
Developing Systems for Gene Normalisation

A thesis presented

by

Benjamin Goudey

to

The Department of Computer Science and Software Engineering

in partial fulfillment of the requirements

for the degree of

Bachelor of Computer Science (Honours)

University of Melbourne

Melbourne, Australia

October 2007



Thesis advisor(s) Author
Nicola Stokes Benjamin Goudey
David Martinez

Developing Systems for Gene Normalisation

Abstract
The rapid growth of biomedical literature has attracted interest from the text mining community
to develop methods to help manage the ever-increasing amounts of data. Initiatives such as
the BioCreative challenge (Hirschmanet al. 2005b) have created standard corpora and tasks
in which to evaluate a variety of systems in a common framework. One such task is gene
normalisation, in which the problems of synonymy and polysemy in gene name identification
are overcome by mapping each mention back to a unique identifier, unambiguously identifying
that gene. This task is one of the foundations required for any kind of text mining system
working with biomedical literature, where we must be very certain of which genes are being
discussed in the text.

In this work, we present two systems for gene normalisation:a naive system performing no
disambiguation and a machine learning-based approach which attempts to overcome limitations
in the work of (Crimet al. 2005). These systems are evaluated on data taken from the first
BioCreative challenge.

For each of these systems, a variety of methods are examined to assist gene name identi-
fication, either by adding new gene names or removing unlikely candidates. These techniques
successfully improving the gene name identification of our system. We find that with data re-
lated to some organisms, filtering out unlikely gene name candidates allows the naive system
to achieve high performance without the need for further disambiguation. After optimising
the identification phase, we try to improve the machine learning approach by implementing
a variety of novel features, expanding upon the small feature set used by Crimet al. (2005).
Unfortunately, we find that a larger feature set has little impact on results. An analysis of the
data and of the errors generated by our system reveals large difference between the data of each
organism, indicating that better performance may be obtained by creating different solutions for
different organisms.
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Chapter 1

Introduction

Consider a biologist reading an article about the fruit fly, who comes across theclockgene,
a gene which helps a fly’s body to keep track of time. As our biologist is interested in this
gene but knows little about it, he turns to Pubmed (Wheeleret al.2004), a search engine across
biomedical citations and research abstracts, and performsa search for the termclock. Below
are three text fragments from documents which are associated with theclockgene.

• ...as a physiologicalclock, it appears...

• ...The mouseclock gene encodes a ...

• ...theperiod gene, a central component of...

In the fragment taken from the first document, we see that the termclockhas been found, but
in this context it refers to a time-keeping device, rather than a specific gene. This demonstrates
the first issue we must overcome when performing text mining in the biomedical domain; the
names of genes and gene products are quite ambiguous. To perform a task effectively, there
must be a method to determine when a reference refers to a genename and when it does not.

While the second document contains a reference to aclock gene, it is not the gene we are
after. Instead, it is a gene within the mouse, rather than thefly. Not only do genes have many
different names, but a single gene name can refer to different kinds of genes. These genes can
either occur within different species, as demonstrated in the example here, or alternatively there
may be different genes within a single organism that go by thesame name. In the fly,clockcan
refer to 6 different genes.

Finally, in the third document, we see that the termclock does not appear. However, the
termperioddoes appear and in this case, it is a synonym for the gene that we are searching for.
Unfortunately, as it is labeled here with a different name, this document would not be returned
by a standard search. This highlights the third issue; a single gene can have many synonyms.
Theclock gene in this example has 13 different names. If a text mining task is unable to take
all of these names into account when looking for a gene, then many occurrences of it will be
missed.
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Chapter 1: Introduction 2

Any text mining system must not only be able to identify gene names, but must be able
to determine exactly which gene is being referenced in a specific context. These two subtasks
of gene name identification and disambiguation make up the task ofgene normalisation, a task
that is one of the foundations required for any kind of text mining system working with biomed-
ical literature. To perform fact extraction procedures, such as protein-protein interactions or the
generation of co-occurrence statistics, we must be very certain of which genes are being dis-
cussed in the text. It is also important for information retrieval tasks, where gene normalisation
can facilitate query expansion, increasing the number of relevant documents available.

If such a system is applied to our example above, the query term is replaced with a unique
identifier,FBgn0003069. This term also replacesperiod in the third document, while the oc-
currence in the second document is replaced with an identifier for a mouse gene,MGI:99698.
The first fragment has no identifier as there is no gene being discussed. Once this has been
performed, it can be clearly seen that only the third document is relevant.

The task of gene normalisation was recently investigated atthe BioCreative Challenge
(Hirschmanet al. 2005b), a text mining evaluation focusing on the biomedicaldomain. Here,
Crim et al. (2005) presented a gene normalisation system which uses a machine learning-based
approach. Though one of the best performing systems at BioCreative, this system gives few de-
tails as to how identification of genes is performed, relies on an incomplete list of gene names,
and a uses a quite limited feature set.

We present a system, based on a similar framework to Crimet al.(2005) , which attempts to
overcome these limitations. This is contrasted with a dictionary-based lookup approach, which
performs no disambiguation. For each of these systems, a variety of methods are examined
to assist in the identification phase, either by adding new gene names or removing unlikely
candidates.

We examine the performance of a state-of-the-art gene identification system, demonstrat-
ing that the rich information that can be obtained from biomedical databases allow a simple
dictionary-based lookup system to achieve competitive identification performance for some or-
ganisms.

A number of novel features are implemented to extend the feature set applied by Crimet al.
(2005), derived from external resources and lexical information. The use of additional features
leads to only slight increases, revealing the difficulty of this task.

Finally, we present an analysis of each data set which identifies the complexities and ambi-
guities unique to each organism followed by an analysis of the errors generated by our system.
The combination of these analyses shows each organism suffers from a quite different issues
and creating separate solutions for different organisms may yield better results.

In Chapter 2, we give a detailed definition of the task, introduce the data used in this work
and present previous work in this area. Chapter 3 outlines the architecture used by our system,
with Chapter 4 presenting the results of our experiments. Chapter 5 contains a more detailed
analysis of our results, with our final conclusions and possible future work in Chapter 6.



Chapter 2

Background

In this section, we provide an overview of biomedical text mining, followed by some basic
definitions associated with gene normalisation. We then discuss the BioCreative challenge, with
a focus on the gene normalisation tasks and examine the data produced from BioCreative for
use in this task. A summary of previous work related to gene normalisation is also presented.

2.1 Biomedical text mining

Within the last decade, research efforts like The Human Genome Project (Landeret al.
2001) and recent technological advances, including microarray data generation, advances in
DNA sequencing and in medical imaging, have lead to a dramatic increase in the rate at which
scientific data can be produced (Buetow 2005). This increasein data has also meant the level of
scientific literature generated by the biomedical community has grown rapidly.

One development which has been crucial to managing the flood of new publications has
been the advent of online databases and repositories. Publication indices, such as MEDLINE,
have given researchers access to millions of biomedical abstracts while gene databases, such as
Entrez Gene (Maglottet al.2005), provide up-to-date information on gene families, pathways
and homologs can then be used to infer information about newly discovered genes. These kinds
of repositories have allowed researchers to share their knowledge with others, facilitating new
research(Collinset al.2003).

However, the exponential growth of the literature has been so fast that it is impossible for
even a large team of researchers to be able to comprehend a reasonable proportion of it (Cohen
and Hunter 2004). This makes it difficult for online repositories to remain up-to-date while
maintaining a high quality of data. The idiosyncrasies of biomedical literature also make it
difficult for traditional data-management techniques to yield useful results (Buetow 2005). New
methods are needed to cope with this information overload.

In an effort to improve current information retrieval processes, attempts are being made
by the natural language processing (NLP) community to adapttechniques which have been

3



Chapter 2: Background 4

traditionally used on domains such as news articles to the biomedical domain. Tasks like multi-
document summarisation (Maglottet al. 2005), allow for better management of the data by
making it easier to find and digest information, while new tools are being created to facilitate
the automation of database curation (Alfaranoet al.2005).

More than just building a better search engine, the large amount of data available in the
biomedical literature can also lead to a variety of new inferences about the way that biology
works. Research is currently being conducted into using information found in the literature as
secondary information to assist with analysis of microarray data (Chaussabel and Sher 2002).
Methods are also under investigation which would use text mining techniques to discover new
relationships between genes or to discover how sets of proteins interact with each other (Cohen
and Hunter 2004). The success of these types of tasks would allow for a reduction in the work
done in a lab by narrowing down the search space, allowing biologists to experiment with only
combinations that have shown up as likely pairs within the literature. A similar technique can
also use the co-occurrence statistics of genes within the literature to build hypotheses of how
the underlying biology operates (Bekhuis 2006).

Before any of these tasks can be performed accurately, gene normalisation must be per-
formed to unambiguously identify all genes which are referred to within the literature. It is
foundation of many NLP processes in the biomedical domain.

2.2 Gene Normalisation

A gene mention is a textual entity which refers to any gene or its products, such as proteins,
RNA, binding sites, promoters etc. Though it is possible to create a more fine-grained definition,
whereby each gene product is classified into separate groups, in practice this is quite difficult.
Even experts within the biomedical domain are only able to agree 77% of the time on whether
a specific mention refers to a gene, RNA or protein (Tanabeet al.2005).

Gene mentions have a variety of idiosyncrasies not encountered in common proper nouns.
While the issue of gene mention ambiguity with relation to text mining systems has only become
an issue in recent times, researchers have long identified that ambiguity within gene nomen-
clature has made it more difficult to share information across different biological fields. To
overcome this obstacle, naming conventions were created for human genes in the 1950’s and
60’s setting the way for similar standards in other organisms. However, many in the scientific
community have tended to use existing aliases rather than adopting official names set out in
nomenclature guidelines, with influential scientific papers having more impact on the choice
of gene name than the standards themselves (Tamames and Valencia 2006). Newly discovered
genes tend to follow official guidelines, but after a time, often acquire unofficial synonyms.

The enforcement (or lack thereof) of naming conventions fora specific organism have a sig-
nificant impact on the complexity of different NLP tasks on the related literature. Just because
a text mining system may be able to perform well on documents related to one organisms does
not imply that it will perform well over all organisms. For example, the nomenclature of yeast
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tends to follow the related naming conventions quite strictly, resulting in a vocabulary with lit-
tle ambiguity and a general consistency between names. On the other hand, the official gene
names of the fruit fly are often ignored in favour of unofficialaliases and synonyms, resulting
in a nomenclature with a significant amount of overlap with English terms, multiple names per
gene and many genes sharing the same name.

Gene normalisation attempts to normalise gene mentions by mapping each one back to a
unique identifier, unambiguously showing the exact gene being referenced. The problem of
gene normalisation can be broken down into two subtasks: identification and disambiguation.
Identification of gene mentions is similar to named entity detection in a newswire domain, but
the idiosyncrasies of biomedical literature add to the complexity of the task. Not only do we
retain the problems associated with detecting word boundaries and issues as to what constitutes
an important entity, but there are many issues with the naming conventions. New gene and
proteins are also constantly being discovered, renamed or are found to be invalid. The model
database related to the common mouse shows between 50 and 100alterations every week to the
nomenclature section(Dickman 2003). This dynamic vocabulary means that any identification
system created must be flexible enough to keep up future additions.

The inclusion of symbols and non-alphabetic characters in many gene names also causes
problems with identification. Tokenisation becomes much more difficult as we can no longer
make assumptions that tokens are strings of alphanumeric characters. With mentions such as
”alpha 2/delta subunit 2” or ”PBSF/SDF-1”, it can be difficult to determine whether we are
referring to two separate genes or a component of a more complex gene product.

The names of genes often originate from their descriptions,causing some organisms to have
a large portion of gene names which are common English words or phrases. Examples from the
fruit fly include period, fused, for andin. This means we must be able to accurately determine
when terms are being used as English words or as gene mentions. A variety of genes have
related locations, pathways and domains, and these relatedentities are often named after their
associated gene. This also adds to the complexity of identification as these related entities can
be difficult to distinguish from the actual gene itself.

For most tasks, we must also disambiguate the gene name to determine exactly which gene is
currently being referenced. Quite often, different genes will share the same name and therefore
identifying the name will not be enough to inform us which of these genes is being discussed.
Normalisation resolves this issue by mapping each gene to anassociated unique identifier.

There are two possible sources of ambiguity. A gene mention may require disambiguation
between multiple genes within the same organism. Alternatively, a gene mention may refer to
the equivalent genes within different organisms. In some cases, a gene mention may conform
to both of these cases, requiring us to identify the correct gene in the correct organism. In this
work, we are only concerned with disambiguation within a single organism. Even ignoring
cross-species ambiguity, this is still non-trivial problem, with terms in the fruit fly having up to
108 unique genes associated with them.
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Figure 2.1: An example of an abstract, related gene list and the synonym list from thefly dataset

2.3 BioCreative and Data

In recent years, there has been a marked attempt to increase the amount of research into text
mining on the biomedical domain. Much of this interest has been generated using a staple of
the text mining community; by creating a challenge, with related data and guidelines to allow
the development of systems and metrics that allow for the creation of new automatic techniques
and accurate comparison between systems (Yehet al. 2005). Shared tasks such as the KDD
Cup (Yehet al. 2003) and the genomic track of TREC (Hersh and Bhupatiraju 2003) have all
helped to generate interest in text processing for the biomedical domain.

A similar evaluation, the BioCreative challenge (Hirschman et al.2005b) was created with
the intent of providing a “systematic assessment” of biomedical text mining systems. It ran
in 2004 and again in 2007, with the first having over 27 groups from 10 different countries
participate.

Both years focused on 3 main tasks: gene name identification,gene normalisation, and ex-
tracting protein-protein interactions. For each of these tasks, a corpus of data was generated, as
well as associated scoring software. While the gene identification and protein-protein interac-
tion tasks consisted of data that was created manually, similar to that of the MUC workshops
(Chinchor 1998), the gene normalisation data was generatedautomatically in an attempt to ”ex-
plore the hypothesis that expert-curated biological databases provide sufficient resource for the
creation of high quality text mining tools” (Hirschmanet al.2005a). The details of this gener-
ation are described in the following section. The nature of the automatic process meant it was
not possible to annotate each gene within an abstract. Instead, a list of the genes mentioned in
each abstract are created.

Gene normalisation was the focus of task 1B of BioCreative, and it is from here that we
take our task definition and data. The aim of this task is to take a set of abstracts for a given
organism and produce a list of gene identifiers indicating the genes that are mentioned within
each abstract. The data consists of separate datasets for three different organisms:yeast, mouse
andfly. These organisms were chosen as each has a related model database, containing a wide
variety of information specific to each organism. Each dataset consists of three components: a
set of abstracts, a list of gene synonyms specific to each organism and a list of genes contained
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in each abstract. An example of each of these data componentsis shown in Figure 2.1.

2.3.1 Abstracts

The abstracts are taken from MEDLINE and consists of 5000 abstracts per organism for use
as training data as well as 108, 110 and 250 abstracts in the development test data for yeast,
mouse and fly respectively. The final testing data consists ofa further 250 abstracts for each
organism. Each abstract contains only the text with furtherdetails, such as the document’s title
or publication information, stripped from the document.

2.3.2 Synonym Lists

Each organism also has a related synonym list, containing all known gene identifiers and
the gene mentions that have been associated with each of them. These list have been manually
created by each model organism database. The list are incomplete due to the variety of lexical
variations in the literature and the limits of the original database from which the list is derived.

2.3.3 Gene Lists

For each abstract, a list of gene identifiers has been created, containing all genes referenced
in the abstract. These gene lists were derived from manuallycreated gene lists that apply to the
whole document, created by curators of each model organism database. These lists therefore
had to be filtered to only contain genes mentioned in the abstract. This filtering was performed
using an automatic and noisy process. Possible gene mentions were identified using a organ-
ism’s synonym list. If one of these mentions occurred in the abstract and had an associated
gene identifier in the gene list, then the gene identifier remained in the list. All gene identifiers
not identified in the abstract were marked as not present. Theinformation of where each gene
mention occurs in the abstract is not provided.

Although this method allows for the creation of a large corpus of training data due to its
automatic and relatively efficient nature, there are many opportunities where noise could be
introduced. Table 2.1 shows the estimated levels of recall for the training data. As previously
mentioned, the synonym lists provided by each model organism database are incomplete. If a
gene mention within a document contains a different spelling variation to its equivalent in the
synonym list, then the gene will be marked as absent from the abstract.

Similarly to the completeness issues of the synonym list, the gene list provided by the model
database may also not contain all genes within a given document. This occurs when a model
database is specifically concerned with genes of a specific function or expression level, causing
it to leave the more basic ”house-keeping” genes off its genelists (Colosimoet al. 2005). If a
gene occurs in an abstract, but is not marked on the gene list,it is as if that gene does not exist.

Evaluating on this noisy data would not provide a true measure of performance, as a system
could correctly normalise all genes in a text, but would be penalised as many genes would
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# of abstracts in
training data

# of abstracts in
development data

# of abstracts
in test data

Estimated precision
of training data

Estimated recall
of test data

Yeast 5000 108 250 98.5 86.0
Mouse 5000 110 250 99.0 55.2
Fly 5000 250 250 86.3 80.7

Table 2.1: Amount and quality of data provided in BioCreative

not appear in the associated noisy gene list. To resolve thisissue, the test data had all noise
removed by manually correcting the errors introduced by thefiltering process. The different
levels of noise in the training and test sets makes it difficult to generate to create a high accuracy,
supervised machine learning approach.

Due to these issues, the data for this task is quite differentto similar corpora. Whereas the
data for the named entity recognition tasks in MUC consist ofmanually tagged entries with
each entity being annotated in the document, in this task we only have a noisy lists of genes
mentioned in each abstract and no information as to where each gene mention occurs in an
abstract.

2.4 Previous Work

Though gene identification has been researched since the early 1990’s, gene normalisation
has only begun to be explored in recent years. Most systems have relied on the BioCreative
data, as this appears to be the only widely used source of dataavaliable for this task.

Morganet al.(2004) split the problem into 3 stages: identifying genes inthe abstract, match-
ing these gene names to those in a synonym list and finally, disambiguating gene names. The
data used was a superset of the fly dataset in BioCreative. To identify genes, noisy training data
was generated from the abstracts and their associated gene lists and was used to train a gene
identification tagger. Disambiguation was performed by a series of filters which would remove
any ambiguity. Using this method, they were able to generatea final F-score of 72%. Though
this system used similar data to the systems in BioCreative,it is not directly comparable to
results from the evaluation as it used an extra 8033 abstracts to assist with training.

Two systems at BioCreative also utilised an automated approach. Crimet al. (2005) chose
to use a machine learning approach for the disambiguation phase. An identification phase deter-
mines all possible gene mentions in an abstract by matching text to entries in the synonym list,
generating a high recall identification system. In the training phase, each match generated by
the identification phase was used to generate a series of positive and negative instances which
were then passed to a machine learning algorithm. A maximum entropy classifier was used
with a small feature set, achieving good results for fly and mouse and the highest results in the
competition for yeast. The architecture for this system is described in greater detail in Section
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Yeast Mouse Fly
P R F P R F P R F

Hacheyet al. (2004) 96.9 75.4 84.8 77.0 59.6 67.2 59.2 74.8 66.1
Hanischet al. (2005) 96.6 84.0 89.9 76.6 81.4 79.0 93.1 80.0 81.6
Fundelet al. (2005) 91.7 87.8 89.7 76.4 78.1 77.3 80.2 73.7 76.8
Crim et al. (2005) 95.6 88.1 91.7 78.7 73.2 75.8 70.4 78.3 74.2
Wellner (2006) 94.5 90.2 90.2 79.5 74.3 76.8 76.7 76.7 76.7

Table 2.2: The performance of previous systems over the BioCreative dataset. The best F-score
per organism is shown in bold

3 as we use this framework as the basis for our machine learning-based approach for this work.
Hacheyet al. (2004) took a similar approach to that of Morganet al. (2004), but used

only the BioCreative data. Noisy training data was generated from each organism’s dataset
which was then used to train a gene identification tagger thathad been submitted in a separate
BioCreative task. A series of further measures to improve recall of gene names in the synonym
list and to improve disambiguation were then presented, utilising TF-IDF scores, co-occurrence
and heuristic methods.

In general, the rule-based approaches from BioCreative achieved better performance than
those based on machine learning techniques. Hanischet al. (2005) created a system which
relied on heavily modified synonym lists, with the addition of automatically generated lexical
variations and filtering, as well as manual additions and removals of gene names from the pro-
vided synonym lists. An approximate search was used to identify genes, relying on similarity
scores derived from the class of words being matched and the number of matching tokens. Dis-
ambiguation is performed by choosing the identifier with thehighest number of occurrences
within a document.

Fundelet al. (2005) chose to explore the performance of a simple dictionary-based lookup
approach, using the combination of automatic and manual expansion used by Hanischet al.
(2005). Exact matching was used to locate candidate gene mentions, which were then filtered
based on a list of words known to indicate the matched text does not refer to a gene. This simple
system was able to achieve results close to the best within all BioCreative submission.

Wellner (2006) tried to improve results by improving the quality of the training data. This
was achieved using weakly supervised methods and high precision gene identification tools to
re-label incorrect instances. The system was based on a similar framework to Crimet al.(2005),
but was unable to make any performance gains.

In Table 2.2, we present a summary of the results achieved by the various systems over the
BioCreative data. As Morganet al. (2004) did not use the same data, it has not been included.



Chapter 3

System Description

The system we have created uses a framework similar to that used by Crimet al. (2005).
We have altered this to allow for the generation of two different systems; a Naive Dsystem
which performs no disambiguation and a more complex Supervise Disambiguation system.
This architecture is outlined in Figure 3 and is described inthe following section.

There are 3 main stages in our system. First, the document is run through a high recall gene
identification system. By processing the provided synonym list in a variety of ways, we are able
to identify more than 89% of gene mentions, though we generate a large amount of false posi-
tives. The choice of system then determines the disambiguation stage. If naive disambiguation
is employed, all gene identifiers related to the gene mentions we have found are added to the
output gene list. If a machine learning-based system is used, then each candidate mention is
used to create a series of instances for each possible gene identifier related to the mention. A
variety of features are then extracted from contextual textand instances are passed to a max-
imum entropy classifier. In the training phase, these instances are used to train the classifier
while in the testing phase, each instance is classified and a confidence value is returned. A gene
identifier is added to a document’s gene list if it has the highest positive confidence value out
of the instances for each mention. The following sections explain each of these steps in greater
detail.

3.1 Candidate Identification

The first phase, the identification of possible genes, tries to capture all textual entities which
could be a gene mention. Its inputs are a synonym list, where all forms of gene mentions are
stored, and the abstracts to be processed. The goal is to create a high recall system, as the recall
found here will place an upper bound on total recall that can be achieved by the system. The
synonyms and the text in each abstract are converted to lowercase and all symbols are removed.
Words from the synonym list are then matched to text in the abstract using longest extent pattern
matching to locate candidate gene mentions. While Crimet al.(2005) describes a similar phase,

10
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Figure 3.1: A outline of the system architecture

few details are given as to how it is performed.
This system is reliant on an exact match of words in the synonym list to the text. As we have

noted that the synonym list is incomplete, we attempt to account for gene name variations by
expanding the given synonym list using three methods: generation of lexical variations, extract-
ing additional names from external sources and stemming. Identification of gene mentions has
been limited in other gene normalisation systems as the synonym list provided does not cover
all possible variations. By adding to this list, the recall achieved after classification should be
improved.

Generation of lexical variations has been used with great success by biomedical information
retrieval systems to help account for the small differencesin spelling and punctuation between
similar biomedical terms(Bttcheret al.2004). First, mentions in the synonym list which contain
no letters or consist of only a single character are discarded. For any mention with a subtype
specifier, a variation is created with the specifier discarded (Cytochrome b→ Cytochrome). If
the candidate gene mention contains numbers or any Greek letters, it is considered a candidate
for expansion. For such gene mentions, hyphens are replacedwith spaces and variations are
created with different combinations of Greek letters converted to their English equivalent and
vice-versa (alpha↔ a), and variations with spaces placed between alphabetic and numeric
characters. No organism specific variations are created. Anexample of such variations can be
illustrated with the mentionLSP-1 betawhich would have the following variants:LSP 1 beta,
LSP 1 b, LSP 1beta, LSP 1b, LSP1 beta, LSP1 b, LSP1beta, andLSP1b.

We also seek to augment the synonym list by looking at external sources. We used informa-
tion extracted from Entrez Gene(Maglottet al. 2005), a gene database containing information
extracted from a variety of more specific, curated databases. From this, we were able to add a
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variety of gene and protein names that were not found in the original list. This allows our sys-
tem to achieve higher recall without the need for organism specific rules or manually entered
data.

Stemming was explored using the Porter stemmer (Porter 1980). Although designed for
general English text, we felt a stemmer would help to match multi-word names with variations
that we would otherwise be unable to capture. For example, the mention ”proliferator antigen
receptor” is in the synonym list of the mouse, but is referenced in an abstract as ”proliferating
antigen receptor”. When we use the Porter stemmer, both mentions become ”prolifer antigen
receptor” and the match in the abstract would be found.

From this stage, the naive and supervised systems diverge. If the naive approach is used, all
identified gene mentions and all of their associated gene identifiers will be added to the resulting
gene list. While this method is quite simple, it has been shown that naive disambiguation with
an augmented synonym list can achieve state-of-the-art performance. The performance of the
synonym list also gives a rough estimation as to the performance of the identification phase.

If a machine-learning approach is taken then we use the results from the identification phase
to generate instances, describe in the following sections.

3.2 Instance Generation

Once all potential gene mentions have been discovered, we use each match to generate data
to train our binary classifier. In the training phase, this isdone by creating a series of positive
and negative instances from each match found in the identification module. If a gene mention is
identified in a document and the mention’s associated gene identifier appears in that document’s
gene list, the generated instance is labeled as a positive match. If a gene is identified and its
associated gene identifier fails to appear in the documents gene list, it is labeled as a negative
instance. This processes is best illustrated with the following two text fragments;

• fused (fu) is a segment-polarity gene

• A minimal promoterfused to such sites

Consider the above two fragments of text, taken from separated documents, in which the
word fusedwas found to be a possible gene identifier. The gene list associated with the first
example contains the gene identifier,FBgn0001079, an identifier which is also associated with
the genefused.When generating training instances, the combination of this identifier and one
of its synonyms, in this case the termfused, creates a positive instance. However,fusedis an
ambiguous term with nine associated gene identifiers, similar to unique senses in word sense
disambiguation. Each of the eight remaining gene identifiers which were not contained in the
documents gene list are used to create negative instances. In test data, we would still gener-
ate nine instances, one for each associated gene identifier,but leave the positive or negative
classification to the machine learning algorithm.
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The second example fragment also contains the textfused, however, in this case it is as
an English word. As no gene identifiers in the document’s genelist are associated with the
mention, 9 negative instances are created.

3.3 Features

For each instance that is created, a set of features are generated which are used to assist
disambiguation. The system implemented by Crimet al. (2005) contains only very basic fea-
tures: the two tokens before and after the candidate mention, the gene identifier associated with
the mention and the total number of gene identifiers associated with the current gene identifier.
Though quite simple, these features were shown to perform quite well. In this paper we in-
vestigate a variety of features which intuitively gave morecontext to each mention. The range
from external information, such as part of speech (POS) tagscreated using the MedPost tagger
(Smithet al. 2004), to contextual information, such as spacing and capitalisation. The feature
set is listed below with features used in Crimet al. (2005) marked with a★.

Matching Text (★): The gene name found in the text, as it occurs in the original abstract.

Gene Identifier (★): The unique gene identifier associated with the candidate gene mention.

Gene Mention POS:The part of speech tags associated with the matched text. If multiple
words exists, all tags are concatenated together separatedby underscores.

Previous/Following Word (★): Extract the words from before and after the candidate gene
mention within a given context size. Each of these words is then used as a separate
feature. We used a window size of 2.

Previous/Following POS:Extract the part of speech tags associated with each of the words
used in the previous feature

Closest Verb Left/Right: Extract the verbs which closest to the gene mention on eitherside.

Is English Term: A binary feature testing whether the candidate gene mentionis an English
word This is determined by checking whether the mention has an entry in the WordNet
database (Fellbaum 1998).

Is Stopword: Does the candidate mention appear in the Zettair (Billerbeck et al. 2004)
stopword list.

Same Othography: A binary feature testing if the capitalisation of the candidate mention
is the same as that of its match in the synonym list. This is necessary as the matching
performed is done on lowercase text with no symbols.

Seperated From Next:A binary feature testing if the word is separate or hyphenated to the
following token.

Appears in Entrez Gene:A binary feature testing if the gene appears in Entrez Gene.
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Number of Words: The more words a gene mention has, the more likely it is to be a positive
match.

Length in characters: Similar to above, longer gene names tend to be a correct matches.

Amount of Polysemy (★): The number of gene identifiers that are associated with the current
gene mention.

Amount of Synonymy: The number of gene mentions associated with the current geneiden-
tifier.

Conditional probability: Determines the probability that if a gene mention occurs in adoc-
ument, what is the probability that the an identifier of the gene will be in the document’s
gene list. This applies to each combination of gene mention and identifier and is given by
the ratio:

# of abstracts where mention occurs with specific identifier
# of abstracts containing gene mention

3.4 Disambiguation

Instances are then passed through to the classification module to be used in a maximum
entropy classifier. Maximum entropy estimates the conditional probability of a class based on
a set of constraints with Each constraint expressing a characteristic of the training data(Nigam
et al. 1999). The probability distribution that satisfies these constraints is the one with the
highest entropy. This model takes the form:

P (c|f) =

exp(
∑

i

λifi(c, f))

Z(f)

where c is the class,f is a feature vector and Z(f) is a normalising term. Our system also used a
Gaussian prior of 1.0 to reduce the probability of overfitting the model to the training data.

Maximum entropy classification has been shown to perform well in NLP tasks due to its
ability to perform well over noisy datasets and highly dependent features(Bergeret al. 1996).
They are also very efficient to train and to classify, even over large datasets with high dimension
feature spaces. We chose to use the maximum entropy classifier implemented in MALLET(Mc-
Callum 2002).

Each of the positive and negative instances generated from the training data are used to train
the classifier which is then used to classify all test instances. Once each test instance has been
classified, we look at each candidate mention which has been identified in each test document.
If a mention has one or more positive classifications, we takethe instance with the highest
probability and add the associated gene identifier to the current document’s gene list. If there
are no positive instances, the match is discarded and we examine the next possible candidate.
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Results

In this section, we explore the performance of various system combinations. After present-
ing our evaluation metrics and a series of baseline systems,we explore the use of an out-of-the-
box gene identification system for the identification phase.We then test our proposed methods
for synonym list augmentation over the Naive Disambiguation and Supervised Disambiguation
systems, comparing and contrasting their performance. Finally, we explore the effects of using
an expanded feature set in an attempt to build a more effective classifier.

4.1 Evaluation Metrics

The system is evaluated in terms of 3 scores: recall, precision and F-score. These measures
allow one to interpret how successful a method was at its taskcompared to a gold standard
dataset. In the context of gene normalisation, precision and recall are defined as:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN

where true positives (TP) refers to the number of gene identifiers correctly added to the gene
list, false positives (FP) refers to the number of gene identifiers incorrectly added to the gene list
while false negatives (FN) refers to the number of gene identifiers that have not been detected
by the system. The F-score is the harmonic mean of precision and recall or

F-score=
2 × Precision × Recall

P recision + Recall

These values are calculated using the scoring script supplied with the BioCreative data.

4.2 Baseline Experiments: Naive Disambiguation

In order to judge the difficulty of creating a gene normalisation system, we created a series of
simple dictionary-based lookup systems which match gene mentions found in the synonym list

15
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Yeast Mouse Fly
P R F P R F P R F

First 95.2 67.5 79.0 12.1 65.8 20.4 5.9 60.8 11.8
MostCommon 95.2 67.7 79.2 12.4 67.5 21.0 7.9 81.1 14.8
AddAll 92.0 79.1 85.1 14.3 83.5 24.4 4.1 94.6 7.8

Table 4.1: Baseline normalisation systems using a common lookup approach with different
disambiguation methods. The best F-score per organism is shown in bold

to each abstract. Any match found is counted as an instance ofa gene. Three variations of this
system were created; their differences are based on how disambiguation was performed when
an identified gene mention was associated with multiple identifiers. These naive disambiguation
systems are as follows:

• First - Simply choose whichever gene identifier was the first in the synonym list

• MostCommon - Add the gene identifier which had appeared most in the training data

• AddAll - Add all gene identifiers to the gene list.

To demonstrate the difference between these systems, consider this example: if the gene men-
tion fusedwas found with possible identifiersFBgn0014573, FBgn0001079andFBgn0017900.
The first system would matchFBgn0014573, the second system would matchFBgn0001079,
the most common of the three identifiers, while the third system would add all identifiers to the
gene list, creating much higher recall at the cost of precision.

As shown in Table 4.1, there is generally little difference between adding the first identifier
in the list and adding the most common, though the latter generates a reasonable increase in the
amount of recall in the fly. Performing no disambiguation andadding all gene identifiers, as in
the third method, leads to a large increase in recall for all organisms. As expected this comes at
the cost of precision, with severe degradation occurring infly data, as it has more identifiers per
gene mention than the other two organisms.

4.3 Use of Pre-existing Gene Identification Methods

As a contrast to our baseline systems, we chose to examine theperformance of a pre-existing
gene identification system. We chose the BioTagger package (McDonald and Pereira 2005), one
of the best performing gene identification systems seen in the BioCreative 2004 Task 1A (Yeh
et al.2005).

The gene identification system is used to processes all abstracts. For each gene found by the
tagger, we attempt to locate it in the synonym list. If a matchis found, we add all associated
gene identifiers to the resulting gene list. Again, this is a naive disambiguation system, but our
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Yeast Mouse Fly
P R F P R F P R F

AddAll 92.0 79.1 85.1 14.3 83.5 24.4 4.1 94.6 7.8
BioTagger 95.8 59.9 73.7 88.4 46.1 51.6 68.6 24.9 36.6

Table 4.2: Results of using BioTagger to identify gene mentions. No disambiguation is per-
formed; instead all possible identifiers for each identifiedgene are added to the resulting gene
list. The best F-score per organism is shown in bold

hope is that it will maintain or increase the recall of the dictionary-based systems while also
increasing precision.

From Table 4.2, we can see that the system performs well for the mouse, and while it
achieves high precision on the fly and the yeast, it misses many gene mentions, resulting in low
recall, compared to state-of-the-art gene normalisation systems. This may be because although
trained on MEDLINE abstracts, similar to the data used by oursystem, the abstracts used to
train BioTagger were from a variety of organism. Given the differences between the gene
nomenclature of different organisms, the lack of recall in the fly and mouse is unsurprising.
Another factor is that BioTagger has been optimised to generate the highest F-score rather than
to maximise recall. More work in tuning the tagger to producerecall may allow it to perform
more successfully in this role.

4.4 Naive Disambiguation Enhancements

After examining the results of our baseline systems, as wellas the lack of recall shown by
BioTagger, we hypothesise that the incompleteness of the synonym list limits the ability of the
system to achieve high recall. To alleviate this issue, we experiment with a variety of synonym
list expansion and filtering methods. We apply these methodsto the Naive Disambiguation
(ND) system described in Section 3.1, equivalent to the AddAll system in table 4.1 which was
the best performing of the baseline systems. As no real disambiguation is performed in this
system, the approach can be used to estimate the performanceof the identification phase and
allow us to gauge how altering the synonym list may affect identification performance.

4.4.1 Synonym List Expansion

We begin by implementing the three methods that were introduced in Section 3.1:

• Variation - The creation of gene names variations with different spacing, greek letters
etc.

• EntrezGene- The addition of genes to the synonym list from Entrez Gene
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Yeast Mouse Fly
P R F P R F P R F

ND 92.0 79.1 85.1 14.3 83.5 24.4 4.1 94.6 7.8
ND Variations 88.3 80.3 84.1 1.9 89.7 3.7 2.0 95.3 3.8
ND EntrezGene 92.3 89.7 91.0 14.3 83.5 24.4 4.1 94.6 7.8
ND Stemming 91.2 79.1 84.7 12.7 82.4 22.0 3.7 92.8 7.2
ND Vars+Entrez 89.0 90.9 89.9 1.9 89.7 3.7 2.0 95.3 3.8

Table 4.3: The effect of various synonym list expansion techniques on the Naive Disambigua-
tion (ND) system. The best F-score for each organism is shownin bold

• Stemming - Reducing both the words in the synonym list and the abstractback to their
root forms.

• Vars+Entrez - The combination of lexical variations and additions from Entrez Gene.

These methods are contrasted with the baseline system usingno synonym list expansions. The
combination of both Entrez Gene additions and lexical variations is also included. The per-
formance of each technique using the Naive Disambiguation system (ND) are summarised in
4.3

The results from the synonym list expansion are somewhat mixed. Using variations causes
an increase of recall in all organisms, but at the cost of degraded precision, especially in the
mouse. While this increases the coverage of the synonym list, many of the newly created
variations simply add more noise to the data.

Adding information from Entrez Gene works well for yeast, but does not significantly im-
pact on the recall of the mouse or fly. The yeast synonym list seems to be lacking a large number
of protein names which we are able to extract from Entrez Gene. This is more efficient than
previous systems (Fundelet al. 2005; Hanischet al. 2005) as it removes the need to examine
the data and create a complex organism-specfic rules. The combination lexical variations and
additions from Entrez Gene (NDVars+Entrez) gives us a score slightly above that of (Crim
et al.2005) for yeast, but brings no change from the variations method in the mouse and fly.

Stemming, though used by other biomedical text mining systems (Hanischet al. 2005),
appears less useful for this task, having a negative impact on all organisms. After investigation,
it appears that this is due to the inability of the Porter stemmer to deal with the complexities
of biological nomenclature. There are a number of cases where two separate gene are reduced
to a single gene name after stemming; for example, gene mentionsfu andfusare both reduced
to fu. The reduction of both names to a single gene mention increases the level of ambiguity,
reducing the likelihood of successful disambiguation. While only using additions from Entrez
Gene (NDEntrezGene) achieve the highest F-score, the recall is improved by the combination
of Entrez Gene additions and lexical variations (NDVars+Entrez). As we believe that more
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complex systems will achieve improve precision by using better disambiguation techniques, we
use the NDVars+Entrez system for the following experiments.

4.4.2 Filtering

While the combination of lexical variations and additions from Entrez Gene outlined in the
previous section successfully increase the recall of our system, they also result in the addition
of more noise. To combat this problem, we experimented with four possible filtering methods:

• Stopwords - Uses a stopwords list to filter out gene names that match common words.
The list used was taken from Zettair, an information retrieval engine designed for TREC
(Billerbecket al.2004).

• Nouns/Adj - Most gene names are recognised as either nouns of adjectives, with many
false positives identified as conjunctions or verbs. Removing these should lead to better
results.

• English - Filtering out all English words is performed by determining whether or not a
word exists in the lexical database, WordNet (Fellbaum 1998). English words are less
likely to be true observations of a gene mention.

• Cond - The conditional probability filter which was used by Crimet al. (2005) in their
pattern matching system. This statistic gives us a measure of how a specific candidate
mention has behaved in the training data, with a higher valueshowing it has been used
more as a gene name than as another word type. This is used later as a feature and has
been explained in greater detail in Section 3.3. We chose to filter out all genes which had
a conditional probability lower than 0.1, as it discards candidate gene mentions that are
almost certainly false positives while retaining high recall.

Each filter was tested using the synonym list with expansionsderived from Entrez Gene
and the addition of lexical variations (NDVars+Entrez system in Table 4.3). The results are
summarised in Table 4.4 below.

The first three methods provide no benefit, while removing candidate mentions with a low
probability of being gene names works remarkably well. Thisfilter dramatically increases
precision in all organisms, with precision in the mouse increasing from 2% to 60%. A manual
examination of the results indicates that the gene names targeted by other filters are mainly
encompassed by this filter while leaving in those that regularly appear as gene names.

4.5 Supervised Disambiguation Approach

While the results obtained by the Naive Disambiguation system in the previous section
are quite high, we believe that the implementation of the Supervised Disambiguation phase
can improve results even further. As outlined in Section 3, after the identification phase is
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Yeast Mouse Fly
P R F P R F P R F

ND Vars+Entrez 89.0 90.9 89.9 1.9 89.7 3.7 2.0 95.3 3.8
ND Vars+EntrezStopwords 89.3 90.9 90.1 2.1 89.7 4.1 2.4 95.6 4.7
ND Vars+EntrezNouns/Adj 92.3 89.6 90.9 1.9 77.6 3.7 2.2 83.2 4.3
ND Vars+EntrezEnglish 92.4 89.7 91.1 1.5 75.9 2.9 4.6 65.0 8.5
ND Vars+EntrezCond 93.5 89.6 91.5 63.4 77.9 70.1 41.8 92.1 57.5

Table 4.4: The effect of various filtering methods on a Naive Disambiguation (ND) system
using lexical variations and additions from Entrez Gene (Vars+Entrez). The best F-scores are
shown in bold

Yeast Mouse Fly
P R F P R F P R F

SD NoExpansion 95.4 77.3 85.4 84.4 56.8 67.9 75.1 72.5 73.8
SD Variations 95.2 78.3 85.9 81.8 48.7 61.1 75.0 72.0 73.5
SD EntrezGene 95.1 88.3 91.5 84.4 56.6 67.8 75.5 72.5 74.0
SD Stemming 95.2 77.3 85.3 82.2 54.4 65.5 72.7 68.3 70.4
SD Vars+Entrez 94.9 88.9 91.8 81.5 49.3 61.4 74.6 72.0 73.3

Table 4.5: Results of various synonym list expansion methods on the Supervised Disambigua-
tion (SD) system

performed using the same technique as in the Naive Disambiguation system, the Supervised
system disambiguates candidate gene names by using a maximum entropy classifier, utilising
the same features as in the Crimet al. (2005) system.

4.5.1 Performance of synonym list expansion methods

To contrast performance with the Naive Disambiguation approach, each experiment from
the previous section is repeated using our Supervised Disambiguation (SD) system. We begin
by evaluating the effect of the synonym list expansion techniques, with results outlined in Table
4.5.

Performance is consistently better than the Naive Disambiguation system, though the effect
of the augmentations are somewhat different. Here, the use of lexical variations (SDVariations)
lowers overall performance for the mouse and fly datasets as the noise introduced makes dis-
ambiguation more difficult. The exception to this is the yeast dataset, where the noise which
already exists in the data and the amount of noise that we introduced are quite low, resulting in
a small increase in performance. Entrez Gene assists yeast by making up for missing names,
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Yeast Mouse Fly
P R F P R F P R F

ML Vars+Entrez 94.9 88.9 91.8 81.5 49.3 61.4 74.6 72.0 73.3
ML Vars+EntrezStopwords 94.9 88.9 91.8 81.1 49.6 61.6 74.9 72.5 73.7
ML Vars+EntrezNouns/Adj 94.9 87.9 91.3 75.7 40.6 52.9 74.2 63.6 68.5
ML Vars+EntrezEnglish 95.1 88.1 91.4 84.7 45.8 59.4 78.0 48.7 60.0
ML Vars+EntrezCond 94.7 88.3 91.4 78.7 68.6 73.3 71.8 82.5 76.8

Table 4.6: The results of filtering methods when using a Supervised Disambiguation (SD) sys-
tem with lexical variations and Entrez Gene

while having very little impact on the mouse and fly. Stemmingagain has a negative impact on
results.

4.5.2 Filtering

The increased noise due to lexical variations appears to lower overall system performance
by generating a worse-performing classifier. Previously, we demonstrated that effective filtering
can have a dramatic improvement on results by removing some of the noise and ambiguity
within the data. We again test our filtering techniques to remove unlikely candidate genes,
before passing the remaining candidates to the disambiguation classifier. Results are shown in
Table 4.6

While the conditional probability previously helped all systems, here it is only the mouse
and fly that improve; yeast results are slightly worse. As yeast data is already quite consistent
and suffers from little ambiguity, the filtering of results removes a number of correctly found
mentions.

4.6 Comparison of Naive and Supervised Disambiguation

Looking across the results from both the Naive Disambiguation and Supervised Disam-
biguation systems, we can see quite different responses in each organism. In Table 4.7, we
compare the results from each organism using both systems using the best overall setting; that
is with lexical variations, additions from Entrez Gene and filtering using conditional probability.

The fly data performs quite poorly with the Naive Disambiguation system due to its high
ambiguity while the reasonable quality of its training datameans that a useful classifier can be
created. In yeast, we are able to obtain better results usingonly naive disambiguation rather
than using maximum entropy to perform disambiguation. Thisis not especially surprising for
the yeast data, given that the nomenclature is very consistent and there is little ambiguity or
overlap with general English terms.
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Yeast Mouse Fly
P R F P R F P R F

ND Vars+EntrezCond 93.5 89.6 91.5 63.4 77.9 70.1 41.8 92.1 57.5
SD Vars+EntrezCond 94.7 88.3 91.4 78.7 68.6 73.3 71.8 82.5 76.8

Table 4.7: A comparison of Naive and Supervised Disambiguation systems

Yeast Mouse Fly
P R F P R F P R F

Crim et al.(2005) System 95.6 88.1 91.7 78.7 73.2 75.8 70.4 78.3 74.2
Crim Features 94.7 88.3 91.4 78.7 68.6 73.3 71.8 82.5 76.8
All Features 95.1 88.1 91.4 79.4 71.0 75.0 69.5 82.8 75.5

Table 4.8: The results of our system using all extended features and using only the features
specified in Crimet al. (2005) using the SDVars+EntrezCond system

The mouse data is quite different. It is unexpected that onlya slight improvement is achieved
using the Supervised Disambiguation system. There are two likely causes behind this lack of
improvement and both are related to the low recall of the mouse’s training data. The first is that
the low recall means that a great deal of the data used to trainour classifier is incorrect, resulting
in a disambiguation phase will is more likely to discard correct genes or perform disambiguation
incorrectly. The second factor is that all conditional probabilities are based on the appearance of
genes in the training data. If a gene mention in the training data appears, but is never included
on the related gene lists due to noise, its conditional probability will be very low. This results
in a number of genes being incorrectly discarded. Hence, a lower F-score is achieved when a
classifier is decrease in recall outweighs the gains in precision.

4.7 Expanding the Feature Set

After identifying the optimal method for identification andrecognising the poor perfor-
mance of machine learning-based disambiguation over the yeast and mouse datasets, we focus
on the features that are used by the system.

We begin with a comparison with results achieved by (Crimet al. 2005). We examine
the results of two separate feature sets on classification: the first using only those features
specified by (Crimet al. 2005) and the second using all features in our extended set, as out-
lined in Section 3.3. Each method is run using the SupervisedDisambiguation system with
lexical variations, additions from Entrez Gene and using conditional probability as a filter
(SD Vars+EntrezCond). The results are in Table 4.8
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Yeast Mouse Fly
P R F P R F P R F

Crim Features 94.7 88.3 91.4 78.7 68.6 73.3 71.8 82.5 76.8
All Features 95.1 88.1 91.4 79.4 71.0 75.0 69.5 82.8 75.5
Incremental Addition 95.5 89.1 92.2 79.4 71.5 75.2 75.3 81.6 78.3
Manual Selection 94.4 90.0 92.2 78.8 73.7 76.2 75.6 81.5 78.5

Table 4.9: The results of feature selection methods on the SDVars+EntrezCond system

Our gene normalisation system appears to perform somewhat differently to the Crimet al.
(2005) system. While performance over yeast is comparable,the system by Crimet al. (2005)
performs better over the mouse than the fly, while our system does the reverse. The differences
likely stem from the identification phase where Crimet al. (2005) gave few implementation
details, providing only the levels of recall achieved. As the Crim et al. (2005) system reports
recall over 90% over the yeast data, it is highly unlikely that only a dictionary-based lookup is
performed.

It is clear that using all available features does not produce the best possible classifier. In
order to locate the best performing subset of features, we chose to implement incremental addi-
tion feature selection, where the system begins with no features and iteratively tests all features,
adding the highest performing feature each round until no higher score can be achieved. We fur-
thered the results of this by manually adding features to determine if any further improvements
could be made. The results of each of these are displayed in Table 4.9.

While we are able to make some improvements using only a subset of the features, the gains
are quite modest from both incremental addition and manual experimentation. Table 4.10 shows
the features that were used in the best run for each organism.

The features used in the different systems vary considerably, with the yeast requiring very
few to make a decision, while the fly must draw on more information. Considering the large
increase in features used, the gain in performance is quite small. The noise of the training
data means that correlations between certain feature values and classes is lessened, reducing the
impact of that feature.
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Yeast Mouse Fly
Matching Text ✔ ✕ ✔

Gene Identifier ✕ ✕ ✔

Gene Mention POS ✕ ✔ ✔

Previous/Following Word ✔ ✕ ✔

Previous/Following POS ✔ ✕ ✔

Closest Verb Left ✕ ✕ ✔

Closest Verb Right ✕ ✔ ✔

Is English Term ✕ ✔ ✔

Is Stopword ✕ ✕ ✔

Same Othography ✕ ✔ ✔

Separated From Next ✕ ✔ ✔

In Entrez Gene ✕ ✕ ✔

Number of Words ✕ ✔ ✔

Length in characters ✔ ✔ ✕

Amount of Polysemy ✕ ✔ ✔

Amount of Synonymy ✕ ✔ ✔

Conditional Prob ✕ ✕ ✔

Table 4.10: The best performing subset of features for each organism
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Discussion

Throughout our experiments, we found the results vary considerably between organisms.
In this section, we examine the properties of each organism’s data to try and account for this
difference in performance. We also examine the types of errors that our system generates to
more accurately determine the strengths and weaknesses of our current approach. Finally, we
analyse the learning curve of our classifier to determine whether additional data would assist
performance.

5.1 Analysis of Datasets

The level of ambiguity differs significantly across the different organisms. Table 5.1 shows
the percentage of gene mentions with multiple associated identifiers, with the fly containing
considerably more ambiguity than the other two organisms. The fly also has considerably more
gene names that are also English terms, at approximately 4%,compared to the 1% for the mouse
or the insignificant six words for yeast. Terms such asperiod, in, andtype 1can create a great
deal of false positives causing more work and oppertunitiesfor error in the disambiguation
stage.

The yeast data is more straightforward: almost all gene names consist of only a single word,
it has the fewest identifiers associated with each gene mention and almost no overlap with
English words. Its naming conventions have been quite strictly enforced with few variations
used and a fairly complete synonym list provided. This is reflected in the results achieved by
previous systems and our own, with the yeast performing at least 10-15% better on average
(Hirschmanet al.2005a).

The mouse data has less ambiguity than the fly, but suffers from other issues. Figure 5.1
shows the number of words per gene mention in each organism. The mouse tends to have
longer names, with over 40% of mentions consisting of multiple words. These are generally
harder to identify as any slight variation in the spelling stops us from detecting the mention.
However, once detected, these longer names are often easierto normalise as a longer string has

25
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# of identifiers Yeast Mouse Fly
1 97.61% 96.83% 84.14%
2 2.14% 2.72% 4.80%
3-4 0.20% 0.30% 3.13%
5+ 0.05% 0.15% 7.92%

Table 5.1: Breakdown of number of associated gene identifiers (senses) per gene name. This
indicates the ambiguity of gene names

Figure 5.1: The number of terms per gene mention. Yeast contains less than 1% multi-term
mentions, while the mouse has over 40%

less chance of randomly occurring in a document.
The low quality of the training data for the mouse also affects its performance. Many of

the genes contained in the mouse abstracts were of little interest to the model database’s target
audience, resulting in their absence from the gene lists. This causes the mouse to have much
lower recall than other organisms, with recall in the training data estimated to be only 55%,
compared to the 86% and 80% for the yeast and fly respectively,as discuessed in Section 2.3.3.
The low recall of the training data severely affects the recall abilities of our classifier.

These varying degrees of ambiguity and quality are consistent with the results that we have
obtained in all experiments. Yeast consistently obtains the highest results while the mouse,
whose training data is very poor, is generally the worst. Thelevels of noise in the training data
make it very difficult to create an accurate system using supervised techniques. Development
of manually annotated data such as that seen in MUC would raise the overall standard of gene
normalisation systems, and would allow a much richer comparison between systems.
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5.2 Analysis of Errors

In order to determine the major weakness of our system, we examined the first 50 test
documents for each organism when using additions from Entrez Gene, lexical variations and
removing low probability candidates. From this examination, we determined the causes behind
the false positives and false negatives in each document, grouping these into similar classes. A
breakdown of the top six classes of errors are shown in Table 5.2 with a brief explanation of
each error type as follows:

• Gene mention not in synonym list- The gene mention is missing from the synonym list
and a similar variation does not exist.

• Variation missing from synonym list - A similar gene mention is contained in the syn-
onym list, but there is a slight lexical variation causing usto miss the mention (e.g. PKC-
delta and PKCdelta).

• Filtered due to low conditional probability - The conditional probability of a gene
mention is too low resulting in the gene mention being discarded.

• Biological term caused incorrect match- A biological term such as a locus or a pathway
is related or derived from a gene mention e.g.Mos1 promoter. This term causes an
incorrect match as does not actually refer to a gene mention.

• Match found due to loose tokenisation- A match was found due to the removal of
symbols in the identification phase to allow high recall, resulting in incorrect matches
like um → UM-HET3.

• Match found in different organism - A gene mention was found, but refers to a gene in
a different organism.

• Other - Various errors which do not fit in to the categories above.

The analysis revealed the various problems still affectingeach dataset. 69% of the errors
on the fly dataset are caused by false positives, while 80% and60% of errors in the mouse
are due to false negatives. These support our view that whilethe mouse and yeast can be nor-
malised by simply filtering out low probability candidates,more powerful solutions are needed
to disambiguate fly genes.

Yeast appears to suffer from an incomplete synonym list, as it only includes genes conforms
to the yeast nomenclature standards. Gene names that do not conform to these standards are not
detected by our identification phase.

The mouse is also affected by missed gene names. These are mainly caused by lexical
variations which are not currently covered by our system. A more precise analysis of the kinds
of variations that appear in the literature may yield more accurate variation generation.
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Error Type Yeast Mouse Fly
FN - Gene mention not in synonym List 11 (55.0%) 1 (2.2%) 2 (6.9%)
FN - Variation missing from synonym list 0 (0.0%) 17 (37.8%) 0 (0.0%)
FN - Filtered due to low conditional prob. 0 8 (17.8%) 4 (13.8%)
FP - Biological term caused incorrect match 3 (15.0%) 10 (22.2%) 7 (22.2%)
FP - Match found due to loose tokenisation 0 (0.0%) 6 (13.3%) 4 (13.8%)
FP - Match found in different organism 0 (0.0%) 2 (4.4%) 7 (24.1%)
Other 6 (30.0%) 1 (2.2%) 5 (17.2%)

Total 20 (100%) 45 (100%) 29 (100%)

Table 5.2: Type and frequency of errors that affect recall. The percentage of overall errors for
each type is shown in brackets

The greater level of ambiguity in the data of the fly means moreerrors tend to stem from
incorrect disambiguation. One of the major sources or theseis confusion with biological terms
related to gene names. This is a difficult problem to solve using only the data provided as these
biological terms are often used in quite similar contexts.

It is encouraging that two of the main issues which our gene normalisation system was
created to target, cause few of the errors that our system generates. After conditional filtering
has been performed, most candidate mentions which consist of English words are removed
from consideration due to the fact that they rarely occur as gene names. This removes one of
the major sources of ambiguity for both the fly and mouse.

The analysis revealed a number of problems which are outsidethe scope of our current
system. Homologs, that is genes which are equivalent in different organisms, often have the
same name regardless of species. For example, the mouse and fly share theclock gene. If a
mouse abstract discusses such a gene for the fly and the name appears in themousesynonym
list, our system will incorrectly associate the gene with the mouse. The analysis also shows that
ranges of genes, e.g.”in genes Otf-3a through Otf-3h”, are a cause of errors within our system.
Currently the system is only able to normalise genes if they are explicitly mentioned. Being
able to deal with references to specific clusters of genes is adifficult problem due to the variety
of ways in which this can be expressed.

5.3 Learning Curve

Figure 5.2 shows the learning curve of the three different organisms, showing the relation-
ship between the number of documents used to train the systemcompared to its performance.
The graph indicates that while the yeast and mouse data sets are almost at full performance
immediately, the fly data requires approximately 40% of the data before reaching a fairly con-
sistent score. Once again, we are able to see the limitationsthat the classifier has on the yeast
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Figure 5.2: Learning curve of the yeast, mouse and fly

and mouse datasets. When using no training data, the classifier assigns a positive classification,
adding the gene identifier which appears first to the gene list. On the mouse and yeast datasets,
there is little improvement from this point. On the yeast, this is because the data is already
quite unambiguous, while on the mouse, it is because the noise in the training data allows the
classifier to learn very little. No matter how much more data is added, the classifier is unable to
significantly improve. The fly, with its reasonable quality data and high levels of ambiguity, is
unable to perform disambiguation without a trained classifier, achieving maximum results after
roughly 40% of the training data is provided.
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Conclusion

6.1 Summary

In this work, we presented a gene normalisation system whichuses a machine learning-
based approach. A variety of extensions were implemented toincrease identification coverage,
remove unlikely gene mention candidates and improve disambiguation. We evaluated these
techniques on data related to yeast, mouse and fly, taken fromthe BioCreative challenge. The
main conclusions from our experiments can be summarised in the following points:

• State-of-the-art gene identification tools are designed towork over the data of all organ-
isms. However, given the differences between different organism’s nomenclature, we
have found that a basic lookup system utilising a synonym list derived from a model
database may be able to achieve better results.

• The addition of gene names taken from external resources proved to be very successful.
Turning to additional databases should lead to even higher performance. The generation
of lexical variations assists the mouse and fly, but the noiseintroduced in this process
removes some of the possible performance gains. Further refinement of this method is
required to achieve the full potential of this technique.

• Filtering of the synonym list by different means shows a lot of promise by removing
unlikely candidates and some ambiguity in the data. As we show in Section 5.2, this can
be improved by taking into account the fact that we are basingour judgements on noisy
data.

• The combination of synonym list expansion and filtering can reduce the need for com-
plex disambiguation in some organisms, with our naive disambiguation system obtaining
results better than those of the more complicated machine learning-based approach.

• Improvements to the original feature set used by Crimet al.(2005) proved disappointing;
our results show increases in performance of less than 2% foreach organism. While some
of this is caused by noise in the training data, another factor is that many of features do
not seem to provide much information as to the classificationof specific gene names.
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• Our analyses show it is unlikely that a single approach will be able to provide high quality
gene normalisation for all organisms as the nomenclature and levels of ambiguity are too
varied. This is magnified by differences in the quality of data for each organism.

6.2 Future Work

Improving training data using semi-supervised methods:Clearly one of the limitations
current performance is the noise within the training data asthis has negative impact on many
aspects of our system. Future systems could account for thisnoise in a variety of ways. (Wellner
2006) used semi-supervised techniques to relabel the data.We feel that a better technique
would treat the BioCreative data as unlabelled, using a small set of manually annotated data to
bootstrap a semi-supervised learner. The advantage of thistechnique is that more training data
could be easily generated by obtaining additional abstracts.

Improving training data using synonym list expansion:The method used by the BioCre-
ative organisers to generate training data was entirely automatic. However, the process relied on
the synonym list provided by the model database related to each organism. As we have demon-
strated in this work, the synonym list can be improved through a combination of expansion and
filtering. Therefore, if we use the same method as BioCreative to generate training data, but
with our improved synonym list, we may end up with higher quality data.

Contextual Information and Topic Signatures: Traditional word sense disambiguation
has often had success with the use of topic signatures; context vectors which try to associate a
topical vector to each word sense. This technique could be applied to the biomedical domain by
associating biological terms, taken from external resources such as UMLS (Bodenreider 2004)
or GO (Consortium 2000), to each gene identifier. The occurrence of these biological terms
could then be used to determine the sense of a gene mention in agiven context.

6.3 Concluding Remarks

To conclude, let us recall the example of theclock gene, and examine how our system
would perform over the given documents, with the additions of our synonym list augmentations.
Rather than the six possible genes which we needed to distinguish before, our conditional fil-
tering reduces the possibilities down to two. For the first document, our classifier successfully
discards both of these, identifying this is not a mention of agene. In the third document, con-
ditional filtering has reduced the mentionperioddown to a single option which is successfully
classified as the gene we were looking for. Unfortunately, inthe second document, the system
is unable to recognise that we are no longer discussing the flyand the gene is confidently, and
incorrectly, classified as the gene we are after. This example successfully demonstrates that
while we are often able to successfully normalise within a specific organism, to be useful in
real world applications, we must be able to determine which organism is under discussion in an
abstract.
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