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Abstract

The main work of this thesis involves the calculation, using the Bethe ansatz, of two

of the signature quantities of the one-dimensional delta-function Bose gas. These are

the density matrix and concomitantly its Fourier transform the occupation numbers, and

the correlation function and concomitantly its Fourier transform the structure factor.

The coefficient of the delta-function is called the coupling constant; these quantities are

calculated in the finite-coupling regime, both expansions around zero coupling and infinite

coupling are considered.

Further to this, the density matrix in the infinite coupling limit, and its first order cor-

rection, is recast into Toeplitz determinant form. From this the occupation numbers are

calculated up to 36 particles for the ground state and up to 26 particles for the first

and second excited states. This data is used to fit the coefficients of an ansatz for the

occupation numbers.

The correlation function in the infinite coupling limit, and its first order correction, is

recast into a form which is easy to calculate for any N , and is determined explicitly in the

thermodynamic limit.
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Introduction 1
The advent of new experimental techniques to form one-dimensional gases of bosons in

the laboratory motivates the theoretical work performed for this thesis.

The introduction contains four sections, Section 1.1 discusses the fundamental difference

between bosons and fermions, Section 1.2 briefly describes the experimental setup, Section

1.3 considers the history of the theoretical development, and finally Section 1.4 outlines

the work carried out for this thesis.

1.1 Bosons and fermions

The wave function ψ(x1, x2, . . . , xn) of a system is a mathematical object which contains

all of the information about that system. The wave function incorporates the wave-particle

duality; the function has wave-like properties (e.g. by combining two of them, an interfer-

ence pattern may be obtained) and it also has particle-like properties (e.g. it describes n

particles at n positions in space x1, x2,. . . , xn). Two particles are identical if they have

the same set of quantum numbers, but are not necessarily at the same position. Upon

exchange of two identical particles, two cases arise which deserve special consideration.

The first is the symmetric wave function

ψ(. . . , xi, . . . , xj , . . .) = ψ(. . . , xj , . . . , xi, . . .), (1.1)

and the second is the antisymmetric wave function

ψ(. . . , xi, . . . , xj , . . .) = −ψ(. . . , xj , . . . , xi, . . .). (1.2)

1



1. Introduction

The Pauli exclusion principle states that two or more identical particles cannot exist at

the same position. This principle was first introduced by Pauli in 1925 [38] for the specific

case of electrons in an atom, and only later [39] was this generalised to any particle with

half integer quantum spin1. Such particles are known as fermions. Examples of fermions

are electrons, protons and neutrons. A wave function that describes a system of iden-

tical fermions is always antisymmetric [39]. It is possible to prove the Pauli exclusion

principle using (1.2) for a system of identical particles. Consider a wave function describ-

ing a system of fermions. If two of these identical fermions exist at the same position,

ψ(. . . , x, . . . , x, . . .), then by applying (1.2) upon permutation of these two positions, one

obtains ψ = −ψ, and hence ψ = 0. Physically this means that two identical fermions

cannot occupy the same position in space.

Photons (with quantum spin 0) were proposed to be described by a symmetric wave

function by Bose [6]. This was then generalised to all particles with integer quantum spin

by Einstein [11], these particles became known as bosons. Bosons do not obey the Pauli

exclusion principle; in fact in the ground state all bosons can exist in the same quantum

state. When a number of bosons do this the system is said to be a Bose-Einstein condensate

[12]. Other examples of bosons are W and Z gauge bosons, and certain composite particles

such as mesons and certain nuclei.

In 1940, Pauli showed via special relativity that any half integer quantum spin particle

is necessarily antisymmetric, while any whole integer quantum spin particle is necessarily

symmetric [39]. Pauli did not show that these are the only two types of particles, however

the symmetrisation postulate decrees that all particles are of two types: symmetric under

exchange of two particles (bosons), or antisymmetric under exchange of two particles

(fermions). This is surprising, yet firmly founded in empirical evidence, for example see

[34]2.

1The intrinsic angular momentum of a particle is called quantum spin. This is different to the classical
angular momentum of a particle that is due to rotation. If we denote the (unitless) quantum spin by s
(e.g. s = 0 for a photon and s = 1/2 for an electron), then the magnitude of the angular momentum of
that particle is given by ~

p

s(s+ 1).
2In ≤ 2 dimensions, this dichotomy can be generalised to a continuous range of particles, called

anyons. An anyon has anyonic parameter κ, and obeys the wave function exchange symmetry given
by ψ(. . . , xi, . . . , xj , . . .) = eiκψ(. . . , xj , . . . , xi, . . .). The existence of anyons has recently been inferred
through studies of the fractional quantum Hall effect.

2



M.I. Makin 1. Introduction

This thesis discusses the one-dimensional Bose gas, which in the limit of infinite coupling,

is interesting in that it behaves like a one-dimensional Fermi gas; the coupling acts like an

exclusion principle.

1.2 Experimental technique

Although the research done for this thesis is entirely theoretical in nature, it is worth

briefly reviewing the experimental techniques and setup which correspond to the theoret-

ical problem described in this thesis.

The two primary techniques needed to create a one-dimensional Bose gas in the laboratory

are the ability to trap atoms, and the ability to cool atoms (laser cooling). The ability to

trap particles was first demonstrated in 1970 [2]. The ability to laser cool particles was

first predicted for the case of neutral atoms in 1974 [21], and this was first successfully put

into practice in 1978 [48] (where a temperature of 40 K was achieved). The environment

in which this temperature is achieved is typically smaller than a cubic millimetre. These

techniques were combined to create the first Bose-Einstein condensate in 1995 [1].

A typical experimental setup, which our theoretical framework aims to approximate (first

suggested by [36], and later actualised by [13, 26, 27, 37, 41, 47]) consists of trapping a

Bose gas consisting of ∼ 105 87Rb atoms using an optical trap. Three lasers of wavelength

∼ 810−826 nm are aligned such that the Bose gas is confined tightly in the radial directions

(the depth of the lattice potential is much deeper than the thermal fluctuations), and more

loosely in the axial direction, forming a cigar-shaped trap.

One interesting aspect of this system is the quasi-momentum distribution. This cannot

be measured directly. The technique for measuring this is achieved by suddenly switching

off the confining potential and allowing the gas to expand freely, then waiting for some

pre-specified time, (called the time-of-flight, ∼ 7− 25 ms). After this time, the atoms will

have spread according to their momentum so that the particles with higher momentum

would have moved the furthest, and those with least momentum would have moved the

least. An image of the gas cloud is taken, and optical depth (a measure of ‘cloudiness’)

versus distance from the centre of the cloud is taken. This plot is proportional to an

3



1. Introduction

(underestimated) density profile of the cloud. This distribution is interesting because it

has the potential to be determined theoretically, see Chapter 3.

1.3 History

Girardeau first introduced the idea of the one-dimensional Bose and Fermi gases in 1960

[19], using a hard-core potential (ψ(x1, . . . , xN ) = 0 if |xi − xj| < a, i 6= j). This idea

was extended just a few years later by Lieb and Liniger [33], who introduced the coupling

constant c, using a delta-function potential (Girardeau’s model corresponds to the limit

c → ∞, a → 0 of Lieb and Linigers’ model). The Bethe ansatz was first introduced for

the problem of the Heisenberg spin chain [5] (see Section 2.1), and is a powerful tool

for finding energy eigenfunctions. Lieb and Liniger used Bethe’s ansatz in [33] to find

the energy eigenfunction for the one-dimensional delta-function Bose gas They go on to

examine the energy eigenvalues for various limits of the dimensionless expansion parameter

γ = c/n, where n = N/L is the density of particles, N is the number of particles and L is

the length of the system. Others have also determined the energy eigenvalues: in periodic

boundary conditions for three particles [35] and up to 50 particles [40], and for hard wall

boundary conditions for up to 37 particles [4].

The thermodynamic limit is the limit in which N → ∞, L → ∞, where the density n

remains constant. This limit is important as boundary conditions should no longer impinge

on the physics of the bulk. Yang and Yang [49] have examined the thermodynamic limit in

the finite temperature regime of the one-dimensional delta-function Bose gas using integral

equations.

A parallel line of study, beginning in the early seventies, is the Calogero-Sutherland model.

The importance of both the Calogero-Sutherland model and the delta-function model is

that they are exactly solvable models [3]. An exactly solvable model is attractive in that

the framework is complex enough to describe a realistic physical situation, while also

being simple enough to produce analytic results. The Calogero-Sutherland model is also

a one-dimensional model, where the potential behaves like 1/r2 in some limit, rather than

the delta-function δ(r). Important contributions have been made by Calogero [7] and

4



M.I. Makin 1. Introduction

Sutherland [42, 43, 44, 45].

Important contributions to the understanding of the one-dimensional delta-function Bose

gas have been made for the case where cL = ∞, specifically by Lenard [30], Jimbo and

Miwa [23], Korepin et al. [28], and three works by Forrester et al. [15, 16, 17]. This work

is referred to in more detail in the remainder of this thesis.

1.4 This thesis

This thesis aims to build upon these works by bridging the gap between the free Bose

gas (cL = 0) and the impenetrable Bose gas (cL = ∞) by making expansions around

these two extrema. We go beyond the case of merely determining the energy eigenvalues,

and instead intensively study the density matrix and its Fourier transform, the occupation

numbers (Chapter 3), and the correlation function and its Fourier transform, the structure

factor (Chapter 4).

Analytic results for all of these quantities are obtained completely for 2 particles (Subsec-

tions 3.1.1 and 4.1.1), partially for 3 particles (Subsections 3.1.2 and 4.1.2) and sparsely

for 4 particles (Subsections 3.1.3 and 4.1.3). Extensions are then made for small cL expan-

sions for arbitrary N (Sections 3.2 and 4.2). For large cL, expansions can be determined

for arbitrary N of the correlation function (Section 4.3), and for the density matrix when

recast into a form which is amenable to numerical calculation (Section 3.3). The occu-

pation numbers for up to 36 particles are then calculated numerically (Subsection 3.3.3)

and this information is fit by an ansatz. Mathematical techniques and tables of numerical

data are placed in the appendices.
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The Bethe ansatz 2
The purpose of this chapter is to investigate how the Bethe ansatz was used when first

introduced in 1931 [5], and to provide the background for why Lieb and Liniger [33] later

choose to apply this method to the one-dimensional delta function Bose gas. The first

section utilises the review of Karbach and Müller [25].

2.1 Historical development

The Bethe ansatz was first introduced as an ad-hoc calculational tool for diagonalising

the Hamiltonian for the Heisenberg spin-wave chain - a one-dimensional representation of

a ferromagnet. It has since become an incredibly useful tool utilised throughout much of

statistical mechanics.

A ferromagnet is a material for which strong coupling exists between nearby spins, so that

it is energetically favourable for any nearby spins to be pointing in the same direction.

Common ferromagnetic materials include iron and nickel. It is out of such materials that

permanent magnets are commonly made.

Let us now introduce the Hamiltonian that describes this physical problem in one dimen-

sion. The Heisenberg spin-wave chain is a one-dimensional chain of N spin 1/2 particles,

called spinors. These spinors represent the electrons which provide the coupling in a real

magnet. This coupling is specific to the particular material, and is denoted J (see London

and Heitler [22] for a treatment of quantum mechanical forces between neutral atoms).

Interaction between spinors in this model is restricted to nearest neighbours.

Periodic boundary conditions are chosen, so that for any function f (for example Sn, a(n),

7



2. The Bethe ansatz

|n〉) of any variable representing the position of a certain spinor n, f(n±N) = f(n). Also,

any difference between two positions must be read as “mod N”, for example n2 − n1 = 1

should strictly read mod (n2 − n1, N) = 1.

Classically, the minimum energy state occurs when all spins point in the same direction.

Each time a spinor opposes the direction of its neighbour, an increase in energy is intro-

duced. The maximum energy state is obtained when half the spins are up and half are

down; each spinor opposes the direction of its neighbour1. Quantum mechanically, the

spin states aren’t energy eigenstates, so it does not make sense to talk of their energy

as such. The energy that is spoken of in this paragraph is the expectation value of the

energy.

We introduce the notation |↑〉 (|↓〉) to represent a state which has spin parallel (antiparallel)

to the z axis2. The operator Si
n measures the component of spin of the nth spinor parallel

to the ith axis. The raising and lowering operators are denoted S±
n = Sx

n ± iSy
n, and the

application of Sz
n, S

+
n and S−

n on the states |· · · ↑ · · · 〉 and |· · · ↓ · · · 〉 is summarised in

Table 2.1.

|· · · ↑ · · · 〉 |· · · ↓ · · · 〉
S+

n 0 |· · · ↑ · · · 〉
S−

n |· · · ↓ · · · 〉 0
Sz

n
1
2 |· · · ↑ · · · 〉 −1

2 |· · · ↓ · · · 〉

Table 2.1: The application of various spin operators on two basis vectors. These particles
have only two spin states available, so that attempting to raise (lower) an up (down) spin
will result in ‘destroying’ the state

The complete spin vector is given by Sn = (Sx
n, S

y
n, Sz

n). The Hamiltonian, in the absence

of any external electric or magnetic fields, is given by a sum over the nearest-neighbour

spin interactions

H = −J
N
∑

n=1

Sn.Sn+1 = −J
N
∑

n=1

[

1

2
(S+

n S
−
n+1 + S−

n S
+
n+1) + Sz

nS
z
n+1

]

. (2.1)

This text describes only J > 0, where this Hamiltonian represents a ferromagnet. When

1Of course if N is odd then within the maximum energy state there must exist two neighbouring spinors
which point in the same direction.

2In Bethe’s original paper [5] he used left and right spins rather than up and down.

8



M.I. Makin 2. The Bethe ansatz

J < 0 an anti-ferromagnet is described. The minimum (maximum) energy state of an

anti-ferromagnet is equivalent to the maximum (minimum) energy state of a ferromagnet.

An anti-ferromagnet will only exhibit magnetic behaviour (spontaneous spin-changing) if

an electric field is applied.

The operator H can be represented as a matrix, where the elements of the matrix are

given by the chosen basis. The most convenient basis to choose for initial analysis is the

one where each spinor is either aligned or anti-aligned with the z-axis. However a basis

for which the matrix representation of H is diagonal is much simpler to extract useful

information from. The main purpose of the Bethe ansatz is to generate such a basis. One

may do this by ordering according to the total spin Sz
T ≡ ∑N

n=1 S
z
n = N/2 − r, where r

is the number of spins which point down. There are N !/(r!(N − r)!) states of the system

given that there are r down spins. Let us now consider the diagonalisation for the specific

cases r = 0, 1, 2 and for general r.

2.1.1 r = 0

The state where all spinors are aligned with the z-axis may be denoted by |F 〉 = |↑ · · · ↑〉.
This is an eigenstate of H with eigenvalue E0 = −JN/4.

2.1.2 r = 1

One can represent the states where only one spinor points down by |n〉 = S−
n |F 〉. These

states are not eigenstates of the Hamiltonian, but rather

H|n〉 = −J
[

1

2
|n+ 1〉 +

1

2
|n− 1〉 +

(

N

4
− 1

)

|n〉
]

. (2.2)

This basis (|1〉, . . . , |N〉) will obviously not produce a diagonal Hamiltonian. Let us search

for an eigenstate of the Hamiltonian |ψk〉, given by a superposition of all states |1〉, . . . , |N〉
with coefficients a(n),

9



2. The Bethe ansatz

|ψk〉 =

N
∑

n=1

a(n)|n〉. (2.3)

By asserting that |ψk〉 is an eigenstate of H with energy eigenvalue E, one can determine

a recursion relation for a(n). Applying (2.2) to the state (2.3) yields

2a(n)(E − E0) = J [a(n) − a(n + 1) − a(n − 1)] , (2.4)

it is easily verified that this has solution a(n) = eikn, where k = 2πm/N,m = 0, . . . ,N−1.

Energy eigenvalues are given by

E − E0 = J(1 − cos k). (2.5)

With these values, the r = 1 block is perfectly diagonalised.

At this point it is interesting to observe a point of difference between quantum mechanical

and classical behaviour. Classical intuition tells us that each |n〉 contains the same amount

of energy. Taking an (albeit unusual) average (2.3) should yield the same amount of

energy for |ψk〉 regardless of the value of k. However, (2.5) clearly shows that this is not

the case. This apparent problem is resolved by recognising that the states |n〉 are not

energy eigenstates, and so cannot be thought of as having a measurable energy. Part

of the consequence of a state being an energy eigenstate is that the state will remain

stationary as time progresses. A spin state with only one down spin is obviously not a

stationary state, and so it must not be an energy eigenstate. The energy expectation value

〈n|H|n〉 = E0 +J , is however clearly independent of n, and in this case gives the intuitive,

classical result.

2.1.3 r = 2

When two spins point down the appropriate spin states are designated by |n1, n2〉 =

S−
n1
S−

n2
|F 〉. One must exhibit caution when two spins are down, as the case of the two

spins being adjacent, and being separate, must be treated separately. These are also

10



M.I. Makin 2. The Bethe ansatz

not eigenstates. An application of H (2.1) to |n1, n2〉 when the two spins are adjacent

(n2 − n1 = 1) gives

H|n1, n1 + 1〉 = −J
[

1

2
|n1, n1 + 2〉 +

1

2
|n1 − 1, n1 + 1〉 +

(

N

4
− 1

)

|n1, n1 + 1〉
]

, (2.6)

and when the two spins are separated (n2 − n1 > 1)

H|n1, n2〉 = −J
[

1

2
|n1 + 1, n2〉 +

1

2
|n1, n2 + 1〉

+
1

2
|n1 − 1, n2〉 +

1

2
|n1, n2 − 1〉 +

(

N

4
− 2

)

|n1, n2〉
]

.

(2.7)

If again one chooses a superposition of states

|ψk1,k2〉 =
∑

1≤n1<n2≤N

a(n1, n2)|n1, n2〉, (2.8)

and again enforces that |ψk1,k2〉 is an eigenstate of H with energy eigenvalue E, one obtains

two different recursion relations for a(n1, n2), one when the two down-spins are adjacent

(n2 − n1 = 1)

2(E − E0)a(n1, n1 + 1) = J [2a(n1, n1 + 1) − a(n1 − 1, n1 + 1) − a(n1, n1 + 2)] , (2.9)

and one when the two down-spins are separated (n2 − n1 > 1)

2(E − E0)a(n1, n2) = J [4a(n1, n2) − a(n1 − 1, n2) − a(n1 + 1, n2)

− a(n1, n2 − 1) − a(n1, n2 + 1)].
(2.10)

11



2. The Bethe ansatz

Now let us choose a trial solution, again composed of plane waves

a(n1, n2) = Aei(k1n1+k2n2) +A′ei(k2n1+k1n2), (2.11)

this is called the Bethe ansatz. Either linearly independent component of (2.11) substi-

tuted into (2.10) determines the energy eigenvalue E as

E − E0 = J

2
∑

i=1

(1 − cos ki). (2.12)

We determine information about A and A′ by noting that if one replaces n2 by n1 + ∆

(1 < ∆ < N − 1)3 in (2.10) and combine with (2.9) one may obtain an equation which no

longer contains (E−E0). Substituting in (2.11) and solving for A and A′ yields a solution

free of ∆

A

A′ = −e
i(k1+k2) + 1 − 2eik1

ei(k1+k2) + 1 − 2eik2
= eiθ, (2.13)

where θ is introduced as a phase factor between A and A′ (dependent on k1 and k2), so

that (2.11) becomes

a(n1, n2) = ei(k1n1+k2n2+θ/2) + ei(k2n1+k1n2−θ/2). (2.14)

It remains to determine an equation relating k1 and k2 with N . This is done by generating

what are known as the Bethe equations. Using the boundary condition4 a(n1, n2) =

a(n2, n1 +N) on (2.14), which is solved by eiθ = eik1N = e−ik2N , the Bethe equations are

given by

−e
i(k1+k2) + 1 − 2eik1

ei(k1+k2) + 1 − 2eik2
= eik1N = e−ik2N . (2.15)

3Note that in [5, 25], ∆ = 1 is used, which although yielding the correct result, is not quite physical,
so that this more cumbersome approach is taken here.

4This boundary condition is a combination of symmetry between spins, a(n1, n2) = a(n2, n1), and
periodic boundary conditions a(n1, n2) = a(n1, n2 +N).

12



M.I. Makin 2. The Bethe ansatz

2.1.4 General r

Now, we extend this idea to general r, where the spin basis is given by |n1, . . . , nr〉 =

S−
n1
. . . S−

nr
|F 〉. The first position in each adjacent pair is labelled njα , so that njα+1−njα =

1, and for all other down spin positions nj+1 − nj > 1, j 6= jα. The number of adjacent

pairs is denoted |α| (this could be 0,1,. . . r). Note that this notation is valid for two or

more adjacent down spins. The application of the Hamiltonian H (2.1) on |n1, . . . , nr〉 is

H|n1, . . . , nr〉 = − J

{

∑

α

[

1

2
|n1, . . . , njα − 1, njα+1, . . . , nr〉

+
1

2
|n1, . . . , njα , njα+1 + 1, . . . , nr〉

]

+
∑

i6=jα

i6=jα+1

[

1

2
|n1, . . . , ni + 1, . . . , nr〉 +

1

2
|n1, . . . , ni − 1, . . . , nr〉

]

+

(

N

4
− r + |α|

)

|n1, . . . , nr〉
}

.

(2.16)

One may define a general superposition of spin states

|ψk1,...,kr
〉 =

∑

1≤n1<...<nr≤N

a(n1, . . . , nr)|n1, . . . , nr〉. (2.17)

By asserting that (2.17) is an eigenstate, one can develop recursion relations given by

2(E − E0)a(n1, . . . , nr) = J
∑

i6=jα

i6=jα+1

[2a(n1, . . . , nr) − a(n1, . . . , ni + 1, . . . , nr)

− a(n1, . . . , ni − 1, . . . , nr)]

+ J
∑

α

[2a(n1, . . . , nr) − a(n1, . . . , njα − 1, njα+1, . . . , nr)

− a(n1, . . . , njα , njα+1 + 1, . . . , nr)].

(2.18)

The Bethe ansatz is now

13



2. The Bethe ansatz

a(n1, . . . , nr) =
∑

p∈Sr

exp



i
r
∑

j=1

kp(j)nj +
i

2

∑

i<j

θp(i)p(j)



 , (2.19)

so that the energy of |ψk1,...,kr
〉 is determined to be

E − E0 = J

r
∑

j=1

(1 − cos kj). (2.20)

An expression for θij is then determined as an implicitly defined equation of ki and kj as

eiθij = − e
i(ki+kj) + 1 − 2eiki

ei(ki+kj) + 1 − 2eikj
. (2.21)

Applying the boundary condition a(n1, . . . , nr) = a(n2, . . . , nr, n1 +N) gives

eiNki = ei
PN

i<j θij =
∏

1≤i<j≤N

eiθij , (2.22)

so that the Bethe equations become

eiNki =
∏

1≤i<j≤N

[

− e
i(ki+kj) + 1 − 2eiki

ei(ki+kj) + 1 − 2eikj

]

. (2.23)

So again, diagonalising the rth block of the Hamiltonian is reduced to solving for the set

of numbers ki, i = 1, . . . , r. This implicitly defined equation is not analytically tractable

in general, rather, for each value of N , numerical solutions must be found.

2.2 The one-dimensional delta-function Bose gas

The purpose of this section is to present the Bethe ansatz wave function and concomitantly

the Bethe equations for the one-dimensional delta-function Bose gas in periodic boundary

conditions, as derived in the seminal paper by Lieb and Liniger [33]. The wave function

is extended to large cL (previously done by [23]) and small cL coupling.

14



M.I. Makin 2. The Bethe ansatz

The Schrödinger equation for this system with ~ = 1, 2m = 1 is



−
N
∑

i=1

∂2

∂x2
i

+ 2c
∑

1≤i<j≤N

δ(xi − xj)



ψN (x1, x2, . . . , xN ) = EψN (x1, x2, . . . , xN ), (2.24)

where c controls the strength of the δ-function. Throughout this thesis we consider only

c ≥ 0, the repulsive case.

Let us assume that ψN is continuous, and that its first and second derivatives with respect

to any xi are not continuous. For any pair of i, j values that satisfy the inequality

1 ≤ i < j ≤ N ,

lim
ǫ→0

∫ ǫ

−ǫ

(

− ∂2

∂x2
i

− ∂2

∂x2
j

+ 2c δ(xi − xj)

)

ψN d(xi − xj) = 0, (2.25)

the terms in the integrand which are continuous have been discarded. This simplifies to

(

∂

∂xj
− ∂

∂xi

)

ψN |xj=x+
i
−
(

∂

∂xj
− ∂

∂xi

)

ψN |xj=x−
i

+ 2c ψN |xj=xi
= 0, (2.26)

with the simpler differential equation

−
N
∑

i=1

∂2

∂x2
i

ψN (x1, x2, . . . , xN ) = EψN (x1, x2, . . . , xN ). (2.27)

There is a large amount of redundancy in the variable range of the wave function. By

restricting the domain to

RN : 0 ≤ x1 < . . . < xN ≤ L, (2.28)

coupled with the symmetry of the wave function, equation (2.26) can be simplified markedly.

This symmetry allows us to switch i and j in the first term of (2.26), to obtain

15



2. The Bethe ansatz

(

∂

∂xj+1
− ∂

∂xj

)

ψN |xj+1=xj
= c ψN |xj+1=xj

. (2.29)

The solution to (2.27) with boundary condition (2.29) and domain (2.28) under periodic

boundary conditions is the Bethe ansatz

ψN (x1, x2, . . . , xN ) =
∑

p∈SN

a(p)ǫ(p)e(i
PN

j=1 kp(j)xj), (2.30)

where SN is the symmetric group on N symbols, and hence the wave function is a sum

over N ! quantities. The position and quasi-momenta of the jth particle is given by xj

and kj respectively, the energy is given by E =
∑N

j=1 k
2
j , and the total momentum by

∑N
j=1 kj . The function ǫ(p) is the signature of the permutation p. Note the similarity

to (2.19), where the a(p)ǫ(p) term serves as the exp(i/2
∑

θp(i)p(j)) term. The functional

form of a(p) shall now be determined.

Consider the permutation p that takes {k1, k2, . . . , kN} into {̺, ς, kp(3), . . . , kp(N)}, and the

permutation q that takes {k1, k2, . . . , kN} into {ς, ̺, kp(3), . . . , kp(N)}.

Also consider the boundary condition (2.29) for j = 1. The two terms of the sum (2.30)

corresponding to the permutations p and q are given by

a(p)ei(̺x1+ςx2+
PN

j=3 kp(j)xj) − a(q)ei(ςx1+̺x2+
PN

j=3 kp(j)xj). (2.31)

Substituting this into (2.29)5 and discarding a factor of ei[(̺+ς)x1+
PN

j=3 kp(j)xj] yields

i(ς − ̺)[a(p) + a(q)] = c[a(p) − a(q)], (2.32)

and if a(q) = a(p)f(ς, ̺, c), then

f =
−(ς − ̺) − ic

(ς − ̺) − ic
= e2i arctan u, (2.33)

5All N ! terms of (2.24) are linearly independent. Because of this, the remaining N !− 2 terms need not
be considered.
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M.I. Makin 2. The Bethe ansatz

where u = (ς − ̺)/c. So, f is the ratio between a(p) and a(q). To generalise to any

permutation, one must use the boundary condition ψN (x1, . . . , xN ) = ψN (x2, . . . , xN , x1 +

N). Multiplying through by a factor of (ς − ̺) − ic6, and including all the necessary

permutations, gives

a(p) =
∏

1≤i<j≤N

[

1 +
i

c
(kp(j) − kp(i))

]

. (2.34)

Note that a(p) may be given in a number of forms (any change absorbed into the normal-

isation), we choose (2.34) from Jimbo and Miwa [23]. Throughout this chapter we use the

normalisation given by

N 2 =

∫

RN−1

dx1 . . . dxN−1|ψN (0, x1, . . . , xN−1)|2, (2.35)

where RN−1 is the domain of integration specified by (2.28).

In this chapter we are concerned only with the ground state,
∑N

i=1 ki = 0, so that

ki = −kN+1−i ∀ i = 1, . . . ,N. (2.36)

The ki are ordered such that kN > kN−1 > . . . > k2 > k1. The N (real) numbers ki are

determined as the solution of the Bethe equations. These can be given in many forms

[23, 32, 33], we display that of [18]

kjL =
N
∑

l=1
l 6=j

2 arctan

(

c

kj − kl

)

(2.37)

While these equations cannot be solved explicitly for kj as a function of c, they can be

solved for both small and large cL expansions, using the method of quadrature. We list

explicit small cL expansions in Appendix A, and at this point we highlight that

6A valid operation, as this change is absorbed into the normalisation.
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2. The Bethe ansatz

kj =

√

2c

L
h

(N)
j

(

1 − 1

24
(cL) +O(cL)2

)

, (2.38)

where h
(N)
j is the jth zero of the Nth Hermite polynomial. The leading term in (2.38) is

found in reference to this problem by Gaudin [18], for more detail refer to Szegö [46]. The

coefficient −1/24 in the next term of the expansion is new, and appears to be universal

(see Appendix A).

Here we display the large cL expansion for kj in its general N form as given in [23], for

its particular utility in the following chapters

kj =(2j −N − 1)
π

L

[

1 − 2N

(

1

cL

)

+ 4N2

(

1

cL

)2

+

{

−8N3 +
4

3
N
[

2j2 + (N + 1)(N − 2j)
]

π2

}(

1

cL

)3
]

+O

(

1

cL

)4

.

(2.39)

We also list some exact solutions to the Bethe equations (2.37) in Table 2.2.

N cL kNL

2 π π/2

3 π/2 π(
√

17 − 3)/4

3 π
√

2π

3 3π/2 3π(
√

17 + 3)/4

Table 2.2: Some exact solutions to the Bethe equations (2.37)

It is now possible to explicitly construct the wave function ψN (x1, . . . , xN ) using (2.30)

and (2.34). We close here by exhibiting the unnormalised wave function ψ2(x1, x2) by way

of example

ψ2(x1, x2) =

(

1 − 2ik2

c

)

eik2(x2−x1) −
(

1 +
2ik2

c

)

e−ik2(x2−x1), (2.40)

which has normalisation

18



M.I. Makin 2. The Bethe ansatz

N 2 = 2L− sin 2k2L

k2
− 8 sin2 k2L

c
+

4k2(2k2L+ sin 2k2L)

c2
. (2.41)
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Density matrix

and

occupation numbers

3

This chapter outlines the definition of both the density matrix and its Fourier transform,

the occupation numbers. Specific examples are given in Section 3.1 for 2, 3 and 4 particles.

Polynomial structure is found for the n = 0 occupation numbers for general N , small

cL expansions in Section 3.2. Section 3.3 examines the general N large cL expansion,

reformulating the original definition of the density matrix in such a way as to generate

numerical results.

The normalised density matrix1 ρN (x, 0) gives the density at position x, given that there

is a particle at position 0. It is defined as

ρN (x, 0) =
N

L

1

N 2

N−1
∑

j=0

∫

RN−1,j(x)
dx1 . . . dxN−1ψN (0, x1, x2, . . . , xN−1)×

ψN (x1, . . . , xj , x, xj+1, . . . , xN−1),

(3.1)

where the overbar implies complex conjugation, the normalisation N 2 is specified by (2.35),

and the domain of integration is specified by

RN,j(x) : 0 ≤ x1 < . . . < xj < x < xj+1 < . . . < xN ≤ L. (3.2)

The density matrix is normalised such that ρN (0, 0) = ρ0 = N/L. Hence to compute the

density matrix for N particles, one must performN lots of N−1 dimensional integrals over

1‘Density matrix’ is a shortened form of ‘one-body reduced density matrix’. This change in nomenclature
explains why (3.1) is not a matrix [31].
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3. Density matrix and occupation numbers

(N !)2 terms (e.g. 4 triple integrals over 576 terms for N = 4). As this is a computationally

expensive task, so only solutions up to N = 4 are obtained using this method.

The occupation numbers cn(N) are determined as a Fourier transform of the density

matrix2

cn(N) =

∫ L

0
ρN (x, 0)e2iπnx/Ldx =

∫ L

0
ρN (x, 0) cos(2πnx/L)dx, (3.3)

where n ∈ Z. The occupation numbers have the physical interpretation of being the

expectation value of the number of particles in mode n.

It is interesting here to consider the difference between the excited state of the whole

system and the excited states of individual particles. This thesis studies only the ground

state of the whole system, so that the total momentum is zero, or
∑N

j=1 kj = 0. However

within this individual particles can transition to excited states.

Note the normalisation property
∑∞

n=−∞ cn(N) = N ; this result has been confirmed for

all occupation number formulas that follow. It is sometimes useful to discuss occupation

number per particle; the notation for this is c∗n(N) = cn(N)/N .

3.1 Specific examples

3.1.1 N = 2

Within Section 3.1, this subsection heralds the most complete set of results, with results

for N = 3 and N = 4 becoming increasingly exiguous as the intricacies of the equations

develop. For example, it is only possible to display the complete density matrix for N = 2,

as for N = 3 already the equation would take many pages to display. Utilising (2.37) one

may obtain

c = 2k2 tan

(

k2L

2

)

, (3.4)

2The density matrix ρN(x, 0) is an even function.

22



M.I. Makin 3. Density matrix and occupation numbers

which is used to produce a concise form of the density matrix with (2.30), (2.34) and (3.1)

ρ2(x, 0) =
2

L

k2x cos(k2 (L− x)) + k2 (L− x) cos(k2x) + sin(k2 (L− x)) + sin(k2x)

k2L+ sin(k2L)
, (3.5)

where 0 ≤ k2 ≤ π. This has corresponding occupation numbers from (3.3)

cn(2) = 2
4(k2L)3 (1 − cos(k2L))

(4n2π2 − k2
2L

2)2 (k2L+ sin(k2L))
. (3.6)

The expansion of the density matrix for small cL is given using (A.1)

ρ2(t, 0) =
2

L

[

1 − t2(π − t)2

24π4
(cL)2 +

t2(π − t)2(t2 − πt+ 2π2)

360π6
(cL)3

+
t2(π − t)2

(

16π4 − 24π3t+ 27π2t2 − 6πt3 + 3t4
)

40320π8
(cL)4 +O(cL)5

]

.

(3.7)

Note that we introduce here the unitless variable t = πx/L, henceforth we switch between

t and x as appropriate. The corresponding occupation numbers for (3.7) are given by

cn(2) = 2



















1 − 1
720 (cL)2 + 1

6048 (cL)3 − 11
1209600 (cL)4 +O(cL)5 when n = 0

1
16n4π4 (cL)2 + 3−n2π2

96n6π6 (cL)3

+4n4π4−30n2π2+45
3840n8π8 (cL)4 +O(cL)5 when n 6= 0.

(3.8)

Utilising (2.39), we obtain a large cL expansion for the density matrix
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3. Density matrix and occupation numbers

ρ2(t, 0) =
2

L

{

(π − 2t) cos t+ 2 sin t

π
+

8(π − t)t sin t

π

(

1

cL

)

+
8
[

(π2 − 3πt+ 2t2)t cos t− (π2 + 6πt− 6t2) sin t
]

π

(

1

cL

)2

+O

(

1

cL

)3 }

.

(3.9)

Note that in the limit cL → ∞, we recover (20) of [16]. The corresponding occupation

numbers for (3.9) are given by

cn(2) =2

[

8

(4n2 − 1)2π2
− 32(12n2 + 1)

(4n2 − 1)3π2

(

1

cL

)

+

{

3072n2
(

4n2 + 1
)

(4n2 − 1)4 π2
− 64

(

6n2 − 1
)

(4n2 − 1)2

}

(

1

cL

)2

+O

(

1

cL

)3
] (3.10)

which in the limit cL → ∞ recovers (42) of [16]. We also display here the density matrix

for the exact solution to (2.37) from Table 2.2, when cL = π, k2L = π/2

ρ2(t, 0) =
2

L

(−t+ π + 2) cos t
2 + (t+ 2) sin t

2

π + 2
, (3.11)

and the corresponding occupation numbers are given by

cn(2) = 2
16

(16n2 − 1)2 π(π + 2)
. (3.12)

Figure 3.1 provides a graphical representation of the results for the occupation numbers

of N = 2. The case cL = 0 is not displayed in this figure, it has c∗0(2) = 1, with all higher

modes having zero occupation. So when cL = 0, the system behaves purely like a free

Bose gas in the ground state - all particles occupy n = 0. When cL = ∞, the system

obeys the Pauli exclusion principle, as particles are forced to occupy individual states, so

that a cL = ∞ Bose gas acts like a Fermi gas. Note the smooth transition from cL = 0 to

cL = ∞.
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Figure 3.1: Occupation numbers for N = 2

3.1.2 N = 3

The small cL expansion of the density matrix is given here, using (3.1) and (A.2).

ρ3(t, 0) =
3

L

[

1 − t2(π − t)2

12π4
(cL)2 − t2(π − t)2(t2 − πt− 3π2)

180π6
(cL)3

+
t2(π − t)2

(

−101t4 + 202πt3 − 125π2t2 + 24π3t+ 54π4
)

20160π8
(cL)4 +O(cL)5

]

.

(3.13)

Note that the coefficient of the (cL)p term is a polynomial in t of order 2p, for p ≥ 2. This

structure is also repeated in (3.7).

The corresponding occupation numbers for (3.13) are given by

cn(3) = 3



















1 − 1
360 (cL)2 + 1

1680 (cL)3 − 163
1814400 (cL)4 +O(cL)5 when n = 0

1
8n4π4 (cL)2 − n2π2+3

48n6π6 (cL)3

+6n4π4+170n2π2−1515
1920n8π8 (cL)4 +O(cL)5 when n 6= 0.

(3.14)
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We give here the large cL expansion of the density matrix, using (3.1) and (2.37)

ρ3(t, 0) = 3
L

{

2(π−2t)2+12(π−2t) sin 2t+4(2t−π+2)(2t−π−2) cos 2t+cos 4t+15
6π2

+
4 sin t[(π−2t)(1+8πt−8t2) cos t−(π−2t) cos 3t+8(π−t)t sin t]

π2

(

1
cL

)

+O
(

1
cL

)2

}

, (3.15)

which in the limit cL→ ∞ recovers (21) of [16].

The occupation numbers corresponding to (3.15) are given by

cn(3) = 3



































(

1
9 + 35

6π2

)

+
(

8
3 + 35

π2

) (

1
cL

)

+O
(

1
cL

)2
when n = 0

1
9 −

(

4
3 + 35

6π2

) (

1
cL

)

+O
(

1
cL

)2
when |n| = 1

35
108π2 − 385

36π2

(

1
cL

)

+O
(

1
cL

)2
when |n| = 2

2(3n2+1)
3n2(n2−1)2π2 − 4(9n6−28n4−61n2+8)

n2(n2−1)3(n2−4)π2

(

1
cL

)

+O
(

1
cL

)2
when |n| ≥ 3,

(3.16)

which in the limit cL → ∞ recovers (45) of [16]. We also display here the density matrix

for the exact solution to (2.37) from Table 2.2, when cL =
√

2π, k3L = π

ρ3(t, 0) =
3

L

1

48 + 3φπ

{

8t2 − 8πt+ 2φ(π − 2t) cos t

− 4 cos 2t+ 4
[

π
(

2
√

2t+ 5
)

− 2
√

2
(

t2 − 5
)

]

sin t+ φπ + 52
}

,

(3.17)

where φ = 10
√

2 + 3π. The corresponding occupation numbers for (3.17) are given by

cn(3) = 3























5
27 + 4

√
2

π − 4(299+71
√

2π)
27(16+φπ) when n = 0

64
√

2+54π
81π(16+φπ) when |n| = 1

4(−π+32n4(2
√

2+π)−4n2(12
√

2+π))
3n2π(4n2−1)3(16+φπ)

when |n| ≥ 2.

(3.18)
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M.I. Makin 3. Density matrix and occupation numbers

The density matrices and occupation numbers for the other exact values listed in Table

2.2 for N = 3, although calculated, are too lengthy to display here.

Figure 3.2 displays a sample of results for the occupation numbers for N = 3. As in

Subsection 3.1.1, the cL = 0 case is not displayed, for it only has one non-zero point, at

c∗0(3) = 1. Refer to Subsection 3.1.1 for a further explanation of the features of this graph,

which is similar to Figure 3.1.
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Figure 3.2: Occupation numbers for N = 3

3.1.3 N = 4

The intricacy of the density matrix at this value of N is already so great that we go on

to calculate the occupation numbers without explicitly exhibiting it, and as such we give

only c0(4). We utilise (3.3) and (A.3) to produce the result

c0(4) = 4

[

1 − 1

240
(cL)2 +

13

10080
(cL)3 − 383

1209600
(cL)4 +O(cL)5

]

. (3.19)
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3. Density matrix and occupation numbers

3.2 General N small cL expansion

It is interesting to observe that, despite the presence of irrational numbers in the Bethe

equations for small cL (Appendix A), when the final results for the occupation numbers

appear they contain purely rational numbers. Upon close examination of (3.8), (3.14)

and (3.19), the following polynomial structure for the small cL expansion of the n = 0

occupation number for general N is obtained

c∗0(N) = 1 − N − 1

720
(cL)2 +

N − 1

720

(

4(N − 1) + 1

42

)

(cL)3

−N − 1

720

1

42

(

45(N − 1)2 − 5(N − 1) − 7

120

)

(cL)4 +O(cL)5. (3.20)

Equation (3.20) is written as given to emphasise the detailed structure of the coefficients

in this expansion. Note that the coefficient of the (N − 1)(cL)p term is a polynomial of

order p− 2 in N − 1 for p ≥ 2. Therefore, to obtain, say, the coefficient of the (cL)5 term

we would need c0(N) for four specific values of N in their rational form. Though it was

too computationally expensive to obtain any N − 1 polynomial for any higher order than

(cL)4, we conjecture that this pattern holds for all N ≥ 2.

The observations that the coefficient of the (N−1)(cL)p term appears to be a polynomial of

degree p−2 in N−1 suggests that for any finite N there is always an interval cL ∈ [0,DN )

such that the series is convergent, but with DN → 0 as N → ∞. To quantify this last

point, note that in the thermodynamic limit the dimensionless parameter is c/ρ0 = Γ and

the coefficient is proportional to N2p−1, which suggests that the corresponding radius of

convergence is proportional to 1/N2. In particular this means that no information can be

gleaned as to the functional form of c∗0(N) as a function of Γ about Γ=0 except that it is

not analytic.
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M.I. Makin 3. Density matrix and occupation numbers

3.3 General N large cL expansion

In Section 3.1, we gave large cL expansions for the density matrices and occupation num-

bers for N = 2 and N = 3. Again, it was computationally prohibitive to go beyond

N = 4. Furthermore, as can be seen from the coefficients in these expansions (and as

can be witnessed in the Tables D.1-D.6 which we will refer to in what follows), that the

numbers are highly irrational suggesting that there is little hope of finding an analogous

pattern to that which we were fortunate enough to find in (3.20).

We therefore turn to a totally different mathematical strategy to obtain a large cL expan-

sion for these quantities. In the impenetrable limit (cL = ∞, arbitrary L), Lenard [30]

developed the theory for the density matrix for arbitrary N , and went on to show that,

for asymptotically large N , c0(N) ∼ N1/2.

In recent work [16] Lenard’s theory was employed to obtain the results for the occupation

numbers for a range of finite N , and from them determine the results for general N , which

continue on to the asymptotically large N limit3.

To go beyond the impenetrable limit for these quantities, we turn to the very valuable

work of Jimbo and Miwa [23]. Building upon the work of Lenard [30], they developed an

expansion for the density matrix in the large cL limit for general N in principle. We say

in principle because while their expansion is superb in the form given, it is as numerically

prohibitive to use as was the method we employed in the previous section.

To resolve this difficulty we have recast their theory, using mathematical techniques de-

veloped in recent work [17] and presented in great detail by Forrester [14], into a new

form that is readily amenable to numerical calculation. We will find in what follows that

the specific results for N = 2 and N = 3, in Section 3.1, are useful specific checks to the

theory.

In Subsection 3.3.1 and 3.3.2, along with Appendix C, we present the full details of our

derivation of the density matrix. Following that, in Subsection 3.3.3 we calculate the

occupation numbers for a finite range of N values and from these results we determine the

results for general N which again continue to asymptotically large N .

3See [16] for a comprehensive list of references for the impenetrable limit.
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3. Density matrix and occupation numbers

The fact that |ψN |2 consists of (N !)2 terms means any method based on term-by-term

integration must necessarily be restricted to small N . To overcome this, one must seek out

structure in the form of ψN , and this structure must be used to reduce the computational

expense required to compute ρN (x, 0).

Let us introduce the notation

ρN (x, y) = ρ
(0)
N (x, y) +

(

1

cL

)

ρ
(1)
N (x, y) +O

(

1

cL

)2

, (3.21)

and now develop the mathematical path necessary to efficiently compute both ρ
(0)
N (x, 0)

and ρ
(1)
N (x, 0).

3.3.1 ρ
(0)
N (x, 0)

In the limit cL → ∞ there is structure in the wave function (2.30), for then the large cL

expansion of kj (2.39) gives kj = (2j −N − 1)π/L, while (2.34) gives a(p) = 1, and so

ψN (x1, . . . , xN )|cL→∞ =
∑

p∈SN

ǫ(p)

N
∏

j=1

eiπ(2j−N−1)xp(j)/L. (3.22)

Strictly the magnitude of this wave function should be used [19, 31], hence this wave

function can also be expressed

∣

∣

∣
det(eiπ(2j−N−1)xp/L)j,p=1,...,N

∣

∣

∣
=

∣

∣

∣
det(e2iπjxp/L)j,p=1,...,N

∣

∣

∣
(3.23)

=
∏

1≤p<j≤N

∣

∣

∣
e2iπxj/L − e2iπxp/L

∣

∣

∣
(3.24)
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M.I. Makin 3. Density matrix and occupation numbers

where (3.23) is in the form of a Vandermonde determinant4, and (3.24) is related to (3.23)

by the property of Vandermonde determinants expressed in [20]5.

The aim now is to express the density matrix in the limit cL→ ∞ as a determinant (this

method follows that of Lenard [30]).

Currently, our definition of the density matrix (where in the limit cL→ ∞, N 2 = NLN−1)

appears in a slightly modified form from (3.1) as

ρ
(0)
N (x, y) = L−N

∫ L

0
dx1 . . .

∫ L

0
dxN−1 ψN (x1, . . . , xN−1, y)|cL→∞×

ψN (x1, . . . , xN−1, x)
∣

∣

∣

cL→∞
,

(3.26)

where we no longer explicitly map out the sum which defines the ordering of the integration;

it is now implicitly assumed that we must keep 0 ≤ x1 < x2 < . . . < xN ≤ L. It is useful

to relate ψN to ψN−1 using (3.24), to approach the form of a Fourier transform

ψN (x1, . . . , xN )|cL→∞ = ψN−1(x1, . . . , xN−1)|cL→∞

N−1
∏

r=1

∣

∣

∣e2πixr/L − e2πixN /L
∣

∣

∣ . (3.27)

It is also convenient to rescale variables, so that6

ρ
(0)
N (x, 0) =

1

L
RN

(

2πx

L

)

. (3.28)

Also, let x = απ/L, y = −απ/L and θi = 2πxi/L. Now RN (α), α and θi are all unitless,

4A Vandermonde determinant is the determinant of a Vandermonde matrix, expressed in general as

0

B

B

B

B

B

@

x0
1 x0

2 . . . x0
n

x1
1 x1

2 . . . x1
n

x2
1 x2

2 . . . x2
n

...
...

...
xn−1

1 xn−1
2 . . . xn−1

n

1

C

C

C

C

C

A

(3.25)

5The determinant of any Vandermonde matrix as given above, is equivalent to
Q

1≤i<j≤n
(xj − xi).

6Note that ρN(x, y) = ρN (x− y, 0).
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3. Density matrix and occupation numbers

and α ≥ 0 throughout. So, using (3.24) and (3.27) the scaled density matrix becomes

RN (α) = L1−N

∫ 2π

0

L

2π
dθ1 . . .

∫ 2π

0

L

2π
dθN−1

N−1
∏

1≤n<m

|eiθn − eiθm |2×

N−1
∏

r=1

∣

∣

∣eiθr − eiα/2
∣

∣

∣

∣

∣

∣eiθr − e−iα/2
∣

∣

∣ .

(3.29)

If we let

f(θ, α) =
∣

∣

∣eiθ − eiα/2
∣

∣

∣

∣

∣

∣eiθ − e−iα/2
∣

∣

∣ = 2
∣

∣

∣cos θ − cos
α

2

∣

∣

∣ , (3.30)

then

RN (α) = (2π)1−N

∫ 2π

0
dθ1 . . .

∫ 2π

0
dθN−1

N−1
∏

r=1

f(θ, α)

N−1
∏

1≤n<m

∣

∣

∣
eiθn − eiθm

∣

∣

∣

2
. (3.31)

Now we can use the Toeplitz determinant technique of Appendix B to obtain

ρN (x) =
(N − 1)!

L
det

1≤n,m≤N−1
cn−m

(

2πx

L

)

, (3.32)

where cn(α) is given by

cn(α) =
1

2π

∫ 2π

0
einθf(θ, α) dθ

=2δn,0 cos(α/2) − δn,1 − δn,−1

+
2

π

[

gn+1(α) + gn−1(α) − 2 cos(α/2)gn(α)
]

,

(3.33)

where

gn(α) = lim
n′→n

sin(1
2n

′|α|)
n′

. (3.34)
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M.I. Makin 3. Density matrix and occupation numbers

The absolute value sign in (3.34) can be ignored, as α ≥ 0.

While the sum (3.22) consists of N ! terms, the determinant (3.32) can be computed in

O(N3) arithmetic operations. This significantly reduces the numerical computation time

in evaluating ρ
(0)
N (x, 0).

3.3.2 ρ
(1)
N (x, 0)

It has been shown by Jimbo and Miwa [23] (see also Section 4.3 below) that determinant

structures persist if ψN is expanded in large cL, and that this implies special structures

for the expansion of the density matrix. In particular, it was shown in [23] that

ρ
(1)
N (x, 0) = −2ρ0x

∂

∂x
ρ
(0)
N (x, 0) + FN (x), (3.35)

where ρ
(0)
N (x, 0) is specified by (3.32) and (3.28) and

FN (x) =
1

∆0(−2)

[

∂

∂x
∆1





x

0
;λ





∂

∂λ
∆0(λ)

+
∂

∂λ
∆1





x

0
;λ





∂

∂x
∆0(λ)

− ∆1





x

0
;λ





∂2

∂x∂λ
∆0(λ)

]

∣

∣

∣

∣

∣

∣

λ=−2

.

(3.36)

The functions ∆0 and ∆1 are Fredholm minors7, specifically, ∆0 and ∆1 are the zeroth

Fredholm minor (or Fredholm determinant) and first Fredholm minor respectively.

It is desirable to compute ρ
(1)
N (x, 0) given in (3.35), however the form of ∆0 and ∆1 (C.1)

required to calculate FN (x) (3.36) prove particularly difficult for numerical calculation.

By noticing that ρ
(0)
N (x, 0) is related to ∆1 by

7please refer to Section C.1 for a concise description of the notation.
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ρ
(0)
N (x, 0) = −1

2
∆1





x

0
;−2



 , (3.37)

one can utilise properties of multi-dimensional integrals and Toeplitz determinants, based

on Lenard’s method [30] (given in Section 3.3.2), to cast both ∆0 and ∆1 into a form much

more amenable to numerical calculation. This is done for general n in Appendix C. The

resulting forms are given by, for ∆0

∆0(λ) = det [A0(j − k)]j,k=1,...,N , (3.38)

where

A0(j) =
1

L

(∫ L

0
+λ

∫ x

0

)

du exp[2πiuj/L]

=







1 + λx
L when j = 0

λ
2iπj (e

2iπjx/L − 1) when j 6= 0,

(3.39)

and for ∆1

∆1





x

0
;λ



 = λe−iπ(N−1)x/L det [A1(j − k)]j,k=1,...,N−1 , (3.40)

where
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A1(j) =
1

L

(∫ L

0
+λ

∫ x

0

)

du(e2πiu/L − e2πix/L)(e−2πiu/L − 1)e2πiuj/L

=



































λ
2π sin 2t− tλ

π − 1 when j = −1

2eit
[

( tλ
π + 1) cos t− λ

π sin t
]

when j = 0

e2it
[

λ
2π sin 2t− tλ

π − 1
]

when j = 1

2λiei(j+1)t

j(j2−1)π
[j cos jt sin t− cos t sin jt] when |j| ≥ 2.

(3.41)

In [16] this determinant formula was used to compute the density matrix and the corre-

sponding ground state occupation numbers up to N = 7.

The numerical complexity has been greatly reduced with these new forms, as ∆0 and

∆1 were previously composed of multi-dimensional integrals (C.1), and now are given by

determinants containing no integrals (3.38) and (3.40).

With these determinant formulas FN (x) is expressed in a computable form. This concludes

the method necessary to construct the density matrix expanded in large cL. The following

section applies this method to examine the occupation numbers.

3.3.3 Occupation numbers

The notation for the occupation number cn(N) expanded in large cL is given as

cn(N) = c(0)n (N) +

(

1

cL

)

c(1)n (N) +O

(

1

cL

)2

. (3.42)

Using (3.3) and (3.21), c
(0)
n (N) is related to ρ

(0)
N (x, 0) by

c(0)n (N) =

∫ L

0
ρ
(0)
N (x, 0) cos

(

2πnx

L

)

dx. (3.43)

The c
(1)
n (N) term can be expanded further as

35



3. Density matrix and occupation numbers

c(1)n (N) =

∫ L

0
ρ
(1)
N (x, 0) cos

(

2πnx

L

)

dx

=

∫ L

0

(

−2Nx
∂ρ

(0)
N (x, 0)

∂x
+ FN (x)

)

cos

(

2πnx

L

)

dx

= c(1,1)
n (N) + c(1,2)

n (N),

(3.44)

where FN (x) may be computed using the expressions in Subsection 3.3.2 above. The

c
(1,1)
n (N) term can be simplified using integration by parts to

c(1,1)
n (N) = −2N2 + 2Nc(0)n (N) − 4πnN

∫ L

0

x

L
sin(2πnx/L)ρ(0)

n (x)dx. (3.45)

The exact values of c
(0)
n (N) and c

(1)
n (N) for n = 0 (N = 2, . . . , 7) and n = 1, 2 (N =

2, . . . , 6) are listed in Tables D.1, D.2 and D.3. The exact values of c
(1,1)
n (N) and c

(1,2)
n (N)

for n = 0, 1, 2 with N = 2, . . . , 6 are listed in Tables D.4, D.5 and D.6. All numerical

values computed for c
∗(0)
n (N), c

∗(1,1)
n (N), c

∗(1,2)
n (N) and c

∗(1)
n (N) obtained for n = 0, 1, 2

are presented in Tables D.7, D.8 and D.9. In these tables, the data is given to 6 significant

figures for economy of presentation, while in point of fact, accuracy to 10 significant figures

was needed for the analysis that now follows. This numerical accuracy was achieved for

up to N = 36 for the n = 0 mode, and up to N = 26 for the modes n = 1 and n = 2.

Note that c
∗(0)
n (N) for n = 0, 1, 2 reproduces the results of [16].

While 36 particles is an improvement on the 4 particles of Section 3.1, experiments are yet

to use less than ∼105 particles (Section 1.2). Hence it is useful to predict the occupation

numbers for large N . In [16], it was found that the occupation numbers in the large N ,

cL = ∞ limit are proportional to
√
N (49). They designed an ansatz containing a term

proportional to
√
N , a term proportional to 1/

√
N , and a constant term. The following

ansatz extends their work by expanding the coefficients of two of these terms to O(1/cL)
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cn(N) = A∞,n

(

1 +
αnN

cL

)

N
1
2
+ βnN

cL + C∞,n

(

1 +
γnN

cL

)

(3.46)

= (A∞,n

√
N +C∞,n)

+N(A∞,nαn

√
N +A∞,nβn

√
N lnN + C∞,nγn)

(

1

cL

)

+O

(

1

cL

)2

. (3.47)

It is now pertinent to determine bounds on αn and βn, and a value for γn. Consider the

set of three linear equations describing the 1/cL term of (3.47) for three consecutive values

of N











√
N − 1

√
N − 1 ln(N − 1) 1

√
N

√
N ln(N) 1

√
N + 1

√
N + 1 ln(N + 1) 1





















A∞,nαn

A∞,nβn

C∞,nγn











=











c
∗(1)
n (N − 1)

c
∗(1)
n (N)

c
∗(1)
n (N + 1)











, (3.48)

and the set of two linear equations describing the 1/cL term of (3.47) with C∞,n = 0 for

two consecutive values of N





√
N

√
N ln(N)

√
N + 1

√
N + 1 ln(N + 1)









A∞,nαn

A∞,nβn



 =





c
∗(1)
n (N)

c
∗(1)
n (N + 1)



 . (3.49)

Values of A∞,n and C∞,n from [16] are displayed in Table 3.1. The solution for αn, βn, γn,

of (3.48) and the solution for αn, βn for (3.49) for various values of N establish bounds

on αn and βn, and a value for γn. Numerical stability for these bounds is established by

calculating them for N = 2 up to N = 35. A fractional accuracy of & 10−10 is necessary,

and hence the parameters are calculated at N = 35 for n = 0, and N = 25 for n = 1 and

n = 2. These are presented in Table 3.1.

n A∞,n C∞,n αn βn γn

0 1.54273 −0.5725 0.1561 < α0 < 0.1838 1.998 < β0 < 2.003 0.1599

1 0.5143 −0.5739 −5.709 < α1 < −5.067 1.972 < β1 < 2.094 −1.109

2 0.3676 −0.5775 −8.350 < α2 < −6.121 1.887 < β2 < 2.313 −2.736

Table 3.1: Parameters for the ansatz (3.47)
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Note that βn is very close to 2 for n = 0, and suggestive of the value 2 for n = 1 and 2.

We postulate that βn = 2 for all n. More is said about βn in the following section.

3.3.4 Concluding remarks

The occupation numbers for the large cL limit given in (3.46) can be continued to the

asymptotically large N limit giving

cn(N) ∼ N
1
2
+ βnN

cL . (3.50)

Very strong evidence for the exponent βn having the integer value 2 was presented.

In constructing the ansatz for the occupation numbers, we chose to scale cL by N from

the outset. This was done because the cL large limit is now compatible with the ther-

modynamic limit (unlike the small cL limit as discussed after (3.20)) and further to this

we found that the numerical analysis, for any finite N , in constructing the ansatz, failed

without this scaling.

The question then is, how does (3.50) compare with the thermodynamic limit. In a very

nice work, at a time coincident with the seminal work of the Japanese group [23, 24], the

density matrix first given by Lenard in the impenetrable limit [30], was extended to the

1/c correction [9]. They used the quantum inverse-scattering method in concert with the

very important work [24] on the impenetrable Bose gas in terms of Painlevé V theory, and

obtained

ρ(x) ∼ 1

|x| 12−
2kF
πc

. (3.51)

The Fourier transform of (3.51) gives the momentum distribution, with the Fermi momen-

tum, kF = πρ0,

c(k) ∼ 1

|k| 12+
2kF
πc

. (3.52)
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Following the presentation given in [16], one can readily see that (3.50) is one-to-one with

(3.52). An elementary way to see this immediately is to observe that |k| ∼ 1/L and thus

in the thermodynamic limit |k| ∼ 1/N . Note the integer value of 2 for the coefficient of

kF/πc in the exponent (3.51) and (3.52).

In previous work on the impenetrable Bose gas [15, 16], the system was studied for various

boundary conditions; periodic, Dirichlet, Neumann, as well as for the harmonically trapped

system. In all cases, it was found that in the asymptotically large N limit that (3.50) held

in the limit cL → ∞. This firmly suggests that the exponent obtained in this large N

limit is universal, being the same for all boundary conditions and (low lying) n modes.

Therefore, one may anticipate the same is true now for (3.50).

The use of periodic boundary conditions, while facilitating the mathematics, is nonetheless

a powerful pre-emptor of the analytical properties of the Bose gas.
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Correlation functions

and

structure factors

4

This chapter examines the correlation function and its Fourier transform the structure

factor. Specific examples are given in Section 4.1 for 2, 3 and 4 particles. Polynomial

structure for the general N , small cL expansion is given in Section 4.2. Finally the

correlation function in the general N , large cL expansion is derived in general in Section

4.3, and examined in the thermodynamic limit.

The definition of the two-point correlation function gN (x, 0) is

gN (x, 0) =
1

N 2

N−2
∑

j=0

∫

RN−2,j(x)
dx1 . . . dxN−2|ψN (0, x1, . . . , xj , x, xj+1, . . . , xN−2)|2, (4.1)

where the normalisation N 2 is specified by (2.35) and the domain of integration by (3.2).

Equation (4.1) has the property

∫ L

0
gN (x, 0)dx = N − 1, (4.2)

in keeping with the interpretation of gN (x, 0) as the density of particles at position x,

given there is a particle at the origin. The structure factor is defined by

Sn(N) =
1

N

1

N 2

∫

RN−1,j

dx1 . . . dxN−2

∣

∣

∣

∣

∣

∣

N−1
∑

j=0

e2iπxjn/L

∣

∣

∣

∣

∣

∣

2

|ψN (0, x1, . . . , xN−1)|2 , (4.3)
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where x0 = 0, which can be written in terms of gN (x, 0) to read

Sn(N) = 1 +

∫ L

0
gN (x, 0) cos(2πnx/L)dx. (4.4)

In view of (4.2) this gives S0(N) = N .

4.1 Specific examples

4.1.1 N = 2

This subsection yields the most complete set of results within Section 4, with the set of

results for N = 3 and N = 4 becoming increasingly limited. For N = 4, we display only

the small cL expansion of the correlation function and structure factor.

It is possible to produce a simple, exact form of the correlation function for N = 2 by

utilising (3.4) and (4.1) to obtain

g2(x, 0) =
2k2 cos2[12k2(L− 2x)]

k2L+ sin(k2L)
, (4.5)

which has corresponding structure factor

Sn(2) =











2 when n = 0

1 +
k2
2L2 sin(k2L)

(k2
2L2−n2π2)(k2L+sin(k2L))

when n 6= 0.
(4.6)

The correlation function, expanded about small cL using (A.1), is given by

g2(x, 0) = 1
L

[

1 +
(

− x2

L2 + x
L − 1

6

)

(cL) +
(

x4

3L4 − 2x3

3L3 + x2

2L2 − x
6L + 1

60

)

(cL)2

+
(

− 2x6

45L6 + 2x5

15L5 − 7x4

36L4 + x3

6L3 − 7x2

90L2 + x
60L − 1

945

)

(cL)3 +O(cL)4

]

, (4.7)
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and hence the structure factor is given by

Sn(2) =



















2 when n = 0

1 − 1
2n2π2 (cL) + n2π2−6

12n4π4 (cL)2

−n4π4−15n2π2+60
120n6π6 (cL)3 +O(cL)4 when n 6= 0.

(4.8)

The large cL expansion of the correlation function is given using (2.39)

g2(t, 0) =
1

L

{

2 sin2 t+ 8 sin t[(π − 2t) cos t− sin t]

(

1

cL

)

+O

(

1

cL

)2
}

, (4.9)

taking the Fourier transform then yields the structure factor

Sn(2) =























2 when n = 0

1
2 + 3

(

1
cL

)

+O
(

1
cL

)2
when |n| = 1

1 − 4
(n2−1)

(

1
cL

)

+O
(

1
cL

)2
when |n| ≥ 2.

(4.10)

The correlation function for the special values cL = π, k2L = π/2, (see Table 2.2) is

g2(t, 0) =
π (sin t+ 1)

L(π + 2)
, (4.11)

and hence the structure factor is

Sn(2) =







2 when n = 0

1 − 2
(4n2−1)(π+2)

when n 6= 0.
(4.12)
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4.1.2 N = 3

Given the length of the full correlation function for N = 3, it is not practical to display

the full result here, however we shall display the small and large cL expansions for both

the correlation function and the structure factor.

The small cL expansion of the correlation function is given, using (A.2)

g3(x, 0) =
2

L

[

1 +

(

−x2

L2
+
x

L
− 1

6

)

(cL) +

(

x4

12L4
− x3

6L3
+

x2

4L2
− x

6L
+

1

40

)

(cL)2

+

(

x6

5L6
− 3x5

5L5
+

5x4

8L4
− x3

4L3
+

x

40L
− 1

280

)

(cL)3 +O(cL)4

]

, (4.13)

and hence the structure factor by

Sn(3) =



















3 when n = 0

1 − 1
n2π2 (cL) + 2n2π2−3

12n4π4 (cL)2

−n4π4+15n2π2−180
40n6π6 (cL)3 +O(cL)4 when n 6= 0.

(4.14)

The large cL expansion for the correlation function is given using (2.39)

g3(t, 0) =
2

L

{

4 (2 + cos 2t) sin2 t

3

− 8 sin t [−2 (π − 2t) (2 cos t+ cos 3t) + 3 sin t+ 4 sin 3t]

3

(

1

cL

)

+O

(

1

cL

)2
}

,

(4.15)

which yields the structure factor
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Sn(3) =



































3 when n = 0

1
3 + 32

9

(

1
cL

)

+O
(

1
cL

)2
when |n| = 1

2
3 + 38

9

(

1
cL

)

+O
(

1
cL

)2
when |n| = 2

1 − 16(n2−2)
(n2−4)(n2−1)

(

1
cL

)

+O
(

1
cL

)2
when |n| ≥ 3.

(4.16)

We now display the correlation function for the special values k3L = π, cL =
√

2π, (from

Table 2.2)

g3(t, 0) = − 2π

L
(

16 + 16
√

2π + 9π2
)

[

2
(

4
√

2 − π
)

cos t− π cos 2t

− 4
(

2 +
√

2π
)

sin t+ 2
(

6 +
√

2π
)

sin 2t− 9π − 8
√

2

]

,

(4.17)

and the corresponding structure factor

Sn(3) =























3 when n = 0

1 − 32+16
√

2π−3π2

48+48
√

2π+27π2
when |n| = 1

1 − 16(2+
√

2π)
(4n2−1)(16+16

√
2π+9π2)

when |n| ≥ 2.

(4.18)

4.1.3 N = 4

Due to increasing complexities, here we display only the correlation function for the small

cL expansion of N = 4

g4(x, 0) =
3

L

[

1 +

(

−x2

L2
+
x

L
− 1

6

)

(cL) +

(

− x4

6L4
+

x3

3L3
− x

6L
+

1

30

)

(cL)2 (4.19)

+

(

7x6

18L6
− 7x5

6L5
+

47x4

36L4
− 2x3

3L3
+

19x2

180L2
+

x

30L
− 1

135

)

(cL)3 +O(cL)4

]

,

and its corresponding structure factor
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Sn(4) =



















4 when n = 0

1 − 3
2n2π2 (cL) + n2π2+3

4n4π4 (cL)2

−2n4π4+60n2π2−525
40n6π6 (cL)3 +O(cL)4 when n 6= 0.

(4.20)

4.2 General N small cL expansion

Through close examination of the small cL expansions of the correlation function forN = 2

(4.7), N = 3 (4.13) and N = 4 (4.19), we find the following polynomial structure

gN (x, 0) =
N − 1

L

{

1 − f(x)(cL)

+

[(

−N
4

+
5

6

)

f(x)2 +

(

N

12
− 1

9

)

f(x) +

(

N

720
− 1

216

)]

(cL)2

+

[

(

−N
2

36
+

23N

60
− 7

10

)

f(x)3 +

(

N2

36
− 7N

40
+

1

5

)

f(x)2

+

(

−N2

144
+

13N

720
− 1

120

)

f(x) +

(

− N2

6804
+

79N

90720
− 1

1080

)

]

(cL)3 +O(cL)4

}

(4.21)

where f(x) = x2/L2 − x/L + 1/6. We conjecture that this structure continues for all N .

This has corresponding structure factor

Sn(N) =



































N when n = 0

1 − (N−1)
2n2π2 (cL) +

(N−1)(2n2π2+9N−30)
24n4π4 (cL)2

− (N−1)(Nn4π4+75Nn2π2−180n2π2+75N2−1035N+1890)
240n6π6 (cL)3

+O(cL)4 when n 6= 0

(4.22)

We have not proceeded further than N = 4 for the large cL expansion as similar difficulties

are encountered as in the case of the density matrix in Chapter 3. There is now, once

again, a powerful way to proceed to develop such an expansion for general N , and we
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present the derivation in the following section. The special case of N = 2 (4.9) and N = 3

(4.15) provide useful checks.

4.3 General N large cL expansion

In Section 3.3 results from Jimbo and Miwa [23] were used to express the O(1/cL) cor-

rection to the density matrix in the form of Toeplitz determinants, which could then be

numerically analysed. The method of [23] can also be applied to the calculation of the

O(1/cL) correction to the two-point correlation function (4.1), yielding in fact a closed

form analytic expression. To derive this, we follow the working in [23], and begin by noting

that the O(1/cL) expansion of (2.30) is

ψN (x1, x2, . . . , xN ) =

[

1 +
1

cL
Ĝ+O

(

1

cL

)2
]

det[eikjxl ], (4.23)

where the det term is understood throughout this section to be expanded about j and l

over all particles, and where Ĝ is an operator given by

Ĝ = L

N
∑

l=1

(−N + 2l − 1)
∂

∂xl
− 2N

N
∑

l=1

xl
∂

∂xl
. (4.24)

Putting N → N + 2 (for convenience), the sums given in Ĝ now run from 0 to N + 1. We

label the particles as

0 < y < x1 < . . . < xj < x < xj+1 < . . . < xN < L. (4.25)

In the definition of gN+2(x, 0), x will be the variable as in (4.25) and we will take y → 0.

With these labels and N → N + 2 the operator in (4.23) reads
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Ĝ = − L(N + 1)
∂

∂y
+ L

j
∑

l=1

(−N + 2l − 1)
∂

∂xl
+ L(−N + 2j + 1)

∂

∂x

+ L
N
∑

l=j+1

(−N + 2l + 1)
∂

∂xl
− 2(N + 2)

(

N
∑

l=1

xl
∂

∂xl
+ x

∂

∂x
+ y

∂

∂y

)

.

(4.26)

The determinant in (4.23) has the translation invariance property

det





eikjy

eikjxk



 = det





1

eikj(xk−y)



 , (4.27)

since
∑

kj = 0. This means that we can write

∂

∂y
= − ∂

∂x
−

N
∑

l=1

∂

∂xl
, (4.28)

and as y → 0, the operator (4.26) becomes

Ĝ = L

j
∑

l=1

2l
∂

∂xl
+2L(1+j)

∂

∂x
+

N
∑

l=j+1

2L(1+l)
∂

∂xl
−2(N+2)

(

N
∑

l=1

xl
∂

∂xl
+ x

∂

∂x

)

. (4.29)

In keeping with (4.1), by definition

gN+2(x, 0) =
1

N 2
lim
y→0

N
∑

j=0

∫

RN,j(y,x)
dx1 . . . dxN |ψN+2(y, x1, . . . , xj , x, xj+1, . . . , xN )|2 , (4.30)

where N 2 is the normalisation, defined by (2.35), and RN,j(y, x) is the region of integration

specified by
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RN,j(y, x) : 0 ≤ y ≤ x1 ≤ . . . ≤ xj ≤ x ≤ xj+1 ≤ . . . ≤ xN ≤ L. (4.31)

Again relabel the particles as (x̃1, x̃2, . . . , x̃N+2) = (0, x1, . . . , xj , x, xj+1, . . . , xN ), and

introduce

Â =

N
∑

l=1

xl
∂

∂xl
+ x

∂

∂x
, (4.32)

B̂j = L

j
∑

l=1

2l
∂

∂xl
+ 2L(1 + j)

∂

∂x
+ L

N
∑

l=j+1

2(1 + l)
∂

∂xl
, (4.33)

so (4.29) then can be expressed

Ĝ = B̂j − 2(N + 2)Â, (4.34)

so that the limit in (4.30) becomes

lim
y→0

|ψN+2(y, x̃2, x̃3, . . . , x̃N+2)|2 =

∣

∣

∣

∣

∣

(

1 +

(

1

cL

)

Ĝ+O

(

1

cL

)2
)

|det[eikj x̃l ]|2
∣

∣

∣

∣

∣

2

=|det[eikj x̃l ]|2 − 2(N + 2)

cL
Â
(

|det[eikj x̃l ]|2
)

+
1

cL
B̂j

(

|det[eikj x̃l ]|2
)

+O

(

1

cL

)2

.

(4.35)

The normalisation (2.35) was first expanded in large cL by [23]. We display here the first

two orders

N 2 = (N (∞))2

[

1 +

(

1

cL

)

2(N + 2)(N + 1) +O

(

1

cL

)2
]

, (4.36)

where (N (∞))2 = (N + 2)!LN+1 is the normalisation (2.35) in the limit cL→ ∞. Substi-
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tuting (4.35) and (4.36) into (4.30) shows that to O(1/cL)

gN+2(x, 0) = g
(∞)
N+2(x, 0) −

(

1

cL

)

2(N + 2)(N + 1)g
(∞)
N+2(x, 0)

−
(

1

cL

)

2(N + 2)
1

(N (∞))2

N
∑

j=0

∫

RN,j(x)
dx1 . . . dxN Â

(

|det[eikj x̃l ]|2
)

+

(

1

cL

)

1

(N (∞))2

N
∑

j=0

∫

RN,j(x)
dx1 . . . dxN B̂j

(

|det[eikj x̃l ]|2
)

.

(4.37)

Observe that

g
(∞)
N+2(x, 0) =

1

N !

1

(N (∞))2

∫ L

0
dx1 . . . dxN |det[eikj x̃l ]|2 =

N + 2

L
(1 − K̃N+2,L(x, 0)2),

(4.38)

where K̃ is related to the K given in (C.3) by

K̃N,L(x, y) =
L

N
KN,L(x, 0) =

sin (Nπ(x− y)/L)

N sin (π(x− y)/L)
. (4.39)

Note that (4.38) and (4.39) also appear in the circular unitary ensemble (CUE), given by

Dyson [10].

To proceed further consider |det[eikj x̃l ]|2 as a function of xl, (l = 1, . . . ,N). This function

vanishes at the three points xl = 0, xj , L (j 6= l).

It follows that

∫

RN,j(x)
dxl xl

∂

∂xl
|det[eikj x̃l ]|2 = −

∫

RN,j(x)
dxl|det[eikj x̃l ]|2, (4.40)

while
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∫

RN,j(x)
dxl

∂

∂xl
|det[eikj x̃l ]|2 = 0. (4.41)

Hence

gN+2(x, 0) = g
(∞)
N+2(x, 0) −

(

1

cL

)

2(N + 2)(N + 1)g
(∞)
N+2(x, 0)

−
(

1

cL

)

2(N + 2)

(

x
∂

∂x
−N

)

g
(∞)
N+2(x, 0)

+
1

cL

L

(N (∞))2

N
∑

j=0

2(j + 1)
∂

∂x

∫

RN,j(x)
dx1 . . . dxN |det[eikj x̃l ]|2

(4.42)

= g
(∞)
N+2(x, 0) −

(

1

cL

)

2(N + 2)

(

x
∂

∂x
+ 1

)

g
(∞)
N+2(x, 0) (4.43a)

+
2

cL

L

(N (∞))2
∂

∂x

N
∑

j=0

(j + 1)

j!(N − j)!

∫

R̃N,j(x)
dx1 . . . dxN |det[eikj x̃l ]|2, (4.43b)

where the new domain R̃N,j(x) has broken the strict ordering of (3.2) on either side of x,

i.e.

R̃N,j(x) = 0 ≤ x1, . . . , xj ≤ x ≤ xj+1, . . . , xN ≤ L. (4.44)

It remains to simplify (4.43b). Introducing ξ yields

1

N !

∂

∂x

∂

∂ξ

N
∑

j=0

ξj+1





N

j





∫

R̃N,j(x)
dx1 . . . dxN |det[eikj x̃l ]|2

∣

∣

∣

∣

∣

ξ=1

=
1

N !

∂

∂x

∂

∂ξ
ξ

N
∏

l=1

(∫ L

x
+ξ

∫ x

0

)

dxl|det[eikj x̃l ]|2
∣

∣

∣

∣

ξ=1

.

(4.45)

Using the product rule, one can obtain
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=
1

N !

∂

∂x

∫ L

0
dx1 . . . dxN |det[eikj x̃l ]|2 (4.46a)

+
1

N !

∂

∂x

∂

∂ξ

N
∏

l=1

(∫ L

x
+ξ

∫ x

0

)

dxl|det[eikj x̃l ]|2
∣

∣

∣

∣

ξ=1

. (4.46b)

Hence (4.46a) is equal to

(N (∞))2
∂

∂x
g
(∞)
N+2(x, 0). (4.47)

Regarding (4.46b), note that

∂

∂ξ

N
∏

l=1

(
∫ L

x
+ξ

∫ x

0

)

dxl|det[eikj x̃l ]|2
∣

∣

∣

∣

ξ=1

(4.48)

=
∂

∂ξ

(

N
∏

l=1

∫ L

0
dxl|det[eikj x̃l ]|2

+

N
∑

l=1

∫ x

0
dxl(ξ − 1)

N
∏

j=1
j 6=l

∫ L

0
dxj|det[eikj x̃l ]|2 +O((ξ − 1)2)

)

∣

∣

∣

∣

∣

∣

∣

∣

ξ=1

(4.49)

=
N
∑

l=1

∫ x

0
dxl

N
∏

j=1
j 6=l

∫ L

0
dxj |det[eikj x̃l ]|2 (4.50)

= N

∫ x

0
dx1

∫ L

0
dx2 . . .

∫ L

0
dxN |det[eikj x̃l ]|2. (4.51)

Therefore, (4.46b) is equal to

1

(N − 1)!

∂

∂x

∫ x

0
dx1

∫ L

0
dx2 . . .

∫ L

0
dxN |det[eikj x̃l ]|2. (4.52)

For the free Fermi system the 3-point correlation function is specified by
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g
(∞)
3,(N+2)(x, 0, x1) =

1

(N − 1)!

1

(N (∞))2

∫ L

0
dx2 . . .

∫ L

0
dxN |det[eikj x̃l ]|2 (4.53)

=

(

N + 2

L

)2

det











1 K̃N+2,L(x, 0) K̃N+2,L(x1, 0)

K̃N+2,L(x, 0) 1 K̃N+2,L(x, x1)

K̃N+2,L(x1, 0) K̃N+2,L(x, x1) 1











(4.54)

=

(

N + 2

L

)2

[1 − K̃N+2,L(x, 0)2 − K̃N+2,L(x1, 0)
2 − K̃N+2,L(x, x1)

2

+ 2K̃N+2,L(x, 0)K̃N+2,L(x1, 0)K̃N+2,L(x, x1)],

(4.55)

where K̃NL(x, y) is specified by (4.39). Note that this definition is only valid for N ≥ 1;

a 3-point correlation function for a system of 2 particles does not make physical sense, as

g
(∞)
3,2 (x, 0, x1) = 0. Using (4.53), (4.52) reduces to

(N (∞))2
∂

∂x

∫ x

0
dx1g

(∞)
3,(N+2)(x, 0, x1). (4.56)

Finally, adding up all contributions gives the sought closed form expression for gN (x, 0)

(here we revert to N + 2 → N)

gN (x, 0) = g
(∞)
N (x, 0) +

(

1

cL

)

[

2

(

L
∂

∂x
− x

∂

∂x
− 1

)

g
(∞)
N (x, 0)

+ 2L
∂

∂x

∫ x

0
dx1g

(∞)
3,N (x, 0, x1)

]

+O

(

1

cL

)2
(4.57)

correct to O(1/cL), valid for all N ≥ 2. This gives equivalent results for the cases N = 2

and N = 3, given by (4.9) and (4.15). Using (4.38) and (4.55), (4.57) can be written in

the simpler form
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gN (x, 0) =
N

L
(1 − K̃N,L(x, 0)2)

+ 4N

(

1

cL

)

{

− K̃N,L(x, 0)

[(

N

L
+

∂

∂x

)

K̃N,L(x, 0)

]

+
N

L

∂

∂x

[

K̃N,L(x, 0)

∫ x

0
K̃N,L(x1, 0)K̃N,L(x, x1)dx1

]

}

+O

(

1

cL

)2

(4.58)

which is valid for all N ≥ 3. We have confirmed that this result recovers (4.15). Now

(4.58), and concomitantly its structure factor, can be readily computed for any N ≥ 3.

The structure factor in the limit cL→ ∞, is given by

Sn(N) =



















N when n = 0

|n|/N when 0 < |n| < N

1 when |n| ≥ N.

(4.59)

In the thermodynamic limit, K̃ becomes

K̃∞(x, y) =
sin(ρ0π(x− y))

ρ0π(x− y)
, (4.60)

where ρ0 = N/L, and now the correlation function follows from (4.58) and is (using the

appropriate scaled variable ρ0/c)

g∞(x, 0) = ρ0

(

1 − sin2 x̄

x̄2

)

− 4ρ0

{

sin x̄

x̄3
[πx̄ cos x̄+ (x̄− π) sin x̄]

+
∂

∂x

[

K̃∞(x, 0)

∫ x

0
K̃∞(x1, 0)K̃∞(x, x1)dx1

]

}

(ρ0

c

)

+ O
(ρ0

c

)2
,

(4.61)

where x̄ = ρ0πx. This equation is in agreement with that first given by Korepin [29].

Recently in [8], using the random phase approximation (RPA), which they indicated is
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valid to the ρ0/c correction, the structure factor was calculated in the thermodynamic

limit from which (4.61) is recovered.

Here we explicitly evaluate the integral in (4.61) using (4.60)

∫ x

0
K̃∞(x1, 0)K̃∞(x, x1)dx1 =

sin(x̄)Si(2x̄) + cos(x̄)[Ci(2x̄) − log(2x̄) − γ]

ρ0πx̄
, (4.62)

where γ is Euler’s constant, and Si and Ci are the sine integral and cosine integral functions,

respectively.
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Conclusions 5
In this thesis, we find the density matrix, occupation numbers, correlation function and

structure factor completely for 2 particles, partially for 3 particles, and sparingly for 4

particles. These are calculated exactly and as analytic expansions around cL = 0 and

cL = ∞.

The density matrix expanded in large cL is originally calculated using a multiple integral

expression. This expression is reformulated using a Toeplitz determinant technique, en-

abling subsequent calculation of the occupation numbers (which are the Fourier transform

of the density matrix) for up to 36 particles for the ground state, and 26 particles for the

first and second excited states. This data is used to determine the coefficients of an ansatz

which generalises the 1/cL expansion of the occupation numbers, and to show that one

important coefficient has βn = 2 ∀n, we conjecture that this is true for all N .

The correlation function is manipulated into a form that is readily calculated for any N ,

and the thermodynamic limit is also shown.
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Bose gas and the fifth Painlevé transcendent. Physica D 1 (1980), 80.

[25] Karbach, M., and Müller, G. Introduction to the Bethe ansatz i. Comput. Phys.

11, 1 (1997), 36.

[26] Kinoshita, T., Wenger, T., and Weiss, D. Observation of a one-dimensional
Tonks-Girardeau gas. Science 305 (2004), 1125.

60



M.I. Makin References
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Bethe equation solutions A

Equation (2.38) gives the quasi-momenta expanded to order (cL). We present here the

quasi-momenta up to (cL)4, for up to 8 particles. These are solutions to equation (2.37),

obtained using the method of quadrature.

N = 2

k2 =

√

c

L

[

1 − 1

24
(cL) +

11

5760
(cL)2 − 17

322560
(cL)3 − 281

154828800
(cL)4 +O(cL)5

]

(A.1)

N = 3

k3 =

√

3c

L

[

1 − 1

24
(cL) +

19

5760
(cL)2 − 299

967680
(cL)3 +

11077

464486400
(cL)4 +O(cL)5

]

(A.2)

N = 4

k4 =

√

(

3 +
√

6
) c

L

[

1 − 1

24
(cL) +

31 − 2
√

6

5760
(cL)2

+
−879 + 86

√
6

967680
(cL)3 +

63381 − 5500
√

6

464486400
(cL)4 +O(cL)5

]

(A.3a)

k3 =

√

(

3 −
√

6
) c

L

[

1 − 1

24
(cL) +

31 + 2
√

6

5760
(cL)2

+
−879 − 86

√
6

967680
(cL)3 +

63381 + 5500
√

6

464486400
(cL)4 +O(cL)5

]

(A.3b)
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N = 5

k5 =

√

(

5 +
√

10
) c

L

[

1 − 1

24
(cL) +

39 − 2
√

10

5760
(cL)2

+
−1511 + 118

√
10

967680
(cL)3 +

165589 − 13196
√

10

464486400
(cL)4 +O(cL)5

]

(A.4a)

k4 =

√

(

5 −
√

10
) c

L

[

1 − 1

24
(cL) +

39 + 2
√

10

5760
(cL)2

+
−1511 − 118

√
10

967680
(cL)3 +

165589 + 13196
√

10

464486400
(cL)4 +O(cL)5

]

(A.4b)

N = 6

k6 = 3.3242

√

c

L
[1 − 0.041667(cL) + 0.0067532(cL)2 − 0.0017543(cL)3 ] (A.5a)

k5 = 1.8892

√

c

L
[1 − 0.041667(cL) + 0.0093511(cL)2 − 0.0028885(cL)3 ] (A.5b)

k4 = 0.61671

√

c

L
[1 − 0.041667(cL) + 0.010458(cL)2 − 0.0035594(cL)3 ] (A.5c)

N = 7

k7 = 3.7504

√

c

L
[1 − 0.041667(cL) + 0.0077897(cL)2 − 0.0024201(cL)3 ] (A.6a)

k6 = 2.3668

√

c

L
[1 − 0.041667(cL) + 0.010729(cL)2 − 0.0039343(cL)3 ] (A.6b)

k5 = 1.1544

√

c

L
[1 − 0.041667(cL) + 0.012211(cL)2 − 0.0049975(cL)3 ] (A.6c)
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N = 8

k8 = 4.1445

√

c

L
[1 − 0.041667(cL) + 0.0087926(cL)2 − 0.0031697(cL)3 ] (A.7a)

k7 = 2.8025

√

c

L
[1 − 0.041667(cL) + 0.012030(cL)2 − 0.0050758(cL)3 ] (A.7b)

k6 = 1.6365

√

c

L
[1 − 0.041667(cL) + 0.013827(cL)2 − 0.0065475(cL)3 ] (A.7c)

k5 = 0.53908

√

c

L
[1 − 0.041667(cL) + 0.014656(cL)2 − 0.0073260(cL)3 ] (A.7d)

The leading term of kj is precisely related to the jth zero of the Nth Hermite polynomial,

as mentioned in Section 2.2. If we begin with (2.37), and let kj = aj
√

2c/L, then by

expanding to order cL on both sides, one obtains

aj =

N
∑

l=1

1

aj − al
. (A.8)

The solution to this equation is the jth zero of the Nth Hermite polynomial [46], so that

aj = h
(N)
j .

Note that the second order term is −1/24 up to N = 8. Assuming that

kj =

√

2c

L
h

(N)
j (1 − cL/24) (A.9)

for all N , and expanding (2.37) to order (cL)2, one obtains

−h(N)
j =

N
∑

l=1
l 6=j

(

h
(N)
j − h

(N)
l

)2
− 4

(

h
(N)
j − h

(N)
l

)3 . (A.10)

We conjecture that (A.10) is true for all N . This has been checked numerically up to

N = 100.
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Multiple integrals

and

Toeplitz determinants

B

A Toeplitz determinant is the determinant of any Toeplitz matrix, where the element in

the jth row and the ith column is given by cj−i, i.e.























c0 c1 c2 . . . cN

c−1 c0 c1 . . . cN−1

c−2 c−1 c0 . . . cN−2

...
...

...
...

c−N c−N+1 c−N+2 . . . c0























. (B.1)

This appendix demonstrates how to manipulate the general multiple integral

∫ 2π

0
dψ1 . . .

∫ 2π

0
dψN

N
∏

j=1

f(ψj)
∏

1≤m<n≤N

|e2iψm − e2iψn |2, (B.2)

where f(ψj) is some well-behaved function, into a Toeplitz determinant form - which is

simpler to calculate numerically. This technique is useful for determining a simple way to

calculate ρ
(0)
N (x, y) (Subsection 3.3.1), and a simple way to express ∆n (Section C.2).

We begin by noting that the final term of (B.2) can be rewritten using

∏

1≤m<n≤N

(e2iψm − e2iψn) =
∑

p∈SN

ǫ(p)

N
∏

j=1

e2ijψp(j) , (B.3)

where SN is the symmetric group on N symbols, and ǫ(p) is the signature of the permu-

tation p. Hence
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∏

1≤m<n≤N

|e2iψm − e2iψn |2 =
∑

p∈SN

∑

q∈SN

ǫ(p)ǫ(q)

N
∏

j=1

e2ijψp(j)e−2ijψq(j) . (B.4)

Now define the function

t(r) =

∫ 2π

0
eirψf(ψ)dψ. (B.5)

Therefore (B.2) becomes

∑

p∈SN

∑

q∈SN

ǫ(p)ǫ(q)

N
∏

j=1

∫ 2π

0
dψe2i(p(j)−q(j))ψf(ψ)

=
∑

p∈SN

∑

q∈SN

ǫ(p)ǫ(q)

N
∏

j=1

t(p(j) − q(j)),

(B.6)

where we have dropped the subscript of ψ. One sum just introduces a factor of N !, so

that (B.2) is equivalent to

N ! det
1≤n,m≤N

t(n−m), (B.7)

which is in the form of a Toeplitz determinant.
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Fredholm determinants C

C.1 Notation

The nth Fredholm minor is given by [23]

∆n





x1 . . . xn

x′1 . . . x′n

;λ



 =

N−n
∑

l=0

λn+l

l!

∫ x

0
dz1 . . .

∫ x

0
dzl×

KNL





x1 . . . xn z1 . . . zl

x′1 . . . x′n z1 . . . zl



 ,

(C.1)

where the function KNL is given by

KNL





x1 . . . xl

x′1 . . . x′l



 = det[KNL(xi, x
′
j)]1≤i,j≤l (C.2)

and KNL(x, y) by

KNL(x, y) =
1

L

N
∑

j=1

e−iπ(2j−N−1)(x−y)/L

=
sin[Nπ(x− y)/L]

L sin[π(x− y)/L]
.

(C.3)

Note that the termination of the integrals in (C.1) ensures that all Fredholm minors depend

on x.
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C. Fredholm determinants

C.2 Toeplitz determinant form

The aim of this section is to manipulate the general Fredholm minor (C.1) into a form

involving Toeplitz determinants. The latter of these forms is significantly simpler to cal-

culate numerically. Let us begin by noting the property of the determinant KNL from

[23]

KNL





x1 . . . xn

x′1 . . . x′n



 =
1

LN (N − n)!

∫ L

0
. . .

∫ L

0
dyn+1 . . . dyN×

fNL(x1, . . . , xn, yn+1, . . . , yN )fNL(x′1, . . . , x
′
n, yn+1, . . . , yN ),

(C.4)

where

fNL(x1, . . . , xn) = det[eiπ(−N+2j−1)xl/L]j,l=1,...,n

= e−i(N−1)π
Pn

i=1 xi/L
∏

1≤j<k≤n

(e2iπxk/L − e2iπxj/L).
(C.5)

Using this, (C.1) becomes

∆n





x1 . . . xn

x′1 . . . x′n

;λ



 =
1

LN

N−n
∑

l=0

λn+l

l!(N − n− l)!

∫ x

0
dz1 . . .

∫ x

0
dzl×

∫ L

0
dyn+l+1 . . .

∫ L

0
dyNfNL(x1, . . . , xn, z1, . . . , zl, yn+l+1, . . . , yN )×

fNL(x′1, . . . , x
′
n, z1, . . . , zl, yn+l+1, . . . , yN ).

(C.6)

Now by replacing all the zi → yi+n, and using the bilinear theorem, one may obtain,
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M.I. Makin C. Fredholm determinants

∆n





x1 . . . xn

x′1 . . . x′n

;λ



 =
λn

LN+1(N − n)!

(∫ L

0
+λ

∫ x

0

)

dyn . . .

(∫ L

0
+λ

∫ x

0

)

dyN ×

fNL(x1, . . . , xn, yn, . . . , yN )fNL(x′1, . . . , x
′
n, yn, . . . , yN ).(C.7)

The integrand of (C.7) is obtained using (C.5)

fNL(x1, . . . , xn, yn, . . . , yN )fNL(x′1, . . . , x
′
n, yn, . . . , yN ) =

fNL(x1, . . . , xn)fNL(x′1, . . . , x
′
n)×

N
∏

j=n

n
∏

k=1

(e2iπyj/L − e2iπx
′

k
/L)(e−2iπyj/L − e−2iπxk/L)×

∏

n≤j<k≤N

|e2iπyk/L − e2iπyj/L|2,

(C.8)

letting

g(u) = (1 + λχ
(u)
[0,x])

n
∏

k=1

(e2iπu/L − e2iπx
′

k
/L)(e−2iπu/L − e−2iπxk/L), (C.9)

where χ
(u)
[0,x] = 1 for u ∈ [0, x] and 0 otherwise, (C.7) becomes

∆n





x1 . . . xn

x′1 . . . x′n

;λ



 =
λn

LN+1(N − n)!
×

fNL(x1, . . . , xn)fNL(x′1, . . . , x
′
n)×

∫ L

0
. . .

∫ L

0
dyn . . . dyN

N
∏

l=n

g(yl)
∏

n≤j<k≤N

|e2iπyk/L − e2iπyj/L|2

(C.10)

which, by the Toeplitz determinant technique of Appendix B, is
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C. Fredholm determinants

∆n





x1 . . . xn

x′1 . . . x′n

;λ



 =

(

λ

L

)n

fNL(x1, . . . , xn)×

fNL(x′1, . . . , x
′
n) det[An(j − k)]j,k=1,...,N−n,

(C.11)

where

An(j) =
1

L

∫ L

0
du g(u)e2iπuj/L

=
1

L

(
∫ L

0
+λ

∫ x

0

)

du

n
∏

k=1

(e2iπu/L − e2iπx
′

k
/L)×

(e−2iπu/L − e−2iπxk/L)e2iπuj/L.

(C.12)

The specific cases ∆0(λ) and ∆1





x

0
;λ



 are of particular use in Subsection 3.3.2.
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Numerical data D

N c
(0)
0 (N) c

(1)
0 (N)

2 16

π
2 1.62114 . . . 64

π
2 6.48456 . . .

3 1

3
+ 35

2π
2 2.10645 . . . 8 + 105

π2 18.6387 . . .

4 − 2097152

19845π
4 + 320

9π
2 2.51766 . . . − 16777216

19845π
4 + 138752

315π
2 35.9512 . . .

5 1

5
+ 7436429

129600π
4 + 4459

216π
2 2.88069 . . . 16

3
+ 7436429

12960π
4 + 249613

540π
2 58.0593 . . .

6
193507848058308060419981312

12748157814913474078125π
6

3.20923 . . .
774031392233232241679925248

4249385938304491359375π
6

84.6855 . . .
− 38494793629696

21739843125π
4 + 4144

75π
2 − 55397943205615894528

2589628373206875π
4 + 85085248

75075π
2

7
1

7
+ 85760621135804297813

40663643328000000π
6

3.51155 . . .
24

5
+ 85760621135804297813

2904545952000000π
6

115.607 . . .
− 46891706849

317520000π
4 + 79679

3000π
2 + 1528761661843

2716560000π
4 + 641803

875π
2

Table D.1: Values of c
(0)
0 (N) and c

(1)
0 (N) for N = 2, 3, 4, 5, 6, 7. Note that this Table

extends Table II of [16]
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D
.
N

u
m
e
r
ic

a
l

d
a
t
a

N c
(0)
1 (N) c

(1)
1 (N)

2 16
9π2 0.180127 . . . −832

27π2 −3.12219 . . .

3 1
3 0.333333 . . . −4 − 35

2π2 −5.77312 . . .

4 −6318718976
22325625π4 + 832

25π2 0.466435 . . . −52781507411968
7032571875π4 + 1382912

2025π2 −7.85498 . . .

5 1
5 − 18059899

129600π4 + 3871
216π2 0.585231 . . . 28

9 − 574729727
151200π4 + 47201

180π2 −9.34192 . . .

6

4458566781285863348987439874048
315703029023206220155134375π6

0.693364 . . .

317603131762611117568514042882856845312
850617087107250872660154262734375π6 −10.2255 . . .

−14163619272982528
7456766191875π4 + 7984

147π2 −90755550267618998878208
1722102868182571875π4 + 8618142656

6131125π2

T
ab

le
D

.2:
V
alu

es
of
c
(0

)
1

(N
)

an
d
c
(1

)
1

(N
)

for
N

=
2,3,4,5,6
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M
.I.

M
a
k
in

D
.
N

u
m
e
r
ic

a
l

d
a
t
a

N c
(0)
2 (N) c

(1)
2 (N)

2 16

225π
2 0.00720506 . . . −3136

3375π
2 −0.0941461 . . .

3 35

36π
2 0.0985067 . . . −385

12π
2 −3.25072 . . .

4 −7408644521984

132368630625π
4 + 27584

3675π
2 0.185917 . . . 3710310553890062336

458657305115625π
4 − 6735912448

7640325π
2 −6.28072 . . .

5 1

5
− 1062347

127008π
4 + 325

216π
2 0.266582 . . . −52

9 + 30358690219
17781120π4 − 221909

1080π2 −9.06869 . . .

6
16076943096817340218487564310413312

821143578489359378623504509375π
6

0.34121 . . .
4194702189111033289475552785337770452189184

2212455043565959519789061237372109375π
6 −11.5824 . . .

−47388412779564105728
19395048865066875π4 + 990928

19845π2 −2887827552035815814833635328
13437568680428608340625π4 + 18544396881344

8442559125π2

T
ab

le
D

.3:
V
alu

es
of
c
(0

)
2

(N
)

an
d
c
(1

)
2

(N
)

for
N

=
2,3,4,5,6
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D
.
N

u
m
e
r
ic

a
l

d
a
t
a

N c
(1,1)
0 (N) c

(1,2)
0 (N)

2 −8 + 64
π2 −1.51544 . . . 8 8

3 −16 + 105
π2 −5.36128 . . . 24 24

4 −32 − 16777216
19845π4 + 2560

9π2 −11.8587 . . . 32 + 16384
105π2 47.8100 . . .

5 −48 + 7436429
12960π4 + 22295

108π2 −21.1931 . . . 160

3
+ 23023

90π
2 79.2524 . . .

6
−72 + 774031392233232241679925248

4249385938304491359375π6 −33.4892 . . .
72 − 74481467421360128

517925674641375π4

118.175 . . .
−153979174518784

7246614375π4 + 16576
25π2 + 7061504

15015π2

T
ab

le
D

.4:
V
alu

es
of
c
(1
,1

)
0

(N
)

an
d
c
(1
,2

)
0

(N
)

for
N

=
2,3,4,5,6
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M
.I.

M
a
k
in

D
.
N

u
m
e
r
ic

a
l

d
a
t
a

N c
(1,1)
1 (N) c

(1,2)
1 (N)

2 8

3
− 832

27π
2 −0.455527 . . . −8

3 −2.66667 . . .

3 −1 − 35
2π2 −2.77312 . . . −3 −3. . . .

4 −352
15 − 52781507411968

7032571875π4 + 65129984
70875π2 −7.40762 . . . 352

15
− 16728064

70875π
2 −0.447369 . . .

5 −109
3 − 574729727

151200π4 + 64757
108π2 −14.6032 . . . 355

9
− 91091

270π
2 5.26130 . . .

6
−2232

35 + 317603131762611117568514042882856845312
850617087107250872660154262734375π6 −24.5196 . . .

2232

35
− 2698870354841096421376

1095883643388909375π
4

14.2941 . . .
−40373418531338728767488

803648005151866875π4 + 30246667072
18393375π2 − 399294464

1672125π2

T
ab

le
D

.5:
V
alu

es
of
c
(1
,1

)
1

(N
)

an
d
c
(1
,2

)
1

(N
)

for
N

=
2,3,4,5,6
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D
.
N

u
m
e
r
ic

a
l

d
a
t
a

N c
(1,1)
2 (N) c

(1,2)
2 (N)

2 8

15
− 3136

3375π
2 0.439187 . . . − 8

15 −0.533333 . . .

3 4 − 385
12π2 0.749279 . . . −4 −4

4 2272

105
+ 3710310553890062336

458657305115625π
4 − 39711774208

38201625π
2 −0.641704 . . . −2272

105 + 6032211968
38201625π2 −5.63902 . . .

5 31

3
+ 30358690219

17781120π
4 − 238405

756π
2 −4.09068 . . . −145

9 + 830687
7560π2 −4.97802 . . .

6
−3592

105 + 4194702189111033289475552785337770452189184
2212455043565959519789061237372109375π6 −9.82321 . . .

3592

105
+ 1983596175418523964988719104

94062980763000258384375π
4

−1.75923 . . .
−98659506842974376305885184

418057692280001148375π4 + 13193444962112
2814186375π2 −21035938004992

8442559125π2

T
ab

le
D

.6:
V
alu

es
of
c
(1
,1

)
2

(N
)

an
d
c
(1
,2

)
2

(N
)

for
N

=
2,3,4,5,6
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M.I. Makin D. Numerical data

N c
∗(0)
0 (N) c

∗(1,1)
0 (N) c

∗(1,2)
0 (N) c

(1)
0 (N)

2 0.810569 . . . −0.757722 . . . 4 3.24228 . . .
3 0.702151 . . . −1.78709 . . . 8 6.21291 . . .
4 0.629414 . . . −2.96469 . . . 11.9525 . . . 8.98781 . . .
5 0.576137 . . . −4.23863 . . . 15.8505 . . . 11.6119 . . .
6 0.534872 . . . −5.58153 . . . 19.6958 . . . 14.1143 . . .
7 0.50165 . . . −6.9769 . . . 23.4922 . . . 16.5153 . . .
8 0.474130 . . . −8.41392 . . . 27.2440 . . . 18.8301 . . .
9 0.450832 . . . −9.88502 . . . 30.9548 . . . 21.0698 . . .
10 0.430766 . . . −11.3847 . . . 34.6282 . . . 23.2435 . . .
11 0.413239 . . . −12.9087 . . . 38.2671 . . . 25.3583 . . .
12 0.397753 . . . −14.4539 . . . 41.8741 . . . 27.4202 . . .
13 0.383935 . . . −16.0177 . . . 45.4517 . . . 29.4340 . . .
14 0.371504 . . . −17.5979 . . . 49.0018 . . . 31.4039 . . .
15 0.360239 . . . −19.1928 . . . 52.5264 . . . 33.3335 . . .
16 0.349968 . . . −20.8010 . . . 56.0269 . . . 35.2259 . . .
17 0.34055 . . . −22.4213 . . . 59.5049 . . . 37.0836 . . .
18 0.331874 . . . −24.0525 . . . 62.9616 . . . 38.9091 . . .
19 0.323844 . . . −25.6939 . . . 66.3983 . . . 40.7044 . . .
20 0.316385 . . . −27.3446 . . . 69.8160 . . . 42.4715 . . .
21 0.309431 . . . −29.0039 . . . 73.2157 . . . 44.2118 . . .
22 0.302927 . . . −30.6712 . . . 76.5983 . . . 45.9271 . . .
23 0.296826 . . . −32.3460 . . . 79.9645 . . . 47.6185 . . .
24 0.291088 . . . −34.0278 . . . 83.3151 . . . 49.2874 . . .
25 0.285677 . . . −35.7161 . . . 86.6509 . . . 50.9348 . . .
26 0.280564 . . . −37.4106 . . . 89.9724 . . . 52.5618 . . .
27 0.275723 . . . −39.1110 . . . 93.2802 . . . 54.1692 . . .
28 0.271128 . . . −40.8168 . . . 96.5749 . . . 55.7581 . . .
29 0.266761 . . . −42.5279 . . . 99.8570 . . . 57.3292 . . .
30 0.262603 . . . −44.2438 . . . 103.127 . . . 58.8832 . . .
31 0.258637 . . . −45.9645 . . . 106.385 . . . 60.4207 . . .
32 0.254849 . . . −47.6896 . . . 109.632 . . . 61.9426 . . .
33 0.251227 . . . −49.4190 . . . 112.868 . . . 63.4493 . . .
34 0.247757 . . . −51.1525 . . . 116.094 . . . 64.9414 . . .
35 0.244430 . . . −52.8899 . . . 119.309 . . . 66.4194 . . .
36 0.241237 . . . −54.6310 . . . 122.515 . . . 67.8839 . . .

Table D.7: Numerical solutions for the ground state occupation numbers c
∗(0)
0 (N),

c
∗(1,1)
0 (N), c

∗(1,2)
0 (N) and c

∗(1)
0 (N), for N = 2 − 36
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D. Numerical data

N c
∗(0)
1 (N) c

∗(1,1)
1 (N) c

∗(1,2)
1 (N) c

(1)
1 (N)

2 0.0900633 . . . −0.227763 . . . −1.33333 . . . −1.56110 . . .
3 0.111111 . . . −0.924374 . . . −1 −1.92437 . . .
4 0.116609 . . . −1.85190 . . . −0.111842 . . . −1.96375 . . .
5 0.117046 . . . −2.92064 . . . 1.05226 . . . −1.86838 . . .
6 0.115561 . . . −4.08661 . . . 2.38235 . . . −1.70426 . . .
7 0.113315 . . . −5.32460 . . . 3.82394 . . . −1.50066 . . .
8 0.110796 . . . −6.61868 . . . 5.34600 . . . −1.27269 . . .
9 0.108225 . . . −7.95803 . . . 6.92912 . . . −1.02891 . . .
10 0.105704 . . . −9.33488 . . . 8.56031 . . . −0.774574 . . .
11 0.103278 . . . −10.7435 . . . 10.2304 . . . −0.513070 . . .
12 0.100969 . . . −12.1794 . . . 11.9327 . . . −0.246672 . . .
13 0.0987797 . . . −13.6392 . . . 13.6622 . . . 0.0230389 . . .
14 0.0967099 . . . −15.1200 . . . 15.4150 . . . 0.294935 . . .
15 0.0947542 . . . −16.6196 . . . 17.1878 . . . 0.568195 . . .
16 0.0929060 . . . −18.1360 . . . 18.9782 . . . 0.842211 . . .
17 0.0911579 . . . −19.6677 . . . 20.7842 . . . 1.11653 . . .
18 0.0895030 . . . −21.2133 . . . 22.6041 . . . 1.39080 . . .
19 0.0879343 . . . −22.7715 . . . 24.4363 . . . 1.66475 . . .
20 0.0864452 . . . −24.3415 . . . 26.2797 . . . 1.93819 . . .
21 0.0850299 . . . −25.9223 . . . 28.1333 . . . 2.21096 . . .
22 0.0836828 . . . −27.5132 . . . 29.9961 . . . 2.48292 . . .
23 0.0823990 . . . −29.1133 . . . 31.8673 . . . 2.75400 . . .
24 0.0811738 . . . −30.7222 . . . 33.7464 . . . 3.02411 . . .
25 0.0800030 . . . −32.3393 . . . 35.6325 . . . 3.29320 . . .
26 0.0788828 . . . −33.9641 . . . 37.5254 . . . 3.56123 . . .
27 0.0778098 . . . −35.5961 . . . 39.4243 . . . 3.82817 . . .
28 0.0767809 . . . −37.2350 . . . 41.3290 . . . 4.09399 . . .
29 0.0757931 . . . −38.8803 . . . 43.2390 . . . 4.35868 . . .
30 0.0748437 . . . −40.5318 . . . 45.1762 . . . 4.64439 . . .
31 0.0739304 . . . −42.1891 . . . 47.0737 . . . 4.88464 . . .
32 0.0730510 . . . −43.8519 . . . 48.9978 . . . 5.14590 . . .
33 0.0722034 . . . −45.5201 . . . 50.9260 . . . 5.40589 . . .
34 0.0713858 . . . −47.1931 . . . 52.8581 . . . 5.66498 . . .
35 0.0705964 . . . −48.8710 . . . 54.7939 . . . 5.92294 . . .
36 0.0698336 . . . −50.5537 . . . 56.7332 . . . 6.17953 . . .

Table D.8: Numerical solutions for the first excited state occupation numbers c
∗(0)
1 (N),

c
∗(1,1)
1 (N), c

∗(1,2)
1 (N) and c

∗(1)
1 (N), for N = 2 − 36
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M.I. Makin D. Numerical data

N c
∗(0)
2 (N) c

∗(1,1)
2 (N) c

∗(1,2)
2 (N) c

(1)
2 (N)

2 0.00360253 . . . 0.219594 . . . −0.266667 . . . −0.0470731 . . .
3 0.0328356 . . . 0.249760 . . . −1.33333 . . . −1.08357 . . .
4 0.0464792 . . . −0.160426 . . . −1.40975 . . . −1.57018 . . .
5 0.0533164 . . . −0.818135 . . . −0.995603 . . . −1.81374 . . .
6 0.0568683 . . . −1.63720 . . . −0.293205 . . . −1.93041 . . .
7 0.0586798 . . . −2.57138 . . . 0.598918 . . . −1.97246 . . .
8 0.0595055 . . . −3.59273 . . . 1.62585 . . . −1.96689 . . .
9 0.0597461 . . . −4.68294 . . . 2.75391 . . . −1.92903 . . .
10 0.0596284 . . . −5.82927 . . . 3.96095 . . . −1.86831 . . .
11 0.0592871 . . . −7.02245 . . . 5.23161 . . . −1.79084 . . .
12 0.0588057 . . . −8.25550 . . . 6.55476 . . . −1.70074 . . .
13 0.0582372 . . . −9.52303 . . . 7.92208 . . . −1.60095 . . .
14 0.0576162 . . . −10.8207 . . . 9.32717 . . . −1.49356 . . .
15 0.0569656 . . . −12.1451 . . . 10.7650 . . . −1.38014 . . .
16 0.0563009 . . . −13.4934 . . . 12.2315 . . . −1.26189 . . .
17 0.0556325 . . . −14.8632 . . . 13.7235 . . . −1.13973 . . .
18 0.0549676 . . . −16.2524 . . . 15.2380 . . . −1.01437 . . .
19 0.0543109 . . . −17.6594 . . . 16.7730 . . . −0.886401 . . .
20 0.0536657 . . . −19.0827 . . . 18.3264 . . . −0.756273 . . .
21 0.0530340 . . . −20.5210 . . . 19.8966 . . . −0.624366 . . .
22 0.0524171 . . . −21.9732 . . . 21.4822 . . . −0.490990 . . .
23 0.0518158 . . . −23.4383 . . . 23.0819 . . . −0.356402 . . .
24 0.0512305 . . . −24.9153 . . . 24.6945 . . . −0.220815 . . .
25 0.0506612 . . . −26.4037 . . . 26.3193 . . . −0.0844091 . . .
26 0.0501078 . . . −27.9026 . . . 27.9552 . . . 0.0526638 . . .
27 0.0495701 . . . −29.4114 . . . 29.6016 . . . 0.190274 . . .
28 0.0490476 . . . −30.9295 . . . 31.2578 . . . 0.328313 . . .
29 0.0485400 . . . −32.4564 . . . 32.9231 . . . 0.466684 . . .
30 0.0480469 . . . −33.9918 . . . 34.5971 . . . 0.605307 . . .
31 0.0475677 . . . −35.5348 . . . 36.2791 . . . 0.744267 . . .
32 0.0471020 . . . −37.0856 . . . 37.9688 . . . 0.883173 . . .
33 0.0466492 . . . −38.6436 . . . 39.6657 . . . 1.02209 . . .
34 0.0462090 . . . −40.2085 . . . 41.3695 . . . 1.16098 . . .
35 0.0457808 . . . −41.7797 . . . 43.0798 . . . 1.30008 . . .
36 0.0453641 . . . −43.3572 . . . 44.7963 . . . 1.43904 . . .

Table D.9: Numerical solutions for the second excited state occupation numbers c
∗(0)
2 (N),

c
∗(1,1)
2 (N), c

∗(1,2)
2 (N) and c

∗(1)
2 (N), for N = 2 − 36
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