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A

This is a study of the semantics and proof theory of the logic of bunched im-
plications (BI), which is promoted as a logic of (computational) resources, and
is a foundational component of separation logic, an approach to program anal-
ysis. BI combines an additive, or intuitionistic, fragment with a multiplicative
fragment. The additive fragment has full use of the structural rules of weakening
and contraction, and the multiplicative fragment has none. Thus it contains two
conjunctive and two implicative connectives. At various points, we illustrate a
resource view ofBI based upon the Kripke resource semantics. Our first original
contribution is the formulation of a proof system forBI in the newly developed
proof-theoretical formalism of the calculus of structures. The calculus of struc-
tures is distinguished by its employment of deep inference, but we already see
deep inference in a limited form in the established proof theory forBI. We show
that our system is sound with respect to the elementary Kripke resource semantics
for BI, and complete with respect to the partially-defined monoid (PDM) seman-
tics. Our second contribution is the development from a semantic standpoint of
preliminary ideas for a hybrid logic of bunched implications (HBI). We give a
Kripke semantics forHBI in which nominal propositional atoms can be seen as
names for resources, rather than as names for locations, as is the case with related
proposals forBI-Loc and for intuitionistic hybrid logic. The cost of this approach
is the loss of intuitionistic monotonicity in the semantics. But this is perhaps
not such a grave loss, given that our guiding analogy is of states of models with
resources, rather than with states of knowledge, as is standard for intuitionistic
logic.
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P

This thesis gives a presentation of, and a commentary upon the propositional logic

of bunched implications (BI) [O’Hearn & Pym 1999, Pym 2002] from proof-

theoretical and semantic points of view. Although the thesis is for the most part

self-contained, it is expected that the reader will have some background knowl-

edge of structural proof theory — or more particularly of sequent calculi for in-

tuitionistic or linear logic — and of Kripke’s possible worlds semantics for intu-

itionistic or modal logic. It presents and makes use of the formulations of Kripke

resource semantics forBI given by Pym [2002], Pym, O’Hearn & Yang [2004] and

particularly Galmiche, Méry & Pym [2005]. In addition, it presents two original

contributions.

The first is the systemSBISg, a formulation ofBI in the proof-theoretical

formalism of Guglielmi’s [2004] calculus of structures, together with detailed

soundness and completeness proofs. The formulation here is based upon Tiu’s

[2005, 2006] work on intuitionistic logic in the calculus of structures. The sound-

ness proof is along conventional lines, except that it requires an original ‘semantic

depth’ lemma to handle deep inference inSBISg. The completeness proof is in-

debted in its strategy and techniques to completeness proofs forBI given by Pym

[2002], Pym, O’Hearn & Yang [2004] and and Galmiche, Méry & Pym [2005];

for intuitionistic logic given by van Dalen [2004]; and for modal logic given by

Blackburn, de Rijke & Venema [2001]. Completeness is shown with respect to

a variant of the partially-defined monoid (PDM) semantics [Galmiche, Méry &

Pym 2005, §5.3]. My paper [Horsfall 2006] presenting the formulation ofBI in

the calculus of structures was accepted for the 11th ESSLLI Student Session at

the 18th European Summer School in Logic, Language and Information, July–

August 2006, but I could not attend to present it, and consequently, it had to be

xiii
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withdrawn. This paper has been incorporated into the introduction and §§1.2–3.3.

The second contribution is the development from a semantic standpoint of

preliminary ideas for a hybrid logic of bunched implications, based upon estab-

lished ideas on hybrid modal logics [see, for instance, Blackburn 2000b, Black-

burn, de Rijke & Venema 2001] and hybrid intuitionistic logics [Jia & Walker

2004, Braüner & de Paiva 2006, Chadha, Macedonio & Sassone 2006]. The ideas

developed here differ significantly fromBI-Loc [Biri & Galmiche 2003] and those

in the literature on hybrid logics.



C 1

I

1.1. T    

The logic of bunched implications (BI) [O’Hearn & Pym 1999, Pym 2002] per-

mits control of the structural rules of weakening and contraction – familiar from

sequent calculi for many systems – in a way quite different to linear logic. In

linear logic, ordinary conjunction decomposes into two distinct connectives when

weakening and contraction are not available, yieldingmultiplicativeor context-

free conjunction⊗ and disjunctionM, andadditiveor context-sharing& and ⊕.

The availability of structural rules may then be selectively granted using expo-

nential operators ? and !. Something similar occurs inBI, except that there are

no exponentials. Weakening and contraction are always available in additive con-

texts, and never in multiplicative ones.

Definition 1 The setΦ of formulæ of propositionalBI is given by the grammar:

φF p | I | φ ∗ φ | φ−∗φ | ⊤ | ⊥ | φ ∧ φ | φ ∨ φ | φ→ φ

wherep, q, r, . . . ∈ P are propositional variables,∗ is multiplicative conjunction,

the propositional constantI its unit,−∗multiplicative implication, and the remain-

der the usual intuitionistic connectives and propositional constants. 2
There is no multiplicativefalsum, and the only available negation is intuitionis-

tic, definable¬φ ≔ φ → ⊥, which is in any case not involutive. Bunches, the

1
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structured antecedents of the sequent calculusLBI1 are really an artefact of the

calculus. Bunches are tree structures.

Definition 2 Bunches are given by the grammar:

ΓF φ | ?m | Γ , Γ | ?a | Γ ; Γ

“,” is the multiplicative bunch constructor, “;” the additive constructor, and?m

and?a their respective units. 2
Definition 3 ∆ is asub-bunchof Γ if Γ and∆ are the same bunch, or ifΓ has the

structureΓ1 ; Γ2 or Γ1 , Γ2 and∆ is a sub-bunch of eitherΓ1 or Γ1. When∆ is a

sub-bunch ofΓ, we can writeΓ asΓ(∆) to express this fact, and to pick out the

bunched contextΓ(.), which is an incomplete bunch the same asΓ, except with a

gap in it where the sub-bunch∆ was. The bunch obtained by replacing the sub-

bunch∆ of Γ with a new sub-bunch∆′ is writtenΓ[∆′/∆]. More often, we write

Γ(∆′), as in the specification of the rules of inference ofLBI in Figure 1.1. 2
Definition 4 Equivalence (≡) of bunches, also calledcoherent equivalence, is

modulo commutativity of “,” and “;”, combination with their respective units, and

congruence, that isΓ(∆) ≡ Γ(∆′) if ∆ ≡ ∆′. 2
The left-hand rules ofLBI may match and manipulate sub-bunches at any depth

in a bunch. Cut-elimination holds forLBI [Pym 2002, Theorem 6.2]. That is, if a

sequent is provable inLBI, then it is provable inLBI without thecut rule.

In Girard’s idiom, “,” is ‘hypocrisy’ for∗, “;” for ∧, ?m for I and?a for ⊤.

This distinction between punctuation marks and logical connectives does not fig-

ure directly in the categorical view, and is abolished in the calculus of structures.

A sequent ofLBI has the formΓ⇒ φ. As in typical intuitionistic sequent calculi,

the succedent is restricted to a single formula. In fact, formulations of intuition-

istic logic generally restrict it toat mostone formula. The desired effect of the

1See Figure 1.1 for the rules of inference ofLBI. Pym’s monograph [2002, chapter 6] with
errata [2006] gives a full treatment of the sequent calculusLBI for propositionalBI. Figure 1.2
reproduces a proof of the interesting theorem ((p → q)−∗ r)−∗ (p → (q−∗ r)) in the sequent
calculusLBI, found by Alwen Tiu (personal communication). Note that the converse formula
(p→ (q−∗ r))−∗ ((p→ q)−∗ r) is not a theorem.
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identity
φ⇒ φ

∆ ⇒ φ Γ(φ)⇒ ψ
cut

Γ(∆)⇒ ψ

Γ⇒ φ
exchange(Γ ≡ Γ′)

Γ′ ⇒ φ

Γ(∆)⇒ φ
weakening

Γ(∆ ;∆′)⇒ φ

Γ(∆ ;∆)⇒ φ
contraction

Γ(∆)⇒ φ

⊥L
Γ(⊥)⇒ φ

Γ(?m)⇒ φ
IL

Γ(I)⇒ φ

IR?m⇒ I

Γ(?a)⇒ φ
⊤L

Γ(⊤)⇒ φ

⊤R?a ⇒ ⊤

Γ(φ , ψ)⇒ χ
∗L

Γ(φ ∗ ψ)⇒ χ

Γ⇒ φ ∆⇒ ψ
∗R

Γ ,∆⇒ φ ∗ ψ

∆⇒ φ Γ(ψ ,∆′)⇒ χ
−∗ L

Γ(∆ , φ−∗ψ ,∆′)⇒ χ

Γ , φ⇒ ψ
−∗R

Γ⇒ φ−∗ψ

Γ(φ ;ψ)⇒ χ
∧L

Γ(φ ∧ ψ)⇒ χ

Γ⇒ φ ∆⇒ ψ
∧R

Γ ;∆ ⇒ φ ∧ ψ

∆ ⇒ φ Γ(ψ ;∆′)⇒ χ
→L

Γ(∆ ;φ→ ψ ;∆′)⇒ χ

Γ ;φ⇒ ψ
→R

Γ⇒ φ→ ψ

Γ(φ)⇒ χ Γ(ψ)⇒ χ
∨L

Γ(φ ∨ ψ)⇒ χ

Γ⇒ φ
∨Rle f t

Γ⇒ φ ∨ ψ

Γ⇒ ψ
∨Rright

Γ⇒ φ ∨ ψ

Figure 1.1: The sequent calculusLBI

restriction is to prevent contraction on the right-hand side. This prevents, for in-

stance, proofs of⇒ p ∨ ¬p and¬¬p ⇒ p. The restriction was discovered by

Gentzen [1934–35]. See, for instance, Troelstra & Schwichtenberg [2000, §3.1].

There are, of course, other ways to obtain the same effect. Obviously, we have

linear logic, but also for instance, Dragalin’s multisuccedent intuitionistic system

[see Negri & von Plato 2001, §5.3]. In this system, we find the ruleΓ, φ⇒ ψ

Γ⇒ φ→ ψ,∆
→R.

Restriction of the succedent occurs in this rule. The arbitrary context∆ in the

conclusion is forcibly weakened away. Weakening and contraction are admissible

in general, but implication is forced through a ‘bottleneck’ which is sufficient to

keep the system intuitionistic. Tiu [2005] makes a similar consideration.

It is a noteworthy characteristic ofLBI that corresponding pairs of additive and

multiplicative rule are ‘morphologically’ similar. Take, for example, the right-side

rules for additive and multiplicative conjunction, respectively:

Γ⇒ φ ∆⇒ ψ
∧R

Γ ;∆⇒ φ ∧ ψ

Γ⇒ φ ∆⇒ ψ
∗R

Γ ,∆⇒ φ ∗ ψ

The only point of structural difference is the bunch constructor in each case, re-

spectively additive “;” and multiplicative “,”. It may be surprising to observe that

these are both ‘context-splitting’ rules. We are used to the idea that additive rules

(or connectives) are context-sharing and multiplicative rules are context-splitting
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(or context-free). For instance, this is precisely the difference between the sequent

rules for additive and multiplicative conjunction in linear logic:

⇒ Γ, φ ⇒ Γ, ψ
with

⇒ Γ, φ& ψ

⇒ Γ, φ ⇒ ψ,∆
times

⇒ Γ, φ ⊗ ψ,∆

These connectives are on equal footing when it comes to the availability of struc-

tural rules. If we think for the moment in terms of upward proof-search, the

difference is just that the rules are applicable at different types of splitting-points

in a bunch. These right-side rules are only applicable at the top-level bunch con-

structor, but the corresponding left-side rules are cases of deep inference, which is

employed more systematically in the calculus of structures. Consider the left-side

rule for multiplicative implication:

∆⇒ φ Γ(ψ ,∆′)⇒ χ
−∗ L

Γ(∆ , φ−∗ψ ,∆′)⇒ χ

which says that if∆ ‘entails’ φ andΓ ‘entails’ χ, andψ,∆′ is a sub-bunch ofΓ

at arbitrary depth (which multiplicatively combines a formulaψ and any bunch

∆′) thenχ is ‘entailed’ by the bunch formed by replacingψ,∆′ in Γ with a new

multiplicatively constructed sub-bunch∆, φ−∗ψ,∆′.

The real structural difference between the additive and multiplicative frag-

ments ofLBI is the applicability of structural rules. Weakening is only available at

additive splitting-points, again, of sub-bunches at arbitrary depth, and contraction

may only construct additively-combined duplicate sub-bunches. The morphologi-

cal similarity of the multiplicative and non-structural additive fragments, together

with limitation on the availability of structural rules, will be apparent in our initial

formulation ofBI in the calculus of structures in Chapter 3.

1.2. T   

Proof systems in the calculus of structures have a single object – astructure–

in place of formulæ and sequents. This is perfectly natural, given that a se-

quent may typically be encoded as a single formula. For instance, in linear

logic [Girard 1987a], a one-sided sequent⇒ φ, ψ may be encoded asφ M ψ.

In a classical sequent calculusφ, ψ ⇒ χ, ζ may be encoded asφ ∧ ψ → χ ∨

ζ. The calculus of structures, invented by Guglielmi [2004], has been used to



1.2. T    5

identity
q⇒ q

weakening
q ; p⇒ q

→R
q⇒ p→ q

identity
r ⇒ r

−∗ L
(p→ q)−∗ r , q⇒ r

−∗ R
(p→ q)−∗ r ⇒ q−∗ r

weakening
(p→ q)−∗ r ; p⇒ q−∗ r

→R
(p→ q)−∗ r ⇒ p→ (q−∗ r)

−∗ R?m⇒ ((p→ q)−∗ r)−∗ (p→ (q−∗ r))

Figure 1.2: A proof of the theorem ((p→ q)−∗ r)−∗ (p→ (q−∗ r)) in LBI.

formulate various logical systems, for instance: multiplicative exponential lin-

ear logic [Straßburger 2003] and other varieties of linear logic, classical logic

[Brünnler 2006] and intuitionistic logic [Brünnler 2004, Tiu 2005].

The approach appears to have been most fruitful for systems with an involutive

negation (i.e. An operator¬ such that¬¬φ ≡ φ) and de Morgan duality – classical

and linear logic. These systems are also symmetric, in the sense that they admit

sequents with multiple conclusions (a comma in the succedent being a disjunction

of some sort), and involutive negation allows a free traffic of formulæ between

antecedent and succedent. Difficulties arise when these characteristics are absent,

as in intuitionistic logic andBI. In particular, it is necessary to introduce a notion

of polarity to do some of the work of involutive negation. Essentially, polarity

amounts to a ‘sidedness’ annotation restricting the applicability of rules, and cor-

responds to the division of left- and right-side rules in sequent calculi.

The calculus of structures differs from sequent calculi in several respects. In

particular, rules of inference may be applied at arbitrary depth within a structure,

unlike most sequent calculi where only the outermost connective of a formula

is available to be matched with a rule. This is calleddeep inference. A signifi-

cant feature of the sequent calculusLBI – which makes it unusual amongst sequent

calculi in general – is that employs a limited form of deep inference, whith its left-

hand rules applicable at arbitrary depth within a bunch. In a calculus of structures

each rule has exactly one premise, so proofs do not have the branching structure

of proofs in a sequent calculus. This removes one source of indeterminacy found
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F φ ∨ ψ : x

F φ : x
F ψ : x

T φ ∨ ψ : x

T φ : x T ψ : x

T φ ∧ ψ : x

T φ : x
T ψ : x

F φ ∧ ψ : x

F φ : x F ψ : x

F φ→ ψ : x

assert x≤ ci

T φ : ci

F φ : ci

T φ ∗ ψ : x

assert ci ◦ c j ≤ x

T φ : ci

T ψ : c j

F φ−∗ψ : x

T φ : ci

F ψ : x ◦ ci

T I : x

assert 1 ≤ x

T φ→ ψ : x

require x≤ y

F φ : y T ψ : y

F φ ∗ ψ : x

require y◦ z≤ x

F φ : y F ψ : z

T φ−∗ψ : x

F φ : y T φ : x ◦ y

Figure 1.3: The tableau expansion rules ofTBI

in sequent calculi: consider the⊗ rule of linear logic which needs to partition the

context of a conclusion between two premises. Of course, deep inference will be

a source of indeterminacy for any proof-search, as it for proof-search inLBI. And

branching in proofs, even without indeterminacy, makes the invertibility of rules

awkward. In the calculus of structures, proofs exhibit an up-down symmetry, with

each rule having a ‘contrapositive’ dual, orcorule. The use of single-premise

rules, together with deep inference, makes the calculus of structures a term rewrit-

ing system.

1.3. R 

Galmiche et al. [2005] have developedresource tableaux, a semantic tableaux

proof system forBI, in several variants. Resource tableaux are closely connected

to their work on the revised semantics forBI, which we treat in Chapter 2, and

yield decidability and the finite model property forBI [Galmiche et al. 2005, §8].

Resource tableaux are particularly suitable as a basis for theorem-proving imple-

mentations forBI. They are certainly more suitable than than the sequent calculus

LBI or the system in the calculus of structures which we present in Chapter 3,



1.3. R  7

which due to their shared characteristic of deep inference, suffer the high degree of

indeterminacy in proof-search remarked above, in addition to well-known issues

surrounding the control of contraction rules. We have usedTBI as the basis for

a successful theorem prover for propositionalBI implemented in Haskell, which

renders tableaux using LATEX.2 Figure 1.3 reproduces the tableau expansion rules

for Galmiche, Méry & Pym’s [2005] resource tableaux systemTBI.3 In the expan-

sion rules,x, y, zare variables over labels, andci, cj are fresh labels introduced into

a tableau by an expansion rule. Theassertboxes assert constraints upon labels,

and therequireboxes require that existing labels in a tableau meet a specified con-

straint for an expansion rule to be applicable. Labels and constraints upon them

generate a labelling algebra as the closure under certain conditions [see Galmiche

et al. 2005, Definition 3.3] of a set of constraints. A labelling algebra has precisely

the same structure as a model in the Kripke resource semantics (see Chapter 2),

and contains a preorder≤ and binary combination operator◦. Also note the corre-

spondence between the expansion rules and the clauses of the forcing relation in

the Kripke resource semantics. The root formula of a tableau is assigned a polarity

F and labelled1, which is the unit label for◦, and it is proven if it can be expanded

to a tableau in which every branch is closed. We can construct a ‘resource’ de-

pendency graph of labels as we construct a tableau. The condition for a tableau

branch to be closed is more complicated than simple contradiction [see Galmiche

et al. 2005, Definition 3.8]. A countermodel for a formula may be constructed

from an open branch of a tableau for that formula [Galmiche et al. 2005, §4.2],

and this is the key to decidability. Figure 1.4 presents a proof inTBI of the theo-

rem that was proven usingLBI in Figure 1.2. By way of example, observe that the

rightmost branch is closed because it contains the signed and labelled occurences

T r : c1 ◦ c3 and Fr : c2 ◦ c3 such thatc1 ◦ c3 ≤ c2 ◦ c3, by the bifunctoriality

property of the labelling algebra: ifx ≤ y thenx ◦ z≤ y ◦ z.

2See also BILL [Béal, Méry & Galmiche n.d., Galmiche & Méry 2004], a tableaux-based
theorem prover for propositionalBI without propositional constants, implemented in Objective
Caml.

3See also the treatment of liberalisedTBI’ [Galmiche et al. 2005, §§6, 7].
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F ((p→ q)−∗ r)−∗ (p→ (q−∗ r)) : 1

T (p→ q)−∗ r : c1
F p→ (q−∗ r) : c1

assert : c1 ≤ c2

T p : c2
F q−∗ r : c2

T q : c3
F r : c2 ◦ c3

F p→ q : c3

assert : c3 ≤ c4

T p : c4
F q : c4

※

T r : c1 ◦ c3

※

Figure 1.4: A proof of the theorem ((p→ q)−∗ r)−∗ (p→ (q−∗ r)) in TBI.

1.4. A      BI

We may characteriseBI using the categorical model for proofs inBI, given by Pym

and O’Hearn.4 This kind of view is sometimes called a “categorical semantics”,

but it is more an abstract view of proof structures than a semantics. In categorical

logic, generally speaking, we view formulæ asobjectsin categories and proofs as

arrows in those categories. A pair of arrows to and from an object may always

be composed to form another arrow, yielding a sort of transitivity of proofs, or

cut. Proofs ofBI are modelled usingdoubly closed categories(DCCs). A DCC

is a ‘superimposition’ of twoclosed categoriesin a single category, with one of

these beingcartesian.5 A closed categoryC is a symmetric monoidal category6

in which every functor7 − ⊗ B : C −→ C has a right adjoint (−)B : C −→ C. In

4See O’Hearn & Pym [1999, §3] and Pym [2002, §3.3]. We refer to Mac Lane [1998] as a
reference on categorical concepts.

5I closely follow the presentation of CCCs in Lambek & Scott [1986, §§I.1–3, 8].
6A monoidal category has a product operation, orbifunctor⊗ that is associative and has (the

same) right and left unit (up to isomorphism). It is symmetric if the bifunctor is commutative.
7A functor is a morphism between categories, i.e. a function from each object of one to an

object of the other, and a function likewise for arrows. We may obtain a functor− ⊗ B by ‘partial
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BI, ∗ and∧ are the product operations of the closed categories, and right adjoints

are constructed from the two conditionals. The adjunctions are characterised by

natural isomorphisms of hom-sets (i.e. sets of arrows from one object to another):

[A ∗ B,C] � [A, B−∗C] and [A ∧ B,C] � [A, B→ C]. Note that these are incar-

nations of currying. An important isomorphism arising in the closed categories

is [I ,A−∗ B] � [A, B] � [⊤,A → B] which is the special case for units. This

does, not, however entail the equivalence of the two implications. In general

φ−∗ψ 0 φ → ψ andφ→ ψ 0 φ−∗ψ. These isomorphisms are important points of

reference when we define the syntactic equality of structures in Chapter 3.

A cartesian closed category (CCC) is a closed category in which the product

is cartesian (×): it has all finite products given. Given arrowsf : C −→ A and

g : C −→ B in a CCC, there exists a unique arrow〈 f , g〉 : C −→ A×B. Arrows in

a CCC satisfy certain requirements:

(i) ∀A∃ f . f : A −→ ⊤ (⊤ is theterminal object)

(ii) πA,B ◦ 〈 f , g〉 = f

(iii) π′A,B ◦ 〈 f , g〉 = g

The arrowsπA,B : A × B −→ A andπ′A,B : A × B −→ B are projections, and

exist for all objectsA, B in a CCC. In fact, the CCC forBI is bicartesian, mean-

ing that it also has all finitecoproducts(+, in our case∨) and an initial ob-

ject (⊥). For each f : A −→ C and g : B −→ C, there is a unique arrow

[ f , g] : A+ B −→ C. Arrows meet the further requirements:

(i) ∀A∃ f . f : ⊥ −→ A

(ii) [ f , g] ◦ κA,B = f

(iii) [ f , g] ◦ κ′A,B = g

The arrowsκA,B : A −→ A+ B andκ′A,B : B −→ A+ B are injections and exist for

all A, B.

We can give a categorical justification of the structural rules weakening and

contraction in a CCC. Remember that “;” is just a cipher for∧. LetC be a CCC.

application’ of a bifunctor.
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(i) Weakening.Consider objectsA,C ∈ C and an arrowf : A −→ C of C,

that is to say, a proof ofC from A. SinceC is a CCC, there exists an arrow

πA,B : A × B −→ A for anyB ∈ C. So by composition, the arrowf ◦ πA,B :

A× B −→ C exists, and hence there is a proof ofC from A∧ B. Similarly,

π′B,A : B×A −→ A exists, and by composition we havef ◦π′B,A : B×A −→ C,

that is, a proof ofC from B∧ A.

(ii) Contraction.Consider objectsA, B ∈ C and an arrowf : A× A −→ B, that

is, a proof ofB from A∧A. There exists an identity arrow 1A : A −→ A, and

sinceC is a CCC, there exists an arrow〈1A, 1A〉 : A −→ A×A. Composition

with f yields the arrow〈1A, 1A〉 ◦ f : A −→ B, which is a proof ofB from

A.

A model〈C,V〉 for BI is a bicartesian DCCC together with a valuation func-

tion V : P → O from propositional variables to objectsO ∈ C. We may then

inductively define a functionV∗ : Φ → O from (atomic and compound) formulæ

to O ∈ C according to the preceding sketch. We encode of a bunchΓ into a for-

mulaγ according to the obvious translation. Given a sequentΓ⇒ φ, we then ask:

does there exist an arrowV∗(γ) −→ V∗(φ)? Each arrow is proof. (Then the ques-

tion of the identity of proofs becomes the question of the identity of arrows.) If

there are no arrows, the sequent is not provable. There is a hint here for our formu-

lation in the calculus of structures: we do not encode the⇒, so we do not have to

choose between encoding it using either as intuitionistic (→) or multiplicative (−∗)

implication. Instead, we ask “Is there an arrow?” We can think of this from the

point-of-view of theoremhood inLBI. φ is a theorem iff either?a⇒ φ or?m⇒ φ

is provable. (Since?m ⇒ φ may be derived from?a ⇒ φ using weakening, it

suffices that?m⇒ φ.) φ → ψ is a theorem iff φ−∗ψ is a theorem. Of course, that

this does not amount to equivalence in general. So attempting to proveΓ ⇒ φ

is equivalent to testing the theoremhood of eitherγ → φ or γ−∗ φ. So when we

encode⇒ in a structure, we are allowed an arbitrary choice.

The principal point of this categorical view is that although there are two dis-

tinct conjunctions inBI, each with an adjoint implication – and that in this respect

they are structurally the same – only the additive (or intuitionistic) CCC structure

is granted the use of weakening and contraction.
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1.5. A  BI

BI may be seen broadly as a logic for reasoning about (computational) resources.

It has been proposed as the basis of a type theory for (imperative) programs, by

way of a Curry-Howard correspondence, to control sharing and non-sharing of

data and other resources by components of programs [O’Hearn 2003]. For in-

stance,a−∗b might be specified as the type of a function, as a constraint (or a

guarantee) that in its internal workings, the function not share memory or some

other sort of resource with its argument. Similarly,a∗b might be given as the type

of a tuple of objects which are disjoint in their use of resources. On the other hand,

a→ b would be the commonplace intuitionistic function type, anda∧ b the tuple

type, familiar from functional programming, and which do not constrain this kind

of sharing. In typical functional programming settings, the question of this sort of

sharing between functions and arguments does not arise, because of the character-

istic referential transparency of functions.BI also plays an important foundational

rôle in the research program of separation logic. Separation logic has been used to

analyse the shared use of mutable data structures by imperative programs [Ishtiaq

& O’Hearn 2001, O’Hearn, Reynolds & Yang 2001, Reynolds 2002] and resource

use by concurrent programs [O’Hearn 2005]. Armelı́n & Pym [2001] develop

a logic programming languageBLP based uponBI which manages sharing and

non-sharing of resources.

1.6. O

In Chapter 2, we present a survey of various refinements of the Kripke resource

semantics forBI, and its predecessors: Saul Kripke’s semantics for intuitionis-

tic logic and Alasdair Urquhart’s semantics for relevant logics. We make some

refinements, which are technically motivated. This lays the foundation for the

main contribution, contained in Chapter 3. We present a proof system forBI in

the emerging proof-theoretical formalism of the calculus of structures, and give

proofs of its soundness and completeness. This work is a theoretical and techni-

cal contribution to two distinct research programs: the logical theory – both the

proof theory and the semantics – ofBI, and the calculus of structures. We pro-
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vide evidence for the naturalness, versatility and flexibility of the formalism of

the calculus of structures, in particular addressing problems with the treatment of

logics of the intuitionistic family, and logics containing more than one kind of

implication. Admittedly, the calculus of structures does not represent any great

advance in automated theorem proving forBI – resource tableaux are best for that

– but it does permit a presentation ofBI and a method of proof that is arguably

simpler, more direct and more natural than with other formalisms, capturing the

essential structure of this notoriously complicated logic in an intuitively satisfy-

ing way. Deep inference, which is a natural characteristic ofBI, is generalised

in the calculus of structures, and the new formalism permits a view much more

faithful to the powerfully intuitive categorical view ofBI as a bicartesian DCC.

This work benefitsBI research by demonstrating the naturalness and generality

of BI in its adaptation to the new formalism, in the process bringing some of the

more subtle characteristics ofBI to the fore. In Chapter 4 we undertake a tentative

and speculative exploration of the idea of a hybridBI, introducing ideas from the

research program of hybrid modal logics (which have applications to distributed

computation, for example). Our principal motivation is to introducenames for re-

sourcesinto propositionalBI. Although our proposal is quite abstract, we believe

that it might turn out to improve upon the expressiveness ofBI for reasoning about

resource distribution, by introducing into the language the ability to name certain

resources in a system.

A sequence of informal, practical reflections runs through the thesis. The

reader is referred particularly to the philosophical remarks upon Urquhart’s se-

mantics and Kripke’s intuitionistic semantics in §2.1 and §2.2, and the reflections

on the idea of ‘states as resources’ in §2.4 and on combining hybrid and resource

logics in §4.3.
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Kripke semantics are natural and appealing for intuitionistic, modal and hybrid

logics because they represent relational structures. In the intuitionistic case, they

give a natural representation of epistemic progress as a tree structure. They pro-

vide highly intuitive models for situated, or local reasoning, and for the traversal

of relational structures by agents. Kripke semantics give accounts of the mean-

ings of statements, which may or may not be valid in every model, at particular

positions in a relational structure. Proof theory, on the other hand, concerns itself

with provability, in particular, the provability oftheorems, and with the structures

of proofs. Provability is the syntactic analogue of validity in every model. Proof

theory does not concern itself so much with non-theorems, or contingent proposi-

tions, except as structural elements of proofs.1

We would like to obtain a clear understanding ofBI as a logic of resources by

way of an examination of its semantics. In particular, we will examine the roots

of the Kripke resource semantics in Kripke’s [1965] possible worlds semantics

for intuitionistic logic and in Urquhart’s [1972] semantics for relevant logic. We

will look at the way in which these have been combined to produce the semantics

of BI. This chapter gives a survey of the possible worlds semantics, or Kripke

resource semantics ofBI that are developed in several variations in O’Hearn &

Pym [1999], in Pym’s monograph [2002, 2006], in Pym, O’Hearn & Yang [2004]

1The research program of proof-theoretic semantics [see, for instance, Prawitz 2006] is an
exception here, with the attention it gives to Gentzen’s [1934–35] idea that the meanings of logical
connectives be understood by way of their introduction rules in natural deduction systems.

13
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and Galmiche, Méry & Pym [2005].2 We confine our attention to propositional

BI.

There are several Kripke semantics forBI. Under the simplest formulation,BI

without the propositional constant⊥ is sound and complete with respect to the to

theelementaryKripke resource semantics [Pym 2002, §4.2].3 The soundness and

completeness results in Pym [2002] are actually proven directly for the natural de-

duction systemNBI of BI. Results forLBI are furnished by proof-theoretical equiv-

alence withNBI. BI with ⊥ is sound and complete with respect to several kinds

of topological semantics, including Grothendieck sheaf-theoretic semantics, also

called Grothendieck resource semantics [Pym, O’Hearn & Yang 2004, Pym 2002,

chapter 5]. We will not treat the topological semantics, but instead some other

more recently developed semantics: thenewrelational semantics, thenewKripke

resource semantics, and the partially-defined monoid (PDM) semantics. These

three semantics are closely related and are presented by Galmiche, Méry & Pym

[2005, §§5.1, 5.2, 5.3 respectively]. These accounts of the semantics are closed

entwined with the work on semantic tableau proof methods forBI by Galmiche &

Méry [2001, 2003, 2005] and by Galmiche, Méry & Pym [2002, 2005]. Galmiche

et al. [2005] give detailed soundness (Theorem 5.1) and completeness (Theorem

5.2) proofs forLBI4 with respect to the new relational semantics. The new Kripke

semantics is the special case of the new relational semantics in whichx • y ⊑ z

is defined asR⊑xyz.5 This fact is used to prove the soundness ofLBI with respect

to the new Kripke semantics [Galmiche et al. 2005, Theorem 5.3]. Complete-

ness ofLBI with respect to the new Kripke semantics can be shown using the

equivalence of the Kripke resource models with Grothendieck resource models

[Galmiche et al. 2005, Lemma 5.6], and the known completeness ofLBI with

respect to the Grothendieck resource semantics [Galmiche et al. 2005, Theorem

2.5].6 Hence we have the equivalence of the new relational semantics and the

2See also Pym’s conference paper [1999] on predicateBI.
3See also Galmiche et al. [2005, §2.1].
4Galmiche et al. frequently writeBI when they mean to refer to the proof systemLBI, which is

sometimes a little confusing, althoughTBI is always referred to explicitly.
5See §2.6 below and Galmiche et al. [2005, p. 1067].
6Cf. the proof of Theorem 5.7 in Galmiche et al. [2005] which invokes a tableau-based coun-

termodel construction technique and the completeness of the tableau systemTBI with respect to
the Grothendieck resource semantics [Galmiche et al. 2005, Theorem 4.3], together with Lemma
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new Kripke semantics via soundness and completeness. The PDMsemantics are

equivalent to the new Kripke semantics [Galmiche et al. 2005, p. 1070f.], and

hence the three semantics are equivalent. The reasons for the existence of so many

semantics are historical, technical, and also conceptual. The elementary Kripke

semantics was the first that was developed, and its simplicity remains conceptu-

ally attractive, butBI is not complete with respect to it when the propositional

constant⊥ is included. Historically, various topological semantics were then de-

veloped to solve this problem. The new Kripke semantics solve this problem in a

much simpler way, without the topological apparatus. The PDM semantics offer

an equivalent, alternative formulation of this solution, and we venture that it rep-

resents an important technical and conceptual refinement. Relational semantics

seem to have been developed for mainly technical reasons.

Kripke resource semantics, in all of its variants, is a mixture. One ingredient is

Kripke’s [1965] possible worlds semantics for intuitionistic logic, closely related

to his well-known semantics for modal logic [1959, 1963a, 1963b].7 Kripke’s se-

mantics for intuitionistic logic is rather similar to his semantics for the modal logic

S4. Both feature an accessibility relation which is reflexive and transitive. The

other ingredient is Urquhart’s [1972] semantics for relevant logic. Possible worlds

are not to be found in Urquhart’s account of relevant implication, although they do

emerge when he distinguishes relevant implication from a concept of entailment,

with the introduction of ideas from Kripke’s semantics for modal logic. The ac-

count of the meaning ofBI’s connective−∗ is based upon Urquhart’s account of

relevant implication, and that of∗ upon his account of intensional conjunction.

2.1. U’    

Urquhart [1972] gives a semantics for relevant logics. This section presents a

summary. Relevant logics are typically characterized as lacking the structural rule

of weakening, which allows an argument to be ‘watered down’ by the addition of

arbitrary additional premises, and remain valid. The rule of contraction is typi-

5.6 but which in fact establishes no more than their Theorem 5.5 does, that is, the completeness of
TBI with respect to the new Kripke resource semantics.

7See Blackburn et al. [2001, §1.3] for a standard, modern account of the semantics of modal
logic specified in terms of relational structures.
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cally retained. The point that is carried over into the semantics of BI, and which

partly expresses the character ofBI’s multiplicative implication (−∗) is that irrele-

vant information in the antecedent invalidates a relevant conditional: although a

proposition may be true given a certain piece of information, it will not be con-

sidered true in a relevant logic given the same piece of information taken together

with an irrelevant piece of information.

The basic objects of Urquhart’s semantics arepieces of information, that is,

sets of basic sentences of some sort. Pym et al. sometimes seem to proceed as if

Urquhart’s “pieces of information” were in fact possible worlds. It is a commonly-

held intuition that a proposition may be identified, or at least associated with, the

set of possible worlds in which it holds. It is also quite reasonable, generally, to

think of possible worlds not as alternate universes, but simply asstatesor points.

Worlds are not typically conceived as divisible objects, and they are not generally

thought of as entering into compounds.Pieces of information, on the other hand,

may in some cases be divisible, and may always enter into compounds. Pieces of

information can be combined using set-theoretic union∪, and the empty set? is

regarded as the empty piece of information, or ‘no information’. Of course, the

∪ operation is idempotent, that is,X ∪ X = X. This property in particular will

be dispensed with when these semantics are adapted to the semantics ofBI. In

fact, the representation of a piece of information as a set disappears entirely. The

propertyX ∪ X = X reflects the availability of the rule of contraction in relevant

logics, which is a key point of difference with non-exponential fragment of clas-

sical linear logic – that is, multiplicative additive linear logic (MALL). In relevant

logics, the number of occurrences of a premise, given that it occurs at all, does

not matter: multiple occurrences are logically equivalent to a single occurrence,

thanks to contraction. The absence of that rule inMALL, on the other hand, means

that the number of occurrences is logically significant.

Relevant logics are typically characterized by a denial of the structural rule

of weakening, so that the validity of a valid argument is not in general preserved

when additional premises are added to it. The most important feature of the se-

mantics is that it does not in general hold that ifX 
 φ, thenX ∪ Y 
 φ. A

proposition may be rendered false by the availability of additional, irrelevant in-

formation – imagine yourself lost in a library. The is an essential ingredient in
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the meaningBI’s connective−∗. The intuition behind relevant logic is that every

premise, or piece of information, must contribute to a proposition; that it must

bear directly upon it in some way. A strong motivation is the resolution of the so-

called paradoxes of material (that is, classical) implication, such asφ→ (ψ→ φ),

which is precisely the formulation of the rule of weakening as an axiom, and

¬φ → (φ → ψ). The Kripke resource semantics ofBI retain the idea of composi-

tion of pieces of information, replacing sets of sentences and set-theoretic∪ with

a non-set-theoretic view of resources, conceived as the possible worlds of Kripke

semantics, together with a composition operation•.

X,Y, . . . ∈ S are pieces of information, that is, sets of basic sentences. We

regard these sentences as semantic objects, not as sentences of the language at

hand.S is partially ordered by non-strict set inclusion⊆, and is a join-semilattice

with set-union∪ as the join operation.S always contains the empty set, or empty

piece of information? as its infimum. The∪ operation is commutative, associa-

tive, idempotent and has unit? as would be expected.φ, ψ, . . . are propositions,

atomic or compound, andp, q, . . . ∈ P are propositional variables. Urquhart states

the semantics by way of the specification of a valuation functionV, mapping any

proposition paired with a piece of information into{T, F}.

We present the semantics using a forcing relation
 (and “does not force”,1).8 We will also use a valuation functionV in a different way to Urquhart. Al-

though there is an unfortunate clash of notation, we want to maintain uniformity

with the rest of our presentation, Essentially, we use a forcing relation
 instead

of Urquhart’sV : Φ×S→ {T,F}, and we useV : P → ℘(S) in our uniform style,

with X ∈ V(p) where Urquhart would write “X determinesp”.9 The semantic

8We have adopted a uniform notation based upon that used for the semantics of modal logic
as presented by Blackburn et al. [2001, §1.3]. Rather than giving the inductive semantic clauses
for connectives directly in terms of a model’s valuation function, we use forcing notation
 (and1) to indicate that a proposition is made true (or is not made true) in a certain model, usually for
a certain state of the model (that is, at a certain possible world, or resource, or for a certain piece
of information). For example,M,m
 φ states thatφ is true at statem in the modelM. We might
instead have written something likeV(m, φ) = T, whereV is the valuation function of the modelM.

9Urquhart’s statement of the atomic case runs: “V(p,X) = T if X determinesp, V(p,X) = F
otherwise.”, commenting that “A piece of informationX maydeterminea basic statementp in the
sense that it may be concluded thep is true on the basis of the sentences inX.” [Urquhart 1972, p.
160].
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treatment of an atomic proposition is really just a place-holder for a philosophical

or epistemological specification of the determination of the truth of falsity of a

proposition by some information. Note that this formulation is not a strict ‘rele-

vantist’ one as might be expected; there is no requirement, for instance, that every

sentence inX must in some way contribute to the determination ofp. This kind

of constraint operates only the object language. Determination is much more like

a standard valuation function, with a common-sense flavour.

We also introduce the apparatus of frames and models. We define a frameF = 〈S,?,∪〉, and a modelM = 〈F,V〉 = 〈S,?,∪,V〉. We write each of the

relevant connectives using Urquhart’s symbol, subscripted with anr. We have to

be careful not to confuse→r with other implicative connectives; and particularly

not Urquhart’s intensional conjunction◦r with the operation of composition of

resources• in the semantics ofBI. This connective is the ancestor ofBI’s ∗. Rel-

evant implication→r must also be distinguished from entailment→e, which we

will touch upon later.

Our formulation of the forcing clause for an atomic proposition, then, is:M,X 
 p iff X ∈ V(p)

An atomic propositionp is forced by the piece of informationX iff it is “deter-

mined” byX. The forcing clauses for the connectives that we are most interested

in are:M,X 
 φ→r ψ iff for all Y, eitherM,Y 1 φ orM,X ∪ Y 
 ψM,X 
 φ ◦r ψ iff for someY, Z such thatX = Y∪ Z,M,Y 
 φ andM,Z 
 ψ

We might write the◦r clause in a ‘pattern-matching’ style for clarity:M,Y∪ Z 
 φ ◦r ψ iffM,Y 
 φ andM,Z 
 ψ

The clause for→r says that a relevant conditional holds for a piece of information

iff for any piece of information for which the antecedent holds, the consequent

holds for the union of the two pieces of information. The clause for◦r says that

an intensional conjunction holds for a piece of information iff that piece of infor-

mation is the union of two pieces of information, one for which the left conjunct

holds, and the other for which the right conjunct holds. Conjunction and disjunc-



2.1. U’     19

tion are as in normal classical and intuitionistic10 settings; negation is classical

and does not figure any further for us.M,X 
 φ& r ψ iffM,X 
 φ andM,X 
 ψM,X 
 φ ∨r ψ iffM,X 
 φ orM,X 
 ψM,X 
 ¬φ iffM,X 1 φ

A formulaφ is said to bevalid if for any semilatticeS and any valuation function

V, we have? 
 φ, that is, ifφ is determined by the empty piece of information

in any circumstances. In the language of frames and models, we define validity

this way: A formulaφ is valid in a modelM = 〈F,V〉 iffM,? 
 φ, abbreviatedM 
 φ; φ is valid in a frameF iff M 
 φ for every valuationV, abbreviatedF 
 φ; andφ is valid iff F 
 φ for every frameF, that is, for every semilattice

S. Although pieces of information are noted to form a semilatticeS, the semilat-

tice’s partial order does not actually play a prominent role in the semantics, except

that the empty, that is, least, piece of information? is used to define validity. So

although there exists a partial order over pieces of information generally, it is im-

portant to note that this ordering has little rôle in the semantics for relevant logics,

apart from the fact that every semilattice has a common least element.

When the law of idempotencyX ∪ X = X is suspended, the multiplicative

fragment of the relevant logic semantics (that is, the fragment containing just the

connectives◦r and→r) becomes a semantics for multiplicative intuitionistic linear

logic (MILL).11 Linear logic, because contraction is no longer admissible, and

weakening never was; intuitionistic because it lacks apar connective (M); and

multiplicative because it contains only the remaining multiplicative conjunction

and implication.

Urquhart distinguishes the richer notion ofentailmentfrom relevant implica-

tion. For the semantic account of entailment (→e) he introduces possible worldsin

additionto pieces of information, to express the modal content of the notion. Pos-

sible worlds are used to represent totalities of facts, which form the background

of a judgement as to whether a piece of information determines a proposition. As

such, ‘quantities’ of background facts are not ‘weighed and measured’ with the

10Excepting the absence of intuitionistic monotonicity.
11A transition that Pym et al. make without comment.
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same requirements of relevance we have for pieces of information. This idea of

a factual background resembles Kripke’s idea of possible worlds in the semantics

of intuitionistic logic as “evidential situations”. An entailment is modal because a

propositionp must be determined by a piece of informationX against all possible

factual backgrounds. As in Kripke’s semantics for modal logic, the accessibility

relation between worlds holds when a world is possible, or accessible from the

standpoint of another, that ism ⊑ n iff n is possible from the point of view ofm.

The possible worlds are preordered by this accessibility relation.12 We say that

〈M,X,m〉 
 p iff atomic propositionp is determined by the piece of information

X ∈ S against the factual background at the possible worldm ∈ M, in the modelM = 〈M,⊑,S,?,∪,V〉. A proposition is valid iff it is determined by the empty

piece of information? against the factual background of every possible world, in

every modelM. The forcing clause for entailment is:M,X,m
 φ→e ψ iff for all Y, and alln such thatm⊑ n,

eitherM,Y, n1 φ orM,X ∪ Y, n
 ψ

This rule has two domains of semantic objects: pieces of information, for which

we have a combining operation∪ and possible worlds, for which we have a pre-

order relation⊑. The semantics ofBI use a single domain of semantic entities,

namely possible worlds or states, orresources. These have both a binary combi-

nation• and a preorder⊑ defined over them. The preorder is a preorder of possible

worlds, and not a partial order of pieces of information.

2.2. K’    

Kripke introduced the idea of possible worlds for his semantics for modal logic

[1959, 1963a, 1963b]. His semantics for intuitionistic logic [1965] is an extension

of that project. This section presents a summary of the semantics for intuitionistic

logic. Kripke definesmodel structures13 〈G,K,⊑〉, in which K is a non-empty

12The same holds for the accessibility relation in the semantics of the modal logicS4, as
Urquhart notes, but observe that the accessibility relation forS5 is in addition symmetric. See
Kripke [1963b] or Hughes & Cresswell [1996] for an overview.

13A model structure, but lacking a specially selected actual world, is called aframein modern
terminology.
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set of possible worlds,G ∈ K represents theactual world, and⊑ is a reflexive

and transitive binary relation between worlds.14 For the most part, we will omit

consideration ofG, and just consider model structures, or framesF = 〈K,⊑〉.
G does, however, figure in the definition of validity. A formulaφ is valid iff

V(φ,G) = T for every valuation functionV over a model structure〈G,K,⊑〉. That

is, φ is valid iff it is true at the actual worldG under any valuation.G also figures

and in Kripke’s informal interpretation of the semantics. Amodel is a model

structure taken together with a valuation functionV : Φ×K → {T,F} which maps

a proposition taken together with a possible world into{T, F}.15 We write down a

model as〈K,⊑,V〉, and denote it byM. The valuation function must satisfy the

constraint that:

If V(p,m) = T andm⊑ n thenV(p, n) = T

This is sometimes calledKripke monotonicity. It may be generalised, by induction

on formula depth, over all formulæφ for a modelM in our uniform notation:

If M,m
 φ andm⊑ n thenM, n
 φ

The semantic account of atomic propositions is really a philosophical matter; we

take as read that the valuationV for a given model assigns a truth value from{T, F}

to every pair (m, p) of a possible worldm and propositional variablep. As far as

we are concerned, this assignment may be arbitrary, subject to monotonicity.M,m
 p iff V(m, p) = T

For convenience, we define:M,m1 φ iff notM,m
 φ

It is worth noting that something like the law of excluded middledoesapply at

14We write⊑ for Kripke’s R, for uniformity, and to emphasize that it is a preorder. It is most
important to note that in many presentations of the semantics ofBI [Pym 1999, Pym 2002, O’Hearn
& Pym 1999, Pym, O’Hearn & Yang 2004] the direction of the relation is the reverse of ours,
that is, where we writem ⊑ n, they writen ⊑ m. We follow what we take to be the more
natural presentation of Kripke [1965], Galmiche & Méry [2001, 2003] and Galmiche, Méry &
Pym [2005].

15In Kripke’s formulation, the valuation function is called the model, and a model is said to be
defined over a model structure. In ours, a valuation function is associated with a frame, forming a
model.
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the level of the valuation function:everypropositional variable is assigned a truth

value ateverypossible world. So this semantics for intuitionistic logic has a clas-

sical base. The valuation does not assign truth values for compound propositions.

This work is done inductively by the forcing clauses for the connectives:M,m
 φ ∧ ψ iffM,m
 φ andM,m
 ψM,m
 φ ∨ ψ iffM,m
 φ orM,m
 ψM,m
 φ→ ψ iff for all n such thatm⊑ n, M, n1 φ orM, n
 ψM,m
 ¬φ iff for all n, m⊑ n,M, n1 φ

If we add the propositional constant⊥, having the forcing clause:M,m
 ⊥ never

then we can define negation¬φ ≡ φ → ⊥ and drop the clause for negation. Pym

et al. opt for this type of presentation of clauses for implication:M,m
 φ→ ψ iff for all n such thatm⊑ n,M, n
 φ impliesM, n
 ψ

but we prefer to spell out “A impliesB” as “not A, or B”, like Kripke, rather than

to hide it. Simply writing “implies” without explication can be a bit obscure, and

it also conceals some of the classical reasoning in the model theory.

The general idea for intuitionistic implication is that a conditional obtains iff

at any greater or equal possible world – informally, any equal or fuller state of

evidence – the consequent is true if the antecedent is true. When we have more

evidence, we can prove more, and importantly, things that are true stay true when

more evidence is obtained. In intuitionistic terms, of course, it makes better sense

to talk about what we can prove, rather than what is true (for a given state of

evidence).

The clauses for conjunction and disjunction are classical ones, but the clause

for intuitionistic implication is quite different. In this scheme, we would write the

clause for classical implication (→c) thus:M,m
 φ→c ψ iffM,m1 φ orM,m
 ψ

that is, without reference to any other possible world.

It is worth noting that in Kripke’s informal interpretation of the semantics for
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intuitionistic logic, possible worlds are viewed as “evidential situations”, that is,

situations in which we have access to certain, but not other information. This

gives us an interpretation of the preorder over possible worlds quite different to

the accessibility relation of one world to another familiar from the Kripke seman-

tics for modal logic. A possible world is greater than or equal, in this information

ordering, to another world, if all the information available at the lesser world, and

perhaps some more, is available at the greater world. The actual, or least world

G ∈ K in Kripke’s model structures marks out the present evidential situation,

which forms the root of a tree structure constructed according to the decompo-

sition of the relationR into single, transitive stepsS. So we have a ready-made

interpretation of intuitionistic logic in terms of the availability of information or

evidence. One notable feature of the interpretation is that although we cannot for-

get information once we have obtained it, we can miss out on future opportunities

to obtain certain information because of choices we make now. We may climb the

wrong branch of the tree, so to speak.

So we have reasonable semantics for two quite different sorts of logical sys-

tems, both of which appeal at some point or other to the semantic work done by

bodies or pieces of information. We combine – syntactically and semantically –

intuitionistic logic with an adaptation (namelyMILL) of the multiplicative frag-

ment of Urquhart relevant logic, to produceBI, which may be understood as a

logic of resources.

2.3. E K  

We now present a standard formulation of the Kripke resource semantics forBI.

The principal source is Galmiche, Méry & Pym [2005], but Pym [2002] and Pym,

O’Hearn & Yang [2004] are also important sources.

We use the usual language for propositionalBI. p, q, . . . ∈ P are proposition

letters. m, n, . . . ∈ M are statesof a model, also called possible worlds or re-

sources.⊑ is a preorder, that is, a reflexive, transitive binary relation onM. ⊑may

be partially defined. That is, not every pair of states need be comparable under⊑.

Definition 5 A frameF = 〈M, •, e,⊑〉 is a set of statesM and a preorder⊑, to-

gether with a commutative and associative binary operation on states• : M×M →
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M, having the distinguished statee ∈ M as its unit, such that

for all m ∈ M, m= m• e= e•m.

e is the left and right unit, since• is commutative. A frame is also called aKripke

resource monoid. The operation• satisfies abifunctorialityconstraint:

if m⊑ n andm′ ⊑ n′, thenm•m′ ⊑ n • n′ 2
e is not in general the least state ofM. • ‘combines’ two states, or resources, to

produce another. It is ‘order-preserving’ in the sense specified by bifunctoriality.

A special case of bifunctoriality is:

If m⊑ n thenm•m′ ⊑ n •m′

which we see in the form of the compatibility constraint for the dependency graphs

of resource tableaux.• is not idempotent, that is, in general it is not the case that

m • m = m, which is the main structural difference between this semantics and

Urquhart’s: • is the analogue forBI of the operation for combining pieces of

information, namely set-theoretic union∪, which is idempotent.

It is not in general the case thatm ⊑ m • n. This property is referred to as

aggregation. Aggregation may in fact hold in certain classes of frames, and may

be useful in modelling certain situations involving resources. Unlike Urquhart’s

semantics, where pieces of information form a semilattice under the join operation

∪, there is no requirement that there be a least element inM. States, or resources,

are not required to form a semilattice ordered by the relation⊑.

Definition 6 A valuation function V : P → ℘(M) is an assignment of a set of

states to each proposition letter. Any assignment must satisfy amonotonicitycon-

straint:
if m∈ V(p) andm⊑ n, thenn ∈ V(p) 2

Definition 7 A modelM = 〈F,V〉 = 〈M, •, e,⊑,V〉 is a frame together with a

valuation function. 2
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Given a model, we define a forcing relation
.16 The forcing clauses are those

of Kripke’s semantics for∧, ∨ and→:M,m
 φ ∧ ψ iffM,m
 φ andM,m
 ψM,m
 φ ∨ ψ iffM,m
 φ orM,m
 ψM,m
 φ→ ψ iff for all n ∈ M such thatm⊑ n,M, n1 φ orM, n
 ψ

together with clauses for∗ and−∗ adapted from Urquhart’s clauses for◦r and→r :M,m
 φ ∗ ψ iff there existn, n′ ∈ M such thatn • n′ ⊑ m,M, n
 φ andM, n′ 
 ψM,m
 φ−∗ψ iff for all n ∈ M such thatM, n
 φ,M,m• n
 ψ

In addition,BI contains propositional constants⊤, ⊥ andI . The clauses for these

in the elementary semantics are:M,m
 ⊤ alwaysM,m
 ⊥ neverM,m
 I iff e⊑ m

We say thatφ is forcedat a statem in a modelM if M,m 
 φ. Since we will

need frequently to refer to the forcing clauses, we reproduce them all together in

Figure 2.1.

A model is essentially the same as a Kripke model for intuitionistic logic.M is

a non-empty set of states (or resources, or possible worlds).17 The binary relation

⊑ on M is reflexive and transitive, as before. The relation⊑ in the semantics ofBI

does not need to be antisymmetric. Antisymmetry means that ifm⊑ n andn ⊑ m,

thenm= n. That is,⊑ need not be a partial order. Indeed, we have no realformal

requirement for an antisymmetrically derived notion of equality in the semantics,

although we are in possession of a notion of equality in virtue of the monoidal

structure of frames. Monoidal equality is indeed vital for establishing the equality

of various combinations of elements ofM under the• operation, but it certainly

does not furnish any criterion for establishing identity between distinct primitive

16M,m1 φ is just an abbreviation meaning “not{M,m
 φ}”, as before.
17We now write the set of states asM instead of Kripke’sK.



26 C 2 T   BI

elements ofM. We do however require the ability to recognize the distinguished

elementπ ∈ M which will be introduced with the new Kripke resource semantics

in §2.5. But this is not an example of the need for either a ‘primitive’ or antisym-

metric equality that is not derived from the monoid laws: Definition 11 contains

the consequence thatm = π iff π ⊑ m. There is no stipulation of antisymmetry

in Kripke’s semantics, nor in his semantics for the modal logicS4, which is sim-

ilar in essential respects to the intuitionistic semantics. In fact, modal languages

generally cannot express antisymmetry in their frames, or rather, equality defined

antisymmetrically [Blackburn et al. 2001, §3.3].

Definition 8 (Satisfiability) A formulaφ is satisfied at a statem in a modelM ifM,m
 φ. φ is satisfied in a modelM if for somem, M,m
 φ. φ is satisfiable

if it is satisfied in some modelM. 2
Definition 9 (Validity)

(i) A formula φ is valid in a modelM iffM,m
 φ for everym ∈ M. We writeM 
 φ.

(ii) φ is valid in a frameF iffM 
 φ for every valuationV. We writeF 
 φ.

(iii) φ is valid iff F 
 φ for every frameF. We write
 φ. 2
We now propose a weaker notion of validity, which aligns more closely with the

notion of theoremhood inBI which we will meet later on.

Definition 10 (e-Validity)

(i) A formula φ is e-valid in a modelM iffM,m 
 φ for everym ∈ M such

thate⊑ m.

(ii) φ is e-valid in a frameF iff φ is e-valid in every model〈F,V〉.
(iii) φ is e-valid iff φ is e-valid in every frame. 2
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 p iffm ∈ V(p)M,m
 ⊤ alwaysM,m
 ⊥ neverM,m
 φ ∧ ψ iffM,m
 φ andM,m
 ψM,m
 φ ∨ ψ iffM,m
 φ orM,m
 ψM,m
 φ→ ψ iff for all n ∈ M such thatm⊑ n,M, n1 φ orM, n
 ψM,m
 I iff e⊑ mM,m
 φ ∗ ψ iff for somen, n′ ∈ M such thatn • n′ ⊑ m,M, n
 φ andM, n′ 
 ψM,m
 φ−∗ψ iff for all n ∈ M such thatM, n
 φ,M,m• n 
 ψ

Figure 2.1: The forcing relation for the elementary Kripke resource semantics

2.4. S  

The usual idea for intuitionistic logic is to consider the states of a model not as

possible worlds, but as states of knowledge, orepistemicstates, and the preorder

⊑ as an information ordering on those states. The monotonicity constraint says,

effectively, that every ordinary atomic proposition that is known in a given epis-

temic state is known at any state placed equally or higher in the information or-

dering. In temporal terms, it says that nothing, once learned, is ever forgotten.

With BI, we make the analogy of states with (computational) resources, rather

than epistemic states. The preorder⊑ may then be seen as an ordering on the

sufficiency of a resource for some given kind of task. For example, for a task

that requires an allocation of memory,256K ⊑ 512K, in the sense that if a given

block of 256K is sufficient, then any block of512K will be sufficient. Observe that

some resources, like computer memory, are fungible, in the economic sense of

being a freely interchangeable commodity, and comparable by quantity. Other

resources, like URLs, are more reasonably viewed as unique, and are not so eas-

ily comparable. Certainly, however, we could specify an information preorder

over URLs. There is an obvious sense in which, for example, the URL of the

Wikipedia article on XPathhttp://en.wikipedia.org/wiki/XPath lies below the

URL of the W3C Recommendation on XPathhttp://www.w3.org/TR/xpath in an

information ordering. The Wikipedia article contains less information, and in a

http://en.wikipedia.org/wiki/XPath
http://www.w3.org/TR/xpath
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certain sense is entirely subsumed by the recommendation, although they are tex-

tually distinct; this despite any pedagogical value the Wikipedia article may have,

or helpful examples it may contain. Of course a given document might be refer-

enced, or aliased, by more than one URL, or two distinct documents may contain

precisely the same information, yielding equivalence in a reasonable information

preorder. It is quite natural to collect non-fungible resources into sets and fungi-

ble resources into multisets. Hence, for example{512K} ⊑ {256K, 256K, 256K} and

{http://en.wikipedia.org/wiki/XPath} ⊑ {http://en.wikipedia.org/wiki/XPath,

http://en.wikipedia.org/wiki/XQuery}. In the first example, we suppose some

sort of aggregation function on multisets of fungible resources which provides a

basis for comparison, and in the second, just upon set inclusion for sets of unique,

or non-fungible resources. It would seem reasonable to identify such an aggre-

gation function with the• operation in models. We can see that different sorts of

aggregation functions make sense for different sorts of resources. If sets of non-

fungible resources are regarded as states of a model, then we can simply define•

as set union, and if multisets of fungible resources are the states, we might need

to regard• as a more elaborate aggregation of elements of a multiset. Of course,

when we have to think of occurrences of the same token in a multiset not as mul-

tiple occurrences of the very same object, but as distinct instances of objects of

the same type.{256K, 256K, 256K} stands for three materially disjoint blocks of

memory, and not the same block mentioned three times. We may then want to an-

notate distinct occurrences of fungible resources, thus:{256K1, 256K2, 256K3}, and

define aggregation such that, for example:{256K1, 256K2, 256K3} • {256K3, 256K4} =

{256K1, 256K2, 256K3, 256K4}. We may also wish to define aggregation as disjoint,

perhaps to avoid computational conflict over resources, so that{256K1, 256K2, 256K3}•

{256K3, 256K4} might instead be undefined due to the occurrence of256K3 on both

sides. So at least in the fungible case, we may sometimes want a notion ofdisjoint

aggregation. We can also imagine situations in which we might want to make

use of a disjoint union, for instance to express a constraint that different com-

putational stages or processes use distinct sources of information. This kind of

requirement for disjoint combination is accommodated in a straightforward way

by the partially-defined monoid semantics which we will come to soon. It simply

http://en.wikipedia.org/wiki/XPath
http://en.wikipedia.org/wiki/XPath
http://en.wikipedia.org/wiki/XQuery
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allows that•-combinations of states need not always be defined.18 More tech-

nically, we can envisage restricted variants ofBI which correspond to classes of

frames in which certain additional properties might hold. For instance, the class

of frames in which• and⊑ satisfy an aggregation property, such that for allm, n

it is the case thatm ⊑ m • n, which is not a general property in standardBI. Or

we might develop classes of frames which explicitly identify states with sets of

resources or multisets of ‘typed’ resources, perhaps with disjoint aggregation, and

which impose other constraints appropriate to some real-world situation.

2.5. N K  

This section summarises the new Kripke resource semantics forBI [Galmiche,

Méry & Pym 2005, §5.2]. We also prove a standard generalised monotonicity

result for this semantics, which holds for all the variations of the semantics pre-

sented in this chapter. This new semantics is a small variation on the elementary

semantics. The setM of states in a frame must contain an additional distinguished

stateπ, which is the greatest state in the preorder. It is a special state which forces

⊥ in every model; of course,π is never forced at any other state. The point of

includingπ is essentially to give a representation of⊥ that is internal to a model.

This semantics is equivalent in semantic strength to the relational and partially-

defined monoid semantics that follow. The relational semantics is essentially a

different statement of this semantics, and contains the same trick.

Definition 11 A frameF = 〈M, •, e, π,⊑〉 is just the same as for the elementary

Kripke resource semantics (Definition 5), except that in every frame, there is an-

other distinguished stateπ ∈ M, called theinconsistent state, such that

for all m ∈ M, m⊑ π and π •m= π.

Consequently,

π ⊑ m iff m= π.

18An equivalent accommodation can be made in a less obvious way by the new Kripke resource
semantics – which will be introduced in the following section – by mapping forbidden combina-
tions of states ontoπ (see Definition 11).
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π is the greatest state inM, under the preorder⊑, in any frame. 2
Definition 12 A valuationfunctionV : P → ℘(M) is an assignment of a set of

states to each proposition letter, as in Definition 6. Any assignment must satisfy

themonotonicityconstraint. By monotonicity, for anyp ∈ P, if there existsm ∈ M

such thatm ∈ V(p), thenπ ∈ V(p). For reason of uniformity, we further stipulate

that for all p ∈ P, π ∈ V(p), even wherep is not satisfied at any other state. 2
Definition 13 A modelM = 〈F,V〉 = 〈M, •, e, π,⊑,V〉 is a frame together with a

valuation function. Given a model, we define a forcing relation
:M,m
 p iffm ∈ V(p)M,m
 ⊤ alwaysM,m
 ⊥ iff m= πM,m
 φ ∧ ψ iffM,m
 φ andM,m
 ψM,m
 φ ∨ ψ iffM,m
 φ orM,m
 ψM,m
 φ→ ψ iff for all n ∈ M such thatm⊑ n,M, n1 φ orM, n
 ψM,m
 I iff e⊑ mM,m
 φ ∗ ψ iff for somen, n′ ∈ M such thatn • n′ ⊑ m,M, n
 φ andM, n′ 
 ψM,m
 φ−∗ψ iff for all n ∈ M such thatM, n
 φ,M,m• n 
 ψ 2
We require a definition of the depth of a formula for proofs by induction on a

formula’s complexity. The following routine definition is adapted from Troelstra

& Schwichtenberg [2000, p. 10].

Definition 14 The depthof a formula is the length of the longest branch in its

construction tree. The depth|φ| of a formulaφ is defined recursively. Proposi-

tional letters and constants have depth 0; and for any binary operator◦, |φ ◦ ψ| =

max(|φ|, |ψ|) + 1. 2
The following lemma holds for all the variations of Kripke resource semantics.
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Lemma 1 (Generalised Monotonicity)

If M,m
 φ andm⊑ n thenM, n
 φ 2
P The proof is by induction on the depth of a formula. We take as the base

cases the forcing clauses for propositional letters and constants.

1. In the case thatM,m 
 p, we havem ∈ V(p). If m ⊑ n, then by the

monotonicity constraint on the valuation of atomic formulæ in Definition

12, we haven ∈ V(p), and henceM, n
 p.

2. M, n 
 ⊤ always, so triviallyM, n 
 ⊤ in the case thatM,m 
 ⊤ and

m⊑ n,

3. In the case thatM,m 
 ⊥, we havem = π. Then if m ⊑ n, thenn = π by

Definition 11, andM, n
 ⊥.

4. In the case thatM,m
 I , we havee ⊑ m. Sincem ⊑ n, we havee ⊑ n by

the transitivity of⊑, and henceM, n
 I ,

In the inductive step, we consider the forcing clause for each binary connective,

and show that it preserves monotonicity. In each case, the inductive hypothesis is

that ifM,m
 φ andm⊑ n, thenM, n
 φ. In each case, we assume thatm⊑ n.

1. Suppose thatM,m 
 φ ∧ ψ. ThenM,m 
 φ andM,m 
 ψ. By the

inductive hypothesis,M, n
 φ andM, n
 ψ, so we haveM, n
 φ ∧ ψ.

2. Suppose thatM,m 
 φ ∨ ψ. Then eitherM,m 
 φ orM,m 
 ψ. By the

inductive hypothesis, eitherM, n 
 φ or M, n 
 ψ, so we haveM, n 

φ ∨ ψ.

3. Suppose thatM,m 
 φ → ψ. Then for alln′ such thatm ⊑ n′, eitherM, n′ 1 φ andM, n′ 
 ψ. Then sincem ⊑ n, for all n′ such thatn ⊑ n′,

eitherM, n′ 1 φ andM, n′ 
 ψ, and henceM, n 
 φ → ψ (without use of

the inductive hypothesis).
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4. Suppose thatM,m 
 φ ∗ ψ. Then there existn′, n′′ such thatn′ • n′′ ⊑ m,

andM, n′ 
 φ andM, n′′ 
 ψ. Sincem ⊑ n, n′ • n′′ ⊑ n by the transitivity

of ⊑, and soM, n
 φ ∗ ψ (without use of the inductive hypothesis).

5. Suppose thatM,m 
 φ−∗ψ. Then for alln′ such thatM, n′ 
 φ, we haveM,m• n′ 
 ψ. By bifunctoriality we havem• n′ ⊑ n • n′ for all n′. Then

for all n′ such thatM, n′ 
 φ, we haveM, n • n′ 
 ψ by the inductive

hypothesis, and henceM, n
 φ−∗ψ. �
Note particularly that cases 3 and 4 of the inductive step do not actually require

the inductive hypothesis. It is in this sense that we say that the corresponding

forcing clauses have built-in monotonicity. We will return to this point when we

make an adjustment to the partially-defined monoid semantics (which might ret-

rospectively be applied in the present case) to build-in monotonicity to the forcing

clause for−∗ which is nonetheless conservative for the forcing relation as a whole.

Lemma 2 M, π 
 φ for anyφ in every modelM. 2
P By induction on the degree of a formula. �
Satisfiability is defined just as for the elementary semantics in Definition 8, except

that: φ is satisfied in a modelM if for somem such thatm , π, M,m 
 φ.

Validity is defined just as in Definition 9.

2.6. R   BI

This section summarises the relational semantics forBI given by Galmiche, Méry

& Pym [2005, §5.1]. This relational semantics is founded upon the insight that

we can treatm•m′ ⊑ n as a ternary relationR⊑mm′n.19

A frameF = 〈M, e, π,R⊑〉 contains a ternary relationR⊑ on states instead of

a preorder⊑ and a composition operator• on states.e ∈ M is the unit state, and

19The compatibility constraint in Figure 2.2, taken together with transitivity, takes the place of
the bifunctoriality constraint on•. Cf. the compatibility condition on the closureK of the set of
constraintsK on labels forTBI tableaux. The domain functionD gives the set of labels appearing
in a set of constraints: ify◦ z ∈ D(K) andx ≤ y ∈ K thenx◦ z≤ y◦ z ∈ K [Galmiche et al. 2005,
§3.1, p. 1045].
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Reflexivity ∀x . x ⊑ x

Commutativity ∀x∀y∀z.R⊑xyz→ R⊑yxz

Associativity ∀x∀y∀z∀v .∃u(R⊑xyu∧ R⊑uzv)↔ ∃t(R⊑yzt∧ R⊑xtv)

Compatibility ∀x∀y∀z∀x′ .R⊑xyz∧ x ⊑ x′ → R⊑x′yz

Transitivity ∀x∀y∀z∀z′ .R⊑xyz∧ z⊑ z′ → R⊑xyz′

π-max ∀x∀y .R⊑xyπ

π-abs ∀x∀y .R⊑πxy→ π ⊑ y

Figure 2.2: Conditions satisfied byR⊑

π ∈ M the greatest state, as with the new Kripke resource semantics (Definition

11). For convenience, we definem⊑ n ≡ R⊑emn. Any relationR⊑ must satisfy the

conditions given in Figure 2.2.20 A modelM = 〈F,V〉 is a frame taken together

with a valuation functionV defined just as in Definition 12. Given a model, we

define a forcing relation
:M,m
 p iffm ∈ V(p)M,m
 ⊤ alwaysM,m
 ⊥ iff m= πM,m
 φ ∧ ψ iffM,m
 φ andM,m
 ψM,m
 φ ∨ ψ iffM,m
 φ orM,m
 ψM,m
 φ→ ψ iff for all n ∈ M such thatm⊑ n,M, n1 φ orM, n
 ψM,m
 I iff e⊑ mM,m
 φ ∗ ψ iff for somen, n′ ∈ M such thatRnn′m,M, n
 φ andM, n′ 
 ψM,m
 φ−∗ψ iff for all n, n′ ∈ M such thatRmnn′,M, n1 φ orM, n′ 
 ψ

Note that the forcing clause for−∗ in the Kripke resource semantics does not in-

volve ⊑, but that the corresponding clause in this relational semantics does; re-

member thatRmnn′ is equivalent tom • n ⊑ n′. It can readily be seen that this

20There is a typographical error in the associativity condition in Galmiche et al. [2005, §5.1, p.
1062].∀t should read∀v, as here. Otherwisev is free and∀t does nothing, as occurrences oft are
bound by∃t.
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formulation strengthens the meaning of multiplicative implication taken in isola-

tion, in comparison with the elementary and new Kripke resource semantics. This

modification is conservative with respect to the extension of the forcing relation

taken as a whole, but turns out to be crucial to our proof of completeness.21 The

clause builds-in monotonicity in the sense noted earlier.φ needs to hold not only

atm•n but at anyn′ such thatm•n ⊑ n′. That is, it stipulates the monotonicity of

φ in a way that the elementary and new Kripke resource semantics do not. In the

relational semantics, the inductive step case for multiplicative implication in the

proof of generalised monotonicity can be proven without appealing to the induc-

tive hypothesis. So although this change strengthens the meaning of the clause for

−∗ taken alone, it is a conservative modification of Kripke resource semantics.

2.7. P-    BI

This section summarises the partially-defined monoid (PDM) semantics forBI

[Galmiche, Méry & Pym 2005, §5.3]. We also make and defend a small modifi-

cation to this semantics. The PDM semantics presents a different, but equivalent

solution to the problem of the completeness ofBI with ⊥, which is handled by the

internalisation of inconsistency usingπ. The shape of this problem will become

clearer once we are involved in the details of the completeness proof. The general

apparatus is the same as for the elementary Kripke resource semantics, except that

that the function• : M × M → M may be partially defined.↓ is used to indicate

that a combination of states is defined: readm• n↓ as “m• n is defined”.22 The

only constraint on the partial definition of• is associative: thatx • (y • z) ↓ iff

(x • y) • z↓. The forcing clause for⊥ is the same as for the elementary semantics

once again, andπ does not figure here. The forcing relation is defined as follows:

21Galmiche et al. [2005, Theorem 5.2] in fact carry out their completeness proof with respect
to this formulation of the semantics, but they do not note this point of difference with the Kripke
resource semantics and PDM semantics.

22The use of the↓ symbol is quite distinct from its proof-theoretic use with the calculus of
structures later in the thesis. Although the two uses may come into uncomfortable proximity,
no ambiguity will arise. Our use of the symbol is retained in both cases for uniformity with the
separate literatures onBI and on the calculus of structures.
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 p iff m∈ V(p)M,m
 ⊤ alwaysM,m
 ⊥ neverM,m
 φ ∧ ψ iffM,m
 φ andM,m
 ψM,m
 φ ∨ ψ iffM,m
 φ orM,m
 ψM,m
 φ→ ψ iff for all n ∈ M such thatm⊑ n,M, n1 φ orM, n
 ψM,m
 I iff e⊑ mM,m
 φ ∗ ψ iff for somen, n′ ∈ M such thatn • n′ ↓ andn • n′ ⊑ m,M, n
 φ andM, n′ 
 ψM,m
 φ−∗ψ iff for all n ∈ M such thatm• n↓ andM, n
 φ,M,m• n 
 ψ

We have to refine the bifunctoriality constraint for the partially defined setting.

In the various wholly-defined monoid semantics, every•-expression having de-

fined constituents is defined, so any apparent existential import of bifunctoriality

is beside the point. The interpretation of bifunctoriality can fall between two ex-

tremes. On the one hand, we could adopt a weak interpretation, which makes no

guarantees about the definedness of any•-expressions:

If m⊑ n andm′ ⊑ n′ andm•m′ ↓ andn • n′ ↓, thenm•m′ ⊑ n • n′.

This would mean that no proof could not rely on bifunctoriality to produce exis-

tential information about combinations of states, just ordering information about

them, should they exist. This would present no difficulty for our completeness

proof, but would mean that we could not prove generalised monotonicity for the

PDM semantics (cf. case 5 of the inductive step of the proof of Lemma 3 below).

A strong construal would guarantee the definedness of combinations on the left-

and right-hand sides, thus:

If m⊑ n andm′ ⊑ n′, thenm•m′ ↓ andn • n′ ↓ andm•m′ ⊑ n • n′

It is enough, however, to guarantee the definedness of the combination on the left-

hand side when the combination on the right is known to be defined, making no
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guarantee about the right-hand side. We restate bifunctoriality thus:

If m⊑ n andm′ ⊑ n′ andn • n′ ↓, thenm•m′ ↓ andm•m′ ⊑ n • n′.

Lemma 3 (Generalised Monotonicity for the PDM semantics)

If M,m
PDM φ andm⊑ n thenM, n
PDM φ 2
P The proof is the same as the proof of Lemma 1 expect for cases 4 and 5 of

the inductive step, which in this case run as follows:

4. Suppose thatM,m
PDM φ∗ψ. Then there existn′, n′′ such thatn′•n′′ ↓ and

n′ • n′′ ⊑ mandM, n′ 
PDM φ andM, n′′ 
PDM ψ. Sincem⊑ n, n′ • n′′ ⊑ n

by the transitivity of⊑, and since we already haven′•n′′ ↓,M, n
PDM φ∗ψ.

5. Suppose thatM,m 
PDM φ−∗ψ. Then for alln′ such thatm • n′ ↓ andM, n′ 
PDM φ, we haveM,m • n′ 
PDM ψ. By bifunctoriality we have

m•n′↓ andm•n′ ⊑ n•n′ whenevern•n′↓. Then for alln′ such thatn•n′ ↓

andM, n′ 
PDM φ, we haveM, n • n′ 
PDM ψ by the inductive hypothesis,

and henceM, n
PDM φ−∗ψ. �
We make one modification to the PDM semantics as given by Galmiche et al. We

alter the forcing clause for−∗ as follows:M,m
 φ−∗ψ iff for all n ∈ M such thatm• n↓ andM, n
 φ,
and alln′ ∈ M such thatm• n ⊑ n′, M, n′ 
 ψ

We can give a slightly more pleasant equivalent, flattened formulation:M,m
 φ−∗ψ iff for all n, n′ ∈ M such thatm• n↓ andM, n
 φ

andm• n ⊑ n′, M, n′ 
 ψ

Any formulaφ−∗ψ forced atm in the unmodified semantics will in any case be

forced at anyn such thatm ⊑ n, in virtue of generalised monotonicity, which

holds with or without this modification.
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 p iff m∈ V(p)M,m
 ⊤ alwaysM,m
 ⊥ neverM,m
 φ ∧ ψ iffM,m
 φ andM,m
 ψM,m
 φ ∨ ψ iffM,m
 φ orM,m
 ψM,m
 φ→ ψ iff for all n ∈ M such thatm⊑ n,M, n1 φ orM, n
 ψM,m
 I iff e⊑ mM,m
 φ ∗ ψ iff for somen, n′ ∈ M such thatn • n′ ↓ andn • n′ ⊑ m,M, n
 φ andM, n′ 
 ψM,m
 φ−∗ψ iff for all n, n′ ∈ M such thatm• n↓ andM, n
 φ
andm• n ⊑ n′, M, n′ 
 ψ

Figure 2.3: The forcing relation for the revised PDM semantics

Proposition 1 The revised PDM semantics, with the modified forcing clause for

−∗, is equivalent to the standard PDM semantics. 2
P We label the forcing relation of the revised PDM semantics
PDM′. The two

semantics differ only in the forcing clause for−∗. Suppose thatM,m
PDM φ−∗ψ.

Then for alln ∈ M suchM, n 
PDM φ andm • n ↓, we haveM,m• n 
PDM ψ.

For all n′ ∈ M such thatm • n ⊑ n′, we haveM, n′ 
PDM ψ by Lemma 3.

Hence if the PDM clause holds, the revised PDM clause holds. Suppose thatM,m 
PDM′ φ−∗ψ. Then for alln, n′ ∈ M such thatm • n ↓ andM, n 
PDM′ φ

andm• n ⊑ n′, we haveM, n′ 
PDM′ ψ. Then for alln ∈ M such thatm• n↓ andM, n
PDM′ φ we haveM,m•n
PDM′ ψ, sincem•n ⊑ m•n. Hence if the revised

PDM clause holds, the PDM clause holds. �
The motivation for this modification is that it is technically necessary for the suc-

cess of our completeness proof in §3.4.4. We are also following the precedent that

has already been quietly set by the relational semantics. We use a countermodel

construction in which states of the countermodel are so-called prime theories; es-

sentially sets of formulæ which are closed under deducibility. Plainly, not every

set of formulæ is a prime theory, and we require the preorder over the elements of

countermodels to have all non-empty sets of formulæ as its domain, not just the

prime theories. We wantm• n to be meaningful in the preorder whenever it is de-

fined, even when it is not a first-class state of the model, that is, not a prime theory.
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Essentially, we will define• : M × M → ℘(Φ) and⊑ : ℘(Φ) × ℘(Φ)→ Bool, with

M ⊂ ℘(Φ), for the purposes of the completeness proof. We acknowledge the ob-

jection that in this case〈M, •, e〉 is no longer a monoid. This is a significant fault,

introduced only out of technical exigency. We regard the problem of it correction

as open.23

23The most promising approach been unsuccessful. The idea was to find a definition of• for
use in the completeness proof to supersede Definition 33 (which also defines⋆), under which we
could definem • n as a unique prime theory whenm andn are prime theories. Unfortunately,
althoughm⋆ n will always have a prime extension, there appears to be no way to define aunique
least prime extension. We investigated the conjecture that

⋂

(m⋆ n)+, the intersection of all prime
extensions ofm⋆ n, which is a sub-prime extension ofm⋆ n (see Definition 32) and is less than
or equal to every prime extension ofm⋆ n (see Lemma 20), might always be a prime theory in the
case thatm andn are prime theories, but we were unable to find a proof. In this case, we could
define• : M × M → M:

m• n =

{
⋂

(m⋆ n)+ if m⋆ n 0 ⊥
undefined otherwise

Other unsuccessful investigations have involved significant restructuring of the completeness
proof.
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In this chapter we present a formulation of the propositional logic of bunched

implications (BI) in the calculus of structures. An encoding of sequents into struc-

tures is proposed.BI is an asymmetric system, so we propose a straightforward

variation of the definition ofpolarity used by Tiu [2005] for intuitionistic logic.

3.1. BI     , I

For this formulation we draw heavily upon the formulation of the systemSJSg

for propositional intuitionistic logic given by Tiu [2005].1 Straßburger’s [2003]

treatment of multiplicative exponential linear logic (MELL) has been influential.

The logic of bunched implicationsBI, like intuitionistic logic, is asymmetric and

lacks involutive negation.BI also has a wider range of connectives than usual,

irreducible to one another, and including, of course, the two implications.

Definition 15 A structureis defined by the grammar:

RF a | ⊤ | ⊥ | I | (R; R) | [R; R] | 〈R; R〉 | (R,R) | 〈R,R〉

Upper-case lettersR,T,U, ... are structures. We reserve the letterS to denote

1Our systemSBISg is based upon Tiu’s systemSJSg in the April 2005 draft of the paper.
The down-fragment ofSJSg is labelledJSg and the up-fragmentcJSg, and we will follow this
convention. The LPAR 2006 version of the paper [Tiu 2006] presents a different collection of
systems of (quantified) intuitionistic logic in the calculus structures, labelledI instead ofJ. Theg,
for “general”, indicates the non-local status of the system, that is, that it has non-atomic identity,
cut and structural rules.

39
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an entire structure, never a substructure. Lower-case letters a, b, c, ... are atomic

propositional structures.⊤,⊥ andI are the propositional constants as structures.2
Square parentheses indicate a disjunctive structure, round parentheses a conjunc-

tion, and angled parentheses an implication, as in formulations of intuitionistic

logic. We adopt the convention, used for bunches inLBI, that “;” additively con-

nects structures in forming a new structure, and “,” multiplicatively connects struc-

tures. An expressionS{R} is called acontext, and indicates a structure containing

a substructureR at arbitrary depth. When the substructure is a tuple construction,

the braces may be omitted, e.g.S[R,T]. S{ } represents a structure with ahole in

it. We define equality of structures as shown in Figure 3.1. The unit properties,

associativity, commutativity and currying arise directly from isomorphisms in the

categorical models, and also reflect proof-theoretic equivalences, i.e. provability

both ways inLBI. Congruence is a natural equality for tree structures, and is sim-

ilar to congruence of bunches. Because of associativity, nested structures of the

same sort may be flattened, disregarding nested parentheses. For instance, we may

write [R; [T; [U; V]]] as [R; T; U; V]. We may also write〈(R; T); U〉 as〈R; T; U〉,

or 〈(R,T),U〉 as〈R,T,U〉. These are just abbreviations, and empty and singleton

tuples do not occur. We might have included equivalences for the distributivity

theorems (φ∧ (ψ∨χ)) ∗−∗ ((φ∧ψ)∨ (φ∧χ)) and (φ ∗ (ψ∨χ)) ∗−∗ ((φ ∗ψ)∨ (φ ∗χ)),

but these will be provable in any case, and have the drawback that the number

of occurrences ofφ varies on either side of each equivalence. The function· S

defined in Figure 3.2 recursively specifies the translation from formulæ into struc-

tures, and the function· L defined in the same figure defines the translation from

structures into formulæ.p stands for a proposition letter anda an atomic structure:

there is a one-to-one mapping between proposition letters and atomic structures.

The translation of bunches into structures, which we also call· S, is an extension

of the translation of formulæ into structures, and is given in Figure 3.3. In this

case, the formulæ are singleton bunches. Note that the unit bunches?a and?m are regarded as equivalent to the propositional constants⊤ andI , and that the

translation is forgetful, in that the distinction between formulæ and bunches is lost

in the translation. A sequentΓ ⇒ φ is translated〈ΓS, φS
〉. We treat the⇒ as a

multiplicative implication (−∗). This is an arbitrary choice, as discussed earlier.
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Units [R;⊥] = R (R;⊤) = R (R, I ) = R
〈⊤; R〉 = R 〈I ,R〉 = R

[⊤;⊤] = ⊤ (⊥;⊥) = ⊥ 〈⊥;⊤〉 = ⊤ 〈⊥;⊥〉 = ⊤

Associativity [R; [T; U]] = [[R; T]; U] (R; (T; U)) = ((R; T); U)
(R, (T,U)) = ((R,T),U)

Commutativity [R; T] = [T; R] (R; T) = (T; R) (R,T) = (T,R)

Currying 〈(R; T); U〉 = 〈R; 〈T; U〉〉 〈(R,T),U〉 = 〈R, 〈T,U〉〉

Congruence if R= T thenS{R} = S{T}

Figure 3.1: Syntactic equality of structures

atomic p
S
= a

IS = I
⊤S = ⊤

⊥S = ⊥

φ ∗ ψ
S
= (φ

S
, ψ

S
)

φ−∗ψ
S
= 〈φ

S
, ψ

S
〉

φ ∧ ψ
S
= (φ

S
;ψ

S
)

φ ∨ ψ
S
= [φ

S
;ψ

S
]

φ→ ψ
S
= 〈φ

S
;ψ

S
〉

aL = p
I L = I
⊤L = ⊤

⊥L = ⊥

(R,T)
L
= RL ∗ TL

〈R,T〉
L
= RL −∗TL

(R; T)
L
= RL ∧ TL

[R; T]
L
= RL ∨ TL

〈R; T〉
L
= RL → TL

Figure 3.2: Translations between formulæ and structures

atomic p
S
= a

IS = I ?mS
= I

⊤S = ⊤ ?aS
= ⊤

⊥S = ⊥

φ ∗ ψ
S
= (φ

S
, ψ

S
) Γ ;∆

S
= (ΓS;∆S)

φ−∗ψ
S
= 〈φ

S
, ψ

S
〉

φ ∧ ψ
S
= (φ

S
;ψ

S
) Γ ,∆

S
= (ΓS,∆S)

φ ∨ ψ
S
= [φ

S
;ψ

S
]

φ→ ψ
S
= 〈φ

S
;ψ

S
〉

Figure 3.3: The translation from bunches into structures



42 C 3 BI     

A derivation in the calculus of structures is a finite chain of structures, with

a single premise at the top and the conclusion at the bottom. The structures are

linked by downward applications of rules. A proof is a derivation whose premise

is ⊤ or I . A proof-search procedure would typically proceed upwards from the

conclusion.

Now we need some rules. Rules may involve more than one connective, and

express characteristic inferences of the system. The calculus of structures replaces

the rules of identity and cut with a dual pair ofinteractionrules,i↓ (the identity)

andi↑ (the cut). In the selection of rules we need to aim not just for soundness and

completeness, but also simplicity and a minimum number of rules. If we conjoin

premises intuitionistically, we will able to obtain candidate rules by encoding any

rule or derivation ofLBI. But to obtain corules, we need an adequate notion of

polarity.

3.2. P

Formulations for classical and linear logic depend on an involutive negationR,

to state each corule. In symmetric sequent calculi, polarity exists inasmuch as

sequents are2 divided into antecedent and succedent, with left- and right-handed

pairs of rules. But in these cases symmetry and involution give us enough to obtain

duality. In an asymmetric system like intuitionistic logic orBI, all that we have is

sidedness. For intuitionistic logic, negative polarity corresponds to the left-hand

side (antecedent) and positive polarity to the right-hand side (succedent).

We now give a definition of polarity forBI analogous to definition of polarity

given by Tiu [2005] for intuitionistic logic in the calculus of structures. This

definition differs inasmuch as it is explicitly decompositional – inwards from the

outside of the structure.

Definition 16 The top-level context{ } is the contextS{ } such thatS{R} = R. { }

may also be called theempty context. 2
Definition 17 (Polarity) Each context in a structure has either positive or neg-

ative polarity, but not both. The polarity of a context is defined recursively:

2Or may be– linear logic is typically right-sided, but just for convenience.
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(i) The top-level context{ } is positive;

(ii) If [ S{ }; R], [R; S{ }], (S{ }; R), (R; S{ }), (S{ },R), (R,S{ }), 〈R; S{ }〉 or

〈R,S{ }〉 is positive,S{ } is positive, otherwise it is negative;

(iii) If 〈S{ }; R〉 or 〈S{ },R〉 is positive,S{ } is negative, otherwise it is positive.2
This definition is not a standard inductive definition, because it starts with its base

case (i) at the outside of a structure, and works inwards to determine the polarity

of each context in the structure. This is permissible because structures are always

finite in size. We expect polarity to be preserved under equality of contexts.3

Given a structureS, each substructureR of S occupies a holeS{ } in S – that is,

a position in the tree structure – which is either positive or negative, according

to this definition. The set of holes inS is partitioned into positive and negative

contexts. In the base case, the top-level context{ } is occupied byS itself; a

structure that does not occupy a hole in another structure is positive.4 As Brünnler

[2004] points out, the system is asymmetric only because the context{ } is positive.

Polarity is a property of a context, that is, of a substructurerelative to the top-

level structure containing it, and without reference to the internal structure of the

substructure. Polarity must not be considered – at least in the present formulation5

– as a property of structures, only as a property of contexts. Inspection of the

definition reveals that polarity essentially involves the position of substructures

in implications. Context expressionsS{R} are annotated to indicate polarity – or

rather, require it – in rule specifications, thus:S+{R} or S−{R}. An annotation

S+{R} (respectivelyS−{R}) stipulates that the rule at hand is applicable only in

cases where the substructureRoccupies a positive (respectively negative) context

in S. Polarity-checking when looking for rule applications constitutes a form of

non-localityin the formulation.6

3S{ } = S′{ } iff ∀R.S{R} = S′{R}.
4More precisely, the contextS{S′} is positive ifS = S′.
5Tiu [2005] gives a local system for intuitionistic logic that assigns polarity labels to structures

based upon an initial application of the definition, but then depends on the conservation of polarity
under application of the rules: structures never move between positive and negative contexts.

6As does the need to check that two formulæ are equal when attempting to apply, e.g. a (non-
atomic) rule of contraction.
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Once we have an adequate definition of polarity, we can define duality of rules.

In symmetric systems, we can define negation over structures (R), and taking a

rule as an implication in the system, obtain the dual of a rule by contraposition

of the implication. Something similar occurs with intuitionistic logic, except that

instead of negating substructures under contraposition, the polarity restriction on

a ruleρ is inverted, thus:

S+{R}
ρ↓

S+{T}

S−{T}
ρ↑

S−{R}

The question arises, whether a more complex notion of polarity might be re-

quired to cope with the coexistence of additive and multiplicative implications,

or whether the simple ‘sidedness’ definition will suffice. Is there any any kind of

collision of polarities when the two implications are mixed? Should the polarity

of S{ } in 〈〈S{ }; R〉,T〉 simply be positive, or should it instead take some more

exotic value? We conjecture at this point that the simple definition is adequate,

and this conjecture will be borne out by the soundness and completeness results

later on.

3.3. BI     , II

We are now in a position to make an initial proposal of a system of rules forBI.7

The system of rules directly mirrors the fact that the proofs ofBI form a bicartesian

DCC (see §1.4). First, the multiplicativedownfragment:

S+{I }
im↓

S+〈R,R〉

S+(〈R,T〉, 〈U,V〉)
scm↓

S+〈(R,U), (T,V)〉

S+(〈R,T〉, 〈U,V〉)
sim↓

S+〈〈T,U〉, 〈R,V〉〉

The additivedownfragment:

S+{⊤}
ia↓

S+〈R; R〉

S+(〈R; T〉; 〈U; V〉)
sca↓

S+〈(R; U); (T; V)〉

S+(〈R; T〉; 〈U; V〉)
sda↓

S+〈[R; U]; [T; V]〉

S+(〈R; T〉; 〈U; V〉)
sia↓

S+〈〈T; U〉; 〈R; V〉〉

S−(R; R)
cl↓

S−{R}

S+[R; R]
cr↓

S+{R}

S−{⊤}
wl↓

S−{R}

S+{⊥}
wr↓

S+{R}

7Naming of rules follows this scheme:i = interaction; (first letter)c = contraction;w = weak-
ening;s = “switch”; (second letter)c = conjunction;d = disjunction;i = implication; l = left; r =
right; (last letter)m =multiplicative;a = additive.
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The multiplicativeup fragment, consisting of corules of the multiplicativedown

fragment:

S−〈R,R〉
im↑

S−{I }

S−〈(R,U), (T,V)〉
scm↑

S−(〈R,T〉, 〈U,V〉)

S−〈〈T,U〉, 〈R,V〉〉
sim↑

S−(〈R,T〉, 〈U,V〉)

Finally, the additiveup fragment:

S−〈R; R〉
ia↑

S−{⊤}

S−〈(R; U); (T; V)〉
sca↑

S−(〈R; T〉; 〈U; V〉)

S−〈[R; U]; [T; V]〉
sda↑

S−(〈R; T〉; 〈U; V〉)

S−〈〈T; U〉; 〈R; V〉〉
sia↑

S−(〈R; T〉; 〈U; V〉)

S+{R}
cl↑

S+(R; R)

S−{R}
cr↑

S−[R; R]

S+{R}
wl↑

S+{⊤}

S−{R}
wr↑

S−{⊥}

This is very similar to the formulation of intuitionistic logic in Tiu [2005], except

that there are separate, structurally similar rules for the additive and multiplicative

fragments, and that the structural rules are only available in the additive fragment.

The arrangement is similar inLBI. We have also stated two pairs of interaction

rules. Observe thatscm↓ andsim↓ have the same premise, as dosca↓, sda↓ and

sia↓. Likewise their duals.

Note particularly that we follow Tiu [2005] in the handling of the contraction

rules, to pave the way for atomic contraction rules in a local system. Contraction

rules are given in not only a left-, but a right-handed version. The right-handed

version corresponds to contraction on the succedent in a multisuccedent sequent

calculus for intuitionistic logic, which overturns the restriction on the succedent

that characterises traditional sequent calculi for intuitionistic logic.8 Recall that in

Dragalin’s system, contraction is admissible, but that the intuitionistic restriction

is embodied in the handling of implication. If you try to prove⇒ p ∨ (p → ⊥),

→R will force p in the right context to be discarded, so no axiom can be reached.

What a proof would need is to keepp aside until it has dealt withp → ⊥, then

‘reintroduce’p to the premise ofp→ ⊥. With deep inference, this is analogous to

permittinginteractionbetween the results of transformations in distinct contexts.

The corresponding restriction in this case is the absence of any rule operating on

an (outermost) disjunctive contextS[−;−]. Manipulations of disjunctive struc-

tures are always confined to an implicative contextS〈[−;−]; [−;−]〉, preventing

leakage, analogously to Dragalin’s system.

8Refer to the remarks on pp. 2f. on intuitionistic logic and restricted succedents, and Dragalin’s
multisuccedent system for intuitionistic logic.
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S+{I }
im↓

S+〈R,R〉

S+(〈R,T〉,U)
scm↓

S+〈R, (T,U)〉

S+(R, 〈T,U〉)
sim↓

S+〈〈R,T〉,U〉

S+{⊤}
ia↓

S+〈R; R〉

S+(〈R; T〉; 〈U; V〉)
sca↓

S+〈(R; U); (T; V)〉

S+(〈R; T〉; 〈U; V〉)
sda↓

S+〈[R; U]; [T; V]〉

S+(〈R; T〉; 〈U; V〉)
sia↓

S+〈〈T; U〉; 〈R; V〉〉

S−(R; R)
cl↓

S−{R}

S+[R; R]
cr↓

S+{R}

S−{⊤}
wl↓

S−{R}

S+{⊥}
wr↓

S+{R}

S−〈R,R〉
im↑

S−{I }

S−〈R, (T,U)〉
scm↑

S−(〈R,T〉,U)

S−〈〈R,T〉,U〉
sim↑

S−(R, 〈T,U〉)

S−〈R; R〉
ia↑

S−{⊤}

S−〈(R; U); (T; V)〉
sca↑

S−(〈R; T〉; 〈U; V〉)

S−〈[R; U]; [T; V]〉
sda↑

S−(〈R; T〉; 〈U; V〉)

S−〈〈T; U〉; 〈R; V〉〉
sia↑

S−(〈R; T〉; 〈U; V〉)

S+{R}
cl↑

S+(R; R)

S−{R}
cr↑

S−[R; R]

S+{R}
wl↑

S+{⊤}

S−{R}
wr↑

S−{⊥}

Figure 3.4: The systemSBISg

We may, in fact, propose simpler rules for the multiplicative fragment, simi-

lar to Brünnler’s [2004] proposal for minimal intuitionistic logic, because we are

not constrained by the complications with contraction. We designate the system

having these simpler multiplicative rulesSBISg, and we present it as a whole in

Figure 3.4. The multiplicative fragment, however, no longer has a direct morpho-

logical similarity to the ‘logical’ part of the additive fragment.

Definition 18 We make the following classification of the rules ofSBISg:

interaction rules im↓ ia↓ im↑ ia↑

structural rules cl↓ cr↓ wl↓ wr↓ cl↑ cr↑ wl↑ wr↑

switch rules scm↓ sim↓ sca↓ sda↓ sia↓ scm↑ sim↑ sca↑ sda↑ sia↑

Switch rules could also be calledlogical rules. 2
3.4. S  

We now present soundness and completeness results for the systemSBISg for

propositionalBI (with ⊥) in the calculus of structures. The soundness result is

with respect to the elementary Kripke resource semantics. Almost the same ar-

gument shows soundness with respect to the new Kripke resource semantics for
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BI, featuring the greatest stateπ. This argument differs only the case forwr↓, as

noted below. A slightly more complicated variation on the argument can be used

to show soundness with respect to the partially-defined monoid (PDM) seman-

tics for BI; the fairly straightforward complications surrounding the definedness

of •-expressions in the forcing clauses for∗ and−∗. We can regard soundness

with respect to the elementary Kripke resource semantics as the stronger result.

The completeness result is forSBISg (with ⊥) with respect to the PDM seman-

tics for BI.9 Note that the reasoning in our proofs is classical, not intuitionistic,

although we a dealing with a logic of an intuitionistic character. For reference, the

rules ofSBISg are laid out all together in Figure 3.4, and also earlier on the syn-

tactic equality of structures in Figure 3.1, and the translations between formulæ

and structures in Figure 3.2. A structureR is semantically valid iff 
 RL. We

simply write
 R. Pym [2002, §6.3] proves soundness and completeness of the

propositional sequent systemLBI by equivalence (for provability) with the natural

deduction systemNBI; the soundness and completeness ofNBI are proven seman-

tically. Tiu [2005] similarly proves soundness and completeness of the system

SJSg of intuitionistic logic in the calculus of structures by proving the equiva-

lence (for provability) ofSJSg with the sequent systemLJ. We would expect to

be able to prove soundness and completeness ofSBISg with respect toLBI in a

similar way, but we have decided to carry out the proof with respect to a variant

of Kripke resource semantics for the insight it provides into the proof theory and

semantics ofBI.

3.4.1. Proof-theoretical preliminaries

Definition 19 If Γ = {R1, . . . ,Rn} is a finite set of structures with two or more

elements, then we write
∧

Γ to denote the structure (R1; . . . ; Rn), which is the

additive conjuction of the elements ofΓ. If Γ = {R}, then
∧

Γ denotes the structure

R. If Γ = ?, then
∧

Γ denotes the structure⊤. Γ must be of finite size, since a

structure must be of finite size. 2
9SBISg without⊥ is complete with respect to the elementary Kripke resource semantics, but

SBISg (with ⊥) is incomplete with respect to the elementary Kripke resource semantics.
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Definition 20 Each rule of inference ofSBISg has a dual rule inSBISg. The

dual of a rule exchanges the position of premise and conclusion, and inverts the

polarity restriction on rule application. Each ruleρ↓ has a dualρ↑, and eachρ↑ a

dualρ↓, whereρ is the string of letters in each rule label. 2
Definition 21 A derivationof T from R is a finite chain of inferences, downwards,

from R to T. We write
R

‖

T

to denote such a derivation. We writeR ⊢X T to indicate

that there exists a derivation ofT from R in a systemX. In particular, we write

R ⊢SBISg T to indicate that there exists a derivation ofT from R in the system

SBISg. We generally omit the subscript and writeR ⊢ T unless some ambiguity

would arise. 2
Definition 22 A proofof R in a BI-systemX is a derivation inX of R from either

I or⊤. We write⊢X R to indicate that there exists a proof of the structureR in X. R

is a theoremof X iff ⊢X R. Accordingly,R is a theorem ofSBISg iff there exists a

proof ofR in SBISg. We write⊢SBISg R to indicate that the structureR is provable

in SBISg, that is, thatR is a theorem ofSBISg. We generally write⊢ R unless

some ambiguity would arise. 2
Theorem 1 R is a theorem ofSBISg iff there is a derivation of R from I. 2
P Since there is a derivation

I
im↓
〈⊤,⊤〉

wl↓
〈I ,⊤〉

≡
⊤

of ⊤ from I , it is sufficient that there be a derivation ofR from I for R to be a

theorem, since any derivation ofR from ⊤ may be extended upwards to produce

a derivation ofR from I . If R is derivable from⊤, then it is derivable fromI , but

not vice versa. �
Remark 1 Note the use of the weakening rulewl↓; this move is not available if

we try to deriveI from⊤, and there is indeed no derivation ofI from⊤. 2
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Definition 23 A structureR is deduciblefrom a set of structuresΓ in a BI-system

X if there exists a finite subsetΓ′ of Γ such that
∧

Γ′ ⊢X R. We generally write

Γ ⊢X R, to indicate thatR is deducible fromΓ in X, even thoughΓ is a set of

structures rather than an individual structure. We writeΓ ⊢SBISg R to to indicate

thatR is deducible fromΓ in SBISg, and we writeΓ ⊢R when it is clear which

system we are referring to. It is trivial that{R} ⊢SBISg T iff R ⊢SBISg T. 2
Recall the isomorphisms of hom-sets

[I ,A−∗ B] � [A, B] � [⊤,A→ B]

that occurs in closed categories in the categorical “semantics” of proofs inBI.

These isomorphisms are reflected inSBISg, as illustrated by the following result.

Lemma 4 ⊢ 〈R,T〉 iff R ⊢ T iff ⊢ 〈R; T〉. 2
P Given a derivation

R

‖

T

we can construct derivations
I

‖

〈R,T〉

and
⊤

‖

〈R; T〉

as follows:

I
im↓
〈R,R〉

⇓
Paste

R

‖

T〈R,T〉

⊤
ia↓
〈R; R〉

⇓
Paste

R

‖

T〈R; T〉

If
R

‖

T

is cut-free, that is, uses only the down-fragment, then so are these derivations.

Of course, each of these derivations is a proof. Given a derivation
I

‖

〈R,T〉

or a

derivation
⊤

‖

〈R; T〉

, we can construct a derivation
R

‖

T

, in each case using a cut rule:

R
≡

(R, I )

⇓
Paste

I

‖

〈R,T〉(R, 〈R,T〉)
sim↓

〈〈R,R〉,T〉
im↑

〈I ,T〉
≡

T

R
≡

(〈⊤; R〉;⊤)

⇓
Paste

⊤

‖

〈R; T〉(〈⊤; R〉; 〈R; T〉)
sia↓

〈〈R; R〉; 〈⊤; T〉〉
ia↑

〈⊤; 〈⊤; T〉〉
≡

T



50 C 3 BI     

S+{I }
im↓

S+〈R,R〉

S+(〈R,T〉,U)
scm↓

S+〈R, (T,U)〉

S+(R, 〈T,U〉)
sim↓

S+〈〈R,T〉,U〉

S+{⊤}
ia↓

S+〈R; R〉

S+(〈R; T〉; 〈U; V〉)
sca↓

S+〈(R; U); (T; V)〉

S+(〈R; T〉; 〈U; V〉)
sda↓

S+〈[R; U]; [T; V]〉

S+(〈R; T〉; 〈U; V〉)
sia↓

S+〈〈T; U〉; 〈R; V〉〉

S−(R; R)
cl↓

S−{R}

S+[R; R]
cr↓

S+{R}

S−{⊤}
wl↓

S−{R}

S+{⊥}
wr↓

S+{R}

Figure 3.5: The systemBISg, which is the ‘cut-free’ down-fragment ofSBISg

S−〈R,R〉
im↑

S−{I }

S−〈R, (T,U)〉
scm↑

S−(〈R,T〉,U)

S−〈〈R,T〉,U〉
sim↑

S−(R, 〈T,U〉)

S−〈R; R〉
ia↑

S−{⊤}

S−〈(R; U); (T; V)〉
sca↑

S−(〈R; T〉; 〈U; V〉)

S−〈[R; U]; [T; V]〉
sda↑

S−(〈R; T〉; 〈U; V〉)

S−〈〈T; U〉; 〈R; V〉〉
sia↑

S−(〈R; T〉; 〈U; V〉)

S+{R}
cl↑

S+(R; R)

S−{R}
cr↑

S−[R; R]

S+{R}
wl↑

S+{⊤}

S−{R}
wr↑

S−{⊥}

Figure 3.6: The systemcBISg, which is the up-fragment ofSBISg �
It is crucial to note, for later consideration, that thisgeneralresult depends on the

application of cut rules, so we cannot rely upon it when we come to consider the

‘cut-free’ down-fragmentBISg10 of SBISg on its own, in relation to the question

of cut-elimination forSBISg. This illustrates the fact that a cut-elimination the-

orem guarantees a cut-free proof for every theorem, but not a cut-free derivation

of ψ from φ wheneverφ ⊢ ψ. Generally speaking, we need to use an up-rule in a

derivation to make a substructure disappear in the course of a derivation.11

Lemma 5 If R ⊢BISg T then ⊢BISg 〈R,T〉 and ⊢BISg 〈R; T〉. 2
10See Figure 3.5. See also Figure 3.6 for the systemcBISg, which is the up-fragment ofSBISg,

and a ‘mirror-image’ ofBISg, in that each rule inverts the direction of inference, and flips the
polarity restriction, of its counterpart inBISg.

11There is a similar point to be make with sequent calculi. InLBI, we have certain proof-
theoretical ‘equivalences’ between sequents, not themselves representing theorems, for instance,
φ, ψ ⇒ χ iff ψ ∗ ψ ⇒ χ. But to establish such a fact, we need to produce derivations in each
direction, and we need to use an application of cut in this instance, in the right-to-left case. Here
is the example, and two others, set out inLBI. These are all cases in which the effect of a (single-
premise) right-side rule is inverted, in a way reminiscent of the invertibility of rules of inference
in systems of natural deduction [see, for the classic treatment, Prawitz 1965], and we cannot carry
out these inversions in the cut-free system.
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P Refer to the proof of Lemma 4 above. �
A derivation or proof occurs in the top-level context, which has positive polarity.

When we attempt to write down a proof, a known derivation may be pasted into

a positive context. For example, suppose that we already have a derivation
R

‖

T

, and we reach a structure in the attempted proof withR as a substructure in a

positive context. Then we can copy the chain of inferences of
R

‖

T

to obtain a

structure in whichT replacesR in that positive context. Any chain of inferences in

a positive context can be ‘pasted’ into another positive context in the construction

of some other proof. Each up-rule is the exact inversion of the corresponding

down-rule, with the polarity restriction inverted. This is a manifestation of the

up-down symmetry that is characteristic of systems in the calculus of structures.

Definition 24 A subderivationof a proof is a chain of one or more applications

of rules of inference in the same context. A subderivation in a positive context is

called apositive subderivation, and a subderivation in a negative context is called

anegative subderivation. Of course rule applications at greater depth than the top

level of a given context may vary in polarity according to the usual polarity rules.

Every derivation is a positive subderivation, and every positive subderivation can

be plucked out of its context to produce a derivation. 2
id

φ⇒ φ
id

ψ⇒ ψ
∗R

φ, ψ⇒ φ ∗ ψ

...

φ ∗ ψ⇒ χ
cut

φ, ψ⇒ χ

inverts

...

φ, ψ⇒ χ
∗L

φ ∗ ψ⇒ χ

...

Γ⇒ φ−∗ψ

id
φ⇒ φ

id
ψ⇒ ψ

−∗ L
φ, φ−∗ψ⇒ ψ

cut
Γ, φ⇒ ψ

inverts the rule
Γ, φ⇒ ψ

−∗ R
Γ⇒ φ−∗ψ

⊤R?a⇒ ⊤

...

⊤ ⇒ φ
cut?a⇒ φ

inverts

...?a⇒ φ
⊤L

⊤ ⇒ φ
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Proposition 2 Given positive subderivation of T from R (or simply a derivation)

we can construct anegative derivationof R from T by inverting the entire deriva-

tion, simultaneously relabelling each↑ rule application with its↓ counterpart,

and each↓ rule application with its↑ counterpart. A negative derivation is sound

in a negative context: it can be pasted into a negative context in the construction

of a proof. 2
Remark 2 Generally speaking, a positive or negative derivation can be pasted

into a context of matching polarity, or its inverse derivation pasted into a context

of inverse polarity. Of course, proofs are a special case of derivations. Subderiva-

tions may be regarded as reusable modules for proof construction. A positive

subderivation may be ‘plugged-in’ to a positive context containing the top-most

structure of the subderivation to obtain a structure where the bottom-most struc-

ture of the subderivation fills that context. Likewise for a negative subderivation

and a negative context. 2
The following theorem is a generalisation of Tiu’s [2005] Proposition 2.

Lemma 6 (Dual derivations) Given a positive subderivation
R

‖

T

, we can con-

struct a dual, negative subderivation
T

− ‖

R

. Similarly, given a negative subderiva-

tion
T

− ‖

R

, we can construct a dual, positive subderivation
R

‖

T

. 2
P Construct the dual subderivation, in each case, by inverting the subderiva-

tion, and simultaneously relabelling each rule application with the label of its dual.

The newly constructed subderivation can be shown to be a correct subderivation

in a context of opposite polarity by induction on the length of the derivation and

the definitions of the rules ofSBISg in Figure 3.4. �
Remark 3 Of course a dual subderivation can never replace the original sub-

derivation in its original context. It may, however, be used as a module in the

construction of new proofs, in the sense of Proposition 2. 2
The following ‘cut-and-paste’ lemma justifies the modular construction of new

derivations from known ones.
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Lemma 7 (Cut-and-paste lemma) If there exists a derivation
S+{R}

‖

S+{T}

(in which

the context S+{ } is a positive context) then for any positive context X+{ }, there

exists a derivation
X{R}

‖

X{T}

, and for any negative context X−{ } there exists a derivation

X{T}

‖

X{R}

. If there exists a derivation
S−{R}

‖

S−{T}

then for any positive context X+{ }, there

exists a derivation
X{T}

‖

X{R}

, and for any negative context X−{ } there exists a derivation

X{R}

‖

X{T}

. 2
P First, we can reduce the number of cases by invoking Lemma 6. Then

proof is by induction on the length of the derivation. �
3.4.2. Soundness

To show thatSBISg is sound, we might at first expect that we would need to show

that each theorem ofSBISg is valid in the elementary Kripke resource semantics.

We have a peculiar difficulty, however. I is a theorem ofSBISg (as well as of

LBI and other proof systems forBI) but I is not valid in every model, sinceeneed

not be the least state in every model. But a structureR is a theorem ofSBISg iff

there exists a derivation ofR from I or from⊤, and since there is a derivation of

⊤ from I , a structureR is a theorem ofSBISg iff there exists a derivation ofR

from I . There is a sense in which we are taking for granted – or rather taking on

trust from the proof theory – that theorems are those structures that are derivable

from I . BI forces us to forego the standard idea thattheoremhood= validity in all

models. Some theorems, likeI , are not valid in all models.

Before proceeding further with our preamble, we will give a definition of se-

mantic entailment.

Definition 25 (Semantic entailment) We say thatR� T iff in every modelM,

for anym ∈ M, eitherM,m1 R orM,m
 T. That is,R � T iff for any model,

if R is forced at any state in that model, thenT is forced at that state. 2



54 C 3 BI     

Remark 4 If follows from R � T that if R is valid in a model, thenT is valid in

that model, and that ifR is valid, thenT is valid. Similarly, if R is e-valid in a

model, thenT is e-valid in that model, and that ifR is e-valid, thenT is e-valid.2
Consider a comparison withLBI. φ is a theorem ofLBI iff there is a proof of

either the sequent?a ⇒ φ or the sequent?m⇒ φ. Since there is a derivation of?m ⇒ φ from ?a ⇒ φ, it is sufficient that?m ⇒ φ. Usually, the case in which

every theorem is semantically valid is the special case in which the antecedent

Γ – to take the example of intuitionistic logic – is the empty multiset, which is

conventionally equivalent to⊤, since⊤ is forced everywhere. ForLBI, there are

two such special cases, whereΓ is either one of the unit bunches?a and?m. The

cases where?m ⊢ φ but?a 0 φ are precisely those cases whereφ is a theorem, but

is not semantically valid.φ is e-valid, however.12 Consequently, to get around this

difficulty, Pym’s soundness result forLBI13 is couched in terms of whole sequents

and semantic entailment, rather than in terms of individual formulæ or theorems,

and validity. Hence soundness ofLBI means that if the sequentΓ⇒ φ is provable,

thenΓ � φ. If we let γ be the formula obtained from the bunchΓ by replacing

each “,” with “∗” and each “;” with “∧”, then Γ � φ means that in any model,

φ is forced at any state at whichγ is forced. This form of soundness is a fine-

grained result about relative forcing, not about absolute validity, or even relative

validity, and it is a strong type of soundness result. The relative form of soundness

12It has been suggested that a different notion of theoremhood be considered: thatφ be a theorem
iff ⊤ ⊢ φ. In this case, we ought to be able to discard the notion ofe-validity. It is suggested that
accordingly the ruleim↓ would need to be changed, and that only a derivation from⊤ be counted
as a proof. The ruleim↑ would have to change as well.

S+{⊤}
im↓

S+〈R,R〉

S−〈R,R〉
im↑

S−{⊤}

It is suggested that in this case,I would no longer be a theorem. But due to the syntactic equality
〈I ,R〉 = R, it still would be:

⊤
im↓

〈I , I〉
≡

I

But ⊤ 1 I , so the modified rules would make the proof system unsound. We would in any case
resist the idea for the sake of uniformity with the literature onBI.

13Actually, his soundness result forNBI [Pym 2002, §4.2]. The result forLBI follows from
equivalence withNBI [Pym 2002, §6.3].
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is stronger inasmuch as it says that for any antecedent that isforced at some state

of any model (but not necessarily at all states) the consequent is forced at that

state. We can obtain some weaker soundness results as corollaries. For instance,

that every theorem ofBI is e-valid. Soundness results come in several grades of

strength, then. The weakest states that a theorem is valid, or forBI, e-valid; in

between we might have a result that ifR ⊢ T, then whenR is valid (ore-valid) in

an arbitrary model,T is valid (or e-valid) in that model; the strongest is a result

at the level of forcing. We will prove a soundness result of the strong form: every

inference ofSBISg preserves forcing at an arbitrary state of an arbitrary model.

(In fact, the special case that if⊢ R thenI � R, which treats just the theorems of

BI, would suffice as a soundness result of ‘middle’ strength.) That is, ifR is forced

at an arbitrary statem in an arbitrary modelM, and there exists a derivation
R

‖

T

,

thenT is forced atm inM.

We also have to deal with the complication that inference may be deep infer-

ence, that is inference operating not at the top level of a structure, but operating

directly on a substructure. Moreover, deep inference may occur in polarised con-

texts.

Lemma 8 The rules for syntactic equality of structures preserve the polarity of

substructures. 2
P By induction on the depth of structures. �
Remark 5 Depth is not conserved under syntactic equivalence. 2
Definition 26 A top-level derivationis a derivation of one entire structure from

another. A top-level derivation is a positive derivation. 2
Definition 27 We say that a rule of inference isvalid if it preserves (semantic)

validity. That is, if the rule is applied with any (semantically) valid premise, the

conclusion will also be (semantically) valid. 2
Definition 28 A subcontextS′{ } of S{ } is said to be animmediate subcontextof

S{ } if S′{ } occurs at a structural depth of one inS{ }, and (of course) the hole
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{ } in each ofS{ } andS′{ } is the same hole. For example,S′{ } is an immediate

subcontext ofS{ } if S{ } = (R; S′{ }), but not if S{ } = 〈R; (T; S′{ })〉 or if

S′{ } = S{ }. 2
We now state and prove a lemma which says essentially that any inference that

is valid at the top level of a structure is valid for deep inference in a context of

appropriate polarity.

Lemma 9 (Semantic depth) If R � T then for any positive context S{ } we

have S{R} � S{T}, and for any negative context S{ } we have S{T} � S{R}. 2
P We proceed by a structural induction on depth. In this proofS{ } is always

a top-level context, and hence always occursin a positive context.S′{ } is always

an immediate subcontext ofS{ }. Note that syntactic equivalence of structures

preserves the polarity of a subcontext, although the structural depth of a context

may vary under syntactic equivalence. An even number of negative inductive steps

preserves the polarity of the base case, and an odd number of negative inductive

steps inverts polarity. Positive steps preserve polarity. So an odd number of steps

from the positive base case yields a negative context, and an even number of steps

a positive context. An odd number of steps from the negative base case yields a

positive context, and an even number of steps a negative context. We have two

base cases, a positive and a negative one:

1. In the positive base case,S{ } = { }, and is a positive context. It is immediate

thatS{R} � S{T}. Note that the positions ofR andT are preserved by this

case.

2. In the negative base case, eitherS{ } = 〈{ }; U〉 or S{ } = 〈{ },U〉, and is a

negative context.

(a) In the case thatS{ } = 〈{ }; U〉, we haveS{T} = 〈T; U〉. Suppose thatM,m
 〈T; U〉. Then for anyn such thatm ⊑ n, eitherM,m1 T orM,m 
 U, by the forcing clause for→. At any suchn, M, n 1 R,

sinceR� T, soM,m
 〈R; U〉, and henceS{T} � S{R}.

(b) In the case thatS{ } = 〈{ },U〉, we haveS{T} = 〈T,U〉. Suppose

thatM,m 
 〈T,U〉. Then for anyn such thatM, n 
 T, we have
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 U, by the forcing clause for−∗. Now suppose thatM, n′ 

R for some arbitraryn′. ThenM, n′ 
 T, becauseR � T, and henceM,m• n′ 
 U. ThenM,m
 〈R,U〉, and henceS{T} � S{R}.

Note that the positions ofR andT are switched by this case.

For the inductive step, we consider two groups of cases: those in whichS{ } is

a positive context; and those in whichS{ } is a negative context. In each group

we examine cases in whichS′{ } (containing the same hole{ }) is an immediate

subcontext ofS{ }. In each inductive case we takeS′{R} � S′{T} as the inductive

hypothesis. We have seven cases for the inductive step.

1. First, we have five positive cases, each obtainingS{R} � S{T} from the

hypothesisS′{R} � S′{T}, whereS′{ } occurs at a structural depth of one in

S{ }, andS{ } is a positive context. Note that the positions ofR andT are

preserved by each of these steps.

(a) S{ } = (U; S′{ }) ≡ (S′{ }; U). Suppose that (U; S′{R}) is forced

at statem in a modelM, that is,M,m 
 (U; S′{R}). ThenM,m 

U andM,m 
 S′{R} by the forcing clause for∧. SinceS′{R} �
S′{T}, M,m 
 S′{T}, and henceM,m 
 (U; S′{T}). So we have

(U; S′{R}) � (U; S′{T}), that is,S{R} � S{T}.

(b) S{ } = [U; S′{ }] ≡ [S′{ }; U]. Suppose that [U; S′{R}] is forced

at statem in a modelM, that is,M,m 
 [U; S′{R}]. Then eitherM,m 
 U or M,m 
 S′{R} by the forcing clause for∨. In the

case thatM,m 
 S′{R}, we haveM,m 
 S′{T}, sinceS′{R} �
S′{T}. SoM,m 
 S′{T}, and henceM,m 
 (U; S′{T}). So we

have (U; S′{R}) � (U; S′{T}), that is,S{R} � S{T}.

(c) S{ } = 〈U; S′{ }〉. Suppose that〈U; S′{R}〉 is forced at statem in a

modelM, that is,M,m
 〈U; S′{R}〉. Then for alln such thatm ⊑ n,

eitherM, n1 U orM, n
 S′{R} by the forcing clause for→. In cases

whereM, n 
 S′{R}, we haveM, n 
 S′{T}, sinceS′{R} � S′{T}.

HenceM,m 
 〈U; S′{T}〉, so we have〈U; S′{R}〉 � 〈U; S′{T}〉, that

is, S{R} � S{T}.
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(d) S{ } = (U,S′{ }) ≡ (S′{ },U). Suppose that (U,S′{R}) is forced at

statem in a modelM, that is,M,m 
 (U,S′{R}). Then there exist

n, n′ such thatn • n′ ⊑ m, andM, n 
 U andM, n′ 
 S′{R}′ by the

forcing clause for∗. ThenM, n′ 
 S′{T} sinceS′{R} � S′{T}, and

henceM,m
 (U,S′{T}), so we have (U,S′{R}) � (U,S′{T}), that is,

S{R} � S{T}.

(e) S{ } = 〈U,S′{ }〉. Suppose that〈U,S′{R}〉 is forced at statem in a

modelM, that is,M,m
 〈U,S′{R}〉. Then for alln such thatM, n 

U, we haveM,m • n 
 S′{R}, by the forcing clause for−∗. Since

S′{R} � S′{T}, we haveM,m•n
 S′{T}wheneverM,m•n
 S′{R},

and henceM,m
 〈U,S′{T}〉, so we have〈U,S′{R}〉 � 〈U,S′{T}〉, that

is, S{R} � S{T}.

Then we have two negative cases, each obtainingS{T} � S{R} from the

hypothesisS′{R} � S′{T}, whereS′{ } occurs at a structural depth of one in

S{ }, andS{ } is a negative context. Note that the positions ofR andT are

switched by each of these steps.

(f) S{ } = 〈S′{ }; U〉. Suppose that〈S′{T}; U〉 is forced at statem in a

modelM, that is,M,m
 〈S′{T}; U〉. Then for anyn such thatm⊑ n,

eitherM,m 1 S′{T} orM,m 
 U, by the forcing clause for→. At

any suchn, M, n 1 R, sinceS′{R} � S′{T}, soM,m 
 〈S′{R}; U〉,

and henceS{T} � S{R}.

(g) S{ } = 〈S′{ },U〉. Suppose that〈S′{T},U〉 is forced at statem in

a modelM, that is,M,m 
 〈S′{T},U〉. Then for anyn such thatM, n 
 S′{T}, we haveM,m • n 
 U, by the forcing clause for

−∗. Now suppose thatM, n′ 
 S′{R} for some arbitraryn′. ThenM, n′ 
 S′{T}, by the inductive hypothesis, and henceM,m•n′ 
 U.

SoM,m
 〈S′{R},U〉, and henceS{T} � S{R}. �
This proof attests to the non-interference of the two implicative connectives when

they are nested – at least from the point-of-view of soundness. The result is evi-

dence for the correctness of our two-valued scheme for the polarities of contexts.
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Theorem 2 (Soundness) If R ⊢ T then R� T. That is, the rules of inference

and rules of syntactic equivalence ofSBISg preserve forcing at any state in any

model in elementary Kripke resource semantics. 2
P A rule application occurs either in a positive or a negative context. Positive

rules may be applied in positive contexts and negative rules in negative contexts.

To show soundness, we show that each positive rule of inference preserves valid-

ity in a model when applied in a top-level context, and each negative rule when

applied in a shallow negative context, that is, a context with a structural depth of

one.

1. Positive rules.

(a) im↓ Suppose thatM,m
 I . Then by the forcing clause forI , e⊑ m.

Suppose further that for some arbitraryn andR,M, n
 R. Then since

n = e• n, we haveR,M, e• n
 R. HenceM, e
 〈R,R〉 for arbitrary

R, by the forcing clause for−∗. Then by generalised monotonicity

(Lemma 1) we haveM,m
 〈R,R〉 for all m such thate ⊑ m. Hence

I � 〈R,R〉.
(b) scm↓ Suppose thatM,m
 (〈R,T〉,U). Then by the forcing clause

for ∗, there existn, n′ such thatn • n′ ⊑ m, andM, n 
 〈R,T〉 andM, n′ 
 U, and then by the forcing clause for−∗, for all m′ such thatM,m′ 
 R, we haveM, n•m′ 
 T. Then for allm′ such thatM,m′ 

R, by bifunctoriality there existn•m′, n′ such thatn• n′ •m′ ⊑ m•m′

andM, n•m′ 
 T andM, n′ 
 U, that isM,m•m′ 
 (T,U). HenceM,m
 〈R, (T,U)〉, and so (〈R,T〉,U) � 〈R, (T,U)〉.

(c) sim↓ Suppose thatM,m
 (R, 〈T,U〉). Then by the forcing clause

for ∗, there existn, n′ such thatn • n′ ⊑ m andM, n 
 R andM, n′ 

〈T,U〉, and then by the forcing clause for−∗, for all m′ such thatM,m′ 
 T,M, n′ •m′ 
 U. Now suppose thatM,m′′ 
 〈R,T〉 for ar-

bitrarym′′. Then for alln′′ such thatM, n′′ 
 Rwe haveM,m′′•n′′ 

T, by the forcing clause for−∗. Then we haveM, n′ • m′′ • n′′ 
 U,

and hence for alln′′, M, n′ • n′′ 
 〈〈R,T〉,U〉, by the forcing clause

for −∗, and thusM, n • n′ 
 〈〈R,T〉,U〉, by instantiatingn′′ with n.
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By generalised monotonicity (Lemma 1),M,m
 〈〈R,T〉,U〉, and so

(R, 〈T,U〉) � 〈〈R,T〉,U〉.
(d) ia↓ Suppose thatM,m
 ⊤. Then we have to consider allm, by the

forcing clause for⊤. For alln, and so alln such that for anym, m⊑ n,

and arbitraryR, eitherM, n 1 R orM, n 
 R, and so by the forcing

clause for→, ⊤ � 〈R; R〉.

(e) sca↓ Suppose thatM,m 
 (〈R; T〉; 〈U; V〉). Then by the forcing

clauses for→ and∧, we have for allnsuch thatm⊑ n, eitherM, n1 R

orM, n 
 T, and eitherM, n 1 U orM, n 
 V. So eitherM, n 1 R

andM, n 1 U, orM, n 1 R andM, n 
 V, orM, n 
 T andM, n 1
U, orM, n 
 T andM, n 
 V. So either not{M, n 
 R andM, n 

U} (first three cases) orM, n 
 T andM, n 
 V (last case). Then by

the forcing clauses for→ and∧, we haveM,m
 〈(R; U); (T; V)〉 and

hence (〈R; T〉; 〈U; V〉) � 〈(R; U); (T; V)〉.

(f) sda↓ Suppose thatM,m 
 (〈R; T〉; 〈U; V〉). Then by the forcing

clauses for→ and∧, we have for allnsuch thatm⊑ n, eitherM, n1 R

orM, n 
 T, and eitherM, n 1 U orM, n 
 V. So eitherM, n 1 R

andM, n 1 U, orM, n 1 R andM, n 
 V, orM, n 
 T andM, n 1
U, orM, n
 T andM, n
 V. So either not{M, n
 RorM, n
 U}

(the first case) or{M, n
 T orM, n
 V} (remaining cases). Then by

the forcing clauses for→ and∨, we haveM,m
 〈[R; U]; [T; V]〉 and

hence (〈R; T〉; 〈U; V〉) � 〈[R; U]; [T; V]〉.

(g) sia↓ Suppose thatM,m 
 (〈R; T〉; 〈U; V〉). Then by the forcing

clauses for→ and∧, we have for allnsuch thatm⊑ n, eitherM, n1 R

orM, n 
 T, and eitherM, n 1 U orM, n 
 V. So eitherM, n 1
R andM, n 1 U, or M, n 1 R andM, n 
 V, or M, n 
 T andM, n1 U, orM, n
 T andM, n
 V. So either not{eitherM, n1 T

or M, n 
 U} (i.e. M, n 
 T andM, n 1 U, the third case) or

{eitherM, n1 RorM, n
 V} (remaining cases). Then by the forcing

clause for→ (twice), we haveM,m 
 〈〈R; U〉; 〈T; V〉〉 and hence

(〈R; T〉; 〈U; V〉) � 〈〈R; U〉; 〈T; V〉〉.

(h) cl ↑ Suppose thatM,m 
 R. Then by the forcing clause for∧,
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 R andM,m
 R, so we haveR� (R; R)

(i) wl ↑ Suppose thatM,m 
 R. By the forcing clause for⊤,M,m
 ⊤, so we haveR� ⊤.

(j) cr↓ Suppose thatM,m
 [R; R]. Then by the forcing clause for∨,

eitherM,m
 RorM,m
 R, that isM,m
 R, so [R; R] � R.

(k) wr↓ By the forcing clause for⊥,M,m1 ⊥ for anym. Then for any

m, eitherM,m1 ⊥ orM,m
 R for an arbitraryR, so by Definition

25, we have⊥ � R.14

2. Negative rules. For each negative rule
R

ρ
T

we have to show that it

preserves forcing at an arbitrary state in and arbitrary model, just in the two

shallowest negative contexts〈{ }; U〉 and〈{ },U〉. For each rule, we have

already established the semantic entailmentT ⊢ R in the case of its positive

dual rule, so we can treat the two shallow contexts generically.

(a) Suppose thatM,m 
 〈R; U〉. Then for alln such thatm ⊑ n, eitherM, n 1 R or M, n 
 U. EitherM, n 1 T or M, n 
 U. HenceM,m
 〈T; U〉, and so〈R; U〉 � 〈T; U〉.

(b) Suppose thatM,m 
 〈R,U〉. Then for alln such thatM, n 
 R, we

haveM,m•n
 U. Since we have already shownT � R in the positive

case for each rule, for alln such thatM, n
 T, we haveM,m•n
 U.

HenceM,m
 〈T,U〉, and so〈R,U〉 � 〈T,U〉.
Then, by the semantic depth lemma (Lemma 9), we have that each rule of infer-

ence preserves forcing at any state in any model, when applied in a context of

appropriate polarity, at arbitrary depth.

We omit the treatment of the rules of syntactic equivalence, which is straightfor-

ward and similar to that above. Note that each rule of syntactic equivalence needs

to be treated bidirectionally, and in both positive and negative contexts. �
14For the new Kripke resource semantics, this case runs as follows. Suppose thatM,m 
 ⊥.

Then by the forcing clause for⊥, m = π. SinceM, π 
 R for arbitraryR, by Lemma 2, we have
⊥ � R.
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Corollary 1 If U ⊢ ⊥ then for any m,M,m1 U. 2
P Suppose thatU ⊢ ⊥. Then by soundness (Theorem 2)U 
 ⊥, that is, at

every statem in M at whichU is forced,⊥ is forced. But by the forcing clause

for ⊥, ⊥ is never forced, and henceM,m1 U for all m. �
3.4.3. Digression: classical consistency

We present two standard and equivalent classical definitions of consistency, which

we call⊥-consistency and∃-consistency. We use the setting ofSBISg. This is

principally for the purpose of illustration. Classical definitions of consistency are

not adequate for the kind of model existence result we would require forBI, or for

intuitionistic logic, if we followed directly the standard strategy for modal logic.

Lemmas 10, 11, 12 and 13 do hold forSBISg, however.

Definition 29 A set of structuresΓ is⊥-inconsistentif ⊥ is deducible fromΓ, oth-

erwise it is⊥-consistent. A structureR is ⊥-inconsistent if{R} is ⊥-inconsistent,

otherwiseR is⊥-consistent. 2
Lemma 10 If Γ is⊥-inconsistent, then any∆, such thatΓ ⊆ ∆, is⊥-inconsistent.2
P SinceΓ is⊥-inconsistent, there is someΓ′ such thatΓ′ ⊆ Γ, and⊢ 〈Γ′;⊥〉.

SinceΓ′ ⊆ ∆, ∆ is⊥-inconsistent. �
Lemma 11 If Γ is⊥-consistent, then anyΓ′ such thatΓ′ ⊆ Γ is⊥-consistent. 2
P We argue by contraposition. Suppose thatΓ′ were⊥-inconsistent. Then

⊢ 〈Γ′′;⊥〉 for someΓ′′ such thatΓ′′ ⊆ Γ′. But Γ′′ ⊆ Γ, so Γ would be⊥-

inconsistent. �
Lemma 12 If Γ is⊥-consistent, and R is deducible from someΓ′ such thatΓ′ ⊆

Γ, thenΓ ∪ {R} is⊥-consistent. 2
P We argue by contraposition. Suppose thatΓ ∪ {R} is ⊥-inconsistent, then

eitherΓ is⊥-inconsistent, or there is someΓ′′ such thatΓ′′ ⊆ Γ and⊢ 〈Γ′′; 〈R;⊥〉〉.

SinceΓ′ ⊢ R, we have a derivation of〈Γ;⊥〉 from 〈Γ′′; 〈R;⊥〉〉:
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...

〈Γ′′; 〈R;⊥〉〉
wl↓

〈Γ; 〈R;⊥〉〉
≡

(〈Γ; 〈R;⊥〉〉;⊤)

⇓
Paste

⊤

‖

〈Γ′; R〉(〈Γ; 〈R;⊥〉〉; 〈Γ′; R〉)
wl↓

(〈Γ; 〈R;⊥〉〉; 〈Γ; R〉)
sca↓

〈(Γ; Γ); (〈R;⊥〉; R)〉
cl↓

〈Γ; (〈R;⊥〉; R)〉
≡
〈Γ; (〈⊤; R〉; 〈R;⊥〉)〉

sia↓
〈Γ; 〈〈R; R〉; 〈⊤;⊥〉〉〉

ia↑ (cut)
〈Γ; 〈⊤; 〈⊤;⊥〉〉〉

≡
〈Γ;⊥〉

So⊢ 〈Γ;⊥〉, and henceΓ is⊥-inconsistent. �
Remark 6 The following classical lemma does not hold forSBISg:

If 0 R then〈R;⊥〉 is⊥-consistent

Essentially, this is due to the inadmissibility of a rule of double-negation elimina-

tion. 2
Definition 30 A set of structuresΓ is ∃-consistentif there exists some structureR

which is not deducible fromΓ, otherwise it is∃-inconsistent. 2
Lemma 13 A set of structuresΓ is ∃-consistent iff it is ⊥-consistent. 2
P Left to right, then right to left:

1. If Γ is ∃-consistent, then there is someR such that0 〈Γ; R〉. Suppose thatΓ

is⊥-inconsistent. Then⊢ 〈Γ;⊥〉, and consequently⊢ 〈Γ; R〉 for arbitraryR,

using rulewr↓, which is a contradiction. HenceΓ is⊥-consistent.

2. If Γ is ⊥-consistent, then0 〈Γ,⊥〉. Suppose thatΓ is ∃-inconsistent, then

⊢ 〈Γ,R〉 for anyR, and hence⊢ 〈Γ,⊥〉, which is a contradiction. HenceΓ is

∃-consistent. �
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3.4.4. Completeness

We now prove completeness with respect to the PDM semantics forBI. Like LBI

with ⊥, SBISg with ⊥ is incomplete with respect to the elementary Kripke se-

mantics. This incompleteness is the motivation behind the development of the

various semantic variations: initially with the topological semantics, and later on

relational and new Kripke semantics withπ, and the PDM semantics. Essentially,

the difficulty revolves around the fact that it is proof-theoretically possible for the

multiplicative conjunction of a pair of consistent formulæ (or bunches, or struc-

tures) to be inconsistent. That is, it may be the case thatR 0 ⊥ andT 0 ⊥, but

that 〈R,T〉 ⊢ ⊥. The usual example isp ∗ (p−∗⊥) ⊢ ⊥, or (a, 〈a,⊥〉) ⊢ ⊥ in the

language of structures, where we havea 0 ⊥ and〈a,⊥〉 0 ⊥.15

Proposition 3 In the elementary Kripke resource semantics, for any state m of

any modelM, and structure R,M,m 
 〈〈R,⊥〉;⊥〉 iff there exists n∈ M such

thatM, n 
 R. That is,〈〈R,⊥〉;⊥〉 is satisfied in a model iff R is satisfied in that

model. (This is noted as routine during the proof of Pym’s [2002] Proposition

4.8.) 2
P Consider the elementary forcing clauses for−∗ and⊥. First, we observe

thatM,m 
 〈R,⊥〉 iff there is nom • n, and hence non such thatM, n 
 R.16

Now suppose thatM,m
 〈〈R,⊥〉;⊥〉. Then by the forcing clauses for→ and⊥,

there is non ∈ M such thatm ⊑ n andM, n 
 〈R,⊥〉. ThenM,m1 〈R,⊥〉, and

hence there is somen such thatM, n
 R. Now take the right to left case. Suppose

that there is somen such thatM, n 
 R. Then for anym′, M,m′ 1 〈R,⊥〉, and

hence for anym,M,m
 〈〈R,⊥〉;⊥〉 by the forcing clauses for→ and⊥. �
Pym [2002, Proposition 4.8]17 gives an example of a semantic entailment in the

elementary Kripke resource semantics for which there is no corresponding proof

in LBI. This can be readily seen for cut-freeLBI. Rewritten in the calculus of

15On this point, see Pym, O’Hearn & Yang [2004, §§3.5, 5.2].
16In the elementary semantics. In the PDM semantics, it meansm • n is never defined whenM, n 
 R; and in the new Kripke resource semantics, it means thatm• n = π for anyn such thatM, n 
 R. Recall that in the new Kripke resource semantics,m ⊑ π for any m andm = π iffM,m
 ⊥, rather thanM,m1 ⊥ for all m as in the elementary and PDM semantics.
17Also Pym, O’Hearn & Yang [2004, §3.5, Proposition 6]
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structures, for any structuresR andT:

(〈〈R,⊥〉;⊥〉; 〈〈T,⊥〉;⊥〉) � 〈〈(R,T),⊥〉;⊥〉

This works as follows. IfM,m 
 〈〈R,⊥〉;⊥〉 then for somen, M, n 
 R.

Similarly we obtainM, n′ 
 T for somen′. Then in the elementary semantics,

n • n′ is defined,18 and hence by the forcing clause for∗, we haveM, n • n′ 

(R,T).19 Then by Proposition 3,M,m 
 〈〈(R,T),⊥〉;⊥〉. Indeed, this follows

for anym, and hence for them we started with. But, substituting atomsa, b for

arbitrary structuresR,T:

(〈〈a,⊥〉;⊥〉; 〈〈b,⊥〉;⊥〉) 0 〈〈(a, b),⊥〉;⊥〉.

Loosely speaking, we can readily see that the switch rules ofSBISg offer no way

for atomsa andb to cross an additive boundary to become multiplicatively con-

joined in the course of a derivation. And we can readily see – at least for cut-free

BISg – that there is no way fora or b or (a, b) to ‘materialise’ in a multiplicative

context, since no structural rules are accessible in a multiplicative context. By

“not accessible”, we mean that for a structureR in an arbitrary context, the unit

rules of syntactic equivalence can introduce⊤ or ⊥ only in additive structures,

and eliminate them only from additive structures.

The strategy of our completeness proof is similar to that used for the standard

completeness proofs for propositionalNBI without⊥ with respect to the elemen-

tary Kripke semantics and, forNBI with respect to the topological Kripke seman-

tics [Pym 2002, §4.2, §5.2] (also see Pym, O’Hearn & Yang [2004]), and for the

semantic tableau systemTBI with respect to the relational semantics [Galmiche,

Méry & Pym 2005, §5]. These are all essentially similar in strategy to the com-

pleteness proof for intuitionistic logic given by van Dalen [2004, §5.3], in the

reliance upon a countermodel construction and the use of prime theories. We an

indebted to all of these presentations. Our formulation and use of prime theories

18This step could not be made with the PDM semantics.
19Just for the moment, we skirt around the requirement thatn • n′ ∈ M, and assume that it is.

It is conceivable thatn • n′ < M and that there is nom such thatn • n′ ⊑ m, but in the apparatus
of prime theories that follows, it will always be that case that ifn • n′ ↓ then there is somem ∈ M
such thatn • n′ ⊑ m.
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is considerably simpler than the use of prime bunches found inother treatments

of BI. Proof with respect to the PDM semantics also permits certain simplifica-

tion, for instance, in the definition of the• operation in a canonical countermodel.

Moreover, the calculus of structures allows certain simplifications, since we do

not have to worry about the distinctions between formulæ, bunches and sequents.

Our early attempts at the proof were in fact not inspired by these proofs, but

by the standard strategy for completeness proofs for modal logics with respect to

standard Kripke semantics for modal logics [Blackburn et al. 2001, chapter 4].

We are in fact indebted to Blackburn et al.’s [2001] presentation. The principal

difference between proofs for modal logic and forBI or intuitionistic logic is that

since standard modal logics are essentially classical, a notion of consistency is

available. No appropriate notion of consistency is available forBI or for intu-

itionistic logic. Refer to our presentation in Section 3.4.3 of a classical notion of

consistency forSBISg that is not adequate for our purpose here.

For modal logic, it is straightforward to give a proof of the theorem that a proof

system is complete with respect to a semantics iff every consistent set of formulæ

is satisfiable in the semantics. This is essentially due to the applicability of a

standard classical definition of a consistent set of formulæ and the availability (or

admissibility) of a rule of double negation-elimination in proof systems for modal

logic – luxuries we have to do without. It is shown that any consistent set of

formulæ may be extended to a maximally consistent set of formulæ. A canonical

Kripke model is then constructed in which the states are maximally consistent sets

of formulæ. It is shown that a formula is forced at a state in the model iff it is a

member of the maximally consistent set at that state. The proof of completeness

follows from this.

We did examine the possibility of adapting the notion of aconsistency prop-

erty for intuitionistic logic, which is used in a completeness proof to compensate

for the lack of a natural notion of consistency in intuitionistic logic [Fitting 1973,

Fitting 1983, chapter 9, §7]. This notion is well-suited for a completeness proof

for a tableau system. The idea of a consistency property uses signed formulæ,

which are a familiar feature of tableau systems forBI and intuitionistic logic.

It also depends crucially on the decomposition of signed formulæ into pairs of

signed formulæ, paired conjunctively or disjunctively. There seemed to be some
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natural connection between the signs of formulæ and the polarity of contexts in

SBISg – negative sign or polarity corresponds to the antecedent position in a con-

ditional. Polarity and signed formulæ are both devices that compensate for the

lack of involutive negation. But nothing concretely useful arose in this connec-

tion. It is the ‘mingling’ of signed subformulæ, and eventually signed atoms, of

formulæ which does the work of a consistency property, but inSBISg, rules of in-

ference preserve polarity, and there is no systematic decomposition of structures

to atomic structures.

In the standard completeness proof forNBI, and the proof for intuitionistic

logic, the rôle of consistent sets – a set of formulæ is consistent if⊥ is not de-

ducible from it – is taken by sets of formulæΓ from which a given formulaφ

is not deducible. Although this does not permit the construction of a canonical

model for every provable formula, it does permit the construction of especially

tailored canonical countermodels. It can then be shown that ifΓ 0 φ thenΓ 2 φ,

which amounts to completeness. It is sufficient, on the supposition thatR 0 T, to

construct a single modelM (in any frame) such that for some statem ∈ M, we

haveM,m
 RandM,m1 T, and hence thatR2 T. These proofs use the notion

of a prime bunch or prime theory, in place of a maximally consistent set. We have

opted for the construction of maximal prime theories in the style of Lindenbaum’s

Lemma, similar to Blackburn et al. [2001, Lemma 4.17] and van Dalen [2004,

Lemma 5.3.8], rather than the complicated system of prime evaluation used in the

proof forNBI. We now proceed towards the completeness result.

Remark 7 Equivocation over syntactic equivalence.Our general rule is to use

syntactic equivalence implicitly in proof-theoretical considerations, but always to

treat it explicitly in semantic considerations. A syntactic equivalence should be

regarded as a rule of inference that is invertible and applies in contexts of either

polarity. 2
Remark 8 At some points we safely equivocate between sets of formulæ or struc-

tures{R1, . . . ,Rn}, and additive conjunctive structures, that is, structures of the

form (R1; . . . ; Rn). 2
We now introduce the idea of a prime theory, which plays a pivotal rôle in our

completeness proof. Our definition is essentially that of van Dalen [2004, Def-
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inition 5.3.7], in his proof of the completeness of intuitionistic logic. We then

proceed to give a prime theory existence lemma, based upon what is essentially a

Henkin construction. Our procedure is close to that of van Dalen [2004, Lemma

5.3.8].

Definition 31 A prime theoryis a setΣ of structures that meets the following

conditions:

(i) Σ is consistent;

(ii) Σ is closed under deducibility. That is, for anyR, if Σ ⊢ R thenR ∈ Σ;

(iii) If [ R; T] ∈ Σ thenR ∈ Σ or T ∈ Σ.

Note that trivially, ifR ∈ Σ thenΣ ⊢ R, and henceΣ ⊢ R iff R ∈ Σ. 2
Lemma 14 A prime theory contains every theorem. 2
P If T is a theorem, thenΣ ⊢ T for any set of structuresΣ. Hence by Defini-

tion 31, ifΣ+ is a prime theory, thenT ∈ Σ+. �
Proposition 4 The structures ofBI are enumerable. 2
Lemma 15 (Prime theory existence lemma) For any structures R,T such that

R0 T there is a prime theoryΣ+ such that R∈ Σ+ andΣ+ 0 T (and hence T< Σ+

sinceΣ+ is a prime theory). 2
P Given structuresR,T such thatR0 T, we may construct a prime theoryΣ+

such thatΣ+ 0 T. Let R1,R2,R3, . . . be an enumeration of the structures ofBI.20

ConstructΣ+ as follows:

20We could indeed filter the enumeration so thatΣn ⊢ Rn at each step, as does van Dalen [2004,
Lemma 5.3.8]. This would simplify slightly the treatment of disjunctive structures, and exclude
unneeded ‘irrelevant’ structures from the prime theory. The filtered enumeration would in any
case still be infinite in size. On the whole, however, this is unnecessary and would complicate our
treatment.
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Σ0 = {R}

If Ri is of disjunctive form [RL; RR]

Σi+1 =











































Σi ∪ {Ri ,RL} if Σi ∪ {RL} 0 T; otherwise

Σi ∪ {Ri ,RR} if Σi ∪ {RR} 0 T

Σi otherwise

otherwise

Σi+1 =























Σi ∪ {Ri} if Σi ∪ {Ri} 0 T

Σi otherwise

and finally

Σ+ =
⋃

i≥0

Σi

Σ+ is the chain union of successive setsΣi. Note thatΣi ⊆ Σi+1 for any finitei, and

consequently
⋃ j

i=0 Σi = Σ j for any finite j. SoΣi ⊆ Σ
+ for anyi. Crudely speaking,

we can say thatΣ+ = Σω. It remains to show thatΣ+ 0 T and thatΣ+ is indeed a

prime theory.

1. T is not deducible fromΣ0 sinceΣ0 = {R} and {R} 0 T. TheΣi+1 step

preserves non-deducibility ofT, so by induction,Σi 0 T for any finite i.

HenceΣ+ 0 T.

2. We check thatΣ+ meets the necessary conditions to be a prime theory.

(a) Suppose that there is someU such thatU < Σ+ andΣ+ ⊢ U. Trivially,

if U = R thenU ∈ Σ+, so if U < Σ+ then it is because there is somei

such thatΣi ∪ {U} ⊢ T, or in the case thatU = [UL; UR], somei such

thatΣi ∪ {UL} ⊢ T andΣi ∪ {UR} ⊢ T. Now given thatΣ+ ⊢ U, there is

someΣ′ of finite size such thatΣ′ ⊆ Σ+ and⊢ 〈Σ′; U〉. Hence, we can

construct a proof of〈Σi;Σ′; T〉
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⊤

...

〈(Σi; U); T〉

⇑
Paste negative of

Σ′

‖

U〈(Σi;Σ′); T〉

or in the case of disjunctiveU
⊤

...

(〈(Σi ; UL); T〉; 〈(Σi; UR); T〉)
≡ (currying, twice)

(〈Σi; 〈UL; T〉〉; 〈Σi; 〈UR; T〉〉)
sca↓

〈(Σi;Σi); (〈UL; T〉; 〈UR; T〉)〉
cl↓, sda↓

〈Σi; 〈[UL; UR]; [T; T]〉〉
≡, cr↓ (uncurrying)

〈(Σi; [UL; UR]); T〉

⇑
Paste negative of

Σ′

‖

U〈(Σi;Σ′); T〉

SinceΣn ⊆ Σ
+ andΣ′ ⊆ Σ+, we haveΣn ∪ Σ

′ ⊆ Σ+, and henceΣ+ ⊢ T,

yielding a contradiction. HenceΣ+ 0 U for anyU such thatU < Σ+.

By contraposition, ifΣ+ ⊢ U thenU ∈ Σ+, that is,Σ+ is closed under

⊢.

(b) By the construction of theΣn+1 step, if [U1; U2] ∈ Σ+, then either

U1 ∈ Σ
+ or U2 ∈ Σ

+. �
Remark 9 Membership ofΣ+ depends of the ordering of the enumeration. For

instance, suppose that the atomic structurea occurs before the structure〈a; T〉 in

the enumeration. Thena ∈ Σ+ and 〈a; T〉 < Σ+. But if the order is reversed,

〈a; T〉 ∈ Σ+ anda < Σ+. 2
Remark 10 Any structureT may be rewritten〈⊤; T〉 or 〈I ,T〉 according to the

syntactic equality of structures specified in Figure 3.1. Hence we can construct a

prime theory from0 T usingΣ0 = {⊤}. 2
Lemma 16 (Prime extension lemma) For any set of structuresΣ and structure

T such thatΣ 0 T, there is a prime theoryΣ+ such thatΣ ⊆ Σ+ andΣ+ 0 T.

(Cf. the extension lemma of Galmiche et al. [2005, Lemma 5.2]). 2
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P The proof is a straightforward variation of the proof for Lemma 15. �
We now show that the intersection of all prime extensions of a setΣ represents

the deductive strength or content ofΣ in a precise way.21 It contains all and only

the structures that are deducible fromΣ, and it isalmosta prime theory. It does

not contain extraneous or irrelevent elements, as we see in the prime theories

constructed according to the method used in the proof of Lemma 15, in which

arbitary structures are drawn from an enumeration of the structures ofBI and

are tested systematically for inclusion in a prime theory, constructed as a limit

construction.

Lemma 17 (Prime extension intersection lemma) LetΣ be a consistent set of

structures, and let
⋂

Σ+ be the intersection of all prime extensions ofΣ.
⋂

Σ+ ⊢ R iff Σ ⊢ R, for any structure R. 2
P First, note theΣ has at least one prime extension, since it is consistent, by

Lemma 16. Take the left-to-right case. Suppose thatΣ 0 R. Then we can construct

a prime extentionΣ+ of Σ such thatΣ+ 0 R, using the procedure of Lemma 15.

Since
⋂

Σ+ ⊆ Σ+, we have
⋂

Σ+ 0 R. Hence, by contraposition, if
⋂

Σ+ ⊢ R then

Σ ⊢ R. The right-to-left case is immediate. �
Lemma 18 LetΣ be a consistent set of structures. If R<

⋂

Σ+ then there is some

prime extensionΣ+ of Σ such that R< Σ+. 2
P Proof is by contraposition of the following. Suppose that for every prime

extensionΣ+ of Σ we haveR ∈ Σ+. ThenR ∈
⋂

Σ+. �
We introduce the notion of a sub-prime theory, which is essentially a consistent

set of structures that is closed under deducibility. The special requirement in

Definition 31 regarding disjunctive elements in standard prime theories is absent

here.

Definition 32 A sub-prime theoryis a setΣ of structures that meets the following

conditions:
21Particular thanks to Lee Naish for the suggestion that we make use of the intersection of all

prime extensions in the completeness proof, and for a conversation which lead to Lemmas 17, 19
and 20.
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(i) Σ is consistent;

(ii) Σ is closed under deducibility. That is, for anyR, if Σ ⊢ R thenR ∈ Σ. 2
Obviously, every prime theory is a sub-prime theory, but not vice-versa. The

reason for introducing this notion is that we are unable to prove the variant of the

following lemma that would state that
⋂

Σ+ is theleast prime extensionof Σ. We

can however make do with the result that
⋂

Σ+ is less than or equal to the least

prime extension(s), and that it is sub-prime. The difficulty is that in the case that

Σ ⊢ [R; T], we have a guarantee that each prime extensionΣ+ of Σ contains either

R or T, but not both. Some extensions may containR and othersT; some both.

So we cannot show that
⋂

Σ+ must contain eitherR or T to meet the disjunctive

requirement of a prime theory.

Lemma 19 (Sub-prime extension lemma) LetΣ be a consistent set of struc-

tures.
⋂

Σ+ is a sub-prime extension ofΣ. 2
P

⋂

Σ+ is a sub-prime theory since it satisfies the two criteria: (i)
⋂

Σ+ is

consistent, since there is at least one prime theoryΣ+ such that
⋂

Σ+ ⊆ Σ+, andΣ+

is consistent, since it is a prime theory; (ii) Suppose that
⋂

Σ+ ⊢ R. ThenΣ ⊢ R

by Lemma 17. Hence for anyΣ′ such thatΣ ⊆ Σ′, we haveΣ′ ⊢ R Thus forevery

prime extentionΣ+ of Σ, we haveΣ+ ⊢ R, and sinceΣ+ is a prime theory,R ∈ Σ+.

ThenR ∈
⋂

Σ+; SinceΣ ⊆
⋂

Σ+,
⋂

Σ+ is an extension ofΣ. �
Lemma 20 (Least prime extensions lemma) LetΣ be a consistent set of struc-

tures.
⋂

Σ+ is less than or equal to the least prime extension(s) ofΣ. 2
P Since

⋂

Σ+ is the intersection of all prime extensions ofΣ, we have
⋂

Σ+ ⊆

Σ+ for any prime extentionΣ+ of Σ, and hence
⋂

Σ+ is less than or equal to the

least prime extensions ofΣ. �
Definition 33 First, we define the binary operation⋆ : ℘(Φ) × ℘(Φ) → ℘(Φ) as

follows:

{U1, . . . ,Ui} ⋆ {V1, . . . ,V j} = { (U1,V1) , · · · , (U1,V j) ,

(U2,V1) , · · · , (U2,V j) ,
...

. . .
...

(Ui ,V1) , · · · , (Ui ,V j) }
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This is largely, but not exclusively, for use within this definition. Then we define

the binary operation• : ℘(Φ) × ℘(Φ)→ ℘(Φ):

m• n =















m⋆ n if m⋆ n 0 ⊥
undefined otherwise

We writem•n↓ to state thatm•n is defined, in uniformity with the PDM semantics.

In short,m• n↓ iff m⋆ n is consistent. It is necessary to introduce some level of

control of inconsistency in a definition of•, otherwise a completeness proof for

a proof system forBI with ⊥ cannot succeed.22 The• operation is essentially a

cartesian product, with multiplicative conjuction (−,−) as the pairing operation,

plus a requirement for consistency. It is important that the structures in these sets

or theories be viewed modulo syntactic equivalence (or perhaps we could regard

the elements of theories as equivalence classes of structures). Otherwise, to take

one example,e= {I } would fail to act as the identity element for•. 2
22Our definition is simpler than the following definition, adapted from Pym [2002, §5.2, p. 73]

and Pym, O’Hearn & Yang [2004, p. 294], although it addresses the same problem of inconsis-
tency:

{U1, . . . ,Ui} • {V1, . . . ,V j} = { (U1,V1) , · · · , (U1,V j) ,
(U2,V1) , · · · , (U2,V j) ,

...
. . .

...

(Ui ,V1) , · · · , (Ui ,V j) } \ ⊥(U,V)

where⊥(U,V) = {(Ui ,V j) | (Ui,V j) ⊢ ⊥}. There is no requirement in this definition that the
resulting set be consistent in order that the operation to be defined. Indeed, a more obvious choice
of a definedness requirement would be that the resulting set be non-empty. This construction of•

artificially excludes individual structures which entail⊥. For example, each ofa and〈a,⊥〉 is a
consistent structure, but (a, 〈a,⊥〉) is inconsistent, and (a, 〈a,⊥〉) is excluded for just that reason.
Note, however, that this procedure does not guarantee that the resulting set will be consistent, just
that no element taken individually entails⊥. Take the obvious example:{a, 〈a;⊥〉}•e= {a, 〈a;⊥〉}
in which{a, 〈a;⊥〉} is inconsistent to begin with. This example is not especially pertinent, however,
since the• operation will usually be performed upon pairs of prime theories, which are consistent
to begin with. But consider a more elaborate example, in which the seeds of inconsistency are
buried more deeply. Take sets of structuresm, n with {a, 〈b, c〉} ∈ m and {〈a, 〈c;⊥〉〉, b}. Then
{(a, 〈a, 〈c;⊥〉〉), (〈b, c〉, b)} ⊆ m ⋆ n, makingm ⋆ n inconsistent, although neither of these two
elements taken alone entails⊥, and hence would not be excluded fromm•n under Pym’s definition,
which makes it a rather arbitrary construction. We regard our choice of checking the consistency
of the whole set as more natural (although it would require a much more expensive computation)
and it certainly integrates more neatly with the PDM semantics, and simplifies the argument of our
completeness proof.
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Definition 34 We may construct acanonical countermodelas follows.23Mc = 〈M, •, e,⊑,V〉 is a partially-defined model in whichM is the set of all prime

theories (see Definition 31), together with the unit statee = {I }. We know that

there exist a sufficient number of prime theories, since for each pair of structures

R,T such thatR 0 T, Lemma 15 guarantees the existence of at least one prime

theoryΣ+ such thatR ∈ Σ+ andΣ+ 0 T.24 e is not a prime theory, and in that re-

spect is a special exception inM. Thenatural valuationfunctionV : P → ℘(M)

is then defined:

V(a) = {m∈ M | a ∈ m}.

The preorder⊑: ℘(Φ) × ℘(Φ) → Bool (whereΦ is the set of all structures ofBI)

is defined as non-strict set inclusion,25 that is,

m⊑ n iff m⊆ n. 2
Remark 11 It does not follow fromm • n ↓ that if m, n ∈ M, and are thus by

definition prime theories, thatm• n ∈ M, since we have no guarantee thatm• n

23Suppose that we were attempting to prove completeness with respect to the new Kripke re-
source semantics. Then the definition of a countermodel is slightly more elaborate. A counter-
modelMc = 〈M, •, e, π,⊑,V〉 contains in addition a special elementπ ∈ M, the inconsistent state.
We defineπ = ?, andπ is plainly not a prime theory. Becauseπ needs to be the greatest state in
M under the preorder⊑, we adjust the definition of⊑ as follows:

m⊑ n =



















True if n = π
False if m= π andn , π
m⊆ n otherwise

The natural valuation function would also need adjustment:

V(a) = {m ∈ M | a ∈ m} ∪ {π}.

That is, the value of an atomic structurea in the model is the set of states havinga as an element,
plusπ. No tampering is required to handleπ in the definition of the• operator. Note that by the
definition,π •m = π for anym, as required. In this scheme, we would regardm• n = ? = π as
being defined.

24 Indeed, it is worth noting that the same pairR,T may yield different prime theories, given
different underlying enumerations of the structures ofBI. It is also worth emphasising that we have
no reason to think that the procedure of Lemma 15 yieldsall prime theories, and that we do not
require that.

25It is important that⊑ be defined over all theories, that is, all sets of structuresm, n, and not
just over the elements ofM in a canonical countermodel, which except fore are prime theories.
(In fact, it only needs to be defined over non-empty theories.) See our discussion in §2.7.
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is a prime theory simply becausem and n are. Now consider the forcing clauses

for ∗ and−∗ in the PDM semantics. The forcing clause for∗ requires thatn• n′ be

defined, that is, that it be non-empty, and that it participate in the preorder, but not

that it be a element ofM, and hence not that it be a prime theory.n andn′ are of

course required to be prime theories, by the definition of a canonical countermodelMc. The forcing clause for−∗ raises a more delicate matter. Takeφ−∗ψ, forced at

a given statem ∈ M. It states that for any prime theoryn ∈ M for which m• n is

defined and which forcesφ, thatm• n is aprimetheory inM and forcesψ. 2
Proposition 5 The binary relation⊑, as defined in Definition 34, is reflexive and

transitive. 2
P This follows immediately from the reflexivity and transitivity of non-strict

set inclusion⊆. �
Proposition 6 The natural valuation defined in Definition 34 satisfies the mono-

tonicity constraint. 2
P Suppose thatm ∈ V(a) andm ⊑ n. In the case thatm = π, n = π by the

definition of⊑, andπ ∈ V(a) by the definition ofV. Otherwise,a ∈ m by the

definition of the natural valuation. Then sincem ⊆ n, we havea ∈ n, that is,

n ∈ V(a), unlessn = π, in which case alson ∈ V(a). �
Proposition 7 The operator•, as defined in Definition 33, is commutative. 2
P This follows from the commutativity of multiplicative conjunction modulo

syntactic equivalence, and the fact that a set is unordered. �
Proposition 8 The definition of• given in Definition 33 (taken together with the

definition of⊑ given in Definition 34) satisfies bifunctoriality. 2
P Suppose thatm ⊑ n andm′ ⊑ n′, andm • m′ ↓ andn • n′ ↓. Now take

an arbitraryR such thatR ∈ m • m′. Then by Definition 33 there is some pair

of structuresU,V such thatU ∈ m andV ∈ m′ and (U,V) ≡ R under syntactic

equivalence. ThenU ∈ n andV ∈ n′, and hence (U,V) ≡ R ∈ n • n′. Thus

m•m′ ⊑ n • n′. �
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Remark 12 Suppose thatm ⊑ n, and thus thatm ⊆ n. Then, momentarily disre-

garding the requirement that structures be finite in size,
∧

n ⊢
∧

m by weakening

(wl↑). Note the reversal of positions. Also compare monotonicity, by which, if

m
 R thenn 
 R. 2
Remark 13 Suppose thatm is a prime theory and thatm ⊢ R, that is, that for

some finite subset{R1, . . . ,Ri} of m, we have{R1, . . . ,Ri} ⊢ R. Now trivially,

{R1, . . . ,Ri} ⊢ (R1; . . . ; Ri), and som ⊢ (R1; . . . ; Ri). Sincem is a prime theory, we

have (R1; . . . ; Ri) ∈ m. 2
Lemma 21 〈((R1,T1); . . . ; (Ri,Ti)),U〉 ⊢ 〈(R1; . . . ; Ri), (T1; . . . ; Ti),U〉. 2
P We can construct the following derivation, using multiple applications of

weakeningwl↓ and contractioncl↓ on the left.

〈((R1,T1); . . . ; (Ri,Ti)),U〉
wl↓
〈(((R1; . . . ; Ri), (T1; . . . ; Ti)); . . . ; ((R1; . . . ; Rn), (T1; . . . ; Tn))),U〉

cl↓
〈((R1; . . . ; Ri), (T1; . . . ; Ti)),U〉 �

We require the following primeness lemma. Cf. the statements and proofs of

primeness lemmas in Routley & Meyer [1972, pp. 62f, Lemma 4] and Galmiche

et al. [2005, p. 1065, Lemma 5.3]. In particular, we adapt the proof procedure of

Galmiche et al. [2005] to our apparatus.

Lemma 22 (Primeness lemma) If m is a prime theory and n• n′ ⊆ m, and n

is consistent, then there is a prime theory n+ extending n, such that n+ • n′ ⊆ m.2
P We construct a prime theoryn+ using a variation on the procedure of

Lemma 15. In the base case,n0 = n. In the inductive step, constructni+1 as

follows, As in Lemma 15, we take an enumerationR1,R2,R3, . . . of the structures

of BI.
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If ni is a prime theory

ni+1 = ni

otherwise, ifRi is of disjunctive form [RL; RR]

ni+1 =











































ni ∪ {RL} if ni ∪ {RL} • n′ ⊆ m; otherwise

ni ∪ {RR} if ni ∪ {RR} • n′ ⊆ m

ni otherwise

otherwise

ni+1 =























ni ∪ {Ri} if ni ∪ {Ri} • n′ ⊆ m

ni otherwise

and finally

n+ =
⋃

i≥0

ni

It is evident from the construction thatn+ • n′ ⊆ m. We can view the tests whether

ni ∪ {Rx} • n′ ⊆ m as proxies for the tests for the non-deducibility ofT (whereT

is in this case unknown) in our proof of Lemma 15, and confirmation thatn+ is

indeed a prime theory may be carried out similarly to the argument there.�
Corollary 2 If m is a prime theory and n• n′ ⊆ m, and n and n′ are consistent,

then there are prime theories n+ and n′+ extending n and n′ respectively, such that

n+ • n′+ ⊆ m. 2
P By the commutativity of• and two applications of Lemma 22. �
Now we come to the main lemma of the completeness proof.

Lemma 23 (Truth lemma) Given a canonical countermodelMc as defined in

Definition 34, Mc,m
 U iff U ∈ m

for any m∈ M. 2
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P We must show thatMc,m 
 U iff U ∈ m. Note thatU is never⊥, since

every prime theory is consistent. We do, however, have to consider cases in which

⊥ is a substructure ofU. We argue by induction on the degree ofU. In every

sub-case of the base and inductive cases, we treat the left-to-right and then the

right-to-left case. In the base case,U is either an atomic structure, or⊤ or I .

1. (i) Suppose thatMc,m 
 a. It is immediate thata ∈ m, by the natural

valuation.

(ii) Suppose thata ∈ m. It is immediate thatMc,m 
 a by the natural

valuation.

2. (i) In the case thatU is ⊤, U ∈ m since⊤ is an element of every prime

theory, by Definition 31, given thatR ⊢ ⊤ for anyR by the rule of inference

wl↑.

(ii) M, n
 ⊤ for all n in anyM, soMc,m
 ⊤ always.

3. (i) In the case thatMc,m
 I , e⊑ m. Sincee= {I }, we haveI ∈ m.

(ii) In the case thatI ∈ m, we havee ⊆ m, and hencee ⊑ m, and thenMc,m
 I .

In the inductive step, we consider each binary connective. In each case we take

the hypothesis that for anym, Mc,m 
 UL iff UL ∈ m, andMc,m 
 UR iff

UR ∈ m. It is necessary that we quantify universally over statesm in the scope of

the hypothesis, rather than restrict ourselves to the given (but of course arbitrary)

m of each case, and quantify universally over the entire induction.

1. (i) Suppose thatMc,m 
 (UL; UR). Then by the forcing clause for∧, we

haveMc,m 
 UL andMc,m 
 UR, and so by the inductive hypothesis

UL,UR ∈ m. Then{UL,UR} ⊂ m, and trivially (UL; UR) ⊢ (UL; UR). Then

(UL; UR) ∈ m, sincem is a prime theory.

(ii) Suppose that (UL; UR) ∈ m. Now (UL; UR) ⊢ UL and (UL; UR) ⊢ UR,

using weakening (wl↑), so sincem is a prime theory,UL ∈ m andUR ∈ m.

Then by the inductive hypothesis,Mc,m
 UL andMc,m
 UR, and so by

the forcing clause for∧, we haveMc,m
 (UL; UR).
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2. (i) Suppose thatMc,m 
 [UL; UR]. Then eitherMc,m 
 UL orMc,m 

UR, by the forcing clause for∨. So by the inductive hypothesis we have

eitherUL ∈ m or UR ∈ m. The cut-free derivation:

R
≡

[R;⊥]
wr↓

[R; T]

gives usUL ⊢ [UL; UR] andUR ⊢ [UL; UR]. So in either case [UL; UR] ∈ m,

sincem is a prime theory.

(ii) Suppose that [UL; UR] ∈ m. Sincem is a prime theory, eitherUL ∈ m or

UR ∈ m, by the special disjunctive condition on prime theories in Definition

31. Then by the inductive hypothesis, eitherMc,m 
 UL orMc,m 
 UR,

and hence by the forcing clause for∨, we haveMc,m
 [UL; UR].

3. (i) Suppose that〈UL; UR〉 < m. Then sincem is a prime theory,m 0
〈UL; UR〉, and hencem ∪ {UL} 0 UR by uncurrying.26 In the case that

m∪{UL} ⊢ ⊥we obtainm∪{UL} ⊢ UR using weakening (wr↓). But this gives

us a contradiction, so this case cannot apply. In the case thatm∪ {UL} 0 ⊥,

we can construct a prime theorym′ ∈ M such thatm ∪ {UL} ⊆ m′ and

m′ 0 UR, by the procedure of Lemma 15.m⊆ m′, so we havem⊑ m′. Since

m′ is a prime theory, we haveUR < m′, and then by the inductive hypothesis,Mc,m′ 1 UR. But UL ∈ m′, so again by the inductive hypothesis, we haveMc,m′ 
 UL. Now recall the forcing clause for→. Mc,m 
 〈UL; UR〉 iff

for all n such thatm ⊑ n, we haveMc, n 1 UL or Mc, n 
 UR. HenceMc,m 1 〈UL; UR〉. So by contraposition, ifMc,m 
 〈UL; UR〉, then

〈UL; UR〉 ∈ m. [Cf. the corresponding case in van Dalen 2004, Lemma

5.3.9, p. 170].

(ii) Suppose that〈UL; UR〉 ∈ m. Now take anyn ∈ M such thatm ⊑ n and

UL ∈ n. Sincem ⊑ n, we have〈UL; UR〉 ∈ n. So {UL, 〈UL; UR〉} ⊆ n. We

have the derivation, using cut (ia↑):

26To be more rigorous, ifm 0 〈UL; UR〉, then for every finite subset{R1, . . . ,Rn} of m, we
have (R1; . . . ; Rn) 0 〈UL; UR〉, and equivalently,0 〈(R1; . . . ; Rn); 〈UL; UR〉〉. Then by syntactic
equivalence, we have0 〈(R1; . . . ; Rn; UL); UR〉 for any{R1, . . . ,Rn} ⊆ m.
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(UL; 〈UL; UR〉)
≡

(〈⊤; UL〉; 〈UL; UR〉)
sia↓

〈〈UL; UL〉; 〈⊤; UR〉〉
ia↑

〈⊤; 〈⊤; UR〉〉
≡

UR

so n ⊢ UR. Thus by the inductive hypothesis, for anyn ∈ M such thatm⊑ n,

if Mc, n 
 UL thenMc,m 
 UR. HenceMc,m
 〈UL; UR〉 by the forcing

clause for→.

4. (i) Suppose thatMc,m 
 (UL,UR). Then by the forcing clause for∗ there

existn, n′ ∈ M such thatn• n′ is defined,27 andn• n′ ⊑ m, andMc, n
 UL

andMc, n′ 
 UR. By the inductive hypothesis,UL ∈ n andUR ∈ n′, and

then by Definition 33, (UL,UR) ∈ n • n′. Then sincen • n′ ⊑ m, we have

(UL,UR) ∈ m.

(ii) Suppose that (UL,UR) ∈ m. (UL,UR) 0 ⊥, sincem is a prime theory.

First we establish thatUL 0 ⊥ andUR 0 ⊥. Consider the derivation

(R,⊥)
wr↓

(R, 〈R,⊥〉)
sim↓

〈〈R,R〉,⊥〉
im↑

〈I ,⊥〉
≡
⊥

using cut (im↑), showing that (R,⊥) ⊢ ⊥ for any R. Obviously the same

holds for (⊥,R) since (⊥,R) ≡ (R,⊥). We can see that if eitherUL ⊢ ⊥ or

UR ⊢ ⊥, then (UL,UR) ⊢ ⊥, so by contraposition, we know thatUL 0 ⊥ and

UR 0 ⊥. Now take the consistent sets{UL} and{UR}. We have{UL} • {UR}↓

and{UL}•{UR} = {(UL,UR)}. Plainly{UL}•{UR} ⊑ m, so by two applications

of the primeness lemma (Lemma 22), we have prime extensionsn ∈ M of

{UL} andn′ ∈ M of {UR} such thatn • n′ ⊆ m. Hence there existn, n′ ∈ M

such thatn • n′ ↓ andn • n′ ⊑ m andUL ∈ n andUR ∈ n′. Then by the

inductive hypothesis, there existn, n′ ∈ M such thatn • n′ ↓ andn • n′ ⊑ m

27We do not take the definedness ofn• n′ to entail thatn• n′ is a prime theory. See Remark 11.
But n andn′ must be prime theories, by the definition of a canonical countermodelMc.
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andMc, n 
 UL andMc, n′ 
 UR. Hence by the forcing clause for∗,Mc,m
 (UL,UR).

5. (i) Before we begin this case, recall the forcing clause for−∗. Mc,m 

〈UL,UR〉 iff for all n ∈ M such thatm• n is defined andMc, n
 UL, for all

n′ ∈ M such thatm• n ⊑ n′, we haveMc, n′ 
 UR.

Take the non-prime theory{UL} such thatUL ∈ n and n is a prime the-

ory. {UL} is consistent sincen is a prime theory, andn ⊢ UL. Now take

the setm • {UL}. (In the case thatm • {UL} is inconsistent, that is, un-

defined by Definition 34,m • n must be inconsistent for anyn such that

UL ∈ n, and thus is always undefined, sincem • {UL} ⊆ m • n.) Suppose

that m • {UL} ⊢ UR. Recall that this means that there is some finite sub-

set ofm • {UL} from which UR is deducible. Let{R1, . . . ,Rn} be a finite

subset ofm such that{(R1,UL), . . . , (Rn,UL)} is finite subset ofm • {UL}

and {(R1,UL), . . . , (Rn,UL)} ⊢ UR. Then⊢ 〈((R1,UL); . . . ; (Rn,UL)),UR〉.

Then by Lemma 21 we have⊢ 〈((R1; . . . ; Rn), (UL; . . . ; UL)),UR〉, and then

by multiple contractions (cl↓) ⊢ 〈((R1; . . . ; Rn),UL),UR〉, and by currying

⊢ 〈(R1; . . . ; Rn), 〈UL,UR〉〉. Then since{R1, . . . ,Rn} ⊆ m andm is a prime

theory,〈UL,UR〉 ∈ m. Hence we have by contraposition that if〈UL,UR〉 < m

thenm• {UL} 0 UR, whenm• {UL}↓.

Now suppose that〈UL,UR〉 < m. Thenm• {UL} 0 UR whenm• {UL} ↓, as

we have just shown. By the prime extension lemma (Lemma 16, there is a

prime extension (m• {UL})+ of m• {UL} such that (m• {UL})+ 0 UR. Then

by the primeness lemma (Lemma 22), there is a prime extensionn of {UL}

such thatm•n ⊆ (m• {UL})+. Hencem•n 0 UR. But we have no assurance

that m • n is a prime theory; indeed it is most likely not. By Lemma 19,
⋂

(m • n)+ is the sub-prime extension ofm • n, and sincem • n 0 UR, we

have
⋂

(m• n)+ 0 UR, by Lemma 17. Then since
⋂

(m• n)+ is a sub-prime

theory,UR <
⋂

(m • n)+ by Definition 32, and thus by Lemma 18, there

exists a prime extensionn′ of m• n such thatUR < n′.

So, to summarise our progress so far, if〈UL,UR〉 < m, eitherm• n is never

defined whenUL ∈ n, or there exist ann ∈ M such thatm•n is defined, and

a prime extensionn′ ∈ M of m•n such thatUL ∈ n andUR < n′. We are now
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in a position to construct an ‘exception’ to the forcing clause in the case that

〈UL,UR〉 < m. Take any prime theorym ∈ M such that〈UL,UR〉 < m. Then

either there exists a prime theoryn′ ∈ M such thatm• n↓ andm• n ⊆ n′

andUL ∈ n andUR < n′, or m•n is never defined whenUL ∈ n. Now by the

inductive hypothesis,UL ∈ n iffMc, n 
 UL andUR ∈ n′ iffMc, n′ 
 UR.

So in the case that〈UL,UR〉 < m, either there existn, n′ ∈ M such that

m • n ⊆ n′ andMc, n 
 UL andMc, n′ 1 UR, or m • n is never defined

whenMc, n 
 UL, and henceMc,m 1 〈UL,UR〉 by the forcing clause. So

by contraposition, ifMc,m
 〈UL,UR〉, then〈UL,UR〉 ∈ m.

(ii) Suppose thatMc,m1 〈UL,UR〉. Then by the forcing clause for−∗, there

is somen ∈ M such thatm• n is defined andMc, n 
 UL, for which there

is somen′ ∈ M such thatm • n ⊑ n′ andMc, n′ 1 UR. By the inductive

hypothesis,UL ∈ n iffMc, n 
 UL andUR ∈ n′ iffMc, n′ 
 UR. So sinceMc, n′ 1 UR, we haveUR < n′. We can construct a derivation

(UL, 〈UL,UR〉)
sim↓

〈〈UL,UL〉,UR〉
im↑

〈I ,UR〉
≡

UR

�
using cut (im ↑). So sincen′ is prime, (〈UL,UR〉,UL) < n′, and hence

(〈UL,UR〉,UL) < m • n. Then by Definition 33, and since by the induc-

tive hypothesisUL ∈ n, we have〈UL,UR〉 < m. Hence, by contraposition, if

〈UL,UR〉 ∈ m thenMc,m
 〈UL,UR〉.

Theorem 3 (Completeness) If R � T then R⊢ T. 2
P First we construct a canonical countermodelMc = 〈M, •, e,⊑,V〉, as de-

scribed in Definition 34. Now suppose thatR 0 T. By Lemma 15, there exists

a prime theorym such thatR ∈ m andT < m. By Definition 34,m ∈ M. By

Lemma 23,Mc,m 
 R andMc,m 1 T. It follows thatR 2 T, by the definition

of semantic entailment (Definition 25). Then by contraposition, ifR � T then

R ⊢ T. �
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3.5.1. Cut elimination

Cut elimination is a highly desirable proof-theoretical property for sequent calculi,

and also for systems in the calculus of structures. Here is a fairly generic example

of a multiple-conclusion sequent calculus cut rule:

Γ⇒ ∆, φ φ,Z⇒ H

Γ,Z⇒ ∆,H

φ is called thecut formula. The cut rule inLBI is slightly more elaborate, with the

cut-formula occurring at an arbitrary depth in the bunch of the right premise:

∆⇒ φ Γ(φ)⇒ ψ

Γ(∆)⇒ ψ

The cut rule in a sequent calculus guarantees thesubformula property. A proof

has the subformula property if every formula that appears in the proof tree is a

subformula of the formula which is being proven. That this is so is clear from the

fact that the cut rule, generally speaking, is the only rule of inference in a system

whose premises may contain a formula that need not be a subformula of some

formula in the concluding sequent. A cut rule states at the level of proof that de-

duction is transitive, and is sometimes regarded as a kind of syntactic consistency

property. In practical terms, it allows a proof to be shorter and more natural by

way of a detour, and easier for a human being to find. A straightforward theorem

prover based on a sequent calculus will typically search for proofs in a space of

cut-free proof candidates.

Cut-elimination is usually proven in purely proof-theoretical terms, and in-

deed, the proof-theoretical procedure will usually provide some insight into the

fine structure of the system at hand. A cut elimination theorem for a sequent

calculus states that the system’s cut rule is admissible in the system obtained by

removing the cut rule from the system, that is, the cut-free system. That a rule

is admissible in a system means that every theorem that can be proven using that

systemplusthe rule can be proven using the system alone, without use of the rule.

Typically, the admissibility of a rule is demonstrated by giving a procedure, or

algorithm for transforming any proof in the systemplus the rule into a proof in
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the bare system. It is a notable fact that although everyproof in a sequent calcu-

lus that enjoys cut-elimination can be replaced by a cut-free proof, that this is not

the case forderivationsin general. For sequent calculi, a cut-elimination proce-

dure is typically specified inductively, showing how each possible configuration

of an application of the cut rule can be permuted a step upwards, or in the base

case eliminated, in a transformed proof, with a reduction in either the cut-height (a

well-founded measure of the length of the proofs of the premises of an application

of cut) or cut-weight (a well-founded measure of the complexity of a cut formula)

of any replacement cuts in the transformed proof. See Appendix A for my ren-

dition of a cut-elimination proof for the standard right-sided sequent system for

propositional linear logic, which I include merely as an example of the standard

approach for sequent calculi.

A cut-elimination theorem forSBISg would be stated:

If ⊢BISg R then ⊢SBISg R.

WhereBISg is the down-fragment, or cut-free fragment ofSBISg (see Figure

3.5). For systems in the calculus of structures, analogous methods based upon

information about the permutability of rules in a system have been used [see,

for instance Straßburger 2003, §9], as well as a novel method calledsplitting

[Guglielmi 2004, §4]. In addition, an indirect proof-theoretical method is used

by Tiu [2005, 2006]28 who proves cut-elimination for a system of intuitionistic

logic in the calculus of structures by way of a correspondence between the down-

fragment of that system and the cut-free sequent calculus.29 The argument runs as

follows. It is shown that if a structureR is provable inSJSg, then its counterpart

RJ is provable inLJ. Then sinceLJ is known to enjoy cut-elimination,RJ is prov-

able in cut-freeLJ. Then it is shown that if a formulaφ is provable in cut-freeLJ

that its counterpartφ
S

in the calculus of structures is provable inJSg, the down-

fragment ofSJSg. Hence ifR is provable inSJSg, it is provable in ‘cut-free’

28Also by Straßburger [2003, §5].
29Recall that our systemSBISg is based upon Tiu’s systemSJSg in the April 2005 draft of the

paper. That version of the paper also uses a standard single-conclusion sequent calculusLJ for
intuitionistic logic. The LPAR 2006 version of the paper makes use of a more unusual multiple-
conclusion sequent calculusLJm for intuitionistic logic.
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JSg. Indeed Tiu also shows soundness and completeness by similar means, since

LJ is known to be sound and complete. In this way, a cut-elimination result may

be obtained without directly identifying a cut-elimination procedure in a system

in the calculus of structures.

Similarly, a cut-elimination result forSBISg, supposing that it is there to be

found, could be obtained by way of establishing a correspondence with the se-

quent calculusLBI, which is known to enjoy cut-elimination [Pym 2002, §6.2]. In

our view, a cut-elimination result forSBISg achieved directly in the calculus of

structures by methods of permutability or splitting remains a difficult challenge.

We have entertained the idea of another approach, by way of the semantics.

The strategy would be to attempt to show that the down-fragmentBISg of SBISg

is complete, by way of a modification of the completeness proof that we have al-

ready presented. (The soundness ofBISg follows immediately from the soundness

of SBISg.) The starting point would be to change the definition of a prime theory;

simply to require that a prime theory must be closed only under deducibility in

BISg.

Definition 35 A cut-free prime theoryis a setΣ of structures that meets the fol-

lowing conditions:

(i) Σ 0BISg⊥;

(ii) For anyR, if Σ ⊢BISg R thenR ∈ Σ;

(iii) If [ R; T] ∈ Σ thenR ∈ Σ or T ∈ Σ. 2
But we are faced with an immediate difficulty. Derivations that require cut rules

found in cBISg and not inBISg are needed at a number of critical points in the

proof of the truth lemma (Lemma 23) as it presently stands. (See, notably, the

right-to-left cases of the inductive step.) The completeness result we have pre-

sented is a statement about derivations, however.30 On reflection, all that we would

require for an indirect cut-elimination theorem would be a weaker completeness

30Refer to our earlier remarks on the use of cut in derivations in §3.4.1.
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result for the cut-free system, just for theorems, and not derivations in general:31

If �R then ⊢BISg R.

It would seem more likely that this weaker result could be proven using a similar

apparatus to that of our existing completeness proof. The cut-elimination argu-

ment would then run as follows. Suppose that⊢SBISg R. Then by soundness,�R,

and hence, by the weak completeness ofBISg, ⊢BISg R.

3.5.2. A local system

It would be desirable to find a local formulation ofSBISg, along the lines of Tiu’s

[2005] systemsSJSa andSJSp (or [2006] systemsSISaq andSISp) for intu-

itionistic logic. Broadly speaking, a local system limits the amount of checking

that needs to be performed to see whether a rule may be applied. The two sorts

of checking that that are required inSBISg are (i) checking whether a context

meets the polarity restriction on the application of a rule; and (ii) in the case of cut

rules and down-fragment contraction rules, checking whether the two occurrences

of the cut- or contraction-structure are indeed identical (or equivalent). Both of

these operations incur significant computational overhead in a theorem prover im-

plementation. In particular,SBISg allows cut- and contraction-structures to be of

arbitrary weight. We may extend this idea beyond checking for the applicability of

rules, to those rules (identity and down-fragment weakening) which introduce ar-

bitrary structures into a derivation. If the weight of such arbitrary structures can be

restricted, there ought to be an improvement in the performance of a proof-search

implementation, since the search space of candidate proofs would be significantly

reduced. So we may add a third sort of limitation imposed by a local system: (iii)

limitation of the weight of arbitrarily introduced structures in identity and down-

fragment weakening rules. Indeed, a limitation upon which structures may be

‘deleted’ by up-fragment weakening rules (and indeed by cut rules, but that case

that has already been treated) is pertinent to the growth of the proof-search space.

So we add: (iv) limitation of the weight of structures which may be deleted by cut

31Interestingly, the systemKL of modal logic exhibits only this weak form of completeness,
pertaining to theorems, but not the strong, relative form [Blackburn et al. 2001, Example 4.11].
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and up-fragment weakening rules.32

Tiu’s SJSa and SISaq impose limitations of sorts (ii), (iii) and (iv) by re-

stricting identity, cut, weakening and contraction rules to their atomic cases, thus

strongly limiting the complexity of the equivalence checking computations that

are needed, and strongly curtailing the growth of the proof-search space. In a cor-

respondingBI-systemSBISa, the following rules would replace their counterparts

in SBISg:33

S+{I }
aim↓

S+〈a, a〉

S+{⊤}
aia↓

S+〈a; a〉

S−〈a, a〉
aim↑

S−{I }

S−〈a; a〉
aia↑

S−{⊤}

S−(a; a)
acl↓

S−{a}

S+[a; a]
acr↓

S+{a}

S−{⊤}
awl↓

S−{a}

S+{⊥}
awr↓

S+{a}

S+{a}
acl↑

S+(a; a)

S−{a}
acr↑

S−[a; a]

S+{a}
awl↑

S+{⊤}

S−{a}
awr↑

S−{⊥}

These changes respect the need to maintain up-down symmetry of rules. The

proof theoretical cost of these restrictions is the need to add so-calledmedialrules

to the system to maintain completeness and proof-theoretical equivalence with

SBISg (see Tiu [2005, 2006] for medial rules in the intuitionistic systems.)SJSa,

SISaq, andSBISa are not fully local, however, because they leave untouched

the checking of sort (i), that is, they still impose restrictions upon the polarity of

contexts for rule application.

Tiu’s SJSp builds uponSJSa (andSISp uponSISa, the propositional frag-

ment ofSISaq) to reduce the amount of polarity checking, and hence to produce

a properly local system. The essential insight is that a context, or more perhaps

more properly, a ‘thread’ of contexts, never switches polarity in the course of

a derivation. This means that the polarity of each context in a candidate theo-

rem may be calculated just once, at the outset of a proof, and that polarity labels

32There is a fifth sort of non-locality that does not afflict us here: some rules in some systems
require that the wider context of a rule application be checked for some feature or other. Usually in
sequent systems this would be a check that some non-principal formula or formulæ be of a certain

sort. The usual example is the rule of promotion in linear logic
⇒?Γ, φ

⇒?Γ, !φ
, and similarly certain

sequent rules for modal logic.
33a stands for any atomic structure, and thea prefix to each rule name stands for “atomic”.
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may then be attached to each substructure of the candidate theorem. Indeed, all

structures in this system arepolarised structures. Polarity labels are propagated

throughout a derivation by modified rules of inference that check the polarity of

substructures, instead of the polarity of contexts, for the applicability of rules; and

which transmit the polarity labels on substructures (up or down, as you please)

throughout the derivation. Following Tiu, the grammar of polarised structuresS

in SBISp would be given:34

S F P | N

P F a+ | ⊤+ | ⊥+ | I+ | (P; P)+ | [P; P]+ | 〈N; P〉+ | (P,P)+ | 〈N,P〉+

N F a− | ⊤− | ⊥− | I− | (N; N)− | [N; N]− | 〈P; N〉− | (N,N)− | 〈P,N〉−

A proof of a structureR is a derivation of the unique polarised form ofR from⊤+

or I+.

So the work that would need to be done to obtain a localBI-system in the

calculus of structures would be to identify the correct medial rules to produce the

systemSBISa, and then to prove the proof-theoretical equivalence ofSBISa and

SBISg. Then to progress to a fully local systemSBISp, we would need to confirm

the idea that polarity is preserved throughout any thread of contexts in the course

of a derivation, by induction of the length of a derivation, and we would need to

demonstrate the proof-theoretical equivalence ofSBISp andSBISa.

34Cf. our definition of polarity forSBISg (Definition 17).
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Hybrid logics are modal logics enriched with an additional class of propositional

atoms callednominals. Nominals function as names of states of frames, which

yields a great increase in the expressivity of hybrid logics over standard modal

logics: it is a peculiar characteristic of standard modal logics that the basic ob-

jects of the semantics, namely states, do not have any direct counterpart in the

languages. Nominal atoms may occur in compound formulæ which may or may

not also contain ordinary propositional atoms. Formulæ containing only nominals,

and no ordinary propositional atoms are calledpure formulæ, and can be used to

express frame properties, including some such as antisymmety which are not ex-

pressible in standard modal logics [see Blackburn et al. 2001, p. 436]. Hybrid

logics usually also add a new kind of modal operator called asatisfactionoperator

(in fact, a distinct satisfaction operator for each nominal atom), and often other

operators as well. Satisfaction operators give us the ability to talk about what

is going on at named states in a model from a global perspective, that is, with-

out regard to our own local position in the model. Hybrid logic first appeared in

the pioneering work of Arthur Prior on temporal logic [see especially Prior 1967,

chapter 5 & appendix B3]. The Sofia School [see Passy & Tinchev 1991] inde-

pendently reintroduced nominals in their work on propositional dynamic logic.1

There has been considerable recent interest in the use of hybrid and modal in-

1Useful overviews of hybrid logic may be found in Blackburn et al. [2001, §7.3], Blackburn
[2000b], Areces & Blackburn [2001], and Areces & ten Cate [2006]. Also see the Hybrid Logics
Home Pagehttp://hylo.loria.fr [Areces 2004–] for an introduction, history, bibliography
and other resources.
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tuitionistic logics for reasoning about resource distribution. Jia & Walker [2003,

2004] develop a modal intuitionistic logic and apply it to distributed program-

ming, using the formulæ-as-types and proofs-as-programs paradigm. We clas-

sify their “logic of places” as a hybrid intuitionistic logic because it contains @p

modalities, wherep denotes aplace. A place p is not, however, a well-formed

formula of their language in its own right. A formulaφ@p is read as the type of a

remote procedure call from the placep, yielding a value of typeφ. More generally

speaking @p is a satisfaction operator, which permits us to say something about

a what is the case at a named location in a model, from the point-of-view of any

location in the model. Chadha, Macedonio & Sassone [2006] develop the work of

Jia & Walker, formulating a Kripke semantics for an extension of their language,

and proving soundness, completeness, the finite model property and decidability.

They proffer an analogy of atomic formulæ with resources. In the Kripke seman-

tics, models contain a set of states, as usual, but also a set of places for each state.

Each clause of the forcing relation is parameterised over states and places. For

example, the clause for satisfaction operators, adjusted to our notation, is:M,m, p
 φ@q iff q ∈ Pm andM,m, q
 φ

wherePm is the set of places indexed to statem. Note the way in which the

reach of a satisfaction statement is limited to the ‘locality’ of statem, which is

not something we will do. Also note the way in which place symbols appear

in the syntax, as indices of the satisfaction modality, and as semantic objects.

The dual parameterisation over states and places, which we will henceforth call

locations,2 also occurs in the work that we find the most interesting, by Braüner

& de Paiva [2003, 2006]. One benefit of this is that is permits the maintenance

of intuitionistic monotonicity. In our proposal we will an attempt to use a simpler

scheme, with a single domain of states, or resources, as is typical with classical

hybrid logics. We will lose generalised monotonicity, but gain expressive power:

we will be able to name resources explicitly in the formulæ of a variant ofBI. This

is is principal motivation of our proposal. Braüner & de Paiva take the step which

is of most interest to us, and which is common to mainstream hybrid modal logics.

2“Place” is infelicitous in too many grammatical contexts to be a nice piece of jargon.
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They introduce nominal propositional atoms into the language, and a satisfaction

operator for each nominal. We regard our proposal as an experimental: a second

motivation is to illustrate some of the difficulties that arise when we attempt to mix

intuitionistic, modal and hybrid standpoints in the naı̈ve way that we do, without

dualising states and locations; and hence to underline the good sense behind that

(less exciting) approach.

We will now give a brief account of another, directly pertinent piece of work.

Biri & Galmiche [2003] develop a hybrid extension ofBI calledBI-Loc. They

make no reference to the literature on hybrid logic. Then before we come to our

own proposal, we will look at the Kripke semantics for intuitionistic hybrid logic

given by Braüner & de Paiva.

4.1. BI-L

The language ofBI-Loc is just the standard language ofBI, with the addition of

formulæ of the form [l]φ, wherel ∈ L are names of locations. The elements ofL

are not introduced as formulæ of the language in their own right. Biri & Galmiche

give a Kripke semantics, a sequent calculus, soundness and completeness, and

some decidability results, and study some computer science applications. They

adapt, and extend the PDM semantics ofBI with a modality for locations. The

semantic adaptation is the introduction of the idea of aresource tree. Given a

standard partially-defined modelM = 〈M, •, e,⊑〉 and a set of location namesL,

they define resource treesP recursively:

PF m | P|P | [l]P

wherem ∈ M andl ∈ L, and in the base case,m|m′ ≡ m•m′. | is commutative,

associative, and has unite; also [l]P|[l]Q ≡ [l]P|Q; and equivalence is transitive

and congruent. An order4 on resource trees is defined upon the basis of⊑:

(i) m4 Q iff Q ≡ m′ andm⊑ m′;

(ii) [ l]P′ 4 Q iff Q ≡ [l]Q′ andP′ 4 Q′;

(iii) P′|P′′ 4 Q iff Q ≡ Q′|Q′′ andP′ 4 Q′ andP′′ 4 Q′′
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Note that this definition is entirely responsible for the placement of located re-

source trees [l]P in the order4, and indeed for the entire semantic import of

locations. No separate mapping to or from locations is required. Resource trees

replace single states in the definition of the forcing relation; the| operator replaces

• in clauses of the forcing relation; and4 replaces⊑. | comes out partially-defined,

because it is constructed from a partially-defined•. We just give the clause for

location formulæ:M,P
 [l]φ iff there existsQ such that [l]Q 4 P andM,Q
 φ

The monotonicity constraint on the valuation is internalised in the clause for

atomic propositions, but that is just a matter of presentation. The requirement

that [l]Q 4 P means thatP must be a ‘location tree’ of the form [l]P′, and that

Q 4 P′, which makes the monotonicity ofφ explicit for this clause. Otherwise,

[l] is a straightforward satisfaction modality.

A variant ofLBI is extended with a single rule to handle locations:

Γ⇒ φ

[l]Γ⇒ [l]φ

Γ may not be a unit bunch, and [l]Γ is a bunch in which every formula is of the

form [l]φ. The rule simply says that if a sequent is provable, any fully located

form of that sequent is provable, which is not especially interesting.

4.2. B̈ &  P’     

This section briefly reproduces Braüner & de Paiva’s Kripke semantics [2006, §3].

Their work is based upon Simpson’s [1994] work on intuitionistic modal logic.3

A formula is given by the grammar:

φF p | i | φ ∧ φ | φ ∨ φ | φ→ φ | ⊥ | 2φ | 3φ |@i φ

3See Simpson [1994, §5.2] for the Kripke semantics. Simpson’s work draws upon Ewald’s
[1986] work on intuitionistic tense logic, in which an ordered set of times is attached to each
“state of knowledge”.
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wherep ∈ P is an ordinary proposition letter,i ∈ Ω a nominal proposition letter.

@i is a modal satisfaction operator for eachi.4 Satisfaction operators enable us

to talk about what is happening at the location in a model denoted byi, from the

standpoint of any other location. A modelM is

〈M,≤, {Dm}m∈M, {∼m}m∈M, {Rm}m∈M, {Vm}m∈M〉,

whereM is a non-empty set of states;≤ is a partial order onM;5 Dm is a non-

empty set of locations for eachm, such that ifm ≤ n, thenDm ⊆ Dn; ∼m is an

equivalence or identity relation on eachDm, such that ifm ≤ n, then∼m⊆∼n; Rm

is a binary relation onDm, such that ifm ≤ n, thenRm ⊆ Rn; andVm : P →

℘(Dm) is a valuation function for eachm, assigning to each ordinary propositional

atom p a subset ofDm, such that ifm ≤ n, thenVm(p) ⊆ Vn(p). Each modal

accessibility relationRm on Dm and valuationVm respects the equivalence relation

∼m on Dm. This is really a semantics for a class of hybrid intuitionistic modal

logics; no properties such as reflexivity, transitivity, antisymmetry are stipulated

of Rm, except that it conform to the equivalence relation: ifd ∼m eandd′ ∼m e′ and

dRme thend′Rme′. Note the monotonicity conditions on each ofDm, ∼m, Rm and

Vm, which correspond to the familiar intuitionistic monotonicity on valuations in

Kripke resource semantics. Plainly, the same location may occur inD for different

statesm. We can say that they are ‘trans-state’ locations.

There is one more ingredient before we get to the forcing relation. The func-

tion g : Ω→
⋃

m∈M

Dm assigns a location somewhere in the model to each nominal

propositional atom. Then the forcing relation is defined:

4We have changed Braüner & de Paiva’s notationi : φ for the satisfaction operator to @i φ

for uniformity with the rest of our presentation, although their notation emphasises the view of
satisfaction operators as labels.

5A preorder⊑ ought to suffice.
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 p iff d ∈ Vm(p)M, g,m, d 
 i iff d ∼m g(i)M, g,m, d 
 ⊥ neverM, g,m, d 
 φ ∧ ψ iff M, g,m, d 
 φ andM, g,m, d 
 ψM, g,m, d 
 φ ∨ ψ iff M, g,m, d 
 φ orM, g,m, d 
 ψM, g,m, d 
 φ→ ψ iff for all n ∈ M such thatm≤ n,M, g, n, d1 φ orM, g, n, d 
 ψM, g,m, d 
 2φ iff for all n ∈ M such thatm≤ n, for all d′ ∈ Dn,
dRnd′ impliesM, g,m, d′ 
 φM, g,m, d 
 3φ iff for somed′ ∈ Dm, dRmd′ andM, g,m, d′ 
 φM, g,m, d 
 @i φ iff M, g,m, g(i) 
 φ

The first thing to note is that this semantics is divided into orthogonal intuitionis-

tic and modal dimensions. The modal accessibility relation for eachm is distinct

from the intuitionistic ordering, although it ‘grows’ monotonically as we move up

the intuitionistic order. A standard generalised monotonicity result holds over the

intuitionistic order. There is no duality of2 and3 operators, as in classical modal

logics. We note the essential hybrid elements: a nominal atom is assigned to, or

names, exactly one location, and the satisfaction operator @i for each nominal

atom i allows us to talk about what is the case atg(i), regardless of our current

location, although only within the confines of the current intuitionistic state. Sat-

isfaction operators only free us from our modal position.

Braüner & de Paiva devote a good part of their attention to the development

of a natural deduction system for intuitionistic modal logic. The proof-theory

of hybrid logic is typically done with labelled systems, in which every formula

of a proof has a label attached. Labels correlate with locations. In Braüner &

de Paiva’s system, labelling is internalised in the language, by use of satisfaction

operators. The rules of inference are all for satisfaction formulæ. A number of

proof-theoretical presentations of intuitionistic modal logic [e.g. Simpson 1994]

make use of labelled systems, in which formulæ of the language are labelled.

Typically, to prove a sequent, you would begin by labelling each of its formulæ

with the same arbitrary label, one not contained in any labelled formula in the

sequent.6 With hybrid logics, this labelling can be internalised in an obvious way:

6For other work on the development of proof theory for hybrid logics, see Seligman [1991,
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a labelled formulai : φ may simply be seen as an unlabelled formula @i φ of the

language. The ‘situated’ formulaφ can simply be seen as being modified by a

satisfaction operator. As we noted, Braüner & de Paiva would actually write the

formula @i φ as i : φ, with “ i :” read as a modal satisfaction operator, not a label,

although it makes their system look like a more conventional labelled system.

4.3. HBI

We now present our own preliminary proposal of a logicHBI, which is an exten-

sion ofBI in the style of a hybrid modal logic.7 The treatment is rudimentary, and

entirely from a semantic point of view. We give a Kripke resource semantics for

HBI, but no proof-theoretical treatment. Indeed, we do not know whether there

exists a reasonable proof theory forHBI.

We wish to avoid the introduction of an additional semantic index, like loca-

tion. As we have seen, it is typical in the intuitionistic hybrid logics in the litera-

ture for the forcing relation to be parameterised over two domains of objects in a

1997, 2001], treated further by Blackburn [2000a]; and Braüner [2004a, 2004b]. There is also
work on display calculi for nominal tense logic by Demri & Goré [2002].

7Initially, we examined the possibility of characterisingBI by an embedding into an extension
of the modal logicS4, in a way analogous to a standard embedding of intuitionistic logic intoS4.
One such embedding [Troelstra & Schwichtenberg 2000, §9.2] is:

p2 ≔ 2p

⊥2 ≔ ⊥

(φ ∧ ψ)2 ≔ φ2 ∧ ψ2
(φ ∨ ψ)2 ≔ φ2 ∨ ψ2

(φ→ ψ)2 ≔ 2(φ2 → ψ2)

The first embedding of this sort was found by Gödel [1933]. Observe that in this case the embed-
ding of a proposition letterp as2p does the work of the monotonicity constraint in the semantics
of intuitionistic logic andBI. Such a constraint does not appear in the Kripke semantics forS4
or for modal logics generally. Something similar applies for the conditional; compare the forc-
ing clauses for the intuitionistic conditional to the classical conditional of modal logics, which
considers only the current state of a model. So the idea here would be that the work of the mono-
tonicity constraint would be done in the embedding translation, but that no such constraint would
be placed upon the underlying valuation function. Hence nominals might be allowed to evade the
monotonicity constraint simply by embeddingi as i and not as2i. Also note that it is possible
to construe∗ as a standard two-place modality if an additional binary relation, the reverse of the
preorder, is introduced.
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model: the usual states, and a separate domain of objects named by the nominals.

In this sort of arrangement, nominals cannot name resources, as we understand re-

sources inBI. The major drawback will be that the usual monotonicity constraint

cannot, by definition, be satisfied by the valuation function over nominals. In fact,

Braüner & de Paiva mention the possibility of such a hybridisation of intuitionistic

logic “as a language for talking about intuitionistic Kripke structures”, but warn

that “[c]hoosing this option puts an excessive emphasis on Kripke semantics as a

guiding principle.” [2006, p. 236].

In addition to the usual propositional letters,HBI contains an additional class

of propositional letters, callednominals, which denote states of models. Braüner

& de Paiva [2006, §1] point out that nominals play a similar rôle in hybrid log-

ics to that played by constants (or names) in first-order logic. Under a resource

interpretation ofHBI, nominals name resources.HBI also contains a satisfaction

modality @i for each nominali. A stronger extension might include a bind opera-

tor ↓ for what is essentially existential quantification over nominals. We formulate

the semantics with a single domain of states in a model, that is, without the duality

of states and locations.

Propositions ofBI admit of a declarative reading, as statementsabout re-

sources or ‘resource situations’.8 But crucially, a proposition ofBI is not itself

seen as a resource. (This is to be contrasted with the standard view in linear logic

of propositions as resources and proofs as actions upon resources; a view that

is proof-theoretically motivated.) In fact, resources that may be part of the sub-

ject matter of a statement go without explicit mention. We can say in this sense

that propositions ofBI lack referential transparency. Consider the proposition

coin−∗ choc. We can read this as: “If I had another coin, I could buy a chocolate”.

If we follow closely the forcing clause for−∗, we can give the following gloss:

if the present ‘resource situation’ were ‘combined’ with any resource situation

in which I had a another coin9 the combination would be a resource situation in

8See Pym’s [2002, pp. xxxii–xxxix] discussion, which contains thecoin andchocexample,
and the comparison with linear logic. “Declarative” is Pym’s adjective. Particularly helpful is
the comparison of−∗ with linear implication (recall the well-known embedding of intuitionistic
implication φ → ψ as !φ ( ψ) which illustrates the failure of a ‘use counting’ approach to
multiplicative implication inBI.

9We emphasise,anothercoin. It is sometimes natural to restrict ourselves to models in which
• is a combination ofdisjoint resources.
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which I could buy a chocolate. Of course, the chocolate might cost more than

one coin, but we are talking about a ‘resource shortfall’ of one coin. On the other

hand, we read the statementcoin( chocof linear logic as stating that I can ex-

pend exactly one coin to obtain a chocolate. With linear logic, the resource is the

coin (and the chocolate of course), and there is no background resource situation

to consider. InBI we can make a statement that certain additional resources are

needed to reach a given outcome, without any explicit mention of the resources

which are already available. Take as an example of a background resource a global

variable in an imperative computer program, which although not passed explicitly

as an argument to a function, and not figuring in any type signature for the func-

tion, may nonetheless be read or written by the function.

Our suggestion is thatHBI might allow a mixed approach to reasoning about

resources, where we have these sorts of declarative statements intermingled with

denotational statements about resources, such that we can reason about explicitly

named resources. Although resources do not appear directly in the syntax of stan-

dardBI, they are the building-blocks of Kripke resource semantics: the states, or

possible worlds of the models are be regarded as resources, and the operation•

combines resources in some underdetermined way.

We introduce nominal atoms as the names of resources, that is, as names

of states or possible worlds. We enrich the usual language ofBI with nominal

proposition lettersi, j, k, . . . ∈ Ω, and for each of these, asatisfactionoperator

@i ,@j ,@k , . . . . There is a special nominalo ∈ Ω which denotes the unit state

e. We also introduce a modal3 operator. Thus we have this grammar for well-

formed formulæ ofHBI:

φF p | i | o | ⊤ | ⊥ | φ ∧ φ | φ ∨ φ | φ→ φ | I | φ ∗ φ | φ−∗φ | 3φ |@i φ

The set of nominal proposition letters, or nominal atomsΩ is enumerable, and is

disjoint from the set ofordinarypropositional lettersP. The setP∪Ω is called the

set ofatoms. We propose an extension of the standard PDM semantics forBI.10

A frameF = 〈M, •, e,⊑,∼〉 is a standard frame forBI enriched with an identity

10See Galmiche et al. [2005, §5.3] and our §2.7.
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relation∼ on M. ∼ must satisfy the constraint thatm ∼ n only if m ⊑ n and

m ⊒ n. We do not require that ifm ⊑ n andm ⊒ n thenm∼ n. That is, we do

not require that⊑ be antisymmetric. A modelM = 〈F,V, g〉 is a frame together

with a valuation functionV : P → ℘(M) assigning ordinary proposition letters

to sets of states, and anassignmentfunctiong : Ω → M assigning a single state

to each nominal proposition letter. Every assignmentg must satisfy the constraint

thatg(o) = e. Thus nominals can be regarded as names for states, and of course,

a state may have more than one name, or no name at all. Any valuation function

V on the ordinary propositions must satisfy the usual intuitionistic monotonicity

constraint:

if m∈ V(p) andm⊑ n, thenn ∈ V(p)

We propose the following definition of the forcing relation:M,m
 p iffm ∈ V(p)M,m
 i iff m∼ g(i)M,m
 ⊤ alwaysM,m
 ⊥ neverM,m
 φ ∧ ψ iffM,m
 φ andM,m
 ψM,m
 φ ∨ ψ iffM,m
 φ orM,m
 ψM,m
 φ→ ψ iff for all n ∈ M such thatm⊑ n,M, n1 φ orM, n
 ψM,m
 I iff e⊑ mM,m
 φ ∗ ψ iff for somen, n′ ∈ M such thatn • n′ ↓ andn • n′ ⊑ m,M, n
 φ andM, n′ 
 ψM,m
 φ−∗ψ iff for all n ∈ M such thatm• n↓ andM, n
 φ,M,m• n 
 ψM,m
 3φ iff for somen such thatm⊑ n, M, n
 φM,m
 @i φ iffM, g(i) 
 φ

The forcing clauses of the standard PDM semantics are unaltered. It might be ti-

dier now that we are dealing with the two valuationsV, g to drop the monotonicity

constraint onV and internalise it in the forcing relation, thus:M,m
 p iff for somen such thatn ⊑ m, n ∈ V(p)

but we will keep to our usual practice. In addition, we can could consider extend-
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ing the language with a bind operator↓, having the following forcing clause:11M,m
 ↓x.φ iff for somei ∈ Ω,M,m
 φ[i/x]

whereφ[i/x] denotes the formula obtained by simultaneously replacing all un-

bound occurrences ofx with i.

Regardless of which statem we are at, @i φ is true iff φ is true at the state

named byi. A satisfaction operator makes you forget where you are, and consider

the situation elsewhere. If a satisfaction formula is satisfied in a model, it is valid

in that model. We can then express, for example, the fact thati and j name the

same resource by writing @i j. By writing i ∧ φ, we say that the statementφ is

true of the resource denoted byi and that we are situated at the state named byi.

Formulæ of these forms allow us to talk about the attributes of particular, named

resources in a model, from global and situated perspectives. Nominals occurring

in a formula carry the ‘force of circumstance’.o is the name ofe, and the situated

counterpart of the propositional constantI : it is the least state at whichI holds.

With the inclusion ofo, the formulao→ I is e-valid.

The3 resembles the3 of S4 because⊑ is a reflexive and transitive. In gen-

eral, we can express in formulæ the ordering of states denoted by nominals:

@i 3j iff g(i) ⊑ g( j).

This statement expresses a fact about the frame’s preorder from a global perspec-

tive, asserting nothing about the situation in which it is uttered. The related, situ-

ated statementi ∧3j holds iff g(i) ⊑ g( j) and it is uttered in the situation ofg(i).

Under the resource interpretation we can read3i as “g(i) would be a sufficient

substitute for the current resource”.

It can be seen immediately that generalised monotonicity does not hold for this

semantics. That is, it does not follow fromM,m 
 φ andm ⊑ n thatM, n 
 φ

for an arbitrary formulaφ. This is precisely because the assignment functiong

does not obey the monotonicity constraint: a nominal holds at exactly one state.

If a nominal holds at a given state, it cannot hold at any other state, and hence not

11Again we have an clash of standard notation, but↓ is conventionally used as the bind operator
in hybrid logics.
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at any distinct state that is placed equally or higher in the preorder. Generalised

monotonicity does hold, however, for formulæ containing no free nominals, that

is, no nominals outside the scope of any satisfaction operator, as will show in the

next section.

The statement⊤ → φ means the same as2φ in S4. Suppose we added a2
operator, having the forcing clause:M,m
 2φ iff for all n such thatm⊑ n, M, n
 φ

Then we could easily see thatM,m
 2φ iffM,m
 ⊤ → φ. HBI, like standard

BI and intuitionistic logic, has the expressive power of2 in S4 built-in to the

forcing clause for→, because the meaning of→ is monotonic and the relation⊑ is

reflexive and transitive.12 It is just that those other systems are better-behaved; by

maintaining generalised monotonicity, they give usφ � ⊤ → φ and⊤ → φ � φ.

But although inHBI, we do not get the mutual semantic entailment ofφ and⊤ →

φ, it is still the case thatM 
 φ iffM 
 ⊤ → φ. That is, they are equivalent for

validity (and indeede-validity) in a model. So the proof-theoretic equivalence of

φ and⊤ → φ is not in such danger after all; it should certainly obtain for (alleged)

theorems and their sub-formulæ, or more generally sub-formulæ in sequents. We

can say that?a ⇒ φ iff ?a ⇒ ⊤ → φ, but this is not to say that the statementsφ

and⊤ → φ meanthe same thing. They are semantically distinct in the absence of

generalised monotonicity.13

Let us consider some more examples of the expressive power ofHBI. A for-

mula i ∗ j says that the present state or resource is higher in the preorder than,

or equally placed with, the combination of the two resources named byi and j.

12StandardBI does not contain the expressive power of3 in S4, though. Like intuitionistic
modal logics generally,HBI lacks the duality of boxes and diamonds that we find in classical modal
logics. We cannot show by a semantic argument thatM,m
 ⊤ → φ iffM,m
 3(φ→ ⊥)→ ⊥.
But we can obtain a neat characterisation of intuitionistic double negation:M,m
 (φ→ ⊥)→ ⊥
iff M,m 
 23φ. We prove this as follows.M,m 
 (φ → ⊥) → ⊥ iff there is non such that
m ⊑ n andM, n 
 φ → ⊥ iff for everyn such thatm ⊑ n there is somen′ such thatn ⊑ n′ andM, n′ 
 φ iff M,m
 23φ.

13Cf. the use of the generalisation rule in Hilbert-style proof systems for modal logic. Although

there is no axiomp→ 2p, there is a rule of inference
⊢ φ

⊢ 2φ which acts upon theorems, but not

upon formulæ in general.
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Remember that we read⊑ as a comparison of the ‘sufficiency’ of resources.14 So

on this reading,i ∗ j says that the present resource15 is sufficient for any task that

requires the•-combination of the particular resources named byi and j. A for-

mula i −∗φ says that eitherφ holds for the•-combination of the resource named

by i with the present resource, or that that combination is undefined.i → φ says

that if the resource named byi is greater than or equal to the present resource,

thenφ holds for the resource named byi. Although it is monotonic in its ambit, it

really only says something about at most one resource. At most one because our

commitment to the claim aboutg(i) is conditional upon the modal accessibility

of g(i) from the present state. This differs from the meaning of @i φ, which says

unconditionally, or globally, thatφ holds at the resource named ati. i → φ holds

in the case thatg(i) is not accessible.i ∨ φ says that eitherφ holds for the present

resource, or the present resource is the one named byi. i ∨ j says that the present

resource is the one named byi or the one named byj. Conditionals with nominal

consequents are peculiar in their meaning.φ→ i says thatφ holds for no resource

greater than or equal to the present one, with the exception ofg(i), if indeedg(i)

is greater than or equal to the present resource. It can be thought of as an ‘almost-

negation’.φ−∗ i says that wheneverφ holds for a resource, and the•-combination

of that resource with the present resource is defined, that that combination is the

resource named byi. Consequently, if the combination is defined,φ holds at ex-

actly one resource in the model (and furthermore,φ must be a nominal, or a loose

formula, as defined in the following section, or hold only at an upper bound of

⊑). For any of these examples in which we have used the form of words ‘for the

present resource’, we can produce, by the application of a @j operator, a global

or delocated example in which “the present resource” is replaced by the resource

g( j) which is named byj.

There is a limited sense in which we can capture the content of classical im-

plication using nominals and satisfaction operators. A forcing clause for classical

14The semantics ofBI are not sophisticated enough to express comparisons of resources with
respect to sufficiency for a given task. It does, however, permit us to express the idea that any
resource that is sufficient for a task represented by the formulaφ is sufficient to carry out the task
represented by the formulaψ, by writingφ→ ψ.

15By which I mean the statemof the model at which we presently stand. We might talk instead
about the resources available to us in our present situation.
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implication will refer only to the current state. We can simulate a classical condi-

tionalφ→ ψ, at the cost of anonymity, using the ‘narrowing’ effect of @i :

i ∧ (@i φ→@i ψ)

Wherever we are in the model, the truth of @i φ → @i ψ depends only on the

situation ati. Then the conjunction withi asserts circumstantially that we are

at g(i). This formula does not express classical implication in a ‘portable’ way,

though, because it is bound toi. A variation on this idea is:

i ∧ φ→ ψ

which says that ifg(i) is accessible andφ holds there, thenψ holds there.

Blackburn et al. [2001, p. 438f] give axioms for normal hybrid logics. The

axioms involving satisfaction operators, with the exception of self-duality, are

valid in HBI, even for intuitionistic implication. We just mention these.i stands

for an arbitrary nominal andφ for any formula.

@i (φ→ ψ)→ (@i φ→@i ψ) K @

i ∧ φ→@i φ 

@i i 

@i j ↔@j i 

@i j ∧@j φ→@i φ 

@j @i φ↔@i φ 3@i φ→@i φ 

The formula3i∧@i φ→ 3φ () is readily seen to be valid, as is (i∧@i φ)→

φ (), although it is obtained from in the classical system

by self-duality.K @ is a variation on the standard axiom for modalities, and holds

in our intuitionistic context., , ,  express the properties of names.

 says that only the innermost satisfaction operator matters. gives us

transitivity of names.

4.4. L   

We conclude with a result admitting a limited form of monotonicity toHBI.
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Definition 36 A formula islooseif it has the following recursively defined syn-

tactic form:

(i) Any nominal atom is loose;

(ii) φ ∧ ψ is loose iff eitherφ is loose orψ is loose;

(iii) φ ∨ ψ is loose iff eitherφ is loose orψ is loose;

(iv) φ−∗ψ is loose iff ψ is loose;

(v) A formula of any other form is not loose.

Any formula which is not loose istight. 2
All formulæ of the formsφ → ψ, φ ∗ ψ and @i φ are tight, as are ordinary propo-

sitional atoms and the logical constants⊤,⊥ andI .

Theorem 4 (Qualified, or Tight Monotonicity)

If M,m
 φ andφ is tight andm⊑ n thenM, n
 φ 2
P The proof is by induction on the depth of a formula. First, the base cases.

1. If M,m
 p thenM, n 
 p for all n such thatm ⊑ n, by the monotonicity

constraint on the valuation functionV;

2. i is not tight;

3. M, n
 ⊤ for all n;

4. It is never the case thatM,m
 ⊥.

5. IfM,m
 I thene⊑ m, so for alln such thatm⊑ n, e⊑ n by the transitivity

of ⊑, soM, n
 I .

Now, the inductive cases. The inductive hypothesis is that ifφ is tight andM,m

φ, thenM, n
 φ for all n such thatm⊑ n.
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1. Suppose thatφ ∧ ψ is tight. Thenφ andψ are both tight. Now suppose thatM,m 
 φ ∧ φ. ThenM,m 
 ψ andM,m 
 ψ, by the forcing clause for

∧. Then by the inductive hypothesis (twice, forφ and forψ),M, n
 ψ andM, n 
 φ, for all n such that andm ⊑ n. Then by the forcing clause for∧,M, n
 ψ ∧ φ for all n such that andm⊑ n.

2. Suppose thatφ ∨ ψ is tight. Thenφ andψ are both tight. Now suppose thatM,m 
 φ ∨ φ. ThenM,m 
 ψ orM,m 
 ψ, by the forcing clause for

∨. Then by the inductive hypothesis, in the case thatM,m
 ψ,M, n 
 ψ

for all n such that andm ⊑ n, and in the case thatM,m
 φ,M, n 
 φ for

all n such that andm ⊑ n. Then by the forcing clause for∨, in either case,M, n
 ψ ∨ φ for all n such that andm⊑ n.

3. φ → ψ is always tight. The following holds regardless of whether either

φ or ψ is loose or tight. The inductive hypothesis is not required, and in

this sense, monotonicity is built into the forcing clause for→. Suppose thatM,m 
 φ → ψ. Then for anyn such thatm ⊑ n, eitherM, n 1 φ orM, n
 ψ. For anyn′ such thatn ⊑ n′, we havem⊑ n′ by the transitivity of

⊑, so for anyn′ such thatn ⊑ n′, we have eitherM, n′ 1 φ orM, n′ 
 ψ.

Hence for anyn such thatm ⊑ n,M, n 
 φ → φ, by the forcing clause for

→.

4. φ ∗ψ is always tight. Suppose thatM,m
 φ ∗ψ. Then there existn, n′ such

thatn • n′ is defined andn • n′ ⊑ m andM, n 
 φ andM, n′ 
 ψ. Then

for anym′ such thatm⊑ m′, there exist the samen, n′ such thatn • n′ ⊑ m′

andM, n 
 φ andM, n′ 
 ψ, by the transitivity of⊑. Again, the inductive

hypothesis is not required.

5. Suppose thatφ−∗ψ is tight. Thenψ is tight. Now suppose thatM,m 

φ−∗ψ. Then for anyn such thatM, n 
 φ andm • n is defined, we haveM,m • n 
 ψ. Now suppose thatm ⊑ m′. By the bifunctoriality of•,

m• n ⊑ m′ • n, whenm• n andm′ • n are defined. Then in the case thatψ is

tight, we have by the inductive hypothesis that for anyn such thatM, n
 φ

andm′ • n is defined,M,m′ • n 
 ψ, and hence thatM,m′ 
 φ−∗ψ by the

forcing clause for−∗. �
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Generally speaking, loose formulæ are non-monotonic. An additive conjunction

where one conjunct is loose holds at at most one state. It does not exhibit mono-

tonic behaviour. (Unless, trivially, that state is an upper bound of⊑.) An additive

disjunction where one conjunct is loose may hold at states which are not compa-

rable using⊑, or between which a gap lies, that is, given an orderingn ⊑ n′ ⊑ n′′,

it may hold atn andn′′, but notn′.

It might be a reasonable suggestion that since we have relinquished full gener-

alised monotonicity, that it would not be such a bad thing to modify the definition

of the forcing relation in ways that would weaken the tight monotonicity result of

Theorem 4, but increase the expressivity ofHBI. We could remove explicit mono-

tonicity from the forcing clause for∗, thus:M,m
 φ ∗ ψ iff for somen, n′ ∈ M such thatn • n′ ∼ m,M, n
 φ andM, n′ 
 ψ

Consider that in the above proof, and well as in the original proof of generalised

monotonicity (Lemma 1), that the inductive hypothesis is not required in the case

for ∗, which is what allows all formulæφ ∗ ψ to be tight. With this modification,

a formulai ∗ j would have a more particular meaning: that the present state is the

•-combination of the states named byi and j. This would allow us to use∗ to

construct names for compound resources, which would seem most desirable.

We might imagine that the cost would be that formulæ of the formφ ∗ψ could

only be classified as tight ifφ andψ were each tight. But even then, the case

for ∗ in the proof of a modified tight monotonicity result would falter as follows:

Suppose thatφ∗ψ is tight. Thenφ andψ are tight. Now suppose thatM,m
 φ∗ψ.

Then there existn′, n′′ such thatn′ • n′′ ∼m andM, n′ 
 φ andM, n′′ 
 ψ. By

the inductive hypothesis,M,m′ 
 φ for all m′ such thatn′ ⊑ m′ andM,m′′ 
 ψ

for all m′′ such thatn′′ ⊑ m′′. By bifunctoriality,n′ • n′′ ⊑ m′ •m′′ for any such

m′,m′′. So we haveM,m′ •m′′ 
 φ ∗ψ for anym′,m′′ such thatm⊑ m′ •m′′. But

this does not put us in position to say anythingaboutn such thatm⊑ n in general;

there may existn such thatm⊑ n, andn� m′ •m′′ for any of thesem′,m′′. So it

looks as ifφ ∗ψ would have to be classified as loose, even whenφ andψ are tight.

Moreover, we can see that if this change were make to any of the Kripke resource

semantics for standardBI, that generalised monotonicity would fail.
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We hope that we have illuminated some of the interstices of the logic of bunched

implications, in particular of its Kripke resource semantics, and the interaction of

the semantics and proof theory ofBI. We hope too to have indicated howBI may

be understood as a logic of resources, looking through a semantic lens, and es-

pecially through our exploration of various hybrid semantics, including our own

tentative semantics forHBI, which represents an attempt to introducenames for

resourcesinto BI. We have tried to show how the resource view ofBI is motivated

by its semantics, rather than by its proof theory, as is the case with linear logic.

We have trailed a thread from the categorical view of the proofs ofBI as a bi-

cartesian doubly closed category (DCC), through the proof theory ofBI — both

the sequent calculusLBI and our own contribution, the systemSBISg in the cal-

culus of structures, through to the Kripke resource semantics ofBI by way of our

proofs of the soundness and completeness ofSBISg, and eventually to the hybrid

standpoint. The work onSBISg showed how to extend Tiu’s treatment of intu-

itionistic logic in the calculus of structures toBI, which is an intuitionistic logic

extended with multiplicative conjunction and implication. In particular, we have

demonstrated — essentially by way of the soundness and completeness proofs —

that a two-valued system of polarity is sufficient for the proof theory ofBI in the

calculus of structures, despite the presence of two kinds of implication. (Four

polarities, or a system of arbitrarily complex polarity labels, might have been rea-

sonable guesses, and would have made the proof theory immensely complicated.)

This work attests to the versatility and naturalness of the calculus of structures,

and also to the naturalness ofBI; indeed we think that it expresses the essential

structure ofBI more perspicuously than do other formalisms. Our soundness proof

showed how to handle deep inference in a semantic setting, when dealing with the

107
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calculus of structures. Our work on the completeness proof permitted us to study

a common approach to completeness for logics of intuitionistic character; and to

look closely at the complications surrounding the handling of inconsistency inBI,

and at the fine structure of the Kripke resource semantics.
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Ergebnisse eines mathematischen Kolloquiums4: 39–40. Reprinted with
introductory note by A. S. Troelstra, and translated as An interpretation of
the intuitionistic propositional calculus, in Feferman, Dawson, Jr., Kleene,
Moore, Solovay & van Heijenoort [1986, pp. 296–303].

Guglielmi, A. [2004]. A system of interaction and structure,Technical Report
WV-02-10, Technische Universität Dresden. To appear inACM Transactions
on Computational Logic.

Harland, J. A. & Pym, D. J. [2003]. Resource-distribution via Boolean constraints,
ACM Transactions on Computational Logic4(1): 56–90.



B 113

Horsfall, B. [2006]. Towards BI in the calculus of structures. Unpublished paper.

Hughes, G. E. & Cresswell, M. J. [1996].A New Introduction to Modal Logic,
Routledge, London.

Ishtiaq, S. & O’Hearn, P. W. [2001]. BI as an assertion language for mutable data
structures,Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. London, 2001, ACM Press, New
York, pp. 14–26.

Jia, L. & Walker, D. [2003]. Modal proofs as distributed programs,Technical
Report TR-671-03, Princeton University.

Jia, L. & Walker, D. [2004]. Modal proofs as distributed programs (Extended
abstract),in D. A. Schmidt (ed.),Programming Languages and Systems:
13th European Symposium on Programming, ESOP 2004, Held as Part of
the Joint European Conferences on Theory and Practice of Software, ETAPS
2004, Barcelona, Spain, March 29–April 2, 2004. Proceedings, Vol. 2986 of
Lecture Notes in Computer Science, Springer-Verlag, Berlin, pp. 219–233.

Kripke, S. A. [1959]. Semantical analysis of modal logic (Abstract),The Journal
of Symbolic Logic24(4): 323–324.

Kripke, S. A. [1963a]. Semantical analysis of modal logic I: Normal modal propo-
sitional calculi,Zeitschrift für Mathematische Logik und Grundlagen der
Mathematik9: 67–96.

Kripke, S. A. [1963b]. Semantical considerations on modal logic,Acta Philo-
sophica Fennica16: 83–94. Reprinted in Linsky [1971, pp. 63–72].

Kripke, S. A. [1965]. Semantical analysis of intuitionistic logic I,in J. N. Cross-
ley & M. A. E. Dummett (eds),Formal Systems and Recursive Functions:
Proceedings of the Eighth Logic Colloquium. Oxford, July 1963, Studies
in Logic and the Foundations of Mathematics, North-Holland, Amsterdam,
pp. 92–130.

Lambek, J. [1958]. The mathematics of sentence structure,The American Mathe-
matical Monthly65(3): 154–170.

Lambek, J. & Scott, P. J. [1986].Introduction to higher order categorical logic,
Vol. 7 of Cambridge studies in advanced mathematics, Cambridge Univer-
sity Press, Cambridge.

Lincoln, P. [1992]. Linear logic,ACM SIGACT News23(2): 29–37.



114 B

Lincoln, P., Mitchell, J., Scedrov, A. & Shankar, N. [1992]. Decision problems for
propositional linear logic,Annals of Pure and Applied Logic56(1–3): 239–
311.

Linsky, L. (ed.) [1971].Reference and Modality, Oxford Readings in Philosophy,
Oxford University Press, Oxford.

Mac Lane, S. [1998].Categories for the Working Mathematician, Vol. 5 of Grad-
uate Texts in Mathematics, second edn, Springer-Verlag, New York.

Negri, S. & von Plato, J. [2001].Structural Proof Theory, Cambridge University
Press, Cambridge.

O’Hearn, P. W. [1999]. Resource interpretations, bunched implications and the
αλ-calculus (Preliminary version),in J.-Y. Girard (ed.),Typed Lambda Cal-
culi and Applications, TLCA’99, Vol. 1581 ofLecture Notes in Computer
Science, Springer-Verlag, Berlin, pp. 258–279.

O’Hearn, P. W. [2003]. On bunched typing,Journal of Functional Programming
13(4): 747–796.

O’Hearn, P. W. [2005]. Resources, concurrency and local reasoning. To appear in
Theoretical Computer Science.

O’Hearn, P. W. & Pym, D. J. [1999]. The logic of bunched implications,The
Bulletin of Symbolic Logic5(2): 215–244.

O’Hearn, P. W., Reynolds, J. C. & Yang, H. [2001]. Local reasoning about
programs that alter data structures,in L. Fribourg (ed.),Computer Science
Logic: 15th International Workshop, CSL 2001. 10th Annual Conference of
the EACSL. Paris, France, September 10–13, 2001. Proceedings, Vol. 2142
of Lecture Notes in Computer Science, Springer-Verlag, Berlin, pp. 1–19.

Ono, H. & Komori, Y. [1985]. Logics without the contraction rule,The Journal
of Symbolic Logic50(1): 169–201.

Passy, S. & Tinchev, T. [1991]. An essay in combinatory dynamic logic,Informa-
tion and Computation93(2): 263–332.

Pinto, L. & Dyckhoff, R. [1995]. Loop-free construction of counter-models for in-
tuitionistic propositional logic,in M. Behara, R. Fritsch & R. G. Lintz (eds),
Proceedings of the 2nd Gauss Symposium. Conference A: mathematics and
theoretical physics. Munich, Germany, August 2–7, 1993, Walter de Gruyter,
Berlin, pp. 225–232.



B 115

Prawitz, D. [1965]. Natural Deduction: A Proof-Theoretical Study, Vol. 3 of
Stockholm Studies in Philosophy, Almqvist & Wiksell, Stockholm.

Prawitz, D. [1971]. Ideas and results in proof theory,in J. E. Fenstad (ed.),Pro-
ceedings of the Second Scandinavian Logic Symposium, Vol. 63 of Studies
in Logic and the Foundations of Mathematics, North-Holland, Amsterdam,
pp. 235–307.

Prawitz, D. [2006]. Meaning approached via proofs,Synthese148(3): 507–524.

Prior, A. [1967].Past, Present and Future, Clarendon Press, Oxford.

Pym, D. J. [1999]. On bunched predicate logic,14th Symposium on Logic in
Computer Science, LICS ’99, IEEE Computer Society Press, pp. 183–192.

Pym, D. J. [2002]. The Semantics and Proof Theory of the Logic of Bunched
Implications, Vol. 26 ofApplied Logic Series, Kluwer Academic Publishers,
Dordrecht.

Pym, D. J. [2006]. Errata and remarks forThe Semantics
and Proof Theory of the Logic of Bunched Implications.
http://www.cs.bath.ac.uk/˜pym/BI-monograph-errata.pdf.

Pym, D. J., O’Hearn, P. W. & Yang, H. [2004]. Possible worlds and resources:
the semantics ofBI , Theoretical Computer Science315(1): 257–305.

Restall, G. [2000].An Introduction to Substructural Logics, Routledge, London.

Reynolds, J. C. [2002]. Separation logic: A logic for shared mutable data struc-
tures,Proceedings of the 17th Annual IEEE Symposium on Logic in Com-
puter Science. July 22–25, 2002. Copenhagen, Denmark, IEEE Computer
Society Press, pp. 55–74.

Routley, R. & Meyer, R. K. [1972]. The semantics of entailment – II,Journal of
Philosophical Logic1: 53–73.

Seligman, J. [1991]. A cut-free sequent calculus for elementary situated reason-
ing, Research Paper HCRC-RP 22, Human Communication Research Cen-
tre, University of Edinburgh.

Seligman, J. [1997]. The logic of correct description,in M. de Rijke (ed.),Ad-
vances in Intensional Logic, Vol. 7 of Applied Logic Series, Kluwer Aca-
demic Publishers, Dordrecht, pp. 107–135.

http://www.cs.bath.ac.uk/~pym/BI-monograph-errata.pdf


116 B

Seligman, J. [2001]. Internalization: The case of hybrid logics,Journal of Logic
and Computation11(5): 671–689.

Simpson, A. K. [1994].The Proof Theory and Semantics of Intuitionistic Modal
Logic, PhD thesis, University of Edinburgh.

Straßburger, L. [2003]. MELL in the calculus of structures,Theoretical Computer
Science309(1–3): 213–285.

Szabo, M. E. (ed.) [1969].The Collected Papers of Gerhard Gentzen, Studies in
Logic and the Foundations of Mathematics, North-Holland, Amsterdam.

Tiu, A. [2005]. A local system for intuitionistic logic: Preliminary results. Un-
published draft.

Tiu, A. [2006]. A local system for intuitionistic logic. Accepted
for the 13th International Conference on Logic for Program-
ming, Artificial Intelligence, and Reasoning (LPAR 2006),Novem-
ber 13–17, 2006, Phnom Penh, Cambodia. Full paper, with proofs
http://users.rsise.anu.edu.au/˜tiu/papers/localint.pdf.

Troelstra, A. S. & Schwichtenberg, H. [2000].Basic Proof Theory, Vol. 43 of
Cambridge Tracts in Theoretical Computer Science, second edn, Cambridge
University Press, Cambridge.

Urquhart, A. [1972]. Semantics for relevant logics,The Journal of Symbolic Logic
37(1): 159–169.

van Dalen, D. [2004].Logic and Structure, Universitext, fourth edn, Springer-
Verlag, Berlin.

Walker, D. [2004]. Substructural type systems,in B. C. Pierce (ed.),Advanced
Topics in Types and Programming Languages, The MIT Press, Cambridge,
Massachusetts, pp. 3–43.

Wolter, F. & Zakharyaschev, M. [1999]. Intuitionistic modal logic,in A. Cantini,
E. Casari & P. Minari (eds),Logic and Foundations of Mathematics, Vol. 280
of Synthese Library, Kluwer Academic Publishers, Dordrecht, pp. 227–238.

http://users.rsise.anu.edu.au/~tiu/papers/localint.pdf


A A

C-    

Cut-elimination is an established result for linear logic, proven for proof-nets

by Girard [1987a] and for a sequent calculus by Lincoln, Mitchell, Scedrov &

Shankar [1992]. We set out to construct from first principles a detailed proof for

the right-sided sequent calculus presented by Girard [1995] (see Figure A.1), us-

ing established techniques for sequent calculi generally [Negri & von Plato 2001].

For cases involvingcontractionwe follow Lincoln et al. [1992] in the use of the

derived ruleCut! , or multicut.

Themulticut rule is admissible in the sequent calculus withcut. It is used to

simplify the proof (and it turns out to be indispensable in implementing a cut-

elimination algorithm, to avoid difficulties in representing indefinite sequences of

contractions). We use it in the following way. We write (?A)n as an abbreviation

for n consecutive occurrences of ?A. When we encounter a derivation with several

contractions preceding a cut:

...

⇒ Γ, (?φ)n

contraction
⇒ Γ, (?φ)n−1

contraction
...

⇒ Γ, ?φ

...

⇒ !φ⊥,∆
cut

⇒ Γ,∆

we rewrite it as an occurrence of themulticutrule,1 thus:
1A degenerate multicut, with n = 1, is simply acut.
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identity
⇒ φ, φ⊥

⇒ Γ, φ ⇒ φ⊥,∆
cut

⇒ Γ,∆

⇒ Γ
exchange

⇒ Γ′

one
⇒ 1 No rule introduces0 true

⇒ Γ,⊤
⇒ Γ

false
⇒ Γ,⊥

⇒ Γ, φ ⇒ ψ,∆
times

⇒ Γ, φ ⊗ ψ,∆

⇒ Γ, φ, ψ
par

⇒ Γ, φM ψ

⇒ Γ, φ ⇒ Γ, ψ
with

⇒ Γ, φ& ψ

⇒ Γ, φ
left plus

⇒ Γ, φ ⊕ ψ

⇒ Γ, ψ
right plus

⇒ Γ, φ ⊕ ψ

⇒ ?Γ, φ
promotion

⇒ ?Γ, !φ

⇒ Γ
weakening

⇒ Γ, ?φ

⇒ Γ, φ
dereliction

⇒ Γ, ?φ

⇒ Γ, ?φ, ?φ
contraction

⇒ Γ, ?φ

Figure A.1: The right-sided sequent calculus for linear logic

1⊥ ≔ ⊥ ⊥⊥ ≔ 1
⊤⊥ ≔ 0 0⊥ ≔ ⊤

(p)⊥ ≔ p⊥ (p⊥)⊥ ≔ p
(φ ⊗ ψ)⊥ ≔ φ⊥ M ψ⊥ (φM ψ)⊥ ≔ φ⊥ ⊗ ψ⊥

(φ& ψ)⊥ ≔ φ⊥ ⊕ ψ⊥ (φ ⊕ ψ)⊥ ≔ φ⊥ & ψ⊥

(!φ)⊥ ≔ ?φ⊥ (?φ)⊥ ≔ !φ⊥

φ( ψ ≔ φ⊥ M ψ

Figure A.2: Defined connectives linear negation and implication
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...

⇒ Γ, (?φ)n

...

⇒ !φ⊥,∆
multicut(n ≥ 1)

⇒ Γ,∆

In fact, we can say thatmulticutis simply a compact representation of derivations

of this form. After all, the cut-elimination procedure is applied to proofs that are

already known to be valid, so every rewritten derivation is known to be valid, and

the multicut representation has the same premises and the same conclusion. In

this sense, we do not need to define admissibility ofmulticut, but merely regard it

as syntactically defined. But if we regard it a rule new rule which we would like

to addconservativelyto the system, we do need to prove admissibility. Thinking

in this way, we consider how amulticutmay be replaced, rather than rewritten.

Theorem 5 The multicut rule in admissible in the sequent calculus, that is, any

proof containing a multicut can be transformed into a proof not containing a mul-

ticut. 2
P The proof is by induction onn. An occurrence ofmulticut in a derivation

can always be replaced as follows, with the same premises and conclusion, and

preserving validity:

...

⇒ Γ, (?φ)n

contraction
⇒ Γ, (?φ)n−1

...

⇒ !φ⊥,∆
cut

⇒ Γ,∆

until n = 1, in which case the replacementmulticut is simply acut. �
Variants ofmulticutare used in cut-elimination proofs other than for linear logic.

Exponential operators are peculiar to linear logic, butmulticut can be used to

handle multiple occurrences ofcontraction.

Definition 37 Weight is an inductively-defined measure of the complexity of a

formula:

weight(p) = weight(⊥) = weight(⊤) = weight(0) = weight(1) = 1

weight(φ⊥) = weight(φ)

weight(φ ◦ ψ) = weight(φ) + weight(ψ) + 1
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wherep is any propositional variable or constant, and◦ is any binary connective.

Cut-weight is the weight of the cut-formula in an application of thecut rule. The

height of a derivation (or rule application) is the sum of the heights of the deriva-

tions of each of the premises of the derivation, plus one. Cut-height is the height

of an application of thecut rule. The operator≻ between a pair of proofs means

“reduces to”, but says nothing about cut elimination or reduction in cut-weight

or -height;≻e means “reduces, eliminating the cut, to”;≻w means “reduces, with

reduced cut-weight for all replacement cuts, to”; and≻h means “reduces, with

reduced cut-height for all replacement cuts, to”. 2
Theorem 6 (Cut Elimination) If a sequent of propositional linear logic can be

proven using thecut rule, it can be proven without using thecut rule. 2
P We give a procedure by which any proof containing applications of the

cut rule can be transformed into a cut-free proof. The cut-elimination procedure

is defined inductively. At each step, a cut in a proof is replaced either with a

cut-free derivation, or by one or more applications of cut, having strictly smaller

cut-weight or cut-height. Cut-weight and cut-height are obviously well-founded

measures. Cases are divided into several groups: (i) either premise of the cut is

an axiom; (ii) both premises are principal in their derivations; (iii) one premise is

principal in its derivation; (iv) neither premise is principal in its derivation. Cases

in group (i) remove a cut outright; in group (ii) replace the cut with one or more

cuts of strictly smaller weight; in (iii) and (iv) replace the cut with one or more

cuts of strictly smaller height; in these cases we are ‘permuting the cut upwards’.

(In a number of cases, there is more than one way, moduloexchange, to replace a

cut, and hence the procedure lacks the Church-Rosser property.)

(i) E    . The following are all the cases where at least

one premise is an axiom2 moduloswitching left and right cut premises, rewriting

negated formulæ,3 and interposing exchanges:

2“Axiom” is an abuse of terminology; we mean a rule having no premises.
3Negation ( )⊥ in linear logic is recursively defined by rewriting rules. For example, (φ⊗ψ)⊥ ≔

φ⊥ M ψ⊥.
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identity
⇒ φ, φ⊥

...

⇒ φ,∆
cut

⇒ φ,∆

≻e

...

⇒ φ,∆

When one premise is the conclusion oftrue, the other premise must be the conclu-

sion of identity: there is no other way to introduce0. Hence this is just a special

case of theidentityelimination.

true
⇒ Γ,⊤

identity
⇒ 0,⊤

cut
⇒ Γ,⊤

≻e
true

⇒ Γ,⊤

There are no cases for one, since this rule concludes in a sequent with only one

formula in it. The rule forfalseis a special case, but not actually an axiomatic case.

The negated cut formula on the right must be1, which can only be introduced in

a singleton sequent, hence the cut delta must be empty or contain only bottoms,

introduced by false and why not-formulæ, introduced by weakening. If the cut

delta is non-empty, the1 is non-principal, hence the cut will be permuted upwards,

until a singleton1 is reached.

...

⇒ Γ
false

⇒ Γ,⊥
one

⇒ 1
cut

⇒ Γ

≻e

...

⇒ Γ

There is another possibility, where why not-formulæ are introduced following the

introduction of1 by applications ofweakening. In these cases,weakeningcan

always be applied to reach the eventual conclusion⇒ Γ, ?∆, given⇒ Γ. But

strictly speaking, the cut-formula is not principal on the right in this case, which

would in any case dealt with less directly.

(ii) T -     . A double line indicates

that an application of exchange may be required. In both possible reductions in

this case, the cut-weight for each of the replacement cuts it strictly less than the

original cut-weight.
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...

⇒ Γ, φ, ψ
par

⇒ Γ, φM ψ

...

⇒ ∆, φ⊥

...

⇒ ψ⊥,Z
times

⇒ φ⊥ ⊗ ψ⊥,∆,Z
cut

⇒ Γ,∆,Z

≻w

...

⇒ Γ, φ, ψ

...

⇒ ψ⊥,Z
cut

⇒ Γ,Z, φ

...

⇒ φ⊥,∆
cut

⇒ Γ,∆,Z

OR

...

⇒ Γ, ψ, φ

...

⇒ φ⊥,∆
cut

⇒ Γ,∆, ψ

...

⇒ ψ⊥,Z
cut

⇒ Γ,∆,Z

The case with atimescut-formula on the left is the mirror-image of the preceding

case, and is omitted.

...

⇒ Γ, φ

...

⇒ Γ, ψ
with

⇒ Γ, φ& ψ

...

⇒ ∆, φ⊥

left plus
⇒ φ⊥ ⊕ ψ⊥,∆

cut
⇒ Γ,∆

≻w

...

⇒ Γ, φ

...

⇒ φ⊥,∆
cut

⇒ Γ,∆

...

⇒ Γ, φ

...

⇒ Γ, ψ
with

⇒ Γ, φ& ψ

...

⇒ ∆, ψ⊥

right plus
⇒ φ⊥ ⊕ ψ⊥,∆

cut
⇒ Γ,∆

≻w

...

⇒ Γ, ψ

...

⇒ ψ⊥,∆
cut

⇒ Γ,∆

The cases with apluscut-formula on the left are the mirror-images of the preced-

ing case, and are omitted.

Now we treat the exponential rules.
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...

⇒ Γ, φ
dereliction

⇒ Γ, ?φ

...

⇒ ?∆, φ⊥
promotion

⇒ !φ⊥, ?∆
cut

⇒ Γ, ?∆

≻w

...

⇒ Γ, φ

...

⇒ φ⊥, ?∆
cut

⇒ Γ, ?∆

But when we encounter amulticut:

...

⇒ Γ, (?φ)n−1, ψ
dereliction

⇒ Γ, (?φ)n

...

⇒ ?∆, φ⊥
promotion

⇒ !φ⊥, ?∆
multicut

⇒ Γ, ?∆

≻

...

⇒ Γ, φ, (?φ)n−1

...

⇒ ?∆, φ⊥
promotion

⇒ !φ⊥, ?∆
multicut

⇒ Γ, ?∆, φ

...

⇒ φ⊥, ?∆
cut

⇒ Γ, ?∆, ?∆
weakening

...

⇒ Γ, ?∆

The lower replacementcut is of strictly lesser weight than the original multicut,

but the replacementmulticutdoes not always decrease the cut height, that is, if the

derivation of the right premise was equal to or greater in height than the derivation

of the left premise. Instead, we have to perform an induction onn, which will

eventually reach 1 after repeated applications of this reduction, that is, the simpler

cut case will be reached, and cut-weight will be strictly reduced.

(iii) O     -  . This encompasses

cases where the right-hand premise is the conclusion of acut. In these cases we

permute the cut upwards. We divide the cases in two, depending on whether the

right-premise derivation has one or two premises. There is no further need to treat

individual connectives separately.
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...
L

⇒ Γ, χ

...

⇒ χ⊥,∆
R1

⇒ χ⊥,∆′

cut
⇒ Γ,∆′

≻

...
L

⇒ Γ, χ

...

⇒ χ⊥,∆
cut

⇒ Γ,∆
R1

⇒ Γ,∆′

...
L

⇒ Γ, χ

...

⇒ χ⊥,∆

...

⇒ Z
R2

⇒ χ⊥,∆′,Z′
cut

⇒ Γ,∆′,Z′

≻

...
L

⇒ Γ, χ

...

⇒ χ⊥,∆
cut

⇒ Γ,∆

...

⇒ Z
R2

⇒ Γ,∆′,Z′

There is a trivial variant of the second case, where the cut-formula originates in

the right premise ofR2. If R2 is cut, its new application does not decrease in

height or weight, but it is permuted downwards, and will be dealt with directly in

a subsequent visit. But there is a difficultly. The cut-height is not actually reduced

where the height of the derivation of the left premise is greater than or equal to the

height of the derivation of the right premise. The height of the derivation of the

right premise does strictly decrease, however, but it is necessary to invoke another

induction. When the replacementcut is visited again, it will be either:

1. Under one of the present cases, in which case the height of the derivation of

the right premise of the replacementcut will again decrease; repetition of

this case must eventually lead to one of the remaining cases, because height

strictly decreases. This includes the case where the right premise of the

originalcut is the conclusion of acut;

2. (a) C⊥ is principal in the derivation of the right premise of the replacement

cut: in this case, the cut-formula will be principal in the derivation of

both premises, and we have already established that for all of these

cases, cut-weight strictly decreases;

(b) The right premise is an axiom, and the cut is eliminated.

(iv) O     -  .
...

⇒ Γ, χ
L1

⇒ Γ′, χ

...

⇒ χ⊥,∆
cut

⇒ Γ′,∆

≻

...

⇒ Γ, χ

...
R

⇒ χ⊥,∆
cut

⇒ Γ,∆
L1

⇒ Γ′,∆
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...

⇒ Γ, χ

...

⇒ Z
L2

⇒ Γ′, χ

...
R

⇒ χ⊥,∆
cut

⇒ Γ′,∆

≻

...

⇒ Γ, χ

...
R

⇒ χ⊥,∆
cut

⇒ ∆, Γ

...

⇒ Z
L2

⇒ Γ′,∆

The argument proceeds as above.

(v) N   -  . In all of the following cases,

cut-height is strictly reduced. If left and right premises are both conclusions of

one-premise rules, there are two possible outcomes; either order of left and right

rules is acceptable.

...

⇒ Γ, χ
L1

⇒ Γ′, χ

...

⇒ χ⊥,∆
R1

⇒ χ⊥,∆′

cut
⇒ Γ′,∆′

≻

...

⇒ Γ, χ

...

⇒ χ⊥,∆
cut

⇒ Γ,∆
L1

⇒ Γ′,∆
R1

⇒ Γ′,∆′

OR

...

⇒ Γ, χ

...

⇒ χ⊥,∆
cut

⇒ Γ,∆
R1

⇒ Γ,∆′
L1

⇒ Γ′,∆′

If left and right premises are conclusions of rules with different numbers of premises,

there are also two possible outcomes,modulotrivial variations.

...

⇒ Γ, χ
L1

⇒ Γ′, χ

...

⇒ χ⊥,∆

...

⇒ Z
R2

⇒ χ⊥,∆′

cut
⇒ Γ′,∆′

≻

...

⇒ Γ, χ

...

⇒ χ⊥,∆
cut

⇒ Γ,∆
L1

⇒ Γ′,∆

...

⇒ Z
R2

⇒ Γ′,∆′

OR

...

⇒ Γ, χ

...

⇒ χ⊥,∆
cut

⇒ Γ,∆

...

⇒ Z
R2

⇒ Γ,∆′
L1

⇒ Γ′,∆′
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TheL2 / R1 cases are a mirror-image ofL1 / R2:
...

⇒ Z

...

⇒ Γ, χ
L2

⇒ Γ′, χ

...

⇒ χ⊥,∆
R1

⇒ χ⊥,∆′

cut
⇒ Γ′,∆′

≻

...

⇒ Z

...

⇒ Γ, χ

...

⇒ χ⊥,∆
cut

⇒ Γ,∆
L2

⇒ Γ′,∆
R1

⇒ Γ′,∆′

OR ...

⇒ Z

...

⇒ Γ, χ

...

⇒ χ⊥,∆
cut

⇒ Γ,∆
R1

⇒ Γ,∆′
L2

⇒ Γ′,∆′

If left and right premises are conclusions of rules both having two two premises,

there are also two possible outcomes,modulotrivial variations.
...

⇒ χ, Γ

...

⇒ Z
L2

⇒ Γ′, χ

...

⇒ χ⊥,∆

...

⇒ H
R2

⇒ χ⊥,∆′

cut
⇒ Γ′,∆′

≻

...

⇒ Γ, χ

...

⇒ χ⊥,∆
cut

⇒ Γ,∆

...

⇒ H
R2

⇒ ∆′, Γ

...

⇒ Z
L2

⇒ Γ′,∆′

OR

...

⇒ Γ, χ

...

⇒ χ⊥,∆
cut

⇒ ∆, Γ

...

⇒ Z
L2

⇒ Γ′,∆

...

⇒ H
R2

⇒ Γ′,∆′

The alternative possibilities in these cases correspond to the order of application

of the left and right rules from the original cut. There are further, less interesting,

variations according to the origins of the cut-formula and its negation, which we

omit. �



 

Minerva Access is the Institutional Repository of The University of Melbourne

 

 

Author/s: 

Horsfall, Benjamin Robert

 

Title: 

The logic of bunched implications: a memoir

 

Date: 

2006

 

Citation: 

Horsfall, B. R. (2006). The logic of bunched implications: a memoir. Masters Research thesis,

Department of Computer Science and Software Engineering, The University of Melbourne.

 

Publication Status:

Unpublished

 

Persistent Link: 

http://hdl.handle.net/11343/39480

 

File Description:

The logic of bunched implications: a memoir

 

Terms and Conditions:

Terms and Conditions: Copyright in works deposited in Minerva Access is retained by the

copyright owner. The work may not be altered without permission from the copyright owner.

Readers may only download, print and save electronic copies of whole works for their own

personal non-commercial use. Any use that exceeds these limits requires permission from

the copyright owner. Attribution is essential when quoting or paraphrasing from these works.


	List of Figures
	Preface
	Introduction
	The logic of bunched implications
	The calculus of structures
	Resource tableaux
	A categorical view of proofs in BI
	Applications of BI
	Overview

	The semantics of BI
	Urquhart's semantics for relevant logics
	Kripke's semantics for intuitionistic logic
	Elementary Kripke resource semantics
	States as resources
	New Kripke resource semantics
	Relational semantics for BI
	Partially-defined monoid semantics for BI

	BI in the calculus of structures
	BI in the calculus of structures, I
	Polarity
	BI in the calculus of structures, II
	Soundness and completeness
	Proof-theoretical preliminaries
	Soundness
	Digression: classical consistency
	Completeness

	Further work
	Cut elimination
	A local system


	Semantics for a hybrid BI
	BI-Loc
	Braüner & de Paiva's semantics for hybrid intuitionistic logic
	HBI
	Loose formulæ and monotonicity

	Conclusion
	Bibliography
	Appendix Cut-elimination for propositional linear logic

