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Abstract

The rapid growth of biomedical literature has attractednest from the text mining community
to develop methods to help manage the ever-increasing amofidata. Initiatives such as
the BioCreative challenge (Hirschma al. 2005b) have created standard corpora and tasks
in which to evaluate a variety of systems in a common framkwddne such task is gene
normalisation, in which the problems of synonymy and patygeén gene name identification
are overcome by mapping each mention back to a unique identiiambiguously identifying
that gene. This task is one of the foundations required fgrkamd of text mining system
working with biomedical literature, where we must be veryta® of which genes are being
discussed in the text.

In this work, we present two systems for gene normalisatomaive system performing no
disambiguation and a machine learning-based approaclnatiempts to overcome limitations
in the work of (Crimet al. 2005). These systems are evaluated on data taken from the firs
BioCreative challenge.

For each of these systems, a variety of methods are exanoreskist gene name identi-
fication, either by adding new gene names or removing unligehdidates. These techniques
successfully improving the gene name identification of gistesm. We find that with data re-
lated to some organisms, filtering out unlikely gene namelicktes allows the naive system
to achieve high performance without the need for furtheamlisiguation. After optimising
the identification phase, we try to improve the machine liegrapproach by implementing
a variety of novel features, expanding upon the small feaset used by Crinet al. (2005).
Unfortunately, we find that a larger feature set has littlpact on results. An analysis of the
data and of the errors generated by our system reveals ldfgieedce between the data of each
organism, indicating that better performance may be obthlny creating different solutions for
different organisms.
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Chapter 1

Introduction

Consider a biologist reading an article about the fruit fligocomes across tlwtock gene,
a gene which helps a fly’s body to keep track of time. As ourdgdt is interested in this
gene but knows little about it, he turns to Pubmed (Whestlat. 2004), a search engine across
biomedical citations and research abstracts, and perfaragarch for the termlock Below
are three text fragments from documents which are assdaaatk theclockgene.

e ...as a physiologicatlock, it appears...
e ...The mouselock gene encodes a ...
¢ ...theperiod gene, a central component of...

In the fragment taken from the first document, we see thattimedlockhas been found, but
in this context it refers to a time-keeping device, rathanth specific gene. This demonstrates
the first issue we must overcome when performing text minmipé biomedical domain; the
names of genes and gene products are quite ambiguous. Twrpeaftask effectively, there
must be a method to determine when a reference refers to angeame=and when it does not.

While the second document contains a referencedioek gene, it is not the gene we are
after. Instead, it is a gene within the mouse, rather tharilyh&lot only do genes have many
different names, but a single gene name can refer to difféiads of genes. These genes can
either occur within different species, as demonstratedereikample here, or alternatively there
may be different genes within a single organism that go bys#me name. In the flgJock can
refer to 6 different genes.

Finally, in the third document, we see that the tesiock does not appear. However, the
termperioddoes appear and in this case, it is a synonym for the gene &hatensearching for.
Unfortunately, as it is labeled here with a different narhés locument would not be returned
by a standard search. This highlights the third issue; desiggne can have many synonyms.
Theclock gene in this example has 13 different names. If a text mirasg ts unable to take
all of these names into account when looking for a gene, thamynoccurrences of it will be
missed.
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Any text mining system must not only be able to identify geaenes, but must be able
to determine exactly which gene is being referenced in aispeontext. These two subtasks
of gene name identification and disambiguation make up sledbgene normalisatioja task
that is one of the foundations required for any kind of textimg system working with biomed-
ical literature. To perform fact extraction procedureglsas protein-protein interactions or the
generation of co-occurrence statistics, we must be vemgiceof which genes are being dis-
cussed in the text. It is also important for informationiestal tasks, where gene normalisation
can facilitate query expansion, increasing the numberle¥amt documents available.

If such a system is applied to our example above, the quemyitereplaced with a unique
identifier, FBgn0003069 This term also replacgzeriod in the third document, while the oc-
currence in the second document is replaced with an idanfitiiea mouse genéyG1:99698
The first fragment has no identifier as there is no gene beisgudsed. Once this has been
performed, it can be clearly seen that only the third docunserelevant.

The task of gene normalisation was recently investigatethatBioCreative Challenge
(Hirschmanet al. 2005b), a text mining evaluation focusing on the biomedimahain. Here,
Crim et al. (2005) presented a gene normalisation system which usestamadearning-based
approach. Though one of the best performing systems at Baif®e, this system gives few de-
tails as to how identification of genes is performed, relieso incomplete list of gene names,
and a uses a quite limited feature set.

We present a system, based on a similar framework to €riah (2005) , which attempts to
overcome these limitations. This is contrasted with a diwry-based lookup approach, which
performs no disambiguation. For each of these systems,ietywaf methods are examined
to assist in the identification phase, either by adding nemegemes or removing unlikely
candidates.

We examine the performance of a state-of-the-art geneifobation system, demonstrat-
ing that the rich information that can be obtained from bidroal databases allow a simple
dictionary-based lookup system to achieve competitivatifieation performance for some or-
ganisms.

A number of novel features are implemented to extend thefeaet applied by Crirat al.
(2005), derived from external resources and lexical inftfan. The use of additional features
leads to only slight increases, revealing the difficultylo$task.

Finally, we present an analysis of each data set which ifiemthe complexities and ambi-
guities unique to each organism followed by an analysis @&tinors generated by our system.
The combination of these analyses shows each organismssiriben a quite different issues
and creating separate solutions for different organismsyiedd better results.

In Chapter 2, we give a detailed definition of the task, ini@@lthe data used in this work
and present previous work in this area. Chapter 3 outlinesutbhitecture used by our system,
with Chapter 4 presenting the results of our experimentap@r 5 contains a more detailed
analysis of our results, with our final conclusions and gaeduture work in Chapter 6.
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Background

In this section, we provide an overview of biomedical texhimg, followed by some basic
definitions associated with gene normalisation. We thertudisthe BioCreative challenge, with
a focus on the gene normalisation tasks and examine the dataqed from BioCreative for
use in this task. A summary of previous work related to germrenatisation is also presented.

2.1 Biomedical text mining

Within the last decade, research efforts like The Human @enfroject (Landeet al.
2001) and recent technological advances, including micagadata generation, advances in
DNA sequencing and in medical imaging, have lead to a dramatrease in the rate at which
scientific data can be produced (Buetow 2005). This increedata has also meant the level of
scientific literature generated by the biomedical comnyumais grown rapidly.

One development which has been crucial to managing the flbo@w publications has
been the advent of online databases and repositories.cBtibh indices, such as MEDLINE,
have given researchers access to millions of biomedic#laadis while gene databases, such as
Entrez Gene (Maglottt al. 2005), provide up-to-date information on gene familiegshpays
and homologs can then be used to infer information aboutynéistovered genes. These kinds
of repositories have allowed researchers to share thewledge with others, facilitating new
research(Collingt al. 2003).

However, the exponential growth of the literature has beefast that it is impossible for
even a large team of researchers to be able to comprehensiomatéde proportion of it (Cohen
and Hunter 2004). This makes it difficult for online reposis to remain up-to-date while
maintaining a high quality of data. The idiosyncrasies anbedical literature also make it
difficult for traditional data-management techniques td/useful results (Buetow 2005). New
methods are needed to cope with this information overload.

In an effort to improve current information retrieval prgses, attempts are being made
by the natural language processing (NLP) community to atigitniques which have been
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traditionally used on domains such as news articles to taédical domain. Tasks like multi-
document summarisation (Maglat al. 2005), allow for better management of the data by
making it easier to find and digest information, while newiscare being created to facilitate
the automation of database curation (Alfaratal. 2005).

More than just building a better search engine, the largeustnof data available in the
biomedical literature can also lead to a variety of new ifees about the way that biology
works. Research is currently being conducted into usingrmétion found in the literature as
secondary information to assist with analysis of microadata (Chaussabel and Sher 2002).
Methods are also under investigation which would use terimgitechniques to discover new
relationships between genes or to discover how sets ofipsatgeract with each other (Cohen
and Hunter 2004). The success of these types of tasks wdald falr a reduction in the work
done in a lab by narrowing down the search space, allowingdigts to experiment with only
combinations that have shown up as likely pairs within therditure. A similar technique can
also use the co-occurrence statistics of genes within teeature to build hypotheses of how
the underlying biology operates (Bekhuis 2006).

Before any of these tasks can be performed accurately, gemeafisation must be per-
formed to unambiguously identify all genes which are reférto within the literature. It is
foundation of many NLP processes in the biomedical domain.

2.2 Gene Normalisation

A gene mention is a textual entity which refers to any genésqurioducts, such as proteins,
RNA, binding sites, promoters etc. Though itis possibla&ate a more fine-grained definition,
whereby each gene product is classified into separate groupsactice this is quite difficult.
Even experts within the biomedical domain are only able tead 7% of the time on whether
a specific mention refers to a gene, RNA or protein (Taredlzd. 2005).

Gene mentions have a variety of idiosyncrasies not encoethia common proper nouns.
While the issue of gene mention ambiguity with relation td teining systems has only become
an issue in recent times, researchers have long identifegcathbiguity within gene nomen-
clature has made it more difficult to share information asrdéferent biological fields. To
overcome this obstacle, naming conventions were createlduiman genes in the 1950’s and
60’s setting the way for similar standards in other orgasishlowever, many in the scientific
community have tended to use existing aliases rather thaptiag official names set out in
nomenclature guidelines, with influential scientific papkaving more impact on the choice
of gene name than the standards themselves (Tamames andi&#606). Newly discovered
genes tend to follow official guidelines, but after a timeaeafacquire unofficial synonyms.

The enforcement (or lack thereof) of naming conventiongfspecific organism have a sig-
nificant impact on the complexity of different NLP tasks oe tielated literature. Just because
a text mining system may be able to perform well on documesi¢déed to one organisms does
not imply that it will perform well over all organisms. Fora@&xple, the nomenclature of yeast
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tends to follow the related naming conventions quite syicesulting in a vocabulary with lit-
tle ambiguity and a general consistency between names. ©atlier hand, the official gene
names of the fruit fly are often ignored in favour of unofficdiases and synonyms, resulting
in a nomenclature with a significant amount of overlap witlgksi terms, multiple names per
gene and many genes sharing the same name.

Gene normalisation attempts to normalise gene mentionsdppmg each one back to a
unique identifier, unambiguously showing the exact genadgetferenced. The problem of
gene normalisation can be broken down into two subtasksttifaation and disambiguation.
Identification of gene mentions is similar to named entitiedgon in a newswire domain, but
the idiosyncrasies of biomedical literature add to the demify of the task. Not only do we
retain the problems associated with detecting word bouesland issues as to what constitutes
an important entity, but there are many issues with the ngroanventions. New gene and
proteins are also constantly being discovered, renametedoand to be invalid. The model
database related to the common mouse shows between 50 aatiek@@ons every week to the
nomenclature section(Dickman 2003). This dynamic voaatyuineans that any identification
system created must be flexible enough to keep up futureianslit

The inclusion of symbols and non-alphabetic charactersanyngene names also causes
problems with identification. Tokenisation becomes muchertbfficult as we can no longer
make assumptions that tokens are strings of alphanumearaciers. With mentions such as
"alpha 2/delta subunit 2” or "PBSF/SDF-1", it can be diffitth determine whether we are
referring to two separate genes or a component of a more exrgphe product.

The names of genes often originate from their descripticgussing some organisms to have
a large portion of gene names which are common English wargsrases. Examples from the
fruit fly include period fused for andin. This means we must be able to accurately determine
when terms are being used as English words or as gene men#orariety of genes have
related locations, pathways and domains, and these redatécks are often named after their
associated gene. This also adds to the complexity of ideatiidin as these related entities can
be difficult to distinguish from the actual gene itself.

For most tasks, we must also disambiguate the gene namestoiet exactly which gene is
currently being referenced. Quite often, different gengissivare the same name and therefore
identifying the name will not be enough to inform us which loé$e genes is being discussed.
Normalisation resolves this issue by mapping each gene ésswciated unique identifier.

There are two possible sources of ambiguity. A gene mentiay raquire disambiguation
between multiple genes within the same organism. AlteraBtia gene mention may refer to
the equivalent genes within different organisms. In sons@gaa gene mention may conform
to both of these cases, requiring us to identify the correoegn the correct organism. In this
work, we are only concerned with disambiguation within aggnorganism. Even ignoring
cross-species ambiguity, this is still non-trivial prablewith terms in the fruit fly having up to
108 unique genes associated with them.
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Abstract Synonym List
: P FBgn00030683 CG2647,Clk, Clock, EG:155E2.4, Per ...
Th ds of d lock
relatively temperature insenstive . FBgn0003308 CG7642, XDH, Xanthine DH, Xdh, rosy, ry .
Indeed, the perL mutation in the ' FBgn0014447 beta galactosidase, beta-galactosidase, ...
Drosophila melanogaster period -
gene, a central component of the - Gene List
clock, affects temperature fiy_00065_testing FBgn0003308 N
compensation ... fly_00065_testing FBgn0003068 Y
fly_00065_testing FBgn0014447 N

Figure 2.1: An example of an abstract, related gene listla@gynonym list from th#éy dataset

2.3 BioCreative and Data

In recent years, there has been a marked attempt to incleaaebunt of research into text
mining on the biomedical domain. Much of this interest hasrbgenerated using a staple of
the text mining community; by creating a challenge, wittatet! data and guidelines to allow
the development of systems and metrics that allow for thaticne of new automatic techniques
and accurate comparison between systems @fedd. 2005). Shared tasks such as the KDD
Cup (Yehet al. 2003) and the genomic track of TREC (Hersh and BhupatirafiBp@ave all
helped to generate interest in text processing for the baocaédomain.

A similar evaluation, the BioCreative challenge (Hirscimef al. 2005b) was created with
the intent of providing a “systematic assessment” of bioicedext mining systems. It ran
in 2004 and again in 2007, with the first having over 27 groupsf10 different countries
participate.

Both years focused on 3 main tasks: gene name identificagjere normalisation, and ex-
tracting protein-protein interactions. For each of thes&s$, a corpus of data was generated, as
well as associated scoring software. While the gene ideatiéin and protein-protein interac-
tion tasks consisted of data that was created manuallylagitoi that of the MUC workshops
(Chinchor 1998), the gene normalisation data was genesat®enatically in an attempt to "ex-
plore the hypothesis that expert-curated biological degab provide sufficient resource for the
creation of high quality text mining tools” (Hirschmat al. 2005a). The details of this gener-
ation are described in the following section. The naturénefdautomatic process meant it was
not possible to annotate each gene within an abstract.althselist of the genes mentioned in
each abstract are created.

Gene normalisation was the focus of task 1B of BioCreatiwnel, idis from here that we
take our task definition and data. The aim of this task is te tlset of abstracts for a given
organism and produce a list of gene identifiers indicatirggbnes that are mentioned within
each abstract. The data consists of separate datasetssfedifferent organismgeast mouse
andfly. These organisms were chosen as each has a related modelsgateontaining a wide
variety of information specific to each organism. Each datasnsists of three components: a
set of abstracts, a list of gene synonyms specific to eacimi@igaand a list of genes contained
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in each abstract. An example of each of these data compasesitewn in Figure 2.1.

2.3.1 Abstracts

The abstracts are taken from MEDLINE and consists of 5000 a&dis per organism for use
as training data as well as 108, 110 and 250 abstracts in tretofenent test data for yeast,
mouse and fly respectively. The final testing data consistsfafther 250 abstracts for each
organism. Each abstract contains only the text with furtiegails, such as the document’s title
or publication information, stripped from the document.

2.3.2 Synonym Lists

Each organism also has a related synonym list, containinghalvn gene identifiers and
the gene mentions that have been associated with each of Triezse list have been manually
created by each model organism database. The list are idetngiue to the variety of lexical
variations in the literature and the limits of the originatabase from which the list is derived.

2.3.3 Gene Lists

For each abstract, a list of gene identifiers has been creaiathining all genes referenced
in the abstract. These gene lists were derived from manoedBted gene lists that apply to the
whole document, created by curators of each model organgtabdse. These lists therefore
had to be filtered to only contain genes mentioned in the attstr his filtering was performed
using an automatic and noisy process. Possible gene mentiere identified using a organ-
ism’s synonym list. If one of these mentions occurred in thsti@ct and had an associated
gene identifier in the gene list, then the gene identifier reethin the list. All gene identifiers
not identified in the abstract were marked as not present.infbenation of where each gene
mention occurs in the abstract is not provided.

Although this method allows for the creation of a large carpti training data due to its
automatic and relatively efficient nature, there are manyodpnities where noise could be
introduced. Table 2.1 shows the estimated levels of recalihe training data. As previously
mentioned, the synonym lists provided by each model orgadistabase are incomplete. If a
gene mention within a document contains a different spgNariation to its equivalent in the
synonym list, then the gene will be marked as absent fromlbk#&act.

Similarly to the completeness issues of the synonym listgéime list provided by the model
database may also not contain all genes within a given doeunidis occurs when a model
database is specifically concerned with genes of a speaifatiin or expression level, causing
it to leave the more basic "house-keeping” genes off its diste (Colosimoet al. 2005). If a
gene occurs in an abstract, but is not marked on the geni issgs if that gene does not exist.

Evaluating on this noisy data would not provide a true meastiperformance, as a system
could correctly normalise all genes in a text, but would bagtised as many genes would
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# of abstracts in  # of abstracts in # of abstracts Estimated precision Estimated recall
training data development data in test data of training data of test data
Yeast 5000 108 250 98.5 86.0
Mouse 5000 110 250 99.0 55.2
Fly 5000 250 250 86.3 80.7

Table 2.1: Amount and quality of data provided in BioCreativ

not appear in the associated noisy gene list. To resolvaghise, the test data had all noise
removed by manually correcting the errors introduced byfiltexing process. The different
levels of noise in the training and test sets makes it difftcugjenerate to create a high accuracy,
supervised machine learning approach.

Due to these issues, the data for this task is quite diffécesimilar corpora. Whereas the
data for the named entity recognition tasks in MUC consistahually tagged entries with
each entity being annotated in the document, in this task e ltave a noisy lists of genes
mentioned in each abstract and no information as to where gace mention occurs in an
abstract.

2.4 Previous Work

Though gene identification has been researched since tlyel®80’s, gene normalisation
has only begun to be explored in recent years. Most systewesretied on the BioCreative
data, as this appears to be the only widely used source otdaliable for this task.

Morganet al.(2004) split the problem into 3 stages: identifying gendb@abstract, match-
ing these gene names to those in a synonym list and finallgnbgyuating gene names. The
data used was a superset of the fly dataset in BioCreativelehtify genes, noisy training data
was generated from the abstracts and their associated igenarid was used to train a gene
identification tagger. Disambiguation was performed byraeseof filters which would remove
any ambiguity. Using this method, they were able to genexdieal F-score of 72%. Though
this system used similar data to the systems in BioCreaitive,not directly comparable to
results from the evaluation as it used an extra 8033 abstr@aetssist with training.

Two systems at BioCreative also utilised an automated agproCrimet al. (2005) chose
to use a machine learning approach for the disambiguatiaseghAn identification phase deter-
mines all possible gene mentions in an abstract by matckkidd entries in the synonym list,
generating a high recall identification system. In the trggrphase, each match generated by
the identification phase was used to generate a series diveaand negative instances which
were then passed to a machine learning algorithm. A maximutnogy classifier was used
with a small feature set, achieving good results for fly andisecand the highest results in the
competition for yeast. The architecture for this systemesadibed in greater detail in Section
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Yeast Mouse Fly
P R F P R F P R F
Hacheyet al.(2004) | 96.9 75.4 84.8 77.0 59.6 67.259.2 748 66.1
Hanischet al. (2005) | 96.6 84.0 89.9 76.6 81.4 79.0| 93.1 80.0 81.6
Fundelet al.(2005) | 91.7 87.8 89.7 76.4 78.1 77.380.2 73.7 76.8
Crim et al. (2005) 95.6 88.1 91.7|78.7 73.2 758704 783 74.2
Wellner (2006) 945 90.2 90.2 795 743 76.8 76.7 76.7 76.7

Table 2.2: The performance of previous systems over the Bi@tive dataset. The best F-score
per organism is shown in bold

3 as we use this framework as the basis for our machine legbased approach for this work.

Hacheyet al. (2004) took a similar approach to that of Morganal. (2004), but used
only the BioCreative data. Noisy training data was gendrétem each organism’s dataset
which was then used to train a gene identification taggerthdtbeen submitted in a separate
BioCreative task. A series of further measures to improgalt®f gene names in the synonym
list and to improve disambiguation were then presentelisingy TF-IDF scores, co-occurrence
and heuristic methods.

In general, the rule-based approaches from BioCreativieweeth better performance than
those based on machine learning techniques. Hargseh (2005) created a system which
relied on heavily modified synonym lists, with the additidnraatomatically generated lexical
variations and filtering, as well as manual additions andorats of gene names from the pro-
vided synonym lists. An approximate search was used toiigleggnes, relying on similarity
scores derived from the class of words being matched andutinéer of matching tokens. Dis-
ambiguation is performed by choosing the identifier with tiighest number of occurrences
within a document.

Fundelet al. (2005) chose to explore the performance of a simple dictiebased lookup
approach, using the combination of automatic and manualrestpn used by Haniscét al.
(2005). Exact matching was used to locate candidate gengansnwhich were then filtered
based on a list of words known to indicate the matched tex¢ doerefer to a gene. This simple
system was able to achieve results close to the best withiBiaTreative submission.

Wellner (2006) tried to improve results by improving the liyaof the training data. This
was achieved using weakly supervised methods and highspyaaene identification tools to
re-label incorrect instances. The system was based onlasframework to Crinet al.(2005),
but was unable to make any performance gains.

In Table 2.2, we present a summary of the results achieveléydrious systems over the
BioCreative data. As Morgaet al.(2004) did not use the same data, it has not been included.



Chapter 3

System Description

The system we have created uses a framework similar to tedt lms Crimet al. (2005).
We have altered this to allow for the generation of two défdrsystems; a Naive Dsystem
which performs no disambiguation and a more complex Superldisambiguation system.
This architecture is outlined in Figure 3 and is describeithefollowing section.

There are 3 main stages in our system. First, the documamt ihrough a high recall gene
identification system. By processing the provided synongtirl a variety of ways, we are able
to identify more than 89% of gene mentions, though we geaexrddrge amount of false posi-
tives. The choice of system then determines the disambayustage. If naive disambiguation
is employed, all gene identifiers related to the gene mesitram have found are added to the
output gene list. If a machine learning-based system is,ubked each candidate mention is
used to create a series of instances for each possible gemi#iet related to the mention. A
variety of features are then extracted from contextual aext instances are passed to a max
imum entropy classifier. In the training phase, these it&am@mre used to train the classifier
while in the testing phase, each instance is classified andfadence value is returned. A gene
identifier is added to a document’s gene list if it has the agjipositive confidence value out
of the instances for each mention. The following sectiondair each of these steps in greater
detail.

3.1 Candidate Identification

The first phase, the identification of possible genes, taespture all textual entities which
could be a gene mention. Its inputs are a synonym list, wHeferens of gene mentions are
stored, and the abstracts to be processed. The goal is te erbah recall system, as the recall
found here will place an upper bound on total recall that camdhieved by the system. The
synonyms and the text in each abstract are converted todageiand all symbols are removed.
Words from the synonym list are then matched to text in thé&rabisusing longest extent pattern
matching to locate candidate gene mentions. While @tial. (2005) describes a similar phase,

10
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Figure 3.1: A outline of the system architecture

few details are given as to how it is performed.

This system is reliant on an exact match of words in the symdist to the text. As we have
noted that the synonym list is incomplete, we attempt to actéor gene name variations by
expanding the given synonym list using three methods: geioerof lexical variations, extract-
ing additional names from external sources and stemmirgntiftcation of gene mentions has
been limited in other gene normalisation systems as thengyndist provided does not cover
all possible variations. By adding to this list, the recahigved after classification should be
improved.

Generation of lexical variations has been used with greatess by biomedical information
retrieval systems to help account for the small differencespelling and punctuation between
similar biomedical terms(Bttchet al.2004). First, mentions in the synonym list which contain
no letters or consist of only a single character are dischré®r any mention with a subtype
specifier, a variation is created with the specifier disadu@ytochrome b— Cytochrome). If
the candidate gene mention contains numbers or any Greekslat is considered a candidate
for expansion. For such gene mentions, hyphens are replaitledpaces and variations are
created with different combinations of Greek letters coteatto their English equivalent and
vice-versa (alpha— a), and variations with spaces placed between alphabeticameric
characters. No organism specific variations are createcexample of such variations can be
illustrated with the mentiobh SP-1 betavhich would have the following variant&SP 1 beta
LSP 1 h LSP 1betalLSP 1h LSP1 betaLSP1 h LSP1betaand-SP1b

We also seek to augment the synonym list by looking at extemaces. We used informa-
tion extracted from Entrez Gene(Maglettal. 2005), a gene database containing information
extracted from a variety of more specific, curated databda®sn this, we were able to add a
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variety of gene and protein names that were not found in tiggnad list. This allows our sys-
tem to achieve higher recall without the need for organisectie rules or manually entered
data.

Stemming was explored using the Porter stemmer (Porter)198Bhough designed for
general English text, we felt a stemmer would help to matchimwrd names with variations
that we would otherwise be unable to capture. For exampéemténtion "proliferator antigen
receptor” is in the synonym list of the mouse, but is refeeghin an abstract as "proliferating
antigen receptor”. When we use the Porter stemmer, bothiomsnbecome “prolifer antigen
receptor” and the match in the abstract would be found.

From this stage, the naive and supervised systems divédiipe. naive approach is used, all
identified gene mentions and all of their associated gemdifae's will be added to the resulting
gene list. While this method is quite simple, it has been shthat naive disambiguation with
an augmented synonym list can achieve state-of-the-airpeance. The performance of the
synonym list also gives a rough estimation as to the perfoomaf the identification phase.

If a machine-learning approach is taken then we use thetsdsoin the identification phase
to generate instances, describe in the following sections.

3.2 Instance Generation

Once all potential gene mentions have been discovered, eveach match to generate data
to train our binary classifier. In the training phase, thidesie by creating a series of positive
and negative instances from each match found in the ideattdic module. If a gene mention is
identified in a document and the mention’s associated gamgifgbr appears in that document’s
gene list, the generated instance is labeled as a posititehmH a gene is identified and its
associated gene identifier fails to appear in the documeants list, it is labeled as a negative
instance. This processes is best illustrated with theviolig two text fragments;

e fused (fu) is a segment-polarity gene

e A minimal promotefused to such sites

Consider the above two fragments of text, taken from sepdrdbcuments, in which the
word fusedwas found to be a possible gene identifier. The gene list egedowith the first
example contains the gene identifiEBgn0001079an identifier which is also associated with
the gendused.When generating training instances, the combination afitlentifier and one
of its synonyms, in this case the tefosed creates a positive instance. Howevesedis an
ambiguous term with nine associated gene identifiers, airtol unique senses in word sense
disambiguation. Each of the eight remaining gene iderdifignich were not contained in the
documents gene list are used to create negative instantdsstidata, we would still gener-
ate nine instances, one for each associated gene idertificleave the positive or negative
classification to the machine learning algorithm.
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The second example fragment also contains thefteséd however, in this case it is as
an English word. As no gene identifiers in the document’s dmt@re associated with the
mention, 9 negative instances are created.

3.3 Features

For each instance that is created, a set of features areagedevhich are used to assist
disambiguation. The system implemented by Cenal. (2005) contains only very basic fea-
tures: the two tokens before and after the candidate menhiergene identifier associated with
the mention and the total number of gene identifiers asstiaith the current gene identifier.
Though quite simple, these features were shown to perforite gell. In this paper we in-
vestigate a variety of features which intuitively gave mooatext to each mention. The range
from external information, such as part of speech (POS)degrted using the MedPost tagger
(Smithet al. 2004), to contextual information, such as spacing and algation. The feature
set is listed below with features used in Cratnal. (2005) marked with &1.

Matching Text ([1): The gene name found in the text, as it occurs in the originstratt.

Gene Identifier ((I): The unique gene identifier associated with the candidate gemtion.

Gene Mention POSThe part of speech tags associated with the matched text.ultfpie
words exists, all tags are concatenated together sepdmnatatterscores.

Previous/Following Word ([J): Extract the words from before and after the candidate gene
mention within a given context size. Each of these words &nthsed as a separate
feature. We used a window size of 2.

Previous/Following POS:Extract the part of speech tags associated with each of théswo
used in the previous feature

Closest Verb Left/Right: Extract the verbs which closest to the gene mention on esilder

Is English Term: A binary feature testing whether the candidate gene mergian English
word This is determined by checking whether the mention Imasrdry in the WordNet
database (Fellbaum 1998).

Is Stopword: Does the candidate mention appear in the Zettair (Billdcketcal. 2004)
stopword list.

Same Othography: A binary feature testing if the capitalisation of the carademention
is the same as that of its match in the synonym list. This i®s&ary as the matching
performed is done on lowercase text with no symbols.

Seperated From Next: A binary feature testing if the word is separate or hypheh#&tehe
following token.

Appears in Entrez Gene: A binary feature testing if the gene appears in Entrez Gene.
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Number of Words: The more words a gene mention has, the more likely it is to besdipe
match.

Length in characters: Similar to above, longer gene names tend to be a correct emtch

Amount of Polysemy (J): The number of gene identifiers that are associated with threriu
gene mention.

Amount of Synonymy: The number of gene mentions associated with the currentigene
tifier.

Conditional probability: Determines the probability that if a gene mention occurs doe
ument, what is the probability that the an identifier of thagwill be in the document’s
gene list. This applies to each combination of gene mentondentifier and is given by

the ratio: _ . e .
# of abstracts where mention occurs with specific identifier

# of abstracts containing gene mention

3.4 Disambiguation

Instances are then passed through to the classificationlmtallbe used in a maximum
entropy classifier. Maximum entropy estimates the conaigigrobability of a class based on
a set of constraints with Each constraint expressing a ctarstic of the training data(Nigam
et al. 1999). The probability distribution that satisfies thesestmints is the one with the
highest entropy. This model takes the form:

exp(z Aifi(e, £))
Z(f)

P(c|f) =

where cis the clas$,is a feature vector and H(is a normalising term. Our system also used a
Gaussian prior of 1.0 to reduce the probability of overfgtihe model to the training data.

Maximum entropy classification has been shown to perform iwelLP tasks due to its
ability to perform well over noisy datasets and highly degesnt features(Bergeat al. 1996).
They are also very efficient to train and to classify, everr targe datasets with high dimension
feature spaces. We chose to use the maximum entropy classlemented in MALLET(Mc-
Callum 2002).

Each of the positive and negative instances generated freftndining data are used to train
the classifier which is then used to classify all test insgan©nce each test instance has been
classified, we look at each candidate mention which has laksified in each test document.
If a mention has one or more positive classifications, we thkeinstance with the highest
probability and add the associated gene identifier to theentidocument’s gene list. If there
are no positive instances, the match is discarded and weiegdh®e next possible candidate.
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Results

In this section, we explore the performance of various sgstembinations. After present-
ing our evaluation metrics and a series of baseline systemexplore the use of an out-of-the-
box gene identification system for the identification pha&e.then test our proposed methods
for synonym list augmentation over the Naive Disambiguatind Supervised Disambiguation
systems, comparing and contrasting their performancallizinve explore the effects of using
an expanded feature set in an attempt to build a more eféeeckassifier.

4.1 Evaluation Metrics

The system is evaluated in terms of 3 scores: recall, poecend F-score. These measures
allow one to interpret how successful a method was at its ¢askpared to a gold standard
dataset. In the context of gene normalisation, precisialhracall are defined as:

TP TP
P ) Q7 = — =
recision TP+ D Recall TP+ N

where true positives (TP) refers to the number of gene ifiergicorrectly added to the gene
list, false positives (FP) refers to the number of gene ifilerd incorrectly added to the gene list
while false negatives (FN) refers to the number of gene itlerst that have not been detected
by the system. The F-score is the harmonic mean of precisiomezall or

2 x Precision x Recall

F-score=
Precision + Recall

These values are calculated using the scoring script sgpiith the BioCreative data.

4.2 Baseline Experiments: Naive Disambiguation

In order to judge the difficulty of creating a gene normalmasystem, we created a series of
simple dictionary-based lookup systems which match gengiores found in the synonym list

15
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Yeast Mouse Fly
P R F P R F | P R F
First 95.2 675 79.0 121 658 20459 608 11.8
MostCommon| 95.2 67.7 79.2 124 675 21.079 81.1 1438
AddAll 92.0 79.1 85.1|14.3 835 24441 946 7.8

Table 4.1: Baseline normalisation systems using a commokulo approach with different
disambiguation methods. The best F-score per organisnoversim bold

to each abstract. Any match found is counted as an instareg®ehe. Three variations of this
system were created; their differences are based on howdbigaation was performed when
an identified gene mention was associated with multipletiiers. These naive disambiguation
systems are as follows:

e First - Simply choose whichever gene identifier was the first in yhmaym list
e MostCommon - Add the gene identifier which had appeared most in the trigidata
e AddAIl - Add all gene identifiers to the gene list.

To demonstrate the difference between these systemsdeoiiis example: if the gene men-
tion fusedwas found with possible identifieFF-Bgn0014573FBgn000107&ndFBgn0017900
The first system would matddBgn0014573the second system would matEBgn0001079
the most common of the three identifiers, while the thirdesystvould add all identifiers to the
gene list, creating much higher recall at the cost of prenisi

As shown in Table 4.1, there is generally little differenetvizeen adding the first identifier
in the list and adding the most common, though the latter ggéee a reasonable increase in the
amount of recall in the fly. Performing no disambiguation adding all gene identifiers, as in
the third method, leads to a large increase in recall forrgbisms. As expected this comes at
the cost of precision, with severe degradation occurrirftyidata, as it has more identifiers per
gene mention than the other two organisms.

4.3 Use of Pre-existing Gene ldentification Methods

As a contrast to our baseline systems, we chose to examipetfigmance of a pre-existing
gene identification system. We chose the BioTagger pachdgegnald and Pereira 2005), one
of the best performing gene identification systems seenaBtbCreative 2004 Task 1A (Yeh
et al.2005).

The gene identification system is used to processes albabstiFor each gene found by the
tagger, we attempt to locate it in the synonym list. If a mascfound, we add all associated
gene identifiers to the resulting gene list. Again, this is&@&disambiguation system, but our
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Yeast Mouse Fly
P R F P R F P R F
AddAll 920 79.1 85.1|143 835 244 41 946 7.8
BioTagger| 95.8 59.9 73.188.4 46.1 51.6|68.6 24.9 36.6

Table 4.2: Results of using BioTagger to identify gene nwargi No disambiguation is per-
formed; instead all possible identifiers for each identifiede are added to the resulting gene
list. The best F-score per organism is shown in bold

hope is that it will maintain or increase the recall of thetidicary-based systems while also
increasing precision.

From Table 4.2, we can see that the system performs well fomthuse, and while it
achieves high precision on the fly and the yeast, it missey g@me mentions, resulting in low
recall, compared to state-of-the-art gene normalisagstems. This may be because although
trained on MEDLINE abstracts, similar to the data used bysystem, the abstracts used to
train BioTagger were from a variety of organism. Given th#edences between the gene
nomenclature of different organisms, the lack of recallha fly and mouse is unsurprising.
Another factor is that BioTagger has been optimised to gega¢he highest F-score rather than
to maximise recall. More work in tuning the tagger to produseall may allow it to perform
more successfully in this role.

4.4 Naive Disambiguation Enhancements

After examining the results of our baseline systems, as agethe lack of recall shown by
BioTagger, we hypothesise that the incompleteness of therngyn list limits the ability of the
system to achieve high recall. To alleviate this issue, wrearent with a variety of synonym
list expansion and filtering methods. We apply these methodie Naive Disambiguation
(ND) system described in Section 3.1, equivalent to the Atsistem in table 4.1 which was
the best performing of the baseline systems. As no real digaration is performed in this
system, the approach can be used to estimate the perforroatiee identification phase and
allow us to gauge how altering the synonym list may affechidieation performance.

4.4.1 Synonym List Expansion

We begin by implementing the three methods that were intedin Section 3.1:

e Variation - The creation of gene names variations with different spgpcgreek letters
etc.

e EntrezGene- The addition of genes to the synonym list from Entrez Gene
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Yeast Mouse Fly
P R F P R F | P R F
ND 92.0 79.1 85.1143 835 24441 946 7.8

ND_Variations |88.3 80.3 84.1 19 89.7 3.7/20 953 3.8
ND_EntrezGene| 92.3 89.7 91.0| 14.3 835 24441 946 7.8
ND_Stemming | 91.2 79.1 84.7 127 824 22.03.7 928 7.2
ND_Vars+Entrezf 89.0 90.9 89.9 1.9 89.7 3.7/2.0 953 3.8

Table 4.3: The effect of various synonym list expansion memphes on the Naive Disambigua-
tion (ND) system. The best F-score for each organism is shiowold

e Stemming- Reducing both the words in the synonym list and the absback to their
root forms.

e \Vars+Entrez - The combination of lexical variations and additions fromtiez Gene.

These methods are contrasted with the baseline systemusisignonym list expansions. The
combination of both Entrez Gene additions and lexical wnme is also included. The per-
formance of each technique using the Naive Disambiguagstem (ND) are summarised in
4.3

The results from the synonym list expansion are somewhaganiklsing variations causes
an increase of recall in all organisms, but at the cost of atépt precision, especially in the
mouse. While this increases the coverage of the synonymntiahy of the newly created
variations simply add more noise to the data.

Adding information from Entrez Gene works well for yeastt Hoes not significantly im-
pact on the recall of the mouse or fly. The yeast synonym lestsgo be lacking a large number
of protein names which we are able to extract from Entrez Gaings is more efficient than
previous systems (Fundet al. 2005; Hanisclet al. 2005) as it removes the need to examine
the data and create a complex organism-specfic rules. Thbication lexical variations and
additions from Entrez Gene (NMars+Entrez) gives us a score slightly above that of (Crim
et al. 2005) for yeast, but brings no change from the variationsotin the mouse and fly.

Stemming, though used by other biomedical text mining systéHanischet al. 2005),
appears less useful for this task, having a negative impaall @rganisms. After investigation,
it appears that this is due to the inability of the Porter stesnto deal with the complexities
of biological nomenclature. There are a number of casesewer separate gene are reduced
to a single gene name after stemming; for example, gene omsiiti andfusare both reduced
to fu. The reduction of both names to a single gene mention inesetd@® level of ambiguity,
reducing the likelihood of successful disambiguation. M/bnly using additions from Entrez
Gene (NDEntrezGene) achieve the highest F-score, the recall isoveprby the combination
of Entrez Gene additions and lexical variations (NBrs+Entrez). As we believe that more
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complex systems will achieve improve precision by usingdsetisambiguation techniques, we
use the NDVars+Entrez system for the following experiments.

4.4.2 Filtering

While the combination of lexical variations and additiorsnfi Entrez Gene outlined in the
previous section successfully increase the recall of ostesy, they also result in the addition
of more noise. To combat this problem, we experimented waitin possible filtering methods:

e Stopwords - Uses a stopwords list to filter out gene names that match @mwords.
The list used was taken from Zettair, an information reti@ngine designed for TREC
(Billerbecket al.2004).

e Nouns/Adj - Most gene names are recognised as either nouns of adgotnite many
false positives identified as conjunctions or verbs. Remptiese should lead to better
results.

e English - Filtering out all English words is performed by determigwvhether or not a
word exists in the lexical database, WordNet (Fellbaum 198hglish words are less
likely to be true observations of a gene mention.

e Cond - The conditional probability filter which was used by Cranal. (2005) in their
pattern matching system. This statistic gives us a meadurevo a specific candidate
mention has behaved in the training data, with a higher vehasving it has been used
more as a gene name than as another word type. This is useddaadeature and has
been explained in greater detail in Section 3.3. We chosééo diut all genes which had
a conditional probability lower than 0.1, as it discardsdidate gene mentions that are
almost certainly false positives while retaining high teca

Each filter was tested using the synonym list with expansdaers/ed from Entrez Gene
and the addition of lexical variations (NMars+Entrez system in Table 4.3). The results are
summarised in Table 4.4 below.

The first three methods provide no benefit, while removinglmate mentions with a low
probability of being gene names works remarkably well. Tiiter dramatically increases
precision in all organisms, with precision in the mouseaasing from 2% to 60%. A manual
examination of the results indicates that the gene namgsté&t by other filters are mainly
encompassed by this filter while leaving in those that rafyudppear as gene names.

4.5 Supervised Disambiguation Approach

While the results obtained by the Naive Disambiguationesysin the previous section
are quite high, we believe that the implementation of thee®uiped Disambiguation phase
can improve results even further. As outlined in Sectionf&rahe identification phase is
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Yeast Mouse Fly
P R F P R F P R F
ND_Vars+Entrez 89.0 909 899 19 89.7 3.7 20 953 38
ND_Vars+EntrezStopwords| 89.3 90.9 90.1 2.1 89.7 41| 24 956 4.7
ND_Vars+EntrezNouns/Adj| 92.3 89.6 909 19 776 3.7 22 832 43
ND_Vars+EntrezEnglish 924 89.7 911 15 759 29| 46 650 85
ND_Vars+EntrezCond 935 89.6 915|634 779 70.1|41.8 92.1 57.5

Table 4.4: The effect of various filtering methods on a Naiusahbiguation (ND) system
using lexical variations and additions from Entrez Gena¢V¥antrez). The best F-scores are
shown in bold

Yeast Mouse Fly
P R F P R F P R F
SD_NoExpansion 95.4 77.3 85.484.4 56.8 679|751 725 73.8
SD_Variations 952 78.3 859818 48.7 611750 720 735
SD_EntrezGene | 95.1 88.3 915844 56.6 67.8 755 725 74.0
SD_Stemming 952 77.3 853822 544 655727 683 704
SD_Vars+Entrez | 94.9 88.9 91.8|81.5 493 614746 720 73.3

Table 4.5: Results of various synonym list expansion mettwodthe Supervised Disambigua-
tion (SD) system

performed using the same technique as in the Naive Disamatiagusystem, the Supervised
system disambiguates candidate gene names by using a nmemntwopy classifier, utilising
the same features as in the Cratnal. (2005) system.

4.5.1 Performance of synonym list expansion methods

To contrast performance with the Naive Disambiguation agphh, each experiment from
the previous section is repeated using our Supervised Digaiation (SD) system. We begin
by evaluating the effect of the synonym list expansion tépnes, with results outlined in Table
4.5.

Performance is consistently better than the Naive Disanatign system, though the effect
of the augmentations are somewhat different. Here, thefusgical variations (SDVariations)
lowers overall performance for the mouse and fly datasetseasdise introduced makes dis-
ambiguation more difficult. The exception to this is the yatetaset, where the noise which
already exists in the data and the amount of noise that wedunted are quite low, resulting in
a small increase in performance. Entrez Gene assists ygasaking up for missing names,



Chapter 4: Results 21

Yeast Mouse Fly
P R F P R F P R F
ML _Vars+Entrez 949 889 91.8|815 493 614746 720 733

ML _Vars+EntrezStopwords| 94.9 88.9 91.8| 81.1 49.6 61. 749 725 73.7
ML _Vars+EntrezZNouns/Adj| 94.9 87.9 91.3 75.7 40.6 52.9 74.2 63.6 685
ML _Vars+EntrezEnglish 95.1 88.1 91.484.7 458 594 78.0 48.7 60.0
ML _Vars+EntrezCond 947 88.3 914 78.7 68.6 73.3|71.8 825 76.8

Table 4.6: The results of filtering methods when using a Suped Disambiguation (SD) sys-
tem with lexical variations and Entrez Gene

while having very little impact on the mouse and fly. Stemmaggin has a negative impact on
results.

4.5.2 Filtering

The increased noise due to lexical variations appears terlowerall system performance
by generating a worse-performing classifier. Previousé/gdemonstrated that effective filtering
can have a dramatic improvement on results by removing sdntieeonoise and ambiguity
within the data. We again test our filtering techniques toaeenunlikely candidate genes,
before passing the remaining candidates to the disamhaguatssifier. Results are shown in
Table 4.6

While the conditional probability previously helped allssgms, here it is only the mouse
and fly that improve; yeast results are slightly worse. Assyeéata is already quite consistent
and suffers from little ambiguity, the filtering of resulismoves a number of correctly found
mentions.

4.6 Comparison of Naive and Supervised Disambiguation

Looking across the results from both the Naive Disambiguatind Supervised Disam-
biguation systems, we can see quite different responseacim @ganism. In Table 4.7, we
compare the results from each organism using both systemg e best overall setting; that
is with lexical variations, additions from Entrez Gene aftéifing using conditional probability.

The fly data performs quite poorly with the Naive Disambigaaisystem due to its high
ambiguity while the reasonable quality of its training dat@ans that a useful classifier can be
created. In yeast, we are able to obtain better results wsilygnaive disambiguation rather
than using maximum entropy to perform disambiguation. T$hisot especially surprising for
the yeast data, given that the nomenclature is very consiatel there is little ambiguity or
overlap with general English terms.



Chapter 4: Results 22

Yeast Mouse Fly
P R F P R F P R F
ND_Vars+EntrezCond | 93.5 89.6 91.5|63.4 77.9 70.141.8 92.1 575
SD_Vars+EntrezCond | 94.7 88.3 91.4 78.7 68.6 73.3|71.8 825 76.8

Table 4.7: A comparison of Naive and Supervised Disambignatystems

Yeast Mouse Fly
P R F P R F P R F
Crim et al.(2005) Systemn 95.6 88.1 91.7| 78.7 73.2 75.8| 704 78.3 74.2
Crim Features 947 88.3 91.478.7 686 73.371.8 825 76.8
All Features 95.1 88.1 914794 710 75.069.5 828 755

Table 4.8: The results of our system using all extended featand using only the features
specified in Crimet al. (2005) using the SD/ars+EntrezCond system

The mouse data is quite different. It is unexpected thataslightimprovementis achieved
using the Supervised Disambiguation system. There areikety lcauses behind this lack of
improvement and both are related to the low recall of the resugaining data. The first is that
the low recall means that a great deal of the data used toduaiclassifier is incorrect, resulting
in a disambiguation phase will is more likely to discard eatrgenes or perform disambiguation
incorrectly. The second factor is that all conditional pbtities are based on the appearance of
genes in the training data. If a gene mention in the trainetg @ppears, but is never included
on the related gene lists due to noise, its conditional gihbawill be very low. This results
in a number of genes being incorrectly discarded. Hencewarl&-score is achieved when a
classifier is decrease in recall outweighs the gains in pi@ti

4.7 Expanding the Feature Set

After identifying the optimal method for identification amdcognising the poor perfor-
mance of machine learning-based disambiguation over thst ydd mouse datasets, we focus
on the features that are used by the system.

We begin with a comparison with results achieved by (Ceitral. 2005). We examine
the results of two separate feature sets on classificatioa:fitst using only those features
specified by (Crimet al. 2005) and the second using all features in our extended setta
lined in Section 3.3. Each method is run using the Supenid@sdmbiguation system with
lexical variations, additions from Entrez Gene and usingdittonal probability as a filter
(SD_Vars+EntrezCond). The results are in Table 4.8
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Yeast Mouse Fly
P R F P R F P R F
Crim Features 947 883 914787 686 73.3718 825 76.8
All Features 95.1 881 914794 710 75.069.5 828 755

Incremental Addition 95.5 89.1 922794 715 752753 816 783
Manual Selection 94.4 90.0 92.2|78.8 73.7 76.2| 756 815 785

Table 4.9: The results of feature selection methods on th&&@B+EntrezCond system

Our gene normalisation system appears to perform somewfeaedtly to the Crimet al.
(2005) system. While performance over yeast is compar#idesystem by Crinet al. (2005)
performs better over the mouse than the fly, while our systees the reverse. The differences
likely stem from the identification phase where Cranal. (2005) gave few implementation
details, providing only the levels of recall achieved. As rimet al. (2005) system reports
recall over 90% over the yeast data, it is highly unlikelyttialy a dictionary-based lookup is
performed.

It is clear that using all available features does not predte best possible classifier. In
order to locate the best performing subset of features, weecto implement incremental addi-
tion feature selection, where the system begins with nafeatand iteratively tests all features,
adding the highest performing feature each round until gbéri score can be achieved. We fur-
thered the results of this by manually adding features terdene if any further improvements
could be made. The results of each of these are displayedle 0.

While we are able to make some improvements using only a sabe features, the gains
are quite modest from both incremental addition and manysdr@mentation. Table 4.10 shows
the features that were used in the best run for each organism.

The features used in the different systems vary considenaith the yeast requiring very
few to make a decision, while the fly must draw on more inforarat Considering the large
increase in features used, the gain in performance is goitdl.s The noise of the training
data means that correlations between certain featuresrahgeclasses is lessened, reducing the
impact of that feature.
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Table 4.10: The best performing subset of features for eagdmessm

Yeast

Mouse

Matching Text

Gene Identifier

Gene Mention POS
Previous/Following Word
Previous/Following POS
Closest Verb Left
Closest Verb Right

Is English Term

Is Stopword

Same Othography
Separated From Next

In Entrez Gene

Number of Words
Length in characters
Amount of Polysemy
Amount of Synonymy
Conditional Prob

0 I s I

Ooooooobboobbooonood

DDDDDDDDDDDDDDDDDE




Chapter 5

Discussion

Throughout our experiments, we found the results vary clamably between organisms.
In this section, we examine the properties of each orgasisi@ta to try and account for this
difference in performance. We also examine the types of®tiat our system generates to
more accurately determine the strengths and weaknesses ofiment approach. Finally, we
analyse the learning curve of our classifier to determinetmdreadditional data would assist
performance.

5.1 Analysis of Datasets

The level of ambiguity differs significantly across the drént organisms. Table 5.1 shows
the percentage of gene mentions with multiple associatextifiers, with the fly containing
considerably more ambiguity than the other two organisme. flly also has considerably more
gene names that are also English terms, at approximatelg@®pared to the 1% for the mouse
or the insignificant six words for yeast. Terms suclpasod, in, andtype 1can create a great
deal of false positives causing more work and oppertunfoeserror in the disambiguation
stage.

The yeast data is more straightforward: almost all gene samesist of only a single word,
it has the fewest identifiers associated with each gene oreamd almost no overlap with
English words. Its naming conventions have been quitetstremforced with few variations
used and a fairly complete synonym list provided. This iseatéld in the results achieved by
previous systems and our own, with the yeast performingast120-15% better on average
(Hirschmaret al. 2005a).

The mouse data has less ambiguity than the fly, but suffens &iher issues. Figure 5.1
shows the number of words per gene mention in each organidme. niouse tends to have
longer names, with over 40% of mentions consisting of midtipords. These are generally
harder to identify as any slight variation in the spellingpst us from detecting the mention.
However, once detected, these longer names are often easmmalise as a longer string has
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# of identifiers| Yeast Mouse Fly

1 97.61% 96.83% 84.14%
2 214% 2.72% 4.80%
3-4 0.20% 0.30% 3.13%
5+ 0.05% 0.15% 7.92%

Table 5.1: Breakdown of number of associated gene idemtifs@nses) per gene name. This
indicates the ambiguity of gene names
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Figure 5.1: The number of terms per gene mention. Yeast cmnkass than 1% multi-term
mentions, while the mouse has over 40%

less chance of randomly occurring in a document.

The low quality of the training data for the mouse also affatd performance. Many of
the genes contained in the mouse abstracts were of litdegsit to the model database’s target
audience, resulting in their absence from the gene listss dduses the mouse to have much
lower recall than other organisms, with recall in the tnaghdata estimated to be only 55%,
compared to the 86% and 80% for the yeast and fly respectaglliscuessed in Section 2.3.3.
The low recall of the training data severely affects the ltedalities of our classifier.

These varying degrees of ambiguity and quality are congist#h the results that we have
obtained in all experiments. Yeast consistently obtaimsHighest results while the mouse,
whose training data is very poor, is generally the worst. [Elels of noise in the training data
make it very difficult to create an accurate system using rsigexl techniques. Development
of manually annotated data such as that seen in MUC would thesoverall standard of gene
normalisation systems, and would allow a much richer cormparbetween systems.
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5.2 Analysis of Errors

In order to determine the major weakness of our system, wenievesl the first 50 test
documents for each organism when using additions from Ere@ne, lexical variations and
removing low probability candidates. From this examinatwe determined the causes behind
the false positives and false negatives in each documenipgrg these into similar classes. A
breakdown of the top six classes of errors are shown in TaBlevih a brief explanation of
each error type as follows:

e Gene mention not in synonym list The gene mention is missing from the synonym list
and a similar variation does not exist.

e Variation missing from synonym list - A similar gene mention is contained in the syn-
onym list, but there is a slight lexical variation causingasiss the mention (e.g. PKC-
delta and PKCdelta).

¢ Filtered due to low conditional probability - The conditional probability of a gene
mention is too low resulting in the gene mention being didedr

¢ Biological term caused incorrect match- A biological term such as a locus or a pathway
is related or derived from a gene mention eldosl promoter This term causes an
incorrect match as does not actually refer to a gene mention.

e Match found due to loose tokenisation- A match was found due to the removal of
symbols in the identification phase to allow high recall,ulesg in incorrect matches
like um — UM-HET3

e Match found in different organism - A gene mention was found, but refers to a gene in
a different organism.

e Other - Various errors which do not fit in to the categories above.

The analysis revealed the various problems still affeciagh dataset. 69% of the errors
on the fly dataset are caused by false positives, while 80%68606 of errors in the mouse
are due to false negatives. These support our view that wielenouse and yeast can be nor-
malised by simply filtering out low probability candidatesore powerful solutions are needed
to disambiguate fly genes.

Yeast appears to suffer from an incomplete synonym list,@dy includes genes conforms
to the yeast nomenclature standards. Gene names that donfotro to these standards are not
detected by our identification phase.

The mouse is also affected by missed gene names. These arly waised by lexical
variations which are not currently covered by our system. gkaprecise analysis of the kinds
of variations that appear in the literature may yield momuaate variation generation.
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Error Type Yeast Mouse Fly

FN - Gene mention not in synonym List 11 (55.0%) 1 (22%) 2 (6.9%)
FN - Variation missing from synonym list 0 (0.0%) 17 (37.8%) 0 (0.0%)
FN - Filtered due to low conditional prob. 0 8 (17.8%) 4 (13.8%)
FP - Biological term caused incorrect match 3 (15.0%) 10 (22.2%) 7 (22.2%)
FP - Match found due to loose tokenisatign 0 (0.0%) 6 (13.3%) 4 (13.8%)
FP - Match found in different organism 0 (0.0%) 2 (4.4%) 7 (24.1%)
Other 6 (30.0%) 1 (2.2%) 5 (17.2%)
Total | 20 (100%) 45 (100%) 29 (100%)

Table 5.2: Type and frequency of errors that affect recdtle percentage of overall errors for
each type is shown in brackets

The greater level of ambiguity in the data of the fly means naorers tend to stem from
incorrect disambiguation. One of the major sources or tieesenfusion with biological terms
related to gene names. This is a difficult problem to solvegienly the data provided as these
biological terms are often used in quite similar contexts.

It is encouraging that two of the main issues which our germenabsation system was
created to target, cause few of the errors that our systeerges. After conditional filtering
has been performed, most candidate mentions which corfsisaglish words are removed
from consideration due to the fact that they rarely occureageghames. This removes one of
the major sources of ambiguity for both the fly and mouse.

The analysis revealed a number of problems which are outeglscope of our current
system. Homologs, that is genes which are equivalent iergifit organisms, often have the
same name regardless of species. For example, the mouse @@ theclock gene. If a
mouse abstract discusses such a gene for the fly and the npe®sym thenousesynonym
list, our system will incorrectly associate the gene with thouse. The analysis also shows that
ranges of genes, e.gn genes Otf-3a through Otf-3h"are a cause of errors within our system.
Currently the system is only able to normalise genes if threyexplicitly mentioned. Being
able to deal with references to specific clusters of genedliiieult problem due to the variety
of ways in which this can be expressed.

5.3 Learning Curve

Figure 5.2 shows the learning curve of the three differegapnisms, showing the relation-
ship between the number of documents used to train the sysigrpared to its performance.
The graph indicates that while the yeast and mouse data reetdraost at full performance
immediately, the fly data requires approximately 40% of tamdefore reaching a fairly con-
sistent score. Once again, we are able to see the limitat@nshe classifier has on the yeast
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Figure 5.2: Learning curve of the yeast, mouse and fly

and mouse datasets. When using no training data, the assssigns a positive classification,
adding the gene identifier which appears first to the genedistthe mouse and yeast datasets,
there is little improvement from this point. On the yeaststis because the data is already
guite unambiguous, while on the mouse, it is because the moithe training data allows the
classifier to learn very little. No matter how much more datadded, the classifier is unable to
significantly improve. The fly, with its reasonable qualigtal and high levels of ambiguity, is
unable to perform disambiguation without a trained classifichieving maximum results after
roughly 40% of the training data is provided.
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Conclusion

6.1

Summary

In this work, we presented a gene normalisation system wihses a machine learning-
based approach. A variety of extensions were implementewtease identification coverage,
remove unlikely gene mention candidates and improve diggimabon. We evaluated these
techniques on data related to yeast, mouse and fly, takenthemioCreative challenge. The
main conclusions from our experiments can be summarisdteifotlowing points:

State-of-the-art gene identification tools are designesldxk over the data of all organ-
isms. However, given the differences between differenaoigm’s nomenclature, we
have found that a basic lookup system utilising a synonyindigived from a model
database may be able to achieve better results.

The addition of gene names taken from external resourcegg@no be very successful.
Turning to additional databases should lead to even higldommance. The generation
of lexical variations assists the mouse and fly, but the nimiBeduced in this process
removes some of the possible performance gains. Furtheeneéint of this method is
required to achieve the full potential of this technique.

Filtering of the synonym list by different means shows a [bpmmise by removing
unlikely candidates and some ambiguity in the data. As wavshdection 5.2, this can
be improved by taking into account the fact that we are bagurgudgements on noisy
data.

The combination of synonym list expansion and filtering catuce the need for com-
plex disambiguation in some organisms, with our naive diEgoation system obtaining
results better than those of the more complicated machaneiley-based approach.

Improvements to the original feature set used by Getral. (2005) proved disappointing;
our results show increases in performance of less than 2&afdr organism. While some
of this is caused by noise in the training data, another fastthat many of features do
not seem to provide much information as to the classificaif@pecific gene names.
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e Our analyses show itis unlikely that a single approach vélable to provide high quality
gene normalisation for all organisms as the nomenclatutdesels of ambiguity are too
varied. This is magnified by differences in the quality ofadftr each organism.

6.2 Future Work

Improving training data using semi-supervised methods:Clearly one of the limitations
current performance is the noise within the training datthashas negative impact on many
aspects of our system. Future systems could account faraige in a variety of ways. (Wellner
2006) used semi-supervised techniques to relabel the détafeel that a better technique
would treat the BioCreative data as unlabelled, using alsaabf manually annotated data to
bootstrap a semi-supervised learner. The advantage detthsique is that more training data
could be easily generated by obtaining additional abstract

Improving training data using synonym list expansion: The method used by the BioCre-
ative organisers to generate training data was entiretynaatic. However, the process relied on
the synonym list provided by the model database relateddio @@anism. As we have demon-
strated in this work, the synonym list can be improved throagombination of expansion and
filtering. Therefore, if we use the same method as BioCredtivgenerate training data, but
with our improved synonym list, we may end up with higher iyalata.

Contextual Information and Topic Signatures: Traditional word sense disambiguation
has often had success with the use of topic signatures;xtorgetors which try to associate a
topical vector to each word sense. This technique could pkemjto the biomedical domain by
associating biological terms, taken from external resegistich as UMLS (Bodenreider 2004)
or GO (Consortium 2000), to each gene identifier. The ocosgef these biological terms
could then be used to determine the sense of a gene menti@ivaracontext.

6.3 Concluding Remarks

To conclude, let us recall the example of ttleck gene, and examine how our system
would perform over the given documents, with the additidrsun synonym list augmentations.
Rather than the six possible genes which we needed to dissimpefore, our conditional fil-
tering reduces the possibilities down to two. For the firgtudoent, our classifier successfully
discards both of these, identifying this is not a mention geae. In the third document, con-
ditional filtering has reduced the mentiperiod down to a single option which is successfully
classified as the gene we were looking for. Unfortunatelyhensecond document, the system
is unable to recognise that we are no longer discussing tlantiythe gene is confidently, and
incorrectly, classified as the gene we are after. This exammptcessfully demonstrates that
while we are often able to successfully normalise within acHfc organism, to be useful in
real world applications, we must be able to determine whriglamism is under discussion in an
abstract.
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