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ABSTRACT

This is a study of the semantics and proof theory of the logic of bunched im-
plications 8l), which is promoted as a logic of (computational) resources, and
is a foundational component of separation logic, an approach to program anal-
ysis. Bl combines an additive, or intuitionistic, fragment with a multiplicative
fragment. The additive fragment has full use of the structural rules of weakening
and contraction, and the multiplicative fragment has none. Thus it contains two
conjunctive and two implicative connectives. At various points, we illustrate a
resource view oBIl based upon the Kripke resource semantics. Our first original
contribution is the formulation of a proof system fer in the newly developed
proof-theoretical formalism of the calculus of structures. The calculus of struc-
tures is distinguished by its employment of deep inference, but we already see
deep inference in a limited form in the established proof theorBfokVe show

that our system is sound with respect to the elementary Kripke resource semantics
for BI, and complete with respect to the partially-defined monoid (PDM) seman-
tics. Our second contribution is the development from a semantic standpoint of
preliminary ideas for a hybrid logic of bunched implicatiomtB(). We give a
Kripke semantics foHBI in which nominal propositional atoms can be seen as
names for resources, rather than as names for locations, as is the case with related
proposals foBI-Loc and for intuitionistic hybrid logic. The cost of this approach

is the loss of intuitionistic monotonicity in the semantics. But this is perhaps
not such a grave loss, given that our guiding analogy is of states of models with
resources, rather than with states of knowledge, as is standard for intuitionistic
logic.
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PREFACE

This thesis gives a presentation of, and a commentary upon the propositional logic
of bunched implicationsHl) [O’Hearn & Pym 1999, Pym 2002] from proof-
theoretical and semantic points of view. Although the thesis is for the most part
self-contained, it is expected that the reader will have some background knowl-
edge of structural proof theory — or more particularly of sequent calculi for in-
tuitionistic or linear logic — and of Kripke’s possible worlds semantics for intu-
itionistic or modal logic. It presents and makes use of the formulations of Kripke
resource semantics f8t given by Pym [2002], Pym, O’Hearn & Yang [2004] and
particularly Galmiche, Méry & Pym [2005]. In addition, it presents two original
contributions.

The first is the systen$BISg, a formulation ofBI in the proof-theoretical
formalism of Guglielmi’s [2004] calculus of structures, together with detailed
soundness and completeness proofs. The formulation here is based upon Tiu’s
[2005, 2006] work on intuitionistic logic in the calculus of structures. The sound-
ness proof is along conventional lines, except that it requires an original ‘semantic
depth’ lemma to handle deep inferenceSRBISg. The completeness proof is in-
debted in its strategy and techniques to completeness prods fiven by Pym
[2002], Pym, O’'Hearn & Yang [2004] and and Galmiche, Méry & Pym [2005];
for intuitionistic logic given by van Dalen [2004]; and for modal logic given by
Blackburn, de Rijke & Venema [2001]. Completeness is shown with respect to
a variant of the partially-defined monoid (PDM) semantics [Galmiche, Méry &
Pym 2005, 85.3]. My paper [Horsfall 2006] presenting the formulatioBlah
the calculus of structures was accepted for the 11th ESSLLI Student Session at
the 18th European Summer School in Logic, Language and Information, July—
August 2006, but | could not attend to present it, and consequently, it had to be
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Xiv PREFACE

withdrawn. This paper has been incorporated into the inttoin and S8RTIZ=3] 3.

The second contribution is the development from a semantic standpoint of
preliminary ideas for a hybrid logic of bunched implications, based upon estab-
lished ideas on hybrid modal logics [see, for instance, Blackburn 2000b, Black-
burn, de Rijke & Venema 2001] and hybrid intuitionistic logics [Jia & Walker
2004, Brauiner & de Paiva 2006, Chadha, Macedonio & Sassone 2006]. The ideas
developed here ffer significantly fromBI-Loc [Biri & Galmiche 2003] and those
in the literature on hybrid logics.



CHAPTER 1

| NTRODUCTION

1.1. THE LOGIC OF BUNCHED IMPLICATIONS

The logic of bunched implication®() [O’Hearn & Pym 1999, Pym 2002] per-
mits control of the structural rules of weakening and contraction — familiar from
sequent calculi for many systems — in a way quitdedent to linear logic. In
linear logic, ordinary conjunction decomposes into two distinct connectives when
weakening and contraction are not available, yieldimgjtiplicative or context-

free conjunction® and disjunctior?®, andadditive or context-sharing& and .

The availability of structural rules may then be selectively granted using expo-
nential operators ? and !. Something similar occurBlinexcept that there are

no exponentials. Weakening and contraction are always available in additive con-
texts, and never in multiplicative ones.

Definition 1 The set® of formulae of propositionasl is given by the grammar:

pu=plllopxd|d=p|TILI¢AGIGVS|P—¢

wherep, q,r,... € P are propositional variables,is multiplicative conjunction,
the propositional constaitits unit, -+ multiplicative implication, and the remain-
der the usual intuitionistic connectives and propositional constants. O

There is no multiplicativéalsum and the only available negation is intuitionis-
tic, definable-¢ := ¢ — L, which is in any case not involutive. Bunches, the

1



2 CHAPTER 1 INTRODUCTION

structured antecedents of the sequent calcuﬂﬂ are really an artefact of the
calculus. Bunches are tree structures.

Definition 2 Bunches are given by the grammar:

Fi=¢|On . T|Ta|T;T

. is the multiplicative bunch constructor, “;” the additive constructor, ang
anda, their respective units. o

Definition 3 A is asub-bunclof I' if I" andA are the same bunch, orlifhas the
structureI'; ; T, or I'y,I', andA is a sub-bunch of eithdr; orI';. WhenA is a
sub-bunch of", we can writel' asT'(A) to express this fact, and to pick out the
bunched contexi(.), which is an incomplete bunch the samdagxcept with a
gap in it where the sub-bunchiwas. The bunch obtained by replacing the sub-
bunchA of I" with a new sub-bunch’ is writtenI[A’/A]. More often, we write
I'(A’), as in the specification of the rules of inference.Bf in Figure[L.1. o

Definition 4 Equivalence £) of bunches, also calledoherent equivalencds
modulo commutativity of “,” and “;”, combination with their respective units, and
congruence, that 5(A) = T'(A") if A = A’. 0

The left-hand rules oEBI may match and manipulate sub-bunches at any depth
in a bunch. Cut-elimination holds faBI [Pym 2002, Theorem 6.2]. That is, if a
sequent is provable ibBl, then it is provable inBI without thecutrule.

In Girard’s idiom, “,” is ‘*hypocrisy’ for =, “;” for A, @, for | andg, for T.
This distinction between punctuation marks and logical connectives does not fig-
ure directly in the categorical view, and is abolished in the calculus of structures.
A sequent oLBI has the fornT" = ¢. As in typical intuitionistic sequent calculi,
the succedent is restricted to a single formula. In fact, formulations of intuition-
istic logic generally restrict it tat mostone formula. The desiredtect of the

1See Figurd L]l for the rules of inference ld8l. Pym’s monograph [2002, chapter 6] with
errata [2006] gives a full treatment of the sequent calcuBisfor propositionalBl. Figure[T.P
reproduces a proof of the interesting theorem ¢ q)-r)-«(p — (gq-xr)) in the sequent
calculusLBI, found by Alwen Tiu (personal communication). Note that the converse formula
(p— (g-¢r)) - ((p — q) -r) is not a theorem.
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. . A= I'(¢) = I'=>¢
identity i W=2 cut exchangdl =TI")
p=4¢ rA) =y I'=¢
) =¢ , rA;0)=¢
— weakening ——— contraction
A AN)=¢ r)=¢
n [(m) = ¢ I [(@a) = ¢ T
= L . AR R
W= r(l)=¢ Im= (M) =¢ a=T
L(g.¢) = x I'=¢ A=y A=¢ [y, A) = x L=y
* R L *R
L(p+y) = x FA=¢xy FA, o=y, A)=x I'=¢~y
Lig;v)=x I's¢ A=y A=¢ Ly;A)=>x o=y
AL AR - —— >R
Llgry)=x LiA=¢Ay FAp >y A)=>x F'=¢-y
I'(¢) = x I(y) = x I'=¢ =y
Vi VReft VRiight
T¢pVvy)=x '=¢vy Fr'=>¢Vvy

Figure 1.1: The sequent calculuBl

restriction is to prevent contraction on the right-hand side. This prevents, for in-
stance, proofs o5 p v -p and--p = p. The restriction was discovered by
Gentzen [1934-35]. See, for instance, Troelstra & Schwichtenberg [2000, §3.1].
There are, of course, other ways to obtain the saffexte Obviously, we have
linear logic, but also for instance, Dragalin’s multisuccedent intuitionistic system
[see Negri & von Plato 2001, §5.3]. In this system, we find the F&% R
Restriction of the succedent occurs in this rule. The arbitrary comtertthe
conclusion is forcibly weakened away. Weakening and contraction are admissible
in general, but implication is forced through a ‘bottleneck’ which iffisient to
keep the system intuitionistic. Tiu [2005] makes a similar consideration.

It is a noteworthy characteristic Bl that corresponding pairs of additive and
multiplicative rule are ‘morphologically’ similar. Take, for example, the right-side
rules for additive and multiplicative conjunction, respectively:

I'=¢ A:>w/\ I'=¢ A=y
C;A= oAy R A= ¢y

The only point of structural diierence is the bunch constructor in each case, re-
spectively additive “;” and multiplicative “,”. It may be surprising to observe that
these are both ‘context-splitting’ rules. We are used to the idea that additive rules
(or connectives) are context-sharing and multiplicative rules are context-splitting
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(or context-free). For instance, this is precisely thféedence between the sequent
rules for additive and multiplicative conjunction in linear logic:

=>I¢ =Ly =0 =y A
with times
=>0,0& ¢ =>Ley, A
These connectives are on equal footing when it comes to the availability of struc-

tural rules. If we think for the moment in terms of upward proof-search, the

difference is just that the rules are applicable &edent types of splitting-points
in a bunch. These right-side rules are only applicable at the top-level bunch con-
structor, but the corresponding left-side rules are cases of deep inference, which is
employed more systematically in the calculus of structures. Consider the left-side
rule for multiplicative implication:
A=¢ TI,N)=>yx
W T v

which says that ifA ‘entails’ ¢ andI" ‘entails’ y, andy, A’ is a sub-bunch of
at arbitrary depth (which multiplicatively combines a formylaand any bunch
A’) theny is ‘entailed’ by the bunch formed by replaciggA’ in T with a new
multiplicatively constructed sub-buna) ¢ -y, A’.

The real structural dierence between the additive and multiplicative frag-
ments ofLBlI is the applicability of structural rules. Weakening is only available at

additive splitting-points, again, of sub-bunches at arbitrary depth, and contraction
may only construct additively-combined duplicate sub-bunches. The morphologi-
cal similarity of the multiplicative and non-structural additive fragments, together
with limitation on the availability of structural rules, will be apparent in our initial
formulation ofBlI in the calculus of structures in Chapiér 3.

1.2. THE CALCULUS OF STRUCTURES

Proof systems in the calculus of structures have a single objedtrueture—
in place of formulee and sequents. This is perfectly natural, given that a se-
guent may typically be encoded as a single formula. For instance, in linear
logic [Girard 1987a], a one-sided sequent ¢, may be encoded ag % .
In a classical sequent calculgsy = y,¢ may be encoded apA ¢y — y V
,. The calculus of structures, invented by Guglielmi [2004], has been used to



1.2. THE CALCULUS OF STRUCTURES 5

identity
——— weakening
q.:p=4¢ . .
——————— >R identity
g=>p—q r=r
—k
(P> a)=r.q=r ]
R
(p— q)-r = q-r )
weakening

(P> Q) *r;p=q-r o
(p—q)=r=p—(q-*r) n
Fm= ((p— ) 1) (p— (q-*T))

Figure 1.2: A proof of the theoremg(— q) - r) -« (p — (g-+r)) in LBI.

formulate various logical systems, for instance: multiplicative exponential lin-
ear logic [StralBburger 2003] and other varieties of linear logic, classical logic
[Brinnler 2006] and intuitionistic logic [Brinnler 2004, Tiu 2005].

The approach appears to have been most fruitful for systems with an involutive
negation (i.e. An operater such that-—¢ = ¢) and de Morgan duality — classical
and linear logic. These systems are also symmetric, in the sense that they admit
sequents with multiple conclusions (a comma in the succedent being a disjunction
of some sort), and involutive negation allows a fredfitaof formulee between
antecedent and succedentfiidulties arise when these characteristics are absent,
as in intuitionistic logic andl. In particular, it is necessary to introduce a notion
of polarity to do some of the work of involutive negation. Essentially, polarity
amounts to a ‘sidedness’ annotation restricting the applicability of rules, and cor-
responds to the division of left- and right-side rules in sequent calculi.

The calculus of structuresftiers from sequent calculi in several respects. In
particular, rules of inference may be applied at arbitrary depth within a structure,
unlike most sequent calculi where only the outermost connective of a formula
is available to be matched with a rule. This is caltebp inferenceA signifi-
cant feature of the sequent calcullE — which makes it unusual amongst sequent
calculiin general — is that employs a limited form of deep inference, whith its left-
hand rules applicable at arbitrary depth within a bunch. In a calculus of structures
each rule has exactly one premise, so proofs do not have the branching structure
of proofs in a sequent calculus. This removes one source of indeterminacy found
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Fovy : x ToVvy @ X T oAy @ X Foany @ x
I I
F¢:x Tq)'x/\Tw X T¢:x Fqﬁ'x/\Fw'x
Fuy @ x ’ Ty X ’ ’
Fo—oy @ X T ¢xyy o X Foxy : X TI1:x
| | |
‘assertxgci‘ ‘assert COC]‘SX‘ To¢:c
| ' Fy : Xog
To¢ G To¢ G
Fo¢:c Ty g
Tooy : X Foxy : X T ¢y : X

Fo¢:y T ¢ : Xoy

|
require X<y ‘ require yoz< x

Fo:y Tyv:y Fo:y Fvy .z

Figure 1.3: The tableau expansion ruleg 8l

in sequent calculi: consider tlgerule of linear logic which needs to partition the
context of a conclusion between two premises. Of course, deep inference will be
a source of indeterminacy for any proof-search, as it for proof-seaicBlirAnd
branching in proofs, even without indeterminacy, makes the invertibility of rules
awkward. In the calculus of structures, proofs exhibit an up-down symmetry, with
each rule having a ‘contrapositive’ dual, oorule The use of single-premise
rules, together with deep inference, makes the calculus of structures a term rewrit-
ing system.

1.3. R:ESOURCE TABLEAUX

Galmiche et al. [2005] have developessource tableauxa semantic tableaux
proof system foBl, in several variants. Resource tableaux are closely connected
to their work on the revised semantics 8, which we treat in Chaptéd 2, and
yield decidability and the finite model property BF [Galmiche et al. 2005, §8].
Resource tableaux are particularly suitable as a basis for theorem-proving imple-
mentations foBl. They are certainly more suitable than than the sequent calculus
LBI or the system in the calculus of structures which we present in Chidpter 3,
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which due to their shared characteristic of deep inferentiershe high degree of
indeterminacy in proof-search remarked above, in addition to well-known issues
surrounding the control of contraction rules. We have uBRdas the basis for

a successful theorem prover for propositioBaimplemented in Haskell, which
renders tableaux usingTeX.A Figure[.B reproduces the tableau expansion rules
for Galmiche, Méry & Pym’s [2005] resource tableaux sysﬂéBhH In the expan-
sionrulesx,y, zare variables over labels, angdc; are fresh labels introduced into

a tableau by an expansion rule. Tassertboxes assert constraints upon labels,
and therequireboxes require that existing labels in a tableau meet a specified con-
straint for an expansion rule to be applicable. Labels and constraints upon them
generate a labelling algebra as the closure under certain conditions [see Galmiche
et al. 2005, Definition 3.3] of a set of constraints. A labelling algebra has precisely
the same structure as a model in the Kripke resource semantics (see Chapter 2),
and contains a preorde&rand binary combination operater Also note the corre-
spondence between the expansion rules and the clauses of the forcing relation in
the Kripke resource semantics. The root formula of a tableau is assigned a polarity
F and labelled, which is the unit label fos, and it is proven if it can be expanded

to a tableau in which every branch is closed. We can construct a ‘resource’ de-
pendency graph of labels as we construct a tableau. The condition for a tableau
branch to be closed is more complicated than simple contradiction [see Galmiche
et al. 2005, Definition 3.8]. A countermodel for a formula may be constructed
from an open branch of a tableau for that formula [Galmiche et al. 2005, 8§4.2],
and this is the key to decidability. Figurell.4 presents a pro@Binof the theo-

rem that was proven usingl in Figure[L.2. By way of example, observe that the
rightmost branch is closed because it contains the signed and labelled occurences
Tr : cgocgand Fr : ¢ o ¢z such that; o ¢3 < ¢, o ¢, by the bifunctoriality
property of the labelling algebra: ¥< ythenxoz<yoz

2See also BILL [Béal, Méry & Galmiche n.d., Galmiche & Méry 2004], a tableaux-based
theorem prover for proposition&l without propositional constants, implemented in Objective
Caml.

3See also the treatment of liberalisE8I’ [Galmiche et al. 2005, §86, 7].
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F(p—=g=n=(p—>(@=r):1
|
T(poq=r:c
Fp-o@=r):a

assert: ¢ <c

Tp:c
Fg=r:c

Tqg:cs
Fr:cocs

PN

Fp-oq:ocs Tr:clocs

assert: c3<cy
I G

Tp:c
Fq:c

Figure 1.4: A proof of the theorem(— q) - r) - (p — (q-+r)) in TBI.

1.4. A CATEGORICAL VIEW OF PROOFS IN Bl

We may characterisl using the categorical model for proofsBih given by Pym

and O’Hearrl This kind of view is sometimes called a “categorical semantics”,
but it is more an abstract view of proof structures than a semantics. In categorical
logic, generally speaking, we view formuleeasectsin categories and proofs as
arrows in those categories. A pair of arrows to and from an object may always
be composed to form another arrow, yielding a sort of transitivity of proofs, or
cut. Proofs ofBl are modelled usindoubly closed categorig®CCs). A DCC

is a ‘superimposition’ of twaclosed categories a single category, with one of
these being:artesiarH A closed category is a symmetric monoidal categHry

in which every functcﬂ— ® B : C — C has a right adjoint<)® : C — C. In

4See O’Hearn & Pym [1999, §3] and Pym [2002, §3.3]. We refer to Mac Lane [1998] as a
reference on categorical concepts.

5] closely follow the presentation of CCCs in Lambek & Scott [1986, §§1.1-3, 8].

5A monoidal category has a product operationpidunctor® that is associative and has (the
same) right and left unit (up to isomorphism). It is symmetric if the bifunctor is commutative.

A functor is a morphism between categories, i.e. a function from each object of one to an
object of the other, and a function likewise for arrows. We may obtain a furckoB by ‘partial
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BI, = and A are the product operations of the closed categories, and right adjoints
are constructed from the two conditionals. The adjunctions are characterised by
natural isomorphisms of hom-sets (i.e. sets of arrows from one object to another):
[A+B,C] = [A,B=xC]and [AA B,C] = [A B — C]. Note that these are incar-
nations of currying. An important isomorphism arising in the closed categories
is[I,A=B] = [A,B] = [T,A — B] which is the special case for units. This
does, not, however entail the equivalence of the two implications. In general
¢y ¥ ¢ — yandey — ¥ ¥ ¢ -+y. These isomorphisms are important points of
reference when we define the syntactic equality of structures in Chapter 3.

A cartesian closed category (CCC) is a closed category in which the product
is cartesianX): it has all finite products given. Given arrowWs: C — A and
g: C — Bina CCC, there exists a unique arroivg) : C — Ax B. Arrows in
a CCC satisfy certain requirements:

() YAIf.f: A— T (T istheterminal object
(i) mapo(f.g)=f
(i) mppo(f.@)=9g

The arrowsmag : AXx B — Aandr,z : Ax B — B are projections, and
exist for all objectsA, B in a CCC. In fact, the CCC foBl is bicartesian mean-

ing that it also has all finite&eoproducts(+, in our casev) and an initial ob-

ject (L). For eachf : A — C andg : B — C, there is a unique arrow
[f,g] : A+ B— C. Arrows meet the further requirements:

(i VAIf . f.L—A
(i) [f.g]oknp=f

(i) [f,g]okpg =9

The arrowscag : A — A+ Bandk, g : B— A+ Bare injections and exist for
all A, B.

We can give a categorical justification of the structural rules weakening and
contraction in a CCC. Remember that “;” is just a cipherAoiLetC be a CCC.

application’ of a bifunctor.
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() Weakening.Consider object®\,C € C and an arrowf : A — C of C,
that is to say, a proof a€ from A. SinceC is a CCC, there exists an arrow
mag : Ax B — AforanyB e C. So by composition, the arrofo g :

A x B — C exists, and hence there is a prooffrom A A B. Similarly,
mg - BXA — Aexists, and by composition we haterg , 1 BXxA — C,
that is, a proof ofC from B A A.

(i) Contraction.Consider object#, B € C and an arrowf : Ax A — B, that
is, a proof ofB from AA A. There exists an identity arromt A — A, and
sinceC is a CCC, there exists an arrddn, 1) : A — AxA. Composition
with f yields the arrow(1a, 15) o f : A — B, which is a proof ofB from
A

A model{C, V) for Bl is a bicartesian DCQ together with a valuation func-
tionV : £ — O from propositional variables to objec® € C. We may then
inductively define a functioV* : ® — O from (atomic and compound) formulae
to O € C according to the preceding sketch. We encode of a biinako a for-
mulay according to the obvious translation. Given a seqiiest ¢, we then ask:
does there exist an arrow(y) — V*(¢)? Each arrow is proof. (Then the ques-
tion of the identity of proofs becomes the question of the identity of arrows.) If
there are no arrows, the sequent is not provable. There is a hint here for our formu-
lation in the calculus of structures: we do not encode=theso we do not have to
choose between encoding it using either as intuitionistigr multiplicative ¢+)
implication. Instead, we ask “Is there an arrow?” We can think of this from the
point-of-view of theoremhood ibBI. ¢ is a theoremft eithera, = ¢ or &, = ¢
is provable. (Sincez,, = ¢ may be derived fronw, = ¢ using weakening, it
sufices thato, = ¢.) ¢ — y is a theoremft ¢ -« is a theorem. Of course, that
this does not amount to equivalence in general. So attempting to prese¢
is equivalent to testing the theoremhood of either ¢ or y -« ¢. So when we
encode= in a structure, we are allowed an arbitrary choice.

The principal point of this categorical view is that although there are two dis-
tinct conjunctions irBl, each with an adjoint implication — and that in this respect
they are structurally the same — only the additive (or intuitionistic) CCC structure
is granted the use of weakening and contraction.
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1.5. AppLICATIONS OF Bl

Bl may be seen broadly as a logic for reasoning about (computational) resources.
It has been proposed as the basis of a type theory for (imperative) programs, by
way of a Curry-Howard correspondence, to control sharing and non-sharing of
data and other resources by components of programs [O’Hearn 2003]. For in-
stance,a-«b might be specified as the type of a function, as a constraint (or a
guarantee) that in its internal workings, the function not share memory or some
other sort of resource with its argument. Similady,b might be given as the type

of atuple of objects which are disjoint in their use of resources. On the other hand,
a — b would be the commonplace intuitionistic function type, anxb the tuple

type, familiar from functional programming, and which do not constrain this kind

of sharing. In typical functional programming settings, the question of this sort of
sharing between functions and arguments does not arise, because of the character-
istic referential transparency of functior®d.also plays an important foundational

role in the research program of separation logic. Separation logic has been used to
analyse the shared use of mutable data structures by imperative programs [Ishtiaq
& O’Hearn 2001, O’Hearn, Reynolds & Yang 2001, Reynolds 2002] and resource
use by concurrent programs [O’Hearn 2005]. Armelin & Pym [2001] develop

a logic programming languadgglL.P based uporBl which manages sharing and
non-sharing of resources.

1.6. OVERVIEW

In ChaptelLR, we present a survey of various refinements of the Kripke resource
semantics foBl, and its predecessors: Saul Kripke’s semantics for intuitionis-
tic logic and Alasdair Urquhart's semantics for relevant logics. We make some
refinements, which are technically motivated. This lays the foundation for the
main contribution, contained in Chapfédr 3. We present a proof systesl far

the emerging proof-theoretical formalism of the calculus of structures, and give
proofs of its soundness and completeness. This work is a theoretical and techni-
cal contribution to two distinct research programs: the logical theory — both the
proof theory and the semantics —BFf, and the calculus of structures. We pro-
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vide evidence for the naturalness, versatility and flexipidif the formalism of

the calculus of structures, in particular addressing problems with the treatment of
logics of the intuitionistic family, and logics containing more than one kind of
implication. Admittedly, the calculus of structures does not represent any great
advance in automated theorem provingBor resource tableaux are best for that

— but it does permit a presentation Bif and a method of proof that is arguably
simpler, more direct and more natural than with other formalisms, capturing the
essential structure of this notoriously complicated logic in an intuitively satisfy-
ing way. Deep inference, which is a natural characteristiBlois generalised

in the calculus of structures, and the new formalism permits a view much more
faithful to the powerfully intuitive categorical view @l as a bicartesian DCC.
This work benefitBI research by demonstrating the naturalness and generality
of Bl in its adaptation to the new formalism, in the process bringing some of the
more subtle characteristics Bf to the fore. In Chaptéi 4 we undertake a tentative
and speculative exploration of the idea of a hylBldintroducing ideas from the
research program of hybrid modal logics (which have applications to distributed
computation, for example). Our principal motivation is to introdnaenes for re-
sourcednto propositionaBl. Although our proposal is quite abstract, we believe
that it might turn out to improve upon the expressivenes ér reasoning about
resource distribution, by introducing into the language the ability to name certain
resources in a system.

A sequence of informal, practical reflections runs through the thesis. The
reader is referred particularly to the philosophical remarks upon Urquhart’s se-
mantics and Kripke’s intuitionistic semantics in 82.1 ahd82.2, and the reflections
on the idea of ‘states as resources’ N 82.4 and on combining hybrid and resource
logics in §4.8.



CHAPTER 2

THE SEMANTICS OF Bl

Kripke semantics are natural and appealing for intuitionistic, modal and hybrid
logics because they represent relational structures. In the intuitionistic case, they
give a natural representation of epistemic progress as a tree structure. They pro-
vide highly intuitive models for situated, or local reasoning, and for the traversal
of relational structures by agents. Kripke semantics give accounts of the mean-
ings of statements, which may or may not be valid in every model, at particular
positions in a relational structure. Proof theory, on the other hand, concerns itself
with provability, in particular, the provability adheoremsand with the structures

of proofs. Provability is the syntactic analogue of validity in every model. Proof
theory does not concern itself so much with non-theorems, or contingent proposi-
tions, except as structural elements of prcﬂafs.

We would like to obtain a clear understandingddfas a logic of resources by
way of an examination of its semantics. In particular, we will examine the roots
of the Kripke resource semantics in Kripke’s [1965] possible worlds semantics
for intuitionistic logic and in Urquhart’s [1972] semantics for relevant logic. We
will look at the way in which these have been combined to produce the semantics
of Bl. This chapter gives a survey of the possible worlds semantics, or Kripke
resource semantics &l that are developed in several variations in O’'Hearn &
Pym [1999], in Pym’s monograph [2002, 2006], in Pym, O’Hearn & Yang [2004]

1The research program of proof-theoretic semantics [see, for instance, Prawitz 2006] is an
exception here, with the attention it gives to Gentzen’s [1934-35] idea that the meanings of logical
connectives be understood by way of their introduction rules in natural deduction systems.

13
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and Galmiche, Méry & Pym [ZOO@J.We confine our attention to propositional
BI.

There are several Kripke semantics Bir Under the simplest formulatioB|
without the propositional constamtis sound and complete with respect to the to
theelementarKripke resource semantics [Pym 2002, §AHZ]he soundness and
completeness results in Pym [2002] are actually proven directly for the natural de-
duction systenNBI of Bl. Results foiLBI are furnished by proof-theoretical equiv-
alence withNBI. Bl with L is sound and complete with respect to several kinds
of topological semantics, including Grothendieck sheaf-theoretic semantics, also
called Grothendieck resource semantics [Pym, O’'Hearn & Yang 2004, Pym 2002,
chapter 5]. We will not treat the topological semantics, but instead some other
more recently developed semantics: ti@svrelational semantics, theewKripke
resource semantics, and the partially-defined monoid (PDM) semantics. These
three semantics are closely related and are presented by Galmiche, Méry & Pym
[2005, 885.1, 5.2, 5.3 respectively]. These accounts of the semantics are closed
entwined with the work on semantic tableau proof method8fday Galmiche &

Méry [2001, 2003, 2005] and by Galmiche, Méry & Pym [2002, 2005]. Galmiche

et al. [2005] give detailed soundness (Theorem 5.1) and completeness (Theorem
5.2) proofs foriLBK with respect to the new relational semantics. The new Kripke
semantics is the special case of the new relational semantics in whighc z

is defined angxyzé) This fact is used to prove the soundnes&BFf with respect

to the new Kripke semantics [Galmiche et al. 2005, Theorem 5.3]. Complete-
ness ofLBI with respect to the new Kripke semantics can be shown using the
equivalence of the Kripke resource models with Grothendieck resource models
[Galmiche et al. 2005, Lemma 5.6], and the known completene&8bfvith
respect to the Grothendieck resource semantics [Galmiche et al. 2005, Theorem
2.5]H Hence we have the equivalence of the new relational semantics and the

2See also Pym’s conference paper [1999] on prediBate

3See also Galmiche et al. [2005, §2.1].

4Galmiche et al. frequently writBl when they mean to refer to the proof systeBi, which is
sometimes a little confusing, althou@Bl is always referred to explicitly.

SSee below and Galmiche et al. [2005, p. 1067].

6Cf. the proof of Theorem 5.7 in Galmiche et al. [2005] which invokes a tableau-based coun-
termodel construction technique and the completeness of the tableau JiBitevith respect to
the Grothendieck resource semantics [Galmiche et al. 2005, Theorem 4.3], together with Lemma
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new Kripke semantics via soundness and completeness. ThedeDidntics are
equivalent to the new Kripke semantics [Galmiche et al. 2005, p. 1070f.], and
hence the three semantics are equivalent. The reasons for the existence of so many
semantics are historical, technical, and also conceptual. The elementary Kripke
semantics was the first that was developed, and its simplicity remains conceptu-
ally attractive, butBI is not complete with respect to it when the propositional
constantL is included. Historically, various topological semantics were then de-
veloped to solve this problem. The new Kripke semantics solve this problem in a
much simpler way, without the topological apparatus. The PDM semartiis o

an equivalent, alternative formulation of this solution, and we venture that it rep-
resents an important technical and conceptual refinement. Relational semantics
seem to have been developed for mainly technical reasons.

Kripke resource semantics, in all of its variants, is a mixture. One ingredient is
Kripke’s [1965] possible worlds semantics for intuitionistic logic, closely related
to his well-known semantics for modal logic [1959, 1963a, 1983’0ﬂipke’s se-
mantics for intuitionistic logic is rather similar to his semantics for the modal logic
S4. Both feature an accessibility relation which is reflexive and transitive. The
other ingredient is Urquhart’s [1972] semantics for relevant logic. Possible worlds
are not to be found in Urquhart’s account of relevant implication, although they do
emerge when he distinguishes relevant implication from a concept of entailment,
with the introduction of ideas from Kripke’s semantics for modal logic. The ac-
count of the meaning d8I's connective is based upon Urquhart’'s account of
relevant implication, and that efupon his account of intensional conjunction.

2.1. URQUHART'S SEMANTICS FOR RELEVANT LOGICS

Urquhart [1972] gives a semantics for relevant logics. This section presents a
summary. Relevant logics are typically characterized as lacking the structural rule
of weakening, which allows an argument to be ‘watered down’ by the addition of
arbitrary additional premises, and remain valid. The rule of contraction is typi-

5.6 but which in fact establishes no more than their Theor&muées, that is, the completeness of
TBI with respect to the new Kripke resource semantics.

’See Blackburn et al. [2001, §1.3] for a standard, modern account of the semantics of modal
logic specified in terms of relational structures.
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cally retained. The point that is carried over into the semardf Bl, and which
partly expresses the characterBys multiplicative implication ¢x) is that irrele-

vant information in the antecedent invalidates a relevant conditional: although a
proposition may be true given a certain piece of information, it will not be con-
sidered true in a relevant logic given the same piece of information taken together
with an irrelevant piece of information.

The basic objects of Urquhart’s semantics pieces of informationthat is,
sets of basic sentences of some sort. Pym et al. sometimes seem to proceed as if
Urquhart’s “pieces of information” were in fact possible worlds. Itis a commonly-
held intuition that a proposition may be identified, or at least associated with, the
set of possible worlds in which it holds. It is also quite reasonable, generally, to
think of possible worlds not as alternate universes, but simp$fatesor points
Worlds are not typically conceived as divisible objects, and they are not generally
thought of as entering into compound&eces of informatiopon the other hand,
may in some cases be divisible, and may always enter into compounds. Pieces of
information can be combined using set-theoretic unipand the empty set is
regarded as the empty piece of information, or ‘no information’. Of course, the
U operation is idempotent, that iX,U X = X. This property in particular will
be dispensed with when these semantics are adapted to the semamic$nof
fact, the representation of a piece of information as a set disappears entirely. The
propertyX U X = X reflects the availability of the rule of contraction in relevant
logics, which is a key point of dlierence with non-exponential fragment of clas-
sical linear logic — that is, multiplicative additive linear logMALL). In relevant
logics, the number of occurrences of a premise, given that it occurs at all, does
not matter: multiple occurrences are logically equivalent to a single occurrence,
thanks to contraction. The absence of that rulelALL, on the other hand, means
that the number of occurrences is logically significant.

Relevant logics are typically characterized by a denial of the structural rule
of weakening, so that the validity of a valid argument is not in general preserved
when additional premises are added to it. The most important feature of the se-
mantics is that it does not in general hold thaXif- ¢, thenX U Y IF ¢. A
proposition may be rendered false by the availability of additional, irrelevant in-
formation — imagine yourself lost in a library. The is an essential ingredient in
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the meanin@I’s connective-. The intuition behind relevant logic is that every
premise, or piece of information, must contribute to a proposition; that it must
bear directly upon it in some way. A strong motivation is the resolution of the so-
called paradoxes of material (that is, classical) implication, sugh-asy — ¢),

which is precisely the formulation of the rule of weakening as an axiom, and
-¢ — (¢ — ). The Kripke resource semanticsBifretain the idea of composi-

tion of pieces of information, replacing sets of sentences and set-theonsttb

a non-set-theoretic view of resources, conceived as the possible worlds of Kripke
semantics, together with a composition operason

X,Y,... € S are pieces of information, that is, sets of basic sentences. We
regard these sentences as semantic objects, not as sentences of the language at
hand.S is partially ordered by non-strict set inclusignand is a join-semilattice
with set-unionu as the join operatiors always contains the empty set, or empty
piece of informationz as its infimum. TheJ operation is commutative, associa-
tive, idempotent and has urit as would be expected, v, ... are propositions,
atomic or compound, angl g, . . . €  are propositional variables. Urquhart states
the semantics by way of the specification of a valuation funcéipmapping any
proposition paired with a piece of information ino, F}.

We present the semantics using a forcing relatiofand “does not force”,
H‘)H We will also use a valuation functiovi in a different way to Urquhart. Al-
though there is an unfortunate clash of notation, we want to maintain uniformity
with the rest of our presentation, Essentially, we use a forcing relatiorstead
of Urquhart'sV : ® xS — {T,F}, and we us& : £ — ¢(S) in our uniform style,
with X € V(p) where Urquhart would write X determinesp".H The semantic

8We have adopted a uniform notation based upon that used for the semantics of modal logic
as presented by Blackburn et al. [2001, §1.3]. Rather than giving the inductive semantic clauses
for connectives directly in terms of a model’s valuation function, we use forcing notati@md
) to indicate that a proposition is made true (or is not made true) in a certain model, usually for
a certain state of the model (that is, at a certain possible world, or resource, or for a certain piece
of information). For examplelt, m Ik ¢ states tha is true at statenin the modebt. We might
instead have written something likm, ¢) = T, whereV is the valuation function of the model
M.

SUrquhart’s statement of the atomic case rung(p, X) = T if X determinesp, V(p, X) = F
otherwise.”, commenting that “A piece of informatidrmaydeterminea basic statememtin the
sense that it may be concluded §hés true on the basis of the sentenceXih[Urquhart 1972, p.
160].
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treatment of an atomic proposition is really just a placedbofor a philosophical
or epistemological specification of the determination of the truth of falsity of a
proposition by some information. Note that this formulation is not a strict ‘rele-
vantist’ one as might be expected; there is no requirement, for instance, that every
sentence irX must in some way contribute to the determinatiorpofThis kind
of constraint operates only the object language. Determination is much more like
a standard valuation function, with a common-sense flavour.

We also introduce the apparatus of frames and models. We define a frame
F = (S, @,U), and a modent = (F,V) = (S, @,U,V). We write each of the
relevant connectives using Urquhart’s symbol, subscripted with &e have to
be careful not to confuse>; with other implicative connectives; and particularly
not Urquhart’s intensional conjunction with the operation of composition of
resource® in the semantics dBl. This connective is the ancestor®ifs «. Rel-
evant implication—, must also be distinguished from entailment, which we
will touch upon later.

Our formulation of the forcing clause for an atomic proposition, then, is:

M, X IF piff X € V(p)

An atomic propositiorp is forced by the piece of informatioX iff it is “deter-
mined” by X. The forcing clauses for the connectives that we are most interested
in are:

M, X - ¢ - yiff forall Y, either9t, Y ¥ ¢ or 0L, XU Y IF ¢

M, X |- ¢ o y iff for someY, Z such thalX = YU Z,
M, Y IFpandd, Z -y

We might write theo, clause in a ‘pattern-matching’ style for clarity:
MYUZIEpo, yiff MYIFgpandd, Z I+ y

The clause for, says that a relevant conditional holds for a piece of information
iff for any piece of information for which the antecedent holds, the consequent
holds for the union of the two pieces of information. The clauseof@ays that

an intensional conjunction holds for a piece of informatifiihiat piece of infor-
mation is the union of two pieces of information, one for which the left conjunct
holds, and the other for which the right conjunct holds. Conjunction and disjunc-
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tion are as in normal classical and intuitioniisettings; negation is classical
and does not figure any further for us.

M, X I ¢ &y iff M, X IF ¢ andM, X IF ¢
M, X I ¢ vy iff 0, X IF ¢ or 0, X IF
M, X - -~ iff M, X W ¢

A formula¢ is said to bevalid if for any semilatticeS and any valuation function

V, we havea I+ ¢, that is, if¢ is determined by the empty piece of information

in any circumstances. In the language of frames and models, we define validity
this way: A formulag is valid in a modeblt = (3, V) iff M, & |- ¢, abbreviated

M - ¢; ¢ is valid in a frameF iff M I+ ¢ for every valuationV, abbreviated

S IF ¢; andg is valid iff § I ¢ for every frameg, that is, for every semilattice

S. Although pieces of information are noted to form a semilat8céhe semilat-
tice’s partial order does not actually play a prominent role in the semantics, except
that the empty, that is, least, piece of informatioms used to define validity. So
although there exists a partial order over pieces of information generally, it is im-
portant to note that this ordering has little rdle in the semantics for relevant logics,
apart from the fact that every semilattice has a common least element.

When the law of idempotenc){ U X = X is suspended, the multiplicative
fragment of the relevant logic semantics (that is, the fragment containing just the
connectives, and—,) becomes a semantics for multiplicative intuitionistic linear
logic (MILL) Linear logic, because contraction is no longer admissible, and
weakening never was; intuitionistic because it lacksaa connective ¥); and
multiplicative because it contains only the remaining multiplicative conjunction
and implication.

Urquhart distinguishes the richer notionaftailmentfrom relevant implica-
tion. For the semantic account of entailmentj he introduces possible worlds
additionto pieces of information, to express the modal content of the notion. Pos-
sible worlds are used to represent totalities of facts, which form the background
of a judgement as to whether a piece of information determines a proposition. As
such, ‘quantities’ of background facts are not ‘weighed and measured’ with the

10excepting the absence of intuitionistic monotonicity.
LIA transition that Pym et al. make without comment.
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same requirements of relevance we have for pieces of infamathis idea of

a factual background resembles Kripke’s idea of possible worlds in the semantics
of intuitionistic logic as “evidential situations”. An entailment is modal because a
propositionp must be determined by a piece of informatdmgainst all possible
factual backgrounds. As in Kripke’s semantics for modal logic, the accessibility
relation between worlds holds when a world is possible, or accessible from the
standpoint of another, that s C n iff n is possible from the point of view ah.

The possible worlds are preordered by this accessibility reIicWe say that

O, X, my I p iff atomic propositiorp is determined by the piece of information

X € S against the factual background at the possible workd M, in the model
Mm=(M,C, S, o,U,V). A proposition is valid ff it is determined by the empty
piece of informatiorz against the factual background of every possible world, in
every modeb)t. The forcing clause for entailment is:

M, X, ml- ¢ —¢ y iff for all Y, and alln such thamC n,
eitherd, Y, n ¥ ¢ or M, XU Y,n Ik ¢

This rule has two domains of semantic objects: pieces of information, for which
we have a combining operatianand possible worlds, for which we have a pre-
order relationz. The semantics dBl use a single domain of semantic entities,
namely possible worlds or states,resources These have both a binary combi-
natione and a preorder defined over them. The preorder is a preorder of possible
worlds, and not a partial order of pieces of information.

2.2. KRIPKE'S SEMANTICS FOR INTUITIONISTIC LOGIC

Kripke introduced the idea of possible worlds for his semantics for modal logic
[1959, 1963a, 1963b]. His semantics for intuitionistic logic [1965] is an extension
of that project. This section presents a summary of the semantics for intuitionistic
logic. Kripke definesmodel structur@ (G, K,C), in which K is a non-empty

12The same holds for the accessibility relation in the semantics of the modal 3dgias
Urguhart notes, but observe that the accessibility relatiorsfois in addition symmetric. See
Kripke [1963b] or Hughes & Cresswell [1996] for an overview.

13A model structure, but lacking a specially selected actual world, is calfextvaein modern
terminology.
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set of possible world€i; € K represents thactual world, andC is a reflexive
and transitive binary relation between WOI@sFor the most part, we will omit
consideration ofG, and just consider model structures, or franjes: (K, C).
G does, however, figure in the definition of validity. A formupais valid iff
V(¢,G) = T for every valuation functiov over a model structurgs, K, C). That
is, ¢ is valid iff it is true at the actual worl@ under any valuationG also figures
and in Kripke's informal interpretation of the semantics. nfodelis a model
structure taken together with a valuation functibn ® x K — {T, F} which maps
a proposition taken together with a possible world iffipF} X We write down a
model agK, C, V), and denote it bylt. The valuation function must satisfy the
constraint that:

If V(p,m) =T andmC nthenV(p,n) =T

This is sometimes calledripke monotonicity It may be generalised, by induction
on formula depth, over all formul@for a modelJt in our uniform notation:

If 99t, mIF ¢ andmC nthenMt, n ik ¢

The semantic account of atomic propositions is really a philosophical matter; we
take as read that the valuatigrfor a given model assigns a truth value from F}

to every pair (n, p) of a possible worldn and propositional variablp. As far as

we are concerned, this assignment may be arbitrary, subject to monotonicity.

Mmikpif Vimp) =T
For convenience, we define:
M, M ¢ iff notM, mli- ¢

It is worth noting that something like the law of excluded middtesapply at

We write C for Kripke’s R, for uniformity, and to emphasize that it is a preorder. It is most
important to note that in many presentations of the semantBs[Bfym 1999, Pym 2002, O’Hearn
& Pym 1999, Pym, O’Hearn & Yang 2004] the direction of the relation is the reverse of ours,
that is, where we writen C n, they writen C m. We follow what we take to be the more
natural presentation of Kripke [1965], Galmiche & Méry [2001, 2003] and Galmiche, Méry &
Pym [2005].

5In Kripke’s formulation, the valuation function is called the model, and a model is said to be
defined over a model structure. In ours, a valuation function is associated with a frame, forming a
model.
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the level of the valuation functioreverypropositional variable is assigned a truth
value ateverypossible world. So this semantics for intuitionistic logic has a clas-
sical base. The valuation does not assign truth values for compound propositions.
This work is done inductively by the forcing clauses for the connectives:

M, mikE g Ay iff M, miE ¢ andd, mik ¢

M mikE g Vvyiff M mi-¢or I, ml- g

M, ml- ¢ — yiff forall nsuchthamc n, M, N g orM,nik- ¢
M, ml- g iff foralln,mc n, M, nl¥ ¢

If we add the propositional constant having the forcing clause:
M, mlF L never

then we can define negatief® = ¢ — L and drop the clause for negation. Pym
et al. opt for this type of presentation of clauses for implication:

M, mlk ¢ — y iff for all nsuch thamC n, M, n Ik ¢ impliesO, n - ¢

but we prefer to spell outA impliesB” as “not A, or B”, like Kripke, rather than
to hide it. Simply writing “implies” without explication can be a bit obscure, and
it also conceals some of the classical reasoning in the model theory.

The general idea for intuitionistic implication is that a conditional obtafihs i
at any greater or equal possible world — informally, any equal or fuller state of
evidence — the consequent is true if the antecedent is true. When we have more
evidence, we can prove more, and importantly, things that are true stay true when
more evidence is obtained. In intuitionistic terms, of course, it makes better sense
to talk about what we can prove, rather than what is true (for a given state of
evidence).

The clauses for conjunction and disjunction are classical ones, but the clause
for intuitionistic implication is quite dterent. In this scheme, we would write the
clause for classical implicatior<.) thus:

M, mikE ¢ -y iff I, mE ¢ or M, mi-

that is, without reference to any other possible world.

It is worth noting that in Kripke’s informal interpretation of the semantics for
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intuitionistic logic, possible worlds are viewed as “evitlahsituations”, that is,
situations in which we have access to certain, but not other information. This
gives us an interpretation of the preorder over possible worlds quferet to

the accessibility relation of one world to another familiar from the Kripke seman-
tics for modal logic. A possible world is greater than or equal, in this information
ordering, to another world, if all the information available at the lesser world, and
perhaps some more, is available at the greater world. The actual, or least world
G € K in Kripke’s model structures marks out the present evidential situation,
which forms the root of a tree structure constructed according to the decompo-
sition of the relatiorR into single, transitive stepS. So we have a ready-made
interpretation of intuitionistic logic in terms of the availability of information or
evidence. One notable feature of the interpretation is that although we cannot for-
get information once we have obtained it, we can miss out on future opportunities
to obtain certain information because of choices we make now. We may climb the
wrong branch of the tree, so to speak.

So we have reasonable semantics for two quifiedint sorts of logical sys-
tems, both of which appeal at some point or other to the semantic work done by
bodies or pieces of information. We combine — syntactically and semantically —
intuitionistic logic with an adaptation (nameMILL) of the multiplicative frag-
ment of Urquhart relevant logic, to produ&, which may be understood as a
logic of resources.

2.3. BEEMENTARY KRIPKE RESOURCE SEMANTICS

We now present a standard formulation of the Kripke resource semantiBs. for
The principal source is Galmiche, Méry & Pym [2005], but Pym [2002] and Pym,
O’Hearn & Yang [2004] are also important sources.

We use the usual language for propositioBRlp, g, ... € # are proposition
letters. m,n,... € M are statesof a model, also called possible worlds or re-
sourcesL is a preorder, that is, a reflexive, transitive binary relatioorc may
be partially defined. That is, not every pair of states need be comparableminder

Definition 5 A frameg = (M, e, e C) is a set of stateM and a preorder, to-
gether with a commutative and associative binary operation on stafédxM —
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M, having the distinguished stage= M as its unit, such that
foralme M, m=mee=ecem.

eis the left and right unit, sinceis commutative. A frame is also calleKaipke
resource monoidThe operatior satisfies @ifunctoriality constraint:

if mEnandnm’ Cn’, thenmem Cnen'

eis not in general the least state bf. e ‘combines’ two states, or resources, to
produce another. Itis ‘order-preserving’ in the sense specified by bifunctoriality.
A special case of bifunctoriality is:

If mCnthenmem Cnem

which we see in the form of the compatibility constraint for the dependency graphs
of resource tableawe is not idempotent, that is, in general it is not the case that
me m = m, which is the main structural flerence between this semantics and
Urquhart's: e is the analogue foBI of the operation for combining pieces of
information, namely set-theoretic unian whichis idempotent.

It is not in general the case that T me n. This property is referred to as
aggregation Aggregation may in fact hold in certain classes of frames, and may
be useful in modelling certain situations involving resources. Unlike Urquhart’s
semantics, where pieces of information form a semilattice under the join operation
U, there is no requirement that there be a least elemévit iStates, or resources,
are not required to form a semilattice ordered by the relation

Definition 6 A valuationfunctionV : £ — ¢(M) is an assignment of a set of
states to each proposition letter. Any assignment must satisfyreotonicitycon-

straint:
if me V(p) andmC n, thenn e V(p)

Definition 7 A model9t = (3,V) = (M, e, e C,V) is a frame together with a
valuation function. o
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Given a model, we define a forcing relatikm@ The forcing clauses are those
of Kripke’s semantics fon, v and—:

M, miE g Ay iff M, miE¢andM, mik y
M mik g Vvyiff M mi-¢orI,mi- g

M, mlIk ¢ — yiff for alln € M such thamC n,
M, Nk porM,nl-y

together with clauses ferand-+ adapted from Urquhart’s clauses fgrand—;,:
M, ml- ¢ =y iff there exisn,n” € M such thanhen’ C m,

M, nl-¢anddM,n -y

M, ml- ¢ -y iff for all n e M such thabli, n I+ ¢,
M, menl-y

In addition,BI contains propositional constants L andl. The clauses for these
in the elementary semantics are:

M, ml- T always
M, miE L never
Mml-1ifecm

We say that is forcedat a statamn in a model9t if 9t,m IF ¢. Since we will
need frequently to refer to the forcing clauses, we reproduce them all together in
Figure[Z1.

A model is essentially the same as a Kripke model for intuitionistic logics
a non-empty set of states (or resources, or possible w@d’é)e binary relation
C on M is reflexive and transitive, as before. The relatibim the semantics d8l
does not need to be antisymmetric. Antisymmetry means thatin andn C m,
thenm = n. That is,C need not be a partial order. Indeed, we have nofoeaial
requirement for an antisymmetrically derived notion of equality in the semantics,
although we are in possession of a notion of equality in virtue of the monoidal
structure of frames. Monoidal equality is indeed vital for establishing the equality
of various combinations of elements BF under thee operation, but it certainly
does not furnish any criterion for establishing identity between distinct primitive

1690, m ¥ ¢ is just an abbreviation meaning “n@it, mI- ¢}”, as before.
"We now write the set of states Bsinstead of Kripke's.
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elements oM. We do however require the ability to recognize the distinguished
elementr € M which will be introduced with the new Kripke resource semantics
in §2.8. But this is not an example of the need for either a ‘primitive’ or antisym-
metric equality that is not derived from the monoid laws: Definifioh 11 contains
the consequence that = x iff # T m. There is no stipulation of antisymmetry

in Kripke's semantics, nor in his semantics for the modal I@&f¢cwhich is sim-

ilar in essential respects to the intuitionistic semantics. In fact, modal languages
generally cannot express antisymmetry in their frames, or rather, equality defined
antisymmetrically [Blackburn et al. 2001, §3.3].

Definition 8 (Satisfiability) A formula ¢ is satisfied at a stat@in a modett if
M, mi- @. ¢ is satisfied in a modelt if for somem, 9T, mIF ¢. ¢ is satisfiable
if it is satisfied in some modéWi. O

Definition 9 (Validity)

(i) Aformula¢ isvalid in a modeb)t iff 9t, mI- ¢ for everym e M. We write
M Ik .

(i) ¢isvalidin a frameg iff M I+ ¢ for every valuatiorV. We write§ I+ ¢.

(i) ¢ isvalidiff § I ¢ for every frame§. We writel- ¢. o

We now propose a weaker notion of validity, which aligns more closely with the
notion of theoremhood iBI which we will meet later on.

Definition 10 (e-Validity)

(i) A formula ¢ is e-valid in a modelt iff 9t, m I+ ¢ for everym € M such
thatec m.

(i) ¢ise-validin aframeF iff ¢ is e-valid in every mode(g, V).

(i) ¢ ise-valid iff ¢ is e-valid in every frame. o
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M, mik piff me V(p)

M, miIk T always

M, ml- L never

M, miE g Ay iff M, miE ¢ andM, mi- g

M miE g Vvyiff M mi-¢or I, mi-

M, ml- ¢ — yiff foralln e M such thainC n,
M, Nl porM,nl-y

M, ml-1liffecm

M, M- ¢ =y iff for somen,n” € M such thahen’ C m,
m,nl-¢anddM,n -y

M, mik ¢ -y iff for all n € M such thatit, n I+ ¢,
M, men -y

Figure 2.1: The forcing relation for the elementary Kripke resource semantics

2.4. SATES AS RESOURCES

The usual idea for intuitionistic logic is to consider the states of a model not as
possible worlds, but as states of knowledgegpistemicstates, and the preorder

C as an information ordering on those states. The monotonicity constraint says,
effectively, that every ordinary atomic proposition that is known in a given epis-
temic state is known at any state placed equally or higher in the information or-
dering. In temporal terms, it says that nothing, once learned, is ever forgotten.
With BI, we make the analogy of states with (computational) resources, rather
than epistemic states. The preordemay then be seen as an ordering on the
suficiency of a resource for some given kind of task. For example, for a task
that requires an allocation of memonge6K c 512K, in the sense that if a given
block of 256K is suficient, then any block ad12K will be suficient. Observe that
some resources, like computer memory, are fungible, in the economic sense of
being a freely interchangeable commodity, and comparable by quantity. Other
resources, like URLS, are more reasonably viewed as unique, and are not so eas-
ily comparable. Certainly, however, we could specify an information preorder
over URLs. There is an obvious sense in which, for example, the URL of the
Wikipedia article on XPatlhttp://en.wikipedia.org/wiki/XPath lies below the

URL of the W3C Recommendation on XPaitxp://www.w3.org/TR/xpath in an
information ordering. The Wikipedia article contains less information, and in a
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certain sense is entirely subsumed by the recommendattbough they are tex-
tually distinct; this despite any pedagogical value the Wikipedia article may have,
or helpful examples it may contain. Of course a given document might be refer-
enced, or aliased, by more than one URL, or two distinct documents may contain
precisely the same information, yielding equivalence in a reasonable information
preorder. It is quite natural to collect non-fungible resources into sets and fungi-
ble resources into multisets. Hence, for exampiek} c {256K, 256K, 256K} and
{http://en.wikipedia.org/wiki/XPath} C {http://en.wikipedia.org/wiki/XPath,
http://en.wikipedia.org/wiki/XQuery}. In the first example, we suppose some
sort of aggregation function on multisets of fungible resources which provides a
basis for comparison, and in the second, just upon set inclusion for sets of unique,
or non-fungible resources. It would seem reasonable to identify such an aggre-
gation function with the operation in models. We can see thdfelient sorts of
aggregation functions make sense fdtatent sorts of resources. If sets of non-
fungible resources are regarded as states of a model, then we can simplywdefine
as set union, and if multisets of fungible resources are the states, we might need
to regarde as a more elaborate aggregation of elements of a multiset. Of course,
when we have to think of occurrences of the same token in a multiset not as mul-
tiple occurrences of the very same object, but as distinct instances of objects of
the same type.{256K, 256K, 256K} stands for three materially disjoint blocks of
memory, and not the same block mentioned three times. We may then want to an-
notate distinct occurrences of fungible resources, tiRESK;, 256K, 256Kz}, and
define aggregation such that, for examplEs6K,, 256K, 256K} e {256Ks, 256K} =

{256K;, 256K;, 256Ks3, 256K,).  We may also wish to define aggregation as disjoint,
perhaps to avoid computational conflict over resources, S@B®k;, 256K, 256Ks}e
{256Ks, 256K} mMight instead be undefined due to the occurrencs@ik; on both
sides. So at least in the fungible case, we may sometimes want a notisjodrft
aggregation. We can also imagine situations in which we might want to make
use of a disjoint union, for instance to express a constraint ttiggreint com-
putational stages or processes use distinct sources of information. This kind of
requirement for disjoint combination is accommodated in a straightforward way
by the partially-defined monoid semantics which we will come to soon. It simply
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allows thate-combinations of states need not always be de@ehﬂore tech-
nically, we can envisage restricted variantBbfwvhich correspond to classes of
frames in which certain additional properties might hold. For instance, the class
of frames in whiche andC satisfy an aggregation property, such that fomalh

it is the case thain C me n, which is not a general property in stand&id Or

we might develop classes of frames which explicitly identify states with sets of
resources or multisets of ‘typed’ resources, perhaps with disjoint aggregation, and
which impose other constraints appropriate to some real-world situation.

2.5. New KRIPKE RESOURCE SEMANTICS

This section summarises the new Kripke resource semantiddl fiisalmiche,

Méry & Pym 2005, 85.2]. We also prove a standard generalised monotonicity
result for this semantics, which holds for all the variations of the semantics pre-
sented in this chapter. This new semantics is a small variation on the elementary
semantics. The sé of states in a frame must contain an additional distinguished
stater, which is the greatest state in the preorder. It is a special state which forces
1 in every model; of courser is never forced at any other state. The point of
includingr is essentially to give a representationiothat is internal to a model.
This semantics is equivalent in semantic strength to the relational and partially-
defined monoid semantics that follow. The relational semantics is essentially a
different statement of this semantics, and contains the same trick.

Definition 11 A frameg = (M, e, e, 7,C) is just the same as for the elementary
Kripke resource semantics (Definitibh 5), except that in every frame, there is an-
other distinguished statee M, called thenconsistent statesuch that

foralme M, mCr and rem=r.

Consequently,
rCmiff m=n.

BAn equivalent accommodation can be made in a less obvious way by the new Kripke resource
semantics — which will be introduced in the following section — by mapping forbidden combina-
tions of states onta (see DefinitiodTI).
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n is the greatest state M, under the preordet, in any frame. 0

Definition 12 A valuationfunctionV : £ — (M) is an assignment of a set of
states to each proposition letter, as in Definifibn 6. Any assignment must satisfy
themonotonicityconstraint. By monotonicity, for any € P, if there existsne M

such tham € V(p), thenz € V(p). For reason of uniformity, we further stipulate
that for allp € , = € V(p), even where is not satisfied at any other state.

Definition 13 A modeldt = (§,V) = (M, e, e ,C, V) is a frame together with a
valuation function. Given a model, we define a forcing relation

M, mik piffme V(p)

M, mi- T always

Mmik Lifm=n

M, miE ¢ Ay iff M, miE ¢ andM, mik g
M miE g Vvyiff M mi-@ord,mi-

M, ml- ¢ — yiff for alln e M such thamC n,
M, Nk porM,nliky

M. ml-1ifecm

M, mik ¢ =y iff for somen,n” € M such thanen’ = m,
M, nl- ¢ andM, n Ik y

M, mI- ¢ -y iff for all n e M such thadit, n I- ¢,
M, me n Iy

We require a definition of the depth of a formula for proofs by induction on a
formula’s complexity. The following routine definition is adapted from Troelstra
& Schwichtenberg [2000, p. 10].

Definition 14 The depthof a formula is the length of the longest branch in its
construction tree. The depth| of a formula¢ is defined recursively. Proposi-
tional letters and constants have depth 0; and for any binary opetaos | =
max(gl, 1) + 1. o

The following lemma holds for all the variations of Kripke resource semantics.
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Lemma 1 (Generalised Monotonicity)

If M, mIF ¢ andmC nthenM, ni- ¢

Proor The proof is by induction on the depth of a formula. We take as the base
cases the forcing clauses for propositional letters and constants.

1. In the case tha®t,m IF p, we havem € V(p). If m C n, then by the
monotonicity constraint on the valuation of atomic formulae in Definition
M2, we haven € V(p), and henc@i, n I+ p.

2. M,n |- T always, so trivially)t, n IF T in the case tha®)t, m I T and
mcC n,

3. In the case thdbt, mIF L, we havem = n. Then ifmLC n, thenn = x by
Definition[I1, and, n |- L.

4. In the case thadi, mI- |, we havee C m. Sincem C n, we havee C n by
the transitivity ofc, and hencéi, n |k I,

In the inductive step, we consider the forcing clause for each binary connective,
and show that it preserves monotonicity. In each case, the inductive hypothesis is
that if 99t, mI- ¢ andmC n, thent, nIF ¢. In each case, we assume that n.

1. Suppose tha®t,m |- ¢ A . ThenM, m I ¢ and, m |- . By the
inductive hypothesit, n IF ¢ and9t, n |-, so we havélt,n Ik ¢ A .

2. Suppose thavt, mi- ¢ v . Then eithe®)t,m I ¢ or 9T, m |- . By the
inductive hypothesis, eithédt,n I+ ¢ or M, n I+ , so we havei, n I+

V.

3. Suppose that,m I+ ¢ — . Then for alln’ such thatm C n’, either
M, ¥ ¢andM,n I+ . Then sincem C n, for all n” such than C ',
eitherd, n ¥ ¢ andt, n’ IF , and hencét, n I+ ¢ — ¢ (without use of
the inductive hypothesis).
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4. Suppose thatt, m I ¢ = . Then there exist’, n”” such thai’ e n” C m,
andt, n’ I- ¢ andM, n” |- y. SincemC n, n" e N C n by the transitivity
of C, and sat, n IF ¢ = ¢ (without use of the inductive hypothesis).

5. Suppose thdbt,m I+ ¢ - . Then for alln” such tha®it,n’ I ¢, we have
M, me ' |- . By bifunctoriality we haveme n’ C ne 1’ for all n’. Then
for all n” such thatt,n’ IF ¢, we havedlt,n e 0" |- ¢ by the inductive

hypothesis, and hen®&, n I+ ¢ - .
]

Note particularly that cases 3 and 4 of the inductive step do not actually require
the inductive hypothesis. It is in this sense that we say that the corresponding
forcing clauses have built-in monotonicity. We will return to this point when we
make an adjustment to the partially-defined monoid semantics (which might ret-
rospectively be applied in the present case) to build-in monotonicity to the forcing
clause for- which is nonetheless conservative for the forcing relation as a whole.

Lemma 2 9, I ¢ for any ¢ in every modedt. o
Proor By induction on the degree of a formula. n

Satisfiability is defined just as for the elementary semantics in Defirlition 8, except
that: ¢ is satisfied in a modelt if for somem such thatm # =, 9, m I+ ¢.
Validity is defined just as in Definitiold 9.

2.6. ReLATIONAL SEMANTICS FOR Bl

This section summarises the relational semantic8fgiven by Galmiche, Méry
& Pym [2005, 85.1]. This relational semantics is founded upon the insight that
we can treatme N C n as a ternary reIatioF\’;mrrm
A frameg§ = (M, e, R-) contains a ternary relatioR- on states instead of
a preordec and a composition operateron statese € M is the unit state, and

19The compatibility constraint in FigulE2.2, taken together with transitivity, takes the place of
the bifunctoriality constraint om. Cf. the compatibility condition on the closukeof the set of
constraintK on labels forTBI tableaux. The domain functiaf gives the set of labels appearing
in a set of constraints: ifo ze D(K) andx < y € K thenxo z< yo ze K [Galmiche et al. 2005,
83.1, p. 1045].
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Reflexivity YX.XE X

Commutativity YxVYyVz.R-xyz —» R-yxz

Associativity  Yxv¥y¥zYv. Ju(R-xyu A Rcuzy) « At(Reyzt A Rextv)
Compatibility VXYyVz¥X .R-xyzA XC X — R-X'yz

Transitivity VYXYW2ZYZ .R-XyzZA zC Z — R-xyZ

m-max VXYY . Rexyr

m-abs VYXVY.Rerxy > nC Yy

Figure 2.2: Conditions satisfied B

n € M the greatest state, as with the new Kripke resource semantics (Definition
[I1). For convenience, we defineC n = R-emn Any relationR- must satisfy the
conditions given in FigurEZE A model9t = (§,V) is a frame taken together
with a valuation functiorV defined just as in Definition-12. Given a model, we
define a forcing relatioit-:

M, mik piffme V(p)

M, miIk T always

Mml- Lifm=n

M, miE ¢ Ay iff M, miE ¢ andM, mik g
Mmik o Vvyiff M, miEgord, mik-y

M, mlIk ¢ — yiff for alln € M such thamC n,
DM, Nk porM,nl-y

M ml-1ifec m

M, ml- ¢ =y iff for somen,n” € M such thaRnrim,
M, nl-¢andM,n -y

M, mik ¢ -y iff for all n,n” € M such thaRmnn,
M, Nk gorM,n -y
Note that the forcing clause fex in the Kripke resource semantics does not in-
volve C, but that the corresponding clause in this relational semantics does; re-
member thaRmnr is equivalent tane n C n'. It can readily be seen that this

2There is a typographical error in the associativity condition in Galmiche et al. [2005, §5.1, p.
1062].Vt should read/v, as here. Otherwiseis free and/t does nothing, as occurrenced @ire
bound byAt.
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formulation strengthens the meaning of multiplicative iroglion taken in isola-

tion, in comparison with the elementary and new Kripke resource semantics. This
modification is conservative with respect to the extension of the forcing relation
taken as a whole, but turns out to be crucial to our proof of complet%é’ﬂm
clause builds-in monotonicity in the sense noted eardigreeds to hold not only
atme n but at anyn’ such thamen C ', That is, it stipulates the monotonicity of

¢ in a way that the elementary and new Kripke resource semantics do not. In the
relational semantics, the inductive step case for multiplicative implication in the
proof of generalised monotonicity can be proven without appealing to the induc-
tive hypothesis. So although this change strengthens the meaning of the clause for
-« taken alone, it is a conservative modification of Kripke resource semantics.

2.7. RRTIALLY-DEFINED MONOID SEMANTICS FOR Bl

This section summarises the partially-defined monoid (PDM) semantidBlI for
[Galmiche, Méry & Pym 2005, 85.3]. We also make and defend a small modifi-
cation to this semantics. The PDM semantics presentfierelnt, but equivalent
solution to the problem of the completenes8bWith L, which is handled by the
internalisation of inconsistency usiig The shape of this problem will become
clearer once we are involved in the details of the completeness proof. The general
apparatus is the same as for the elementary Kripke resource semantics, except that
that the functiorm : M x M — M may be partially defined| is used to indicate

that a combination of states is defined: read n| as ‘me nis defined't4 The

only constraint on the partial definition efis associative: that e (y e 2) | iff
(xey)ez]|. The forcing clause for is the same as for the elementary semantics
once again, and does not figure here. The forcing relation is defined as follows:

21Galmiche et al. [2005, Theorem 5.2] in fact carry out their completeness proof with respect
to this formulation of the semantics, but they do not note this pointfééidince with the Kripke
resource semantics and PDM semantics.

22The use of thel symbol is quite distinct from its proof-theoretic use with the calculus of
structures later in the thesis. Although the two uses may come into uncomfortable proximity,
no ambiguity will arise. Our use of the symbol is retained in both cases for uniformity with the
separate literatures @i and on the calculus of structures.
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M, mik piff me V(p)

M, ml- T always

M, mlE L never

M, mikE g Ay iff M, miE ¢ andM, mik ¢
M miE g Vvyiff M mi-¢or I, ml- g

M, mlk ¢ — yiff for alln € M such thamC n,
M, Nk porN,nli-y

M. ml-1lifecm

M, mlk ¢ =y iff for somen,n” € M such thanen’ | andnen’ = m,
M, nlEgandM, n |-y

M, ml- ¢ -y iff for all n e M such thaime n| andt, n I+ ¢,
M menlky

We have to refine the bifunctoriality constraint for the partially defined setting.
In the various wholly-defined monoid semantics, evemxpression having de-
fined constituents is defined, so any apparent existential import of bifunctoriality
is beside the point. The interpretation of bifunctoriality can fall between two ex-
tremes. On the one hand, we could adopt a weak interpretation, which makes no
guarantees about the definedness ofé@rypressions:

If mCnandm Cn"andmem’ | andnen’ |, thenmem C hen'.

This would mean that no proof could not rely on bifunctoriality to produce exis-
tential information about combinations of states, just ordering information about
them, should they exist. This would present nfidulty for our completeness
proof, but would mean that we could not prove generalised monotonicity for the
PDM semantics (cf. case 5 of the inductive step of the proof of Lefma 3 below).
A strong construal would guarantee the definedness of combinations on the left-
and right-hand sides, thus:

If mC nandm' C n’,thenmen’ | andnen’|] andmem Cnen’

Itis enough, however, to guarantee the definedness of the combination on the left-
hand side when the combination on the right is known to be defined, making no
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guarantee about the right-hand side. We restate bifunbitptiaus:

If mCnandm’ Cn andnen’], thenmemnm' | andmem C nen'.

Lemma 3 (Generalised Monotonicity for the PDM semantics)

If 9, mikFppy ¢ andmC nthend, n lkppy ¢

Proor The proof is the same as the proof of Lenitha 1 expect for cases 4 and 5 of
the inductive step, which in this case run as follows:

4. Suppose thait, mikppy ¢ +y. Then there exigt’', n” such thaty en” | and
nen” C mandd,n IkFppy ¢ andM, n” IFppy . SincemC n, N en” C N
by the transitivity ofZ, and since we already hawes '’ |, 9%, N IFppy @ i.

5. Suppose tha®t,m IFppy ¢ - y. Then for alln” such thatme n’ | and
M, N IFppw ¢, Wwe haveddt, me n' IFppy ¥. By bifunctoriality we have
men’ | andmen’ C nen’ whenevenen'|. Then for alln’ such thanen’ |
and, n’ Ikppw ¢, we havedlt, ne n’ IFppy ¥ by the inductive hypothesis,
and hencét, nlkppy ¢ - .

We make one modification to the PDM semantics as given by Galmiche et al. We
alter the forcing clause fo# as follows:

M, mI- ¢ -y iff for all ne M such thame n| andt, n I+ ¢,
and alln’ e M suchthamenrC ', 9,1 IFy

We can give a slightly more pleasant equivalent, flattened formulation:

M, mlk ¢ -y iff forall n,n” € M such thame n| andi, nlk ¢
andmencC n/, M, N IFy
Any formula¢ -+ forced atm in the unmodified semantics will in any case be
forced at anyn such thatm C n, in virtue of generalised monotonicity, which
holds with or without this modification.
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M, mik piff me V(p)

M, mik T always

M, ml- L never

M, miE g Ay iff M, mi- ¢ andd, mik g

M miE g vy iff M mi-¢or I, ml- g

M, mlk ¢ — y iff for alln € M such thamC n,
N, Nk porNM,ni-y

M, ml-1iffec m

M, ml- ¢ =y iff for somen,n” € M such thanen’ | andnen’ C m,
M, nl-¢andM, n Ik y

M, mlk ¢ -y iff forall n,n” € M such thame n| andi, nlk ¢
andmencC ', 9,n Iy

Figure 2.3: The forcing relation for the revised PDM semantics

Proposition 1 The revised PDM semantics, with the modified forcing clause for
-, is equivalent to the standard PDM semantics. o

Proor We label the forcing relation of the revised PDM semaritigsy . The two
semantics dfer only in the forcing clause fox. Suppose that, mi-ppy @ - .

Then for alln € M sucht, n IFppy ¢ andme n |, we havedlt, me n I-ppy W.

For alln” € M such thatme n C n’, we havedt,n’ IFppy ¥ by LemmalB.
Hence if the PDM clause holds, the revised PDM clause holds. Suppose that
M, m lFppwr @ -+ Then for alln,n’ € M such thatme n | andt, n IFppyr ¢
andme nC ', we havedlt, i’ IFppy . Then for alln € M such thame n| and

M, N lFppw ¢ We havedlt, men IFppyr ¥, Sincemen T me n. Hence if the revised
PDM clause holds, the PDM clause holds. -

The motivation for this modification is that it is technically necessary for the suc-
cess of our completeness proof [183.4.4. We are also following the precedent that
has already been quietly set by the relational semantics. We use a countermodel
construction in which states of the countermodel are so-called prime theories; es-
sentially sets of formulee which are closed under deducibility. Plainly, not every
set of formulee is a prime theory, and we require the preorder over the elements of
countermodels to have all non-empty sets of formulee as its domain, not just the
prime theories. We wamhe n to be meaningful in the preorder whenever it is de-
fined, even when it is not a first-class state of the model, that is, not a prime theory.



38 CHAPTER 2 THE SEMANTICS OF Bl

Essentially, we will defin@: M x M — o(®) andC: p(®) x p(P) — Bool, with

M c p(®), for the purposes of the completeness proof. We acknowledge the ob-
jection that in this caséM, e, €) is no longer a monoid. This is a significant fault,
introduced only out of technical exigency. We regard the problem of it correction
as ope

23The most promising approach been unsuccessful. The idea was to find a definiidor of
use in the completeness proof to supersede Defirfifibn 33 (which also dejinesder which we
could definem e n as a unique prime theory when andn are prime theories. Unfortunately,
althoughm x n will always have a prime extension, there appears to be no way to definewe
least prime extension. We investigated the conjecturgijfatx n)*, the intersection of all prime
extensions ofn x n, which is a sub-prime extension ofx n (see Definitio3R) and is less than
or equal to every prime extensionmfx n (see LemmB30), might always be a prime theory in the
case tham andn are prime theories, but we were unable to find a proof. In this case, we could
definee : M x M — M:

Men = AM*n)* if mxnkK L
~ | undefined otherwise

Other unsuccessful investigations have involved significant restructuring of the completeness
proof.



CHAPTER 3

Bl IN THE CALCULUS OF STRUCTURES

In this chapter we present a formulation of the propositional logic of bunched
implications @l) in the calculus of structures. An encoding of sequents into struc-
tures is proposedBl is an asymmetric system, so we propose a straightforward
variation of the definition opolarity used by Tiu [2005] for intuitionistic logic.

3.1. BIIN THE CALCULUS OF STRUCTURES, |

For this formulation we draw heavily upon the formulation of the sys8&i8g

for propositional intuitionistic logic given by Tiu [ZOOH].StraBburger’s [2003]
treatment of multiplicative exponential linear logidELL) has been influential.
The logic of bunched implicatiorl, like intuitionistic logic, is asymmetric and
lacks involutive negationBI also has a wider range of connectives than usual,
irreducible to one another, and including, of course, the two implications.

Definition 15 A structureis defined by the grammar:
R=alTILIIRRIRRIRRI(RRI(RR)

Upper-case letter® T, U, ... are structures. We reserve the let&ito denote

10Our systemSBISg is based upon Tiu’s syste®JSg in the April 2005 draft of the paper.
The down-fragment 08JSg is labelledJSg and the up-fragmermt]Sg, and we will follow this
convention. The LPAR 2006 version of the paper [Tiu 2006] presentéfereint collection of
systems of (quantified) intuitionistic logic in the calculus structures, labelestead of). Theg,
for “general”, indicates the non-local status of the system, that is, that it has non-atomic identity,
cut and structural rules.

39
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an entire structure, never a substructure. Lower-casedettb, c, ... are atomic
propositional structuresr, L andl are the propositional constants as structures.

Square parentheses indicate a disjunctive structure, round parentheses a conjunc-
tion, and angled parentheses an implication, as in formulations of intuitionistic
logic. We adopt the convention, used for bunchekBHh that “;” additively con-

nects structures in forming a new structure, and “,” multiplicatively connects struc-
tures. An expressio8{R} is called acontext and indicates a structure containing

a substructur® at arbitrary depth. When the substructure is a tuple construction,
the braces may be omitted, e9[.R, T]. S{ } represents a structure witthalein

it. We define equality of structures as shown in Fiduré 3.1. The unit properties,
associativity, commutativity and currying arise directly from isomorphisms in the
categorical models, and also reflect proof-theoretic equivalences, i.e. provability
both ways inLBI. Congruence is a natural equality for tree structures, and is sim-
ilar to congruence of bunches. Because of associativity, nested structures of the
same sort may be flattened, disregarding nested parentheses. For instance, we may
write [R; [T;[U; V]]] as [R; T; U; V]. We may also writg(R; T); U) as(R; T; U),

or({(R T),U)as(R T,U). These are just abbreviations, and empty and singleton
tuples do not occur. We might have included equivalences for the distributivity
theorems@ A (¥ v x)) = (¢ AY) V (¢ Ax)) and @ (¥ V x)) = (¢ +¥) V (¢ * X)),

but these will be provable in any case, and have the drawback that the number
of occurrences o varies on either side of each equivalence. The functign
defined in Figur€&3]2 recursively specifies the translation from formulae into struc-
tures, and the function | defined in the same figure defines the translation from
structures into formulag stands for a proposition letter anén atomic structure:

there is a one-to-one mapping between proposition letters and atomic structures.
The translation of bunches into structures, which we also caliis an extension

of the translation of formulae into structures, and is given in Figure 3.3. In this
case, the formulee are singleton bunches. Note that the unit busghasd

I are regarded as equivalent to the propositional constaatgdl, and that the
translation is forgetful, in that the distinction between formulae and bunches is lost
in the translation. A sequeiit = ¢ is translatec{[s,gsy We treat the= as a
multiplicative implication (). This is an arbitrary choice, as discussed earlier.
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Units

[R1]=R (RT)=R (RI)=R
('R =R (,R =R
[T;7T]=T (LL=L (LT)=T (LL=T

Associativity

[R[T;U]] =[[R T]; U]

(R(T;U)) = (R T);U)
(R(T,U)) =((RT),V)

Commutativity| |

RTI=[T;R (RT =R (RT)=(T.R

Currying (RT)U)=(R(T;U)) ((RT),U)=(R(T,U))
Congruence if R=T thenS{R} = S{T}
Figure 3.1: Syntactic equality of structures
atomic n = a a = p
I_s = | |_|_ = |
Is = T I =T
s = 1 L = 4
¢ * ws = (?s’gs) ML = BL * IL
¢'*¢S = <98a£5> ML = BL_*TL
pry. = (DY) (RT), = RAT,
¢V¢S = [?S;KS] ML = R VI
o, = () RT) = R->T,
Figure 3.2: Translations between formulae and structures
atomic R a
Ilg = | Dy = |
T = T Gag = T
s = 1L
¢ *l//S = (fs’ﬂs) MS = @s;és)
MS - <93’g5>
PAY (¢ ¥5) LAy = s Ay)
oVy. = [¢¥ ]
gy, = (8 )

Figure 3.3:

The translation from bunches into structures
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A derivation in the calculus of structures is a finite chain éictures, with
a single premise at the top and the conclusion at the bottom. The structures are
linked by downward applications of rules. A proof is a derivation whose premise
is T or |. A proof-search procedure would typically proceed upwards from the
conclusion.

Now we need some rules. Rules may involve more than one connective, and
express characteristic inferences of the system. The calculus of structures replaces
the rules of identity and cut with a dual pair ioteractionrules,i| (the identity)
andit (the cut). In the selection of rules we need to aim not just for soundness and
completeness, but also simplicity and a minimum number of rules. If we conjoin
premises intuitionistically, we will able to obtain candidate rules by encoding any
rule or derivation ofLBI. But to obtain corules, we need an adequate notion of
polarity.

3.2. PrLArITY

Formulations for classical and linear logic depend on an involutive negRtion

to state each corule. In symmetric sequent calculi, polarity exists inasmuch as
sequents aHedivided into antecedent and succedent, with left- and right-handed
pairs of rules. Butin these cases symmetry and involution give us enough to obtain
duality. In an asymmetric system like intuitionistic logicBi; all that we have is
sidedness. For intuitionistic logic, negative polarity corresponds to the left-hand
side (antecedent) and positive polarity to the right-hand side (succedent).

We now give a definition of polarity foBl analogous to definition of polarity
given by Tiu [2005] for intuitionistic logic in the calculus of structures. This
definition differs inasmuch as it is explicitly decompositional — inwards from the
outside of the structure.

Definition 16 Thetop-level context } is the contexS{ } such thalS{R} = R. { }
may also be called thempty context o

Definition 17 (Polarity) Each context in a structure has either positive or neg-
ative polarity, but not both. The polarity of a context is defined recursively:

20r may be- linear logic is typically right-sided, but just for convenience.
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(i) The top-level context } is positive;

(i) [S{ LR, [RS{, (S{ER), (RS, (SILR), (RS{ ), (RS{})or
(R, S{ }) is positive,S{ } is positive, otherwise it is negative;

(i) If (S{}; Ry or(S{},R)is positive,S{ } is negative, otherwise it is positive.

This definition is not a standard inductive definition, because it starts with its base
case (i) at the outside of a structure, and works inwards to determine the polarity
of each context in the structure. This is permissible because structures are always
finite in size. We expect polarity to be preserved under equality of coriexts.
Given a structurés, each substructurg of S occupies a hol&{ } in S — that is,

a position in the tree structure — which is either positive or negative, according
to this definition. The set of holes @ is partitioned into positive and negative
contexts. In the base case, the top-level contexts occupied bysS itself; a
structure that does not occupy a hole in another structure is pd_JsmseBrUnnler
[2004] points out, the system is asymmetric only because the cqntisxtositive.
Polarity is a property of a context, that is, of a substructetative to the top-

level structure containing it, and without reference to the internal structure of the
substructure. Polarity must not be considered — at least in the present fornﬂllation
— as a property of structures, only as a property of contexts. Inspection of the
definition reveals that polarity essentially involves the position of substructures
in implications. Context expressiof4R} are annotated to indicate polarity — or
rather, require it — in rule specifications, thuS*{R} or S~{R}. An annotation
S*{R} (respectivelyS~{R}) stipulates that the rule at hand is applicable only in
cases where the substructireccupies a positive (respectively negative) context
in S. Polarity-checking when looking for rule applications constitutes a form of
non-localityin the formulatio

3S{} = S'{}iff VR.S{R} = S'{R}.

“More precisely, the conteg{S’} is positive ifS = S'.

5Tiu [2005] gives a local system for intuitionistic logic that assigns polarity labels to structures
based upon an initial application of the definition, but then depends on the conservation of polarity
under application of the rules: structures never move between positive and negative contexts.

6As does the need to check that two formulze are equal when attempting to apply, e.g. a (non-
atomic) rule of contraction.
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Once we have an adequate definition of polarity, we can defiaktyof rules.
In symmetric systems, we can define negation over struct®Resiid taking a
rule as an implication in the system, obtain the dual of a rule by contraposition
of the implication. Something similar occurs with intuitionistic logic, except that
instead of negating substructures under contraposition, the polarity restriction on
arulep is inverted, thus:

SR} ST}

sm Tswr

Pl

The question arises, whether a more complex notion of polarity might be re-
quired to cope with the coexistence of additive and multiplicative implications,
or whether the simple ‘sidedness’ definition willfBae. Is there any any kind of
collision of polarities when the two implications are mixed? Should the polarity

of S{ }in ((S{ }; R), T) simply be positive, or should it instead take some more
exotic value? We conjecture at this point that the simple definition is adequate,
and this conjecture will be borne out by the soundness and completeness results
later on.

3.3. BIIN THE CALCULUS OF STRUCTURES, |l

We are now in a position to make an initial proposal of a system of ruIeBIﬂ)r
The system of rules directly mirrors the fact that the prooIdbrm a bicartesian
DCC (see E1]4). First, the multiplicatidmwnfragment:

S*H1} S*((R T),(U,V)) i S*(R T),(U,V))
1) sem| — ——  sim|] ————
S*RR) SH(RU),(T,V)) SY(T,U).(RV))

The additivedownfragment:

st m SR T (U; V) SR THKU V) o STRTHKU;VY)
ial sca), —M sda) —— siaf —
S*R R SH(R V), (T; V) SH[R UL [T; VD STUT; U) (R V)
S (R R S*[RR] S™{T} SH{1}
cll crl wli] wrl
SR} S*R} SR} S*R}

’Naming of rules follows this schemes= interaction; (first lettery = contractionw = weak-
ening;s = “switch”; (second lettery = conjunction;d = disjunction;i = implication;| = left; r =
right; (last letter)m = multiplicative;a = additive.
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The multiplicativeup fragment, consisting of corules of the multiplicatidewn
fragment:

SRR SR V), (T, V)) . STTLUNLR V)
scm? sim?
ST} ST(RT), (U, V)) ST(RT).(U.V))

imT

Finally, the additiveup fragment:

. SRR SR V) (T; V) SR ULIT; VD ST UNRV))
iaT scal sdaT sial

ST} ST(RT)(U;VY) SR T (U; V) SR TY;(U;Vy)
S*R} S™(R} S*R} SR}
clt crt wi wrl
S*(RR) ST[RR] SHT} S™{1}

This is very similar to the formulation of intuitionistic logic in Tiu [2005], except
that there are separate, structurally similar rules for the additive and multiplicative
fragments, and that the structural rules are only available in the additive fragment.
The arrangement is similar ibBl. We have also stated two pairs of interaction
rules. Observe thacm| andsim| have the same premise, assta|, sda| and

sia]. Likewise their duals.

Note particularly that we follow Tiu [2005] in the handling of the contraction
rules, to pave the way for atomic contraction rules in a local system. Contraction
rules are given in not only a left-, but a right-handed version. The right-handed
version corresponds to contraction on the succedent in a multisuccedent sequent
calculus for intuitionistic logic, which overturns the restriction on the succedent
that characterises traditional sequent calculi for intuitionistic IH@EcaII thatin
Dragalin’s system, contraction is admissible, but that the intuitionistic restriction
is embodied in the handling of implication. If you try to provep Vv (p — 1),

—r Will force pin the right context to be discarded, so no axiom can be reached.
What a proof would need is to kegpaside until it has dealt witlp — L, then
‘reintroduce’p to the premise op — L. With deep inference, this is analogous to
permittinginteractionbetween the results of transformations in distinct contexts.
The corresponding restriction in this case is the absence of any rule operating on
an (outermost) disjunctive conte®{—; —]. Manipulations of disjunctive struc-
tures are always confined to an implicative cont8{t-; —]; [—; —]), preventing
leakage, analogously to Dragalin’s system.

8Refer to the remarks on pfl 2f. on intuitionistic logic and restricted succedents, and Dragalin’s
multisuccedent system for intuitionistic logic.
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_ S} S*((RT),U) ) S*(R(T,U))
imJ sem| ————  sim| ———
S*RR) SR, (T,U)) STR T),U)
s ST(R T (U; V) ST(R T (U V) . STRTU;VY)
i sca), —M sda) —MMM siaf ——mM8M8M
S*(RR) SH(RU); (T; V) SY[RULIT; VD ST(T;U) (R V))
S (R R S*IRR] S{T) St}
cl) cr) wl| wrl
SR} S*(R) S(R) SHR)
) S (RR) SR (T,U)) , ST(RT),U)
imT scemf —M— simf —
ST} ST(RT),U) ST(R(T,U))
- SRR SRV (T; V) SR ULIT; VD ST UNRVY
ia sca] —M8M8M8M88™— sda] —M8M8M8M8M8 ™ siaf] —mM8M8M8M8M8M8M8 ™
ST} SR T (U; V) SR T (U V) SR T (U; V)
SHR) SR} SR} SR}
clt crt wit wrt
S*(RR) S [RR] ST} S{1}

Figure 3.4: The systel®BISg

We may, in fact, propose simpler rules for the multiplicative fragment, simi-
lar to Bruinnler’s [2004] proposal for minimal intuitionistic logic, because we are
not constrained by the complications with contraction. We designate the system
having these simpler multiplicative rul&BISg, and we present it as a whole in
Figure[34. The multiplicative fragment, however, no longer has a direct morpho-
logical similarity to the ‘logical’ part of the additive fragment.

Definition 18 We make the following classification of the rulessBISg:

interaction rules im| ia| im? ial
structural rules cl| cr] wl| wr| cIT crT wiT wrl
switch rules scm| sim| sca] sda] sia] scm? simT scal sdaf sial

Switch rules could also be calléabical rules. 0

3.4. SHUNDNESS AND COMPLETENESS

We now present soundness and completeness results for the s§Btem for
propositionalBl (with L) in the calculus of structures. The soundness result is
with respect to the elementary Kripke resource semantics. Almost the same ar-
gument shows soundness with respect to the new Kripke resource semantics for
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BI, featuring the greatest state This argument diers only the case fowr], as
noted below. A slightly more complicated variation on the argument can be used
to show soundness with respect to the partially-defined monoid (PDM) seman-
tics for BI; the fairly straightforward complications surrounding the definedness
of e-expressions in the forcing clauses foand . We can regard soundness
with respect to the elementary Kripke resource semantics as the stronger result.
The completeness result is f8BISg (with L) with respect to the PDM seman-
tics for BIH Note that the reasoning in our proofs is classical, not intuitionistic,
although we a dealing with a logic of an intuitionistic character. For reference, the
rules ofSBISg are laid out all together in Figufe_B.4, and also earlier on the syn-
tactic equality of structures in Figufe'B.1, and the translations between formulae
and structures in Figuile—3.2. A structuReis semantically validff IF R . We
simply writelF R. Pym [2002, 86.3] proves soundness and completeness of the
propositional sequent systdrBI by equivalence (for provability) with the natural
deduction systemiBI; the soundness and completenessBF are proven seman-
tically. Tiu [2005] similarly proves soundness and completeness of the system
SJSg of intuitionistic logic in the calculus of structures by proving the equiva-
lence (for provability) ofSJSg with the sequent systein). We would expect to

be able to prove soundness and completeneSBt8g with respect td_Bl in a
similar way, but we have decided to carry out the proof with respect to a variant
of Kripke resource semantics for the insight it provides into the proof theory and
semantics oBl.

3.4.1. Proof-theoretical preliminaries

Definition 19 If T' = {Ry,...,R,} is a finite set of structures with two or more
elements, then we writ@\ I to denote the structurer(;...;R,), which is the
additive conjuction of the elementsibf If I = {R}, then A\ I" denotes the structure
R If I' = @, then A T denotes the structure. I' must be of finite size, since a
structure must be of finite size. O

9SBISg without L is complete with respect to the elementary Kripke resource semantics, but
SBISg (with L) is incomplete with respect to the elementary Kripke resource semantics.
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Definition 20 Each rule of inference 08BISg has a dual rule ir8BISg. The
dual of a rule exchanges the position of premise and conclusion, and inverts the
polarity restriction on rule application. Each rylg has a duabt, and eachpT a
dualpl, wherep is the string of letters in each rule label. 0

Definition 21 A derivationof T from Ris a finite chain of inferences, downwards,
R

from Rto T. We write | to denote such a derivation. We wrla-x T to indicate
T

that there exists a derivation @f from R in a systemX. In particular, we write
R rseisg T to indicate that there exists a derivationoffrom R in the system
SBISg. We generally omit the subscript and wrRe- T unless some ambiguity
would arise. o

Definition 22 A proofof Rin aBIl-systemX is a derivation inX of R from either
| or T. We writerx Rto indicate that there exists a proof of the structlia X. R
is atheoremof X iff rx R. Accordingly,Ris a theorem oBBISg iff there exists a
proof of Rin SBISg. We writerggsq Rto indicate that the structufeis provable
in SBISg, that is, thatR is a theorem oSBISg. We generally write- R unless
some ambiguity would arise. .

Theorem 1 R is a theorem o8BISg iff there is a derivation of R from 1. 0

Proor Since there is a derivation

1,7

of T from I, it is suficient that there be a derivation Bffrom | for R to be a
theorem, since any derivation Bffrom T may be extended upwards to produce
a derivation ofR from |. If Ris derivable fromT, then it is derivable fron, but
not vice versa. ]

Remark 1 Note the use of the weakening rui&|; this move is not available if
we try to derivel from T, and there is indeed no derivationlofrom T. =
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Definition 23 A structureR is deduciblefrom a set of structurels in a Bl-system
X if there exists a finite subsé&t of I' such that\ I +x R. We generally write
I' +x R, to indicate thaRR is deducible fromI" in X, even though" is a set of
structures rather than an individual structure. We Wiritesgisy R to to indicate
thatR is deducible fronT" in SBISg, and we writel' + R when it is clear which
system we are referring to. It is trivial theR} +sgisg T iIff RFspisg T o

Recall the isomorphisms of hom-sets
[I,A=«B] =[AB]=[T,A— B]

that occurs in closed categories in the categorical “semantics” of prods in
These isomorphisms are reflectedSiBISg, as illustrated by the following result.

Lemmad4 -(RT) if R:T iff r(RT). o
R | T
Proor Given a derivation we can construct derivationsy and ; as follows:
T (RT) RT)
. T
imj, —— ial
(RR) (RR)
R U R
Paste | Paste |
(RT) T (RT) T

R
If | is cut-free, that is, uses only the down-fragment, then so are these derivations.
T
|
Of course, each of these derivations is a proof. Given a derivatipn or a

(RT)
derivation H , We can construct a derivatin\{n in each case using a cut rule:
(RT) T
= L = L
(R1) (T:R);T)
U ! U T
- Paste | Paste |
_ (R(RT) ®T . (TR(RT)) ®T)
simj — sial
. ((RR),T) . (RR(T;TH)
imf ———— EX)
(I, T) _ (T(T5TH

T T
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S} S*((RT),U) i S*(R(T,U))
1) sem| ———  sim|] ———
S*RR) SR, (T,U)) S*(RT),U)

. sHm al ST(R T (U; V) g ST(R T (U V) . STRTU;VY)
i sca) ——M8M8M8 s - @ S —
S*(RR) SH(RU); (T; V) SY[RULIT; VD ST(T;U) (R V))
S (R R S*IRR] ST} St}
cl) cr) wl| wrl
SR} S*R} SR} S*{R}

Figure 3.5: The systerBISg, which is the ‘cut-free’ down-fragment &BISg

S(RR) SR (T,U)) ) ST(RT),U)
semf ——  simf ——

imT
ST} ST((RT),U) ST(R(T,U))
. SRR SHRU)(T; V) SR ULIT; VD O STUT UL R VY
ial sca]| —M8M™ sdaf] —M8M siaf ——mM8M8M8M8
ST} ST(RTY(U; Vy) SR T (U Vy) ST(R T (U; V)
S*(R) S™{R} S*{R} S{R}
clt crt wiT wrt
S*(RR) SRR SHT} S7{1}

Figure 3.6: The systermBISg, which is the up-fragment &BISg

It is crucial to note, for later consideration, that theneralresult depends on the
application of cut rules, so we cannot rely upon it when we come to consider the
‘cut-free’ down-fragmenBIS of SBISg on its own, in relation to the question

of cut-elimination forSBISg. This illustrates the fact that a cut-elimination the-
orem guarantees a cut-free proof for every theorem, but not a cut-free derivation
of ¢ from ¢ whenevew + . Generally speaking, we need to use an up-rule in a
derivation to make a substructure disappear in the course of a deri@ition.

Lemma5 If R "BISgT then "BISg<Re T> and FBisg <R, T> O

10see Figurg3l5. See also Figlirel3.6 for the systBiSg, which is the up-fragment &BISg,
and a ‘mirror-image’ ofBISg, in that each rule inverts the direction of inference, and flips the
polarity restriction, of its counterpart BISg.

"There is a similar point to be make with sequent calculi.LBi, we have certain proof-
theoretical ‘equivalences’ between sequents, not themselves representing theorems, for instance,
o, = y iff  x ¢ = y. But to establish such a fact, we need to produce derivations in each
direction, and we need to use an application of cut in this instance, in the right-to-left case. Here
is the example, and two others, set ouLBi. These are all cases in which thiéeet of a (single-
premise) right-side rule is inverted, in a way reminiscent of the invertibility of rules of inference
in systems of natural deduction [see, for the classic treatment, Prawitz 1965], and we cannot carry
out these inversions in the cut-free system.
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Proor Refer to the proof of Lemnid 4 above. -

A derivation or proof occurs in the top-level context, which has positive polarity.

When we attempt to write down a proof, a known derivation may be pasted into
R

a positive context. For example, suppose that we already have a deriyation

T
, and we reach a structure in the attempted proof Withs a substructure in a

R
positive context. Then we can copy the chain of inferenceg ab obtain a
T
structure in whichl replacesRin that positive context. Any chain of inferences in

a positive context can be ‘pasted’ into another positive context in the construction
of some other proof. Each up-rule is the exact inversion of the corresponding
down-rule, with the polarity restriction inverted. This is a manifestation of the

up-down symmetry that is characteristic of systems in the calculus of structures.

Definition 24 A subderivationof a proof is a chain of one or more applications
of rules of inference in the same context. A subderivation in a positive context is
called apositive subderivatiorand a subderivation in a negative context is called
anegative subderivatiorOf course rule applications at greater depth than the top
level of a given context may vary in polarity according to the usual polarity rules.
Every derivation is a positive subderivation, and every positive subderivation can
be plucked out of its context to produce a derivation. O

id id
b= ¢ v=u | :
e bro=x nverts 4y = N
oY =x oxyY =y
id id
[=g+y ¢:'¢¢¢wj;¢ “U invertstherue 2= Lo
. cut I'= ¢y
6=y
TR inverts :
Fa=>T T=¢ Ta= ¢
cut TL

Ta= ¢ T=¢
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Proposition 2 Given positive subderivation of T from R (or simply a derivation)
we can construct aegative derivationf R from T by inverting the entire deriva-
tion, simultaneously relabelling eachrule application with its| counterpart,

and each| rule application with itst counterpart. A negative derivation is sound

in a negative context: it can be pasted into a negative context in the construction
of a proof. o

Remark 2 Generally speaking, a positive or negative derivation can be pasted
into a context of matching polarity, or its inverse derivation pasted into a context
of inverse polarity. Of course, proofs are a special case of derivations. Subderiva-
tions may be regarded as reusable modules for proof construction. A positive
subderivation may be ‘plugged-in’ to a positive context containing the top-most
structure of the subderivation to obtain a structure where the bottom-most struc-
ture of the subderivation fills that context. Likewise for a negative subderivation
and a negative context. -

The following theorem is a generalisation of Tiu’s [2005] Proposition 2.

R
Lemma 6 (Dual derivations) Given a positive subderivation, we can con-
T

T
struct a dual, negative subderivation . Similarly, given a negative subderiva-
R

T R
tion - , we can construct a dual, positive subderivatian o
R T

Proor Construct the dual subderivation, in each case, by inverting the subderiva-
tion, and simultaneously relabelling each rule application with the label of its dual.
The newly constructed subderivation can be shown to be a correct subderivation
in a context of opposite polarity by induction on the length of the derivation and
the definitions of the rules @BISg in Figure[3.4. =

Remark 3 Of course a dual subderivation can never replace the original sub-
derivation in its original context. It may, however, be used as a module in the
construction of new proofs, in the sense of Proposlion 2. o

The following ‘cut-and-paste’ lemma justifies the modular construction of new
derivations from known ones.
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Lemma 7 (Cut-and-paste lemma) If there exists a derivatioﬁ”{R} (in which
the context ${ } is a positive context) then for any positive cc?n{tTéXt X there
exists a derivatior)1( {HR}, and for any negative context X} there exists a derivation
X{T) o SRl
I . If there exists a derivation | then for any positive context*X}, there
X{R} ST}

X{T}
exists a derivation| , and for any negative context X} there exists a derivation
X{R}
X{R}
I |
X(T}

Proor First, we can reduce the number of cases by invoking Leidma 6. Then
proof is by induction on the length of the derivation. n

3.4.2. Soundness

To show thaSBISg is sound, we might at first expect that we would need to show
that each theorem @&BISg is valid in the elementary Kripke resource semantics.
We have a peculiar fficulty, however.| is a theorem oSBISg (as well as of
LBI and other proof systems f&id) but| is not valid in every model, sinaeneed
not be the least state in every model. But a strucRii®a theorem o5BISg iff
there exists a derivation & from | or from T, and since there is a derivation of
T from |, a structureR is a theorem o8BISg iff there exists a derivation &
from I. There is a sense in which we are taking for granted — or rather taking on
trust from the proof theory — that theorems are those structures that are derivable
from |. Bl forces us to forego the standard idea tiv@oremhood- validity in all
models Some theorems, like are not valid in all models.

Before proceeding further with our preamble, we will give a definition of se-
mantic entailment.

Definition 25 (Semantic entailment) We say thaR = T iff in every modeDlt,
foranym e M, eitherdt, mi¥ Ror M, mik T. That is,RE T iff for any model,
if Ris forced at any state in that model, thEis forced at that state. O
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Remark 4 If follows from R = T that if Ris valid in a model, thef is valid in
that model, and that iR is valid, thenT is valid. Similarly, if Ris e-valid in a
model, thernT is e-valid in that model, and that R is e-valid, thenT is e-valid. o

Consider a comparison withBl. ¢ is a theorem oLBI iff there is a proof of
either the sequet, = ¢ or the sequen®,, = ¢. Since there is a derivation of

m = ¢ from g, = ¢, itis suficient thato,, = ¢. Usually, the case in which
every theorem is semantically valid is the special case in which the antecedent
I' — to take the example of intuitionistic logic — is the empty multiset, which is
conventionally equivalent to, sinceT is forced everywhere. FdiBlI, there are

two such special cases, whdtés either one of the unit bunches, ando,,,. The
cases wherg, + ¢ buta, ¥ ¢ are precisely those cases wherie a theorem, but

is not semantically validg is e-valid, howeveLti Consequently, to get around this
difficulty, Pym’s soundness result be is couched in terms of whole sequents
and semantic entailment, rather than in terms of individual formulae or theorems,
and validity. Hence soundnesslddl means that if the sequelt= ¢ is provable,
thenl’ E ¢. If we lety be the formula obtained from the bunErby replacing

each “” with “«” and each “;” with “A”, thenT F ¢ means that in any model,

¢ is forced at any state at whichis forced. This form of soundness is a fine-
grained result about relative forcing, not about absolute validity, or even relative
validity, and it is a strong type of soundness result. The relative form of soundness

121t has been suggested that fielient notion of theoremhood be considered: #a¢ a theorem
iff T+ ¢. Inthis case, we ought to be able to discard the notioslidity. It is suggested that
accordingly the rulém| would need to be changed, and that only a derivation frobe counted
as a proof. The rulemT would have to change as well.

. SHT} ) S(RR)
imj ———  imf —

SRR ST
It is suggested that in this cadewould no longer be a theorem. But due to the syntactic equality
{I,R) = R, it still would be:
T

(L1

I

But T ¥ I, so the modified rules would make the proof system unsound. We would in any case
resist the idea for the sake of uniformity with the literatureBin

BActually, his soundness result fofBI [Pym 2002, §4.2]. The result fdrBI follows from
equivalence wittNBI [Pym 2002, §6.3].

im

Pt
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is stronger inasmuch as it says that for any antecedent tfatied at some state

of any model (but not necessarily at all states) the consequent is forced at that
state. We can obtain some weaker soundness results as corollaries. For instance,
that every theorem d8l is e-valid. Soundness results come in several grades of
strength, then. The weakest states that a theorem is valid, &i fervalid; in
between we might have a result thaRif T, then wherR is valid (ore-valid) in

an arbitrary modelT is valid (or e-valid) in that model; the strongest is a result

at the level of forcing. We will prove a soundness result of the strong form: every
inference ofSBISg preserves forcing at an arbitrary state of an arbitrary model.

(In fact, the special case thatifR thenl £ R, which treats just the theorems of

BI, would sufice as a soundness result of ‘middle’ strength.) That Rjsfforced
R
at an arbitrary staten in an arbitrary moded)t, and there exists a derivatign,
T
thenT is forced atmin 9t.

We also have to deal with the complication that inference may be deep infer-
ence, that is inference operating not at the top level of a structure, but operating
directly on a substructure. Moreover, deep inference may occur in polarised con-
texts.

Lemma 8 The rules for syntactic equality of structures preserve the polarity of

substructures. n
Proor By induction on the depth of structures. n
Remark 5 Depth is not conserved under syntactic equivalence. O

Definition 26 A top-level derivatioris a derivation of one entire structure from
another. A top-level derivation is a positive derivation. O

Definition 27 We say that a rule of inference v&lid if it preserves (semantic)
validity. That is, if the rule is applied with any (semantically) valid premise, the
conclusion will also be (semantically) valid. O

Definition 28 A subcontexS’{ } of S{ } is said to be aimmediate subconterf
S{ } if S’{ } occurs at a structural depth of one$ }, and (of course) the hole
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{ } in each ofS{ } andS’{ } is the same hole. For examp&/{ } is an immediate
subcontext ofS{ } if S{} = (R S{}), butnotifS{} = (R (T;S{ })) or if
S'{}=3{} o

We now state and prove a lemma which says essentially that any inference that
is valid at the top level of a structure is valid for deep inference in a context of
appropriate polarity.

Lemma 9 (Semantic depth) If R £ T then for any positive context{$ we
have SR} E S{T}, and for any negative contex{ $we have $T} F S{R}. o

Proor We proceed by a structural induction on depth. In this pf&ofis always

a top-level context, and hence always ocadara positive contextS’{ } is always

an immediate subcontext &{ }. Note that syntactic equivalence of structures
preserves the polarity of a subcontext, although the structural depth of a context
may vary under syntactic equivalence. An even number of negative inductive steps
preserves the polarity of the base case, and an odd number of negative inductive
steps inverts polarity. Positive steps preserve polarity. So an odd number of steps
from the positive base case yields a negative context, and an even number of steps
a positive context. An odd number of steps from the negative base case yields a
positive context, and an even number of steps a negative context. We have two
base cases, a positive and a negative one:

1. Inthe positive base cas®{ } = { }, and is a positive context. It isimmediate
that S{R} F S{T}. Note that the positions d® andT are preserved by this
case.

2. In the negative base case, eitB¢r} = ({ };U)orS{} = {({ },U), and is a
negative context.

(@) Inthe case th&{} = ({ }; U), we haveS{T} = (T; U). Suppose that
M, m - (T;U). Then for anyn such thaim C n, eitherdt, ml¥ T or
M, m I U, by the forcing clause for>. At any suchn, 9t,n ¥ R,
sinceRE T, soM, mi- (R;U), and henc&{T} E S{R}.

(b) In the case thaB{ } = ({ },U), we haveS{T} = (T,U). Suppose
that9t, m |- (T,U). Then for anyn such thatt,n I T, we have
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M, men |- U, by the forcing clause fo#. Now suppose thant, n’ I+
R for some arbitraryt’. Thent, n’ I T, becausé&k = T, and hence
M, men’ I-U. Thendt, mi- (R, U), and henc&{T} £ S{R}.

Note that the positions ®® andT are switched by this case.

For the inductive step, we consider two groups of cases: those in &i¢hs

a positive context; and those in whi@{ } is a negative context. In each group
we examine cases in whi@i{ } (containing the same holg}) is an immediate
subcontext o5{ }. In each inductive case we tak&R} = S’{T} as the inductive
hypothesis. We have seven cases for the inductive step.

1. First, we have five positive cases, each obtair8fig} F S{T} from the
hypothesisS’{R} F S’{T}, whereS’{ } occurs at a structural depth of one in
S{ }, andS{ } is a positive context. Note that the positionsRodndT are
preserved by each of these steps.

@ S{} = U;S{})) = (S }1;U). Suppose that(; S'{R}) is forced
at statemin a model9, that is,t, m I+ (U; S’{R}). Then?i,m IF
U and 2, m I S'{R} by the forcing clause fon. SinceS’{R} F
ST}, M, m |- S{T}, and henceNt,m I (U; S’{T}). So we have
(U; S{R}) F (U; S’{T}), that is,S{R} F S{T}.

(b) S{} =[U;S{}] = [S{};U]. Suppose thaty; S'{R}] is forced
at statem in a model9, that is, 2, m I+ [U; S’{R}]. Then either
M,m I U or M m - S{R} by the forcing clause for. In the
case thatht,m I S’{R}, we havedt,m I S'{T}, sinceS'{R} E
ST} SodM, m Ik ST}, and hencent,m I+ (U; S’{T}). So we
have U; S'{R}) E (U; S/{T}), that is,S{R} E S{T}.

(c) S{} =<(U;S{}). Suppose thatU; S'{R}) is forced at statenin a
modeln, that is,99t, m I (U; S’{R}). Then for alln such thamC n,
eitherdt, n ¥ U or M, nIF S’{R} by the forcing clause for. In cases
wheredt, n I S/{R}, we havedlt,n I S/{T}, sinceS’'{R} £ S/{T}.
Hencedt, m Ik (U; S’{T}), so we haveU; S'{R}) F (U; S/{T}), that
is, S{R} F S{T}.
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d) S{}=(,S{}) = (S{},U). Suppose that{, S'{R}) is forced at
statem in a modeln, that is, M, m IF (U, S’{R}). Then there exist
n,n" such thanen = m, andM, n I U andM, n’ IF S’{R} by the
forcing clause for. Thent, ' IF S/{T} sinceS’{R} F S’{T}, and
henceft, mI- (U, S'{T}), so we haveld, S'{R}) F (U, S’{T}), that is,
S{R} F S{T}.

(e) S{} =(,S{}). Suppose thatU, S’{R}) is forced at staten in a
modeldN, that is, T, mI- (U, S’{R}). Then for alln such thatt, n I+
U, we havedlt,me n I S'{R}, by the forcing clause for. Since
S{R} E S'{T}, we havedt, men I S'{T} whenevef)t, men |- S’'{R},
and hencéit, mi- (U, S’{T}), so we havéU, S’{R}) F (U, S’{T}), that
is, S{R} E S{T}.

Then we have two negative cases, each obtaiifig F S{R} from the
hypothesisS’{R} E S'{T}, whereS’{ } occurs at a structural depth of one in
S{ }, andS{ } is a negative context. Note that the position®RkandT are
switched by each of these steps.

M S{} =({});U). Suppose thatS’{T}; U) is forced at statenin a
model, that is, 2, mI- (S’{T}; U). Then for anyn such thamC n,
either9t, m ¥ S’{T} or M, m I+ U, by the forcing clause for>. At
any suchn, 9t,n ¥ R, sinceS’{R} F S'{T}, soM, m I (S'{R}; U),
and henc&{T} E S{R}.

(9) S{} = (S’{ },U). Suppose thatS’'{T},U) is forced at staten in
a modeld, that is, M, m I+ (S’{T},U). Then for anyn such that
M, n I ST}, we havedt,me n |- U, by the forcing clause for
-x. Now suppose tha®)t,n” I S’{R} for some arbitrary’. Then
M, IF S’{T}, by the inductive hypothesis, and he®emen’ I U.
SoM, mi- (S’{R},U), and henc&{T} E S{R}. n

This proof attests to the non-interference of the two implicative connectives when
they are nested — at least from the point-of-view of soundness. The result is evi-
dence for the correctness of our two-valued scheme for the polarities of contexts.
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Theorem 2 (Soundness) If R+ T then RE T. That is, the rules of inference
and rules of syntactic equivalence ®BISg preserve forcing at any state in any
model in elementary Kripke resource semantics. O

Proor A rule application occurs either in a positive or a negative context. Positive
rules may be applied in positive contexts and negative rules in negative contexts.
To show soundness, we show that each positive rule of inference preserves valid-
ity in a model when applied in a top-level context, and each negative rule when
applied in a shallow negative context, that is, a context with a structural depth of
one.

1. Positive rules.

(@) im{ Suppose thadt, mI- |. Then by the forcing clause foye = m.
Suppose further that for some arbitrargndR, 9t, n [ R. Then since
n=een, we haveR 91, ee ni- R Hencedt, el (R, R) for arbitrary
R, by the forcing clause for«. Then by generalised monotonicity
(Lemmall) we havélt,m I (R, R) for all msuch thate C m. Hence
| F (R R).

(b) scm|  Suppose that, mI- ((R T),U). Then by the forcing clause
for =, there exisin,n’ such thamen C m, and?t,n I (R T) and
M, n’ IF U, and then by the forcing clause fer, for all N7 such that
M, m IR, we havedt, nent I T. Then for allm’ such thatit, nY I+
R, by bifunctoriality there exishe nY, 0’ such thahen em’ = me v
and9t,nent IF T and9t, n' IF U, that isDt, me nt IF (T, U). Hence

M, mi- (R, (T, U)), and so (R T), U) £ (R, (T, U)).

(c) sim| Suppose tha®t,mI- (R, (T,U)). Then by the forcing clause
for , there exish, n’ such thane n” C mandMi, nIF RandMi, ' I+
(T,U), and then by the forcing clause fet, for all m such that
MM I-T,90, n"em I U. Now suppose thabt, m’ IF (R, T) for ar-
bitrarym”. Then for alln” such that)t, n” I Rwe have)t, m” en” I+
T, by the forcing clause fos. Then we havélt,n e M’ e n” I+ U,
and hence for alb”, 9, n" e n”’ I ((R, T), U), by the forcing clause
for =, and thust,ne n’ IF ((R, T),U), by instantiatingy” with n.
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(d)

(€)

(f)

(9)

(h)

By generalised monotonicity (Lemrhh D), m I+ ((R, T),U), and so
(R(T,U)) F (R T),U).

ial Suppose thalt, mI- T. Then we have to consider ati, by the
forcing clause forr. For alln, and so alh such that for anyn, mC n,
and arbitranR, either?t, n ¥ Ror 9, n Ik R, and so by the forcing
clause for—», T E(R R).

scal Suppose tha®i, m IF ((R; T);(U;V)). Then by the forcing
clauses fo~ andA, we have for alh such thamC n, eitherd)t,n ¥ R
orM,nlk T, and eithe®dt,n ¥ U or M, n - V. So eithedt,n ¥ R
andMt,n ¥ U, orM,nl¥ RandMt,n ik V, or<Mt, nlE T and, n ¥
U,or2,nlETandM, n - V. So either notMi, n IF RandMt, n I+
U} (first three cases) abt,n I T andt, n I+ V (last case). Then by
the forcing clauses for» andA, we havedt, mI- ((R; U); (T; V)) and
hence (R T); (U;V)) E (R U); (T; V)).

sda| Suppose tha®t,m I+ ((R; T);(U;V)). Then by the forcing
clauses fo~ andA, we have for alh such thatm C n, eitherd)t,n ¥ R
orM,nlk T, and eithe®dt,n ¥ U or M, n - V. So eithedt,n ¥ R
andMt,n ¥ U, orM,nl¥ RandMt,nik V, orMt, n ik T and, n ¥
U,ordt,nlE T andd, nl- V. So either nott, nIF Ror <M, n I- U}
(the first case) oft, n I- T or M, n Ik V} (remaining cases). Then by
the forcing clauses for» andv, we havedt, mI- ([R; U];[T; V]) and
hence (R, T);(U; V) F([R U] [T; VD).

sia| Suppose tha®t,m IF ((R;T);(U;V)). Then by the forcing
clauses fo~ andA, we have for alh such thamC n, eitherd)t, n ¥ R

or M,n Ik T, and eitheDt,n ¥ U or M, n |- V. So eithe®lt, n ¥
Randdt,n ¥ U, or M,n ¥ RandM,n I V, orM,n I T and
M, Nk U,orM,nlE T anddt, nik V. So either noteitherdt, n ¥ T

or M,n Ik U} (iLe. M,nIF T andMt,n ¥ U, the third case) or
{eitherdt, n ¥ Ror M, nIF V} (remaining cases). Then by the forcing
clause for— (twice), we havedt,m |- ((R;U);(T;V)) and hence
(RTYU; V) E(RUY(T; V).

clT Suppose thaft, m I R. Then by the forcing clause fox,
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M, miF Rand?, mI- R, so we haviR = (R} R)

(i) wl T Suppose thatit,m I R By the forcing clause forr,
M, mi- T, sowe havdRE T.

() crl Suppose thadt, m - [R; R]. Then by the forcing clause for,
eitherdt, mi- Ror M, mik R, thatis, mIF R, so R Rl F R.

(k) wrl By the forcing clause for, 9t, m¥ L for anym. Then for any
m, eitherdt, ml¥ L or M, mI- Rfor an arbitraryR, so by Definition
23, we havel = R

2. Negative rules. For each negative rule ? we have to show that it
preserves forcing at an arbitrary state in and arbitrary model, just in the two
shallowest negative contexts }; Uy and({ },U). For each rule, we have
already established the semantic entailnientR in the case of its positive
dual rule, so we can treat the two shallow contexts generically.

(a) Suppose thadt, m IF (R; U). Then for alln such thatm C n, either
Mm,n ¥ RorM,n Ik U. EitherPt,n ¥ T or M,n I U. Hence
M, mlE(T;U), and soR; U) = (T; U).

(b) Suppose that, mIF (R, U). Then for alln such that),n I R, we
havedt, men |- U. Since we have already showir= Rin the positive
case for each rule, for atisuch thadit,n |- T, we have))t, men |- U.
HenceMt, mi- (T,U), and soR, U) E (T, U).

Then, by the semantic depth lemma (Lenitha 9), we have that each rule of infer-
ence preserves forcing at any state in any model, when applied in a context of
appropriate polarity, at arbitrary depth.

We omit the treatment of the rules of syntactic equivalence, which is straightfor-
ward and similar to that above. Note that each rule of syntactic equivalence needs
to be treated bidirectionally, and in both positive and negative contexts. g

For the new Kripke resource semantics, this case runs as follows. SuppoSg, mat L.
Then by the forcing clause far, m = . SincedN, = I+ Rfor arbitraryR, by LemmdP®, we have
1ER
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Corollary 1 1f U + L then for any m9i, mi# U. 0

Proor Suppose that) + L. Then by soundness (Theor&én2)I- L, that is, at
every statan in 9t at whichU is forced, L is forced. But by the forcing clause
for L, L is never forced, and hen®&, ml¥ U for all m. -

3.4.3. Digression: classical consistency

We present two standard and equivalent classical definitions of consistency, which
we call L-consistency and-consistency. We use the setting®BISg. This is
principally for the purpose of illustration. Classical definitions of consistency are
not adequate for the kind of model existence result we would requi foir for
intuitionistic logic, if we followed directly the standard strategy for modal logic.
Lemmad 0, 11,12 aridl13 do hold BISg, however.

Definition 29 A set of structure§ is L-inconsistenif L is deducible fronT", oth-
erwise it is_L-consistent A structureR is L-inconsistent iff R} is _L-inconsistent,
otherwiseR is L-consistent. o

Lemma 10 If T'is_L-inconsistent, then any, suchthal” C A, is L-inconsistent,

Proor Sincel is L-inconsistent, there is sonié such thaf” C T, and+ (I"; L).
Sincel” C A, Ais L-inconsistent. =

Lemma 11 If T is _L-consistent, then anly such thal” C I' is L-consistent. -

Proor We argue by contraposition. Suppose thatvere L-inconsistent. Then
F (I”; L) for someI” such thatl” € I". ButI” C I, soI’ would be L-
inconsistent. [

Lemma 12 If T is L-consistent, and R is deducible from soimeuch thafl” C
I', thenl’ U {R} is L-consistent. o

Proor We argue by contraposition. Suppose that {R} is L-inconsistent, then
eitherT" is L-inconsistent, or there is somé such thal” C I"andr {I"”; (R; 1L)).
Sincel” + R, we have a derivation df”; L) from {I"™; (R; L)):
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I (R L))
W -
_ T (R L))
(T (R L)); T)

T
Paste ||

(R LK R)  wiw
(5 (R, L)); (T R))
(;1); (R L); R)

_ (LR LXR)
o (TR (R L))
" (CRRY; (T L))

_ DT L

(', 1)

Sor (I'; 1), and hencé' is L-inconsistent. -

(cut)

Remark 6 The following classical lemma does not hold 8BISg:
If ¥ Rthen(R; L) is L-consistent

Essentially, this is due to the inadmissibility of a rule of double-negation elimina-
tion. 0

Definition 30 A set of structure§ is 3-consistentf there exists some structukre
which is not deducible fromlr, otherwise it is3-inconsistent o

Lemma 13 A set of structureF is 3-consistentffit is L-consistent. O

Proor Left to right, then right to left:

1. If I''is 3-consistent, then there is sorResuch that* (I'; R). Suppose thdt
is L-inconsistent. Then (I'; L), and consequently (I'; R) for arbitraryR,
using rulewr|, which is a contradiction. Hendeis _L-consistent.

2. If T'is L-consistent, thei (I, L). Suppose thaf is 3-inconsistent, then
F (I, R) for anyR, and hence (I', L), which is a contradiction. Hendeis
3-consistent. n
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3.4.4. Completeness

We now prove completeness with respect to the PDM semanti@ farke LBI

with L, SBISg with L is incomplete with respect to the elementary Kripke se-
mantics. This incompleteness is the motivation behind the development of the
various semantic variations: initially with the topological semantics, and later on
relational and new Kripke semantics withand the PDM semantics. Essentially,
the dfificulty revolves around the fact that it is proof-theoretically possible for the
multiplicative conjunction of a pair of consistent formulae (or bunches, or struc-
tures) to be inconsistent. That is, it may be the caseRhatL andT ¥ L, but
that(R, T) + L. The usual example ip* (p-+L1) + L, or (@ (a, 1)) + L in the
language of structures, where we havé 1 and(a, L) ¥ J_

Proposition 3 In the elementary Kripke resource semantics, for any state m of
any modebit, and structure R,9t, m I+ (R, L); L) iff there exists re M such
that9t, n IF R. That is((R, L); L) is satisfied in a mode}fiR is satisfied in that
model. (This is noted as routine during the proof of Pym’s [2002] Proposition
4.8.) 0

Proor Consider the elementary forcing clauses $oand L. First, we observe
thatMt, m IF (R, L) iff there is nom e n, and hence na such thatht, n I+ R
Now suppose thabt, m - ((R, L); 1L). Then by the forcing clauses fes and L,
there is non € M such thamC nand?t, n - (R, 1L). ThendM, mK¥ (R, L), and
hence there is sonmesuch thabt, n IF R. Now take the right to left case. Suppose
that there is soma such thatit, n I R. Then for anym', 9t, v ¥ (R, L), and
hence for anyn, 9t, mI- ((R, L); L) by the forcing clauses for and L. =

Pym [2002, Proposition 4. gives an example of a semantic entailment in the
elementary Kripke resource semantics for which there is no corresponding proof
in LBI. This can be readily seen for cut-fré®l. Rewritten in the calculus of

150n this point, see Pym, O’Hearn & Yang [2004, §8§3.5, 5.2].

18|n the elementary semantics. In the PDM semantics, it meaas is never defined when
M, n I R, and in the new Kripke resource semantics, it meansrthah = x for anyn such that
M, n IF R Recall that in the new Kripke resource semantios; = for anymandm = r iff
M, mlk L, rather thamt, ml¥ L for all mas in the elementary and PDM semantics.

YAlso Pym, O’Hearn & Yang [2004, §3.5, Proposition 6]
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structures, for any structur@and T:

(R LY, L) (T, L); L) E KR T), Ly; L)

This works as follows. 180t,m IF (R, L1); L) then for somen, 9t,n IF R
Similarly we obtain?t,’ I+ T for somen’. Then in the elementary semantics,
nNen is definec@ and hence by the forcing clause fgrwe havedt,ne n’ I+
(R, T) Then by Propositiofl39t, m I (R, T), L); L). Indeed, this follows
for anym, and hence for then we started with. But, substituting atorasb for
arbitrary structure®, T:

(((a, L); L); (b, L); L)) ¥ (& b), L); L).

Loosely speaking, we can readily see that the switch rul&Bt$g offer no way

for atomsa andb to cross an additive boundary to become multiplicatively con-
joined in the course of a derivation. And we can readily see — at least for cut-free
BISg — that there is no way faa or b or (a, b) to ‘materialise’ in a multiplicative
context, since no structural rules are accessible in a multiplicative context. By
“not accessible”, we mean that for a structé&®@ an arbitrary context, the unit
rules of syntactic equivalence can introduceor L only in additive structures,

and eliminate them only from additive structures.

The strategy of our completeness proof is similar to that used for the standard
completeness proofs for propositioml without L with respect to the elemen-
tary Kripke semantics and, fo¢fBI with respect to the topological Kripke seman-
tics [Pym 2002, 84.2, 85.2] (also see Pym, O’Hearn & Yang [2004]), and for the
semantic tableau systenl with respect to the relational semantics [Galmiche,
Méry & Pym 2005, 85]. These are all essentially similar in strategy to the com-
pleteness proof for intuitionistic logic given by van Dalen [2004, 85.3], in the
reliance upon a countermodel construction and the use of prime theories. We an
indebted to all of these presentations. Our formulation and use of prime theories

18This step could not be made with the PDM semantics.

19Just for the moment, we skirt around the requirementithat’ € M, and assume that it is.
It is conceivable that e " ¢ M and that there is no such thaih e n” T m, but in the apparatus
of prime theories that follows, it will always be that case thatéfn’ | then there is somm e M
suchthanen’ C m.
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is considerably simpler than the use of prime bunches fouradhiar treatments
of BI. Proof with respect to the PDM semantics also permits certain simplifica-
tion, for instance, in the definition of theoperation in a canonical countermodel.
Moreover, the calculus of structures allows certain simplifications, since we do
not have to worry about the distinctions between formulae, bunches and sequents.

Our early attempts at the proof were in fact not inspired by these proofs, but
by the standard strategy for completeness proofs for modal logics with respect to
standard Kripke semantics for modal logics [Blackburn et al. 2001, chapter 4].
We are in fact indebted to Blackburn et al.’s [2001] presentation. The principal
difference between proofs for modal logic and Boior intuitionistic logic is that
since standard modal logics are essentially classical, a notion of consistency is
available. No appropriate notion of consistency is availableBioor for intu-
itionistic logic. Refer to our presentation in Sectlon-3.4.3 of a classical notion of
consistency fo6BISg that is not adequate for our purpose here.

For modal logic, it is straightforward to give a proof of the theorem that a proof
system is complete with respect to a semanttosvery consistent set of formulee
is satisfiable in the semantics. This is essentially due to the applicability of a
standard classical definition of a consistent set of formulae and the availability (or
admissibility) of a rule of double negation-elimination in proof systems for modal
logic — luxuries we have to do without. It is shown that any consistent set of
formulae may be extended to a maximally consistent set of formulae. A canonical
Kripke model is then constructed in which the states are maximally consistent sets
of formulee. It is shown that a formula is forced at a state in the mdtielis a
member of the maximally consistent set at that state. The proof of completeness
follows from this.

We did examine the possibility of adapting the notion afoasistency prop-
erty for intuitionistic logic, which is used in a completeness proof to compensate
for the lack of a natural notion of consistency in intuitionistic logic [Fitting 1973,
Fitting 1983, chapter 9, 87]. This notion is well-suited for a completeness proof
for a tableau system. The idea of a consistency property uses signed formulee,
which are a familiar feature of tableau systems Bbrand intuitionistic logic.
It also depends crucially on the decomposition of signed formulae into pairs of
signed formuleae, paired conjunctively or disjunctively. There seemed to be some
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natural connection between the signs of formulae and theipotdrcontexts in
SBISg — negative sign or polarity corresponds to the antecedent position in a con-
ditional. Polarity and signed formulae are both devices that compensate for the
lack of involutive negation. But nothing concretely useful arose in this connec-
tion. It is the ‘mingling’ of signed subformulee, and eventually signed atoms, of
formulae which does the work of a consistency property, b68It8g, rules of in-
ference preserve polarity, and there is no systematic decomposition of structures
to atomic structures.

In the standard completeness proof fBl, and the proof for intuitionistic
logic, the rdle of consistent sets — a set of formulee is consistentisfnot de-
ducible from it — is taken by sets of formulBefrom which a given formulap
is not deducible. Although this does not permit the construction of a canonical
model for every provable formula, it does permit the construction of especially
tailored canonical countermodels. It can then be shown thakilp thenI” # ¢,
which amounts to completeness. It igfstient, on the supposition th&¥ T, to
construct a single modéht (in any frame) such that for some statec M, we
havedt, mIF Randt, mi¥ T, and hence th& # T. These proofs use the notion
of a prime bunch or prime theory, in place of a maximally consistent set. We have
opted for the construction of maximal prime theories in the style of Lindenbaum’s
Lemma, similar to Blackburn et al. [2001, Lemma 4.17] and van Dalen [2004,
Lemma 5.3.8], rather than the complicated system of prime evaluation used in the
proof for NBl. We now proceed towards the completeness result.

Remark 7 Equivocation over syntactic equivalenc®ur general rule is to use
syntactic equivalence implicitly in proof-theoretical considerations, but always to
treat it explicitly in semantic considerations. A syntactic equivalence should be
regarded as a rule of inference that is invertible and applies in contexts of either
polarity. O

Remark 8 At some points we safely equivocate between sets of formulae or struc-
tures{Ry,...,R,}, and additive conjunctive structures, that is, structures of the
form (Ry;...; Ry). 0

We now introduce the idea of a prime theory, which plays a pivotal role in our
completeness proof. Our definition is essentially that of van Dalen [2004, Def-
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inition 5.3.7], in his proof of the completeness of intuitistic logic. We then
proceed to give a prime theory existence lemma, based upon what is essentially a
Henkin construction. Our procedure is close to that of van Dalen [2004, Lemma
5.3.8].

Definition 31 A prime theoryis a setX of structures that meets the following
conditions:

(i) X is consistent;
(i) X is closed under deducibility. That is, for aRyif £ + RthenR € Z;
(i) f[R;T] e XthenReXorT € X.
Note that trivially, ifR € £ thenX + R, and henc& + Riff Re X. 0

Lemma 14 A prime theory contains every theorem. 0

Proor If T is a theorem, theh + T for any set of structures. Hence by Defini-
tion[31, if=* is a prime theory, thei € X*. n

Proposition 4 The structures o8l are enumerable. 0

Lemma 15 (Prime theory existence lemma) For any structures RT such that
R¥ T there is a prime theor¥* such that Re =* andX* ¥ T (and hence ¢ *
sinceX* is a prime theory). o

Proor Given structure®, T such thaR ¥ T, we may construct a prime the
such that*™ ¥ T. LetR;, Ry, Rs, ... be an enumeration of the structuresBd
Constructz* as follows:

20We could indeed filter the enumeration so that R, at each step, as does van Dalen [2004,
Lemma 5.3.8]. This would simplify slightly the treatment of disjunctive structures, and exclude
unneeded ‘irrelevant’ structures from the prime theory. The filtered enumeration would in any
case still be infinite in size. On the whole, however, this is unnecessary and would complicate our
treatment.
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If R is of disjunctive form R_; Ry]

Y U{R,R} if X, U{R} ¥ T; otherwise
DI LUR,Re} If i URR}FFT

% otherwise

otherwise

SUR}) TS U{RIFT
DI

% otherwise

and finally
o= [z
i>~0
>* is the chain union of successive sgfsNote thatz; C % ; for any finitei, and
consequentlyjij:0 % = X forany finitej. SoZ; € X* for anyi. Crudely speaking,
we can say that* = X,,. It remains to show th&* » T and tha* is indeed a
prime theory.

1. T is not deducible fronk, sinceX, = {R} and{R} ¥ T. TheZX,; step
preserves non-deducibility &f, so by inductionX; ¥ T for any finitei.
Hencex* ¥ T.

2. We check thaE* meets the necessary conditions to be a prime theory.

(a) Suppose that there is sotdesuch thaty ¢ X* andX* + U. Trivially,
if U =RthenU € £*, so ifU ¢ £* then it is because there is some
such that; U {U} + T, or in the case thdt = [U_; Ug], somei such
thatZ; U {U_} + T andZi U {Ug} + T. Now given that* + U, there is
somey’ of finite size such thaf’ ¢ ~* and+ (X’; U). Hence, we can
construct a proof ofZ;; ’; T)



70 CuAPTER 3 Bl IN THE CALCULUS OF STRUCTURES

i
((Zi; U);T)
) >
———— Paste negative of
(Z ), T) u
or in the case of disjunctive
T

_ {3V Tid(Ei Ur)i T)
(UL T (S5 (U TH))
((Zi; Zi); UL T Uk TH))
Ei (UG URL T T
((Zi; [UL; URD); T)

(currying, twice)

cl},sdal

-

(uncurrying)

m =
—— Paste negative off
(&), T) u

SinceX, C Xt andY’ € X, we havez,UY C X*, and henc&* + T,
yielding a contradiction. Hencg" ¥ U for anyU such thatU ¢ =*.
By contraposition, i£* + U thenU e X7, that is,X* is closed under
F.

(b) By the construction of th&,,; step, if U3;U,] € T*, then either
UpeXtorU, ezt u

Remark 9 Membership of2* depends of the ordering of the enumeration. For
instance, suppose that the atomic structuoecurs before the structute; T) in

the enumeration. Thea € X* and{(a; T) ¢ X*. But if the order is reversed,
(a;TyeXrandag¢ X*. O

Remark 10 Any structureT may be rewritter(T; T) or (I, T) according to the
syntactic equality of structures specified in Figlré 3.1. Hence we can construct a
prime theory from¥* T usingXo = {T}. 0

Lemma 16 (Prime extensionlemma) For any set of structures and structure
T such thatt ¥ T, there is a prime theor{* such that € ¥* andx* ¥ T.
(Cf. the extension lemma of Galmiche et al. [2005, Lemma 5.2]). o
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Proor The proof is a straightforward variation of the proof for Lemimh 15. g

We now show that the intersection of all prime extensions of & sepresents
the deductive strength or content®fn a precise walgl It contains all and only
the structures that are deducible fr@nand it isalmosta prime theory. It does
not contain extraneous or irrelevent elements, as we see in the prime theories
constructed according to the method used in the proof of Lemiha 15, in which
arbitary structures are drawn from an enumeration of the structur&s amhd
are tested systematically for inclusion in a prime theory, constructed as a limit
construction.

Lemma 17 (Prime extension intersection lemma) LetX be a consistent set of
structures, and let"\ X* be the intersection of all prime extensions Xf
NZ"+R iff £+ R, forany structure R. O

Proor First, note the has at least one prime extension, since it is consistent, by
LemmdT6. Take the left-to-right case. SupposeIhatR. Then we can construct

a prime extentiort* of X such thaz* ¥ R, using the procedure of Lemrhal15.
SinceNX* C *, we havg X* ¥ R. Hence, by contraposition, ffy Z* + Rthen

> + R The right-to-left case is immediate. n

Lemma 18 LetX be a consistent set of structures. [#R X" then there is some
prime extensiox* of X such that Rz X*. 0

Proor Proof is by contraposition of the following. Suppose that for every prime
extensiorE* of X we haveR € £*. ThenRe N X*. =

We introduce the notion of a sub-prime theory, which is essentially a consistent
set of structures that is closed under deducibility. The special requirement in
Definition[3] regarding disjunctive elements in standard prime theories is absent
here.

Definition 32 A sub-prime theorys a set of structures that meets the following
conditions:

2Iparticular thanks to Lee Naish for the suggestion that we make use of the intersection of all
prime extensions in the completeness proof, and for a conversation which lead to LEmmas 17, 19
and20.
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(i) Xis consistent;

(i) X is closed under deducibility. That is, for aRyif £ + RthenR e X. 0

Obviously, every prime theory is a sub-prime theory, but not vice-versa. The
reason for introducing this notion is that we are unable to prove the variant of the
following lemma that would state thai X+ is theleast prime extensioof . We

can however make do with the result tiia&™* is less than or equal to the least
prime extension(s), and that it is sub-prime. Thiiclilty is that in the case that

¥ + [R; T], we have a guarantee that each prime extensioof X~ contains either

Ror T, but not both. Some extensions may contdiand othersT; some both.

So we cannot show thay X* must contain eitheR or T to meet the disjunctive
requirement of a prime theory.

Lemma 19 (Sub-prime extension lemma) LetX be a consistent set of struc-
tures. X* is a sub-prime extension &f. o

Proor () X* is a sub-prime theory since it satisfies the two criteria: ((B* is
consistent, since there is at least one prime th&biguch that £* c £+, andz*
is consistent, since it is a prime theory; (ii) Suppose fhat" + R. ThenX + R
by Lemmé&l. Hence for ary such that C ¥, we haveX’ + R Thus forevery
prime extentiorE* of ¥, we haveX* + R, and since&* is a prime theoryR € X*.
ThenRe N X*; SinceX c NX*, NX*is an extension of. =

Lemma 20 (Least prime extensions lemma) LetX be a consistent set of struc-
tures. X* is less than or equal to the least prime extension(s).of 0

Proor Since() X' is the intersection of all prime extensionsyfwe havg X+ C
>* for any prime extentiorx™ of £, and hencg) X" is less than or equal to the
least prime extensions af -

Definition 33 First, we define the binary operation: p(®) x p(®) — p(®) as
follows:
{Ug,...,Ui} % {Ve,.... Vit = {(U, V1), -+, (U V),
(U2, Vi), -, (U2, V),

(Ui, V1) , -+, (Ui, V) }



3.4. SSUNDNESS AND COMPLETENESS 73

This is largely, but not exclusively, for use within this défion. Then we define
the binary operatiom : p(®) x p(®) — (D):

mxn if mxnkF L
m b n = - .
undefined otherwise

We writemen | to state thammen is defined, in uniformity with the PDM semantics.

In short,me n| iff mx nis consistent. It is necessary to introduce some level of
control of inconsistency in a definition ef otherwise a completeness proof for

a proof system foBI with L cannot succeﬁ. The e operation is essentially a
cartesian product, with multiplicative conjuction,) as the pairing operation,

plus a requirement for consistency. It is important that the structures in these sets
or theories be viewed modulo syntactic equivalence (or perhaps we could regard
the elements of theories as equivalence classes of structures). Otherwise, to take
one examplee = {I} would fail to act as the identity element fer o

220ur definition is simpler than the following definition, adapted from Pym [2002, §5.2, p. 73]
and Pym, O’'Hearn & Yang [2004, p. 294], although it addresses the same problem of inconsis-
tency:

{Ug,...,Ui}e{Vy,...,V;} = {(Uy, V1), -, (UV)),
(U2, V1), -+, (U2, V),

(UiV1) -, U V) 1\ L(ULV)

where L(U,V) = {(Ui,V;) | (U,V;) v 1}. There is no requirement in this definition that the
resulting set be consistent in order that the operation to be defined. Indeed, a more obvious choice
of a definedness requirement would be that the resulting set be non-empty. This construetion of
artificially excludes individual structures which entail For example, each & and(a, L) is a
consistent structure, bua,((a, L)) is inconsistent, anda((a, L)) is excluded for just that reason.

Note, however, that this procedure does not guarantee that the resulting set will be consistent, just
that no element taken individually entails Take the obvious examplég, (a; L)} ee = {a,(a; L)}
inwhich{a, (a; L)} is inconsistent to begin with. This example is not especially pertinent, however,
since thes operation will usually be performed upon pairs of prime theories, which are consistent
to begin with. But consider a more elaborate example, in which the seeds of inconsistency are
buried more deeply. Take sets of structumes with {a, (b,c)} € mand{(a,{c; L)),b}. Then

{(a, (a,{c; L)), ({b,c),b)} € m % n, makingm = n inconsistent, although neither of these two
elements taken alone entailsand hence would not be excluded framn under Pym’s definition,

which makes it a rather arbitrary construction. We regard our choice of checking the consistency
of the whole set as more natural (although it would require a much more expensive computation)
and it certainly integrates more neatly with the PDM semantics, and simplifies the argument of our
completeness proof.
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Definition 34  We may construct acanonical countermodebs foIIow@
M. = (M, e, e C,V)is a partially-defined model in whidkl is the set of all prime
theories (see Definition B1), together with the unit state {I}. We know that
there exist a dticient number of prime theories, since for each pair of structures
R, T such thatR ¥ T, LemmalIb guarantees the existence of at least one prime
theoryX* such thaR € X* andX* ¥ TE eis not a prime theory, and in that re-
spect is a special exception M. Thenatural valuationfunctionV : £ — (M)
is then defined:

V(@ ={me M |aem}.

The preordec: p(®) x p(®) — Bool (where® is the set of all structures &)
is defined as non-strict set inclusi@t,hat is,

mC nifmcn.

Remark 11 It does not follow fromme n | that if mn € M, and are thus by
definition prime theories, thah e n € M, since we have no guarantee thas n

23Suppose that we were attempting to prove completeness with respect to the new Kripke re-
source semantics. Then the definition of a countermodel is slightly more elaborate. A counter-
modelMi. = (M, e, &, ,C, V) contains in addition a special elemen¢ M, the inconsistent state.
We definer = @, andr is plainly not a prime theory. Becauseneeds to be the greatest state in
M under the preordet, we adjust the definition af as follows:

True ifn=n
mCn=<{ False ifm=mandn#n
mcn otherwise

The natural valuation function would also need adjustment:
V(@) ={me M|aemju {r}.

That is, the value of an atomic structaén the model is the set of states havimgs an element,
plusz. No tampering is required to handten the definition of thes operator. Note that by the
definition,7 « m = x for anym, as required. In this scheme, we would regarén = & = 7 as
being defined.

24 Indeed, it is worth noting that the same pRifT may yield diferent prime theories, given
different underlying enumerations of the structureBloft is also worth emphasising that we have
no reason to think that the procedure of Lenimh 15 yialtlprime theories, and that we do not
require that.

2\t is important thatt be defined over all theories, that is, all sets of structotgs and not
just over the elements dfl in a canonical countermodel, which except éare prime theories.
(In fact, it only needs to be defined over non-empty theories.) See our discussion in §2.7.
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is a prime theory simply becauseand n are. Now consider the forcing clauses
for = and-« in the PDM semantics. The forcing clause faequires thah e n’ be
defined, that is, that it be non-empty, and that it participate in the preorder, but not
that it be a element d¥1, and hence not that it be a prime theamyandn’ are of
course required to be prime theories, by the definition of a canonical countermodel
M. The forcing clause fos: raises a more delicate matter. Take: v, forced at

a given staten € M. It states that for any prime theonye M for whichme niis
defined and which forceg, thatm e n is aprimetheory inM and forcesy. O

Proposition 5 The binary relatiorc, as defined in Definition84, is reflexive and
transitive. O

Proor This follows immediately from the reflexivity and transitivity of non-strict
set inclusiorc. n

Proposition 6 The natural valuation defined in Definiti@nl34 satisfies the mono-
tonicity constraint. O

Proor Suppose thain € V(a) andm C n. In the case thain = n, n = & by the
definition ofC, andn € V(a) by the definition ofV. Otherwise,a € m by the
definition of the natural valuation. Then sinoeC n, we havea € n, that is,
n € V(a), unless = &, in which case alsa € V(a). =

Proposition 7 The operatomw, as defined in Definition-83, is commutative. -

Proor This follows from the commutativity of multiplicative conjunction modulo
syntactic equivalence, and the fact that a set is unordered. =

Proposition 8 The definition oe given in Definitior-3B (taken together with the
definition ofC given in Definitio-34) satisfies bifunctoriality. 0

Proor Suppose thatn T nandm’ C ', andme m' | andne n’ |. Now take
an arbitraryR such thatR € me nY. Then by Definitio 3B there is some pair
of structuredJ, V such thatU € mandV € m" and U, V) = R under syntactic
equivalence. Thety € nandV e n’, and hencel,V) = R € nen’. Thus
Mmem Cnen'. ]
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Remark 12 Suppose thaim C n, and thus that € n. Then, momentarily disre-
garding the requirement that structures be finite in siga,+ A mby weakening
(wIT). Note the reversal of positions. Also compare monotonicity, by which, if
ml- RthennlF R 0

Remark 13 Suppose tham is a prime theory and thah + R, that is, that for
some finite subsefR,, ..., R} of m, we have{R,,...,R} v R Now trivially,
{(Ry,...,R}F(Ry;...;R),and sam+ (Ry;...; R). Sincemis a prime theory, we
have Ry;...;R) em. O

Lemma 21 (R, T1);...; (R, T)),U) F{(Ry;...; R), (Ty;...; Ti), U). o

Proor We can construct the following derivation, using multiple applications of
weakeningvl] and contractioml| on the left.

wil (R, Ty); ..., (R, Ti)), U)
ol ((Ry; .. R), (T oo T oo (Res - Ra), (T .5 o)), UD

We require the following primeness lemma. Cf. the statements and proofs of
primeness lemmas in Routley & Meyer [1972, pp. 62f, Lemma 4] and Galmiche
et al. [2005, p. 1065, Lemma 5.3]. In particular, we adapt the proof procedure of
Galmiche et al. [2005] to our apparatus.

Lemma 22 (Primeness lemma) If mis a prime theory and mn’ € m, and n
is consistent, then there is a prime theofyaxtending n, such thatm n’ € m.

Proor We construct a prime theomy® using a variation on the procedure of
LemmalTb. In the base cas®, = n. In the inductive step, construof,; as
follows, As in Lemmd_1Ib, we take an enumerat®nR,, Rs, . . . of the structures
of BI.
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If nj is a prime theory
Ntz = N
otherwise, ifR; is of disjunctive form R_; Rg]
nU{R.} if nfU{R.}en C m otherwise
Ny = NnU{Rg ifnfU{Rg}en Cm
n; otherwise
otherwise

NnU{R} ifnU{R}en Cm
Niv1 =

n; otherwise

and finally
nt = U N
i~0
It is evident from the construction that e n” € m. We can view the tests whether
n U {R,} e " C mas proxies for the tests for the non-deducibilityTofwhereT
is in this case unknown) in our proof of Lemia 15, and confirmationihas
indeed a prime theory may be carried out similarly to the argument there.g

Corollary 2 If mis a prime theory and mn’ € m, and n and hare consistent,
then there are prime theories mand ri* extending n and’rrespectively, such that
n+ ° n/+ g m. O

Proor By the commutativity ok and two applications of Lemnial22. -

Now we come to the main lemma of the completeness proof.

Lemma 23 (Truth lemma) Given a canonical countermod®k. as defined in
Definition[33,
M, mEUIFfUem

for any me M. o
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Proor We must show tha®t,, m I U iff U € m. Note thatU is neverl, since

every prime theory is consistent. We do, however, have to consider cases in which
1 is a substructure df). We argue by induction on the degreeldf In every
sub-case of the base and inductive cases, we treat the left-to-right and then the
right-to-left case. In the base ca&gjs either an atomic structure, aror .

1. (i) Suppose thad)i,, m IF a. It is immediate that € m, by the natural
valuation.

(i) Suppose that € m. It is immediate thab)t,, m I a by the natural
valuation.

2. (i) In the case tha) is T, U € msinceT is an element of every prime
theory, by Definitiod3lL, given th& + T for anyR by the rule of inference
wiT.

@) 91, n - T for all nin any91, soM,, mI- T always.

3. (i) Inthe case thabi,, mIF I, eC m. Sincee = {l}, we havel € m.

(ii) In the case that € m, we havee C m, and hencee C m, and then
Me, Ml 1.

In the inductive step, we consider each binary connective. In each case we take
the hypothesis that for any, 2t m IF U iff U, € m, and9t,, m I+ Ug iff

Ur € m. It is necessary that we quantify universally over states the scope of

the hypothesis, rather than restrict ourselves to the given (but of course arbitrary)
m of each case, and quantify universally over the entire induction.

1. (i) Suppose tha®i., m - (U.; Ug). Then by the forcing clause fox, we
haveMi., m I U and 9., m IF Ug, and so by the inductive hypothesis
UL,Ugr € m. Then{U_,Ug} c m, and trivially U_; Ug) + (U_;Ug). Then
(Ur; Ug) € m, sincemis a prime theory.

(i) Suppose thatly,;Ug) € m. Now (U_;Ug) + U and U; Ug) + Ug,
using weakeningwl1), so sincemis a prime theorylJ, € mandUg € m.
Then by the inductive hypothesi¥i., mI- U_ and9i., mI- Ug, and so by
the forcing clause fon, we haveli,, mik (U ; Ur).
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2. (i) Suppose thai,, m I+ [U.; Ug]. Then eithe®)t,, m - U, or 9., m I-
Ug, by the forcing clause fov. So by the inductive hypothesis we have
eitherU,. € mor Ug € m. The cut-free derivation:

R
[R L]
[RT]

WI.

—

gives usU, + [U.; Ugl andUg + [U_; Ug]. So in either casel, ; Ug] € m,
sincemis a prime theory.

(il) Suppose that) ; Ug] € m. Sincemis a prime theory, eithdd, € mor

Ur € m, by the special disjunctive condition on prime theories in Definition
B1. Then by the inductive hypothesis, eit@g, m - U, or Mi,, m - Ug,
and hence by the forcing clause forwe havedt,, mi+- [U; Ug].

3. (i) Suppose thatU_;Ur) ¢ m. Then sincem is a prime theorym ¥
(U.; Ur), and hencemu {U,} ¥ Ug by uncurryingé In the case that
muU{U_} + L we obtainmu{U_} + Ug using weakeningwr|). But this gives
us a contradiction, so this case cannot apply. In the casetbdt), } ¥ L,
we can construct a prime theony € M such thatmu {U,} € n’ and
m' ¥ Ug, by the procedure of Lemniall C nv, so we havenC m'. Since
nY is a prime theory, we hawgr ¢ m', and then by the inductive hypothesis,
M., m W Ug. ButU_ € n, so again by the inductive hypothesis, we have
M., m' I U.. Now recall the forcing clause for. M, mIE (U ; Ug) iff
for all n such thatm C n, we havedi.,n ¥ U_ or M. n I Ug. Hence
M., m ¥ (U ;Ugr). So by contraposition, iflt,, m I (U.; Ur), then
(U_;Ur) € m. [Cf. the corresponding case in van Dalen 2004, Lemma
5.3.9, p. 170].

(ii) Suppose thatU, ; Ug) € m. Now take anyn € M such thatm C n and
U_ € n. SincemC n, we have(U;Ur) € n. So{U_,(U.;Ugr)} € n. We
have the derivation, using cuaf):

equivalence, we havé ((Ry;...; Ry; UL); Ug) for any{Ry, ..., Ry} € m.
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_ (Ug; (Ui Ur))
(T3 UL (UL Ugy)
UL UL (T Ur)
_ (Ti(T; Un))
Ur

son + Ug. Thus by the inductive hypothesis, for amg M such thamC n,
if M., nIF UL thenMit, m - Ug. HenceMi,, m Ik (U ; Ug) by the forcing
clause for—.

4. (i) Suppose thadi,, m I (U, Ur). Then by the forcing clause ferthere
existn,n” € M such thahen’ is deflneca andnen’ C m, anddi., nl- U,
andt., " I Ug. By the inductive hypothesi$), € nandUg € n’, and
then by DefinitiorZ3B,J,,Ug) € ne . Then sincene n” C m, we have
(UL,Ug) e m.

(ii) Suppose thaty,,Ugr) € m. (U, UR) ¥ L, sincemis a prime theory.
First we establish thall, ¥ L andUg ¥ L. Consider the derivation

(R 1)
(R(R 1))
(R R), L)

(I, 1)
L

wr]

sim|
im?T

using cut (m7), showing thatR, L) + L for anyR. Obviously the same
holds for (L, R) since (L,R) = (R, 1L). We can see that if eithés_ + L or
Urt+ L, then U, UR) + L, so by contraposition, we know thdt ¥ 1 and
Ur ¥ L. Now take the consistent s€tg, } and{Ug}. We havelU, } e {Ur} |
and{U_}e{Ug} = {(U., Ug)}. Plainly{U_}e{Ugr} C m, so by two applications
of the primeness lemma (Lemra 22), we have prime extensien®! of
{U_ } andn’ € M of {Ug} such thah e i € m. Hence there exist,n’ € M
suchthamen’ | andnen’ C mandU_ € nandUgr € n'. Then by the
inductive hypothesis, there exigtn’ € M such thanen’ | andnen’ = m

2"\We do not take the definednessof i’ to entail thain e 1’ is a prime theory. See Remdrk 11.
But n andn’ must be prime theories, by the definition of a canonical counterndidel
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andMi.,n I+ U andM., " I+ Ug. Hence by the forcing clause fo,
fmc, ml- (UL, UR)

5. (i) Before we begin this case, recall the forcing clause-forMt,, m I+
(UL, Ug) iff for all n € M such thame nis defined andJt., n I+ U, for all
n € M such thame nC n’, we have)i., n' I+ Ug.

Take the non-prime theorjJ, } such thatU, € n andn is a prime the-
ory. {U_} is consistent since is a prime theory, and + U_.. Now take
the setme {U,}. (In the case tham e {U,} is inconsistent, that is, un-
defined by Definitioni-34m e n must be inconsistent for any such that
UL € n, and thus is always undefined, sinoe {U } C me n.) Suppose
thatme {U_} + Ur. Recall that this means that there is some finite sub-
set ofme {U.} from which Ur is deducible. LefR;,...,R,} be a finite
subset ofm such that{(Ry,U,), ..., (R,,U.)} is finite subset oime {U,}
and{(Ry, Up), ..., (Ry, UL} + Ur. Thenk (((Ry, Up);...; (Ry, UL)), Ur).
Then by LemmaZd1 we have(((Ry;...;R,), (Ug;...;Uy)), Ur), and then
by multiple contractionsd{]) + {(((Ry;...; R.),UL), Ugr), and by currying
F{(Ry;...; Ry, (UL, Ur)). Then sincgRy,...,R,} € mandmis a prime
theory(U_, Ug) € m. Hence we have by contraposition thatiif_, Ug) ¢ m
thenme {U,} ¥ Ug, whenme {U}|.

Now suppose thatJ,,Ug) ¢ m. Thenme {U,} ¥ Ugr whenme {U } |, as

we have just shown. By the prime extension lemma (Leramha 16, there is a
prime extensionrfie {U_ })* of me {U_} such thatihe {U_ })* ¥ Ug. Then

by the primeness lemma (Lemid 22), there is a prime extemsabriU, }

such thatmen C (me {U,})*. Henceme n ¥ Ur. But we have no assurance
thatme n is a prime theory; indeed it is most likely not. By Leming 19,

N (me n)* is the sub-prime extension afie n, and sincane n ¥ Ug, we
have\(me n)* ¥ Ug, by LemmdIl. Then sing@(me n)* is a sub-prime
theory,Ur ¢ N(me n)* by Definition[32, and thus by Lemniall8, there
exists a prime extensiam of me n such thatg ¢ n'.

So, to summarise our progress so fafuf , Ug) ¢ m, eitherme n is never
defined wherJ, € n, or there exist an € M such thame nis defined, and
a prime extension’ € M of mensuch that), € nandUg ¢ n’. We are now
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in a position to construct an ‘exception’ to the forcing clawusthe case that
(Ui, Ur) ¢ m. Take any prime theorgn € M such thatU,, Ug) ¢ m. Then
either there exists a prime theany € M such thaitme n| andmen C n/
andU_ € nandUg ¢ n’, orme nis never defined whed, € n. Now by the
inductive hypothesid), € niff M., nIF U andUg € n" iff M, ' I Ug.
So in the case thatu,,Ugr) ¢ m, either there exish,n” € M such that
men C n andMi., n Ik U andM., n” ¥ Ug, orme nis never defined
when9t., n IF U, and hencé@lt,, m ¥ (U, Ur) by the forcing clause. So
by contraposition, iD)t,, mIF (U, Ur), then(U_, Ur) € m.

(i) Suppose tha®t,, m¥ (U_, Ug). Then by the forcing clause fox, there
is somen € M such tham e n is defined andJi;, n IF U, for which there
is somen’ € M such thatme n C n" andt., n” ¥ Ug. By the inductive
hypothesislJ, € niff M., n Ik U_andUg € " iff M, n" IF Ur. So since
M., ¥ Ugr, we havelgr ¢ n’. We can construct a derivation

- (UL, (UL, Ugr))
(UL, Up), Ur)
(I, Ur)
Ur

using cut {(m 7). So sincen’ is prime, (U.,Ugr),U.) ¢ n’, and hence
((UL,Ugr),U.) ¢ me n. Then by Definitio“3B, and since by the induc-
tive hypothesidJ, € n, we havgU_, Ur) ¢ m. Hence, by contraposition, if
(UL, Ur) € mthenMit,, mik (U, Ug).

Theorem 3 (Completeness) IfRF T thenR-T. o

Proor First we construct a canonical countermot@) = (M, e, e C, V), as de-
scribed in Definitiod-34. Now suppose tHat* T. By Lemmal[Ib, there exists
a prime theorym such thatR € mandT ¢ m. By Definition[34,m € M. By
LemmaZBM., mIF RandMi, m Ml T. It follows thatR ¥ T, by the definition
of semantic entailment (Definitidn 25). Then by contrapositiorR if T then
R+T. m
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3.5. RURTHER WORK

3.5.1. Cutelimination

Cut elimination is a highly desirable proof-theoretical property for sequent calculi,
and also for systems in the calculus of structures. Here is a fairly generic example
of a multiple-conclusion sequent calculus cut rule:

I'=A¢ ¢, Z=H
IZ=AH

¢ is called thecut formula The cut rule irLBI is slightly more elaborate, with the
cut-formula occurring at an arbitrary depth in the bunch of the right premise:

A=¢ T(@)=y
I(a) = ¢

The cut rule in a sequent calculus guaranteesstidormula property A proof

has the subformula property if every formula that appears in the proof tree is a
subformula of the formula which is being proven. That this is so is clear from the
fact that the cut rule, generally speaking, is the only rule of inference in a system
whose premises may contain a formula that need not be a subformula of some
formula in the concluding sequent. A cut rule states at the level of proof that de-
duction is transitive, and is sometimes regarded as a kind of syntactic consistency
property. In practical terms, it allows a proof to be shorter and more natural by
way of a detour, and easier for a human being to find. A straightforward theorem
prover based on a sequent calculus will typically search for proofs in a space of
cut-free proof candidates.

Cut-elimination is usually proven in purely proof-theoretical terms, and in-
deed, the proof-theoretical procedure will usually provide some insight into the
fine structure of the system at hand. A cut elimination theorem for a sequent
calculus states that the system'’s cut rule is admissible in the system obtained by
removing the cut rule from the system, that is, the cut-free system. That a rule
is admissible in a system means that every theorem that can be proven using that
systenmplusthe rule can be proven using the system alone, without use of the rule.
Typically, the admissibility of a rule is demonstrated by giving a procedure, or
algorithm for transforming any proof in the systguus the rule into a proof in
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the bare system. It is a notable fact that although epesogf in a sequent calcu-

lus that enjoys cut-elimination can be replaced by a cut-free proof, that this is not
the case foderivationsin general. For sequent calculi, a cut-elimination proce-
dure is typically specified inductively, showing how each possible configuration
of an application of the cut rule can be permuted a step upwards, or in the base
case eliminated, in a transformed proof, with a reduction in either the cut-height (a
well-founded measure of the length of the proofs of the premises of an application
of cut) or cut-weight (a well-founded measure of the complexity of a cut formula)
of any replacement cuts in the transformed proof. See Appénddix A for my ren-
dition of a cut-elimination proof for the standard right-sided sequent system for
propositional linear logic, which I include merely as an example of the standard
approach for sequent calculi.

A cut-elimination theorem fo8BISg would be stated:
If "BISgR then FsBisg R

WhereBISg is the down-fragment, or cut-free fragment ®B1Sg (see Figure

B.3). For systems in the calculus of structures, analogous methods based upon
information about the permutability of rules in a system have been used [see,
for instance Stral3burger 2003, 89], as well as a novel method cspleting
[Guglielmi 2004, 84]. In addition, an indirect proof-theoretical method is used
by Tiu [2005, 2006{i who proves cut-elimination for a system of intuitionistic
logic in the calculus of structures by way of a correspondence between the down-
fragment of that system and the cut-free sequent cal@lmhe argument runs as
follows. It is shown that if a structur@ is provable inSJSg, then its counterpart

R, is provable inLJ. Then sinceJ is known to enjoy cut-eliminatiorR, is prov-

able in cut-freeLJ. Then it is shown that if a formula is provable in cut-freé.J

that its counterpa@S in the calculus of structures is provableJ®g, the down-
fragment ofSJSg. Hence ifR is provable inSJSg, it is provable in ‘cut-free’

28A1so by StraRburger [2003, §5].

29Recall that our syster@BISg is based upon Tiu's systeBUSg in the April 2005 draft of the
paper. That version of the paper also uses a standard single-conclusion sequent caltardus
intuitionistic logic. The LPAR 2006 version of the paper makes use of a more unusual multiple-
conclusion sequent calculusm for intuitionistic logic.
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JSg. Indeed Tiu also shows soundness and completeness by similar means, since
LJ is known to be sound and complete. In this way, a cut-elimination result may
be obtained without directly identifying a cut-elimination procedure in a system
in the calculus of structures.

Similarly, a cut-elimination result fo8BISg, supposing that it is there to be
found, could be obtained by way of establishing a correspondence with the se-
quent calculu&BlI, which is known to enjoy cut-elimination [Pym 2002, 86.2]. In
our view, a cut-elimination result f@BISg achieved directly in the calculus of
structures by methods of permutability or splitting remainsfaadilt challenge.

We have entertained the idea of another approach, by way of the semantics.
The strategy would be to attempt to show that the down-fragBiStg of SBISg
is complete, by way of a modification of the completeness proof that we have al-
ready presented. (The soundnesBI&fg follows immediately from the soundness
of SBISg.) The starting point would be to change the definition of a prime theory;
simply to require that a prime theory must be closed only under deducibility in
BISg.

Definition 35 A cut-free prime theorys a setx of structures that meets the fol-
lowing conditions:

(i) ZFeisgd;
(i) ForanyR, if X tgsqRthenR e Z;
(i) f[RT] e XthenRe X orT € X. 0

But we are faced with an immediatefiitulty. Derivations that require cut rules
found incBISg and not inBISg are needed at a number of critical points in the
proof of the truth lemma (Lemnfal3) as it presently stands. (See, notably, the
right-to-left cases of the inductive step.) The completeness result we have pre-
sented is a statement about derivations, hov@v@n reflection, all that we would
require for an indirect cut-elimination theorem would be a weaker completeness

S0Refer to our earlier remarks on the use of cut in derivation§n 83.4.1.
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result for the cut-free system, just for theorems, and navatgons in genera@
If ER then FBisg R.

It would seem more likely that this weaker result could be proven using a similar
apparatus to that of our existing completeness proof. The cut-elimination argu-
ment would then run as follows. Suppose thalsy R. Then by soundness,R,

and hence, by the weak completenesBISiy, gisq R.

3.5.2. Alocal system

It would be desirable to find a local formulation®BISg, along the lines of Tiu’s
[2005] systemsSJSa and SJSp (or [2006] systemsISaq and SISp) for intu-
itionistic logic. Broadly speaking, a local system limits the amount of checking
that needs to be performed to see whether a rule may be applied. The two sorts
of checking that that are required 8BISg are (i) checking whether a context
meets the polarity restriction on the application of a rule; and (ii) in the case of cut
rules and down-fragment contraction rules, checking whether the two occurrences
of the cut- or contraction-structure are indeed identical (or equivalent). Both of
these operations incur significant computational overhead in a theorem prover im-
plementation. In particulagBISg allows cut- and contraction-structures to be of
arbitrary weight. We may extend this idea beyond checking for the applicability of
rules, to those rules (identity and down-fragment weakening) which introduce ar-
bitrary structures into a derivation. If the weight of such arbitrary structures can be
restricted, there ought to be an improvement in the performance of a proof-search
implementation, since the search space of candidate proofs would be significantly
reduced. So we may add a third sort of limitation imposed by a local system: (iii)
limitation of the weight of arbitrarily introduced structures in identity and down-
fragment weakening rules. Indeed, a limitation upon which structures may be
‘deleted’ by up-fragment weakening rules (and indeed by cut rules, but that case
that has already been treated) is pertinent to the growth of the proof-search space.
So we add: (iv) limitation of the weight of structures which may be deleted by cut

3l nterestingly, the systemdL of modal logic exhibits only this weak form of completeness,
pertaining to theorems, but not the strong, relative form [Blackburn et al. 2001, Example 4.11].
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and up-fragment weakening ru@.

Tiu's SJSa and SISaq impose limitations of sorts (ii), (iii) and (iv) by re-
stricting identity, cut, weakening and contraction rules to their atomic cases, thus
strongly limiting the complexity of the equivalence checking computations that
are needed, and strongly curtailing the growth of the proof-search space. In a cor-
respondindl-systemSBISa, the following rules would replace their counterparts
in SEslsgzg3

. SHI} _ SHT}
ai ai
S*(a, a) S*(a; a)
_S{aa) _ S{aa
aim? aia
S7{I} ST}
S (a;a) S*[a; a] ST} SH1}
acl| acr. awl awr.
S {a} S*{a} S~ {a} S*{a}
S*{a} S—{a} S*{a} S~ {a}
aclt acr? awlt awrt
S*(a; a) S[a; a] SHT} S{1}

These changes respect the need to maintain up-down symmetry of rules. The
proof theoretical cost of these restrictions is the need to add so-cadldalrules

to the system to maintain completeness and proof-theoretical equivalence with
SBISg (see Tiu [2005, 2006] for medial rules in the intuitionistic syster8d3Ja,

SISaq, and SBISa are not fully local, however, because they leave untouched
the checking of sort (i), that is, they still impose restrictions upon the polarity of
contexts for rule application.

Tiu’s SJISp builds uponSJSa (andSISp uponSISa, the propositional frag-
ment ofSISaq) to reduce the amount of polarity checking, and hence to produce
a properly local system. The essential insight is that a context, or more perhaps
more properly, a ‘thread’ of contexts, never switches polarity in the course of
a derivation. This means that the polarity of each context in a candidate theo-
rem may be calculated just once, at the outset of a proof, and that polarity labels

32There is a fifth sort of non-locality that does ndiliat us here: some rules in some systems
require that the wider context of a rule application be checked for some feature or other. Usually in
sequent systems this would be a check that some non-principal formula or formulae be of a certain

. o =, ¢ - .
sort. The usual example is the rule of promotion in linear Iog+c’)r—| , and similarly certain
=7, 1¢
sequent rules for modal logic.
333 stands for any atomic structure, and thgrefix to each rule name stands for “atomic”.
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may then be attached to each substructure of the candidatethe Indeed, all
structures in this system apmlarised structuresPolarity labels are propagated
throughout a derivation by modified rules of inference that check the polarity of
substructures, instead of the polarity of contexts, for the applicability of rules; and
which transmit the polarity labels on substructures (up or down, as you please)
throughout the derivation. Following Tiu, the grammar of polarised structires

in SBISp would be given@

= PIN
P u= a [T L7 17 [(P;P)" I[P PI" [{N; P)" | (R,P)" [N, P)”
= a | T L7 I ENSN)T IING NI (P ND™ [ (N, N)™ [ (P N)”

A proof of a structurdRr is a derivation of the unique polarised formR®from T+
orl*.

So the work that would need to be done to obtain a |@&tedystem in the
calculus of structures would be to identify the correct medial rules to produce the
systemSBISa, and then to prove the proof-theoretical equivalencggiSa and
SBISg. Then to progress to a fully local syste&3BISp, we would need to confirm
the idea that polarity is preserved throughout any thread of contexts in the course
of a derivation, by induction of the length of a derivation, and we would need to
demonstrate the proof-theoretical equivalenc8BiSp andSBISa.

34Cf. our definition of polarity forSBISg (Definition[I).
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SEMANTICS FOR A HYBRID Bl

Hybrid logics are modal logics enriched with an additional class of propositional
atoms callechominals Nominals function as names of states of frames, which
yields a great increase in the expressivity of hybrid logics over standard modal
logics: it is a peculiar characteristic of standard modal logics that the basic ob-
jects of the semantics, namely states, do not have any direct counterpart in the
languages. Nominal atoms may occur in compound formulae which may or may
not also contain ordinary propositional atoms. Formulae containing only nominals,
and no ordinary propositional atoms are calpeote formulae, and can be used to
express frame properties, including some such as antisymmety which are not ex-
pressible in standard modal logics [see Blackburn et al. 2001, p. 436]. Hybrid
logics usually also add a new kind of modal operator callsdtsfactioroperator
(in fact, a distinct satisfaction operator for each nominal atom), and often other
operators as well. Satisfaction operators give us the ability to talk about what
is going on at named states in a model from a global perspective, that is, with-
out regard to our own local position in the model. Hybrid logic first appeared in
the pioneering work of Arthur Prior on temporal logic [see especially Prior 1967,
chapter 5 & appendix B3]. The Sofia School [see Passy & Tinchev 1991] inde-
pendently reintroduced nominals in their work on propositional dynamic ﬂ)gic.
There has been considerable recent interest in the use of hybrid and modal in-

lUseful overviews of hybrid logic may be found in Blackburn et al. [2001, §7.3], Blackburn
[2000Db], Areces & Blackburn [2001], and Areces & ten Cate [2006]. Also see the Hybrid Logics
Home Paghttp://hylo.loria. fr [Areces 2004-] for an introduction, history, bibliography
and other resources.
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tuitionistic logics for reasoning about resource distridat Jia & Walker [2003,

2004] develop a modal intuitionistic logic and apply it to distributed program-
ming, using the formulae-as-types and proofs-as-programs paradigm. We clas-
sify their “logic of places” as a hybrid intuitionistic logic because it contains @
modalities, wherg denotes a@lace A placep is not, however, a well-formed
formula of their language in its own right. A formutg@p is read as the type of a
remote procedure call from the plapgyielding a value of type. More generally
speaking @ is a satisfaction operator, which permits us to say something about
a what is the case at a named location in a model, from the point-of-view of any
location in the model. Chadha, Macedonio & Sassone [2006] develop the work of
Jia & Walker, formulating a Kripke semantics for an extension of their language,
and proving soundness, completeness, the finite model property and decidability.
They prdfer an analogy of atomic formulae with resources. In the Kripke seman-
tics, models contain a set of states, as usual, but also a set of places for each state.
Each clause of the forcing relation is parameterised over states and places. For
example, the clause for satisfaction operators, adjusted to our notation, is:

M, m,plko@qiff qe PyandMt, m gl ¢

where P, is the set of places indexed to state Note the way in which the
reach of a satisfaction statement is limited to the ‘locality’ of stafevhich is

not something we will do. Also note the way in which place symbols appear
in the syntax, as indices of the satisfaction modality, and as semantic objects.
The dual parameterisation over states and places, which we will henceforth call
Iocationsﬂ also occurs in the work that we find the most interesting, by Brauiner
& de Paiva [2003, 2006]. One benefit of this is that is permits the maintenance
of intuitionistic monotonicity. In our proposal we will an attempt to use a simpler
scheme, with a single domain of states, or resources, as is typical with classical
hybrid logics. We will lose generalised monotonicity, but gain expressive power:
we will be able to name resources explicitly in the formulae of a variaBt.oFhis

is is principal motivation of our proposal. Braiiner & de Paiva take the step which
is of most interest to us, and which is common to mainstream hybrid modal logics.

2“Place” is infelicitous in too many grammatical contexts to be a nice piece of jargon.
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They introduce nominal propositional atoms into the languamgd a satisfaction
operator for each nominal. We regard our proposal as an experimental: a second
motivation is to illustrate some of theficulties that arise when we attempt to mix
intuitionistic, modal and hybrid standpoints in the naive way that we do, without
dualising states and locations; and hence to underline the good sense behind that
(less exciting) approach.

We will now give a brief account of another, directly pertinent piece of work.
Biri & Galmiche [2003] develop a hybrid extension Bf calledBl-Loc. They
make no reference to the literature on hybrid logic. Then before we come to our
own proposal, we will look at the Kripke semantics for intuitionistic hybrid logic
given by Braluner & de Paiva.

4.1. Bl-Loc

The language oBI-Loc is just the standard language BIf, with the addition of
formulee of the forml]¢, wherel € £ are names of locations. The elementgof

are not introduced as formulae of the language in their own right. Biri & Galmiche
give a Kripke semantics, a sequent calculus, soundness and completeness, and
some decidability results, and study some computer science applications. They
adapt, and extend the PDM semanticBbfwith a modality for locations. The
semantic adaptation is the introduction of the idea oésource tree Given a
standard partially-defined mod®t = (M, ¢, e, C) and a set of location name3

they define resource tre€secursively:

P:=m|PP|[I]P

wherem € M andl € £, and in the base casenm’ = me m'. | is commutative,
associative, and has urmt also []P|[I]Q = [I]P|Q; and equivalence is transitive
and congruent. An ordex on resource trees is defined upon the basis. of

() mx QiIf Q=n' andmLC n7;
(i) [I]P" < Qif Q=[l]Q andP’ x Q’;

(i) PIP” < Qiff Q= Q|Q” andP’ < Q andP” < Q”
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Note that this definition is entirely responsible for the pl@ent of located re-
source treeslJP in the order<, and indeed for the entire semantic import of
locations. No separate mapping to or from locations is required. Resource trees
replace single states in the definition of the forcing relation| tperator replaces

e in clauses of the forcing relation; ardreplaces. | comes out partially-defined,
because it is constructed from a partially-defimedWe just give the clause for
location formulee:

M, P IF [1]¢ iff there exist® such that|Q < Pandd, QI+ ¢

The monotonicity constraint on the valuation is internalised in the clause for
atomic propositions, but that is just a matter of presentation. The requirement
that []Q < P means thaP must be a ‘location tree’ of the fornl]P’, and that
Q < P, which makes the monotonicity @f explicit for this clause. Otherwise,
[1] is a straightforward satisfaction modality.

A variant of LBl is extended with a single rule to handle locations:

_I>¢
[Ir = [1e

I' may not be a unit bunch, andT is a bunch in which every formula is of the
form [l]¢. The rule simply says that if a sequent is provable, any fully located
form of that sequent is provable, which is not especially interesting.

4.2. BRAUNER & DE PAIVA'S SEMANTICS FOR HYBRID INTUITIONISTIC LOGIC

This section briefly reproduces Braiiner & de Paiva’s Kripke semantics [2006, 83].
Their work is based upon Simpson’s [1994] work on intuitionistic modal I8gic.
A formula is given by the grammar:

p:=plilgAdl¢Veld—gl LD Op|@d

3See Simpson [1994, §5.2] for the Kripke semantics. Simpson’s work draws upon Ewald’s
[1986] work on intuitionistic tense logic, in which an ordered set of times is attached to each
“state of knowledge”.
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wherep € P is an ordinary proposition letteir,e Q a nominal proposition letter.
@ is a modal satisfaction operator for eaitﬁw Satisfaction operators enable us
to talk about what is happening at the location in a model denotedftiym the
standpoint of any other location. A mod#t is

<M’ s, {Dm}meM, {“’m}meM’ {Rm}meM, {Vm}meM>’

whereM is a non-empty set of states;is a partial order orM;H Dp, is a non-
empty set of locations for eaah, such that ifm < n, thenD,, € D,; ~n IS an
equivalence or identity relation on eabh, such that ifm < n, then~,,C ~;,; Ry,

is a binary relation oD,,, such that ifm < n, thenR,, € R,; andV,, : P —
9(Dp) is a valuation function for eaatm, assigning to each ordinary propositional
atom p a subset oD, such that ifm < n, thenV(p) € Vih(p). Each modal
accessibility relatiofk;,, on D, and valuatiorV,, respects the equivalence relation
~m on Dy, This is really a semantics for a class of hybrid intuitionistic modal
logics; no properties such as reflexivity, transitivity, antisymmetry are stipulated
of Ry, except that it conform to the equivalence relatiort #,,, eandd’ ~,, € and
dR.ethend’'R,€. Note the monotonicity conditions on each®f, ~., R,and
Vm, Which correspond to the familiar intuitionistic monotonicity on valuations in
Kripke resource semantics. Plainly, the same location may oc&ufandifferent
statean. We can say that they are ‘trans-state’ locations.

There is one more ingredient before we get to the forcing relation. The func-
tiong: Q — U D, assigns a location somewhere in the model to each nominal

meM
propositional atom. Then the forcing relation is defined:

“We have changed Braiiner & de Paiva’s notatiop for the satisfaction operator to; @
for uniformity with the rest of our presentation, although their notation emphasises the view of
satisfaction operators as labels.

SA preorderc ought to stfice.
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M, g.mdlFp iff deVyu(p)

Mm,gmdl-i iff d -~y gi)

M, g, mdIF L never

Mog.mdlFp Ay iff Mg mdl-g¢andd,gmdl-y
M, gmdiEe vy iff 9,gmdl-gordt,gmdl-y

M,g,mdIF¢ — ¢ iff forallne M suchtham<n,
Mm,g,n,d¥ pordM,g,ndl-y

M, g, mdI-O¢ iff forallne M suchtham<n, foralld € Dy,
dR,d’ impliest, g, m d’ IF ¢

M, g, mdlF ¢ iff forsomed € D, dR,d” andit, g, m d’ I ¢
Mo.mdl-@¢ iff Mg,myg(i)l-¢

The first thing to note is that this semantics is divided into orthogonal intuitionis-
tic and modal dimensions. The modal accessibility relation for eachdistinct

from the intuitionistic ordering, although it ‘grows’ monotonically as we move up
the intuitionistic order. A standard generalised monotonicity result holds over the
intuitionistic order. There is no duality 6f and< operators, as in classical modal
logics. We note the essential hybrid elements: a nominal atom is assigned to, or
names, exactly one location, and the satisfaction opergtdo@ach nominal
atomi allows us to talk about what is the casegél, regardless of our current
location, although only within the confines of the current intuitionistic state. Sat-
isfaction operators only free us from our modal position.

Brauiner & de Paiva devote a good part of their attention to the development
of a natural deduction system for intuitionistic modal logic. The proof-theory
of hybrid logic is typically done with labelled systems, in which every formula
of a proof has a label attached. Labels correlate with locations. In Braluner &
de Paiva’s system, labelling is internalised in the language, by use of satisfaction
operators. The rules of inference are all for satisfaction formulae. A number of
proof-theoretical presentations of intuitionistic modal logic [e.g. Simpson 1994]
make use of labelled systems, in which formulae of the language are labelled.
Typically, to prove a sequent, you would begin by labelling each of its formulse
with the same arbitrary label, one not contained in any labelled formula in the
sequenﬂ With hybrid logics, this labelling can be internalised in an obvious way:

5For other work on the development of proof theory for hybrid logics, see Seligman [1991,
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a labelled formula: ¢ may simply be seen as an unlabelled formulas @f the
language. The ‘situated’ formula can simply be seen as being modified by a
satisfaction operator. As we noted, Bratiner & de Paiva would actually write the
formula @¢ asi: ¢, with “i:” read as a modal satisfaction operator, not a label,
although it makes their system look like a more conventional labelled system.

4.3. HBI

We now present our own preliminary proposal of a logil, which is an exten-
sion of Bl in the style of a hybrid modal Iog&.‘l’he treatment is rudimentary, and
entirely from a semantic point of view. We give a Kripke resource semantics for
HBI, but no proof-theoretical treatment. Indeed, we do not know whether there
exists a reasonable proof theory foBI.

We wish to avoid the introduction of an additional semantic index, like loca-
tion. As we have seen, it is typical in the intuitionistic hybrid logics in the litera-
ture for the forcing relation to be parameterised over two domains of objects in a

1997, 2001], treated further by Blackburn [2000a]; and Bei{2004a, 2004b]. There is also
work on display calculi for nominal tense logic by Demri & Goré [2002].

"Initially, we examined the possibility of characterisiBgby an embedding into an extension
of the modal logicS4, in a way analogous to a standard embedding of intuitionistic logic3ato
One such embedding [Troelstra & Schwichtenberg 2000, §9.2] is:

(]

p Op

17 = 1
@A)~ = ¢ Ay”
@vy)" = ¢ vy"
-9~ = O@" ->y")

The first embedding of this sort was found by Godel [1933]. Observe that in this case the embed-
ding of a proposition lettep asOp does the work of the monotonicity constraint in the semantics

of intuitionistic logic andBl. Such a constraint does not appear in the Kripke semantics4for

or for modal logics generally. Something similar applies for the conditional, compare the forc-
ing clauses for the intuitionistic conditional to the classical conditional of modal logics, which
considers only the current state of a model. So the idea here would be that the work of the mono-
tonicity constraint would be done in the embedding translation, but that no such constraint would
be placed upon the underlying valuation function. Hence nominals might be allowed to evade the
monotonicity constraint simply by embeddingsi and not asJi. Also note that it is possible

to construex as a standard two-place modality if an additional binary relation, the reverse of the
preorder, is introduced.
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model: the usual states, and a separate domain of objectsirntee nominals.
In this sort of arrangement, nominals cannot name resources, as we understand re-
sources irBl. The major drawback will be that the usual monotonicity constraint
cannot, by definition, be satisfied by the valuation function over nominals. In fact,
Brauiner & de Paiva mention the possibility of such a hybridisation of intuitionistic
logic “as a language for talking about intuitionistic Kripke structures”, but warn
that “[c]hoosing this option puts an excessive emphasis on Kripke semantics as a
guiding principle.” [2006, p. 236].

In addition to the usual propositional letteHBI contains an additional class
of propositional letters, calledominals which denote states of models. Brauner
& de Paiva [2006, 81] point out that nominals play a similar role in hybrid log-
ics to that played by constants (or names) in first-order logic. Under a resource
interpretation oHBI, nominals name resourcedBI also contains a satisfaction
modality @ for each nominall. A stronger extension might include a bind opera-
tor | for what is essentially existential quantification over nominals. We formulate
the semantics with a single domain of states in a model, that is, without the duality
of states and locations.

Propositions ofBl admit of a declarative reading, as statemeatisut re-
sources or ‘resource situatiovﬁs’But crucially, a proposition oBl is not itself
seen as a resource. (This is to be contrasted with the standard view in linear logic
of propositions as resources and proofs as actions upon resources; a view that
is proof-theoretically motivated.) In fact, resources that may be part of the sub-
ject matter of a statement go without explicit mention. We can say in this sense
that propositions oBl lack referential transparency. Consider the proposition
coin-«choc We can read this as: “If | had another coin, | could buy a chocolate”.
If we follow closely the forcing clause fo#, we can give the following gloss:
if the present ‘resource situation’ were ‘combined’ with any resource situation
in which | had a another ccﬁrthe combination would be a resource situation in

8See Pym’s [2002, pp. xxxii-xxxix] discussion, which contains twén and chocexample,
and the comparison with linear logic. “Declarative” is Pym’s adjective. Particularly helpful is
the comparison ofx with linear implication (recall the well-known embedding of intuitionistic
implication¢ — y as % — y) which illustrates the failure of a ‘use counting’ approach to
multiplicative implication inBl.

%We emphasisa@nothercoin. It is sometimes natural to restrict ourselves to models in which
e is a combination oflisjointresources.
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which | could buy a chocolate. Of course, the chocolate migist more than

one coin, but we are talking about a ‘resource shortfall’ of one coin. On the other
hand, we read the statemeaxtin — chocof linear logic as stating that | can ex-
pend exactly one coin to obtain a chocolate. With linear logic, the resource is the
coin (and the chocolate of course), and there is no background resource situation
to consider. InBI we can make a statement that certain additional resources are
needed to reach a given outcome, without any explicit mention of the resources
which are already available. Take as an example of a background resource a global
variable in an imperative computer program, which although not passed explicitly
as an argument to a function, and not figuring in any type signature for the func-
tion, may nonetheless be read or written by the function.

Our suggestion is thadBI might allow a mixed approach to reasoning about
resources, where we have these sorts of declarative statements intermingled with
denotational statements about resources, such that we can reason about explicitly
named resources. Although resources do not appear directly in the syntax of stan-
dardBI, they are the building-blocks of Kripke resource semantics: the states, or
possible worlds of the models are be regarded as resources, and the operation
combines resources in some underdetermined way.

We introduce nominal atoms as the names of resources, that is, as names
of states or possible worlds. We enrich the usual languad®l @fith nominal
proposition letters, |, k,... € Q, and for each of these, satisfactionoperator
@.@,.@:,.... There is a special nominal € Q which denotes the unit state
e. We also introduce a modal operator. Thus we have this grammar for well-
formed formulee oHBI:

p:=plilO|TILIGAGIdVIIdo> |l |dxdldxd|Oo| @

The set of nominal proposition letters, or nominal atdis enumerable, and is
disjoint from the set obrdinary propositional letter®. The setPUQ is called the
set ofatoms We propose an extension of the standard PDM semanticBIEr
A frameg = (M,e, e C, ~) is a standard frame fdl enriched with an identity

10see Galmiche et al. [2005, §5.3] and olir 32.7.
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relation~ on M. ~ must satisfy the constraint that ~ n only if m C n and
m 2 n. We do not require that ifn T nandm 2 nthenm~ n. That is, we do
not require thatt be antisymmetric. A modébt = (F, V, g) is a frame together
with a valuation functiorV : £ — p(M) assigning ordinary proposition letters
to sets of states, and assignmenfunctiong : Q — M assigning a single state
to each nominal proposition letter. Every assignngemiust satisfy the constraint
thatg(o) = e. Thus nominals can be regarded as names for states, and of course,
a state may have more than one name, or no name at all. Any valuation function
V on the ordinary propositions must satisfy the usual intuitionistic monotonicity
constraint:

if me V(p) andmC n, thenn e V(p)

We propose the following definition of the forcing relation:

M, mik piffme V(p)

M, mi-iiff m~ g(i)

M, mlk T always

M, ml- L never

M, miE ¢ Ay iff M, mi- ¢ andd, mik
M mik g Vvyiff M mik¢or I, mi-y

M, mlk ¢ — yiff for alln € M such thamC n,
N, N porM,nl-y

M. mli-lifecm

M, mI- ¢ =y iff for somen,n” € M suchthanen | andnen’ T m,
M, nl- ¢ andM, N |-y

M, mlk ¢y iff for alln e M such thatme n| andi, nlk ¢,
M, me n Iy

M, ml- Og iff for somen such thamC n, M, n - ¢
M, mi- @ ¢ iff M, g(i) I- ¢

The forcing clauses of the standard PDM semantics are unaltered. It might be ti-
dier now that we are dealing with the two valuatidhg to drop the monotonicity
constraint orV and internalise it in the forcing relation, thus:

M, ml- piff for somen such than T m, n € V(p)

but we will keep to our usual practice. In addition, we can could consider extend-
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ing the language with a bind operatgrhaving the following forcing clau@
M, mik [x¢ iff for somei € Q, M, ml- ¢[i/X]

where¢[i/X] denotes the formula obtained by simultaneously replacing all un-
bound occurrences ofwith i.

Regardless of which stata we are at, @ is true it ¢ is true at the state
named byi. A satisfaction operator makes you forget where you are, and consider
the situation elsewhere. If a satisfaction formula is satisfied in a model, it is valid
in that model. We can then express, for example, the facti thatl ] name the
same resource by writing;@ By writing i A ¢, we say that the statemegtis
true of the resource denoted bgnd that we are situated at the state named. by
Formulee of these forms allow us to talk about the attributes of particular, named
resources in a model, from global and situated perspectives. Nominals occurring
in a formula carry the ‘force of circumstance is the name o€, and the situated
counterpart of the propositional constantit is the least state at whichholds.

With the inclusion ofo, the formulao — 1 is e-valid.

The & resembles the of S4 because is a reflexive and transitive. In gen-

eral, we can express in formulae the ordering of states denoted by nominals:

@ Oj iff g(i) = g(j)-

This statement expresses a fact about the frame’s preorder from a global perspec-
tive, asserting nothing about the situation in which it is uttered. The related, situ-
ated statementa <j holds if g(i) C g(j) andit is uttered in the situation aj(i).

Under the resource interpretation we can réads ‘g(i) would be a sfficient
substitute for the current resource”.

It can be seen immediately that generalised monotonicity does not hold for this
semantics. That is, it does not follow fro®i, m |- ¢ andm C n that9t, n I- ¢
for an arbitrary formulap. This is precisely because the assignment funagion
does not obey the monotonicity constraint: a nominal holds at exactly one state.
If a nominal holds at a given state, it cannot hold at any other state, and hence not

again we have an clash of standard notation,Jistconventionally used as the bind operator
in hybrid logics.
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at any distinct state that is placed equally or higher in tleomter. Generalised
monotonicity does hold, however, for formulae containing no free nominals, that
is, no nominals outside the scope of any satisfaction operator, as will show in the
next section.

The statement — ¢ means the same a% in S4. Suppose we added@
operator, having the forcing clause:

M, mIF Og iff for all n such thamZ n, M, n - ¢

Then we could easily see that, mIF Og iff 0, mIF T — ¢. HBI, like standard

Bl and intuitionistic logic, has the expressive powertoin S4 built-in to the
forcing clause for-, because the meaning-ef is monotonic and the relatianis
reflexive and transitiv@ It is just that those other systems are better-behaved; by
maintaining generalised monotonicity, they givegus T — ¢ andT — ¢ F ¢.

But although inHBI, we do not get the mutual semantic entailmenpahd T —

¢, it is still the case tha®t I ¢ iff M IF T — ¢. That is, they are equivalent for
validity (and indeeck-validity) in a model. So the proof-theoretic equivalence of
¢ andT — ¢ is notin such danger after all; it should certainly obtain for (alleged)
theorems and their sub-formulae, or more generally sub-formulae in sequents. We
can say thav, = ¢ iff o, = T — ¢, but this is not to say that the statemegts
andT — ¢ meanthe same thing. They are semantically distinct in the absence of
generalised monotonicity.

Let us consider some more examples of the expressive powéBIofA for-
mulai = j says that the present state or resource is higher in the preorder than,
or equally placed with, the combination of the two resources nameadahy j.

12gtandardBl does not contain the expressive powerdofn S4, though. Like intuitionistic
modal logics generally{BI lacks the duality of boxes and diamonds that we find in classical modal
logics. We cannot show by a semantic argumentifiam |k T — ¢ if M, mIF O(p - L) — L.
But we can obtain a neat characterisation of intuitionistic double neg&liomI+ (¢ — 1) — L
iff M, m Ik OC¢. We prove this as followsdt, m IF (¢ — L) — L iff there is non such that
mC nandM,n ik ¢ — L iff for everyn such thaim C n there is som&’ such than C n” and
M, ko iff M, mik OO,

13Cf. the use of the generalisation rule in Hilbert-style proof systems for modal logic. Although

. . . . F¢ .
there is no axionp — Op, there is a rule of mferenc% which acts upon theorems, but not
F U
upon formulae in general.
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Remember that we redadas a comparison of the ‘sliciency’ of resource@ So

on this readingj = j says that the present resodﬁ:is suficient for any task that
requires thes-combination of the particular resources named byd j. A for-

mulai - ¢ says that eitheg holds for thee-combination of the resource named

by i with the present resource, or that that combination is undefined ¢ says

that if the resource named lyis greater than or equal to the present resource,
theng holds for the resource named byAlthough it is monotonic in its ambit, it
really only says something about at most one resource. At most one because our
commitment to the claim abouwf(i) is conditional upon the modal accessibility

of g(i) from the present state. Thisfi#irs from the meaning of @, which says
unconditionally, or globally, thap holds at the resource named at — ¢ holds

in the case thaj(i) is not accessibld.Vv ¢ says that eithep holds for the present
resource, or the present resource is the one named byj says that the present
resource is the one named byr the one named by Conditionals with nominal
consequents are peculiar in their meanifig» i says that holds for no resource
greater than or equal to the present one, with the exceptig(i)off indeedg(i)

is greater than or equal to the present resource. It can be thought of as an ‘almost-
negation’.¢ - i says that wheneverholds for a resource, and tkecombination

of that resource with the present resource is defined, that that combination is the
resource named hy Consequently, if the combination is definedholds at ex-

actly one resource in the model (and furthermgreust be a nominal, or a loose
formula, as defined in the following section, or hold only at an upper bound of
C). For any of these examples in which we have used the form of words ‘for the
present resource’, we can produce, by the application of ag@rator, a global

or delocated example in which “the present resource” is replaced by the resource
g(j) which is named by;.

There is a limited sense in which we can capture the content of classical im-
plication using nominals and satisfaction operators. A forcing clause for classical

14The semantics ol are not sophisticated enough to express comparisons of resources with
respect to sfliciencyfor a given task It does, however, permit us to express the idea that any
resource that is sficient for a task represented by the form¢ls suficient to carry out the task
represented by the formulg by writing ¢ — .

158y which | mean the state of the model at which we presently stand. We might talk instead
about the resources available to us in our present situation.
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implication will refer only to the current state. We can siatela classical condi-
tional¢ — y, at the cost of anonymity, using the ‘narrowingfext of @:

in(@o— @y)

Wherever we are in the model, the truth of g@— @ y depends only on the
situation ati. Then the conjunction with asserts circumstantially that we are
atg(i). This formula does not express classical implication in a ‘portable’ way,
though, because it is bounditoA variation on this idea is:

i/\¢—>1//

which says that ify(i) is accessible and holds there, theg holds there.

Blackburn et al. [2001, p. 438f] give axioms for normal hybrid logics. The
axioms involving satisfaction operators, with the exception of self-duality, are
valid in HBI, even for intuitionistic implication. We just mention thesestands
for an arbitrary nominal and for any formula.

Q@@-y) - (@¢—Q@Qy) Kg

iNg > Q@9 INTRODUCTION
Qi REF

@je @i SYM
Qirn@o— @9 NOM
@QQ@¢— Qo AGREE
C@p—> @ BACK

The formula®i A @ ¢ — O¢ (BrIDGE) is readily seen to be valid, as isN@ ¢) —

¢ (ELimiNaTION), although it is obtained fromxtrobucTion in the classical system
by self-duality.K g is a variation on the standard axiom for modalities, and holds
in our intuitionistic contextrer, sym, NoM, AGREE €Xpress the properties of names.
AGREE Says that only the innermost satisfaction operator mattess: gives us
transitivity of names.

4.4, LOOSE FORMULZE AND MONOTONICITY

We conclude with a result admitting a limited form of monotonicityHt8l.
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Definition 36 A formula islooseif it has the following recursively defined syn-
tactic form:

(i) Any nominal atom is loose;

(i) ¢ Ay isloose it eitherg is loose ony is loose;
(i) ¢ v ¢ isloose it eitherg is loose oy is loose;
(iv) ¢ -y isloose ff v is loose;

(v) A formula of any other form is not loose.

Any formula which is not loose igght. O

All formulae of the formsp — y, ¢ = and @¢ are tight, as are ordinary propo-
sitional atoms and the logical constamtsL andl.

Theorem 4 (Qualified, or Tight Monotonicity)

If 9, mlk ¢ andg is tight andmC nthen?i, n ik ¢

Proor The proof is by induction on the depth of a formula. First, the base cases.

1. If M, mik pthenMt, n Ik p for all n such thaim C n, by the monotonicity
constraint on the valuation function

2. i is not tight;
3. 9, nlk 1 foralln;
4. ltis never the case th&®, mI- L.

5. If M, mIk | theneC m, so for alln such thamC n, e C n by the transitivity
of C, soMi,nlk 1.

Now, the inductive cases. The inductive hypothesis is thatgftight andt, m I+
¢, thendt, n I ¢ for all n such thamcC n.
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1. Suppose that A ¢ is tight. Thenp andy are both tight. Now suppose that
M, miE ¢ A¢. Thendt, mIF ¢ and9t, m I , by the forcing clause for
A. Then by the inductive hypothesis (twice, fband fory), 9t, n I+ and
M, n - ¢, for all n such that andn C n. Then by the forcing clause fa,
M, n -y A ¢ for all nsuch that andnC n.

2. Suppose that Vv ¢ is tight. Theng andy are both tight. Now suppose that
Mml- ¢ Ve Thent,m - ¢ or M, m - ¢, by the forcing clause for
V. Then by the inductive hypothesis, in the case fhiam IF , D, n I+ ¢
for all n such that anan C n, and in the case thait, m - ¢, M, n |- ¢ for
all n such that anan C n. Then by the forcing clause for, in either case,
M, nlky v ¢ for all nsuch that anan C n.

3. ¢ — y is always tight. The following holds regardless of whether either
¢ or ¢ is loose or tight. The inductive hypothesis is not required, and in
this sense, monotonicity is built into the forcing clause-fer Suppose that
M, mI- ¢ — . Then for anyn such thatm C n, eitherdt,n ¥ ¢ or
M, nlIF y. For anyn’ such than C n’, we havemC n’ by the transitivity of
C, so for anyn’ such thain C n’, we have eitheft,n” ¥ ¢ or M, n’ I .
Hence for anyn such thamC n, 91, n I+ ¢ — ¢, by the forcing clause for

-,

4. ¢ =y is always tight. Suppose th@k, m - ¢ . Then there exist, 0’ such
thatn e 1’ is defined ancdhe " C mandi,n IF ¢ and, n’ IF . Then
for anym’ such thamC m', there exist the same n’ such thanen’ C '
andfi, n I- ¢ and9, N’ I- ¢, by the transitivity ofc. Again, the inductive
hypothesis is not required.

5. Suppose thap -y is tight. Theny is tight. Now suppose thabt, m I+
¢ - y. Then for anyn such thatt,n I ¢ andm e n is defined, we have
M, me n I . Now suppose thain C nY. By the bifunctoriality ofe,
menLC mM en, whenme nandnt e nare defined. Then in the case thias
tight, we have by the inductive hypothesis that for arsuch thatit, n IF ¢
andm e nis definedJt, Nt e n I ¢, and hence tham, nY Ik ¢ -y by the
forcing clause forsx. [
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Generally speaking, loose formulae are non-monotonic. Aitigdaonjunction
where one conjunct is loose holds at at most one state. It does not exhibit mono-
tonic behaviour. (Unless, trivially, that state is an upper bourd.pAn additive
disjunction where one conjunct is loose may hold at states which are not compa-
rable usingz, or between which a gap lies, that is, given an ordenmgn’ C n”,

it may hold atn andn”, but notn’.

It might be a reasonable suggestion that since we have relinquished full gener-
alised monotonicity, that it would not be such a bad thing to modify the definition
of the forcing relation in ways that would weaken the tight monotonicity result of
Theoreni#, but increase the expressivityi@l. We could remove explicit mono-
tonicity from the forcing clause for, thus:

M, mik ¢ =y iff for somen,n” € M such thanen’ ~ m,
nm,nl-¢anddM,n -y

Consider that in the above proof, and well as in the original proof of generalised
monotonicity (Lemma&ll), that the inductive hypothesis is not required in the case
for =, which is what allows all formulag = y to be tight. With this modification,
a formulai = j would have a more particular meaning: that the present state is the
e-combination of the states named bgnd j. This would allow us to use to
construct names for compound resources, which would seem most desirable.

We might imagine that the cost would be that formulee of the forg could
only be classified as tight # andy were each tight. But even then, the case
for « in the proof of a modified tight monotonicity result would falter as follows:
Suppose thag=y is tight. Thenp andy are tight. Now suppose th@k, m - ¢xi.
Then there exist’, n” such that’ e " ~manddi, ' Ik ¢ and9t,n” I+ . By
the inductive hypothesiot, m' Ik ¢ for all nY such thaty C m' and9t, M’ I-
for all m” such thain” C n’. By bifunctoriality,n” e n” T nY e m’ for any such
N, m’. So we havet, m e N’ IF ¢« for anynY, m” such thainC nY e m”. But
this does not put us in position to say anythaigutn such thatn C nin general;
there may exish such thatmC n, andn ~ nt e Y’ for any of thesen', m’. So it
looks as ifg «  would have to be classified as loose, even whandy are tight.
Moreover, we can see that if this change were make to any of the Kripke resource
semantics for standagl, that generalised monotonicity would fail.
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CONCLUSION

We hope that we have illuminated some of the interstices of the logic of bunched
implications, in particular of its Kripke resource semantics, and the interaction of
the semantics and proof theoryBf. We hope too to have indicated h@tmay

be understood as a logic of resources, looking through a semantic lens, and es-
pecially through our exploration of various hybrid semantics, including our own
tentative semantics fdfiBI, which represents an attempt to introdunaames for
resourcesnto Bl. We have tried to show how the resource vievBoifs motivated

by its semantics, rather than by its proof theory, as is the case with linear logic.
We have trailed a thread from the categorical view of the proofBlads a bi-
cartesian doubly closed category (DCC), through the proof theoBt ef both

the sequent calculusBl and our own contribution, the systesBISg in the cal-

culus of structures, through to the Kripke resource semantiBs oy way of our

proofs of the soundness and completenesgBi8g, and eventually to the hybrid
standpoint. The work 08BISg showed how to extend Tiu's treatment of intu-
itionistic logic in the calculus of structures Bi, which is an intuitionistic logic
extended with multiplicative conjunction and implication. In particular, we have
demonstrated — essentially by way of the soundness and completeness proofs —
that a two-valued system of polarity isfBuaient for the proof theory oBl in the
calculus of structures, despite the presence of two kinds of implication. (Four
polarities, or a system of arbitrarily complex polarity labels, might have been rea-
sonable guesses, and would have made the proof theory immensely complicated.)
This work attests to the versatility and naturalness of the calculus of structures,
and also to the naturalness Bff indeed we think that it expresses the essential
structure oBI more perspicuously than do other formalisms. Our soundness proof
showed how to handle deep inference in a semantic setting, when dealing with the
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calculus of structures. Our work on the completeness prowohipied us to study

a common approach to completeness for logics of intuitionistic character; and to
look closely at the complications surrounding the handling of inconsisterigly in
and at the fine structure of the Kripke resource semantics.
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APPENDIX A

CUT-ELIMINATION FOR PROPOSITIONAL LINEAR LOGIC

Cut-elimination is an established result for linear logic, proven for proof-nets
by Girard [1987a] and for a sequent calculus by Lincoln, Mitchell, Scedrov &
Shankar [1992]. We set out to construct from first principles a detailed proof for
the right-sided sequent calculus presented by Girard [1995] (see Eigure A.1), us-
ing established techniques for sequent calculi generally [Negri & von Plato 2001].
For cases involvingontractionwe follow Lincoln et al. [1992] in the use of the
derived ruleCut!, or multicut

The multicutrule is admissible in the sequent calculus watht It is used to
simplify the proof (and it turns out to be indispensable in implementing a cut-
elimination algorithm, to avoid diculties in representing indefinite sequences of
contractiors). We use it in the following way. We write £" as an abbreviation
for n consecutive occurrences A AWhen we encounter a derivation with several
contractions preceding a cut:

= I, (%)"

——— contraction
=T, ()" .
—— contraction
=>T,7% =g, A
cut
=TI,A

we rewrite it as an occurrence of thmlticutruIeEl thus:

1A degenerate multicutwith n = 1, is simply acut
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i i =T, = ¢t A r
g identity ¢ ¢ cut exchange
’ =T,A =T
—— Oone : true =T
-1 No rule introduce® ST T T false
:'>F’¢ :'>ly[/’A . :?F,¢,l//
times ————par
>0, A =>0Lo®yY
= F, = r, = F, = Fa .
¢ v with il left plus =LY right plus
=>TLo&y =>T,00¢% e 2 W0X:Y
=>d,¢ ] )
promotion weakening
=>U,!¢ =1,7%
=1I,¢ o =1T,7%p, 7% _
dereliction = —————— contraction
=1I,7 =1I,7

Figure A.1: The right-sided sequent calculus for linear logic

1+ = 1 1+t =1
T =0 ot =T
(P = p () = p
(pey): = ¢ By* (@By) = ¢y
@&y): = ¢-oy" @oy) = ¢ &y
(lg)- = 2 () = l¢*

¢~y ="y

Figure A.2: Defined connectives linear negation and implication
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=>TIL,70)" =1t A

multicut(n > 1)
=TI,A

In fact, we can say thaulticutis simply a compact representation of derivations

of this form. After all, the cut-elimination procedure is applied to proofs that are
already known to be valid, so every rewritten derivation is known to be valid, and
the multicut representation has the same premises and the same conclusion. In
this sense, we do not need to define admissibilitpnafticut, but merely regard it

as syntactically defined. But if we regard it a rule new rule which we would like
to addconservativelyo the system, we do need to prove admissibility. Thinking

in this way, we consider howmulticutmay be replaced, rather than rewritten.

Theorem 5 The multicut rule in admissible in the sequent calculus, that is, any
proof containing a multicut can be transformed into a proof not containing a mul-
ticut. .

Proor The proof is by induction om. An occurrence ofmulticutin a derivation
can always be replaced as follows, with the same premises and conclusion, and
preserving validity:

——— contraction ———
=T, (7)1 = ¢, A
cut
=TI,A
until n = 1, in which case the replacementilticutis simply acut =

Variants ofmulticutare used in cut-elimination proofs other than for linear logic.
Exponential operators are peculiar to linear logic, butlticut can be used to
handle multiple occurrences obntraction

Definition 37 Weight is an inductively-defined measure of the complexity of a
formula:

weigh{(p) = weigh{L) = weigh{T) = weigh{0) = weigh{1) = 1

weigh{¢*) = weigh(¢)

weigh{¢ o y) = weigh(¢) + weigh{(y) + 1
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wherep is any propositional variable or constant, and any binary connective.
Cut-weight is the weight of the cut-formula in an application of ¢aérule. The
height of a derivation (or rule application) is the sum of the heights of the deriva-
tions of each of the premises of the derivation, plus one. Cut-height is the height
of an application of theutrule. The operator between a pair of proofs means
“reduces to”, but says nothing about cut elimination or reduction in cut-weight
or -height;> means “reduces, eliminating the cut, te’;, means “reduces, with
reduced cut-weight for all replacement cuts, to”; andmeans “reduces, with
reduced cut-height for all replacement cuts, to”. o

Theorem 6 (Cut Elimination) If a sequent of propositional linear logic can be
proven using theutrule, it can be proven without using tleait rule. 0

Proor We give a procedure by which any proof containing applications of the
cutrule can be transformed into a cut-free proof. The cut-elimination procedure
is defined inductively. At each step, a cut in a proof is replaced either with a
cut-free derivation, or by one or more applications of cut, having strictly smaller
cut-weight or cut-height. Cut-weight and cut-height are obviously well-founded
measures. Cases are divided into several groups: (i) either premise of the cut is
an axiom; (ii) both premises are principal in their derivations; (iii) one premise is
principal in its derivation; (iv) neither premise is principal in its derivation. Cases
in group (i) remove a cut outright; in group (ii) replace the cut with one or more
cuts of strictly smaller weight; in (iii) and (iv) replace the cut with one or more
cuts of strictly smaller height; in these cases we are ‘permuting the cut upwards’.
(In a number of cases, there is more than one way, magkdbangeto replace a

cut, and hence the procedure lacks the Church-Rosser property.)

(i) ExrrHER PREMISE IS AN aAxioM.  The following are all the cases where at least
one premise is an axicﬂwmoduloswitching left and right cut premises, rewriting
negated formul%and interposing exchanges:

2“Axiom” is an abuse of terminology; we mean a rule having no premises.
3Negation (¥ in linear logic is recursively defined by rewriting rules. For exampie)* :=

[ A
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W identity
= 0,

= ¢, A

When one premise is the conclusiortfe, the other premise must be the conclu-
sion ofidentity: there is no other way to introdu€@ Hence this is just a special
case of thadentityelimination.

true identity

=>I,T =0T

e true

cut =>I,T

=>I,T

There are no cases for one, since this rule concludes in a sequent with only one
formulain it. The rule fofalseis a special case, but not actually an axiomatic case.
The negated cut formula on the right mustlyevhich can only be introduced in

a singleton sequent, hence the cut delta must be empty or contain only bottoms,
introduced by false and why not-formulae, introduced by weakening. If the cut
delta is non-empty, theis non-principal, hence the cut will be permuted upwards,
until a singletorl is reached.

I false ——one>e —
=T, 1 =1 =T
cut

=T

There is another possibility, where why not-formulee are introduced following the
introduction of1 by applications ofweakening In these casesyeakeningcan
always be applied to reach the eventual conclusiori’, ?A, given= I'. But
strictly speaking, the cut-formula is not principal on the right in this case, which
would in any case dealt with less directly.

(i) THE CUT-FORMULA IS PRINCIPAL FOR BOTH PREMISES. A double line indicates

that an application of exchange may be required. In both possible reductions in
this case, the cut-weight for each of the replacement cuts it strictly less than the
original cut-weight.
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=T, 0,4 = A¢t =Yz

"7 par times ~w
>To®y = ¢ QU A Z .
cu
=>I,A,Z

=>I,0,y =y*tZ

cut
=>I,Z,¢ = ¢t A
cut
=>I,A,Z
>y,¢ = ¢HA
OR cut ———
=>I,Ay = yt,Z
cut

=>I,A,Z

The case with &@mescut-formula on the left is the mirror-image of the preceding
case, and is omitted.

=T,¢ =Ty = A, ¢*

>o&y = ¢t dYt, A cut
cut =TI,A
=TI,A
=T, =T, = Ayt .
¢ v with —— right plus
=>To&y = ¢ oYt A
cut
=TI,A

W Ty =yt A
=TI,A

cut

The cases with pluscut-formula on the left are the mirror-images of the preced-
ing case, and are omitted.
Now we treat the exponential rules.
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:}l—‘ ﬁ?A,¢J_

’ ¢ i > ° -
———— dereliction ==———=promotion “w =T, = ¢+, ?A
=>1,7% = ¢+, 2A ¢ ¢ cut

cut =T,7A
=>1TI,7A
But when we encounterrmaulticut
=T, ()"t ¢ = 7A, ¢t _
dereliction === promotion ~
=T, ()" NPT
multicut
=TI,7A
=———— promotion
=10, (2)""  =1p"72A :
multicut e
=T,7A,¢ = ¢, 2A
cut
=T,?A,2A _
——  weakening
=>TI,7A

The lower replacemertut is of strictly lesser weight than the original multicut,

but the replacememhulticutdoes not always decrease the cut height, that is, if the
derivation of the right premise was equal to or greater in height than the derivation
of the left premise. Instead, we have to perform an inductiom,omhich will
eventually reach 1 after repeated applications of this reduction, that is, the simpler
cutcase will be reached, and cut-weight will be strictly reduced.

(iil) ONLY THE LEFT PREMISE HAS CUT-FORMULA AS PRINCIPAL.  ThiS encompasses
cases where the right-hand premise is the conclusioncof. dn these cases we
permute the cut upwards. We divide the cases in two, depending on whether the
right-premise derivation has one or two premises. There is no further need to treat
individual connectives separately.
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: . :
=yt A =T, =yt A
L at R~ ad ad cut
=TI,y = x5, AN =T,A
cut — R
ST, A =T,A
.L : : L :
=y, A =Z o =TI,y =y, A :
L Ro cut ——
=T,y =YL AN, Z . =T,A =7 R
cu
ST,A,Z ST,A,Z 2

There is a trivial variant of the second case, where the cut-formula originates in
the right premise oR,. If R, is cut, its new application does not decrease in
height or weight, but it is permuted downwards, and will be dealt with directly in

a subsequent visit. But there is dfdiultly. The cut-height is not actually reduced
where the height of the derivation of the left premise is greater than or equal to the
height of the derivation of the right premise. The height of the derivation of the
right premise does strictly decrease, however, but it is necessary to invoke another
induction. When the replacemettitis visited again, it will be either:

1. Under one of the present cases, in which case the height of the derivation of
the right premise of the replacementit will again decrease; repetition of
this case must eventually lead to one of the remaining cases, because height
strictly decreases. This includes the case where the right premise of the
original cutis the conclusion of aut,

2. (a) C*is principal in the derivation of the right premise of the replacement
cut: in this case, the cut-formula will be principal in the derivation of
both premises, and we have already established that for all of these
cases, cut-weight strictly decreases;

(b) The right premise is an axiom, and the cut is eliminated.

(lV) ONLY THE RIGHT PREMISE HAS CUT-FORMULA AS PRINCIPAL.

=2%% >y =x4LA

Sra "t Sea ra
9 9 ﬁ 9

at at cut — L
=I",A =I",A
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: =T, =yt A :
L, ——R ~ ad 0wt
=I",x =y A = AT =>Z
cut L,
I A =I7,A

=TI,y =7

The argument proceeds as above.

(V) NEITHER PREMISE HAS CUT-FORMULA AS PRINCIPAL.  In all of the following cases,
cut-height is strictly reduced. If left and right premises are both conclusions of

one-premise rules, there are two possible outcomes; either order of left and right
rules is acceptable.

=T,x L =xhA

T A >
=I",x ! = yH A '
cut
=TI A
>y =x4LA >y =xy4LA
=>T,A et or =>T,A -
=TI, A ! =>TI,A
— R — L
=T,AN >IN

If left and right premises are conclusions of rules witffiedent numbers of premises,
there are also two possible outcomesdulotrivial variations.

=1I,x :>XJ‘,A =7

’ 1 1 ’ R2 ”
=1 x =y,A
cut
=TI, A
=Ty =xy."A =Ty =xy4LA :

cut OR cut ——
=>1TI,A : =>1TI,A =7
—F0L — R
I A =7 =>TI,A

Ro — L

=TI, N =TI A
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Thel, /R, cases are a mirror-image bf / Ry:

=7 :>F,)(L = x5 A

>
=>I"x 2 =y N '
cut
=TI, A
=>Iy =x4LA =>Ty =y4LA
cut OR cut
=7 =>1TI,A : =>1TI,A R
ST.A 2 =7z STA
— R L,
=T, AN =I" A

If left and right premises are conclusions of rules both having two two premises,
there are also two possible outcome®dulotrivial variations.

=x.I =Z =>x*A =H

2 R~
=I",x = x5, AN
cut
=T, A
=Ty =xy4LA :
cut
=>TI,A = H
= AT =7
Lo
=TI, A
=Ty =xy4LA :
OR = AT cut =7
L, .
=TI A = H
Ro
=TI, A

The alternative possibilities in these cases correspond to the order of application
of the left and right rules from the original cut. There are further, less interesting,
variations according to the origins of the cut-formula and its negation, which we
omit. -
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