NV spin detection through
optical excitation and emission cycle. Magnetic sublevels |0⟩ and | ± 1⟩ are split
by a D=2.88 GHz crystal field. Degeneracy between the | ± 1⟩ sublevels is lifted
by a Zeeman shift, δω. Application of 532 nm green light induces a spin-dependent
photoluminescence and pumping into the |0⟩ ground state. (c) Microwave and optical
pulse sequences for coherent control and readout.

8.2 Modelling

Typical ion channel species K+, Ca2+, Na+, and nearby water molecules are electron

spin paired, so any magnetic signal due to ion channel operation will be primarily

from the motion of nuclear spins. Ions and water molecules enter the channel in

thermal equilibrium with random spin orientations, and move through the channel

over a µs timescale. The monitoring of ion channel activity occurs via measurement

of the contrast in probe behavior between the on and off states of the ion channel.

This requires the dephasing due to ion channel activity to be at least comparable to

that due to the fluctuating background magnetic signal. We must therefore account

for the decoherence due to the diffusion of water molecules, buffer molecules, saline

components as well as the transversal diffusion of lipid molecules in the cell membrane.

The nth nuclear spin with charge qn, gyromagnetic ratio γn, velocity v⃗n and spin

vector S⃗n, interacts with the NV spin vector P⃗ and gyromagnetic ratio γp through
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the time-dependent dipole dominated interaction:

Hint(t) =
N∑

n=1

κ
(n)
dip

[
P⃗ · S⃗n

r3n(t)
− 3

P⃗ · r⃗n(t)S⃗n · r⃗n(t)
r5n(t)

]
(8.2.1)

where κ
(n)
dip ≡ µ0

4π
~2γpγn are the probe-ion coupling strengths, and r⃗n(t) is the time-

dependent ion-probe separation. Additional Biot-Savart fields generated by the ion

motion, both in the channel and the extracellular environment, are several orders of

magnitude smaller than this dipole interaction and are neglected here. Any macro-

scopic fields due to intracellular ion currents are of nano-Tesla (nT) order and are

effectively static over T2 timescales. These effects will thus be suppressed by the

spin-echo pulse sequence.

In figure 8.3(a) we show typical field traces at a probe height of 1-10nm above the

ion channel, generated by the ambient environment and the on-set of ion-flow as the

channel opens. The contribution to the net field at the NV probe position from the

various background diffusion processes dominate the ion channel signal in terms of

their amplitude. Critically, since the magnetometer mode detects the field by acquir-

ing phase over the coherence time of the NV centre, both the ion channel signal and

background are well below the nTHz−1/2 sensitivity limit of the magnetometer over

the (∼ 1 ns) self-correlated timescales of the environment. However, the effect of the

various sources on the decoherence rate of the NV centre are distinguishable because

the amplitude-fluctuation frequency scales are very different, leading to remarkably

different dephasing behaviour [HCHH09].

To understand this effect, we need to consider the full quantum evolution of the

NV probe. In the midst of this environment the probe’s quantum state, described by
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the density matrix ρ(t), evolves according to the Liouville equation,

d

dt
ρ(t) = − i

~
[
H(t)ρ(t)− ρ(t)H(t)

]
, (8.2.2)

where ρ(t) is the incoherent thermal average over all possible unitary evolutions of

the entire system, as described by the full Hamiltonian,

H = Hnv +Hint +Hbg, (8.2.3)

where Hnv is the Hamiltonian of the NV system, and Hint describes the interaction of

the NV system with the background environment (e.g. diffusion of ortho spin water

species and ions in solution) and any intrinsic coupling to the local crystal environ-

ment. The self evolution of the background system is described by Hbg, which, in the

present methodology, is used to obtain the noise spectra of the various background

processes. We note that the following analysis assumes dephasing to be the dom-

inant decoherence channel in the system. We ignore relaxation processes since the

frequencies of all magnetic fields considered are at least 4 orders of magnitude less

than 2.88GHz, and are hence unable to flip the probe spin over relevant timescales.

Phonon excitation in the diamond crystal may also be neglected [BNT+09] . Before

moving onto the numerical simulations we consider some important features of the

problem.

8.2.1 Decoherence from ion-channel dynamics

The decoherence rate of the NV centre is governed by the accumulated phase variance

during the control cycle. Maximal dephasing due to a fluctuating field will occur

at the cross-over point between the fast (FFL) and slow (SFL) fluctuation regimes

[HCHH09]. A measure of this point is the dimensionless ratio Θ ≡ fe/γpσB, where



147

2 4 6 8 10
10-10

10-8

10-7

10-6

10-5

(b)

Probe stando!  [nm]

σ
B
[T

]

Ion channels

Lipid bi−layer
H

2
O

Electrolyte

2 4 6 8 10

100

105 (c)

Probe stando!  [nm]

Θ

Ion channels

Lipid bi−layer
H

2
O

Electrolyte

FFL 

SFL 

M
a

g
n

e
ti

c 
�

e
ld

 s
ig

n
a

l  
[µ

T
]

Time  [ms]

H
2
O signal

Lipid bilayer signal

Ion channel signal

Na  ions+

Ion channel

Cell membrane

H
2
O

(a)

-10

10

0

0.2 0.4 0.6 0.8 10

Figure 8.3: (a) Typical realisations of the stochastic magnetic fields arising from the
motion of nuclear magnetic dipoles in water (blue), the lipid bi-layer (green), and
ions passing through the ion channel (black). These signals are generated using the
dynamic properties derived in section 8.2, using a probe standoff of 4 nm over a 1ms
timescale. (b) Comparison of σB for various sources of magnetic fields. (c) Fluctuation
regime, Θ = fe/γpσB, for magnetic field sources vs probe standoff. Rapidly fluctuating
fields (Θ ≫ 1) are said to be in the fast-fluctuating limit (FFL). Slowly fluctuating
fields (Θ ≪ 1) are in the slow fluctuation limit (SFL). The ion channel signal exists
in the Θ ∼ 1 regime, and therefore has an optimal dephasing effect on the NV probe.
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τe = 1/fe is the correlation time of the fluctuating signal, with cross-over at Θ ∼ 1

(see chapter 4).

In what follows, we consider exclusively the behaviour of a sodium ion channel.

Sodium-23 has an effective abundance of 100%, and a nuclear magnetic moment of

µNa = 2.22µN , where µN = 5.05×10−27 JT−1 is the nuclear magneton. Other magnet-

ically active ion channel species include potassium-39, having a 93.1% abundance and

a nuclear magnetic moment of 0.391µN , and chlorine-35, having a 75.4% abundance

and a nuclear magnetic moment of 0.821µN , ensuring sodium ions will interact most

strongly with the NV centre. We can estimate the standard deviation of the magnetic

field strength, σic
B, due to the random nuclear spin projections of ions and bound water

molecules moving through an ion channel (ic) as σic
B ∼ µ0

4π
1
h3
p

√
NNaµ2

Na +NH2Oµ
2
H2O

,

where NNa and NH2O are the average numbers of sodium ions and water molecules

inside the channel. By modeling the channel as a cylinder with typical sodium chan-

nel influx/outflux rates [LMM07], we may numerically calculate the RMS fluctuation

strength of the ion channel magnetic field, σic
B, as a function of the probe stand-off

distance hp, as shown in figure 8.3(b). The fluctuation rate is defined by the rate at

which ions move through the channel, and is independent of whether the ions are

moving in to or out of the cell. However, in typical physiological processes (neuronal

firing for example) the sodium flux will be inward. Ion flux rates give an effective

fluctuation rate of f ic
e ∼ 3MHz [LMM07]. For probe-channel separations of 2-8nm,

values of Θ range from 0.4 to 40 (figure 8.3(c)). Thus, the ion channel flow hovers

near the cross-over point, with an induced dephasing rate of Γic ∼ 104 − 105 Hz.

At these separation distances, the presence of the diamond surface is expected to

have a negligible effect on the ion channel dynamics. To reduce the decoherence effects
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of surface spins on the NV, the surface may be terminated with H or OH moieties.

This essentially replaces the electron spins associated with the sp2 hybridised orbitals,

with weaker nuclear spins [BGN+10]. The ions in the channel, also being nuclear spins,

couple very weakly to their surrounding environment. We may estimate their coupling

to the diamond surface as f ∼ µ0

4π~µ
2
Nh

−3
p ∼ 1Hz, which is negligible compared to the

fluctuation rate of the channel itself. Additionally, we may approximate the ratio

between the magnetic force on the ions due to the surface spins and the electric

force due to adjacent ions as FB/FE ∼
(
3µ0

4π
µ2
Nh

−4
p

)
/
(

e2

4πε0
∆r−2

)
∼ 10−15, where

∆r is the typical distance between adjacent ions in the channel. Similarly, the ratio

between the magnetic force due to the NV spin and the electric force is FB/FE ∼(
3µ0

4π
µBµNh

−4
p

)
/
(

e2

4πε0
∆r−2

)
∼ 10−12, thus we expect the presence of the probe to be

truly non-invasive.

8.2.2 Decoherence from background sources

We now consider the dephasing effects of the various sources of background magnetic

fields. The first source of background noise are the fields arising from the motion of

the water molecules and ions throughout the aqueous solution. Due to the nuclear

spins of the hydrogen atoms, liquid water consists of a mixture of spin neutral (para)

and spin-1 (ortho) molecules. The equilibrium ratio of ortho to para molecules (OP

ratio) is 3:1 [TV02], making 75% of water molecules magnetically active. In biological

conditions, dissolved ions occur in concentrations 2-3 orders of magnitude below this

and are ignored here (they are important however for calculations of the induced

Stark shift, see below). The RMS strength of the field due to the aqueous solution

is σH2O
B ∼ gHµN

µ0

2π

√
nH2O

π
h3
p
. This magnetic field is therefore 1-2 orders of magnitude
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stronger than the field from the ion channel (figure 8.3(a,b)). The fluctuation rate of

the aqueous environment is dependent on the self diffusion rate of the water molecules.

Using DH2O = 3 × 10−9 m2 s−1, the fluctuation rate is fH2O
e ∼ DH2O/ (2hp)

2. This

places the magnetic field due to the aqueous solution in the fast-fluctuation regime,

with ΘH2O ∼ 103 − 104 (figure 8.3(b)), giving a comparatively slow dephasing rate of

ΓH2O ∼ fH2O
e Θ−2

H2O
∼ 100 Hz and corresponding dephasing envelope LH2O = e−ΓH2O

t.

An additional source of background dephasing is the lipid molecules comprising the

cell membrane. Assuming magnetic contributions from hydrogen nuclei in the lipid

molecules, lateral diffusion in the cell membrane gives rise to a fluctuating B-field, with

a characteristic frequency related to the diffusion rate. Atomic hydrogen densities in

the membrane are nH ∼ 3 × 1028 m−3. At room temperature, the populations of

the spin states of hydrogen will be equal, thus the RMS field strength is given by

σL
B ∼ gHµN

µ0

8π

√
n 5π

4h3
p
. The strength of the fluctuating field due to the lipid bilayer

is of the order of 10−7T (figure 8.3(a)). The diffusion constant for lateral Brownian

motion of lipid molecules in lipid bilayers is DL = 2 × 10−15m2s−1 [BLS+06], giving

a fluctuation frequency of fL
e ∼ 125 Hz and ΘL ∼ 10−4 (figure 8.3(d)). At this

frequency, any quasi-static field effects will be predominantly suppressed by the spin-

echo refocusing. The leading-order (gradient-channel) dephasing rate is given by

[HCHH09], ΓL ∼ 1

2
√

2
√
2
Θ

−1/2
L fL

e +O
(
Θ

−1/3
L fL

e

)
, giving rise to dephasing rates of the

order ΓL ∼ 100Hz, with corresponding dephasing envelope LL(t) = e−Γ4
Lt

4
.

The electric fields associated with the dissolved ions also interact with the NV

centre via the ground state Stark effect. The coefficient for the frequency shift as a

function of the electric field applied along the dominant (z) axis is given by R3D =

3.5 × 10−3 HzmV−1 [vOG90]. Fluctuations in the electric field may be related to
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an effective magnetic field via Beff
z = R3DEz/γp, which may be used in an analysis

similar to that above. An analysis using Debye-Hückel theory [KF08] shows charge

fluctuations of an ionic solutions in a spherical region Λ of radius R behave as ⟨Q2
Λ⟩ =

DEkBT (1 + κR) e−κR
[
R cosh (κR)− sinh(κR)

κ

]
, where DE is the diffusion coefficient

of the electrolyte, and κ is the inverse Debye length (lD); lD = 1/κ = 1.3 nm for

biological conditions. Whilst this analysis applies to a region Λ embedded in an

infinite bulk electrolyte system, simulation results discussed below show very good

agreement when applied to the system considered here. The electric field variance

may be obtained from ⟨Q2
Λ⟩, giving σE =

√
⟨E2⟩ − ⟨E⟩2 ∼ 106Vm−1, as a function

of hp. Relaxation times for electric field fluctuations are τEe = ϵϵ0ρE [For00], where

ρE is the resistivity of the electrolyte, giving fE
e ∼ 1/τEe = 1.4GHz under biological

conditions. Given the relatively low strength (figure 8.3(a)) and short relaxation time

of the effective Stark induced magnetic field fluctuations (Θ ∼ 105) (figure 8.3(b)),

we expect the charge fluctuations associated with ions in solution to have little effect

on the evolution of the probe.

8.3 Results and discussion

8.3.1 Lateral scanning and spatial resolution

We now turn to the problem of non-invasively resolving the location of a sodium ion

channel in a lipid bilayer membrane. When the channel is closed (off), the dephas-

ing is the result of the background activity, and is defined by Loff = LH2OLLLEL13C.

When the channel is open (on), the dephasing envelope is defined by Lon = LoffLic.

Maximum contrast will be achieved by optimising the spin-echo interrogation time, τ ,
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Figure 8.4: Simulated spatial scans based on the ion channel as a dephasing source.
Relative population differences are plotted for pixel dwell times of 10, 100 and 1000
ms. Corresponding image acquisition times are 4, 40 and 400 s.

to ensure Loff −Lon is maximal. Thus in the vicinity of an open channel at the point

of optimal contrast, τ ≈ T2/2, we expect an ensemble ground state population of

Pon(
T2

2
) = 1

2

[
1 + Lon

(
T2

2

)]
= 0.61, and Poff(

T2

2
) = 1

2

[
1 + Loff

(
T2

2

)]
= 0.93 otherwise.

By scanning over an open ion channel and monitoring the probe via repeated mea-

surements of the spin state, we may build up a population ensemble for each lateral

point in the sample. The signal to noise ratio improves with the dwell time at each

point. Figure 8.4 shows simulated scans of a sodium ion channel with corresponding

image acquisition times of 4, 40 and 400 s. It should be noted here that the spatial

resolution available with this technique is beyond that achievable by magnetic field

measurements alone, since for large Θ, ∆P ∝ B2 ∝ h−6
p .

8.3.2 Temporal resolution and tracking ion channel activity

We may employ similar techniques to temporally resolve a sodium ion channel switch-

on event. By monitoring a single point, we may build up a measurement record,

I. In an experimental situation, measurement frequency has an upper limit of
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fm = (τ + τm + τ2π)
−1, where τm ≈ 900 ns is the time required for photon collection,

and τ2π is the time required for all 3 microwave pulses. A trade-off exists between

the increased dephasing due to longer interrogation times and the corresponding re-

duction in measurement frequency. Interrogation times are limited by the intrinsic T2

time of the crystal. A second trade-off exists between the variance of a given set of Nτ

consecutive measurements and the temporal resolution of the probe. For the moni-

toring of a switching event, the spin state may be inferred with increased confidence

by performing a running average over a larger number of data points, Nτ . However

increasing Nτ will lead to a longer time lag before a definitive result is obtained. The

uncertainty in the ion channel state goes as δP ∼
(√

Nτ

)−1
, where Nτ is the number

of points included in the dynamic averaging. We must take sufficient Nτ to ensure

that δP < ∆P (τ, hp, T2) = Poff −Pon. The temporal resolution depends on the width

of the dynamic average and is given by δt ∼ Nτ (τ + τm), giving the relationship

δt = τ+τm
δP 2 > τ+τm

[∆P (τ,hp,T2)]
2 . We wish to minimise this function with respect to τ for

a given stand-off (hp) and T2 time.

In reality, not all crystals are manufactured with equal T2 times. An important

question is therefore, for a given T2, what is the best temporal resolution we may

hope to achieve? Figure 8.5(b) shows the optimal temporal resolution as a function

of T2. It can be seen that δt improves monotonically with T2 until T2 exceeds the

dephasing time due the fluctuating background fields (figure 8.5(a)). Beyond this

point no advantage is found from extending T2.

A plot of δt as a function of τ is given in figure 8.5(c) for standoffs of 2-6 nm.

Solid lines depict the resolution that maybe achieved with T2 = 300µs. Dashed lines

represent the resolution that may be achieved by extending T2 beyond the dephasing
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times of background fields. We see that δt diverges as τ → T2, and is optimal for

τ → 1/Γic.

As an example of monitoring of ion channel behaviour, we consider a crystal with

a T2 time of 300 µs at a standoff of 3 nm. Figure 8.5(c) tells us that an optimal

temporal resolution of δt ∼ 1.1 ms may be achieved by choosing τ ∼ 100µs. This in

turn suggests an optimal running average will employ Nτ = δt (τ + τm)
−1 ≈ 11 data

points. Figure 8.6(a) shows a simulated detection of a sodium ion channel switch-on

event using Nτ = 20, 50 and 100 points. The effect of increasing Nτ is shown to give

poorer temporal resolution but also produces a lower variance in the signal. This may

be necessary if there is little contrast between Poff and Pon. Conversely, decreasing

Nτ results in an improvement to the temporal resolution but leads to a larger signal

variation.

We now consider an ion channel switching between states after an average waiting

time of 5 ms (200 Hz) (figure 8.6(b)). To ensure the condition δP < ∆P is satisfied, we

perform the analysis using Nτ = 20, giving a resolution of δt ≈ 2 ms. The blue curve

shows the response of the NV population to changes in the ion channel state. Fourier

transforms of the measurement record, F (I), are shown in figure 8.6(c)-(e). The

switching dynamics are clearly resolvable for heights less than 6 nm. The dominant

spectral frequency is 100 Hz which is half the 200 Hz switching rate as expected.

Beyond 6 nm, the contrast between Poff and Pon is too small to be resolvable due to

the T2 limited temporal resolution, as given in figure 8.5(b). This may be improved

via the manufacturing of nanocrystals with improved T2 times, allowing for longer

interrogation times [dashed curves, figure 8.5(c)].



156

0 2 4 6 8 10 12 14 16

0.5

0.6

0.7

0.8

0.9

1

Time  [ms]

Channel o! 

Channel on

N
s
 = 20 

N
s
 = 50 

N
s
 = 100 

(a)  

0 10 20 30 40 50

0.5

0.6

0.7

0.8

0.9

1

Time  [ms]

m
s=

0
 p

o
p

u
la

ti
o

n

(b) 

0 100 200
0

0.5

1

f
s
  [Hz]

F
T

(I
) 

 A
.U

.

h
p

 = 4nm 
(c) 

0 100 200
0

0.5

1

f
s
  [Hz]

h
p

 = 5nm 
(d) 

0 100 200
0

0.5

1

f
s
  [Hz]

h
p

 = 6nm 
(e) 

m
s=

0
 p

o
p

u
la

ti
o

n

Figure 8.6: Theoretical results for the detection of ion channel operation. (a) Plot
illustrating the dependence of temporal resolution (δt) and signal variance (δP ) on
the number of data points included in the running average (Ns). (b) Simulated
reconstruction of a sodium ion channel signal with a 200 Hz switching rate using
optical readout of an NV centre (blue curve). The actual ion channel state (on/off)
is depicted by the dashed line, and the green line depicts the analytic confidence
threshold. Fourier transforms of measurement records are shown in (c)-(e) for stand-
offs of 4, 5 and 6 nm respectively. Switching dynamics are clearly resolvable for hp < 6
nm, beyond which there is little contrast between decoherence due to the ion channel
signal and the background.
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8.3.3 Wide-field operation

With regard to scale-up to a wide field imaging capability, beyond the obvious ex-

trinsic scaling of the number of single channel detection elements (in conjunction

with micro-confocal arrays), we consider an intrinsic scale-up strategy using many

NV centres in a bulk diamond probe [SDN+10], with photons collected in a pixel ar-

rangement. Since the activity of adjacent ion channels is correlated by the µm scale

activity of the membrane, the fluorescence of adjacent NV centres will likewise be

correlated, thus wide field detection will occur via a fluorescence contrast across the

pixel. Implementation of this scheme involves a random distribution of NV centres in

a bulk diamond crystal. The highest reported NV density is 2.8×1024 m−3 [ABL+09],

giving typical NV- NV couplings of < 10 MHz which are strong enough to introduce

significant additional decoherence. We seek a compromise between increased popula-

tion contrast and increased decoherence rates due to higher NV densities, nnv, given

by Γnv ∼
√
2π
3

~µ0

4π
γ2pnnv[HCHH09].

For ion channel operation correlated across each pixel, the total population con-

trast ∆Φ between off and on states is obtained by averaging the local NV state

population change ∆Φ(τ) = Poff(r⃗i, r⃗c, τ)− Pon(r⃗i, r⃗c, τ) over all NV positions r⃗i and

orientations; and ion channel positions r⃗c and species; and maximizing with respect

to τ . As an example, consider a crystal with nnv = 1024 m−3 whose surface is brought

within 3 nm of the cell membrane containing an sodium and potassium ion channel

densities of ∼ 2× 1015 m−2[AB07]. Higher densities will yield better results, however

these have not been realised experimentally as yet, and electron spins in residual

nitrogen will begin to induce NV spin flips. We expect ion channel activity to be cor-

related across pixel areas of 1µm × 1µm, so the population contrast between off and
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on states is ∆Φ ≈ 15. At these densities, the optimal interrogation time is τ ∼ 0.8µs,

yielding an improvement in the temporal resolution by a factor of 10,000, opening up

the potential for single-shot measurements of ion channel activity across each pixel.

8.4 Conclusion

We have carried out an extensive analysis of the quantum dynamics of a NV diamond

probe in the cell-membrane environment and determined the theoretical sensitivity

for the detection, monitoring and imaging of single ion channel function through

quantum decoherence. Using current demonstrated technology a temporal resolution

in the 1-10 ms range is possible, with spatial resolution at the nanometer level. With

the scope for scale-up and novel scanning modes, this fundamentally new detection

mode has the potential to revolutionize the characterization of ion channel action, and

possibly other membrane proteins, with important implications for molecular biology

and drug discovery.



Chapter 9

High spatial and temporal
resolution wide-field imaging of
neuron activity using quantum
NV-diamond

A quantitative understanding of the dynamics of biological neural networks is funda-

mental to gaining insight into information processing in the brain. While techniques

exist to measure spatial or temporal properties of these networks, it remains a sig-

nificant challenge to resolve the neural dynamics with sub-cellular spatial resolution.

In this chapter we consider a fundamentally new form of wide-field imaging for neu-

ronal networks based on the nanoscale magnetic field sensing properties of optically

active spins in a diamond substrate. We analyse the sensitivity of the system to the

magnetic field generated by an axon transmembrane potential and confirm these pre-

dictions experimentally using electronically-generated neuron signals. By numerical

simulation of the time dependent transmembrane potential of a morphologically re-

constructed hippocampal CA1 pyramidal neuron, we show that the imaging system

is capable of imaging planar neuron activity non-invasively at millisecond temporal

resolution and micron spatial resolution over wide-fields. The results of this chapter

159
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have been published in reference [HBT+12].

9.1 Introduction

Information processing in the brain is presumed to arise from interactions and cor-

relations across several orders of magnitude of temporal and spatial scales and tens

of thousands to billions of computational units. The smallest computational unit is

the synapse, with sub-micron structures involved in chemical and electrical signalling.

Changes in synaptic dynamics are the basis of learning and memory. While local con-

ditions in the neuron determine signal flow into and out of synapses, complex signal

integration and filtering occurs independently in different branches in the dendritic

tree (the neuronal input structure). The decision to trigger an output is made in

another structure - the axon. Neurons are organized in networks with complex, and

largely unknown, connection rules. Networks may contain over a dozen different neu-

ron types, each with their own dynamics and connection rules. Understanding the

behaviour of these systems requires understanding the interactions between compu-

tational units at different scales in the system [CK11, GMDS+05].

Current diagnostic techniques are limited in the number of computational units

that can be recorded simultaneously at sufficiently high spatial and temporal reso-

lution. New techniques in optogenetics are enabling the manipulation of networks

at some of these scales [FYD11] however technology to read neuronal networks lags

considerably. Voltage sensitive dyes allow readout of the neuron membrane poten-

tial, but have poor signal to noise properties and are toxic, making them unsuitable

for long term recording [BKV+05, HBJ+09]. Voltage sensitive fluorescent proteins

show promise, but also have poor signal to noise properties and limited temporal and



161

(d)

(e) CMOS/CCD image of neural

       structure and dynamics

2.88 GHz Microwave

control

532 nm laser

CCD/CMOS array

2γB
0

D = 2.88 GHz

532 nm 637 nm

3E

3A

m
s
 = 0

m
s
 = -1

m
s
 = +1

(b) NV centre (c)

NV !uorescence

Diamond substrate

(a)

singlet

states

single pixel output of

neuronal magnetic "eld

Figure 9.1: Schematic of the nitrogen-vacancy (NV) in diamond neuron detection
system showing a neural network component (in this case an axon) on a diamond
substrate containing fluorescent NV centres. (a) The quantum state may be controlled
via application of 2.88GHz microwave radiation, and is dependent on the strength
of the field produced by the axon. (b) Atomic lattice structure of the NV centre.
(c). Upon optical excitation at 532 nm, the NV centre spin state may be measured
(readout) by monitoring the intensity of the emitted red light using a CCD or CMOS
camera. (d) Simulated dynamic output from a single CMOS pixel. (e) By monitoring
many pixels, we may obtain a dynamic widefield image of the neural dynamics and
network structure.
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spatial resolution [PMA+09]. Direct invasive techniques such as electrophysiological

probes are fundamentally limited by the number of electrodes that can be placed in

the tissue. Progress in silicon nanowire field-effect transistors have demonstrated sub

millisecond temporal resolution, however spatial resolution is limited by the 60µm

distance between adjacent devices [QPT+10].

The detection method we consider here is based on non-invasive magnetic field

detection and is therefore fundamentally different to approaches based on detection of

electric fields. While the techniques may ultimately complement each other, our mag-

netic field based technique will not suffer from some of the drawbacks of electrically-

based detection, such as probe positioning with respect to the Debye length and

background electrical noise sources at the nanoscale. Furthermore, the detection is

inherently non-invasive and issues such as the compatibility of quantum measure-

ments of the NV defect with biological systems are now well established in terms of

the low toxicity of diamond and the low photo and microwave powers involved.

The detection set-up we consider consists of a commercial grade single crystal

ultra-pure diamond membrane substrate containing a fabricated layer of negatively

charged nitrogen-vacancy (NV) defect centres (figure 9.1). Neurons can be grown

directly on the diamond surface [SWJS04] whose low toxicity is ideal for biologi-

cal applications [YKC+05]. As we show, the ensemble of NV centres provides high

sensitivity to the magnetic field fluctuations resulting directly from the transmem-

brane potentials generated by the neural activity at sub-millisecond time-scales, and

the spatial attenuation of the magnetic field at a 100nm standoff provides micron

spatial resolution. This standoff is conservative, as implantation techniques permit

the creation of NV centres within a few nm of the diamond surface. Employing a
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physical model of the hippocampal CA1 pyramidal neuron, developed by Royeck et

al [RHR+08] and modified by Wimmer et al [WRS+10, WRM+10], we show that the

NV detection system is able to non-invasively capture the transmembrane potential

activity in a series of near real-time images, with spatial resolution at the level of

the individual neural compartments. The data obtained will allow both the planar

morphology and function connectivity to be determined. The realisation of this de-

tection system using available technology would represent a significant step forward

in measuring and understanding the dynamics of whole-scale neuronal networks.

In what follows, we first outline how transmembrane potentials generate mag-

netic fields, their typical strength and detection using the NV centre as a nanoscale

magnetometer. We then analyse the detection sensitivity for a single axon case. We

experimentally verify this sensitivity by propagating a simulated axon pulse along

a micro-wire and detecting the resulting magnetic field signal with a proximate NV

centre. Finally, we employ a model of a hippocampal CA1 pyramidal neuron un-

der a typical excitatory regime in which distal dendrites undergo current injections

of roughly 2nA. By direct simulation of the magnetic fields generated at the soma,

axon and dendrites in response to this stimulation, we produce the corresponding

image output (assuming current CMOS imaging technology [Sab11]) and determine

the effective spatial and temporal resolution of the system.

9.2 Modelling

The advent of widefield NV magnetometry based on CCD detection of a high NV den-

sity diamond substrate has yielded the ability to spatially reconstruct magnetic fields

at the µm scale together with improved sensitivity over that obtainable with a single
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Figure 9.2: (a) Schematic of the NV-diamond neuron detection system showing a
neural network component (in this case an axon) on a diamond substrate containing
fluorescent NV centres. For a FID based protocol, regions where the field is greatest
produce the least fluorescence. For and ODMR based protocol, the converse is true.
(b) Longitudinal variation of the transmembrane potential, Vm, of a crayfish lateral
axon as taken from Ref. [WG61]. As this excitation propagates along the axon, it
produces a time dependent magnetic field like that shown in (c) for a standoff of
100 nm. (d) Temporal arrangement of microwave and optical pulse sequences. For
the FID based protocol, π/2 microwave pulses are used to prepare the NV in a
superposition of |0⟩ and |1⟩ states which accumulate a relative phase shift during
the free evolution period due to the presence of a neural field. A second π/2 pulse
transforms this phase into a population difference which is read out using a 532 nm
laser. Application of this laser also acts to re-polarise the NV in the |0⟩ state. The
decreased intensity of the collected fluorescence permits the determination of the
phase shift and hence the strength of the neural magnetic field. In the case of an
ODMR based protocol, the constantly applied microwaves drive transitions between
the paramagnetic sublevels of the ground states, whose relative energies are altered
by the presence of a neural field, making the |0⟩ → |1⟩ transition less likely, resulting
in an increased fluorescence.
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NV centre whilst retaining the necessary quantum coherence properties [SPM+10].

Further improvements are expected in the near future, with nitrogen to NV− conver-

sion efficiencies in excess of 50% having been recently reported [NRB+10, PNJ+10].

9.2.1 Calculation of the magnetic field from a transmem-

brane potential

In order to establish our detection regime and required sensitivity we determine the-

oretically the magnetic fields generated by a transmembrane potential. We model

an axon segment as a cylinder of radius a and length L aligned along the z axis

(figure 9.2(a)). These segments form the building blocks of more complicated neuron

models to be considered later. Let Φ(r, z, t) denote the radially-symmetric electric

potential at radius r, longitudinal distance z and time t. Approximating the width of

the cell membrane to be infinitesimally small, there is a step-change in the potential

as it goes from just within the cell, Φ(a−, z, t), to just outside the cell, Φ(a+, z, t). The

transmembrane potential, given by the difference Vm(z, t) = Φ(a−, z, t)− Φ(a+, z, t),

therefore represents the voltage drop across the cell membrane at longitudinal position

z and time t. Using data for Vm, one can reconstruct the Φ (r, t) in the regions inside

and outside a given component via the solution of Laplace’s equation with boundary

conditions set by Vm (see Methods section). By solving for the potentials in both

regions, we determine the electric field and hence current densities using Ohm’s law,

J (r, t) = ⃗⃗σ (r, t) · ∇Φ (r, t), which is integrated using the Biot-Savart law,

B(r, t) =
µ0

4π

∫
J(r′, t)× r− r′

|r− r′|3
d3r′ (9.2.1)
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to obtain the resulting magnetic fields, B(r, t). In figure 9.2 we show this for the case

of a crayfish lateral axon using the measured transmembrane potential (figure 9.2(b))

taken from Ref. [WG61]. The resulting magnetic field signal calculated at the NV

position is shown in figure 9.2(c) for a 100nm standoff. Typically, the magnetic fields

generated by the transmembrane potential are at the nT scale. We will show that the

quantum detection system based on optically detected magnetic resonance (ODMR)

of the NV centre in diamond has the combination of sensitivity and the appropriate

spatial scale to enable detection of the neuronal magnetic fields at the high temporal-

spatial resolution required.

9.2.2 Sensitivity Analysis

We envisage two detection protocols based on either directly monitoring the coherent

phase difference between the sublevels of the NV centre using free induction decay

(FID) experiment; or by measuring the location of the resonance peak in a contin-

uous wave ODMR experiment (figure 9.2(d)). The sensitivities of the two methods

are essentially equivalent [SH11], however for definiteness (and brevity) we describe

in more detail the former. At fiducial τ = 0, following optical polarisation into the

|0⟩ state, the application of a π/2 microwave pulse places each NV centre into an

even superposition of |0⟩ and | + 1⟩ Zeeman levels. After a free evolution time of

τ , another π/2 pulse is applied and the system’s state is read out optically. In the

absence of any magnetic disturbances the system remains coherent, and the proba-

bility of finding the NV system in the |0⟩ magnetic level after the second π/2 pulse,

measured directly from its fluorescence, will oscillate between 0 and 1 at a frequency

given by the energy difference of the two levels. However, in reality such coherent
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superpositions of quantum states are highly sensitive to magnetic field fluctuations

in the immediate crystalline environment due to mutual spin flipping of electronic

nitrogen defects and/or 13C nuclear spins. Thus, depending on the material com-

position, one typically measures a decay of these coherent oscillations between the

magnetic levels as a function of the evolution time τ . For isotopically pure diamond

the timescale of this decoherence, referred to as the FID time T ∗
2 , is typically of order

1 to 10µs and ultimately sets the sensitivity limits for an NV based magnetometer.

By employing a spin-echo pulse sequence in which an additional π-pulse is applied at

time τ/2, coherence times may be extended by more than 2 orders of magnitude, and

further improvements may be realised by employing higher order decoupling schemes

such as CPMG[TCC+08, NDH+11] or Uhrig[Uhr07, HHCH10] pulse sequences. Such

decoupling schemes achieve improvements to the sensitivity by suppressing the effect

of low frequency noise on the NV centre, and are hence not suited to measuring neu-

ral magnetic fields which fluctuate on T =1 to 10ms timescales. To ensure maximal

sensitivity to low frequency noise we must employ some Nt repetitions of the FID

or ODMR protocols in the time interval [t, t + δt]. As such, δt serves to define the

temporal resolution of the system, and must satisfy δt < T . Furthermore, each pro-

tocol cycle must be sufficiently sensitive that Nt . T/T ∗
2 measurements may be taken

within the timescales associated with the neuronal dynamics, whilst maintaining an

acceptable signal to noise ratio (SNR).

During its evolution under the neural magnetic field B(r, t), the coherent phase

accumulation is of an NV centre at position ri during time interval τ , is given by

∆ϕ(ri) = γ
∫ τ

0
Bi(ri, t) dt, where γ is the NV gyromagnetic ratio and Bi is the com-

ponent of B parallel to the tth N-V axis. The signal change we are interested in
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measuring is the resulting change in fluorescence due to this phase accumulation,

which is proportional to sin (∆ϕ). Since the neural magnetic fields considered here

are typically less than 10 nT, and are essentially constant over the timescale of a single

measurement protocol, we have that ∆ϕ≪ 1, thus the signal change at a single defect

site is given by Si ≈ γτBi (ri)L(ri, τ), where L(ri, τ) is the decoherence envelope of

the NV defect at position ri as a function of the interrogation time, τ . This envelope

represents the decay of quantum coherence of defect i due to interactions with the

surrounding magnetic environment, including 13C nuclei, nitrogen electron spins, and

other proximal NV centres. As we are considering an FID sequence, the shape of each

envelope is assumed to be Gaussian, and is given by

L(τ) = exp
[
−
(
Γi
C13
τ
)2 − (Γi

Nτ
)2]

, (9.2.2)

where Γi ≡ Γ (ri) is the intrinsic decoherence rate of NV centre i, and ΓC13 ∼ 100 kHz.

The decoherence rate due to nitrogen impurities, Γn will explicitly depend on the

nitrogen density and must be optimised, as shown below. The total signal from a

single FID protocol cycle, S =
∑

i Si, is the sum of the signals from all NV centres,

and in the high NV density limit, is given by

S(τ) = αγτn

∫
Vp

B (r, τ)L(r, τ) d3r, (9.2.3)

where n is the total electron spin density due to both nitrogen and NV defect cen-

tres (assumed uniform for chemical vapor deposition grown samples, and an axially-

symmetric Gaussian for implanted samples), α is the nitrogen-NV conversion effi-

ciency, and Vp is the volume of a given pixel. Since the measurement of each NV

centres is projective, the total signal distribution follows the central limit theorem
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and the uncertainty in the signal is given by

δS =
1

C

√
Np

Nt

, (9.2.4)

where C is an experimental parameter accounting for imperfect photon collection

(including non-unity quantum efficiency of the detector) and signal contrast, and Np

is the effective number of NV defects (probes) in Vp, given by Np ≈ αnVp. To measure

the magnetic field of an axon, ultimately we require S & δS.

We now consider a simple, analytically solvable case where the axon dimensions

are large (∼ 60µm, as in the case of a crayfish lateral axon [WG61]) compared with a

sensing volume of Vp ∼ (1µm)3, ensuring there is little variation in the magnetic field

strength over the sensing volume (i.e. Bi ≡ B∀i). The signal is then S ≈ αnVpγBτ .

The minimum detectable magnetic field is then

δB =
1

γC
√
αNtVp

exp
[
τ 2
(
Γ2
c13

+ Γ2
n

)]
t
√
n

, (9.2.5)

which we wish to optimise for n and τ , giving firstly τopt =
(
2Γ2

c13
+ 2Γ2

n

)−1/2
. The

dephasing due to nitrogen is given by Γn = κn [HHCH10], where κ =
√

π
3
µ0

4π
~γ2.

Setting ∂
∂n
δB = 0 gives Γc13 = Γn, hence n = Γc13/κ = 2.3 × 1023 m−3 = 1.3 ppm,

an order of magnitude below the maximum reported density achieved in practice to

date of 2.8× 1024 m−3 [ABL+09]. The minimum detectable field by a pixel of volume

Vp is then

δB =
3.3 nTµm3/2

C
√
αNtVp

.

For example, an implementation with C = 0.3 and an N-NV conversion ratio of

α = 0.1 would be capable of resolving a magnetic field to an accuracy of 3.5 nT in an

integration time of 1ms (Nt = 100).
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In the large axon case considered here, increasing Vp will result in an improved

sensitivity, however this will not be true in general. As Vp becomes comparable to the

axon dimensions, the field felt by distant NV centres will be significantly less than that

felt by those proximate to the axon, and the integral in equation 9.2.3 will no longer

scale linearly with Vp. The noise amplitude however (equation 9.2.4) will grow with

the square root of the sensing volume, regardless of the axon field characteristics. If

the sensing volume is sufficiently large that the signal exhibits sub-square root scaling

with the sensing volume, there will be no advantage in having a larger Vp. As such,

better results for smaller neural components will be achieved by optimising the Vp for

the task at hand.

The maximum frequency with which measurements may be taken is

fm = (τopt + τm)
−1 , (9.2.6)

where τopt = (2Γc)
−1 from above, and τm ∼ 350 ns is the time required for photon

collection and subsequent re-polarisation of the NV spin state. To gain further im-

provements to the SNR, we envisage taking numerous measurements with frequency

fm, and applying a low-pass filter to the measurement record. Incorporating a greater

number of timepoints in this process will improve the sensitivity, however this comes

at a cost of decreased temporal resolution, δt = Nt/fm. A faithful reconstruction

of the field dynamics with time-lag δt will be possible provided δt is less than the

characteristic timescales of the neural dynamics.

δt =

(
3.3 nT

B

)2
τopt + τm

C
√
αVp µm3/2

. (9.2.7)

The effect of averaging over different ranges of measurements and the trade-off that

exists between a high SNR and high temporal and spatial resolution is considered
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Figure 9.3: (a) Dependence of magnetic and electric field strength on radial distance
above the axon surface. The more immediate attenuation of the magnetic field permits
roughly an order of magnitude better spatial imaging resolution as compared with
the electric field. Note the different axes used for electric and magnetic fields. (b)
Comparison of the temporal resolution corresponding to sensing the magnetic field
using diamond crystal containing a high NV centre density (NV, blue), and sensing
the electric field using the same NV centre density (NVE, green) and a single electron
transistor (SET, red).

later for the case of the hippocampal CA1 pyramidal neuron.

9.3 Results

9.3.1 Comparison of magnetic and electric field detection

This method of monitoring neuron function through the magnetic fields generated

offers a distinct advantage over consideration of the resulting electric fields. The

electric field is a consequence of the local gradient of the electric potential, whereas

magnetic field detection is sensitive to non-local field sources. That is, the external

magnetic field is a consequence of both the internal and external electric fields, the



172

strength of the former being some 3 orders of magnitude larger than the latter.

Electric field detection protocols using single electron transistors (SETs) have

sensitivities of 2V cm−1Hz−1/2 at standoffs of 100 nm [DS00], however there are sig-

nificant practical compatibility issues associated with real neural samples and the

need for cryogenic sensing operation. Electric field sensing using NV centres does al-

low for room temperature operation, however the associated DC field sensitivity was

recently demonstrated at 613V cm−1 Hz−1/2 [DFD+11], whereas single NV sensitivi-

ties to DC magnetic fields have been demonstrated at 43 nTHz−1/2 [BNT+09]. The

peak magnitudes of magnetic and electric fields around a typical axon are shown in

figure 9.3(a), yielding 3 nT and 40×10−3Vcm−1, respectively, at a standoff of 100 nm.

For the sake of comparison, figure 9.3(b) shows the time required for a single NV cen-

tre to resolve the magnetic and electric field strengths in the region surrounding a

typical axon. Clearly local magnetic detection offers an advantage in terms of both

spatial and temporal resolution.

9.3.2 Experimental verification of detection protocol

To experimentally demonstrate the effectiveness of the proposed detection protocol

for neuron specific signals, and quantitatively verify the theoretical analysis, we repli-

cated the magnetic field produced by a single axon using a microwire on the surface

of a diamond substrate (figure 9.4(a)). The pulses were constructed such that the

resulting Biot-Savart field emulates the temporal dynamics of the axon considered in

the preceding section (figure 9.4(b)). A single NV centre, located at a lateral distance

of approximately 10µm from the wire, was used as the sensor.

We simulated the detection gain of Np centres by repeating the measurement
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signal micro-wires. (b) Experimental measurement of the electronically generated
neuron pulse together with the extrapolated effective spatial and temporal resolution
corresponding to a high NV density widefield detection system. Optimisation of this
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minimum detectable magnetic field, δB vs total photon integration time, T , showing
a δB ∝ T−1/2 dependence. This dependence is verified by plotting the corresponding
sensitivity, η = δB

√
T , in (d), showing the sensitivity is effectively constant.
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process Ns times. The binning widths for the photon integration times were tp =

24.2µs, and the total time taken to send two successive pulses down the wire was 20ms

(figure 9.4(d)). The dynamics of this signal place a limit on the permissable temporal

resolution, δt ≈ 1−2ms, hence the maximum number of data points employed in the

low-pass filtering process is Nt = δt/tp ≈ 50. Assuming a constant sensitivity, the

effective number of centres involved in the detection may then be determined from

Np =
Ns

Nt

(
Bw

Ba

)2
, where Bw is the peak magnetic field strength due to the pulse in the

wire, and Ba is the peak magnetic field strength due to the axon. This assumption

was experimentally verified by measuring the minimum detectable magnetic field

for a range of photon integration times (figure 9.4(c)), from which a corresponding

sensitivity of 10µTHz−1/2 was determined (figure 9.4(d)), for this (non-optimised)

system.

The figures of merit are the effective spatial and temporal resolutions, given by

δx = (Np/n)
1/3 and δt = Nttp respectively. The measurement record obtained by

monitoring a pulse with Bw = 24µT, and Ns = 5, 000 cycles is given by the green

trace in figure 9.4(b). From the above scaling, this is equivalent to a pixel volume

of Vp = (7.9µm)3 at a temporal resolution of δt = 1.3ms. Sacrifices in the tempo-

ral resolution will allow for decreases in the required pixel volume, for example, a

pixel volume of Vp = (1µm)3 has a corresponding temporal resolution of δt = 2ms.

These figures clearly demonstrate, experimentally, that NV are centres are capable

of simultaneously resolving both the spatial structure and temporal dynamics of neu-

ronal magnetic fields, even in their current, unoptomised implementation. Further

improvements may be achieved with the use of higher grades of isotopocially pure di-

amond crystal, as used in [BNT+09], where single-spin DC magnetic field sensitivities
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of 43 nTHz−1/2 were demonstrated. Extrapolating this to the present context, such

sensitivities would permit a pixel volume of Vp = (0.2µm)3 at a temporal resolution

of 1.3ms. How these capabilities relate to the spatial and temporal characteristics of

a biological neuronal network are discussed in the following section.

9.3.3 Imaging simulation: the hippocampal CA1 pyramidal

neuron

In order to quantitatively describe how the device would sense and image neural

activity we simulated the magnetic fields that would be produced by a neuron while it

receives synaptic input and generates and fires an action potential output. The neuron

model we used was of a morphologically reconstructed hippocampal CA1 pyramidal

neuron. Hippocampal CA1 pyramidal neurons have an extended morphology, show

a rich repertoire of dynamics and are involved in networks that underlie important

behaviour such as learning and memory. Study of these neurons and the networks

they reside in will be a major target of the techniques described here.

Typically such an experiment would be performed in vitro using a buffer solution

of phosphate buffered saline (PBS), or equivalent. Such solutions contain dissolved

sodium and potassium salts at concentrations of roughly 150mmol L−1, giving rise to

nuclear spin concentrations of roughly 1025 m−3, some 5 orders of magnitude less than

the hydrogen nuclear spin concentration due to water molecules. The hydrogen spins

themselves produce an effective stochastic magnetic field with fluctuations caused

by molecular self-diffusion. This would cause the decoherence rates of NV centres

at even a few nanometres from the diamond surface to increase by approximately

100Hz-1 kHz [HHC+10], some 2-3 orders of magnitude less than that due to intrinsic
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Figure 9.5: (a) Morphology of the Royeck-Wimmer model and input excitation sites.
(b) Transmembrane potentials generated at the soma, axon and dendrites shown in
(a). (c-e) Zoomed plots of magnetic field strength at 100 nm standoff showing the
integrate and fire effect of the central soma and the reactionary dynamics in the
dendritic region below. Simulated measurements taken at (f) 0µm and (g) 45µm
along the apical dendrite directly above the soma, as shown in (a) for a detection
volume of Vp = (2µm)3 and a range of integration times, δt. Note the change of
magnetic field strength scale in (f) and (g), resulting in the latter requiring longer
integration times. Assumed parameter values are C = 0.05, and α = 0.1.
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decoherence sources, and can therefore be ignored.

The model consists of 265 anatomical sections (figure 9.5(a)) and 15 voltage and

calcium activated conductances with a non-uniform distribution across the morphol-

ogy. We stimulated the model neuron with 2nA current injections into 21 sites on

distal dendrites. The associated transmembrane potentials at specific locations are

shown in figure 9.5(b). As the distal dendrites are stimulated current flows along these

processes towards the soma. The associated magnetic field strength changes are read-

ily seen in the sequence of time snapshots, figure 9.5(c-e). As the membrane potential

increases the soma current flow along the dendrites decreases, reducing the magnetic

field strength (figure 9.5(c)). As active conductances in the soma and axon are re-

cruited, current flow increases in these compartments and the field strength increases.

Eventually an action potential is triggered in the soma and distal axon (figure 9.5(d)).

The initiation point in the distal axon is not as bright as the soma because the tech-

nique is sensitive to longitudinal currents, not voltage. A back propagating action

potential is also triggered in the basal dendritic tree (figure 9.5(e)).

In figure 9.5(f)&(g) we show the single (2µm) pixel detection trace of the neuronal

magnetic field at two locations below the neuron structure in response to the applied

stimuli, assuming experimentally realised values of C = 0.05[CDT+06], and α = 0.1.

The magnetic field signal is plotted together with the simulated measurement output

for a range of integration times, δt. As the integration time is increased the SNR

improves, at the cost of temporal resolution in the neuronal signal itself. However, it

is evident that a minimal time-lag of 1ms gives an acceptable account of the neuron

signal in all three cases.

Finally, we determine the overall spatial-temporal resolution of the imaging system
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by explicitly considering the trade-off between integration time and detection volume.

In figure 9.6 we show the simulated CMOS/CCD output (assuming a readout rate of

500 fps, as available with current technology [Sab11]) for a snap-shot of the neuron

activity at t = 157ms for a range of integration times δt and spatial detection volumes

δx. It is clear that the neuronal magnetic field structure is apparent at [δx, δt] =

[2µm, 1ms], showing the imaging system has the temporal resolution to fully map

the magnetic field dynamics of a neuronal network, whilst simultaneously reproducing

the structural morphology at the sub-cellular level.

9.4 Discussion

We have investigated the use of the magnetic field sensing properties of NV-ensembles

in diamond for imaging neural activity. Using published crayfish lateral axon biophys-

ical data we determined the magnetic field signal at 100nm from the axon surface to

demonstrate that it lies within the sensitivity range of our detection system. The

sensitivity regime for detection of the magnetic field dynamics generated in the axon

structure was determined based on both pulsed (FID) and continuous wave (ODMR)

sequences. Direct measurement of axon-scale magnetic fields, produced by passing

current in a proximate microwire, verified that the sensitivity limits fell within the

range needed to detect neuronal signals. To explore the potential utility of NV arrays

as wide field detectors of neuronal network activity we simulated the three dimensional

magnetic fields associated with action potential propagation in a morphologically re-

alistic hippocampal CA1 pyramidal neuron placed 100nm from the NV detection

layer. The simulated photon emission of our model neuron/NV-layer combination
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Figure 9.6: Simulated snapshot of the CCD output at t = 157ms and for a range of
detection volumes, Vp = (δx)3 and integration times δt. Assumed parameter values
are C = 0.05, and α = 0.1.
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was projected onto a virtual CMOS array to investigate the performance of the sen-

sor in detecting local and wide-field neuronal structure and dynamics. By exploring

different combinations of integration times, δt, and detection regions, δx, we found

that the performance of the sensor enabled simultaneously high temporal and spatial

resolution of extracellular field potentials in regimes beyond those obtained by current

methodologies. In summary, our experimental results and theoretical work establish

the significant potential of this quantum based technique to visualise the key compo-

nents of neuronal network activity, subthreshold signalling, action potential initiation

and propagation in axons, soma and dendritic compartments, at relevant scales to

provide new views into network function. To bring this imaging concept to reality one

must assemble all the individual and non-trivial components, such as sufficiently dense

near-surface NV layer structures in high grade diamond material, neuron growth on

these diamond surfaces, and microwave quantum control and optical wide-field read-

out commensurate with long term integrity and function of the biological structure.

Precursor experiments based on well characterized biological systems will extend the

experimental work carried out here on model neuronal signals.



Chapter 10

Sensing of Fluctuating Nanoscale
Magnetic Fields via Relaxation of
Electron Spins in solids

In this chapter we shift our focus from pure dephasing (T2) processes to those resulting

in the relaxation (T1) of an NV spin coupled to some proximate magnetic environ-

ment. Where T2 based sensing was sensitive to a broad range of frequencies centred

about ω = 0, T1 based sensing requires a resonant energy exchange with the environ-

ment, and hence only couples to frequencies close to the transition frequencies of the

NV spin-1 system. This makes T1 based sensing inherently more sensitive to high fre-

quency phenomena, and therefore well suited to characterising electron spin systems.

In what follows we discuss not only how this selectivity arises, but how it may be

tuned to measure specific regions of the environmental spectrum, and consequently,

how this spectrum may be reconstructed in practice from an arbitrary environment.

We perform a detailed theoretical analysis of two experiments, which demonstrate

excellent agreement between experimental results and the theory developed here.

181
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10.1 Introduction

To this point, we have considered the detection of magnetic processes based exclu-

sively on monitoring the dephasing of the NV electron spin. As such, dephasing based

sensing is only appreciably sensitive to processes occurring with frequencies of less

than a few MHz, and are thus well suited to characterising nuclear spin based environ-

ments. However, to achieve the desired sensitivity to rapidly fluctuating fields, and

more importantly, the ability to be selective, we have seen that extremely complex

pulse sequences are necessary.

On the other hand, given the GHz transition frequencies associated with the NV

spin in its orbital ground state, we would expect the comparatively rapid electron

based environments to be capable of exchanging energy with the NV spin, thereby

enabling a relaxation, or T1 based sensing approach. This is particularly enticing, as

both the energy levels of environmental spins, ωE = γB0, and the NV spin, ωNV =

D ± γB0, can be tuned via the Zeeman effect through control of the background

magnetic field, B0. This makes T1 based sensing a selective, tunable protocol that

allows regions of the frequency spectrum to be filtered out as desired.

Another advantage of T1 based imaging stems from the fact that T1 times of an

NV centre can be up to 3 orders magnitude longer than spin-echo based T2 times.

This corresponds to an improvement in sensitivity by a factor of
√
T2/T1 over T2

based protocols. This allows for a much greater contrast, particularly in detection

setups based on an NV array where intrinsic T2 times of a few µs make relaxation

rates of MHz or slower difficult to detect. Such processes are readily detectable when

intrinsic T1 times are greater than a few ms.

In this chapter, we develop the theory of relaxation based sensing by considering
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the simple case of a spin-1
2
electron system. This is then extended to the more complex

spin-1 system, allowing the relevant properties of the NV spin to be described. We

then discuss how this protocol can be tuned to different regions of the target system’s

fluctuation spectrum, and consequently, how this spectrum may be experimentally

reconstructed. We conclude this chapter by using the techniques developed here to

analyse two recent experiments.

10.2 Modeling

The time evolution of the density matrix is described by

dρT
dt

= −i
[
HT (t), ρT

]
, (10.2.1)

where ρT represents the combined density matrix of the entire spin + environment

system. The full Hamiltonian is given by HT = H0 + V +HE where H0 and HE are

the self Hamiltonians of the NV centre and environment respectively. The coupling

of the environment to the NV is described by the full dipolar interaction due to all

spins in the environment:

V =
µ0

4π
~γnvγE

∑
i

1

R3
i

[
S⃗nv · S⃗i +

1

R2
i

(
S⃗nv ·Ri

)(
Ri · S⃗i

)]
, (10.2.2)

which includes both transverse and longitudinal components, proportional to Sx,y

and Sz of the NV spin respectively. The latter have a pure dephasing effect, resulting

in an additional contribution to the intrinsic dephasing rate of the NV. As the en-

vironmental constituents are assumed to strongly interact with each other and only

weakly with the NV, the dephasing will be purely exponential (see chapter 4). These

effects may thus be modeled using a master equation approach for the reduced density
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matrix for the ensemble averaged dynamics of the NV, ρ, as follows

dρ

dt
= −i

[
H(t), ρ

]
+ LρL† − 1

2

{
L†L, ρ

}
, (10.2.3)

where, in the present context, L is the Lindbladian operator corresponding to a pure

dephasing process, and is given by L =
√
Γ2σz. The total dephasing rate due to

both the local crystal environment and the longitudinal coupling to the environment

is given by Γ2 = (T ∗
2 )

−1 + Γnv−E
2 . The timescale of the intrinsic dephasing process

is described using the inhomogeneous linewidth, (T ∗
2 )

−1, since the lateral phase ac-

cumulation occurs in the absence of any pulsed microwave control. Subtle tuning

effects that modify the sensitivity of this technique to various parts of the environ-

mental spectral density may be achieved by changing the intrinsic dephasing rate via

dynamic decoupling techniques.

In what follows, owing to the strong intra-environment and comparatively weak

NV-environment couplings, we will treat the coupling of the environment to the trans-

verse components of the NV spin as a semiclassical oscillatory field,

V = Beiωt + B†e−iωt, (10.2.4)

where B = Bx(ω)Sx + By(ω)Sy; and Bx and By are the x and y components of the

magnetic field. The frequency spectrum is determined by analysing the interaction

between environmental constituents, as described byHE. The details of this approach

are discussed in chapter 12, section 12.5.

To make the solution tractable, we change to the interaction picture (see appendix

A). The transformed equation of motion is given by

d

dt
ρI(t) = −i

[
VI(t), ρI(t)

]
+ Γ2

(
σzρI(t)σz − ρI(t)

)
, (10.2.5)
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with the interaction Hamiltionian given by VI = eiH0tVe−iH0t.

We are then interested in determining the rate at which the NV spin relaxes to

its equilibrium state under the influence of the environment. We proceed by reducing

the 3×3 system of first order linear differential equations described by equation 10.2.5

to a higher order differential equation for ρ00. We then wish to solve this equation,

together with the initial conditions of ρij = 0 unless i = j = 0, in which case we have

ρ00 = 1, representing the initial polarisation of the NV spin in the |0⟩ state.

10.2.1 A simplified example: one excited transition

To gain insight into the expected analytic solution for the spin-1 NV centre, we

consider the simplified case in which only one of the transitions of the NV centre is

excited by the environment, and the other is assumed to be too far detuned to have any

effect on the population of the spin states. This simplifies the analysis dramatically,

yet demonstrates the main properties of relaxation based detection. Incidentally, this

simplification is still applicable to a spin-1 system for cases of significantly strong

Zeeman splittings between the | ± 1⟩ states. This ensures that one transition will

be excited by the environment, whilst the other is not. This forms the basis of the

technique by which environmental spectra may be mapped, as outlined in section 10.3.

Resonant case

For the case where the frequency of the environment is resonant with the transition

frequency between the probe’s spin states, the equation of motion for z = P0 − 1
2
is

d2z

dt2
+ Γ2

dz

dt
+B2z = 0, (10.2.6)
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where B ≡ ⟨B2⟩
1
2 , the solution of which is

z(t) =
1

4

[
exp

(
−Γ2t+ Γ2t

√
1− 4

B2

Γ2
2

)
+ exp

(
−Γ2t− Γ2t

√
1− 4

B2

Γ2
2

)]

+
1

4

Γ2√
Γ2
2 − 4B2

[
exp

(
−Γ2t+ Γ2t

√
1− 4

B2

Γ2
2

)

− exp

(
−Γ2t− Γ2t

√
1− 4

B2

Γ2
2

)]
. (10.2.7)

Typically the spin based environments in which we are interested couple weakly to

the NV spin as compared with its intrinsic dephasing rate, giving Γ2 ≫ B. In fact,

even a strong coupling will also induce additional dephasing, so even in a worst case

scenario we are guaranteed Γ2 > B. In this limit, we have

P0(t) =
1

2
+

1

2
exp

(
−B

2

Γ2

t

)
. (10.2.8)

Hence the longitudinal relaxation rate is given by

Γ1 =
1

T1
=
B2

Γ2

= T2
⟨
B2
⟩
. (10.2.9)

Off resonance

When a finite detuning, δ, exists, the equation of motion becomes

cos (δt)
d2z

dt2
+ [Γ2 cos (δt) + δ sin (δt)]

dz

dt
+B2 cos (δt) z = 0 (10.2.10)

To determine the relative importance of the terms within this equation, we rescale

t in terms of the decay time from the resonant solution. That is, if we consider the

dimensionless variable T = Γ1t, the equation of motion becomes

R2 cos (κ1T )
d2z

dT 2
+ [cos (κ1T ) + κ2 sin (κ1T )]

dz

dT
+ cos (κ1T ) z = 0,

(10.2.11)
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where R = B/Γ2 ≪ 1, κ1 =
δ
Γ1

and κ2 =
δ
Γ2

. In light of this, we may treat the term

with the second derivative as a perturbation. The zeroth order solution is given by

z(T ) =
1

2
e
− T

κ22+1

(
δ

Γ
sin (δt) + cos (δt)

)− κ2
κ1κ

2
2+κ1

, (10.2.12)

which, for small δ, becomes

P0(t) =
1

2
+

1

2
exp

(
−Γ1t

Γ2
2

δ2 + Γ2
2

)
. (10.2.13)

For zero detuning, we recover the previous result (equation 10.2.9). For finite de-

tuning, the relaxation rate is modified by a Lorentzian factor with a FWHM of Γ2.

The complete decay profile is then obtained by integrating this expression over the

spectral density of the environment.

10.2.2 General case: Two excited transitions

To find the solution for the spin 1 case, we follow the same analysis as above. Let

ω+ ≡ D +B0 and ω− ≡ D−B0 denote the energy differences between the |0⟩, |+ 1⟩

and |0⟩, |−1⟩ states respectively. The corresponding detunings are then δ+ = ω−ω+

and δ− = ω − ω−; and the corresponding decay rates are

Γ+
1 = 2Γ1

Γ2
2

δ2+ + Γ2
2

, (10.2.14)

Γ−
1 = 2Γ1

Γ2
2

δ2− + Γ2
2

, (10.2.15)

where Γ1 = B2/Γ2. The probability of finding the NV in the |0⟩ state is given by

P0 =
1

6

(
2 + e−Γ+

1 t + e−Γ−
1 t + 2e−(Γ

+
1 +Γ−

1 )t
)
. (10.2.16)

To consider some of the interesting relaxation regimes described by this expression,

suppose firstly that the splitting between the | ± 1⟩ levels is large relative to Γ2,
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Figure 10.1: Illustration of the way in which the NV relaxation filter functions, Γ+
1

and Γ−
1 filter specific regions of the environmental spectral density. (a) One of the NV

transitions is significantly detuned from the environment and hence cannot be excited.
The NV spin thus behaves as a spin-1

2
qubit and the steady state of the NV spin will

be an equal mixture of only the two states associated with the excited transition,
with the third state remaining unpopulated. (b) Both transitions are appreciably
excited, meaning the steady state of the NV spin will be an equal mixture of all three
magnetic sublevels.

and that the
∣∣ 0⟩ → | − 1⟩ transition is significantly excited by the environmental

spectrum, whereas the | 0⟩ →
∣∣+1

⟩
transition is sufficiently detuned that it is not

excited (see figure 10.1 (a)). In this case, we have Γ+ ∼ 0 for all frequencies of the

spectrum, giving

P0 =
1

2

(
1 + e−Γ−

1 t
)
, (10.2.17)

which is equivalent to the spin-1
2
case. On the other hand, if both transitions are

appreciably excited (figure 10.1 (b)), the system will decay to an equal mixture of all

3 spin states. This can be seen by taking Γ+ ≈ Γ−, giving

P0 =
1

3

(
1 + e−Γ+

1 t + e−2Γ+
1 t
)
. (10.2.18)

To find the overall relaxation rate of the |0⟩ spin state in the presence of an

arbitrary environment, we must integrate the expression in equation 10.2.16 over the
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corresponding spectral density. In the following, we consider the effects of two limiting

spectral regimes on the relaxation rate of the NV spin.

Quasi white Noise/Broad spectrum

Consider the case of a broad spectral density given by S(ω) = 1/fe, where fe ≫

D + B0 + Γ2 is some high frequency cutoff, or effective spectral linewidth. The

corresponding ensemble averaged population of the |0⟩ spin state is given by

⟨P0⟩ =

∫ ∞

−∞
S (ω)

[
exp

(
−Γ1t

Γ2
2

δ2 + Γ2
2

)]
dδ

∼ exp

(
−πB

2

fe
t

)
, (10.2.19)

for t < B2/fe. The initial ensemble decay rate of the population of the |0⟩ spin state

in the presence of an environment defined by a high frequency cutoff fe is therefore

given by

⟨
Γ1

⟩
=

1

T1
= π

B2

fe
(10.2.20)

Despite the apparent simplicity of this anaysis, this turns out to be an excellent

approximation for electron environments (see the experimental investigation in section

10.4 below) due to their broad spectral density. Notice also that Γ2 does not appear

in the final expression.

Black noise/narrow spectrum

In cases where the linewidth is much smaller than Γ2, the spectrum approaches a

small number of infinitesimally thin bands and may be approximated by one (or

more) delta function(s) about the characteristic frequency of the environment, fe. In
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the case of a single band, we may thus simply replace ω with fe. If the peak splitting

is much greater than the dephasing rate (B0 ≫ Γ2), this reduces to

⟨P0⟩ =

∫
S(ω)P0 dω

≈ 1

2

(
1 + e−Γ1t

)
, (10.2.21)

and the ensemble relaxation rate is given by

⟨
Γ1

⟩
= Γ1 =

B2

Γ2

, (10.2.22)

which is just the resonant case from above.

10.3 Reconstruction of the environmental spectral

density

As noted above, the region of the spectral density filtered by the NV filter functions

may be tuned by controlling the strength of the static background field. This suggests

that, by sweeping the filter function across the entire spectrum, we should be able to

reconstruct it by measuring the relaxation rate of the NV spin.

We denote an arbitrary given noise spectrum at zero field by S0(ω). The distribu-

tion at some finite background field ω0 is then S0(ω − ω0). For simplicity we assume

the shape of the distribution does not change with ω0, although this case is easily

handled by extension. Furthermore, we also assume that one of the NV transitions

is sufficiently detuned that it is not sensitive to the environment. When this is not

true, the detuned filter function will translate with ω0 at the same rate as S0(ω−ω0),

and thus produce a constant shift in the overall measurement that does not change
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with ω0, which may be later subtracted. We denote the non-trivial filter function by

G(ω) = 2B2 Γ2

ω2 + Γ2
2

. (10.3.1)

The response of the NV to the arbitrary spectrum is given by

M(ω0) =

∫ ∞

−∞
S0(ω − ω0)G(ω −D + ω0) dω. (10.3.2)

By introducing the frequency-space variable Ω = ω − ω0, and the parameter, Ω0 =

D − 2ω0, and making use of the symmetry properties of the Lorentzian function, we

may write this integral as a Fourier-space convolution,

M(Ω0) =

∫ ∞

−∞
S0(Ω)G(Ω0 − Ω) dΩ

= (S0 ∗G) (Ω0). (10.3.3)

Given that the filter function is known, and can be measured to arbitrary precision

using ODMR at low laser and microwave powers (see chapter 3), the spectral density

may thus be reconstructed using an appropriate deconvolution algorithm or numerical

routine (MATLAB’s deconv, for example).
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Figure 10.2: Sequence (a) By controlling the background field strength, B0, the NV
filter function, G may be tuned to filter specific regions of the spectral density, S. (b)
The resulting measured signal, M(Ω0), is the convolution of the NV filter function,
G, and the spectral density of the environment, S. (c) Given that G is known, the
spectral density, S, may be reconstructed by deconvolving S and G from M .
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10.4 Experimental Investigation I: Nanoscale de-

tection of stochastic spin fluctuations

In order to demonstrate the effect of a widefield ensemble array of NV centres cou-

pling to an aqueous environment of electron spins, an experiment was conceived and

performed at the University of Stuttgart1 in which the concentration of the aqueous

solution could be controlled with precision. Paramagnetic Gd3+, in the form of the

Gadobutrol complex, was chosen due to its seven unpaired electron giving rise to an

overall spin of S = 7
2
. As was the case in chapter 5, the internal dynamics of the aque-

ous environment result in stochastic fluctuations of the effective magnetic field felt

by the NV spin ensemble, however here we focus on the effect of the environment on

the longitudinal component, and hence relaxation rate, of the NV spins. This effect

is facilitated by the extremely fast dynamics occurring both within and between each

Gadobutrol complex, yielding an extremely broad spectral distribution (10-100GHz)

capable of flipping the 2.88GHz-split NV spins.

To detect the Gd environment, an array of NV centres was created using a ∼

1013 cm−2 4 keV implant of 15N atoms into an ultra-pure diamond substrate. The

substrate was subsequently electron irradiated to produce a lateral NV density of

∼ 1000µm−2 at a depth of 6.7 nm. A transparent microfluidic channel was engineered

on top of the diamond substrate, allowing the NV layer to be addressed by the 532 nm

laser through the sample (see figure 10.3 (a)). The effect of Gd fluctuations on the NV

ensemble is then monitored using a CCD camera to detect changes in NV fluorescence.

1All experiments described in this section were performed by S. Steinert at the University of
Stuttgart, and together with the theoretical analysis of this section, have been published in reference
[SZH+]
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(a) (b)

Figure 10.3: Schematic of widefield microfluidic detection setup, as taken from refer-
ence [SZH+]. (a) A 532 nm (green) laser is used to excite the ensemble of NV spins
(red arrows) and the resulting fluorescence is readout using the CCD camera, yield-
ing a spatially dependent image of the response of the NV spins to the dynamics of
the sample. The strong magnetic dipole coupling between Gd3+ ions in the sample
results in an appreciable fraction of them having the same 2.88GHz Zeeman splitting
as the NV spins, thus allowing them to exchange energy, and ultimately resulting in
the relaxation of the NV spin ensemble. (b) Photograph of the experimental setup
consisting of the PCB board, the lithographic microcoil, diamond substrate and mi-
crofluidic flow cell.
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10.4.1 Determination of dynamic parameters

As we are measuring the longitudinal relaxation rate of the NV spin, we are interested

in the spectrum of the effective field that couples to the Sx and Sy components of the

NV spin.

Gd-NV interaction

The RMS strength (in Hz, not T) of the lateral components of the magnetic field

operators is given by,

B ≡
√

⟨B2
x⟩+

⟨
B2
y

⟩
, (10.4.1)

where Bx and By are defined by the total dipolar coupling to the Sx and Sy components

of the NV centre respectively.

Bi
x =

µ0

4π

γnvgGµB

R3

[
S i
x −

3

R
sin(Θ) cos(Φ)

(
R · S⃗i

)]
, (10.4.2)

Bi
y =

µ0

4π

γnvgGµB

R3

[
S i
y −

3

R
sin(Θ) sin(Φ)

(
R · S⃗i

)]
, (10.4.3)

where R = R
(
sinΘ cosΦ, sinΘ sinΦ, cosΘ

)
denotes the separation vector between a

given NV-Gd pair, and S again denotes the spin vector of the Gd spin. Integrating

x and y from −∞ to ∞, and z from h to ∞, we have

B2
x + B2

y =
nπ

8h3

(µ0

4π
γnvgGµB

)2 [
S2
x + S2

y + 2S2
z

]
, (10.4.4)

and taking the trace over a purely mixed state, we find

B2 =
21nπ

16h3

(µ0

4π
γnvgGµB

)2
= 1.0× 103MHz2M−1 × [Gd], (10.4.5)

where [Gd] is the concentration of Gd ions, measured in mol/L.
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Gd-Gd dipolar Interaction

The analysis of spatial and rotational diffusion and Gd-Gd dipolar interactions is iden-

tical to that performed for Mn2+ spins in chapter 5 and is therefore not repeated here.

The magnetic dipole-dipole mediated fluctuation rate, in terms of the concentration

Gd concentration, [Gd], is given by

fdip = 77GHzM−1 × [Gd], (10.4.6)

where the concentrations in the experiment varies from 0 to 1M.

Gadobutrol molecular lattice effects

In addition to the concentration dependent dipole mediated relaxation caused by

adjacent Gd spins, relaxation is also caused by dynamic processes taking place within

the gadobutrol molecules. Specifically, this relaxation is caused by modulations of

the zero-field splitting by damped quantum mechanical vibrations, resulting in the

dissipation of the electron spin’s energy into the lattice. For magnetic fields below

1T, the electron spin relaxation rate has a constant value of fmol = 50GHz [KKW04].

Combined dynamics

Given the extremely high Gd fluctuation rates due to gadobutrol lattice effects and the

dipolar coupling between Gd spins, we ignore the comparatively slow effects of spatial

and rotational diffusion.The total autocorrelation function of the effective lateral field

of the Gd is the product of the functions associated with dipolar and molecular lattice

effects,

⟨B(t)B(t′)⟩ =
⟨
B2
⟩
exp [fe(t− t′)] cos (ω0t) , (10.4.7)
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where ω0 is the Larmor frequency of the Gd spins, and the total decay rate is given by

the sum of the respective decay rates, fe = fdip+fmol. The corresponding normalised

spectral density is then given by

S(ω) =

√
2

π

fdip + fmol

(ω − ω0)
2 + (fdip + fmol)

2 . (10.4.8)

The width of this distribution is dependent of the concentration of Gd spins, fe =

50GHz + 77GHzM−1 × [Gd].

10.4.2 Results and discussion

The ESR spectrum of Gadobutrol shows a single peak at 9.785GHz at a field of

3500G. The NV detection experiment was conducted at 200G, from which we expect

an ESR peak at ω0 = 600MHz. Rewriting the expressions for the decay rates of the

|0⟩ state of the NV centre into its | ± 1⟩ states in terms of Lorentzian distributions,

we find that the NV spin essentially ‘filters’ regions of the Gd spectrum according to

Γ+
1 = 2πB2

(
1

π

Γ2

δ2+ + Γ2
2

)
, (10.4.9)

Γ−
1 = 2πB2

(
1

π

Γ2

δ2− + Γ2
2

)
. (10.4.10)

Given this value of ω0, we have that ω+ = 3.24GHz and ω− = 2.28GHz, ensuring

that both the centroids and widths of these filter functions are much less than the

width of the Gd spectral density. As such, the Lorentzian distributions describing Γ+
1

and Γ−
1 are effectively delta functions,

Γ+
1 ≈ 2πB2δ (ω − ω+) , (10.4.11)

Γ−
1 ≈ 2πB2δ (ω − ω−) . (10.4.12)
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To find the ensemble averaged response of the NV centre, we must integrate

the expression in equation 10.2.16 over the spectral density of the Gd environment,

equation 10.4.8. We note that this integral has no analytic solution∫
S(ω)e−Γ+

1 t dω = 1 +

∫
S(ω)

∞∑
k=1

(−1)k
(
Γ+
1 t
)k

k!
dω

= 1 +
∞∑
k=1

(−1)k
(2B2t)

k

k!

∫
S(ω)

(
1

π

Γ2

δ2+ + Γ2
2

)k

dω

≈ 1 + S(D + ω0)
∞∑
k=1

(−1)k
(2B2t)

k

k!

∫ (
1

π

Γ2

δ2+ + Γ2
2

)k

dω.

Retaining first order terms in the formal expansion above, we find

⟨
Γ+
1

⟩
≈ 2πB2S(D + ω0)

≈ 2
feB

2

f 2
e +D2

, (10.4.13)⟨
Γ−
1

⟩
≈ 2πB2S(D − ω0)

≈ 2
feB

2

f 2
e +D2

. (10.4.14)

Hence, the overall relaxation rate of the NV spin is given by

1

T1
=

⟨
d

dt
P0

∣∣∣∣
t=0

⟩
=

1

6

[⟨
Γ+
1

⟩
+
⟨
Γ−
1

⟩
+ 2

(⟨
Γ+
1

⟩
+
⟨
Γ−
1

⟩)]
≈ −2

[
feB

2

f 2
e +D2

]
. (10.4.15)

It is interesting to note that, given fe ≫ D, we may make the following approximation,

1

T1
≈ 2

B2

fe

= 40 kHz× [Gd]

1.0M + 1.5× [Gd]
,

which shows the NV spin relaxation rate to have a very similar form to the dephasing

rates obtained for rapidly fluctuating fields, a similarity that was discussed briefly in
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Figure 10.4: Experimental (green) and analytic (blue) data for the relaxation rate as
a function of Gd concentration using experimental parameters only (ie, no fitting).

chapter 5. This expression is plotted against the experimentally obtained results in

figure 10.4, showing excellent agreement between theory and experiment.

The high temporal resolution of widefield magnetometry also favors sub-cellular

visualization of label-free dynamic processes, for instance the production of free rad-

icals in cell death, the regulation of homeostasis through ion channels or hemoglobin

trafficking by imaging paramagnetic oxygen.



200

10.5 Experimental Investigation II: Ultra-high res-

olution detection of spins in an artificial cell

membrane

In the previous experimental investigation, a high density NV ensemble together with

a widefield CCD camera arrangement was employed to obtain a better signal to noise

ratio for measurement of the ensemble NV spin state. This improvement, however,

comes at the cost of the highly local magnetic detection capabilities of a single NV,

which in many situations is a desirable property to retain. In this example, we

consider an arrangement of single gadolinium atoms in an artificial cell membrane

whose detection and characterisation is facilitated by a distribution of individually

addressable nanodiamonds containing single NV centres2.

10.5.1 Determination of dynamic parameters

In analysing this system, we follow a similar methodology as that used in the man-

ganese immersion (chapter 5) and Gd flow cell (section 10.4) experiments. Where

this sytem differs however is that we are now detecting a two-dimensional distribu-

tion of target spins rather than a three-dimensional bulk system. This has a number

of significant physical consequences, and leads to very different NV spin relaxation

behaviour than observed previously.

2All experiments described in this section were performed by S. Kaufmann and D.A. Simpson at
the University of Melbourne, and together with the theoretical analysis of this section, have been
published in reference [KSH+13]
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Figure 10.5: Schematic of nanoscopic detection of spin labels in an artificial cell
membrane using a single-spin nanodiamond sensor, as taken from ref. [KSH+13]. (a)
A supported lipid bilayer (SLB) is formed around a nanodiamond immobilized on
a glass substrate. (b) The nanodiamond contains a single nitrogen-vacancy (NV)
optical centre which acts as a single spin sensor by virtue of the magnetic levels in the
ground state. (c) Gadolinium (Gd) spin labelled lipids are introduced into the SBL.
(d) Magnetic field fluctuations arising from Gd spin labels affect the quantum state of
the NV spin, measured through the NV relaxation time, T1. (e) The electronic energy
structure of the NV centre showing the fluorescent cycle and optical spin readout of
the spin states |0⟩ and | + 1⟩ , and the protocol for the T1 measurement. (f) A
schematic illustration of the T1 measurement. The relaxation of the NV spin in the
target environment is compared to that in the reference environment. Measurement
at a single time point in the evolution allows faster detection.
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Gd-NV interaction

In the following we employ a similar analysis to that of the flow cell case, except

here the Gd spins are confined to a 2-dimensional planar distribution. Integrating

expression 10.4.3 over x and y from −∞ to ∞, and z from h to ∞ over a planar spin

density of σ, and taking the trace over a purely mixed state,

B2 ≡
⟨
B2
x

⟩
+
⟨
B2
y

⟩
=

63πσ

8z4

(µ0

4π
γnvgGµB

)2
= 3.1GHz2 nm6 × σ

z4
. (10.5.1)

Strictly speaking, the NV-Gd standoff, z, is not necessarily simply the depth of the

NV centre below the nanodiamond surface, h, as the likelihood of finding Gd atoms

close to the nanodiamond surface decreases with decreasing Gd concentration. As

such, we take standoff to be the greater of the NV depth, and the radius of the circle

in which we expect to find a single Gd atom given a lateral density of σ,

z ∼ h+
1√
πσ

. (10.5.2)

Note that we may relate the lateral density of Gd, σ, to the percentage of total lipid

weight comprised by Gd, w, via σ = 2.63× 10−2 nm−2 × w. A plot of the RMS field

strength, B, is shown in figure 10.6 (a). Given that we are in an experimental regime

in which 1 ≤ w ≤ 10, we take z ∼ h.

To find the effective number of spins that interact with the NV, we note that the

variance of the axial field is⟨
B2
z

⟩
=

63πσ

8h4

(µ0

4π
γnvgGµB

)2
, (10.5.3)

and that due to a single spin a distance of h from the NV is⟨
B2
z

⟩
i

=
21

h6

(µ0

4π
γnvgGµB

)2
. (10.5.4)
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Hence, the effective number of spins detected by a single NV centre at a depth h

below the nanocrystal surface is

N =
⟨
B2
h

⟩
/
⟨
B2
z

⟩
i

=
3πσh2

8
. (10.5.5)

Gd dynamics

To determine the fluctuation rate of the effective Gd field, we proceed identically to the

previous flow cell case. However, as we are detecting a two dimensional array of spins,

we simply take θ = π/2 in equation. 5.2.12, from which we find the autocorrelation

function for the axial magnetisation⟨
Mz(t)Mz(0)

⟩
=

1

2

[
cos

(
2

3
S(S + 1)

bt

r3

)
+ cos

(
2S(S + 1)

bt

r3

)]
,

(10.5.6)

where b = µ0

4π~g
2
GµB. Given that we are now dealing with a two dimensional randomly

distributed spin bath, the probability distribution for the separation distance between

a given spin and its nearest neighbour, r, is now

P(r) = 2πσr exp
(
−πσr2

)
. (10.5.7)

Integrating the autocorrelation function over this distribution yields∫ ∞

0

2πσr exp
(
−πσr2

) 1
2

[
cos

(
2

3
S(S + 1)

bt

r3

)
+ cos

(
2S(S + 1)

bt

r3

)]
dr

=
1

4

√
3

π

[
G4,0

0,5

(
τ

432
| 0, 1

3
, 2
3
, 1, 1

2

)
+G4,0

0,5

(
τ

48
| 0, 1

3
, 2
3
, 1, 1

2

)]
, (10.5.8)

where G is the Meijer-G function, and τ = S(S + 1) (πσ)3/2 bt, giving a correlation

time of

Tc = 2
[
S(S + 1) (πσ)3/2 b

]−1

, (10.5.9)
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and a corresponding dipolar fluctuation rate of

fdip =
1

2
S(S + 1) (πσ)3/2 b

= 13.6GHz nm3 × σ3/2. (10.5.10)

For %Wt concentrations of 1%, 5%, and 10%, we have fluctuation frequencies of

58.0MHz, 650MHz and 1.83GHz respectively.

As noted above, at very low Gd concentrations the lateral diffusion of lipid

molecules may also play a role in causing the dipole field to fluctuate. During the

experiment, the lateral diffusion rate was measured to be Dl = 1µm2 s−1, giving a

corresponding diffusion mediated fluctuation rate of

fdiff = Dl

(
3

4h

)2

= 560× MHznm2 × 1

h
. (10.5.11)

Gd III has a permanent magnetic dipole moment arising from the interaction

between the seven unpaired electrons, giving a zero-field splitting of DGd = 1.3

GHz [BBC+04]. In addition, low spin-orbit coupling suppresses intrinsic electronic

spin relaxation due to, for example, collisions with water molecules. Overall, Gd

III has significantly slower relaxation rates (fin ∼ 1 GHz) as compared with other

lanthanides such as Yb III, which have relaxation times as short as 1-10 THz[BBL91].

The total autocorrelation function is the product of the functions associated with

spin-spin interactions, self diffusion and intrinsic dynamics,

⟨
B(t)B(t′)

⟩
=

⟨
B2
⟩
exp
(
−fe |t− t′|

)∑
k

cos
(
ωk (t− t′)

)
, (10.5.12)

with a total fluctuation rate given by fe = fdiff + fdip + fin. The effective Larmor

precession frequencies, ωk , are the transition frequencies between GD energy levels
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Figure 10.6: (a) Plot of the RMS strength of the effective GD magnetic field, B,
vs % weight of Gd ions in the lipid membrane for different NV depths. At low
concentrations, the average distance between two nearest neighbour Gd atoms is
greater than the NV depth, hence the NV standoff is defined by the Gd density. At
high concentrations, the standoff is simply determined by the NV depth below the
nanodiamond surface. (b) Plot of the NV relaxation rate vs % weight of Gd ions in
the lipid membrane for different NV depths.

as determined by the zero-field splitting, and thus may take values of 2DGd, 4DGd

and 6DGd. The corresponding normalised spectral density is then given by

S(ω) =

√
2

π

∑
k

fdiff + fdip + fin

(ω − ωk)
2 + (fdiff + fdip + fin)

2 . (10.5.13)

10.5.2 Results and Discussion

As there is no appreciable background magnetic field used in this experiment, we note

that the | ± 1⟩ magnetic sublevels of the NV centre are degenerate, giving Γ+ = Γ−.

Thus, using equation 10.2.18, the expressions for the |0⟩ state population is

P0 =
1

3

(
1 + e−Γ+

1 t + e−2Γ+
1 t
)
. (10.5.14)
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So the relaxation rate is given by

⟨
Γ1

⟩
≈

⟨∣∣∣∣dP0

dt

∣∣∣∣⟩
=

⟨
Γ+
1

⟩
. (10.5.15)

Since the effective width of Γ+ is given by the inhomogeneous linewidth of the NV

centre, 1/T ∗
2 ∼ 10MHz, which is significantly narrower than the width of S(ω) ∼ 1 to

10GHz, Γ+ behaves analogously to a delta function centred at 2.88GHz. Rewriting

the expressions for the decays rates of the |0⟩ state of the NV centre into its | ± 1⟩

states in terms of Lorentzian distributions,

Γ+
1 = 2πB2

(
1

π

Γ2

δ2+ + Γ2
2

)
. (10.5.16)

In the case where the centre experiences a field of 600G, we have that ω+ = 3.24GHz

and ω− = 2.28GHz, ensuring that ω+, ω−,Γ2 ≪ fe. As such, the Lorentzian distri-

butions describing Γ+
1 and Γ−

1 are effectively delta functions,

Γ+
1 ≈ 2πB2δ (ω −D) . (10.5.17)

Thus for the ensemble average we obtain

⟨
Γ+
1

⟩
≈

∫
S(ω)Γ+

1 dω ≈ 2πB2S(D) (10.5.18)

= 2πB2

√
2

π

∑
k

fdiff + fdip + fin

(ω − ωk)
2 + (fdiff + fdip + fin)

2 (10.5.19)

≈ 2
√
2π

feB
2

f 2
e + (D −DGd)

2 , (10.5.20)

where the last line follows from the the fact that the other two Gd transition fre-

quencies (4DGd and 6DGd) are too far detuned from D to have a significant effect on

relaxation rate of the NV spin.
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Using the definitions of B and fe in equations 10.5.1 and 10.5.13, we plot the NV

decay rates in figure 10.6 as a function of the Gd concentration in the membrane.

These curves are compared with experimental data obtained from 9 separate NV

centres (NV1-NV9). As we do not know the NV depth, h, in each nanodiamond we

plot a lower bound corresponding to the photostability limit of 2 nm[BGN+10] and

an upper bound from the AFM distribution of 18 nm. The data points all fall within

the NV depth bounds, indicating that the observed relaxation rates are in agreement

with those predicted by equation 10.5.20. The trend to shallower NV depths as we

move from 10% to 1% Gd-lipid concentration is consistent with an etching step in

the processing of the sample between the 10% and 1% measurements, resulting in the

removal of several nanometres of material from the nanodiamond surfaces.

The effective number of spins detected, N , for a given Gd concentration, σ, is

found from equation 10.5.5. Using the NV depth range in Figure 4 (h ≈ 8± 5 nm) we

arrive at a lower bound estimate of the effective number of spins detected of N = 4±2

(at a Gd concentration of 1%), and N = 28± 24 (at a Gd concentration of 10%).

10.6 Conclusions

In this chapter, we have discussed the advantages and limitations of performing de-

coherence microscopy using the relaxation rate of an NV spin, as compared with the

dephasing methods discussed in previous chapters. Relaxation based sensing has been

shown to be more sensitive to high frequency phenomena, and is therefore well suited

to characterising electron spin systems. Furthermore, the comparatively long intrinsic

T1 times of NV centres (as compared with T2) make this approach inherently more

sensitive than methods based on measuring dephasing rates; and with the ability to
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Figure 10.7: NV relaxation time due to the presence of Gd spin labeled lipids, T1,
as a function of Gd lipid concentration (%w/w) for all measured centres, NV1-NV9.
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bound of h=18nm determined from the measured AFM distribution.
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tune the NV spin relaxation rates to different environmental frequencies, we have the

additional advantage of being able to reconstruct arbitrary environmental spectra.

The practicality of relaxation based decoherence microscopy was demonstrated

using two experiments. In the first, we measured and analysed the relaxation effects

of an electron-spin rich aqueous solution on a widefield ensemble array of NV cen-

tres. The concentration dependence of the resulting relaxation rate was shown to be

accurately explained by the theory developed in this chapter. The high temporal res-

olution of this widefield configuration is well suited to the sub-cellular visualization of

label-free dynamic processes, such as the production of free radicals during cell death,

the regulation of homeostasis through ion channels, and hemoglobin trafficking.

In the second experiment, we considered an arrangement of single gadolinium

atoms in an artificial cell membrane, whose detection and characterisation is facili-

tated by a distribution of individually addressable nanodiamonds containing single

NV centres. The comparatively high spatial resolution of this method, combined

with the ability to control and measure NV centres at ambient temperatures, allowed

us to detect and characterise the dynamics of individual clusters of 2-6 Gd spins

in this biological environment. We have demonstrated excellent agreement between

experimental results and the corresponding theoretical description developed here,

highlighting the potential of the NV-nanodiamond system as a nanoscopic magnetic

probe in biological systems.



Chapter 11

Decoherence and orientation
tracking of nanodiamonds in living
cells

To this point, all of the NV based sensing protocols we have considered have held

the NV axis fixed with respect to some external axis, usually defined by a static

background field or the orientation of the environment being measured. However,

in some cases in-situ monitoring of the NV spin state may not allow us to maintain

simultaneous control over the crystal orientation due to the lack of any mechanical

contact. This is further complicated by the fact that the decoherence properties of the

NV spin under pulsed-microwave control sequences depend on the relative orientations

of the NV axis and the external magnetic field.

In this chapter, we discuss how the unique optical and spin properties of an NV

centre in a diamond nanocrystal allow these potential problems to be resolved. In

addition to obtaining information about the local magnetic environment, these prop-

erties allow for the determination of both the position and orientation of the crystal,

yielding information about the mechanical forces and motion it may be subject to.

These techniques are applied in analysing a set of experiments in which diamond

210
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nanocrystals are taken up endosomally by human cervical cancer (HeLa) cells1.

11.1 Introduction

As has been the focus of our discussion is the preceding chapters, the ability to op-

tically monitor the quantum state of an NV probe has an enormous potential to

monitor biological environments exhibiting electromagnetic properties (in particu-

lar, see chapters 8 and 9). In addition to their magnetic sensing capabilities, NV

centres in nanocrystals have been employed as fluorescent bio markers in cellular sys-

tems as, despite a comparitively low fluorescence rate, nanodiamonds are completely

non-cytoxic [YKC+05, NZJ+07, FLC+07] and are perfectly photostable, exhibiting no

blinking or photobleaching in nanocrystals as small as 5 nm in diameter [BGN+10].

Despite the ability of the NV to act as a magnetometer or a fluorescent bio-

marker, no previous in-situ measurements of the NV quantum spin state have been

demonstrated before the work reported here [MYS+11]. This simultaneous monitoring

of both classical position and the quantum spin state is an important next step in order

to facilitate simultaneous characterisation of nanomechanical intracellular forces and

the dynamics of the intracellular electromagnetic environment. In order to achieve

this, we must address how to non invasively perform a quantum measurement on an

NV centre in a living cell, and conceive a measurement protocol that allows the NV

to characterise relevant intra cellular processes, whilst remaining sufficiently robust

during both rotational and translational motion of the nanocrystal.

In this chapter we discuss, with reference to experimental data, how these goals

1All experiments described in this chapter were performed by L.P. McGuinness, D.A. Simpson
and Y. Yan at the University of Melbourne, and together with the theoretical analysis of this chapter,
have been published in reference [MYS+11].
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1 (π and π/2 pulses for spin-echo). Right: orientation-dependent Zeeman splitting,
∆ω(θ), in an applied magnetic field B0, measured in Study 2.
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may be achieved using an investigation comprised of two separate studies. Firstly,

we perform an analysis of the first intracellular coherence measurement of a single

quantum system, in which both Rabi and spin-echo signals are monitored, providing

a foundation for further nanobiomagnetometry studies. We then detail protocols

for the robust and precise orientation tracking of nanodiamonds within living cells

based on continuous ODMR monitoring. The experimental setup is comprised of

a confocal microscope with a proximate wire used for control of the NV spin state

(figure 11.1 (a)). A typical wide-field image of the uptake and internalisation of 45nm

nanodiamonds in HeLa cells is shown in figure 11.1 (b).

11.2 Study 1: Demonstrating the quantum coher-

ence of NV centres in living cells

In this section, we show how the decoherence imaging techniques discussed in previous

chapters may be applied to the case of in-situ monitoring of mobile nanodiamonds in

order to obtain information regarding the intracellular environment. By tuning the

MW frequency to the |0⟩ ↔ | + 1⟩ transition, we coherently drove Rabi transitions

between the quantum states of each NV system (figures 11.2 (a) & (b)), which were

subsequently used to determine the duration of π and π/2 pulses for spin-echo mea-

surements of the coherence time, T2. The decoherence effects arise due to interactions

of the NV spin with internal crystal spins, unpaired spins on the nanodiamond surface

and magnetic fluctuations in the local intracellular environment. The initial spin echo

envelopes of NV-1a and NV-1b are plotted in figure 11.2 (c), and subsequent measure-

ments after a 13 hour period indicated that changes in the intra-cellular environment
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had resulted in a reduced decoherence rate for NV-1b (figure 11.2 (d)). This was

observed simultaneously with increased cellular auto-fluorescence and a degradation

in the integrity of the cell nucleus. These results are consistent with the production

of unpaired electron species such as superoxide radicals at the nanocrystal surface, as

would be generated during apoptosis[CJ98].

In chapter 3 we discussed the dependence of the Rabi frequency on the microwave

power. In this experiment, the Rabi frequency was observed to differ not only between

the two NV probes, but to also change over time, despite the delivered microwave

power being held constant. This implies a change in the orientation of the nanocrystal,

leading to a change in the projection of the microwave field along the axis perpen-

dicular to that of the NV. In the case where the detuning is small compared to the

microwave field strength, ωx ≫ δ, the Rabi frequency is given by

Ω = Ω0 sin(θ), (11.2.1)

where Ω0 is the Rabi frequency for the case where the NV axis is perfectly aligned

with the background field and θ is the angle between the background field and the

NV axis.

From this, we note that the higher Rabi frequency of NV-1b is the result of better

alignment of its NV axis with the background field than that of NV-1a. Whilst

neither NV exhibits sufficient rotational motion to determine the extrema of the Rabi

frequency, we may determine an upper bound for the extent of this motion by taking

the maximum frequency of NV-1b to be the frequency at θ = 0. The alignment of

both NV-1a and NV-1b is plotted in figure 11.3 (b), showing that the two nanocrystals

experienced very different nanoscale environments, with NV-1a rotating up to 20o

between time points, and NV-1b less than 10o.
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Although a changing Rabi period provides information on the orientation of in-

ternalized nanodiamonds, the long timescale (hours) of this measurement limits its

use for particle tracking. In the following section, we demonstrate that continuous

ODMR monitoring in the presence of an external magnetic field allows the rotational

motion of an internalized nanodiamond to be measured over millisecond acquisition

timescales.

11.3 Study 2: Orientation tracking of nanodia-

monds in living cells

Whilst much of the focus of NV magnetometry has been in measuring electromagnetic

properties of various environments, situations exist in which we may be interested in

dynamic mechanical processes taking place in systems where electromagnetic cou-

plings are negligible. Not only does the fluorescence of the NV make it well suited

to optical position tracking, the ODMR spectrum facilitates simultaneous tracking of

the NV’s orientation. In this second study, we show how monitoring of the ODMR

spectrum can provide an arbitrarily precise measurement of the rotational dynamics

of the nanodiamond. In a spin-echo experiment, the linewidth is known to change

dramatically with the orientation of the background field relative to the NV axis.

This is not an issue here, as the linewidth due to the laser field is generally an order

of magnitude larger than the static linewidth (1/T ∗
2 ), and 2 orders of magnitude larger

than the spin echo linewidth (1/T2).
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11.3.1 Determination of orientation angle using full ODMR

spectrum

For a given external field, B0, the maximal ODMR splittings occur at ω = D ± γB0

(figure 11.6 (a)). For an arbitrary orientation angle between the NV quantisation axis

and the background field, θ, the frequency separation between the two peaks will

be ∆ω = 2B0 cos (θ). The orientation of the quantisation axis with respect to the

background field may then be determined via

θ = arccos

(
∆ω

2B0

)
. (11.3.1)

In what follows, we outline a protocol to determine this orientation from the

continuous monitoring of ODMR spectra.

11.3.2 Optimised tracking, orientations sensitivity and tem-

poral resolution

Because the Sz = ±1 splittings are symmetric about D, it is sufficient to consider

only the region given by D < ω < D + γB0. The peak position at any given instant

will then be given by ω1 = D + γB0 cos (θ1), with the spectrum described by

S1 =
Γ2

(ω − ω1)
2 + Γ2

, (11.3.2)

and described at some later time by

S2 =
Γ2

(ω − ω2)
2 + Γ2

. (11.3.3)

Thus we are concerned with the number of measurements, N , required to find ∆ω =

ω2 − ω1. It is clear that a limiting factor in the sensitivity of ∆ω is the linewidth, Γ,
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since if Γ > ∆ω, ∆S will be small. It would seem that this can be avoided by simply

choosing a larger B0, however, as the maximum sampling interval is of order Γ (see

below), having a larger B0 will require more sampling to locate ω2.

In order to determine the orientation angle of the nanocrystal, (assuming S1 has

been characterised beforehand, or that Γ is at least known) we consider the following

algorithm:

1. Beginning at ω1, sweep outwards at alternating positive and negative intervals

of Γ, ie at ω = ±Γ, ±2Γ, , etc.

2. Identify the half-maximum value of the measured spectrum, ωn and sample

either side of this point at ωmax ± Γ/2.

3. Identify new half-maximum and sample either side of this point at ωmax±2−nΓ.

4. Repeat 3 until the desired level of accuracy is reached.

The number of measurements required by step 1 is bounded by

N0 =
γB0

Γ
, (11.3.4)

The maximal uncertainty in ∆ω is given by δω = 2−nΓ, where n is the level of

iteration. To determine ωn+1, we require

1

2
− S2 (ωn) >

1√
N
, (11.3.5)

Note that we have omitted the contrast parameter, C, employed in previous chapters,

since the contrast will be intrinsically treated by via appropriate normalization of the

ODMR spectrum, S, and definition of an effective photon count rate, R (see below).
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The number of measurements required at the nth level of iteration is bounded by

Nn =

[
1− 2

Γ2

(ωn − ω2)
2 + Γ2

]−2

,

= 4

[
1− 2

(1 + 2−n)2 + 1

]−2

∼ 22n+2 (11.3.6)

and the total number of measurements required is then

N =
nmax∑
n=0

Nn =
γB0

Γ
+ 4

nmax∑
n=0

22n

∼ γB0

Γ
+ 4

∫ nmax

1

22x dx

∼ γB0

Γ
+

22nmax

ln(2)
. (11.3.7)

The level of accuracy desired, δω, serves to define the number of measurements re-

quired at a given level of iteration, nmax That is, nmax = log2(Γ/δω), hence

N =
γB0

Γ
+

1

ln(2)

(
2log2(Γ/δω)

2
)

=
γB0

Γ
+

1

ln(2)

(
Γ

δω

)2

. (11.3.8)

Recall that

δω = B0

[
cos (θ2)− cos (θ)

]
= B02 sin

(
θ + θ2

2

)
sin

(
δθ

2

)
∼ B0 sin (θ2) δθ, (11.3.9)

where the last approximation follows from the fact that the largest contribution to

N comes as the tracking error approaches 0. Substituting this result back into equa-

tion 11.3.8

N ∼ B0

Γ
+

(
Γ

B0

)2
1

δθ2
. (11.3.10)
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The minimum resolvable orientation angle is then

δθ ∼ Γ

CB0

1√
N
. (11.3.11)

Note that as θ → 0, π, we have N → ∞, as a greater number of measurements are

required in order to overcome the reduced peak splitting of the ODMR signal, thereby

reducing the sensitivity of the system. This appears problematic, however the solid

angle phase space density in polar coordinates is zero at both poles and maximal at

the equator, hence we would never expect the NV centre to be perfectly aligned or

anti-aligned with the external field.

We remark briefly here that this is a very conservative figure, and tracking times

will be significantly reduced when the location of the peak to be measured is already

know approximately, for example, if the nanocrystal has not moved appreciably since

the last tracking experiment.

Noise analysis and temporal resolution

In order to obtain the temporal resolution from the sensitivity we must relate the

number of measurements, N , to an effective measurement acquisition rate, R. To do

this, we look at an experimentally obtained sample ODMR spectrum and analyse the

dependence of the signal-to-noise ratio on the number of microwave sweeps across the

spectrum.

Recall from chapter 3 that, at typical laser powers, the ODMR line width is

dictated by optical processes and therefore exhibits a Lorentzian shape. ODMR data

is shown in figure 11.4 for increasing numbers of sweeps, thus we fit each data set to

Si =
Ai

(ω − ω2)
2 + Γ2

+Bi, (11.3.12)
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where ω2 and Γ are determined from the curve obtained from 32 sweeps over the

frequency range.

Since Si represents the mean of the data, the normalised spread, or standard

deviation, is obtained from

∆Si =
1

Ai

√
1

N

∑
j

(Dij − Sij)
2, (11.3.13)

where Dij is the j
th data point in the ith data set comprising 2i−1 sweeps. The depen-

dence of this spread on the number of microwave sweeps is shown in figure. 11.5(a),

from which we find the variance in the data to be inversely proportional to the number

of microwave sweeps, validating the assumption of shot-noise statistics.

Despite this validation, we do not accurately know the parameters associated with

collection efficiencies and radiation geometries, hence we must determine an effective

count rate from the collected data. Given that a 1000 point sweep takes 7 s, a single

point acquisition takes 7ms. Using equation 11.3.13, we find that after 32 sweeps, the

normalised standard deviation is 0.0717. Since the assumption of shot noise statistics

holds (again, see figure 11.5(a)), we know

∆S =
1√
Rt
, (11.3.14)

where R is the effective acquisition rate, hence

R =
1

0.07172 × 32× 7× 10−3 s

= 868Hz. (11.3.15)

The temporal resolution is therefore given by

δt =
N

R

=
1

R

[
B0

Γ
+

(
Γ

B0

)2
1

δθ2

]
. (11.3.16)
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Figure 11.4: Fits to experimentally obtained ODMR data showing an increased signal
to noise ratio with an increased number of sweeps.

For the operating conditions employed in this experiment, B0 = 350MHz and Γ =

16MHz (see figure. 11.6(a)), we have

δt ≈ 25ms +

(
0.05

δθ

)2

ms. (11.3.17)

For example, knowing the orientation angle to within one degree (1o ≈ 0.017c )

would take 8ms, provided the initial 25ms sweep across the entire spectrum was not

required.
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11.3.3 Experimental Demonstration

Consider a nanodiamond immersed in a fluid such that its rotational motion may

be described by a diffusion constant, Dθ. Since a nanodiamond is typically large

compared to the fluid particles with which it collides, we expect the timestep between

collisions to be extremely small compared to timescales associated with its rotational

motion. Hence, on macroscopically relevant timescales, we expect the angle through

which the nanodiamond has rotated during time ∆t to be normally distributed with

mean zero and variance Dθt.

To experimentally demonstrate this protocol, a uniform magnetic field of 3.6mT

was used to produce an orientation-dependent Zeeman shift of the magnetic sublevels

of the NV centre. The diamond nanocrystal was placed inside a living HeLa cell,

and its ODMR spectrum was measured at 30 second intervals over a 16 hour period.
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Figure 11.6 (a) shows representative spectra taken over the life of the cell demonstrat-

ing that the timescale for rotational monitoring is effectively only limited by the cell

lifetime.

The translation and rotational motion of the nanocrystal over a 3 hour time pe-

riod is plotted in figures 11.6 (b) & (c). The restricted motion exhibited by the

nanocrystal is suggestive of immobilisation within a membrane-enclosed vesicle fol-

lowing endocytosis, as consistent with previous studies on internalization of similar
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sized nanodiamonds in HeLa cells [NZJ+07].

11.4 Conclusion

Through the results and analysis performed here, we confirm that it is indeed possi-

ble to perform non-invasive quantum measurement on nanodiamonds moving within

a living cell. We have shown that sophisticated NV spin-based magnetometry pro-

tocols discussed in earlier chapters may be applied to living systems, despite the

diamond nanocrystals having no mechanical contact with the measurement appara-

tus. Furthermore, we have shown that, despite this lack of mechanical contact, the

unique optical and spin properties of the NV centre permit the orientation tracking

of the nanocrystal with millisecond temporal resolution. The combination of these

imaging modes is expected to facilitate the simultaneous measurement of both the

electromagnetic and micro/nano-mechanical properties of the surrounding environ-

ment, with sufficient temporal resolution to monitor events occurring on biologically

relevant timescales.



Chapter 12

The central spin problem

Due to interest in both solid state based quantum computing architectures and the ap-

plication of quantum mechanical systems to nanomagnetometry, there has been con-

siderable recent attention focused on understanding the microscopic dynamics of solid

state spin baths and their effects on the coherence of a controllable, coupled central

electronic spin. Many analytic approaches are based on simplified phenomenological

models in which it is difficult to capture much of the complex physics associated with

this system. Conversely, numerical approaches reproduce this complex behaviour, but

are limited in the amount of theoretical insight they can provide. Using a systematic

approach based on the spatial statistics of the spin bath constituents, we develop a

purely analytic theory for the NV central spin decoherence problem that reproduces

the experimental and numerical results found in the literature, whilst correcting the

limitations and inaccuracies associated with existing analytical approaches.

12.1 Introduction

As outlined in chapter 2, the central spin problem refers to a special class of open

quantum systems, in which a central spin interacts with a large number of strongly

227
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coupled spins in the environment (figure 12.1(a)). In the context of metrology, with

particular regard to parameter estimation, the NV centre has emerged as a unique

physical platform for nanoscale magnetometry, as has been the focus of chapters

2-11 of this work. In each case, the associated sensitivity is ultimately limited by

the coherence properties of the NV spin that arise from the strong coupling to the

surrounding bath of electron and/or nuclear spins. In all of these applications and

platforms, a comprehensive understanding of the central spin problem is therefore

necessary to make accurate predictions of the quantum properties and behaviour of

the central spin arising from the material properties of the surrounding environment.

The first modern approach to this problem, in the context of phosphorus donors

in silicon, involved treating the combined effect of the spin bath environment on the

central spin as a semi-classical magnetic whose dynamic properties were intended to

mimic the magnetic dipole flip-flop processes taking place amongst the environmental

spins[dSD03a, dSD03b]. Despite not accounting for the effect of the central spin on

the surrounding environment, this approach still finds considerable application today,

particularly in the NV community[TCC+08, HDF+08, MTL08, DFHA09, LWR+10,

LRDH11, WdLR+12]. In order to account for the full interaction between the cen-

tral spin and its environment, quantum cluster expansion[WdSD05, WD06, SYS07],

nuclear pair-wise[YS06, YLS07, LYS07], correlated cluster expansion[YL08, YL09],

and disjoint cluster expansion[MTL08] models have been developed, in which the en-

vironment is systematically clustered into groups of strongly interacting spins, with

each order of the cluster hierarchy corresponding to successively weaker, and hence

less important, interactions. In addition, master equation approaches in which all hy-

perfine coupling constants are assumed to be identical have been developed [BCS11],
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Figure 12.1: Schematic of the central spin problem showing a central spin coupled
to clusters of randomly distributed environmental spins. The large central sphere
represents the region concentric on the central spin inside which we expect to find,
on average, less than one environmental spin.

with subsequent developments accounting for non-uniform couplings [BCS12].

Traditionally, the theoretical analysis of the central spin problem has been based

on phenomenological assumptions regarding the self-interaction dynamics of the sur-

rounding spin bath, namely by replacing the bath with a classical Ornstein-Uhlenbeck

noise source [AW53, KA62]. This noise gives rise to fluctuations in the Larmor fre-

quency of the central spin and leads to an eventual dephasing between its initially

coherent basis states, a process referred to as spectral diffusion. Such approaches

involve making an ad-hoc assumption of a decaying exponential form for the auto-

correlation function of the effective magnetic dipole field, with the decay rate being

deduced from the effective environmental flip-flop rates [dSD03a, dSD03b]. Despite

the extensive application this theory has found throughout the literature [TCC+08,
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MTL08, DFHA09, LWR+10, LRDH11, WdLR+12], three major problems persist:

1. There is no theroetical/experimental/numerical reason to suggest the phenomeno-

logical assumption of an exponential form for the autocorrelation function should be

made; 2. Upon assuming a particular form for the autocorrelation function, the task

of determining the correlation time (assuming the decay can, in fact, be described by

a single time constant) still remains; and, 3. Inherent in this is the assumption that

the central spin has no influence on the evolution of the environment constituents.

With regard to the first problem, the assumption of an exponential correlation

function leads to a cubic exponential decay in the coherence of the central spin un-

der a spin-echo pulse sequence for times shorter than the autocorrelation time (see

reference [dS09] for a review). However, there have been a significant number of

theoretical results in the literature suggesting that this decay may in fact show a
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quartic exponential dependence[WdSD05, YS06, WD06, dS09, ZHL12]. Such be-

haviour can only arise from a Gaussian shaped autocorrelation function (or at least

quadratic on relevant timescales), casting some doubt on the assumed exponential

form. In addition, the numerical work in reference [WdSD05] shows that numerical

computation of the combined effect of many randomly distributed clusters leads to

an approximately Gaussian decay of coherence, the likes of which have been observed

experimentally[BNT+09]. These problems are addressed and clarified in this work, as

our results show that the spatial distribution of spins around the central spin has a sig-

nificant effect on the analytic form of the autocorrelation function. This is critical to

the development of spin-based quantum technologies, as there have been many quan-

titative predictions of better performance with the use of pulse-based microwave con-

trol schemes [TCC+08, LWD08, HHCH10], and the exact analytic form of the spectral

cutoff was shown to directly affect the performance of such schemes [CLNS08, Uhr08].

Also outstanding is the determination of the environmental autocorrelation time.

One of the earliest modern attempts at deriving this timescale from microscopic phys-

ical processes was given in reference [dSD03b], in which each magnetic dipole coupled

nuclear spin pair (consisting of spins m and n) was treated as a bistable fluctuator,

where the number of transitions between states in a given time interval t is treated as

a Poissonian variable with parameter t/Tmn. The effective flip-flop rate of the pair,

1/Tmn could then be calculated using their mutual dipolar coupling strength via per-

turbation theory, resulting in a linear exponential decay of the autocorrelation func-

tion. However, this still requires certain phenomenological assumptions to be made

about the associated density of states, and does not address the microscopic reasons

behind how the Tmn quantities are distributed. Adopting this approach in the context
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of quantum sensing applications would mean that, for a given T2 measurement, one

would be lead to infer that the associated correlation time of the environment is three

orders of magnitude longer than its true value. As an example, using the treatment

of the nuclear spin bath in reference [TCC+08], typical coherence times of T ∗
2 = 1µs

and T2 = 300µs would imply a correlation time of Tc = T 3
2 /
[
6 (T ∗

2 )
2] = 4.5 s. This

is in stark contrast to what would be expected from an examination of the average

nuclear-nuclear coupling strength of 1/nb ∼ 40ms, based on an average impurity

density n ≈ 2 nm−3, and indeed the correlation times of Tc ≈ 10ms calculated in

this work. In fact, as we will show here, a magnetisation conserving two spin flip-flop

model must have an autocorrelation function with zero derivative at t = 0, and hence

cannot produce the linear behaviour exhibited by a pure exponential decay.

In contrast to the ad-hoc fitting of data to phenomenological models which do

not account for the influence of the central spin on its surrounding environment,

fully quantum mechanical approaches to the problem have been developed over the

last 5 years using cluster expansion [WdSD05, WD06, SYS07] and correlated cluster

expansion [YL08, YL09] methods. Here the randomly distributed spins are aggregated

into small, strongly interacting groups, with the latter showing better convergence in

cases where the decoherence time of the central spin is comparable to, or longer than,

the autocorrelation time of the environment, as is the case with a bath of electron

spins. In the opposite regime, as would the case for an electron spin coupled to a

nuclear spin bath, these two approaches agree, and to lowest non-trivial order they are

in accordance with earlier nuclear pair-correlation approaches [YS06, YLS07, LYS07].

In this limit, at least for short times, all of these approaches are shown to be consistent

with a quartic-exponential decay, the likes of which may also be deduced using a
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generalised semi-classical argument [HCHH09].

In cases of relatively strong hyperfine interactions resulting from low magnetic field

regimes, direct dipole-dipole couplings are either treated as a perturbation [CWS09b,

SYS07], or ignored completely [CWS09a, CDS10, BCS11, BCS12]. Here, the dom-

inant interaction between environmental constituents is due to hyperfine-mediated

flip-flops, resulting from environmental spins becoming increasingly coupled to the

lateral components of the central spin as the magnetic field strength decreases. Such

effects are negligible in the case of NV centres in diamond, owing to its 2.88GHz zero-

field splitting. This approach is well suited to cases where the central spin always

has a non-zero projection along its quantisation axis (ms = ±1
2
, ±3

2
, . . .), as is the

case of the spin-1
2
Si:P and Ga:As systems, thus causing many of the bath spins to be

off-resonance and hence unable to flip with each other, but is not valid in integer spin

systems where thems = 0 state is appreciably populated, as is predominantly the case

with the NV centre. Under these conditions, environmental spins are free to evolve

exclusively under their mutual couplings, and information encoded onto them by the

central is free to propagate throughout the environment. As such, these theories do

not account for the irreversible leakage of quantum information from the central spin

to distant environmental components. This approach is a reasonable approximation

for times much shorter than the autocorrelation time of the environment, but not

on timescales over which environmental interactions are appreciable. In the effective

Hamiltonian models above [CWS09b, CDS10] or master equation approaches [BCS11]

all hyperfine coupling constants are assumed to be identical, meaning the effects of

the hyperfine distribution on the decoherence behaviour have not been addressed.
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Non-uniform hyperfine couplings were treated in reference [BCS12], however the as-

sumption of non-interacting nuclei renders this approach unsuitable for NV centres.

Finally, we remark that any short time expansion is only valid for times shorter

than the reciprocal of the strongest dipolar coupling frequencies in the system, and

of particular concern is that any two spins can be found arbitrarily close together (or

effectively so on the length scales of the system), making an expansion in low orders

of these couplings diverge. In this limit, it is the dipolar interaction between environ-

mental spins that sets their quantisation axis, not the Zeeman interaction, invalidating

the assumption of each cluster’s magnetisation being conserved with respect to the

global z axis. This is another instance where consideration of the spatial distribution

of spin impurities becomes important, and despite being able to describe the deco-

herence in the compact forms given by the works described above, no discussion has

been made regarding the statistical distributions of the spin-spin coupling strengths.

Instead, one is forced to resort to Monte-Carlo based numerics at this point. The

possible outcomes for various realisations of spatial distributions of spin impurities

for the case of an NV centre coupled to a nuclear spin bath have been numerically

investigated in refs. [MTL08, ZHL12, WCCD12], and that for electron donors and

quantum dots in silicon in reference [WCCD12]. An extensive numerical study of

the magnetic dependence of the coherence time of an NV centre on the strength of

the applied background magnetic field was conducted in reference [ZHL12], taking

both realistic hyperfine distributions and environmental spin-spin interactions into

account. A fully analytic, quantum mechanical description of the effects of the entire

range of magnetic field strengths on a central spin coupled to a completely randomly

distributed spin bath is presented in this work. In what follows, we focus primarily
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on the case of an NV centre interacting with its native 1.1% 13C nuclear spin bath.

12.2 Theoretical background

The Hamiltonian describing this system is given by

H = HS +HSE +HEZ +HEE, (12.2.1)

where HS is the self-Hamiltonian of the central electron spin, which may include the

coupling of the NV spin to its proximate nitrogen nuclear spin, as well as zero field

and Zeeman splittings. The hyperfine interaction between the central spin (S) and the

environment (E) is described by HSE, which in the present context is a point-dipole

interaction, but may also include Fermi-contact interactions in other systems. This

is described by

HSE =
∑
i

a

R3
i

S⃗ · E⃗i − 3

(
S⃗ ·Ri

)(
Ri · E⃗i

)
R2

i

 , (12.2.2)

where S⃗ and E⃗i are the spin-vector operators for the NV spin and the ith environmental

spin, Ri is their mutual separation, and a = µ0

4π~µSµE. The magnetic moments of the

NV and environmental spins are denoted µS and µE respectively. The large zero-field

splitting is some three orders of magnitude greater than any other coupling in this

system, allowing us to ignore any coupling to the lateral components (Sx and Sy) of

the NV spin.

The Zeeman (Z) interaction of the environmental spins is described by HEZ =∑
i E⃗i · ω⃗i, where ω⃗i = γEB0 describes the Zeeman field felt by spin i, having gyro-

magnetic ratio γE = µE/~, due to a background field B0.
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The nuclear spin-spin interactions (E) are described by

HEE =
∑
j<i

b

r3ij

E⃗i · E⃗j − 3

(
E⃗i · rij

)(
rij · E⃗j

)
r2ij

 , (12.2.3)

where rij is the mutual separation of spins i and j, and b = µ0

4π~µ
2
E.

In the case of large Zeeman couplings, some transitions between environmental

spin states due to the hyperfine and dipolar interactions will be disallowed due to

energy conservation, ensuring that the total axial magnetisation of the spins involved

in the interaction is conserved. However, at low fields, the energy cost for these

transitions may be easily paid for by these interactions, meaning that axial magneti-

sation need not be conserved. In what follows, we refer to (non)axial magnetisation

conserving transitions as being ‘(non)secular’.

For a given spin, Ei, we may classify its parameter regime in terms of the rela-

tive strengths of the energy scales considered above: spin-environment coupling (S),

environment self coupling (E), and Zeeman splitting (Z), as determined by the Hamil-

tonian components, HSE, HZE, and HEE respectively. This gives rise to six distinct

parameter regimes, as summarised below, and depicted schematically in figure 12.3,

and parametrically in figures 12.5 and 12.6 for various examples of physical systems.

For the sake of brevity, we label these six regions according to the relative strengths

of the environmental couplings. For example, a label of ZSE (read Z>S>E) would

imply that both S-E and E-E couplings are secular (a consequence of their quantisa-

tion axis being set by the Zeeman field), and that the spins couple more strongly to

the NV than to each other. Conversely, a label of ESZ would imply that both S-E

and E-E couplings are non secular, and that the spins couple more strongly to each

other than to the NV (see figure 12.4). The geometric boundaries on these regimes
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(c) SPZ (d) ZPS, ZSP

(e) SZP

Figure 12.3: Schematic showing the parameter regimes relevant to the central spin
problem. (a) Ultra strong coupling region, in which the interaction between the NV
centre and an adjacent spin is stronger than its 2.88GHz zero field splitting. This
region is not considered in this work. (b) and (c) Strong coupling region, in which the
coupling of the spins to the NV centre is stronger than their coupling to a background
field. In (b), the spins are weekly coupled to each other and is representative of two
possible regimes: SEZ and SZE. In (c), the spins are strongly coupled to each other
and thus represent the ESZ regime. (d) and (e) Weak coupling region, in which the
coupling of the spins to a background field is greater than their coupling to the NV.
In (d), the spins are weakly coupled to each other and hence represent the ZSE and
ZES regimes. In (e), the spins are strongly coupled to each other and represent the
EZS regime.
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Θ
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B

Probe spin

Figure 12.4: Schematic representation of a two spin cluster coupled to a central
spin. The separation vector between the cluster and the central spin is defined by the
location of the closest spin,R. The structure of the cluster is defined by the separation
vector(s) of the cluster constituents, r. Evaluation of the ensemble averaged quantities
requires integration over R, and averaging over r.

are summarised below.

In the ZSE regime, the nuclei are sufficiently far from both the NV and each

other that the Zeeman interaction dominates over both the hyperfine and dipolar

interactions, ensuring that both classes of interactions must conserve axial magneti-

sation. The ⟨H2
ZE⟩ ≫ ⟨H2

SE⟩ ≫ ⟨H2
EE⟩ condition yields the following constraints on

the geometry of the cluster:

( a
ω

)1/3
≤ R ≤ r

(a
b

)1/3
,

R

(
b

a

)1/3

≤ r <∞.

Clusters in the SZE regime are sufficiently close to the NV to ensure that the hyperfine

coupling dominates over the Zeeman interaction, however, the associated nuclei are

still far enough apart to ensure that the Zeeman interaction is larger than their mutual
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dipolar coupling. The ⟨H2
SE⟩ ≫ ⟨H2

ZE⟩ ≫ ⟨H2
EE⟩ condition ensures that

0 ≤ R ≤
( a
ω

)1/3
,(

b

ω

)1/3

≤ r <∞.

Clusters in the SEZ regime are both sufficiently tightly bound and close to the

NV to ensure that both hyperfine and dipolar couplings dominate over the Zee-

man interaction, however, the associated nuclei are still far enough apart to ensure

that the hyperfine interaction is larger than their mutual dipolar coupling. The

⟨H2
SE⟩ ≫ ⟨H2

EE⟩ ≫ ⟨H2
ZE⟩ condition ensures that

0 ≤ R ≤ r
(a
b

)1/3
,

R

(
b

a

)1/3

≤ r ≤
(
b

ω

)1/3

.

The remaining three regimes, ZES, EZS and ESZ, may be quantified in an equiva-

lent manner, however the physical constraints placed on R and r due to the diamond

lattice render these regimes impossible for a naturally occurring 1.1% 13C nuclear

spin bath. This is illustrated in figure 12.5, where the possible physical locations an

environmental spin may occupy are shown in the shaded region. The constraints on

r arise from the fact that no two spins may be within a distance of less than one

lattice site from each other; whereas having a large separation means that there is

little chance of the two spins in question being part of the same cluster (this will

be quantified in section 12.4). Similarly, the constraints on R arise from the lattice

spacing, and the fact that the hyperfine field vanishes at large R. In particular, we

see that, whilst changing the background field strength changes the relative number

of spins in the ZSE, SZE and SEZ regimes, a 1.1% 13C nuclear spin bath will never
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Figure 12.5: Plot showing the locations of the 6 parameter regimes in R − r space
for a naturally occurring 1.1% 13C nuclear spin bath. The location of the intersection
point (blue cross-hairs) changes along the S=E coupling line for different magnetic
field strengths (the main plot depicts the case of 20G, and the sequence below depicts
the 0.5G, 5G, 50G, and 500G cases). For this spin bath, we see that only the regimes
where S ≫ E (ie, SEZ, SZE and ZSE) are relevant.
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occupy any regime for which E≫S. That is, in solving for this particular physical

system, we need not consider any of the ZES, EZS or ESZ regimes.

This will not be true for all spin baths however, as shown by figure 12.6, in which

1.1%, 0.3% and 0.01%,13C nuclear spin baths are considered, together with naturally

occurring type-1b diamond containing an electron spin bath due to nitrogen donor

impurities at parts-per-million (ppm) concentrations. The latter example presents

a stark contrast to the 1.1%,13C case, as the only appreciable regimes that need be

considered here are ZES, EZS or ESZ, a consequence of the comparatively strong

electron-electron coupling of the environmental spins, however electron spin baths

are not the focus of this work.

In the present context, we define the decoherence of the NV as the loss of coherence

between the
∣∣0⟩ and

∣∣+1
⟩
states of the NV spin. This corresponds to the decay of

the off diagonal terms in the corresponding density matrix, and may be computed

directly from the lateral (in the x − y plane) projection of the NV magnetisation

vector, S =
⟨
Sx + iSy

⟩
. As the decoherence generally leads to a decay of this signal,

we define a ‘decoherence function’, Λ(t), such that we may write L = e−Λ(t), and we

refer to the time taken to reach Λ(t) = 1 as the ‘coherence time.’ Our task is then

to determine the functional form of Λ in response to the separate parameter regimes

discussed above.

In order to determine the full decoherence behaviour due to all spins in the en-

vironment, we may break up the environment into separate clusters consisting of

strongly interacting spins and ignore the comparatively weak interactions between

adjacent clusters. By virtue of the large zero-field splitting, and the maximum hyper-

fine coupling for an adjacent 13C being of order 40MHz, the NV spin exists in a ‘pure
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Figure 12.6: Plot showing the locations of the 6 parameter regimes in R − r space
for 1.1%, 0.3% and 0.01% 13C nuclear spin baths and a naturally occurring electron
spin bath arising from nitrogen donor spins at ppm concentrations. For the latter
example, we see that only the regimes where E ≫ S (ie, ESZ, EZS and ZES) are
relevant.
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dephasing’ regime in which only the relative phases of the spin states change and the

respective populations do not. This will not be true for electron spin baths in the high

density limit, however. We may then write the Hamiltonian as H =
∑

k Hk, where

Hk acts only on the kth cluster. Since all of the Hks commute, the time evolution

operator may be factorised as U(t) =
∏

k Uk(t). This implies that the full decoher-

ence function is then simply a sum over all geometric configurations and locations

of the environmental clusters. We note that this result will break down near the

anti-crossing of the NV spin states at roughly 1024Gauss, as the nuclear spins will

be able to exchange energy with the NV spin. However, as the linewidth of the spin

bath is of order kHz, this effect corresponds to a very narrow magnetic field interval

of roughly 0.1Gauss and is therefore ignored.

As we will show, incorporation of higher-order clustering has no effect on the

leading order behaviour of the decoherence function, and is thus not important for

the decoherence behaviour in the presence of low-order pulse sequences such as FID

and spin-echo. In the following, we examine the decoherence functions associated

with individual clusters of environmental spins, and then move on to discuss the

statistics associated with how the environmental spins are distributed spatially. These

distributions will then be used to compute the full decoherence behaviour due to all

clusters in the environment.

12.3 Single cluster dynamics and decoherence

As mentioned above, in analysing the decoherence due to the native 1.1% 13C spin

bath, we need only consider the three ‘strong coupling’ regimes (ZSE, SZE and SEZ),
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in which the interaction between the central spin and the environment, HSE, domi-

nates over the spin-spin interactions within the environment, HEE. It is important to

note that, due to the secular approximation imposed on the NV centre, this dominant

S-E interaction is only apparent when the NV spin is in the
∣∣+1

⟩
state. In this case

the large hyperfine interaction results in the nuclei having a large mismatch in their

respective transition frequencies, meaning their comparatively weak mutual dipole

interaction will be unable to cause a mutual flip-flop (this effect will we discussed

in detail in section 12.3.1). This is somewhat advantageous, as the exponentiation of

the full Hamiltonian, inclusive of all HSE, HZE and HEE terms, is not analytically

possible in general. On the other hand, when the NV spin is in the
∣∣0⟩ state, there

will be no hyperfine coupling, and the environmental evolution will be self governed.

This means that the environmental spins are free to evolve unperturbed according to

HZE and HEE.

Since the evolution is so heavily dependent on the NV spin state, we can project

this Hamiltonian along both basis states. Thus,

H ≡
∣∣1⟩⟨1∣∣H1 +

∣∣0⟩⟨0∣∣H0. (12.3.1)

Because no hyperfine coupling exists when the NV is in the
∣∣0⟩ state, projection onto

the distinct NV states allows us to distinguish between the Hamiltonians associated

with the
∣∣0⟩ and ∣∣+1

⟩
states, namely H0 and H1 respectively.

An experiment in which the central spin is left to evolve under the action of the

environment alone is referred to as a Free-Induction-Decay (FID), and the majority

of the associated dephasing may be attributed to inhomogeneous broadening from

quasi static components of the spin bath. In the case of an NV centre in either an

electron or a nuclear spin bath, this broadening is typically of the order of a few
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MHz, equating to an effective magnetic field of a few µT. As such, coherence times

are typically of the order of T ∗
2 ∼ 1 − 1 0µs, depending on the sample at hand. For

such an experiment, the time evolution operator is given by,

Ufid(t) =
∣∣1⟩⟨1∣∣⊗ exp (−iH1t) +

∣∣0⟩⟨0∣∣⊗ exp (−iH0t)

≡
∣∣1⟩⟨1∣∣⊗ U1(t) +

∣∣0⟩⟨0∣∣⊗ U0(t), (12.3.2)

where U1(t) and U0(t) are the projections of the time-evolution operator onto the∣∣+1
⟩
and

∣∣0⟩ states of the NV spin respectively.

In general, we wish to consider the effect of different pulse sequences, which involve

periods of free evolution followed by applied pulses at particular times. A general

time evolution operator will contain exponents of the above Hamiltonians, however

these exponents will appear as different components of the 2×2 matrix describing the

central spin, depending on the pulse sequence considered. To keep things general, we

write

U(t) =

 K11(t) K10(t)

K01(t) K00(t)

 , (12.3.3)

however, just what the Kmn(t) are will depend on the pulse sequence employed. For

the FID case just mentioned, we just simply have K11(t) = U1(t), K00(t) = U0(t),

K10(t) = K01(t) = 0.

The relatively short coherence times of a FID experiment may be extended by

2-4 orders of magnitude by applying an appropriate sequence of π pulses (or ‘bit-

flips’, denoted F), under which the quantum amplitudes of the |1⟩ and |0⟩ states

are swapped. In the simplest instance, we consider a Hahn-echo, or spin-echo pulse

sequence, involving a single π pulse applied at time t/2. The effect of this sequence is
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to refocus any static components of the bath, thereby extending coherence times by

roughly 2 orders of magnitude, with typical times of 400µs-1ms. The time evolution

operator for a spin echo experiment is

Use(t) = Ufid(t/2)F Ufid(t/2), (12.3.4)

hence we make the identification

K10(t) = U1(t/2)U0(t/2),

K01(t) = U0(t/2)U1(t/2),

K11(t) = K00(t) = 0. (12.3.5)

The density matrix, ρ(t), at t = 0 is given by

ρ(0) =

[∣∣1⟩⟨1∣∣+ ∣∣1⟩⟨0∣∣+ ∣∣0⟩⟨1∣∣+ ∣∣0⟩⟨0∣∣]⊗ME,

where ME denotes a purely mixed environmental state. The in-plane magnetisation

at time t is found from

L = Tr
{
(Sx + iSy) ρ(t)

}
. (12.3.6)

From this, we see that the FID and spin echo signals are given by

Lfid =
1

2k
TrE

{
U0(t)U †

1(t)

}
,

Lse =
1

2k
TrE

{
U0(t/2)U1(t/2)U †

0(t/2)U
†
1(t/2)

}
, (12.3.7)

respectively, where k is the number of spins in the cluster. The exact forms of

the propagators will be determined by the regime in question, allowing us to make

asymptotic expansions in terms of the relative coupling scales, such as an/ω, bn/ω

and a/b, where n is the density of the spins in the bath.
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12.3.1 Environmental autocorrelation functions and

frequency spectra

Before deriving the relevant decoherence functions, we take a brief detour to exam-

ine the dynamic behaviour of the nuclear spin bath environment as described by the

effective semiclassical magnetic field felt at an arbitrary point in the lattice due to

the interacting environmental spins. Whilst the existence of such a field is not suf-

ficient to describe the induced decoherence behaviour of the central spin, due to the

omission of the hyperfine couplings, it does give us an insight into the natural dy-

namic behaviour of the spin bath, and how it changes with the background magnetic

field strength. In this section, we derive the autocorrelation functions of the effec-

tive magnetic field due to 2 and 3 spin clusters in the environment, for both secular

(high-field) and non-secular (low-field) flip-flop regimes. We conclude this discussion

of autocorrelation functions with an analysis of the effect of the hyperfine coupling

on the nuclear dynamics. This analysis justifies why we may ignore the dipole-dipole

coupling between nuclei when the NV spin is in either of the
∣∣±1

⟩
states.

Secular nuclear dynamics

When a background field of sufficient strength to set the quantisation axis of the

spins in the cluster is applied, some of the terms in the Hamiltonian describe spin

transitions that are no longer energy conserving and are hence disallowed. In this

case, we make the secular approximation in which all non-magnetisation conserving

transitions are ignored, giving the following secular Hamiltonian,

Hsec = B12E⃗1 · E⃗2 + ω1E1,z + ω2E2,z, (12.3.8)



248

where B12 = b/r312[1 − 3 cos(θ)]. The effective magnetic field operator as felt by the

central spin is due to the axial components of the hyperfine interaction,

B2 =

Nk∑
j=1

(
A(j)

zx E (j)
x + A(j)

zy E (j)
y + A(j)

zz E (j)
z

)
, (12.3.9)

where Nk is the number of spins in the kth cluster. For nk = 2, this leads to an

autocorrelation function of

⟨
B2(t)B2(0)

⟩
S

= A2
z,1 + A2

z,2 +
(
A2

x,1 + A2
x,2 + A2

y,1 + A2
y,2

)
cos(tω)

−
[
∆2

z +
(
∆2

x +∆2
y

)
cos(tω)

]
sin2

(
B12t

2

)
, (12.3.10)

where ∆x,y,z ≡ |Ax,y,z,1 − Ax,y,z,2|. Since we are only concerned with couplings to the

axial (z) component of the NV spin, we have adopted the short hand notation of

A
(j)
zx ≡ Ax,j, A

(j)
zy ≡ Ay,j and A

(j)
zz ≡ Az,j.

Equation 12.3.10 shows that there is always a static component of the secular

autocorrelation function present regardless of the geometric arrangement of the spins

in the cluster. The total axial magnetisation for a given cluster is constant, and hence

the NV only sees a fluctuating field if the two spins have different hyperfine coupling

strengths (Az,1 & Az,2). The larger this difference, the greater the strength of the

effective fluctuating field, however the axial flipping rate, B12 decreases with their

spatial separation. If the spins are sufficiently close together, such that their energy

scale is dictated by their mutual interaction, transitions that do not conserve axial

magnetisation become permissible and the secular condition is violated. This case is

dealt with below in section 12.3.1.

These methods may be extended to obtain corrections for three spin interactions

and higher. However, despite being interested in the short-time and relatively weak
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coupling to the next-nearest-neighbour, we cannot use perturbation theory, as the cou-

plings strengths still become infinite as the next-nearest-neighbour separation goes

to zero. A short-time expansion of equation 12.3.10 would diverge as r approaches 0,

hence to use perturbation theory at a given order for all possible geometric configura-

tions (particularly when B2
12 ≫ A2

z1+A
2
z1, which defines the high frequency, and hence

short-time behaviour of the dynamics), we require the leading order of the relevant

probability density function to be at least O{r4}. As we will see in section 12.4, this

corresponds to the third nearest neighbour and above. Hence, perturbation theory

cannot be applied until cluster sizes of four or greater are considered.

In analysing the dynamics of a 3 spin cluster, we initially assume that a strongly

coupled pair exists, and introduce a third impurity whose coupling to the initial two

is comparatively weak. We assume the two couplings involving the third spin are of

similar order and make small perturbations about this condition. This is justified by

the rapid fall-off of the dipole-dipole coupling, which ensures that any large deviation

from this condition will yield a 2 spin cluster and an effectively separate, uncoupled

spin. From this, we find the autocorrelation function of a single 3 spin cluster to be

⟨
B3(t)B3(0)

⟩
S

=
⟨
B2(t)B2(0)

⟩
z
+ A2

z3 −
4

9

[
∆13 sin

2

(
3B13t

4

)
+∆23 sin

2

(
3B23t

4

)]
+Larmor terms. (12.3.11)

This result exhibits almost identical properties to the 2 spin cluster case, with a

persistent static component, and fluctuating components whose amplitudes are again

proportional to the respective hyperfine coupling differences.
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Non-secular nuclear dynamics

In the opposite limit, where the quantisation axis of the nuclear spins is set by their

mutual coupling, we cannot ignore the non-magnetisation conserving terms in the

dipole tensor describing their interaction. The Hamiltonian describing the dipolar

coupling between two spins when all possible terms are included is given by

HN =
b

r3

[
E⃗1 · E⃗2 −

3

r2

(
r · E⃗1

)(
r · E⃗2

)]
, (12.3.12)

which yields the following non-secular autocorrelation function of the axial magnetic

field,

⟨
B2(t)B2(0)

⟩
N

=
(
A2

z1 + A2
z2

) [
1− 4

3
sin2

(
3B12t

4

)]
−2

3
∆2

z

[
sin2

(
B12t

4

)
+

1

2
sin2

(
B12t
2

)
− sin2

(
3B12t

4

)]
. (12.3.13)

Note that, where the secular autocorrelation function only had fluctuating compo-

nents proportional to differences in prob-spin couple strengths (∆z) within a given

cluster, the non-secular function also contains terms that are present regardless of

the geometric arrangement of the cluster constituents. This is a consequence of the

fact that, for a non-secular cluster, the background field does not set the quantisa-

tion axis of the spins, hence the magnetisation component along the background field

direction is not constant. As we will see in section 12.5, when the contributions to

the full autocorrelation functions are summed over all clusters in the environment,

we see very large differences between the dynamic behaviour of spins in secular and

non-secular flip-flop regimes.
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Figure 12.7: Plot showing the suppression of dipole mediated nuclear spin dynamics
due to the hyperfine field of the NV centre. Values of the suppression constant, K
(see equation 12.3.15) are plotted in a) and b) for cases where the two nuclei occupy
adjacent lattice sites, with relative orientations of θ = 0 and θ = 134o respectively.
The fractional cumulative contribution of all nuclei within a distance R to the total
hyperfine field is shown in c) for both the ensemble case (blue) and that of a typical
realisation of the environmental spin distribution (green). This plot show that effec-
tively all nuclei making an appreciable contribution to the hyperfine field also reside
in the suppression region.
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Suppression of nuclear dynamics due to hyperfine fields

In cases where a strong magnetic field gradient exists, two nuclear spins will posses

a mutual detuning between their respective Zeeman energies given by δz = |ω1 − ω2|.

Solving for the autocorrelation function in this case, we find

⟨
B2(t)B2(0)

⟩
S

= A2
z,1 + A2

z,2 −∆2
z

B2
12

B2
12 + δ2z

sin2

(
t

2

√
B2

12 + δ2z

)
+ Larmor terms,

(12.3.14)

showing a modulation in the fluctuation amplitude by a factor of B2
12/ (B

2
12 + δ2z),

which becomes significantly damped as the magnitude of the detuning approaches that

of the mutual dipolar coupling strength. We would not expect such a situation to arise

as the result of inhomogeneities in an applied background as the associated detunings

are simply not large enough over the distance of a few angstroms, which would require

a magnetic field gradient of ∼ (b/l3)/(lγE) ≈ 1mTnm−1. Where significant detunings

can arise however, are as the result of the hyperfine field generated by the central NV

spin. For nuclear spins up to a few nanometres from the NV centre (which are

responsible for the decoherence of the NV spin, as shown in figures 12.5 and 12.6),

the difference in hyperfine couplings between two adjacent lattice sites is much greater

than the associated dipolar coupling between them, leading to a complete suppression

of the nuclear spin dynamics. We make this statement more precise as follows.

When the detuning between the Zeeman energies of two coupled nuclear spins is

the result of the NV hyperfine field, we have that δ2z = ∆2
z = (Az,1 − Az,2)

2. Equa-

tion 12.3.14 shows this leads to a suppression of the associated fluctuation amplitude

by a factor of

K =
B2

B2 +∆2
z

. (12.3.15)
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Consider the cluster arrangement depicted in figure 12.4, where the separation vectors

between the NV and two coupled nuclear spins is

R1 = R

(
cos (Φ) sin (Θ) , sin (Φ) sin (Θ) , cos (Θ)

)
R2 = R1 + r, (12.3.16)

where r is the separation vector between the two spins, as given by

r = r

(
cos (ϕ) sin (θ) , sin (ϕ) sin (θ) , cos (θ)

)
. (12.3.17)

As the largest coupling strength comes from nuclei that occupy adjacent lattice sites,

we take r = l, where l = 1.54 Å is the lattice constant for diamond. From equa-

tion 12.2.2, the axial hyperfine coupling strengths are given by

Az,i =
a

R3
i

[
1− 3 cos2 (Θi)

]
, (12.3.18)

and the nuclear dipolar coupling strength is

B =
b

l3
[
1− 3 cos2 (θ)

]
. (12.3.19)

Using these quantities, we plot the magnitude of the suppression constant, K (equa-

tion 12.3.15), in figure 12.7. These results depict the worse case scenario (where the

dipolar coupling is maximal and the hyperfine detuning is minimal) for the two pos-

sible cluster orientations of θ = 0 (figure 12.7 a)) and θ = 134o (figure 12.7 a)), and

show that the nuclear dynamics are still strongly suppressed for NV-nuclear separa-

tions greater than 1 nm, and as great as 2 nm in the θ = 134o case.

Naturally, as the NV-nuclear separation distance increases, both the hyperfine

field and the corresponding hyperfine field detuning between adjacent lattice sites will

decrease. For large enough NV-13C separations, the dipolar coupling will eventually
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dominate over the hyperfine detuning, however the reduced hyperfine coupling implies

that spins in these regions will necessarily be too weakly coupled to the NV to have

any effect on its evolution. To make this statement precise, consider the fractional

contribution of the hyperfine field from a lower cutoff, R0, to an arbitrary radial

distance R as given by∫ R

R0

nA2
z d

3R

/∫ ∞

R0

nA2
z d

3R = 1− R3
0

R3
, (12.3.20)

where n is the average density of 13C spin in the lattice. The choice of R0 will depend

on the diamond sample at hand. In an ensemble average over many environmental

distributions, all lattice sites will be equally populated, meaning that we must choose

R0 = l as our lower cutoff. On the other hand, in a single realisation of the envi-

ronmental distribution, we would not expect to find a nuclear spin within a distance

of R0 = (3/4πn)1/3 = 5.0 nm, which we take as our lower cutoff. We plot equa-

tion 12.3.20 for these two cases in figure 12.7 c), showing that there is effectively no

contribution from spins residing more than a nanometre from the NV centre. It is for

this reason that nuclear-nuclear dipolar couplings may be ignored for cases where the

NV spin state is in either of its
∣∣±1

⟩
basis states. Furthermore, as the NV spin must

be in either of these states to feel the effect of the dipole field, this shows that a semi-

classical mean-field approach cannot reproduce the decoherence behaviour of an NV

centre coupled to a nuclear spin bath. This will be explored further in section 12.7.

12.3.2 Single spin clusters and free-induction decay

Having discussed the environmental dynamics of the nuclear spin flip-flops as unper-

turbed by the presence of the central spin, we now discuss the exclusive hyperfine
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dynamics of environmental spins coupled to the NV without considering their mu-

tual dipolar couplings. Again, this is not sufficient to explain the full decoherence

behaviour under spin-echo and higher order pulse sequences, however it does gives

us an insight into how the hyperfine dynamics transition from non-secular to secular

behaviour with an increasing magnetic field strength. Furthermore, given that FID

timescales are of the order of a few µs and thus too fast to see the effects of dipolar

couplings between environmental spins, non interacting spins are sufficient to explain

all FID effects.

Single spin clusters, by definition, do not include any interaction with adjacent

spins. As we will show, such a simplified arrangement is not sufficient to describe

any true decoherence in this system, however, it does serve as a useful exercise in

demonstrating how some of the limiting parameter regimes emerge. The hyperfine

and Zeeman coupling components of the Hamiltonian as projected onto the
∣∣0⟩ and∣∣+1

⟩
states of the NV spin are given by

H1 = AxEx + AyEy + (Az + ω) Ez,

H0 = ωEz, (12.3.21)

from which we determine the FID and spin-echo envelopes using equation 12.3.7,

Lfid = cos

(
tλ

2

)
cos

(
tω

2

)
+

Ω

λ
sin

(
tλ

2

)
sin

(
tω

2

)
,

Lse = 1− 2
A2

x + A2
y

λ2
sin2

(
tλ

2

)
sin2

(
tω

2

)
, (12.3.22)

where Ω = Az + ω and λ =
√
A2

x + A2
y + Ω2. In this section, we will examine the

behaviour of these expressions in cases of high and low magnetic fields, however one

can immediately see that there is no spin-echo decoherence at both ω → 0 and
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ω → ∞ limits. This is in direct contrast with experimental observations, where the

decoherence rate is maximal at zero field, and decreases to a final, constant value at

sufficiently high magnetic fields. This implies that we must introduce more complex

spin-spin interactions to be able to explain this discrepancy. Higher order clusters

are considered in the following sections, hence in this section we focus solely on FID

behavior.

Expanding the above result for ω ≫ Az, we find the contribution to the FID from

a single spin to be

L
(1)
fid

∣∣∣∣
ω≫A

∼ cos

(
Azt

2

)
−
A2

x + A2
y

2ω2
sin

(
ωt

2

)
sin

(
1

2
(Az + ω) t

)
,(12.3.23)

and in the low field limit (ω ≪ Az) we find

Lfid

∣∣∣∣
ω≪A

∼

[
Az

A
+
ω
(
A2

x + A2
y

)
A3

−
3ω2

(
A2

x + A2
y

)
Az

2A5

]
sin

(
At

2

)
sin

(
ωt

2

)
+cos

(
At

2

)
cos

(
ωt

2

)
, (12.3.24)

where A =
√
A2

x + A2
y + A2

z.

There are a number of points worthy of discussion here, particularly with the

regard to the effect of the magnetic field strength the effective hyperfine coupling

strength. In the infinite magnetic field limit this coupling is completely determined

by the axial hyperfine component, Az, alone. This is because the Zeeman coupling is

responsible for setting the quantisation axis of the nuclei, hence the NV spin is unable

to drive transitions in the nuclear spins. On the other hand, in the zero field case, it

is the hyperfine coupling thats sets the quantisation axis of the nuclei, meaning that

their magnetisation need not be conserved with respect to the background magnetic

field. This leads to a greater effective hyperfine coupling, owing to the inclusion of
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Ax and Ay terms. This is an important effect that carries over into the analysis of

higher order pulse sequences, as it distinguishes the ZSE regime from the SZE and

SEZ regimes.

12.3.3 Two-spin clusters and spin-echo decay

In the previous sections, we discussed how treating the dipolar-dipole coupled nuclear

spin bath as a fluctuating magnetic field does not explain the decoherence of the NV

spin, as the NV can only sense the effect of the nuclei if its hyperfine field is simul-

taneously suppressing their activity. On the other hand, treatment of the hyperfine

interaction exclusively, to the exclusion of the nuclear dipolar interaction, only shows

periodic entanglement between the NV spin and the nuclei, with no permanent decay

of NV spin coherence on long timescales. These results imply that the NV spin coher-

ence is essentially two-part process (see figure 12.8), in which quantum information of

the NV spin is first imparted to the independent nuclei via the hyperfine interaction

when the NV spin is in the
∣∣+1

⟩
state. This information may then be propagated

throughout the crystal via the nuclear dipole-dipole interaction whilst the NV spin is

in the
∣∣0⟩ state. As such, we must incorporate both interactions in order to be able

to analyse the true decoherence behaviour of the NV spin.

We begin by discussing how the full Hamiltonian (equation 12.2.1) may be simpli-

fied according to the six parameter regimes in question to solve for the corresponding

evolution.
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a) NV spin in |+1〉 state

b) NV spin in |0〉 state

Figure 12.8: Schematic depicting the two step process of NV spin decoherence. In the
first step (a), the NV spin is in its

∣∣+1
⟩
state, and quantum information regarding

the NV spin state is imparted onto the environmental nuclear spins via the hyperfine
interaction. This process is effectively reversible, as the nuclei cannot interact due to
the strong hyperfine field of the NV. When the NV spin is flipped into its

∣∣0⟩ state
(b), the hyperfine coupling is turned off and this information is free to propagate
throughout the lattice via the nuclear dipole-dipole interaction, rendering its loss
irreversible.
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Secular hyperfine coupling, secular dipole-dipole coupling (ZSE)

As discussed earlier, when the NV spin is in the
∣∣+1

⟩
state, the difference in the

hyperfine couplings will yield sufficient detuning to suppress any dipolar flip-flops,

hence we may ignore the dipolar term in the projection of the Hamiltonian on the∣∣+1
⟩
spin state. Furthermore, the fact that the Zeeman terms are much greater

than the dipolar terms allows us to ignore spin-spin interactions that do not conserve

total magnetisation with respect to the background field, ω⃗, and make the secular

approximation for the dipole-dipole coupling. Thus the relevant Hamiltonians for the

ZPS regime are given by

H1 =
2∑

k=1

[
Ax,kEx,k + Ay,kEy,k + (Az,k + ω) Ez,k

]
,

H0 = BE⃗1 · E⃗2 + ω (Ez1 + Ez2) . (12.3.25)

Using equation 12.3.7, and expanding to second order for small Ax,y,z/ω (the full

expression is given in equationB.1.3), we obtain the contribution to the spin echo

decoherence of the central spin due to a 2 spin cluster,

LZSE = 1− sin2

(
Bt

4

)
sin2

(
∆zt

4

)
−

∆2
x +∆2

y

ω2
sin2

(
Bt

4

)
sin2

[
(Az,1 + ω)

t

4

]
−4

A2
x,1 + A2

y,1

ω2
sin2

[
(Az,1 + ω)

t

4

]
sin2

(
tω

4

)
. (12.3.26)

We note that only the terms containing the dipole-dipole coupling, B, represent any

actual decoherence, with the presence of a finite magnetic field increasing the effect by

a factor of 1+
∆2

x+∆2
y

4ω2 . The final term corresponds to the lateral dynamics (precession)

of the nuclei, and hence does not contribute any decoherence, for reasons analogous

to those discussed in section 12.3.2, however it does detail the emergence of the

decay/revival behaviour seen in spin echo experiments on electron spins coupled to
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nuclear spin baths. Specifically, we see that the amplitude of the revivals increase

with decreasing magnetic field, as do their width.

Despite not contributing any true decoherence, the decays and revivals at the Lar-

mor frequency are susceptible to inhomogeneous broadening from the axial couplings

to all other spins in the bath, leading to an additional dephasing component in the

evolution of the central spin. Such a distinction is important, as it explains the major

difference between numerically calculated and experimentally observed behaviour of

this system. This effect will be considered in detail later in section 12.6.2. Further

corrections to the Larmor broadening due to larger cluster sizes may be calculated

iteratively by employing the spectral distribution when performing the ensemble av-

erage, however these corrections will lead to terms with a dependence on t beyond

that of leading order and are thus not important.

Non-secular hyperfine coupling, secular dipole-dipole coupling (SZE)

As with the ZSE regime, the
∣∣+1

⟩
state of the NV spin yields sufficient detuning to

suppress any dipolar flip-flops, hence we may ignore the dipolar term in the projection

of the Hamiltonian on the
∣∣+1

⟩
spin state. We are working in a regime where the

Zeeman terms are still much greater than the dipolar terms, allowing us to ignore

spin-spin interactions that do not conserve total magnetisation with respect to the

background field. Thus the Hamiltonian, and hence the decoherence function, for

the SZE regime are identical to that for the ZSE regime, however we instead expand
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equationB.1.3 for small ω/A1,2
x,y,z, giving

LSZE = 1− sin2

(
Bt

4

)
sin2

(
∆

4
t

)
−4

A2
x,1 + A2

y,1

A2
1

[
1− 2ωAz,1

A2
1

]
sin2

(
tλ1
4

)
sin2

(
tω

4

)
+
4
(
A2

x,1 + A2
y,1

)
2

A4
1

[
1− 4ωAz,1

A2
1

]
sin4

(
tλ1
4

)
sin4

(
tω

4

)
, (12.3.27)

where ∆ ≡ |A1 − A2|. We note here that this expression is very similar to that of the

ZSE regime, however the effective hyperfine coupling strength has increased from ∆z

to ∆. This is a consequence of the quantisation axis of the spins being set by their

hyperfine coupling rather than their Zeeman coupling.

Non-secular hyperfine coupling, non-secular dipole-dipole coupling (SEZ)

In this regime, we still have that the hyperfine couplings dominate when the NV is

in the
∣∣+1

⟩
state. When the NV is in the

∣∣0⟩, the dipolar couplings between the

environmental spins will dictate the evolution, as with the ZSE and SZE regimes,

however in this regime, the dipolar couplings dominate over the Zeeman terms. This

means that the quantisation axis of the spins are set by their mutual interaction,

and the cluster is thus not required to conserve magnetisation with respect to the

background field. Including all possible dipole interaction terms, we have

H1 =
2∑

k=1

[
Ax,kSx,k + Ay,kSy,k + (Az,k + ω)Sz,k

]
,

H0 = B
[
S⃗1 · S⃗2 − 3

(
n · S⃗1

)(
n · S⃗2

)]
, (12.3.28)

where n is the unit vector separating spins 1 and 2. The full spin echo envelope

for the SEZ regime is too large to reproduce here, however we may simplify things
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immensely by averaging over the angular components of the cluster geometry (θ, ϕ),

giving

LSEZ = 1− 8

15
sin2

(
3Bt

4

)[
sin2

(
At

2

)
+ sin2

(
At

4

)]
,

(12.3.29)

where A =
√
A2

x + A2
y + A2

z. Notice that the hyperfine coupling now emerges as A

instead of ∆, which is a consequence of the magnetisation no longer being conserved

with respect to the background field. This results in a significantly larger fluctuation

amplitude, as ⟨A2⟩ =
(
4πna
3

)2
, whereas ⟨∆2⟩ = (2na)2. The separation of hyperfine

and dipolar processes also means that we need not distinguish between A1 and A2,

as their relative locations are no longer important as far as the hyperfine component

of the evolution is concerned. As the contributions of each spin will be summed over

in an equivalent manner, we simply put A1 = A2 = A. This is in contrast to the ZSE

and SZE cases, where the hyperfine couplings manifest as ∆z and ∆ respectively, as

the treatment of spin 2 will depend on the location of spin 1.

In the following section we discuss the statistics associated with the random dis-

tribution of spin impurities in a spin bath environment. These statistics will be used

to determine the combined effect on the coherence of the central spin from all clusters

in the bath.

12.4 Spatial statistics of randomly distributed im-

purities

In this section, we derive the probability density functions associated with the dis-

tance between the nearest-neighbour (NN), next-nearest-neighbour (NNN), and so
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forth, impurities in the environment. These distributions will be used to determine

the collective dynamic behaviour of the environment and allow us to compare the

contributions from the different orders of clustering. We firstly consider the case of

a continuum distribution, in which spin impurities may adopt any position in the

lattice according to their spatial density. We then consider the specific case of NV

centres in diamond, in which carbon atoms are arranged in a tetrahedral diamond

lattice.

For a given lattice site density (or carbon atom number density) of nc, the volume

V concentric on any one environmental spin impurity contains N ≈ ncV −1 sites that

may be occupied by a second impurity. The probability of finding X spins within

V is then a binomial distribution with N independent trials, with each site having a

probability χ = 0.011 of being occupied by a nucleus of non-zero spin,

P(X|N,χ) ≈ (V/V0)!

X!(V/V0 −X)!
χX(1− χ)V/V0−X , (12.4.1)

which, in the limit of low spin concentrations, χ≪ 1, approaches a Poisson distribu-

tion,

P(X|V, χ) ≈ 1

X!

(
ζr3
)X

exp
(
−ζr3

)
, (12.4.2)

where ζ ≡ 4πχ
3V0

, implying an average spin impurity density of n = χ/V0. The prob-

ability that a sphere concentric on a given environment spin contains at least one

other spin is given by P(X > 0, r) = 1 − exp
(
−4πnr3

3

)
, which, by definition, is also

the cumulative probability function. As such, the probability of encountering a spin

at r (ie on the shell of V ) is given by

P(r) =
d

dr
P(X > 0, r) = 4πnr2 exp

(
−4πnr3

3

)
. (12.4.3)
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In other words, P(r) is the probability density function for the distance between two

nearest neighbour spins.

This analysis may be extended to compute the probability distribution of the

distance to the kth nearest neighbour. Consider the region bounded by concentric

spheres of radii r1 and r0, the volume of which is 4
3
π (r31 − r30). As above, the proba-

bility that at least one impurity exists in this region is 1 − exp [−ζ (r31 − r30)], which

has the corresponding probability density function,

P(r1) = 3ζr21 exp
[
−ζ
(
r31 − r30

)]
.

Similarly, the probability density function for the distance to the kth impurity is

P(rk) = 3ζr2k exp
[
−ζ
(
r3k − r3k−1

)]
.

Taking r0 = 0, the joint probability density function is

P(r1, . . . , rk) =
k∏

j=1

pr (rj) = (3ζ)kr21 . . . r
2
k exp

[
−ζr3k

]
.

To obtain the distribution for each rj, we successively integrate over all r1, . . . , rj−1,

rj+1, . . . , rk from 0 to rj+1.

Thus, given the location of some environmental spin, the probability of finding its

kth nearest neighbour at a distance of rk is given by

Pk(rk) =
4πnr2k
(k − 1)!

(
4πnr3k

3

)k−1

exp

[
−4πnr3k

3

]
. (12.4.4)

Computing the first and second moments of this distribution, we find

⟨rk⟩ =

(
4πn

3

)− 1
3 Γ
(
k + 1

3

)
(k − 1)!

, (12.4.5)

and
⟨
r2k
⟩

=

(
4πn

3

)− 2
3 Γ
(
k + 2

3

)
(k − 1)!

. (12.4.6)
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Figure 12.9: Probability distributions (a), and corresponding timescales and mean
distance (b), associated with the first 10 nearest neighbours.

A plot of the mean distance to the first 10 nearest neighbours, ⟨rk⟩ for k = 1, . . . , 10,

is shown in figure 12.9(b). This quantity gives us an indication of how large the

considered region may be (and hence the timescale) before NNN interactions become

important. As we can see, for the case of an NV centre coupled to a 13C nuclear spin

bath, where T2 < 1ms, we need only consider 2-spin interactions.

In the above analysis, we have assumed that a given impurity may adopt any

position within the environment, with the only constraint being the overall average

density with which the impurities are distributed. However, as our primary focus
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neighbour 1 2 3 4 5 6 . . . odd n even n

(×l2/3) r2n 3 8 11 16 19 24 . . . 4n-1 4n
νn 4 12 12 6 12 24 . . .

Table 12.1: Table of normalised squared-distances between crystal lattice sites, and
the associated number of sites at that distance.

is on the NV centre in diamond, this is not strictly correct, as impurities may only

occupy the atomic positions of a diamond cubic crystal structure.

Let N(r) be the number of discreet lattice sites enclosed within a sphere of radius

r, concentric on some impurity, and let νn ≡ ν(rn) denote the number of discreet

lattice sites at radius rn. Again invoking a binomial distribution, the probability of

encountering the nearest neighbour impurity 1 spin at radius rn, is the joint prob-

ability that 1 or more impurities reside at rn and that there are no others within a

sphere of this radius,

Pn = [1− (1− χ)νn ] (1− χ)Nn−1 . (12.4.7)

The position vectors associated with the lattice sites in a cubic diamond unit cell

of sidelength 4 are
{
uk

}
=
{
(0, 0, 0), (0, 2, 2)	, (3, 3, 3), (3, 1, 1)	

}
, where 	 denotes

a cyclic permutation of vectorial components. If we let (l,m, n) ∈ N3 index each

individual cell, then the cartesian coordinates of a given site are Uk = 4(l,m, n)+uk.

From this we find that the squared distance to the nth neighbour is 4n if n is even,

and 4n − 1 if n is odd. Both rn and νn are given in table 12.1. Note that values of

r2n have been normalised, however the distance between adjacent lattice sites is given

by l = 1.54 Å.

This derivation of the discreet probability distribution allows us to determine

the extent to which the continuum approximation is valid when computing ensemble
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averages of the various quantities that follow. We now use these spatial distributions

to analyse the behavior of a central NV spin as coupled to a 1.1% 13C nuclear spin

bath in ultra pure, single crystal diamond.

12.5 Environmental autocorrelation functions and

frequency spectra

In this section, we employ both the single cluster autocorrelation functions derived

in section 12.3.1 corresponding to secular (equation 12.3.10) and non-secular (equa-

tion 12.3.13) evolution of an individual cluster, together with the spatial statistics

developed in the previous section, to determine the respective autocorrelation func-

tions due to the sum of all clusters in the environment.

A comparison of the autocorrelation functions associated with the secular and

non-secular regimes is plotted in figure 12.10(a), using ⟨A2
z⟩ = 4

5

(
4π
3
an
)2

and ⟨∆2
z⟩ ≈

4
5
(2an)2, from which we see that not only is the magnitude of the decay much greater

in the non-secular case, but the non-secular decay is purely linear at t = 0, indicating

a self-similar, Markovian regime at all timescales. On the other hand, the secular

case has zero-derivative at t = 0, which is a consequence of the axial magnetisation

of the cluster being conserved due to the dominant Zeeman coupling of the cluster

constituents.

To obtain the correct short time scaling of the secular function, we note that it is

only the small clusters (r ≪ R0) that contribute to short-time dynamics of the system.

The constituents of larger clusters communicate on much longer timescales and hence

manifest as an effectively DC signal. Another way to think of this is to view the
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ensemble averages taken over the spatial distributions (equation 12.4.3) as a Fourier

transform, with the conjugate (frequency) variable given by ξ ≡ 3br−3/2. The short

time behaviour (t ≪ 1/bn) of the autocorrelation function therefore corresponds to

the high frequency behaviour (ξ ≫ bn) of the spectral distribution. This is discussed

further below. To obtain the short time behaviour, we expand ∆2
x,y,z about r = 0,

where, to lowest order, where ∆2
x,y,z ∼ O (r2/R8) (See AppendixB.2 for a complete

description). Substituting this result, we find the collective autocorrelation function

for the secular environment to be

⟨
B2(t)B2(0)

⟩
S

=
2

5

(
4

3
πan

)2 [
4 + 6 cos(ωt)− 1

3
(7 cos(ωt) + 4)M(t)

]
, (12.5.1)

whereM(t) is related to the secular magnetisation, as detailed in AppendixB.2. This

gives an autocorrelation time of

TS =
9

4π2bn
≈ 9.6ms. (12.5.2)

To leading order in t we have

M(t) ∼ 4π 3
√
6

Γ
(
8
3

) (πbnt)5/3 − 8π√
3Γ
(
4
3

) (πbnt)2 . (12.5.3)

On the other hand, the collective autocorrelation function for the non-secular

environment may be computed exactly,

⟨
B2(t)B2(0)

⟩
N

=
64

9
π2a2n2 [1−N(t)] , (12.5.4)

where N(t) is related to the non-secular magnetisation, as detailed in AppendixB.2,

giving the same autocorrelation time of

TN =
9

4π2bn
≈ 9.6ms. (12.5.5)
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To leading order, this results in a linear decay, given by

N(t) ∼ 4

9
π2bnt. (12.5.6)

Whilst these regimes show an almost identical correlation time, the non-secular

regime shows a much greater fluctuation magnitude (see figure 12.10). This is a con-

sequence of the fact that axial magnetisation must be conserved for a cluster in a

secular regime, meaning that the central spin can only sense an effective field fluctu-

ation if there is a difference in hyperfine couplings between the spins in that cluster.

On the other hand, for the non-secular case, it is the cluster geometry that sets their

quantisation axis, meaning that transitions that do not conserve axial magnetisation

are now allowed.

It is important to note that whilst these results hold on timescales of order TS,N,

they are not strictly correct for timescales associated with cluster sizes smaller than

the diamond lattice spacing, ie Tmin ∼ l3/b ≈ 300µ s. The M(t) ∼ t5/3 scaling at

ultra-short timescales is the result of the p(r) ∼ r2 scaling of the probability density

function associated with the distance between neighbouring spins, which breaks down

on length scales of r ∼ l. By expanding equations 12.3.10 and 12.3.13 on timescales

of order Tmin, it is trivial to show the initial quadratic scaling of both secular and

non-secular autocorrelation functions.

Having obtained the autocorrelation functions of the effective magnetic field, we

can compute their Fourier transforms to give their corresponding spectral distribu-

tions. We do this by noticing that the role of the conjugate frequency variable is

played by ξ ≡ B = 3br−3/2. By transforming variables from r to ξ, we identify the
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secular and non-secular spectral distributions to be

fS(ξ) = KS

(
3b

2ξ

)2/3
b

2ξ2
exp

(
−2nπb

ξ

)
,

fN(ξ) = KN
b

2ξ2
exp

(
−2nπb

ξ

)
, (12.5.7)

respectively, where KS and KN are normalisation constants. The corresponding nor-

malised spectra are plotted in figures 12.10 (b)& (c). The lack of any significant spec-

tral component near ξ = 0 is symptomatic of the cutoff imposed by the statistics

associated with the size distribution of 2-spin clusters. That is, since the exponen-

tial size cutoff associated with 2-spin clusters prohibits arbitrarily large cluster sizes,

there is no corresponding low frequency region of the spectral density. Recall from

the spatial statistics associated with higher order cluster sizes (equation 12.4.3), that

each successive kth neighbour introduces an associated probability distribution whose

leading order behaviour scales as r3k−1/(k − 1)!. This, in turn, contributes an addi-

tional factor of 1/ξ to the spectral distribution for each successive order of clustering,

with the modal frequencies occurring at

ξ
(k)
S =

2πnb

k + 5
3

,

ξ
(k)
N =

2πnb

k + 1
, (12.5.8)

for the secular and non-secular cases respectively. Incorporation of successively higher

orders of clustering will resolve the true low frequency behaviour of the spectral

distribution.
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12.6 Decoherence in ultra-pure single crystal dia-

mond

Having discussed the dynamic properties of the unperturbed spin bath environment,

we move on to discussing the effect such an environment has on the coherence proper-

ties of a central NV spin. This analysis is performed by integrating the single cluster

decoherence functions (see section 12.3) over the r − R domains as defined by the

background field for the case of the naturally occurring 1.1% 13C nuclear spin bath

in ultra-pure single single crystal diamond. We initially discuss the free-induction

behaviour of the NV spin in response to the influence of the surrounding spin bath

for the limiting cases of high and low magnetic fields. We also mention the differences

that arise between the FID behaviour of an ensemble of NV centres and that of a

typical realisation of the surrounding environment.

We then move on to the analysis of the NV spin coherence in the presence of a

spin-echo pulse sequence, noting with reference to figures 12.5 and 12.6 that the only

regimes necessary for consideration are, in order of decreasing magnetic field, ZSE,

SZE and SEZ. We initially consider parameter regimes in which the decoherence

is explained exclusively by each of the respective decoherence functions, and then

consider the full dependence of the decoherence on the magnetic field strength. As

with the FID case, we discuss the differences between the spin-echo decoherence of

an NV ensemble and that of a single NV centre.

To determine the ensemble averaged decoherence behaviour, recall from that the

full spin echo envelope is given by the product of all envelopes due to all clusters as
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weighted by the relevant spatial distributions,

L =
∏
i

Li, (12.6.1)

and taking the natural logarithm of both sides gives

Λ = −
∑
i

ln (Li)

7→ − ⟨ln (Li)⟩ , (12.6.2)

where the final line above denotes the ensemble average taken over all possible geomet-

ric cluster configurations. To compute these averages, we employ a formal expansion

for the natural logarithm given by

ln(1− x) = −
∞∑
k=1

xk

k
, (12.6.3)

which holds for −1 ≤ x < 1. This condition is automatically satisfied, since −1 ≤

LZS, LSZ ≤ 1 and 0 ≤ LZSE, LSZE, LSEZ ≤ 1. For example, in the ZSE case, we have

ΛZSE =
∞∑
k=1

1

k

[
sin2

(
Bt

4

)
sin2

(
∆z

4
t

)]k
. (12.6.4)

However, we are only interested in the leading order behaviour of the ensemble aver-

aged decoherence function, to which all terms for k ≥ 2 do not contribute.

12.6.1 Free-Induction Decay (FID)

In this section, we consider the FID behaviour of the NV spin due to the combined

effect of all spin clusters in the environment. We firstly discuss the limiting regimes

of both high and low magnetic fields as compared with the FID rate, and then move

on to consider the full magnetic field dependence. We note that the timescales of

the dipolar coupling in the environment are extremely slow (recall TS = TN ∼ 10ms)
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Figure 12.11: Plot showing the variation of the FID envelope with the strength of
the background magnetic field. The transition from a SZ to a ZS regime occurs
in the range of 100G < B0 < 1000G at times associated with the Larmor period,
Tω ∼ 2π/γEB0.

compared to the T ∗
2 = 1−10µs FID times discussed here. This allows us to ignore the

dipolar evolution, meaning that there are only two regimes important to the study

of FID behavior, depending on the relative strengths of their Zeeman coupling (Z) to

the background field, and their hyperfine coupling to the NV spin (S). Consequently,

quantities derived in a regime where the Zeeman coupling dominates are labeled ‘ZS’

and similarly, quantities derived in a regime where the hyperfine coupling dominates

are labeled ‘SZ’. Whilst this is a somewhat simplistic situation compared with the six

possible regimes discussed in section 12.2, these considerations detail the transition

from secular to non-secular hyperfine couplings with decreasing magnetic field, leading

to faster decoherence, and are thus an important precursor to the spin-echo behaviour

to be discussed in section 12.6.2.
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Figure 12.11 shows the variation of the FID envelope with the strength of the axial

background magnetic field, B0, determined numerically, using a typical realisation

for the spin bath distribution. From this, we see a monotonic increase of the FID

time, T ∗
2 , with increasing B0, which results in the transition of the effective hyperfine

coupling strength from A to Az, as detailed in section 12.3.2. For magnetic fields of

100G < B0 < 1000G, we observe what is essentially a hybrid regime, in which the

decoherence envelope looks like that of the pure ZS and SZ regimes for times above

and below the Larmor period, Tω ∼ 2π/γEB0 respectively. This can be understood by

recalling that spins in the SZ regime are those closest to the NV centre (R . a/ω), and

are thus responsible for the short time evolution of the NV spin. This contribution

saturates beyond the Larmor period however, from which point onward, where the

remaining time evolution is governed by the weaker coupling to spins in the ZS regime.

Using equation 12.6.3, the leading order behaviour of the FID decoherence func-

tions in the ZS and SZ regimes (equations 12.3.23 and 12.3.24) is given by

⟨ΛZS⟩ ∼
⟨
2 sin2

(
Azt

4

)⟩
,

⟨ΛSZ⟩ ∼
⟨
2 sin2

(
At

4

)⟩
, (12.6.5)

respectively.

FID at high magnetic fields (ZS)

For magnetic fields greater than ∼ 1000G, every environmental spin will be in a

regime where the Zeeman coupling is greater than the hyperfine coupling to the NV

spin (SZ). To visualise the FID behaviour in this regime, we firstly employ a numerical

cluster expansion method (to zeroth order, since nuclear-nuclear interactions are not
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important), from which an ensemble average is performed over some 106 realisation

of the environmental spin distribution. The resulting ensemble averaged decoherence

function, ⟨ΛZS⟩ is plotted in figure 12.12(a). From this, we can see a linear scaling of

the decoherence function for times approaching the FID time, T ∗
2 (where ⟨ΛZS⟩ ∼ 1)

and beyond, however a quadratic scaling is shown for times much shorter than this.

Furthermore, the quadratic scaling is shown to persist for much longer in the case of

individual realisations than for the ensemble averaged function. The analytic origins

of these features are discussed in what follows.

To obtain the ensemble-averaged behaviour we must integrate over all possible

outcomes of the environmental impurity distribution, which means that all lattice

sites will be populated with equal likelihood. The long time behaviour arises from

the low-frequency (∼ 1/T ∗
2 ) contributions to ⟨ΛZS⟩, corresponding to spins more than

a few lattice sites (roughly a nanometre) away from the NV, where the distribution

effectively constitutes a continuum. The short-time behaviour, however, arises from

spins that occupy the lattice sites surrounding the NV, where the bond-length of the

diamond lattice, l, is important, ie on timescales of Td = l3/a ≈ 50 ns. These features

may be reproduced by integrating ΛZS over R from the diamond bond length, l, to

∞, and over Θ from 0 to π (see AppendixB.3.1 for details). In the long time limit,

where t≫ td, we find

⟨ΛZS⟩
∣∣∣∣
t∼T ∗

2

=
4π2

9
√
3
ant, (12.6.6)

showing a linear exponential free induction decay,

⟨LZS⟩ = exp

(
− t

T ∗
2

)
, (12.6.7)

where the free induction decay time is T ∗
2 = 9

√
3

4π2an
= 2.92µs. For times shorter than
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Td, we find a quadratic scaling in the decoherence function, given by

⟨ΛZS⟩
∣∣∣∣
0<t≪T ∗

2

∼ 2πa2nt2

15l3

=

(
t

960ns

)2

. (12.6.8)

Both the long and short-time analytic scalings are plotted together with the numerical

results in figure, 12.12(a), showing excellent agreement.

Whilst this analysis accurately reproduces the experimental results for FID exper-

iments conducted on NV ensembles (see, for example, reference [DFAH08]), experi-

ments conducted on single NV centres exhibit a Gaussian shaped decay that typically

persists as long as T ∗
2 . To reproduce this behaviour, we instead integrate ⟨ΛZS⟩ from

R0 to ∞, as we would expect to find less than one impurity within a radius of R0

from the NV centre. Following the same steps as in the ensemble case above, we find

an initial quadratic scaling of

⟨ΛZS⟩
∣∣∣∣(single)
t∼T ∗

2

=
8

45
π2a2n2t2

=

(
t

5.58µs

)2

, (12.6.9)

followed by the same linear scaling as detailed in equation 12.6.6. The crossover point

of these two regimes occurs at t = 5/
[
2
√
3an

]
≈ 11µs, which is well past the point

at which decoherence has occurred, showing that the FID behaviour of a single NV

centre spin is dominated by a Gaussian decay.

FID at low magnetic fields (SZ)

Following on from the high-field limit of the previous section, we now move on to

discussing the FID behaviour in the low field limit, the numerical result for which is
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shown in figure 12.12(b). This analysis is performed in an identical manner, save for

the replacement of Az 7→ A, as dictated by equation 12.6.5. This leads to a slight

increase in the FID rate but qualitatively identical behaviour as the ZS regime. For

the long-time limit, we obtain

⟨ΛSZ⟩
∣∣∣∣
t∼T ∗

2

=
π2

18

[
6 +

√
3 arcosh(2)

]
ant, (12.6.10)

again showing a linear exponential free induction decay, where the free induction

decay time is now T ∗
2 = 18/

[
π2an

(
6 +

√
3 cosh−1(2)

)]
= 1.63µs. For times shorter

than td, we again see a quadratic scaling in the decoherence function, given by

⟨ΛSZ⟩
∣∣∣∣
0<t≪T ∗

2

∼ πa2nt2

3l3

=

(
t

607ns

)2

. (12.6.11)

Finally, for the case of a typical single realisation of the SZ spin bath distribution, we

find,

⟨ΛSZ⟩
∣∣∣∣(single)
t∼T ∗

2

=
4

9
π2a2n2t2

=

(
t

3.53µs

)2

. (12.6.12)

Both the long and short-time analytic scalings are plotted together with the numerical

results in figure, 12.12(b), showing excellent agreement.

It is interesting to note that in the single-realisation case, taking the ratio of the

FID times for the high and low field cases gives

T ∗
2,ZS

T ∗
2,SZ

=

√
5

2
≈ 1.58, (12.6.13)
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in agreement with the results of reference [MDW+12], whereas for the ensemble case

we have

T ∗
2,ZS

T ∗
2,SZ

=
3

8

[
2
√
3 + cosh−1(2)

]
≈ 1.80, (12.6.14)

showing the ensemble FID times experience a greater enhancement from an increased

magnetic field strength than those of a single realisation of the bath impurity distri-

bution.

12.6.2 Spin-echo decoherence

We now move on to consideration of the spin-echo decoherence due to all spin clus-

ters in the environment. Using equation 12.6.3, the leading order behaviour of the

decoherence functions for the ZSE, SZE and SEZ regimes are given by

⟨ΛZSE⟩ ∼
⟨
sin2

(
Bt

4

)
sin2

(
∆z

4
t

)⟩
,

⟨ΛSZE⟩ ∼
⟨
sin2

(
Bt

4

)
sin2

(
∆

4
t

)⟩
,

⟨ΛSEZ⟩ ∼
⟨

8

15
sin2

(
3Bt

4

)[
sin2

(
At

2

)
+ sin2

(
At

4

)]⟩
,

(12.6.15)

respectively.

Spin echo decay at high magnetic fields (ZSE)

At magnetic fields in excess of a few hundred Gauss, every 13C nuclear spin exists in

the ZSE regime. Thus, to compute the ensemble averaged decoherence function for the

high field case, we integrate ΛZSE over the spatial distributions of the environmental

spins. A numerical calculation using the cluster expansion method to 7th order over
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the decoherence of an NV centre spin in a 1.1% 13C nuclear spin bath. (a) Results
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to 2.75 to 2, as consistent with the analytic results. (b) As in (a) but for the SEZ
regime.
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106 realisations of the impurity distribution is shown in figure 12.13 (a), from which

we see a number of complex features. In particular, the scaling of ΛZSE with t changes

significantly between t = 0.1 and 1ms from ΛZSE ∼ O (t2.75) to ΛZSE ∼ O (t2). At

very short times, where t≪ T ∗
2 , we find ΛZSE ∼ O (t4). The analytic origins of scaling

are discussed in what follows.

We initially consider the long-time limit, where the decoherence function exhibits

a quadratic scaling. Since dipolar interactions on these timescales correspond to

impurity separations of 0.3 nm, enclosing some 28 lattice sites, the environmental

distribution essentially resembles a continuum in which spin impurities may adopt

any position within the lattice. Such timescales are still much shorter than the en-

vironmental correlation time however, meaning that we may expand ∆z for small r,

giving

∆z ∼ 3ar

R4

[
sin(θ) sin(Θ)

(
1− 5 cos2(Θ)

)
cos(ϕ− Φ)

+ cos(θ) cos(Θ)
(
3− 5 cos2(Θ)

)]
≡ aαr

R4
. (12.6.16)

Integration of ΛZSE over 0 ≤ r, R ≤ ∞ yields (see appendixB.3.2 for details)

⟨ΛZSE⟩
∣∣∣∣
t∼T2

∼ π (ant)3/4 (bnt)5/4, (12.6.17)

giving a spin-echo coherence time of

T ZSE
2 =

[
π (an)3/4 (bn)5/4

]−1/2

= 900µs, (12.6.18)

in excellent agreement with the numerical results of [ZHL12].

Prior to this quadratic scaling, ΛZSE exhibits a scaling of ∼ O
(
t11/4

)
, which,

as we detail below, is the result of spin impurities only being able to adopt discreet
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positions within the lattice. Such effects become important at short timescales, where

the correspondingly small separation distances begin to approach the atomic spacing

in the crystal. We can reproduce the effect of this spacing by choosing a lower cutoff

for r of the diamond bond length, l = 1.54 Å. We note that the integral of ΛZSE over

r is intractable for arbitrary integration terminals, however we may integrate from 0

to ∞ as above, and subtract the contribution 0 to l by expanding the integrand for

small r as follows (see appendixB.3.2 for details),

⟨ΛZSE⟩
∣∣∣∣
T ∗
2 <t≪T2

∼ a3/4b2n2t11/4

l9/4

=

(
t

933µs

)11/4

. (12.6.19)

This expression shows perfect agreement with the numerical calculation in terms

of both scaling and magnitude, as depicted in figure 12.13. At longer timescales, the

magnitude of ⟨ΛZSE⟩ becomes much larger than the discreet correction term, and we

simply recover the expression given in equation 12.6.18. This is to be expected: at

long timescales, dipole-dipole interactions from spin impurities occupying adjacent

sites essentially average out due to their high-frequency behaviour, whereas the more

long range interactions become important. As the separation distance increases, the

number of sites available for occupation essentially approaches that of a continuum.

Finally, to deduce the short-time quartic scaling, we again integrate over R and r

from l to ∞, and and compute the formal short-time expansion, valid for t : at/l3 ≪

1 and bt/l3 ≪ 1. As the smallest possible separation distance is l, we are only justified

in making this expansion for t < 50 ns in the ensemble case. The resulting expression
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is, to leading order (see appendixB.3.2 for details),

⟨ΛZSE⟩
∣∣∣∣
t≪T ∗

2

=
1

80

(
πnabt2

l3

)2
[
1−

6
√
3πl (4πn)1/3

360Γ
(
4
3

) ]

=

(
t

91µs

)4

. (12.6.20)

We note that some variation will exist between individual realisations of the im-

purity distribution, as most NV centres will not have spin impurities on adjacent

lattice sites, meaning that the quartic scaling may persist for longer than in the en-

semble case. To show this, we instead perform the R integral from a lower cutoff,

R0 = [3/(4πn)](1/3), defining the radius of a spherical volume in which we would

expect to find less than one impurity on average for the ensemble case, meaning we

would not expect impurities at distances closer than this in most individual cases. On

the other hand, even the case of an individual distribution involves the NV coupling

to many clusters, hence there is a large enough sampling of possible cluster config-

urations to justify an average over these configurations. Integrating ⟨ΛZSE⟩ over R

from R0 to ∞, and over r from l to ∞, we find

⟨ΛZSE⟩
∣∣∣∣(single)
t≪T ∗

2

=
1

90
π4a2b2n4t4

(
3
√
6

l(πn)1/3
− 4

√
3π

9Γ
(
4
3

))

=

(
t

393µs

)4

, (12.6.21)

again showing a quartic scaling of ⟨ΛZSE⟩ with t, but one that persists for some

10-100µs, as opposed to the 50 ns for the ensemble case.

Spin echo decay at moderate magnetic fields (SZE)

At magnetic fields between 0.01G and 100G, every 13C nuclear spin exists in the

SZE regime. The procedure to compute the ensemble averaged decoherence function
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Figure 12.14: Magnetic field dependence of the NV spin coherence time. (a) Coher-
ence envelopes of an NV centre coupled to a naturally occurring 1.1% 13C nuclear
spin bath corresponding to external magnetic field strengths from 10µT to 10mT.
(b) Plot showing the dependence of the coherence time on the strength of an external
magnetic field.

is the same as for that above, however, we simply make the substitution ∆z 7→ ∆,

leading to what is essentially a redefinition of aα:

aα 7→ 1√
3 cos2(Θ) + 1

(
4 cos(θ) cos3(Θ)

+ sin(θ) [2 sin(Θ) + sin(3Θ)] cos(ϕ− Φ)

)
. (12.6.22)

All subsequent results scale accordingly, the most important of which is T SZE
2 =

780µs. Other notable properties that emerge in this regime are the electron spin-

echo envelope modulation (ESEEM) peaks, which manifest as periodic decays and

revivals at half the Larmor frequency of the NV. As these effects do not represent

any true decoherence, we defer their discussion until section 12.6.2.
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Spin echo decay at low magnetic fields (SEZ)

At magnetic fields below 0.01G, every 13C nuclear spin exists in the SEZ regime.

The transition of the fluctuation amplitude from ∆ to A effectively decouples the S-E

from the E-E evolution in ΛSEZ, drastically changing the nature of the resulting deco-

herence. This allows for a convenient separation of the contribution of the hyperfine

and dipolar coupling to the overall decoherence. A calculation of the decoherence

function using a numerical cluster expansion to 7th order is shown in figure 12.13 (b)

for 106 realisations of the impurity distribution, from which a number of features are

evident. As with the ZSE and SZE regimes, we see quartic and quadratic scalings at

short and long times respectively, but in contrast to the other regimes, we see a cubic

scaling at intermediate times. Furthermore, the coherence times exhibited by the

SEZ regime are effectively an order of magnitude shorter than the other two regimes.

The analytic origins of these features are explained in what follows.

As with the ZSE and SZE cases, we begin with the consideration of the long time

dynamics of the SEZ regime. As before we need not worry about the discretised

lattice at these timescales, and we therefore integrate ΛSEZ over both R and r from 0

to ∞ (see AppendixB.3.2 for details), giving

⟨
ΛSEZ

⟩∣∣∣∣
t∼T2

∼ 2

15
ab
(
π2nt

)2
=

(
t

155µs

)2

(12.6.23)

Again, we see an overall Gaussian behaviour at long timescales, but a very different

dependence on the hyperfine and dipolar dynamics of the environment (ΓZSE,SZE ∼

a3/4b5/4 vs. ΓSEZ ∼ ab). This is a consequence of the changes in behavior of the

environmental autocorrelation function as the environment transitions from secular
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to non secular dynamics. The corresponding coherence time of the SEZ regime is

T SEZ
2 = 155µs.

To derive the intermediate cubic scaling of
⟨
ΛSEZ

⟩
, we note that, as was the case

with
⟨
ΛZSE

⟩
and

⟨
ΛSZE

⟩
, the integral of sin2

(
3Bt
4

)
over the cluster size distribution

(equation 12.4.3) from l to ∞ has no closed form. As such, we simply expand P(r)

for small r, as detailed in AppendixB.3.2, giving⟨
ΛSEZ

⟩
T ∗
2 <t≪T2

∼ π3ab2n2t3 [2(4γ − 5)πl3n+ 3]

15l3

=

(
t

250µs

)3

. (12.6.24)

To determine the short time scaling, we again integrate ΛSEZ over R and r from

l to ∞, and use the same short-time expansion as employed in the ZSE case. As

the smallest possible separation distance is l, we are only justified in making this

expansion for t < 50 ns in the ensemble case. The resulting expression is, to leading

order (see appendixB.3.2 for details), yielding an initially quartic dependence on

time, given by

⟨ΛSEZ⟩
∣∣∣∣
t<T ∗

2

∼ 5

48

(
πabnt2

l3

)2 [
2(4γ − 5)πl3n+ 3

]
=

(
t

36µs

)4

, (12.6.25)

where γ ≈ 0.577 is the Euler-Mascheroni constant.

Full magnetic field dependence

We now consider the full magnetic field dependence of the coherence time of an NV

centre exposed to a 1.1% 13C nuclear spin bath. The full spin echo envelope is the

product of contributions from the 6 parameter regimes, with the dominant contri-

bution coming from the ZSE, SZE and SEZ regimes, SC13 ≈ SZSESSZESSEZ, which
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implies the full decoherence function is given by the sum of decoherence functions

due to each region,

⟨
ΛC13

⟩
=

⟨
ΛZSE

⟩R>RZ

r>rZ
+
⟨
ΛSZE

⟩R<RZ

r>rZ
+
⟨
ΛSEZ

⟩R<RZ

r<rZ
,

where the Rz and rz quantities denote the Zeeman dependent integration domains in

r −R space.

Figure 12.14(a) shows gradual transition of the decoherence envelopes from the

SEZ regime through to the ZSE regime with increasing magnetic field. The full de-

pendence of the corresponding coherence times, T2, is shown in figure 12.14(b), where

we see that coherence times of an NV spin coupled to the naturally occurring 1.1% 13C

nuclear spin bath can be almost 1ms for magnetic fields in excess of 100G. Our re-

sults show excellent agreement with the extensive numerical investigation conducted

in reference [ZHL12]. The persistent Gaussian shape predicted by our theory is a

radical departure from currently accepted theories in the literature claiming either a

Λ ∼ (t/T2)
3 and Λ ∼ (t/T2)

4 dependence irrespective of the physical origin of the spin

bath. We have shown here that the former is not valid for the case of an NV centre

immersed in a 13C nuclear spin bath, except where spin densities are well below those

currently realised experimentally. The latter is only valid in the short time limit, and

may be explained as follows.

Analysis of the electron spin echo envelope modulation (ESEEM)

One of the key features observed in experiments conducted on NV spins in ultra-pure

diamond is the emergence of decays and revivals in the spin-echo envelope at half the

Larmor frequency of the 13C spins, an effect referred to as electron spin echo envelope

modulation, or ESEEM. To this point we have only concerned ourselves with the
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Figure 12.15: Magnetic field dependence of ESEEM features. (a) Plot detailing the
magnitude of the modulation of the decoherence function. The numerical result is
plotted in black, whereas the moderate and high field analytic limits are plotted
in blue and green respectively. The saturation of the numerical result at low fields
arises because the revival rate has decreased below the decoherence rate, which also
saturates at low field. The red curve shows the magnitude of the corresponding spin-
echo envelope contrast due to ESEEM, 1−L = 1− exp

(
−Λ(ESEEM)

)
, which saturates

at unity when the decoherence function is greater than unity. (b) Plot detailing the
dependence of the width of the ESEEM peaks on the magnetic field strength. The
numerical result is plotted in black, and the low, moderate and high field analytic
results are plotted in blue, green and red respectively. In the case of the high field
result, the decay depth is less than unity, hence the width of the peaks is defined by
the revival period instead of their decay time.
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decoherence arising from flip-flop processes in the bath and have ignored the ESEEM

contribution to the evolution. In this section, we analyse this effect and show how

resulting properties such as the revival frequency, decay depth and revival peak width

depend on the background magnetic field strength. For background field strengths

below approximately B0 = 1G, the revival frequency, ωR = 1
2
γcB0 = 1.75 kHz, is

lower than the decoherence rate. As such, the notion of a decay depth no longer

makes sense, as there will be no subsequent revival before decoherence has occurred.

In the following, we derive the analytic origins of these scalings.

Where the oscillations in the FID envelope occured at the Larmor frequency, ω0,

the revival frequency during a spin-echo sequence is one half of the Larmor frequency,

ωR = 1
2
γEB0 = 17.5MHzT−1B0. Some broadening of this effect will occur due to the

distribution of axial dipolar couplings in the bath, leading to a perceived increase in

the decoherence rate, however this effect will be addressed in the following section.

Next we detail the dependence of the depth of the decay valleys on the magnetic

field strength. A numerical calculation of the maximum amplitude of the ESEEM

component of the decoherence function,
∣∣Λ(ESSEM)(t)

∣∣
max

is plotted in figure 12.15 (a).

From this, we see that the decay depths scale with the inverse-square of the magnetic

field strength at high fields, but only with the inverse at moderate field strengths.

Recall from equations 12.3.26 that in the ZSE limit, the ESEEM correction to

ΛZSE due to a single nuclear spin is given by

Λ
(ESEEM)
ZSE = 4

A2
x + A2

y

ω2
sin2

[
(Az + ω)

t

4

]
sin2

(
tω

4

)
. (12.6.26)

As this correction has been calculated in the ω ≫ A limit, we must distinguish

between cases where all spins are in the ZSE regime; and cases where distant spins

from the NV are in the ZSE regime, but closer spins are in the SZE regime due to
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their dominant hyperfine interaction. For the former case, we have that the Zeeman

coupling is greater than the most strongly coupled nuclear spin (ie where B0 > 162G),

giving ∣∣∣Λ(ESEEM)
ZSE

∣∣∣
max

= −4

⟨
A2

x + A2
y

ω2

⟩
= − 2

15

(
8π
an

ω

)2
= −

(
354G

B0

)2

, (12.6.27)

thus reproducing the ∼ O
(
B−2

0

)
scaling of the numerical result, as plotted in fig-

ure 12.15 (a).

For the case where the field strength is low enough to have spins in both the

ZSE and SZE regimes, we must determine the contribution from both. The ZSE

contribution to the decay may be determined by integrating equation 12.6.26 over

only the spins in this regime. To determine the SZE contribution, we expand the

ESEEM terms for ω ≪ A as given in equation 12.3.27,

Λ
(ESEEM)
SZE = 4

A2
x,1 + A2

y,1

A2
1

[
1− 2ωAz,1

A2
1

]
× sin2

(
tλ1
4

)
sin2

(
tω

4

)
, (12.6.28)

and integrate over only the spins in the SZE regime. The sum of these two contribu-

tions gives ∣∣∣Λ(ESEEM)
ZSE/SZE

∣∣∣
max

=
32πan

5ω
+

448π
(
5
√
3π − 27

)
an

135ω

=
860G

B0

, (12.6.29)

again in agreement with the numerical result (see figure 12.15 (a)).

Finally, we analyse the dependence of the decay widths, Tw on the magnetic field.

The numerical results in plotted in figure 12.15 (b) show these width to scale as Tw ∼
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B−0.67
0 at moderate fields, as consistent with the scaling of B−0.63

0 in the numerical

results of reference [ZHL12]. At high fields, our numerical results show a slight change

in this scaling for a brief period, with Tw ∼ B
−1/2
0 . If the magnetic field is increased

further, the decay depths will be less than unity (see figure 12.15 (a)), meaning the

widths will be effectively characterised by half the revival period, TW ∼ 1
2
TR, showing

an inverse linear dependence on the magnetic field strength, again consistent with the

numerical results. We do not consider the low field regimes, as revivals are not visible

prior to the onset of decoherence. The analytic origins of these results are discussed

in the following.

In the high field (ZSE) limit, we expand equation 12.6.26 about any of the revival

peaks, giving

⟨
Λ

(ESEEM)
ZSE

⟩
=

⟨
1

64
t4
(
Ax,1

2 + Ay,1
2
)
(Az,1 + ω)2

⟩
∼ 1

30
π2a2n2t4ω2, (12.6.30)

giving a decay width of TW = 61µsG1/2/
√
B0

To find the decay widths at low fields, we integrate equation 12.6.28. This puts us

in a regime where ω ≪ an, meaning we must integrate the resulting expression over

R, and then expand for 1/an≪ t≪ 1/ω, giving

⟨
Λ

(ESEEM)
SZE

⟩
=

⟨
ω2t2

(
Ax,1

2 + Ay,1
2
)
sin2

(
1
4
A1t
)

4A2
1

⟩
∼ 1

192
π2ant3ω2

(
18− 5

√
3 cosh−1(2)

)
,

showing the revival peaks to have a cubic shape. The resulting peak width is then

T
(SZE)
W =

121µsG2/3

B
2/3
0

. (12.6.31)
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Whilst this result is consistent with both the numerical work of our own, and that

of reference [ZHL12], it differs from the analysis given in reference [CDT+06], which

claims a quartic shape for the peaks, leading to a T
(SZE)
W ∼ O

(
B

−1/2
0

)
dependence

at moderate fields. This analysis was performed using a short-time expansion with

respect to both Zeeman and hyperfine couplings, however such an expansion is not

valid in the SZE regime where short-time with respect to TR ∼ 1/ω is still long

compared with T ∗
2 ∼ 1/an.

Additional dephasing due to inhomogeneous broadening of the nuclear

Larmor frequency

In addition to the NV spin decoherence resulting from its entanglement with 13C

spins, and their subsequent mutual interaction, there will be a dephasing effect due

to the broadening of the 13C Larmor frequencies due to both their Zeeman interaction,

and the distribution of their axial couplings to all other spins in the bath. Whilst this

is technically not representative of any true decoherence process, it does nevertheless

give the illusion of additional decoherence due to an increase in the spin-echo envelope

decay rate.

To treat the ‘background’ coupling of a given nuclear spin to other nuclei outside

its associated cluster, we note that the total axial frequency shift will be a sum over

that due to a large number of spins. As such, we expect the Larmor frequency, ωi, of a

given spin to be normally distributed with mean ω0, due to the background magnetic

field, and variance σ, due to the axial couplings to all other spins in the bath,

P (ω) =
1

σ
√
2π

exp

(
−(ω − ω0)

2

2σ2

)
. (12.6.32)

Of course, a given realisation of this distribution only applies for a snapshot in time,
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however, it will only change on timescales of the order of TS (see section 12.5), meaning

that we can regard realisations of this distribution as being static on timescales of

T2 and shorter. Higher order corrections to this approximation can be made by

employing the associated autocorrelation function of the bath spins, however there

will be no resulting correction to leading order.

To show the additional dephasing effect of this broadening, we return to the

ESEEM contribution to the ZSE regime, as detailed in equation 12.6.26. Integrating

this expression over equation 12.6.32 with 1/ω2 ∼ 1/ω2
0, and noting that we may

ignore terms like sin2
(
ω0t
4

)
since they do not contribute to the dephasing, we find the

broadened ESEEM contribution to the ZSE regime to be∫ ∞

−∞
P(ω)Λ

(ESEEM)
ZSE dω = 4

A2
x + A2

y

ω2

(
σt

4

)2

sin2

(
Azt

4

)
.

(12.6.33)

Summing over the hyperfine contribution from all spins as before, we find⟨
Λ

(ESEEM)
ZSE

⟩
=

4π2a2n2t2σ2

15ω2
0

. (12.6.34)

To evaluate σ2, we integrate over all axial nuclear-nuclear couplings, giving

σ2 ∼ 64

45
π2b2n2,

= (89Hz)2 (12.6.35)

This gives an additional Gaussian contribution to the decoherence envelope, with a

corresponding decay rate of

ΓESEEM
ZSE =

3.1 kHzG

B0

, (12.6.36)

showing a negligible contribution to the overall dephasing in the ZSE regime.
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We apply the same approach to the ESSEM correction of the SZE decoherence

function, as given in equation 12.6.28.∫ ∞

−∞
P(ω)Λ

(ESEEM)
SZE dω = 4

A2
x + A2

y

A2

(
σt

4

)2

sin2

(
At

4

)
(12.6.37)

Again, summing over the hyperfine contribution from all spins as before, we find the

resulting contribution to the full SZE decoherence function to be⟨
Λ

(ESEEM)
SZE

⟩
=

π2

3
ant

(
σt

16

)2 [
18− 5

√
3arcosh(2)

]
,

(12.6.38)

which gives an additional cubic contribution to the decoherence envelope, with a

corresponding decay rate of

ΓESEEM
SZE = 448Hz. (12.6.39)

This additional cubic component of the decoherence function, despite not representing

any true decoherence, gives a perceived reduction in the coherence time, reducing it

slightly from T SZE
2 = 780µs to T SZE

2 = 724µs. As couplings between distant nuclei

are not accounted for, this effect is generally not observed in numerical simulations.

12.7 On the question of whether the quantum spin

bath may be modeled as a classical magnetic

field

In treating the influence of the surrounding spin bath on a central spin, one com-

monly adopted approach[dSD03a, dSD03b, TCC+08, HDF+08, DFHA09, HHCH10,
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LWR+10] is to replace the collective hyperfine field felt by the NV spin with a semi-

classical magnetic field whose internal dynamics are dictated by the autocorrelation

functions discussed above. This field, the operator of which is denoted B(t), will

produce a time dependent Zeeman shift given by Hz = B⃗ · S⃗ ≡ SzB(t) and a corre-

sponding free-time evolution operator of

Uf (t
′, t′′) = e−iϕ(t′,t′′)

∣∣1⟩⟨1∣∣+ ∣∣0⟩⟨0∣∣ (12.7.1)

where ϕ(t′, t′′) =
∫ t′′

t′
B(t) dt. Such an approach is potentially problematic, as it

ignores the effect of the hyperfine couplings on the evolution of the nuclei, which as

we have shown, are a critical component of this evolution.

The time evolution operator for a spin echo experiment is

U = Uf (t/2, t)FUf (0, t/2), (12.7.2)

and for an arbitrary pulse sequence with pulses applied at tk = {t1, t2, . . . , tn}, we

have

U(t) = U(tn, t)F . . .FU(t1, t2)FU(0, t1)

≡ e−iϕ1
∣∣1⟩⟨1∣∣+ e−iϕ0

∣∣0⟩⟨0∣∣, (12.7.3)

where

ϕ1 = ϕ(0, t1) + ϕ(t2, t3) + . . . ,

ϕ0 = ϕ(t1, t2) + ϕ(t3, t4) + . . . (12.7.4)

are the accumulated phases of the
∣∣1⟩ and ∣∣0⟩ states respectively.

Using this semi-classical approach for an initial probe spin state of |ψ0⟩ = 1√
2

(
|0⟩+
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|1⟩
)
, we find the in-plane projection of the magnetisation to be

L = Tr
{
(Sx + iSy)U(t)ρ0U †(t)

}
=

1

2
exp
[
i (ϕ∗

1(t)− ϕ0(t))
]

This quantity is an average over the quantum degrees of freedom in the system, but

we have not yet addressed the statistics of the field B. Firstly, we note that the

amplitude of B(t) at any given t is a sum over a large number of sources and is

therefore normally distributed. Furthermore, at room temperature, thermal energies

are much larger than the coupling of environmental spins to static background fields,

kBT ≫ ω
√
S(S + 1), implying that ⟨B⟩ = 0 and hence ⟨φ⟩ = 0. To compute the

ensemble average,
⟨
S
⟩
, we make the substitution to the normally distributed variable

φ = ϕ∗
1(t)− ϕ0(t), which, by definition, has standard deviation

√
⟨φ2⟩ − ⟨φ⟩2, giving⟨

S
⟩
= 1

2
exp

(
−1

2
⟨φ2⟩

)
where

φ =
∑
k=0

[∫ t2k+1

t2k

−
∫ t2k+2

t2k+1

]
B(t′) dt′ (12.7.5)

and

⟨
φ2
⟩

=
∑
k=0

∑
j=0

[∫ t2k+1

t2k

dt′ −
∫ t2k+2

t2k+1

dt′

]

×

[∫ t2j+1

t2j

dt′′ −
∫ t2j+2

t2j+1

dt′′

] ⟨
B(t′)B(t′′)

⟩
.

(12.7.6)

We therefore define the semi-classical analogue of the decoherence function, Λ, via

Λ ≡ 1

2

⟨
φ2
⟩
. (12.7.7)

The problem of determining Λ then reduces to finding an expression for the autocorre-

lation function of the effective magnetic field, as was detailed in sections 12.3.1 and 12.5.
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The phase shift of the central spin will always depend on the pulse sequence

employed, but a certain degree of abstraction is achieved if we consider the second

integral of the environmental autocorrelation function, G, defined by

d2

dt2
G(t) =

⟨
B(t′)B(t′′)

⟩
(12.7.8)

It then becomes a simple exercise to show, using equation 12.7.6, the pulse sequence-

specific decoherence functions are given by appropriate linear combinations of dilated

G functions,

Λfid =
1

2

⟨
ϕ2
fid(t)

⟩
=
⟨
G(t)

⟩
,

Λse =
1

2

⟨
ϕ2
se(t)

⟩
= 4
⟨
G(t/2)

⟩
−
⟨
G(t)

⟩
, (12.7.9)

and so on, showing that G essentially plays the role of a classical ‘generalised deco-

herence function’.

Using the secular autocorrelation function (equation 12.5.1), we find the corre-

sponding semiclassical spin-echo decoherence function for the ZSE regime to be

Λ ∼ 128

45

3
√
2
(
4− 3

√
2
)
π14/3(ant)2(bnt)5/3

32/3Γ
(
14
3

)
−64π5(ant)2(bnt)2

135
√
3Γ
(
4
3

)
=

(
t

120µs

)11/3

−
(

t

180µs

)4

, (12.7.10)

giving a coherence time of 127µs. Notice that the effective magnetic field emanat-

ing from the lateral components of the nuclear spins have been suppressed to order

A2
x,y/ω

2 by virtue of double integration with respect to t of terms involving cos(ωt),

leaving only z − z components of the effective field in the Z > E limit. This is con-

sistent with the suppression of lateral components seen in the transition from SZE to

ZSE regimes in the quantum mechanical analysis of this work.
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Figure 12.16: Plots showing the decoherence envelopes calculated using a semi-
classical approach based on the determination of the autocorrelation function of the
effective magnetic field from the hyperfine coupling of the environmental nuclei to
the central spin. Qualitatively, this approach reproduces the effect of increasing the
magnetic field, in that the decoherence rates are much faster for a non-secular envi-
ronmental regime than those of a secular regime. However, the resulting coherence
times are nearly an order of magnitude shorter than those computed with the quan-
tum mechanical approach developed in this work, resulting from a mistreatment of
the hyperfine couplings, ultimately showing that a semi-classical treatment of this
problem is not adequate.

Similarly, using the non-secular autocorrelation function (equation 12.5.4), the

semiclassical spin-echo decoherence function corresponding to the SEZ regime is

Λ =
64

243
π4(ant)2bnt, (12.7.11)

which has an associated coherence time of 45µs.

The resulting spin-echo envelopes from this semi-classical analysis are plotted in

figure 12.16. From these results, we see that the associated coherence times are almost

an order of magnitude shorter than those deduced using the quantum mechanical
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approach developed in this work. We can attribute this discrepancy to the semi-

classical approach not taking into account the back-action of the environment on the

central spin, leading to a number of consequences.

Firstly, this allows for the environment to evolve freely under its own influence at

all times, irrespective of the spin state (and hence the projected hyperfine field) of the

NV, essentially doubling the effective fluctuation rate of the semi-classical spin bath

field. In previous work[HCHH09], we have shown that this increases the spin-echo

decoherence rate for systems that exist in a slowly fluctuating regime, as is the case

for the nuclear spin bath considered here.

Secondly, the semi-classical approach over estimates the dependence of the scaling

of the temporal scalings of the resulting decoherence functions, leading to scalings of

Λ ∼ t11/3 and Λ ∼ t3 associated with the secular and non-secular nuclear dynamics.

This is again in contrast to the quantum mechanical results, which show quadratic

scalings for the three parameter regimes applicable to this problem.

The third consequence is more critical. Whereas in the quantum mechanical anal-

ysis, the hyperfine coupling entered into the decoherence function as sin2 (Azt/4), in

the semiclassical case the hyperfine coupling manifests as (Azt)
2, showing the latter to

correspond to the short-time limit of the former. This means the two approaches only

agree on timescales that are shorter than the FID time, implying that the semiclas-

sical approach is not valid in analysing the spin-echo decay of an NV centre coupled

to a nuclear spin.
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12.8 Conclusion

In this work we have developed a purely quantum mechanical methodology by which

to treat the decoherence of an NV centre spin coupled to a nuclear spin environment.

This approach, based on the spatial statistics of environmental impurities, affords

a natural decomposition of the bath into 6 distinct parameter regimes as defined

by the relative strengths of the hyperfine, Zeeman and mutual dipolar coupling of

the environmental spins. Such a rigorous treatment of this problem negates the

need for any unjustified ad-hoc assumptions regarding the environmental NV-nuclear

or nuclear-nuclear dynamics, allowing us to definitively resolve the analytic scalings

of the associated decoherence functions in each of the relevant regimes. This has,

consequently, allowed us to analytically derive the dependence of quantities such as

coherence times and characteristic ESEEM features on the strength of a background

magnetic field. In doing so we have demonstrated excellent agreement with existing

numerical and experimental work, whilst simultaneously falsifying many of the current

and existing analytic results in the literature.



Chapter 13

Summary and Conclusions

The first part of this thesis was concerned with the application of few-state, spin-

based quantum systems to measuring fluctuating biological, chemical and solid-state

environments at the nanoscale. This was facilitated by exposing the system to the

environment in a controlled manner, and using the resulting decoherence to obtain

information about the dynamic processes taking place within the environment itself.

In all practical contexts, this work was focused on the Nitrogen-Vacancy centre in

diamond, owing to its narrow spectral features, bio-compatibility, and room temper-

ature operation; although, the theoretical techniques developed here are applicable

to many spin based open quantum systems.

In chapter 3, we began with a brief discussion on the physical origin of the NV cen-

tre, and then moved to a technical overview of the specific NV measurement protocols

that were employed throughout this thesis. This included a complete mathematical

description of the spin degrees of freedom of the NV centre optical groundstate, and

the various means by which we can control and manipulate this spin using optical

and microwave fields.

302
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In chapter 4, we addressed the limitations of existing magnetometry techniques,

based on Nitrogen-Vacancy (NV) defects, in measuring randomly fluctuating (FC)

magnetic fields. We showed that not only does the presence of a fluctuating envi-

ronment reduce the sensitivity of the NV spin to DC and AC magnetic fields, but

that probing the dephasing rate of the NV spin in such an environment permits the

characterisation of FC fields otherwise inaccessible to DC and AC based techniques.

FC sensitivities were shown to be comparable to those of AC magnetometry, whilst

requiring no additional experimental overheads or sample control.

Chapter 5 was focused on a detailed analysis of an experimental investigation

into the techniques developed in chapter 4, using NV centres exposed to a manganese

electronic spin-rich electrolyte. This combined experimental and theoretical study

demonstrated the effectiveness of decoherence based sensing in studying the effects of

external nanoscale magnetic environments on a central quantum system. These tech-

niques allowed us to answer a number of critical questions surrounding such systems

in the literature, revealing information regarding the physical origins of fluctuating

magnetic phenomena on the nanodiamond surface, and the depths at which a given

NV centre resides below this surface. Furthermore, the sub-10 nm spatial resolution

reported in this study represents an improvement of more than 4 orders of magni-

tude over what is currently available with state of the art magnetic resonance based

detection.

One major theme of chapters 4 and 5 was the limitations the intrinsic decoher-

ence rate of the NV spin system put on the overall sensitivity of the measurement

protocol. Existing approaches to improving this sensitivity had been to employ dia-

mond crystals with a high NV density at the cost of spatial resolution, or extend T2
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via the manufacture of isotopically pure diamond crystal. In chapter 6, we adopted a

complimentary approach in which optimal dynamic decoupling techniques are used to

extend NV coherence times, allowing for a greater phase acquisition from the target

system. Our results showed that dephasing times are ultimately limited by the self

correlation time of the fluctuating environment, thus NV magnetometer interrogation

times may be extended by nearly four orders of magnitude beyond the free-induction

decay time. These results suggest that single spin, room temperature magnetometer

sensitivities as low as 5 pTHz−1/2 may be possible with current technology. The effec-

tiveness of this approach was verified via an experimental investigation, the results of

which were shown to be consistent with theoretical predictions. Such techniques have

the potential to yield great improvements to nano-scale sensing, particularly nano-

biological processes occurring at room temperature, and have thus been universally

adopted in the NV magnetometry field following the publication of this work.

In continuing with the theme of trying to improve the sensitivity and fidelity of NV

magnetometry techniques, chapter 7 was focused on investigating the artifacts present

in the experimental results of chapter 5. To this point, our analysis had assumed

that perfect, instantaneous pulses were possible, and that we may be completely

detuned from the |0⟩ ↔ | − 1⟩ transition. This work, however, showed that the

presence of the microwave field and the adjacent spin bath results in a broadening

of both NV transitions, meaning that not only is it impossible to perfectly tune

to the |0⟩ ↔ | + 1⟩ transition, we also achieve a non-resonant excitation of the

|0⟩ ↔ | − 1⟩ transition, leading to a non-trivial population leakage into the | − 1⟩

state. These effects, and the resulting loss of measurement fidelity, were quantified

in the context of an NV centre coupled to three different proximate spin baths: the
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ppm nitrogen electron donor spin bath in type 1b diamond, the 1.1% 13C nuclear

spin bath in ultra-pure low nitrogen diamond, and the surface electron spin bath of

diamond nanocrystals. These results were compared to the experimental data from

chapter 5, demonstrating excellent agreement, and provide an accurate description

of the previously unexplained experimental artifacts. Furthermore, this investigation

has detailed the manner in which these artifacts, and the associated errors, may be

suppressed.

In chapters 8 and 9, we analysed and discussed two important applications of deco-

herence sensing techniques to biological imaging, stemming from the bio-compatibility

of diamond and the non-invasive NV measurement protocols discussed in previous

chapters. The work of chapter 8 was undertaken following the recognition of a clear

and urgent need for detection of cell membrane ion-channel operation with wide-field

capability. We explored the quantum dynamics of a NV probe in proximity to the

ion channel, lipid bilayer and surrounding aqueous environment, and showed that

real-time detection of ion channel operation at millisecond resolution is possible by

directly monitoring the quantum coherence of the NV spin. The results of this chapter

demonstrate the potential for this platform to revolutionize the characterisation of ion

channel action, and possibly other membrane proteins, with important implications

for molecular biology and drug discovery.

The work of chapter 9 was focused on using the collective magnetic field sensing

properties of NV-ensembles in diamond for widefield imaging of the dynamic activ-

ity of neuronal networks; a quantitative understanding of which is fundamental to

gaining insight into information processing in the brain. We analysed the sensitivity

of the system to the magnetic field generated by an axon transmembrane potential,
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and confirmed these predictions experimentally using electronically-generated neuron

signals. By numerical simulation of the time dependent transmembrane potential

of a morphologically reconstructed hippocampal CA1 pyramidal neuron, we showed

that the NV array is capable of imaging planar neuron activity non-invasively at

millisecond temporal resolution and micron spatial resolution over wide-fields. The

experimental results and theoretical work in this chapter have established the sig-

nificant potential of this quantum based technique to visualise the key components

of neuronal network activity to provide exciting new insight into biological neuronal

network function.

Up to chapter 10, we had considered the detection of magnetic processes based

exclusively on monitoring the dephasing of the NV electron spin. Such protocols were

well suited to measuring processes with frequencies of less than a few MHz, however a

method by which to sensitively detect rapidly fluctuating processes, without the need

for complicated pulse sequences, was still lacking. In this chapter, our focus shifted

from pure dephasing processes (in which we measure the dephasing time, T2) to those

allowing the central system to exchange energy with its surrounding environment

(in which we measure the longitudinal relaxation time, T1). The comparatively long

intrinsic T1 times of NV centres (as compared with T2) make this approach inher-

ently more sensitive than methods based on measuring dephasing rates. A detailed

analysis of the response of the NV spin state to an arbitrary spectral density was per-

formed, and used to develop a protocol by which this spectrum may be mapped. This

framework was used to analyse two important milestone experiments, both of which

demonstrate excellent agreement with the theoretical developments of this chapter.
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One common theme amongst the NV based sensing protocols considered in chap-

ters 3 to 10 was that the NV axis had been assumed to be fixed with respect to some

external laboratory axis. Chapter 11 was based on the fact that, in some cases, in-situ

monitoring of the NV spin state may not allow us to control the crystal orientation

due to the lack of any mechanical contact. We discussed how the unique optical and

spin properties of an NV centre in a diamond nanocrystal allow us to simultaneously

obtain information regarding both the surrounding electromagnetic environment, and

the mechanical forces and motion to which the diamond nanocrystal is subjected. We

then demonstrated the use of these techniques by performing and analysing two exper-

iments involving diamond nanocrystals being taken up endosomally by living human

cervical cancer cells.

Finally, in chapter 12, we developed an analytic solution to the decades-old central

spin problem in the context of an NV centre spin immersed in a 1.1% 13C nuclear

spin bath. Our approach was based on the spatial statistics of these spins, yielding a

natural decomposition of the bath into 6 distinct parameter regimes, as defined by the

relative strengths of the hyperfine, Zeeman and mutual dipolar coupling of the envi-

ronmental spins. Such a rigorous treatment of this problem negates the need for any

unjustified ad-hoc assumptions regarding the environmental NV-nuclear or nuclear-

nuclear dynamics. This has allowed us to definitively resolve the analytic scalings

of the associated decoherence functions for an arbitrary background magnetic field

strength, and analytically derive the associated dependence of quantities such as co-

herence times and characteristic ESEEM features. Our results demonstrate excellent

agreement with existing numerical and experimental work, and simultaneously falsify

many of the current and existing analytic claims in the literature.
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The results of future work in the field of spin-based magnetometry will undoubt-

edly prove exciting, as we improve our ability to probe systems at the nanoscale. As

our knowledge of the world around us continues to deepen, new and often counter-

intuitive ideas will surface, allowing us to probe deeper again. The application of

sophisticated quantum based technology to the imaging of complex dynamical sys-

tems provide us with a perfect example of this, and will thus prove to be of great

importance in the future of the physical and life sciences.
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Appendix A

The Interaction Picture

A.1 Definitions

Owing to its extensive employment throughout this thesis, we briefly review the basics

of the interaction picture approach to quantum mechanics. In the cases considered in

this work, we are interested in solving the evolution of a system under the influence

of a Hamiltonian of the following form,

H = H0 + V , (A.1.1)

where H0 is the static component (for example, the zero-field splitting of the NV

centre, DS2
z ), and V is a perturbation, which, in general, may be time-dependent (as

in the case of a comparatively weak oscillating microwave field, ωx cos(ωt)Sx).

For a general Schrodinger picture operator, O, acting on an arbitrary system, we

define the corresponding interaction picture operator via

OI = eiH0tOe−iH0t. (A.1.2)

This allows us to shift the time dependence of the system due to the static component

of the Hamiltonian, H0, onto the operators, thereby leaving only VI to dictate the

time-evolution of the (interaction picture) density matrix.

Such an approach is particularly useful in the case of the NV centre spin, where
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the static components are of the order of 1-10GHz, whilst the interaction processes

with which we are concerned in this work are typically in the kHz-MHz range.

A.1.1 The density matrix

The time evolution of the density matrix is described by the Liouville equation,

dρ

dt
= −i

[
H, ρ

]
+ L, (A.1.3)

where L is the sum of all Lindbladian terms describing processes such as relaxation,

dephasing, population transfer, etc, associated with the non-unitary dynamics of the

open quantum system[BP06].

From equationA.1.2, the interaction picture density matrix is given by

ρI = eiH0tρe−iH0t. (A.1.4)

Taking the derivative of this, we find

d

dt
ρI = iH0e

iH0tρe−iH0t − ieiH0tρe−iH0tH0 + eiH0t
dρ

dt
e−iH0t

= i
[
H0, ρI

]
+ eiH0t

(
−i
[
H, ρ

]
+ L

)
e−iH0t

= i
[
H0, ρI

]
− i
[
H0, ρI

]
+ eiH0t

(
−i
[
V , ρ

]
+ L

)
e−iH0t

= −i
[
VI , ρI

]
+ LI , (A.1.5)

where the second line follows from equationA.1.3, and the third line follows from

the decomposition of H (equationA.1.1. This expression shows that the equation of

motion for the density matrix in the interaction picture is the same as that for the

Schrodinger picture, but with the interaction picture operators substituted in place

of the original Schrodinger picture operators.



Appendix B

Exact analytic forms relevant to
the central spin problem

B.1 Exact form of single cluster decoherence en-

velopes

For completeness, we include the full spin-echo decoherence envelope of the NV spin

due to a 2-spin cluster undergoing a secular flip-flop process. This expression is exact,

and the ZSE and SZE analytic limits have been employed in the main text. This

envelope will contain contributions from flip-flop (lateral and longitudinal), precession

(lateral only) and simultaneous flip-flop and precession processes. For clarity, we

outline these contributions separately, whence

Lsec = 1 + LFF + LP + LFF−P. (B.1.1)

The precession component is responsible for the decays and revivals at moderate

magnetic fields, and is given by

LP = −2
A2

x,1 + A2
y,1

λ21
sin2

(
λ1t

4

)
sin2

(
ωt

4

)
− 2

A2
x,2 + A2

y,2

λ22
sin2

(
λ2t

4

)
sin2

(
ωt

4

)
+4

(
A2

x,1 + A2
y,1

) (
A2

x,2 + A2
y,2

)
λ21λ

2
2

sin2

(
λ1t

4

)
sin2

(
λ2t

4

)
sin4

(
ωt

4

)
, (B.1.2)
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the flip-flop processes are responsible for the decoherence of the NV spin,

LFF =
Ax,1Ax,2 + Ay,1Ay,2 + Ω1Ω2
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and the hybrid processes are described by

LFF−P = 2
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B.2 Exact forms of collective autocorrelation func-

tions

The secular autocorrelation function for a two spin cluster is proportional to the

difference in hyperfine couplings of the two nuclei. The leading order behaviour,

corresponding to the high frequency limit associated with smaller cluster sizes comes

from expanding these quantities for small r. In the ZSE regime, the magnitude of the

fluctuating component only depends on the difference in the z− z components of the
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respective hyperfine couplings,

∆z = |Az,1 − Az,2|

∼ 3ar

4R4

(
sin(θ)

[
sin(Θ) + 5 sin(3Θ)

]
cos(ϕ− Φ) + cos(θ)

[
3 cos(Θ) + 5 cos(3Θ)

])
,

≡ aα, z (B.2.1)

whereas in the SZE limit, this magnitude depends on all couplings to the axial com-

ponent of the NV spin,

∆ =
√
A2

x,1 + A2
y,1 + A2

z,1 −
√
A2

x,2 + A2
y,2 + A2
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∼ 6ar
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[
2 sin(Θ) + sin(3Θ)

]
cos(ϕ− Φ) + 4 cos(θ) cos3(Θ)√

6 cos(2Θ) + 10
.

≡ aα (B.2.2)

Employing these expansions and averaging over the spatial degrees of freedom

using equation 12.4.3, we find the collective secular autocorrelation function to be

that given in equation 12.5.1, with the secular magnetisation function given by

M(t) =
1

3

(
3Γ
(
2
3

)
+

6
√
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, (B.2.3)

where ber(x) and bei(x) are the Kelvin functions, defined by the real and imaginary

parts of Jν
(
xe3πi/4

)
respectively, and Jν(x) is the ν

th order Bessel function of the first

kind.

Similarly, the collective non-secular autocorrelation function is given by equa-

tion 12.5.4, with the non-secular magnetisation function given by

N(t) =
2

9

[
πbntG3,0

0,4

(
1

9
b2n2π2t2| −1

2
, 0, 1

2
, 0

)
− 3

]
, (B.2.4)

where G is the Meijer G-function[GR00].
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B.3 Exact analytic forms of collective decoherence

functions

B.3.1 Free induction decay

To obtain the FID decoherence functions for the ZS and SZ regimes, we start with

the single-spin decoherence function as given by equation 12.6.5. Integration over R

gives∫ ∞

l

4πnR2ΛZS dR =
2

3
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[
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2
;
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2
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2
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]
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(B.3.1)

where F is the generalised hypergeometric function. Expanding these expressions to

leading order for short and long times, and integrating over the angular degrees of

freedom gives the collective decoherence functions discussed in section 12.6.1 of the

main text.

B.3.2 Spin-echo

Analytic limits of the decoherence function in the ZSE regime

To obtain the ZSE decoherence function in the long time limit, we integrate ⟨ΛZSE⟩

(equation 12.6.15) over the spatial degrees of freedom, R and r, using equation 12.4.3,
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where aα is as defined in equationB.2.1 above. Expanding this expression for t ≫

1/an and t ≪ 1/bn, and integrating over the angular degrees of freedom gives the

decoherence function for t ∼ T2 (equation 12.6.18).

To obtain the behaviour of the decoherence function at intermediate times, we

must make a correction for the diamond bond length to the nuclear-nuclear com-

ponent of the evolution, whilst integrating over the hyperfine dynamics as above.

The associated integral is generally intractable for arbitrary limits of r, however, as

r ≪ n−1/3 we may approximate the probability distribution, equation 12.4.3, by its

leading order behavior, P(r) ∼ 4πnr2, giving

⟨ΛZSE⟩ ∼
(∫ ∞

0

P(r)−
∫ l
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Expanding this expression for t ≫ 1/an and t ≪ 1/bn, gives the expression for the

ZSE decoherence function at intermediate times (equation 12.6.19).

To obtain the behaviour of the decoherence function at short times, we make a

similar adjustment for the bond length in the hyperfine interaction, and then expand

for t ≪ 1/an and t ≪ 1/bn, as given by equations 12.6.20 and 12.6.21 of the main

text.

Analytic limits of the decoherence function in the SZE regime

To obtain the SZE decoherence functions, we proceed in the same manner as the ZSE

case above, instead using ⟨ΛSZE⟩ (equation 12.6.15) together with the definition of ∆

(equationB.2.2).

Analytic limits of the decoherence function in the SEZ regime

To obtain the analytic limits of the SEZ decoherence function, we follow the same

progression as in the ZSE limit above. The SEZ limit is somewhat simpler owing to the
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fact that the hyperfine and dipole-dipole processes are decoupled from one another in

the single-cluster SEZ decoherence function (equation 12.6.15). Integration over the

hyperfine component from l < R <∞ yields∫ ∞
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Integration over r from l to ∞ in the dipolar interaction gives∫ ∞
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(B.3.5)

where Si is the Sine integral function, define by Si(x) =
∫ x

0
t−1 sin(t) dt. Taking the

relevant limits of the dipolar and hyperfine components, integrating over the angular

degrees of freedom, and substituting into the definition of ⟨ΛSEZ⟩ (equation 12.6.15),

we find the long, intermediate and short-time limits of the SEZ decoherence to be as

given in equations 12.6.23, 12.6.24 and 12.6.25 respectively.
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