
Design and Training of Support Vector Machines

by

Alistair Shilton

Submitted in total fulfilment of

the requirements for the degree of

Doctor of Philosophy

Department Of Electrical and Electronic Engineering

The University of Melbourne

Australia

2006





ABSTRACT

S
upport Vector Machines (SVMs), which were first introduced by Vapnik in

early 90s [28], have found applications in a wide variety of areas. As binary

classifiers, SVMs have been used in face recognition [62], speaker identification [69]

and text categorisation [49], to name a few. As regressors, they have been used in

control systems [30] [89] and communications [77] [24], amongst others.

In this thesis I introduce a new and novel form of SVM known as regression with

inequalities, in addition to the standard SVM formulations of binary classification

and regression. This extension encompasses both binary classification and regres-

sion, reducing the workload when extending the general form; and also provides

theoretical insight into the underlying connections between the two formulations.

This new SVM formulation is extended to cover general cost functions and gen-

eral tube shrinking functions. Particular attention has been paid to the quadric

cost functions, which present a number of pleasing properties not present in the tra-

ditional formulations. The quadric ν-SVR formulation presented provides a novel

combination of the useful features of the least-squares SVM and the standard SVM.

It may be argued that the sheer generality of the SVM methodology is both a

blessing and a curse. In particular, the great freedom allowed by the kernel function

and the various parameters (C and ε, for example) is that one may construct an

SVM to suit pretty much any situation. The downside of this, however, is that

choosing these parameters can be a long and time consuming process.

Many attempts have been made to tackle this problem using different perfor-

mance bounds with varying degrees of success (for example, [22]). Of these, the

work of Schölkopf and Smola [76] stands apart, in-so-far as it represents an attempt

to bridge the gap between the emerging field of support vector regression and the

theoretically rich, well explored area of maximum-likelihood estimation. This thesis

extends this approach significantly to cover a very general set of SVM formula-

tions under a range of conditions, and explores the theoretical and practical issues

involved.

As SVMs gained wider acceptance in the academic and industrial communities



during the late 90s, there arose for incremental training algorithms, which would

allow application of SVMs in setting where the training set was non-constant, for

example, adaptive control systems or equalization of time-varying communications

channels. Our work on this problem is presented in the later chapters of this thesis.
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Nomenclature

Symbol Definition

< The set of reals.
<+ The set of positive reals.
<− The set of negative reals.
Z The set of integers.
Z+ The set of positive integers.
Z− The set of negative integers.
∅ The empty set.

# (X) The number of elements in the set X.
f← The inverse of an invertible function f .

f |QX The restriction of a map f : Q→ R to f : QX → RX , QX ⊆ Q.
¬ The logical negation (NOT) unary operator.
∧ The logical conjunction (AND) binary operator.
∨ The logical inclusive disjunction (OR) binary operator.
Y The logical exclusive disjunction (XOR) binary operator.
∃ There exists.
∀ For all.
gij The metric tensor.

Γij
k The affine connection.

Ri
jkl The curvature tensor.
. . . (see also appendix B for more on tensor notations)
δx,y The Kronecker-delta symbol.
δ (x) The Dirac-delta function.
u (x) The Heaviside step function.

sgn (x) The sign function (sgn (0) = 0).
Γ (x) The gamma function.
ψ0 (x) The digamma function.
ψn (x) The polygamma function.

Γ (x, y) The incomplete gamma function.
B (x, y) The beta function.
km (x, y) The backgamma function (see appendix C).
a, b, . . . Scalars.
a,b, . . . Column vectors.

A,B, . . . Matrices.
aT The transpose of column vector a (a row vector).
AT The transpose of matrix A.



Symbol Definition

ai Element i of column vector a.
Ai,j Element i, j of matrix A.

0,1,2, . . . Vectors where each element is 0, 1, 2, . . ..
1±,2±, . . . Vectors where each element is ±1,±2, . . . (individual signs may differ).

Il The l × l identity matrix (subscript optional).
0 The zero matrix.
|a| Elementwise mod: c = |a|, ci = |ai|.

sgn (a) Elementwise sign: c = sgn (a), ci = sgn (ai).
abT Outer product: C = abT , Ci,j = aibj.
ab Elementwise product: c = ab, ci = aibi

aTb Inner product: c = aTb, c = a1b1 + a2b2 + . . .+ anbn.

‖a‖ Euclidean vector norm: ‖a‖ =
√

aTa.

‖a‖p Vector p-norm: ‖a‖p = (
∑n

i=1 |ai|p)
1
p .

diag (a) A diagonal matrix where Ai,i = ai.
Pr (x) The probability of event x (if x is drawn from a finite or countably

infinite set).
p (x) The probability density function (if x is drawn from an uncountably

infinite set).
P (x) Some other description of the probability of event x.
p
∆

(x) Generalized density function:

p
∆

(x ∈ X) =

{
Pr (x) if # (X) is finite or countable
p (x) dx otherwise

Using this notation, the integral is to be interpreted thusly:
∫
f (x) p

∆
(x) =

{ ∑
f (x) Pr (x) if # (X) is finite or countable∫
f (x) p (x) dx otherwise

E (a| b) The expectation of a given b.
Υ The set of objects which are to be classified.
J The set of classes to which elements of Υ belong.

∆̂ The real classification map (∆̂ : Υ→ J).
Υ∆̂j

The set of objects υ ∈ Υ belonging to class j ∈ J .

ô The (noiseless) observation map to input space (ô : Υ→ <dL).
Ξ The image of Υ under ô : Υ→ <dL .

Ξ∆̂j
The image of Υ∆̂j

under ô : Υ→ <dL .

Ξj The set of elements of Ξ corresponding unambiguously only to
objects of class j ∈ J under ô : Υ→ <dL .

ΞX The set of elements of Ξ wherein each element x corresponds
unambiguously to a single class j (x) ∈ J under ô : Υ→ <dL .

Ξ? The set of elements of Ξ corresponding to objects of more than one
class j ∈ J under ô : Υ→ <dL (i.e. Ξ? = Ξ\ΞX).

Υj The inverse image of Ξj under ô : Υ→ <dL .
ΥX The inverse image of ΞX under ô : Υ→ <dL .
Υ? The inverse image of Ξ? under ô : Υ→ <dL .



Symbol Definition

PΥ (υ) The probability of drawing the object υ from the set of all objects Υ.
o (υ) The result of noisy observation of an object υ ∈ Υ.

PΞ (x| υ) The probability that (noisy) observation of an object υ ∈ Υ will give
the result x = o (υ) ∈ <dL .

∆ (υ) The result of classification of an object υ ∈ Υ by the supervisor.
PΞ (j| υ) The probability that the supervisor will classify an object υ ∈ Υ as

belonging to class j = ∆ (υ) ∈ J .
γ (λ) The (trained) classification function, parametrised by λ ∈ Λ.

Λ The parameter set from which λ (in γ (λ)) may be selected.
T The set of classifiers γ (λ), λ ∈ Λ.

E (λ) The probability that the classifier γ (λ) will misclassify an object.
R (λ) The risk associated with a classifier γ (λ).

c The cost function used to calculate risk (c : <dL × J2 → <).
λ∗ The parameter choice λ ∈ Λ which minimises R (λ).
Y The set of training pairs (xi, qi) - xi is the input and qi the target.

Y= The set of all training pairs corresponding to equality constraints in
the regression training set.

Y≥ Either the set of all training pairs corresponding to lower bound
constraints in the regression case, or the set of points classed +1 in
the binary classification case.

Y≤ Either the set of all training pairs corresponding to upper bound
constraints in the regression case, or the set of points classed −1 in
the binary classification case.

X The set of all inputs xi contained in the training set Y.
Q The set of all targets qi contained in the training set Y.
D Alternative notation for Q used for classification.
Z Alternative notation for Q used for regression.

Remp (λ|Y) The empirical risk associated with γ (λ) for some Y.
Rreg (λ|Y) The regularised empirical risk associated with γ (λ) for some Y.

φ (λ) The regularisation term used in Rreg (λ|Y).
C The tradeoff constant in the regularised risk function.

L [λ|Y] The log-likelihood of the experimental setup shown in figure 3.3
generating the training set Y.

e The asymptotic efficiency of an estimator.
eq (ω) The asymptotic efficiency of a qth order monomial SVR.
eq,p (ω) eq (ω) in the presence of pth order polynomial noise.

eLS Asymptotic efficiency of the LS-SVR.
dL The dimension of input space (dL ∈ Z+).
dH The dimension of feature space (dH ∈ Z+ ∪ {∞}).
ϕ The feature map (ϕ : <dL → <dH ).
K The kernel function associated with ϕ (K : <dL ×<dL → <).
Mκ The set of all Mercer kernels.



Symbol Definition

g The trained SVM (g : <dL → <).
Rε The set of possible (but not necessarily optimal) g : <dL → < which

satisfy the primal constraints for the training set (usually (5.2)).
ρ The margin of separation for a SVC.
ρb The margin of separation for a SVC in augmented feature space.

dRd∗ SVM primal: General convex cost.

dLd∗ SVM Lagrangian: General convex cost.

dQLd∗ SVM partial dual: General convex cost.

dQd∗ SVM (Wolfe) dual: General convex cost.
Rq SVM primal: qth order monomial cost.
Lq SVM Lagrangian: qth order monomial cost.
QLq SVM partial dual: qth order monomial cost.
Qq SVM (Wolfe) dual: qth order monomial cost.

dRd∗,c SVM primal: General convex cost and tube shrinking.

dLd∗,c SVM Lagrangian: General convex cost and tube shrinking.

dQLd∗,c SVM partial dual: General convex cost and tube shrinking.

dQd∗,c SVM (Wolfe) dual: General convex cost and tube shrinking.
Rq,n SVM primal: qth order monomial cost, nth order shrinking.
Lq,n SVM Lagrangian: qth order monomial cost, nth order shrinking.
QLq,n SVM partial dual: qth order monomial cost, nth order shrinking.
Qq,n SVM (Wolfe) dual: qth order monomial cost, nth order shrinking.
ν Tube shrinking constant.
β Bias regularisation constant.
K The kernel matrix.
H The Hessian matrix.
E Classification: overall hyperplane distance scale.
ε Classification: εi sets relative hyperplane distance for xi ∈ X≥.
ε∗ Classification: ε∗i sets relative hyperplane distance for xi ∈ X≤.
t Classification: ti sets relative empirical risk weight for xi ∈ X≥.

t∗ Classification: t∗i sets relative empirical risk weight for xi ∈ X≤.
E Regression: overall width of the ε-insensitive region.
ε Regression: εi sets rel. positive ε-insensitive width for xi ∈ X= ∪X≥.
ε∗ Regression: ε∗i sets rel. negative ε-insensitive width for xi ∈ X= ∪X≤.
t Regression: ti sets rel. +ve empirical risk weight for xi ∈ X= ∪X≥.

t∗ Regression: t∗i sets rel. –ve empirical risk weight for xi ∈ X= ∪X≤.
w, b The primal weight vector (w ∈ <dH ) and bias (b ∈ <) specifying the

decision surface in feature space.
α Lagrange multipliers (dual variables) used instead of w.

β,β∗ Alternative notation for α, splitting positive and negative values.
ξ, ξ∗ Slack (error) vectors.

e Gradient of the (partial) dual with respect to α.
f Gradient of the (partial) dual with respect to b.



Symbol Definition

N The number of training vectors (N = # (Y)).
NS The number of support vectors.
NB The number of boundary vectors.
NE The number of error vectors.
NZ The number of α’s at zero.
NL The number of α’s at a (non-zero) lower bound.
NU The number of α’s at a (non-zero) upper bound.
NF The number of α’s not at a constraint boundary.
NF+ The number of positive α’s not at a constraint boundary.
NF− The number of negative α’s not at a constraint boundary.
|x|ε The ε-insensitive magnitude (|x|ε = max (0, |x| − ε)).

a Ordered notation - see chapter 7.
τ The type vector.
m The order vector.
T The abstract training set.
ϑ The abstract training data.
z The abstract solution to the SVM optimisation problem.
ג The optimisation state.

a(k), b(k), . . . The value of something at iteration k.
z Algorithm dependent information.
iτ The hessian factorization.

Acronym Definition

i.i.d. Independent and identically distributed.
KKT Karush-Kuhn-Tucker optimality conditions.

LM Learning machine.
LS Least-squares.

ML Maximum likelihood.
MSE Mean squared error.

QP Quadratic programme.
RBF Radial-basis function.

RMSE Root mean squared error.
SMO Sequential minimal optimisation.
SRM Structural risk minimisation.
SSE Sum squared error.



Acronym Definition

SV Support vector.
SVM Support vector machine.
SVC Support vector classifier.
SVR Support vector regressor.

C-SVM Support vector machine without tube shrinking.
C-SVR Support vector regressor without tube shrinking.
C-SVC Support vector classifier without tube shrinking.
ν-SVM Support vector machine with tube shrinking.
ν-SVR Support vector regressor with tube shrinking.
ν-SVC Support vector classifier with tube shrinking.

LS-SVM Least-squares support vector machine.
LS-SVR Least-squares support vector regressor.

VC Vapnik-Chervonenkis dimension.
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Chapter 1

INTRODUCTION

From the moment I picked your book up until I laid it down I was

convulsed with laughter. Someday I intend reading it.

– Groucho Marx

B
inary pattern recognition involves constructing a decision rule to classify

vectors into one of two classes based on a training set of vectors whose

classification is known a-priori. Support vector machines (SVMs [28] [46]) do this

by implicitly mapping the training data into a higher-dimensional feature space. A

hyperplane (decision surface) is then constructed in this feature space that bisects

the two categories and maximises the margin of separation between itself and those

points lying nearest to it (called the support vectors). This decision surface can then

be used as a basis for classifying vectors of unknown classification.

The main advantages of the SVM approach are:

• SVMs implement a form of structural risk minimisation (SRM [94]) - They

attempt to find a compromise between the minimisation of empirical risk and

the prevention of overfitting.

• The problem is a convex quadratic programming (QP) problem. So there are

no non-global minima, and the problem is readily solvable using quadratic

programming techniques.

• The resulting classifier can be specified completely in terms of its support

vectors and kernel function type.

Support Vector regressors (SVRs [34] [97] [84]) are a class of non-linear regressors

inspired by Vapnik’s SV methods for pattern classification. Like Vapnik’s method,

SVRs first implicitly map all data into a (usually) higher dimensional feature space.

1
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In this feature space, the SVR attempts to construct a linear function of position

that mimics the relationship between input (position in feature space) and output

observed in the training data by minimising a measure of the empirical risk. To pre-

vent overfitting a regularisation term is included to bias the result toward functions

with smaller gradient in feature space.

Two major advantages that SVRs have over competing methods (unregularised

least-squares methods, for example) are sparseness and simplicity [84] [13]. SVRs

are able to give accurate results based only on a sparse subset of the complete

training set, making them ideal for problems with large training sets. Moreover,

such results are achievable without excessive algorithmic complexity, and use of the

kernel “trick” makes the dual form of the SVR problem particularly simple.

Roughly speaking, SVR methods may be broken into ε-SVR [34] [97] and ν-SVR

methods [70] [75], both of which require a-priori selection of certain parameters.

Of particular interest is the ε (or ν in ν-SVR methods) parameter, which controls

the sensitivity of the SVR to presence of noise in the training data. In both cases,

this parameter controls the threshold ε (directly for ε-SVR, indirectly for ν-SVR) of

insensitivity of the cost function to noise through use of Vapnik’s ε-insensitive loss

function.

The standard ε-SVR approach is associated with a simple dual problem, but

unfortunately selection of ε requires knowledge of the noise present in the training

data (and its variance in particular) which may not be available [83]. Conversely,

the standard ν-SVR method has a more complex dual form, but has the advantage

that selection of ν requires less knowledge of the noise process [83] (only the form

of the noise is required, not the variance). Thus both forms have certain difficulties

associated with them.

Yet another approach is that of Suykens’ least-squares SVR (LS-SVR [87]), which

uses the normal least-squares cost function with an added regularisation term in-

spired by Vapnik’s original SV method. The two main advantages of this approach

are the simplicity of the resulting dual cost function, which is even simpler than

ε-SVR; and having one less constant to choose a-priori. The disadvantages include

loss of sparsity and robustness in the solution. These problems may be amelio-
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rated somewhat through use of a weighted LS-SVR scheme [88]. However, while

this method is noticeably superior when extreme outliers are present in the train-

ing data, in our experience the performance of the weighted LS-SVR may not be

significantly better than the standard LS-SVR if such outliers are not present.

Usually, support vector machines are trained using a batch model. Under this

model, all training data is given a priori and training is performed in one batch. If

more training data is later obtained, or parameters are modified, the SVM must be

re-trained from scratch. But if only a small amount of data is to be added to a large

training set (assuming that the problem is well posed) then it will likely have only a

minimal effect on the decision surface. Re-solving the problem from scratch seems

computationally wasteful.

An alternative is to “warm-start” the solution process by using the old solution

as a starting point to find a new solution. This approach is at the heart of active set

optimisation methods [40], [27] and, in fact, incremental learning is a natural exten-

sion of these methods. While many papers have been published on SVM training,

relatively few have considered the problem of incremental training.

1.1 Focus of Thesis

There are three main areas forming the focus of these thesis, which can be roughly

summarised as theory, analysis and implementation.

The theoretical focus of the thesis is the consolidation and extension of the

traditional SVM methodologies. Firstly, when the standard C-SVC and C-SVR

methodologies are introduced, the optimisation dual is formulated in such a way

that the SVC and SVR problems are (essentially) indistinguishable. This motivates

the introduction of the novel “regression with inequalities” SVM formulation, of

which regression and pattern classification are shown to be special cases. The focus

is then shifted to extensions of this generic formulation, including both well-known

(e.g. LS-SVM) and novel (e.g. quadric ν-SVM) approaches.

The analytical focus of the thesis is the extension of Schölkopf and Smola’s work

on asymptotic efficiency and it’s application to parameter selection to the more
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general formulations introduced previously.

Finally, the practical focus of the thesis is the description of our work in the

field of incremental training of SVMs. Once again, the aim is to design a training

algorithm which may be applied to the “regression with inequalities” formulation of

the SVM problem, which is able to implement as many of the extensions as practical

without compromising training speed.

In addition to this, I have included a brief survey of the relevant background

material pertinent to the thesis, which forms chapters 2 and 3 and the appendices.

1.2 Overview of Chapters

Chapter 2: Classification and Regression gives a very general introduction to

the problems of classification and regression with which SVM methods are

concerned. The problems are formalised and some discussion is given about the

difficulties which must be overcome by a classifier or regressor. Of particular

importance in this chapter is the definition of the cost function and the concept

of risk, as associated with a classifier or regressor.

Chapter 3: The Learning Paradigm goes into greater detail on the concepts

of training a classifier or regressor. In particular, the idea of a training set is

introduced, as well as the empirical risk associated with such a training set for a

classifier. As an adjunct to this, generalisation, overfitting and regularisation

methodologies are described. Finally, the concepts of maximum likelihood

estimation and efficiency are introduced, which will be required later in chapter

6.

Chapter 4: Support Vector Machine Basics sees the introduction of the fun-

damental SVM methodologies. Following the standard recipe, the SVM classi-

fier is introduced first, initially assuming separable data and then extending to

the inseparable case. This work in then related back to the risk minimisation

(and in particular structural risk minimisation) and regularisation to demon-

strate the solid theoretical foundations of the SVM approach. The kernel trick
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is analysed in some detail, including the connection between the kernel and

ideas of curvature of input space. Finally, the SVM regressor is introduced.

It will be noted that, while the SVM formulations given in this chapter are, in

essence, just the standard C-SVC and C-SVR formulations, the notation used

is slightly non-standard. Also, a number of parameters are included which are

normally not present. This is done to make plainly apparent the connection

between these standard formulations, as discussed in this chapter, and used to

advantage in subsequent chapters.

Chapter 5: Extensions to the Basic SVM Method begins with the introduc-

tion of the novel “regression with inequalities” SVM formulation, which is

shown to be a superset of the standard SVM forms of binary classification and

regression. Using this as a foundation, a series of extensions and generalisa-

tions of this formulation are then introduced, namely:

Fixed and Automatic Biasing: SVMs without a bias term, Mangasarian’s au-

tomatic biasing (bias regularisation) scheme, and the connection between

these through the kernel.

Generalised Empirical Risk: the use of arbitrary convex cost functions, with

a particular focus on the case of monomial and quadric cost functions.

Tube Shrinking: Schölkopf et al.’s tube shrinking SVM formulation and the

ν-SVC.

Generalised Tube Shrinking: the use of arbitrary convex tube shrinking func-

tions (combined with arbitrary convex cost functions), with a particular

focus on monomial and quadric cost functions.

At the end of the chapter an overall summary is given describing how the

various extensions and concepts may be combined in the dual form of the

SVM optimisation problem.

Chapter 6: Asymptotic Analysis of SV Regression gives an asymptotic anal-

ysis of the monomial SVM regressor in terms of efficiency, and then describes
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how this may be used to optimally select parameters for the SVM. Particular

attention is paid to the case of polynomial noise, and a number of theorems are

presented showing the intimate connection between the degree of the monomial

cost function and the degree of the (polynomial) noise present in the training

data.

Chapter 7: Training the SVM - Preliminaries shows how the various SVM

formulations may be combined in the form of an abstract (dual) optimisation

problem. The remainder of this chapter is spent analysing the properties of this

abstract formulation and constructing the underlying mechanisms required to

solve the abstract optimisation problem presented.

Chapter 8: Training the SVM - An Active Set Approach presents in some

detail our work on the incremental (and batch) training of SVMs using an

active set method. First the algorithm is described in some detail. Then the

algorithm is analysed, a proof of convergence is given, and some discussion is

given of the relative merits of the algorithm. Finally, it is demonstrated how

the algorithm may be used to implement incremental learning.

Appendix A: Detailed derivations of Dual and Partial Dual Forms contains

detailed derivations for the SVM formulations given in chapters 4 and 5, which

may be skipped or abbreviated in the body of the thesis for reasons of clarity

and brevity.

Appendix B: Differential Geometry gives a summary of the theory of differen-

tial geometry, which is used in chapter 4 when analysing the geometry induced

on input space by kernel functions.

Appendix C: The Gamma and Related Functions gives details of the gamma,

digamma, polygamma, incomplete gamma, beta and backgamma functions re-

quired by chapter 6. Theorems relevant to the thesis are summarised and

relevant references given.

Appendix D: Algorithms gives the matrix factorisation algorithms required by

chapter 8.
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Chapter 2

CLASSIFICATION AND REGRESSION

It is a mistake to think you can solve any major problems just with

potatoes.

– Douglas Adams

2.1 The Classification Problem

O
ne of the most common problems in the machine learning field is the classi-

fication problem. A common form of this is the following:

For some set of objects Υ, each belonging uniquely to one of M distinct

classes, construct a machine that is able to correctly ascertain the clas-

sification of any object υ ∈ Υ when presented with a set of observations

of that object.

Some examples of the classification problem include face recognition [62], speaker

identification [69] and text categorisation [49]. The machine learning approach to

this problem is one of “learning from data”, wherein one starts with a general ma-

chine which then learns (or is trained) from a finite set of examples (training data).

This has the practical advantages of not assuming any particular knowledge of the

problem, nor the existence of an infinite pool of training data from which samples

may be drawn.

2.1.1 Basic Definitions - Sets and Noiseless Measurements

Let Υ denote the set of all possible distinct instances of object under consideration.

Each element υ ∈ Υ is assumed belong to precisely one of M possible classes, labelled

9
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by the index set J (where # (J) = M). This classification is given by a many-to-one

target map, ∆̂ : Υ→ J , and an object υ ∈ Υ is said to belong to the class d = ∆̂ (υ).

In most cases the target map will not be known, although indirect access to this

map is assumed during the training process, as will be detailed later. Using the

target map it is possible to divide the set Υ into M subsets Υ∆̂j
, j ∈ J , such that

all the elements of Υ∆̂j
belong to the same class, j. Symbolically:

Υ∆̂j
=
{
υ ∈ Υ| ∆̂ (υ) = j

}
∀j ∈ J (2.1)

Lemma 2.1. The set
{

Υ∆̂j

∣∣∣ j ∈ J
}

forms a disjoint cover for Υ.

The elements of the set Υ are physical objects or processes (for example, faces, or

signals in a communications channel). To classify these objects, the classifier must

have some way of measuring the relevant attributes of the object in question to

obtain something a computer can work with (i.e. a finite set of numbers). Ignoring

the potential for measurement error and variation, this process is captured by the

idealised observation map, ô : Υ→ <dL , dL ∈ Z+. In a face recognition system, for

example, the process may involve obtaining, scanning and pixellating an image of

the face in question.

The observation map ô : Υ → <dL maps objects υ ∈ Υ to points in dL (where

dL is assumed to be finite) dimensional input space. For an object υ ∈ Υ, ô(υ) may

be thought of as a distillation of (some part of) the readily observable information

about the object, whereas finding ∆̂(υ) presumably requires some sort of non-trivial

insight (although how “non-trivial” this insight is is, of course, problem dependant).

Using this notation, the aim of pattern classification may be stated thusly:

The aim of pattern classification is to construct a function γ : <dL → J

from input space to a putative classification, such that γ ◦ ô = ∆̂.

However, as will be shown in the following sections, this may not be possible in

reality, or even (in some cases) in principle.
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2.1.2 Performance Limiting Factors

There are a number of factors that limit the potential best case performance of all

classifiers. These factors can be broken into two types. The first type of factor is

random error, which includes observation noise and variation, and can be countered

by experimental repetition (e.g. by classifying an object multiple times and finding

a solution using a voting method). The second type of factor is information loss.

This cannot be countered without re-designing the observation procedure, and as

such forms a hard limit on the best-case performance of the classifier.

Observation Noise and Variation

As defined previously, the observation map is an idealisation that is not generally

achievable in reality. Usually, the process of observation will be affected by noise

and variation (by which I mean the possibility that many different observations may

correctly identify a given object υ ∈ Υ).

Given an object υ ∈ Υ, the result of a real measurement of the characteristics of

this object will be denoted o (υ), where o (υ) is a random variable characterised by

some conditional probability distribution PΞ (x| υ). If no noise is present, o (υ) =

ô (υ) for all observations and for all υ ∈ Υ.

Hence even if γ is selected optimally for the noiseless case (i.e. γ ◦ ô = ∆̂),

there is still a possibility of incorrect classification (i.e. for an object, υ ∈ Υ,

γ (o (υ)) 6= ∆̂ (υ) for some fraction of measurements).

Information Loss and Observability

Consider the process of observing objects in Υ (ignoring measurement errors and

variations). The observation map implicitly defines the following regions in input

space:

Ξ∆̂j
= ô

(
Υ∆̂j

)
∀j ∈ J

Lemma 2.2. The set
{

Ξ∆̂j

∣∣∣ j ∈ J
}

forms a cover for Ξ.

Any element x ∈ Ξ∆̂i
is the image of some object (or objects) υ ∈ Υ∆̂i

. As

the observation map is in general not one-to-one, the sets Ξ∆̂j
will not in general
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be disjoint. Hence for any element x ∈ Ξ∆̂i
, there is no guarantee that there is not

some object ω ∈ Υ∆̂j
, j 6= i, such that x = ô (ω), making unambiguous classification

of x impossible.

Because of this, it is convenient to define:

Ξ? = ∪
i6=j∈J

(
Ξ∆̂i
∩ Ξ∆̂j

)

Ξj = Ξ∆̂j
\Ξ?

ΞX = ∪
j∈J

Ξj

Υ? = ô← (Ξ?)

Υj = ô← (Ξj)

ΥX = ô← (ΞX)

Lemma 2.3. The set {Ξj| j ∈ J} forms a disjoint cover for ΞX.

Lemma 2.4. The set {Ξ?,ΞX} forms a disjoint cover for Ξ.

Theorem 2.5. Υj ⊆ Υ∆̂j
.

Proof. Suppose there exists some υ ∈ Υj such that υ /∈ Υ∆̂j
. Then by lemma 2.1

υ ∈ Υ∆̂i
for some i 6= j, and so x = ô (υ) ∈ Ξ∆̂i

. But by definition of Υj there

must exist some y ∈ Ξj such that y = ô (υ), and as ô is many-to-one, it follows that

x = y. So x ∈ Ξ∆̂i
and x ∈ Ξj, which is not possible, as Ξj and Ξ∆̂i

are disjoint. So

Υj ⊆ Υ∆̂j
.

The set ΥX defined here may be thought of as those objects which may (in

principle) be unambiguously classified using the noiseless observation map ô and an

appropriately constructed classification function γ. In other words:

Lemma 2.6. ∃γ : <dL → J such that γ ◦ ô|ΥX = ∆̂
∣∣∣ΥX

Conversely, for any x ∈ Ξ? there will be at least two objects υ, ω ∈ Υ such that

x = ô (υ) = ô (ω) but ∆̂ (υ) 6= ∆̂ (ω), as shown in figure 2.1. Clearly no classifier

will be able to correctly classify both υ and ω. Hence:

Lemma 2.7. If Υ? 6= ∅, ¬∃γ : <dL → J such that γ ◦ ô|Υ? = ∆̂
∣∣∣Υ?
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Figure 2.1: Unclassifiability of points due to measurement (2 class example).

So, even if noiseless observation is achievable it may not be possible to achieve

perfect classification due to the inherent limitations of the observation process.

Specifically, it will not be possible to construct a perfect classifier unless Υ? = ∅.
This limitation may be the result of flawed or limited measurements or even the

physical indistinguishability of objects in Υ.

2.1.3 Sampling, Risk and Optimal Classification

In the previous section, it was shown why in general it is not possible to construct a

perfect classifier, even if “perfect” observation is possible. Given this fact, and given

that the observation procedure will almost certainly introduce some noise and/or

variation, it is still sensible when constructing a classifier to attempt to make the

performance of that classifier as close to perfect as possible (or practical). To do

this, it is necessary to have some means of gauging the performance of classifiers.

Specifically, it would be helpful to be able to state the probability of misclassification

of some randomly selected object υ ∈ Υ.

Unless otherwise stated, it will be assumed throughout this thesis that objects

are drawn from Υ in an i.i.d. manner according to the probability distribution

PΥ (υ) (this will be referred to subsequently as “the usual procedure”). To gauge

the performance of the classifier (and also, as will be discussed later, to train the

classifier), the presence of a supervisor (either a person or another machine), who
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can classify objects to some degree of accuracy, is assumed. The action of this

supervisor is modelled by the noisy assignment procedure ∆ (Υ), which is a random

variable characterised by the conditional probability distribution PΞ (d| υ). For a

perfect supervisor, ∆ (υ) = ∆̂ (υ) for all classifications and for all υ ∈ Υ.

The supervisor may be thought of as a person who can be present during training

and testing, but for practical reasons cannot act as a classifier at other times. For

example, a face-in-a-crowd recognition system may need to study thousands of faces

every minute, a task which would be impractical if carried out by human operators.

In this section, it is necessary differentiate between two different phases of oper-

ation. First is the training/evaluation phase. During this phase, it is assumed that

a supervisor is present, and hence both the observed characteristics of an object

o (υ) and also the postulated classification ∆ (υ) are available. The second phase of

operation is use, during which only the observed characteristics of an object, o (υ),

are available.

Equivalent Models - Training and Use

Suppose some element υ ∈ Υ is selected according to the usual procedure, and

its characteristics observed to obtain o (υ). The only observable result from this

process is the result of the noisy observation, which will be seen to be an i.i.d.

random variable satisfying some probability function p
∆

(x).1

Suppose again that some element υ ∈ Υ is chosen and characterised in this

manner. However, in addition to noisy observation, the supervisor classifies the

object as ∆ (υ) in accordance with the conditional distribution PΞ (d| υ). This may

be thought of as an augmentation of the observation process, where the observable

part is the combination of noisy observation and classification, characterised by the

1The notation p
∆

(x) is intended to incorporate both the discrete and continuous probability

cases. Specifically, if x ∈ X is drawn from a finite or countable set then p
∆

(x) = Pr (x), where

Pr (x) is the probability of event x. Otherwise, p
∆

(x) = p (x) dx, where p (x) is the density function.

Using this notation, the integral is to be interpretted thusly:
∫
f (x) p

∆
(x) =

{ ∑
f (x) Pr (x) if # (X) is finite or countable∫
f (x) p (x) dx otherwise
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probability function p
∆

(x, d).

Finally, suppose that only the supervisors classification is all that is available to

the observer. In this case, the observer will see an i.i.d. random variable charac-

terised by p
∆

(d).

The important thing to note is that in all cases one could dispense with the

element selection/observation process and replace it with a simple random process

satisfying the relevant probability function (p
∆

(x), p
∆

(x, d) or p
∆

(d)). Given this,

it is not difficult to see that the following scenarios are indistinguishable during

training/evaluation:

• An object υ ∈ Υ is selected randomly according to PΥ (υ). An observation is

made of the object to obtain x = o (υ), and the supervisor postulates that the

object belongs to class d = ∆ (υ).

• Some vector x ∈ <dL is selected randomly according to p
∆

(x), and an associated

class d ∈ J is randomly chosen based on the conditional probability p
∆

(d|x),

where:

p
∆

(d|x) =

p
∆

(x, d)

p
∆

(x)

• A pair (x, d) ∈ <dL × J is randomly chosen based on the probability p
∆

(x, d).

Any one of these models may be used at any given time. When the classifier is

being used (i.e. no supervisor is present), there are two similarly indistinguishable

models, namely:

• An object υ ∈ Υ is selected randomly according to PΥ (υ) and an observation

made to obtain x = o (υ).

• A vector x ∈ <dL is randomly chosen based on the probability p
∆

(x).

It will be noted that during the training/evaluation phase the only available clas-

sification for any given object is provided by the supervisor, and may not be correct.

However, as there is (presumably) no way to obtain a more accurate assessment as

to which class an element belongs to, the classification given by the supervisor must
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be assumed correct, even though it may not be. This is important when assessing

the operation of a classification machine, and essentially rules out the possibility of

perfect performance (unless both noiseless observations and a perfect supervisor are

available, which is unlikely in most cases).

Risk and Optimality

Throughout this thesis, it will be assumed that the classifier γ : <dL → J is selected

from the parametrised set T =
{
γ (λ) : <dL → J

∣∣λ ∈ Λ
}

. So the classifier may be

written γ (λ) : <dL → J and is completely characterised by the parameter λ ∈ Λ.

Consequently training involves selecting the parameter λ. What is needed is some

function E (λ) to measure the performance of the classifier for any given λ.

The probability that a classifier γ (λ) will misclassify a point x in input space

randomly selected according to p
∆

(x) is:

E (λ) =

∫

(x,d)∈<dL×J

1

2

(
1− δd,γ(λ)(x)

)
p
∆

(x, d)

which is the performance measure required. It is not, however, the only valid per-

formance measure, nor the most convenient in all cases. More generally, the risk

associated with the classifier γ (λ) is defined to be:

R (λ) =

∫

(x,d)∈<dL×J

c (x, d, γ(λ) (x)) p
∆

(x, d) (2.2)

where the function c : <dL × J2 → < is called the cost function, and must be inte-

grable for any γ under consideration and satisfy the additional constraint c (x, a, a) =

0. Clearly, if c (x, a, b) = 1
2
(1− δa,b), R (λ) = E (λ).

The risk functional R (λ) gives a measure of the “badness” (or riskiness) of the

classifier γ (λ) (the higher the risk, the worse the classifier). The optimal classifier

(or classifiers) is the classifier γ (λ) which minimises the risk R (λ). Specifically, if

λ∗ = arg min
λ∈Λ

R (λ), then the optimal classifier will be γ (λ∗).

The process of constructing (or training) a classifier is a process of finding a
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classifier which is as near to optimal as possible, while still being practical (i.e. does

not take too long to classify objects, and is not otherwise too large or complex); and

completing the construction/training process within an acceptable period of time.

2.2 The Regression Problem

The aim of regression may be stated thusly:

Given a memoryless time-invariant system H with input x̂ ∈ <dL and

output zH ∈ <, construct a machine to mimic the behaviour of H as

closely as possible.

It is assumed that the input x̂ ∈ <dL is measurable at all times, while the

output zH ∈ < may be measured during training or evaluation. In general, both

processes may be prone to noise. Given an input x̂, the result of a noisy observation

of this input is denoted x = o (x̂), and is a random variable characterised by the

conditional probability pΞ
∆

(x| x̂). If the measurement process is noiseless, pΞ
∆

(x| x̂) =

δx,ô(x̂) where ô = i : <dL → <dL is the identity map, and is retained for notational

consistency. For simplicity, it will be assumed throughout that pΞ
∆

(x| x̂) = δx,ô(x̂)

(i.e. I will not consider the error-in-variables problem).

The system H is assumed to be constructed as shown in 2.2, where f̂H : <dL → <
is completely deterministic process (and may therefore be treated as a many-to-one

map), and the noise is generated according to pint
∆

(n| x̂) (zero mean assumed), where

x̂ is the input to H. The output of H is denoted zH = fH (x̂), and is a random

variable characterised by the conditional probability pH
∆

(zH | x̂). If no internal noise

is present:

pH
∆

(zH | x̂) = δzH ,f̂H(x̂)

The result of a noisy measurement of the output zH of H, denoted z = oout (zH)

is a random variable characterised by the conditional probability density function

pobs
∆

(z| zH). In the noiseless case:

pobs
∆

(z| zH) = δz,zH
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x̂ ˆ : Ld

Hf ℜ → ℜ
ˆ

Hz

noise

Hz

H

input output

Figure 2.2: Basic regression problem.

Note that all observations of the output of the system H must be done using

the noisy observation process described above. Hence there is no way to distinguish

between noise produced by the internal noise source, and noise resulting from the

noisy observation process. Motivated by this, rather than attempt the to emulate the

behaviour of the entire system H, it is preferable to emulate only the deterministic

part of H, namely the map f̂H : <dL → <. Defining ∆̂ = f̂H , the regression problem

may be re-stated thusly:

Given a deterministic, noiseless system H with inputs x̂ ∈ <dL and

outputs ẑ ∈ <, construct a machine to mimic the behaviour of H as

closely as possible.

In this formulation the result of a noisy observation of the output ẑ (given input

x̂) of the system H is a random variable denoted z = ∆ (x̂), which is characterised

by the conditional probability function pΞ
∆

(z| x̂), where:

pΞ
∆

(z| x̂) =

∫

zH∈<

pobs
∆

(z| zH) pH
∆

(zH | x̂)

Using slightly different notation, the aim of regression may be stated thusly:

The aim of regression is to construct a function γ : <dL → < from input

space to a real number, such that γ ◦ ô = ∆̂.
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Note the similarities between this problem and the previous statement of the

pattern classification problem given at the end of section 2.1.1.

2.2.1 Regression as ∞-class Classification

Consider the regression problem. Define Υ ⊆ <dL to be the set of all permissable

inputs x̂ to the system H. For this set of inputs, the image of Υ under the many-

to-one map ∆̂ : <dL → < is J = ∆̂ (Υ). It follows that J ⊆ <.

So, for every permissable input υ ∈ Υ, there will be an associated label (or,

loosely speaking, class) ∆̂ (υ) ∈ J . Now, if # (J) is finite, it is not difficult to see

that the regression problem is equivalent to the classification problem discussed in

section 2.1, where Ξ = Υ and ô = i.

Suppose # (J) is infinite. In this case, it is still possible to associate a “class”

with every “object” υ ∈ Υ using z = ∆̂ (υ), except that in this case there will be

infinitely many such classes. Given this, if the possibility of an infinite set of classes

is permitted, it is not difficult to see that sections 2.1.1 and 2.1.2 may be applied

directly to the problem of regression, defining Ξ = Υ and ô = i. Because ô is the

identity map, it follows that:

Υ? = Ξ? = ∅
ΥX = Υ = ΞX = Ξ

Υ∆̂z
= Υz = Ξ∆̂z

= Ξz, z ∈ J

Applying the same argument as for the pattern classification case, it is easy to see

that, if noiseless observation is possible, and the system itself is noiseless, it should

be possible to construct an arbitrarily accurate regressor (although it may not be

possible to construct a perfect regressor due to the inherent limitations of hardware.

e.g. a computer can only approximate a real output to within finite accuracy).



20 Chapter 2. CLASSIFICATION AND REGRESSION

2.2.2 Risk and Optimal Regression

Suppose that the inputs to the regression system are selected in an i.i.d. manner

according to the probability function pΥ
∆

(y). It follows that:

p
∆

(x) =
∫

y∈Υ

pΞ
∆

(x|y) pΥ
∆

(y)

p
∆

(z) =
∫

y∈Υ

pΞ
∆

(z|y) pΥ
∆

(y)

p
∆

(x, z) =
∫

y∈Υ

pΞ
∆

(x|y) pΞ
∆

(z|y) pΥ
∆

(y)

p
∆

(z|x) =

∫
y∈Υ

pΞ
∆

(x|y) pΞ
∆

( z|y) pΥ
∆

(y)

∫
y∈Υ

pΞ
∆

(x|y) pΥ
∆

(y)

p
∆

(x| z) =

∫
y∈Υ

pΞ
∆

(x|y) pΞ
∆

( z|y) pΥ
∆

(y)

∫
y∈Υ

pΞ
∆

( z|y) pΥ
∆

(y)

Note that this is notationally identical to the pattern recognition problem, ex-

cept that d has been replaced by z. Just as happened in the pattern classification

problem, for the regression problem observations may be generated in a number of

indistinguishable ways. The risk associated with a regressor is:

R (λ) =

∫

(x,z)∈<dL×<

c (x, z, γ (λ) (x)) p
∆

(x, z)

where once again it is assumed that the regressor γ is selected from a set of possible

regressors, T =
{
γ (λ) : <dL → <

∣∣λ ∈ Λ
}

, indexed by λ ∈ Λ. The function c :

<dL×<2 → < is the cost function, as before. For example, if c (x, x, y) = 1
2

(x− y)2,

R (λ) will be the mean-squared error. As for pattern classification, the optimal

regressor (or regressors) is the regressor γ (λ) that has the smallest risk associated

with it. So if λ∗ = arg min
λ∈Λ

R (λ), the optimal regressor is γ (λ∗).
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THE LEARNING PARADIGM

Science may be described as the art of systematic over-simplification.

– Karl Popper

I
n the previous chapter, the problems of pattern classification and regression

were introduced. The regression problem was shown to be equivalent to pattern

classification where the set of classes was infinite, allowing many of the concepts

from pattern classification to be used directly in the context of regression.

Risk was also introduced as a measure of the “badness” (riskiness/error) of a

given classifier/regressor. However, the definition given is of little practical use in

most cases, as evaluation of the risk requires knowledge of (and access to) not only

the entire set of objects that are to be classified (the set Υ), but also the classification

of each of these objects.

3.1 The Learning Paradigm

This thesis is based on the idea of learning from data. The usual model for this kind

of learning is shown in figure 3.1. The elements of the model are:

1. The generator of samples, Σ.

2. The observer, O.

3. The target generator (supervisor), S.

4. The learning machine, LM.

The generator Σ takes samples from the set Υ in an i.i.d. manner according to

the probability distribution PΥ (υ). Based on this sample, the observer O generates

21
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ϒ

Σ

S

O LM

ν

x

q

q̂

Figure 3.1: The learning model. During training the learning machine LM observes
pairs (x, q), which are generated from the sampled object υ using the noisy obser-
vation function o (generated by the observer, O) and the supervision function ∆
(generated by the supervisor S). After training the machine will attempt to classify
any given object ω based on the observation x of ω, giving the result q̂.

SG

LM

x q

q̂

Figure 3.2: Simplified learning model ([95]). The operation is essentially identical
to figure 3.1, except that the sampling and observation processes are not shown.

a noisy observation x = o (υ) ∈ <dL using the conditional probability distribution,

PΞ (x| υ). Finally, the target generator (supervisor) provides a possible classification

(output in the regression setting) q = ∆ (υ) ∈ J for the object, which is taken to be

correct, according to PΞ (q| υ).

As the action of the sample generator in figure 3.1 is invisible to the learning

machine, it is usual to consider the simplified version of this schema shown in figure

3.2. In this case the training data is generated randomly by the generator G in

accordance with the probability function p
∆

(x). The target generator then gener-

ates the classification (or output) q in accordance with the conditional probability

function p
∆

(q|x).
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During the training phase, the LM will accumulate N training pairs:

Y = ((x1, q1) , (x2, q2) , . . . , (xN , qN))

where each pair (xi, qi) ∈ <dL × J contains a noisy observation xi of some object

υ generated by the observer O and a corresponding classification (output) qi of

that object generated by the supervisor S. Based on this training set, the aim is to

construct a machine to mimic the behaviour of the supervisor S. Mathematically

speaking, the aim is to find the classifier γ (λ∗) ∈ {γ (λ) : <dL → J
∣∣λ ∈ Λ

}
that

minimises the risk functional, R (λ), using the information contained in the training

set Y. The classifier thus selected is called the trained machine.

Notation

For classification, the training set is defined as:

Y = ((x1, d1) , (x2, d2) , . . . , (xN , dN))

X = (x1,x2, . . . ,xN)

D = (d1, d2, . . . , dN)

xi ∈ <dL

di ∈ J ⊂ Z

Likewise, for regression:

Y = ((x1, z1) , (x2, z2) , . . . , (xN , zN))

X = (x1,x2, . . . ,xN)

Z = (z1, z2, . . . , zN)

xi ∈ <dL

zi ∈ J ⊂ <
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When referring to either or both:

Y = ((x1, q1) , (x2, q2) , . . . , (xN , qN))

X = (x1,x2, . . . ,xN)

Q = (q1, q2, . . . , qN)

xi ∈ <dL

qi ∈ J

where q and Q are understood to be either d and D for the classification problem

or z and Z for the regression problem, respectively.

3.2 A Risk Minimisation Approach

3.2.1 Risk, Empirical Risk and the Regularisation

As stated previously, the optimal classifier γ (λ∗) ∈ {γ (λ) : <dL → J
∣∣λ ∈ Λ

}
is the

classifier that minimises the risk functional, R (λ). Unfortunately, neither p
∆

(x, q)

nor ∆ : <dL → J is known (obviously, or the problem would be trivial), so it is not

possible to directly calculate the appropriate λ to minimise (2.2). Hence (2.2) is of

little practical help in finding λ. An alternative way of tackling this problem is to

minimise an approximation of the actual risk based on the information contained in

the training set. This empirical risk, Remp (λ|Y), is defined as follows:

Remp (λ|Y) =
1

N

∑

(xi,qi)∈Y

c (xi, qi, γ (λ) (xi)) (3.1)

Note that R (λ) = Remp

(
λ|
{(

υ, ∆̂ (υ)
)∣∣∣ υ ∈ Υ

})
.

However, it turns out that selecting λ by directly minimising the empirical risk

Remp (λ|Y) does not ensure that the actual risk R (λ) is small (unless N is very large,

which is not generally the case). The difficulty is the potential for overfitting, which

occurs when the set of possible training functions T =
{
γ (λ) : <dL → J

∣∣λ ∈ Λ
}

has
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too much capacity (a concept that will be quantified later) for the problem at hand,

resulting in a classifier that generalises badly. To overcome this difficulty, one can

select λ to minimise a regularised risk, Rreg (λ|Y):

Rreg (λ|Y) = CRemp (λ|Y) + φ (λ) (3.2)

where the term φ (λ) is a measure of the capacity of some subset T ∗ ⊂ T of all

possible classifiers, where γ (λ) ∈ T ∗. In the regression case, φ (λ) is known as a reg-

ularisation term. The parameter C controls the trade-off between simplicity (small

φ (λ) term, caused by selecting C small) and empirical accuracy (small empirical

risk, caused by selecting C large).

3.3 A Maximum Likelihood Approach

Note that the risk R (λ) associated with a classifier or regressor γ (λ) is just the

expectation of the cost function given (x, q) drawn from p
∆

(x, q). Likewise, the

empirical risk Remp (λ|Y) is an approximation of this based on a finite set Y of

examples drawn from the same distribution. Mathematically:

R (λ) = E

(
c (x, q, γ (λ) (x))| p

∆
(x, q)

)

Remp (λ|Y) = E (c (x, q, γ (λ) (x))| (x, q) ∈ Y)

The approach to the learning problem discussed up until now has been to min-

imise the empirical risk approximation (possibly with an additional regularisation

term to prevent overfitting), thus hopefully minimising the actual risk. The present

section considers an alternative approach based on the statistical concept of maxi-

mum likelihood. While this is not directly applicable to the SVM method, in later

chapters the theory underpinning this approach will be used to tackle the problem

of optimal parameter selection.

The following section follows closely the material in [76].
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ϒ
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ν
x̂ q

xo

ô ( )g λ ( )ˆ
obsp q q
∆

q̂

Figure 3.3: Experimental setup for statistical learning.

3.3.1 Maximum Likelihood Estimation

Consider the training set Y. Given a machine γ (λ) and experimental setup as

in figure 3.3, the probability of this experimental setup generating these results is

p
∆

(Y|λ), and may be infinitesimal. The aim of maximum likelihood estimation is

to find the value of λ (and hence also the machine γ (λ)) that is most likely to have

resulted in this setup generating the training set Y. Mathematically, the likelihood

of a training set Y being generated by the setup shown in figure 3.3 is:

p
∆

(Y|λ) =
∏

(xi,qi)∈Y

p
∆

(qi,xi|λ)

=
∏

(xi,qi)∈Y

p
∆

(qi|xi, λ) p
∆

(xi)

where p
∆

(qi|xi, λ) is the probability of observing output qi, given observed input xi

and machine parameters λ using experimental setup as per figure 3.3. The aim of

the maximum likelihood approach is to find λ∗ to maximise p
∆

(Y|λ∗).
This expression may be re-written:

p
∆

(Y|λ) =
∏

(xi,qi)∈Y

p
∆

(qi|xi, λ)
∏

(xi,qi)∈Y

p
∆

(xi)

=

(
∏

(xi,qi)∈Y

p
∆

(xi)

)
exp

(
ln

∏
(xi,qi)∈Y

p
∆

(qi|xi, λ)

)

= c0 exp

(
∑

(xi,qi)∈Y

ln

(
p
∆

(qi|xi, λ)

))
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where c0 is a constant dependant on p
∆

(x), and may be neglected for simplicity.

Hence to maximise the likelihood of a training set, one can instead minimise the

log-likelihood for that training set, which is defined as:

L
∆

[λ|Y] =
∑

(xi,qi)∈Y

− ln

(
p
∆

(qi|xi, λ)

)

Regression

As defined here, in the regression problem the training set Z is related to X by the

functional relationship zi = f̂H (xi) + ξi for all 1 ≤ i ≤ N , where ξi is a noise term

generated according to pint
∆

(ξi|xi). If the noise is not dependent on the input x then

pint
∆

(ξ|x) may be re-written pint
∆

(ξ), and the log-likelihood expressed thusly:

L
∆

[λ|Y] =
∑

(xi,zi)∈Y

− ln

(
pint

∆
(zi − γ (λ) (xi))

)

and will be infinitesimal in most cases. Consider the definition of empirical risk,

(3.1). If the cost function used in this expression is:

c (x, y, z) = − ln

(
pint

∆
(y − z)

)

then:

Remp (λ|Y) = L
∆

[λ|Y]

Note, however, that this may result in an infinitesimal cost and empirical risk (which

could be awkward from a computational standpoint). In this case, the associated

density function pint (ξ) may be used in place of the probability function pint
∆

(ξ). So:

c (x, y, z) = − ln (pint (y − z))

L [λ|Y] =
∑

(xi,zi)∈Y

− ln (pint (zi − γ (λ) (xi)))

Remp (λ|Y) = L [λ|Y]

Table 3.1 and figure 3.4 show some typical cost functions and the associated
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Table 3.1: Cost functions and associated maximum-likelihood density functions.
Cost function c (x, y, z) Density function p (ξ)

ε-insensitive |y − z|ε 1
2(1+ε)

e−|ξ|ε

Laplacian |y − z| 1
2
e−|ξ|

ε-insensitive polynomial 1
n
|y − z|nε 1

2
(
n

1
n−1Γ( 1

n)+ε
)e−

1
n
|ξ|nε

Polynomial 1
n
|y − z|n 1

2n
1
n−1Γ( 1

n)
e−

1
n
|ξ|n

Gaussian 1
2

(y − z)2 1√
2π
e−

1
2
ξ2

Piecewise polynomial

{
1

nεn−1 |y − z|n if |y − z| ≤ ε

|y − z| − (n−1)
n
ε otherwise

∝
{
e−

1
nεn−1 |ξ|n if |ξ| ≤ ε

e−|ξ|+
(n−1)
n

ε otherwise

Huber’s robust loss

{
1
2ε

(y − z)2 if |y − z| ≤ ε
|y − z| − 1

2
ε otherwise

∝
{
e−

1
2ε
ξ2

if |ξ| ≤ ε

e−|ξ|+
1
2
ε otherwise

maximum likelihood density functions (source, [76]).

Classification

As for regression, an appropriate choice of cost function will result in a risk min-

imisation based classifier that will “mimic” the behaviour of a maximum-likelihood

approach. Specifically, using the cost function:

c (x, d, e) = − ln (Pr (d| e))

where Pr (d| e) is the probability that the γ (λ) (x) = d given that x is selected

according to p
∆

(x| e) (in words, the probability that the machine will say an object

belongs to class d, given that the classifier (trainer) has said the same object belongs

to class e). Using this cost function, it follows that:

Remp (λ|Y) = L [λ|Y]

A common model for Pr (d| e) in the binary case is the logistic model, where:

Pr (1| d) = ed

1+ed

Pr (−1| d) = 1
1+ed
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Figure 3.4: Typical cost functions and associated density functions. Shown are:
linear, quadratic and cubic cost (top row, left to right), with associated density
shown below; and linear and quadratic ε-insensitive cost where ε = 1 and finally
Huber’s robust loss function with ε = 1 (second bottom row, left to right), again
with associated density shown below.
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3.3.2 Efficiency

In the previous subsection it was shown that maximum likelihood estimation can be

reduced to risk minimisation provided that an appropriate loss function is selected.

However, this assumes that the noise model is known, which is not true in general.

Even if the noise model is known, the resultant loss function may not be useful

in-so-far as it may have local minima, or be “difficult” in some other way. Hence

there is a need for some other way of comparing the performance of different loss

functions for different noise models. Asymptotic efficiency is one such method.

Assume the training set Y is drawn in an i.i.d. method based on the probability

function p
∆

(y| θ) (this does not imply that p
∆

(y| θ) is only dependent on θ, just that

it is dependent on θ among other parameters). Let θ̂ (Y) be an estimator of the

parameters θ based on the training set Y.

For notational simplicity, define:

Eθ [ξ (Y)] =

∫

Y

ξ (Y) p
∆

(Y| θ)

as the expectation of a random variable ξ (Y) with respect to p
∆

(Y| θ). An unbiased

estimator is defined as an estimator satisfying:

Eθ

(
θ̂ (Y)

)
= θ

Given an unbiased estimator, one measure of the goodness of that estimator is

the variance of the estimator. If the variance is low, the probability that the error

in the estimate θ̂ (Y) of θ will be large should also be low.

The score Vθ (Y) of p
∆

(Y| θ) is defined as:

Vθ (Y) =
∂ ln p

∆
(Y|θ)
∂θ

The score gives a measure of how dependent the data is on the components of

the parameter set θ, and hence how much the data will affect the choice of θ when

using the estimator θ̂ (Y). The Fisher information matrix I is the covariance of this
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score. If the individual components of θ are written θi (i.e. treat θ as a vector) then:

Ii,j = Eθ

[(
∂ ln p

∆
(Y|θ)
∂θi

− Eθ

[
∂ ln p

∆
(Y|θ)
∂θi

])(
∂ ln p

∆
(Y|θ)

∂θj
− Eθ

[
∂ ln p

∆
(Y|θ)

∂θj

])]

Noting that:

Eθ [Vθ (Y)] =
∫
Y

Vθ (Y) p
∆

(Y| θ)

=
∫
Y

∂

(
ln p

∆
(Y|θ)

)

∂θ
p
∆

(Y| θ)

=
∫
Y

∂ p
∆

(Y|θ)
∂θ

= ∂
∂θ

∫
Y

p
∆

(Y| θ)

= ∂
∂θ

1

= 0

It follows that:

Ii,j = Eθ

[
∂ ln p

∆
(Y|θ)
∂θi

∂ ln p
∆

(Y|θ)
∂θj

]

The covariance matrix B of θ̂ (Y) is:

Bi,j = Eθ

[(
θ̂i (Y)− Eθ

[
θ̂i (Y)

])(
θ̂j (Y)− Eθ

[
θ̂j (Y)

])]

This covariance provides a useful measure of the “goodness” of the estimator, as

described previously. The Cramer-Rao bound states that, for any unbiased estimator

θ̂ (Y):

det (IB) ≥ 1 (3.3)

Now, a good unbiased estimator should have minimal variance. Hence the smaller

|IB| is, the better. This leads to the definition of the efficiency of an estimator,

namely:

e = det (IB)−1 ≤ 1

The larger the efficiency, the lower the variance of the estimator and hence the better

the estimator. The key advantage of this form is that e can be computed efficiently
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(see [60], lemma 3). Assuming:

θ̂ (Y) = arg min
θ

d (Y, θ)

= arg min
θ

N∑
i=1

d (yi, θ)

where d (Y, θ) is a twice differentiable function of θ then as N →∞:

e =
|Q|2
|IG| (3.4)

where:

Gi,j = Eθ

[
∂d(Y,θ̂)
∂θ̂i

∂d(Y,θ̂)
∂θ̂j

]

Qi,j = Eθ

[
∂2d(Y,θ̂)
∂θ̂i∂θ̂j

]

In other words, given such an estimator, the asymptotic efficiency can be cal-

culated directly from d (Y, θ). It can be shown that for a maximum likelihood

estimator (d
(
Y, θ̂

)
= ln p

∆
(Y| θ)) the asymptotic efficiency is e = 1. However, this

result is only useful if the noise model is known.

If there is only one parameter:

I =
∫
Y

(
∂ ln p

∆
(Y|θ)
∂θ

)2

p
∆

(Y| θ)

G =
∫
Y

(
∂d(Y,θ)
∂θ

)2
p
∆

(Y| θ)

Q =
∫
Y

∂2d(Y,θ)
∂θ2

p
∆

(Y| θ)

Noting that:

p
∆

(Y|λ) =
∏
y∈Y

p
∆

(yi|λ)

it follows that [76]:

I = N
∫
y

(
∂ ln p

∆
(y|θ)
∂θ

)2

p
∆

(y| θ)

G = N
∫
y

(
∂d(y,θ)
∂θ

)2
p
∆

(y| θ)

Q = N
∫
y

∂2d(y,θ)
∂θ2

p
∆

(y| θ)

(3.5)
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Note that the factor N in (3.5) will cancel in the expression (3.4) for the efficiency

e. Also, it will assumed in later chapters that all distributions will be continuous.

So, for the purposes of this thesis, (3.5) may be re-written:

I =
∫
y

(
∂ ln p(y|θ)

∂θ

)2

p (y| θ)dy

G =
∫
y

(
∂d(y,θ)
∂θ

)2

p (y| θ)dy

Q =
∫
y

∂2d(y,θ)
∂θ2 p (y| θ)dy

(3.6)
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Chapter 4

SUPPORT VECTOR MACHINE BASICS

A child of five could understand this. Fetch me a child of five. I can’t

make heads or tails of it.

- Groucho Marx

4.1 Support Vector Machine Classifiers

T
he simplest form of pattern classification is binary (or 2 class) pattern clas-

sification. For notational simplicity, assume the label set is J = {±1}. The

observation map ô : Υ→ <dL maps objects to points in dL dimensional input space.

Extending the notation of chapter 2, each point x in input space may be assigned a

label d = ∆̂Ξ (x) from the set J̄ = {±1, 0}, such that:

∆̂Ξ (x) =





+1 if x ∈ Ξ+1

−1 if x ∈ Ξ−1

0 if x /∈ ΞX

4.1.1 Separating Hyperplanes and Feature Space

One possible set of classifiers is the set of all functions of the form:

γ (λ) (x) = sgn (g (λ) (x))

where:

g (λ) (x) = wTx + b

and the parameter set is λ = (w, b) ∈ Λ =
{

(w, b) ∈ <dL+1
∣∣w 6= 0

}
. In this case,

any given selection of parameters λ ∈ Λ defines an oriented hyperplane (decision

35
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surface) in input space, namely {x| g (λ) (x) = 0}. The two sets Ξ∆̂+1
and Ξ∆̂−1

are

said to be linearly separable if, for some λ ∈ Λ, ∆̂Ξ (x) g (λ) (x) > 0 for all x ∈ Ξ (or,

equivalently, ∆̂Ξ (x) = γ (λ) (x) for all x ∈ Ξ). Geometrically speaking, this means

that the oriented hyperplane defined by λ shatters Ξ∆̂+1
and Ξ∆̂−1

. Note that such

a plane can only exist if Ξ 6= <dL and Ξ? = ∅.
More generally, if Ξ∆̂+1

and Ξ∆̂−1
are not linearly separable then it may be

possible to define a map ϕ : <dL → <dH into some dH-dimensional feature space

such that ϕ
(

Ξ∆̂+1

)
and ϕ

(
Ξ∆̂−1

)
are linearly separable in feature space. In other

words, using the set of classifiers of the form:

g (λ) (x) = wTϕ (x) + b (4.1)

(implicitly ignoring all but the sign of the output) it may be possible to find some

λ ∈ Λ such that ∆̂Ξ (x) g (λ) (x) > 0 for all x ∈ Ξ. This may be thought of as either

being a hyperplane in dH-dimensional feature space or a non-linear dividor in input

space. In this case, Ξ∆̂+1
and Ξ∆̂−1

are said to be nonlinearly separable under the

map ϕ. Once again, this is possible only if Ξ 6= <dL and Ξ? = ∅.

4.1.2 The Separable Case

Consider a set of training data consisting of a set of points in <dL dimensional input

space, labelled in a binary manner, ie:

Y = {(x1, d1) , (x2, d2) , . . . , (xN , dN)}
xi ∈ <dL
di ∈ {+1,−1}

(4.2)

Define:

Y≥ = {xi| (xi, di) ∈ Y, di = +1}
Y≤ = {xi| (xi, di) ∈ Y, di = −1}

noting that the indices of the elements xi remain unchanged - for example, if

(x4, d4) ∈ Y, d4 = +1, then x4 ∈ Y≥, x4 /∈ Y≤, with the same index 4 used in

all cases. This is purely a matter of notational convenience.
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It is assumed that there is some pre-defined map ϕ : <dL → <dH from dL

dimensional input space to dH dimensional feature space (where dH may be very large

or even infinite). Furthermore, it is assumed that Ξ∆̂+1
and Ξ∆̂−1

are nonlinearly

separable under ϕ. It follows that there exists an infinite set R of classifiers (4.1)

satisfying:

sgn (g (λ) (xi)) = +1∀xi ∈ Y≥

sgn (g (λ) (xi)) = −1∀xi ∈ Y≤
(4.3)

Consider one such classifier, g (λ1) ∈ R, where λ1 = {w1, b1}. For some κ > 0, de-

fine λκ = {κw1, κb1}. Clearly g (λκ) ∈ R (as γ (λκ) = sgn (g (λκ)) = sgn (κg (λ1)) =

sgn (g (λ1)) = γ (λ1)). Furthermore, the decision surfaces associated with the clas-

sifiers g (λ1) and g (λκ) ({x| g (λ1) (x) = 0} and {x| g (λκ) (x) = 0}, respectively),

must be identical. It follows that g (λ1) and g (λκ) define the same classifier γ (λ1) =

γ (λκ). So, without loss of generality, the set of allowable classifiers R may be re-

stricted to the subset Rε of classifiers satisfying:

g (λ) (xi) ≥ −Eεi∀xi ∈ Y≥

g (λ) (xi) ≤ Eε∗i∀xi ∈ Y≤
(4.4)

where ε and ε∗ are negative constant vectors, each element εi (or ε∗i ) being defined

in adjunct to a single training point xi ∈ Y≥ (or xi ∈ Y≤) and E ≥ 0 is a constant.

There exists some redundancy here, as for all i, only one of εi and ε∗i will be relevant

to (i.e. effect) (4.4). To eliminate this redundancy, the vectors ε and ε∗ may be

consolidated into a single vector, ε(∗), where:

ε
(∗)
i =





εi if xi ∈ Y≥

ε∗i if xi ∈ Y≤

In the standard formulation, ε = ε∗ = −1 and E = 1. ε(∗) may be used to

differentiate between points based on the relative importance (i.e. important points

should lie further from the boundary to make misclassification less likely). It should

be noted that at this juncture that there is, strictly speaking, no need to include both

E and ε(∗). It should be quite clear from the construction of Rε that the constant E
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ρ

support vectors

margin of separation

optimal hyperplane

Figure 4.1: Optimal hyperplane selection via max-margin.

will have no effect on the form of the decision surface (its effect is analogous to that

of κ in the above construction). The mean of ε(∗), 1
N

1Tε(∗) is similarly inneffectual.

However, there is no harm in including some redundancy at this point (the choice

is arbitrary, so an arbitrary selection may be made). The two main reasons for

including these constants (E in particular) are:

1. To maintain notational consistency when constructing the combined classifica-

tion and regression SVM formulation (regression with inequalities) in section

5.1.

2. E is included for simplicity when introducing tube shrinking in section 5.5.

The set Rε of potential classifiers is still infinite in size. What is required is some

way to select the “best” classifier g (λ) ∈ Rε. The basic concept underpinning the

SVM approach is to select the classifier whose associated decision surface maximises

the distance between the decision surface and those points lying closest to it (the

support vectors), as shown in figure 4.1. As will be shown in section 4.2.3, this is

the closely related to selecting a classifier from the subset R∗ε ⊂ Rε with the least

capacity such that ∃λ ∈ R∗ε satisfying (4.4) (i.e. R∗ε 6= ∅).
It is not difficult to see that the shortest Euclidean distance ri between any

training point xi ∈ Y≥∪Y≤ and a decision surface defined by (4.4) in feature space

is:

ri (xi) =
|g (xi)|
‖w‖2
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Hence the distance between the decision surface and the training point(s) of a

particular class lying closest to it is:

τ≥ = min
xi∈Y≥

ri (xi)

τ≤ = min
xi∈Y≤

ri (xi)

Using the fact that an arbitrary scaling w′ = κw and b′ = κb, κ > 0, does not

change the decision surface, it follows that it is always possible to scale w and b so

that:

τ≥ = min
xi∈Y≥

−Eεi
‖w‖2

τ≤ = min
xj∈Y≤

−Eε∗j
‖w‖2

(if only one of these conditions can be met, then the decision surface may be shifted

(without changing its orientation) toward the class for which this condition fails

until both are met). Based on this, the margin of separation between the two classes

is defined to be:

ρ = τ≥ + τ≤ =
E
∣∣εi + ε∗j

∣∣
‖w‖2

(4.5)

for some 1 ≤ i, j ≤ N .

Noting that ρ ∝ 2
‖w‖2 , and neglecting E

∣∣εi + ε∗j
∣∣,1 it may be noted that the

problem of finding the decision surface g (x) = 0 satisfying (4.4) that maximises

the margin of separation (4.5) is equivalent to solving the following optimisation

problem:

min
w,b

R0 (w, b) = 1
2
wTw

such that: wTϕ (xi) + b ≥ −Eεi∀xi ∈ Y≥

wTϕ (xi) + b ≤ Eε∗i∀xi ∈ Y≤

(4.6)

At this juncture, it is worthwhile comparing (4.6) and the regularised risk func-

tional, (3.2). Firstly, note that the constraints in (4.6) ensure that Remp (λ|Y) = 0.

1Alternatively, remembering that E is essentially superfluous (it may be scaled arbitrarily with-
out effecting the decision surface) E may be selected so that E

∣∣εi + ε∗j
∣∣ = 2 without changing the

decision surface itself. Hence the term E
∣∣εi + ε∗j

∣∣ is, truly, irrelevant.
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Tentatively, therefore, it seems reasonable to identify:

φ (λ) =
1

2
wTw

This issue will be re-visited in section 4.2.3.

The Dual Formulation

Unfortunately, the primal optimisation problem (4.6) is rather difficult to solve (es-

pecially if dH is large or infinite). For this reason, it is convenient to convert (4.6)

into a dual (or at least partially dual) form. To do this, introduce a vector of La-

grange multipliers, α, such that each element of this vector αi ≥ 0 corresponds

to a single inequality constraint, wTϕ (xi) + b ≥ −Eεi if xi ∈ Y≥ (αi ≤ 0 to

wTϕ (xi) + b ≤ Eε∗i otherwise) in (4.6). The Lagrangian (maximin) form of (4.6) is

then:

min
w,b

max
α

L0 (w, b,α) = 1
2
wTw− ∑

xi∈Y≥
αi
((

wTϕ (xi) + b
)

+ Eεi
)

− ∑
xi∈Y≤

αi
((

wTϕ (xi) + b
)− Eε∗i

)

such that: αi ≥ 0∀i : xi ∈ Y≥

αi ≤ 0∀i : xi ∈ Y≤

(4.7)

It follows that, for optimality:

∂L0

∂w
= 0⇒ w =

N∑
i=1

αiϕ (xi)

∂L0

∂b
= 0⇒ 1Tα = 0

Hence the dual form is:

min
α

Q0 (α) = 1
2
αTKα+ E|α|Tε(∗)

such that: αi ≥ 0∀i : xi ∈ X≥

αi ≤ 0∀i : xi ∈ X≤

1Tα = 0

(4.8)
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where K ∈ <N×N , Ki,j = K (xi,xj) and K (xi,xj) = ϕ (xi)
T ϕ (xj) is known as the

kernel function. The resulting classification function may be expressed in terms of

α and b thusly:

sgn (g (λ) (y)) = sgn




N∑
i=1
αi 6=0

αiK (xi,y) + b


 (4.9)

where:

b = −E sgn (αj) ε
(∗)
j −

N∑
i=1
αi 6=0

αiKi,j∀j ∈ {1 ≤ j ≤ N |αj 6= 0}

The appearance of |α| in (4.8) may cause some consternation at first. However,

noting that

sgn (αi) =





di if αi 6= 0

0 otherwise

(4.8) may be re-written thusly:

min
α

Q0 (α) = 1
2
αTKα+ EαT

(
dε(∗))

such that: αi ≥ 0∀xi ∈ X≥

αi ≤ 0∀xi ∈ X≤

1Tα = 0

which is just a standard quadratic programming problem. I have chosen to give

the dual of the SVM problem in form (4.8) because it does not present any real

difficulty when solving the dual problem and, as will be seen later, makes the re-

lationship between the regression and pattern recognition forms of the SVM more

plainly apparent. To convert to the standard form, replace αi with diαi and set

ε = ε∗ = −1, E = 1.

Note that the matrix K is positive semi-definite (this will be proven in theorem

7.2) and the constraints are linear. Hence the optimisation problem is convex (there

are no non-global minima), which greatly simplifies the process of finding a solution.

It is also worth noting that there is exactly one variable αi associated with each

training point xi, and that only those αi’s corresponding to support vectors will
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have non-zero values. Formally, a training point xi ∈ X is called a support vector if

αi 6= 0.

The Kernel Trick

The function K : <dL × <dL → < is known as the kernel function (strictly, the

Mercer kernel - however, as I only consider Mercer kernels here, I will usually leave

the Mercer part implicit). As it has been defined here, it is the result of mapping

two vector arguments into some other flat space (feature space) and then evaluating

a standard dot product in this space.

It should be noted that in neither the optimisation problem (4.8), nor in the

resulting classification function (4.9), is it necessary to evaluate the result of mapping

a point into feature space using ϕ : <dL → <dH . The kernel function hides this

detail, resulting in a problem of dimension N , rather than dH . Thus it is possible to

use very high (or even infinite) dimensional feature spaces and complex mappings

without increasing the complexity of the dual problem (4.8). This hiding of problem

complexity using kernel functions is known generally as the kernel trick.

Rather than starting with a feature map and then calculating the kernel function,

it is usual to simply define a kernel function (or look one up in a table of kernel

functions). To see if a function K : <dL × <dL → < may be used as a kernel

function, Mercer’s theorem [28], [58] may be applied:

Theorem 4.1. For a function K : <dL × <dL → <, there exists a map ϕ : <dL →
<dH such that

K (xi,xj) = ϕ (xi)
T ϕ (xj)

if and only if, for all g : <dL → < such that
∫
g (x)2 dx is finite:

∫
K (x,y) g (x) g (y) dxdy ≥ 0

For later reference, define:

Definition 4.1. The set of all Mercer kernels is denoted Mκ.
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4.1.3 The Inseparable Case

If the training classes are not separable, it is necessary to relax the inequalities in

(4.6) using slack variables and modify the cost function to penalise any failure to

meet the original (strict) inequalities. Using the standard (linear) penalty function

(see [28]), the problem becomes:

min
w,b,ξ,ξ∗

R1 (w, b, ξ, ξ∗) = 1
2
wTw + C

N
tTξ + C

N
t∗Tξ∗

such that: wTϕ (xi) + b ≥ −Eεi − ξi∀xi ∈ Y≥

wTϕ (xi) + b ≤ Eε∗i + ξ∗i ∀xi ∈ Y≤

ξ ≥ 0

ξ∗ ≥ 0

(4.10)

as shown graphically in figure 4.2, where each t
(∗)
i > 0 (where t(∗) is defined by t

and t∗ in a manner directly analogous to the manner in which ε(∗) is defined, with

similar redundancy), like ε
(∗)
i , is defined in adjunct to the training point xi, and

provides a means of differentiating between more and less important training points

(heuristically, misclassifying an “important” training point should cost more than

misclassifying an unimportant or unreliable one, and hence t
(∗)
i would typically be

larger for more important points). Like E, C is a “global” scaling factor for t.

However, unlike E, C is in no way redundant. Note that, as ξiξ
∗
i = 0 for all i, it is

possible to unambiguously define a vector ξ(∗) by:

ξ
(∗)
i =





ξi if xi ∈ Y≥

ξ∗i if xi ∈ Y≤

so that:

R1 (w, b, ξ, ξ∗) =
1

2
wTw +

C

N
t(∗)Tξ(∗)

In (4.10), identifying:

φ (λ) = 1
2
wTw

Remp (λ|Y) = 1
N

t(∗)Tξ(∗)
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ρ

boundary vectors

margin of separation

optimal hyperplane

ξ

ξ
error vector

(wrongly classified)

error vector

(correctly classified)

Figure 4.2: Optimal hyperplane selection via max-margin, (inseparable case).

using the notation of (3.2) it is clear that R1 (w, b, ξ, ξ∗) is essentially a measure

of regularised risk. The parameter C controls the trade-off between the dual ob-

jectives of maximising the margin (regularisation) of separation and minimising the

misclassification error (empirical risk minimisation).

The Lagrangian (maximin) form of (4.10) is:2

min
w,b,ξ(∗)

max
α,γ(∗)

L1 = 1
2
wTw + C

N
t(∗)Tξ(∗) + γ(∗)Tξ(∗)

− ∑
i:xi∈Y≥

αi

((
wTϕ (xi) + b

)
+ Eε

(∗)
i + ξ

(∗)
i

)

− ∑
i:xi∈Y≤

αi

((
wTϕ (xi) + b

)− Eε(∗)i − ξ(∗)
i

)

such that: αi ≥ 0∀i : xi ∈ Y≥

αi ≤ 0∀i : xi ∈ Y≤

γ(∗) ≥ 0

(4.11)

2Noting that L1 = L1

(
w, b, ξ(∗),α,γ(∗)

)
. The arguments of the Lagrangian will often be

neglected in this way to avoid unnecessary clutter in expressions.
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Applying the usual methods, it follows that:

∂L1

∂w
= 0⇒ w =

N∑
i=1

αiϕ (xi)

∂L1

∂b
= 0⇒ 1Tα = 0

∂L1

∂ξ(∗) = 0⇒ αi + γ
(∗)
i = C

N
t
(∗)
i ∀i : xi ∈ Y≥

∂L1

∂ξ(∗) = 0⇒ −αi + γ
(∗)
i = C

N
t
(∗)
i ∀i : xi ∈ Y≤

Hence the dual form is:

min
α

Q1 (α) = 1
2
αTKα+ E|α|Tε(∗)

such that: 0 ≤ αi ≤ C
N
ti∀i : xi ∈ Y≥

−C
N
t∗i ≤ αi ≤ 0∀i : xi ∈ Y≤

1Tα = 0

(4.12)

where K ∈ <N×N and Ki,j = K (xi,xj). This form differs from (4.8) only in the

existence of the upper bound on |α|. Once again:

sgn (g (λ) (y)) = sgn




N∑
i=1
αi 6=0

αiK (xi,y) + b




where:

b = −E sgn (αj) ε
(∗)
j −

N∑
i=1
αi 6=0

αiKi,j∀j ∈
{

1 ≤ j ≤ N | 0 < |αj| <
Ct

(∗)
j

N

}

4.1.4 The Partially Dual Form

While the dual form of the SVM is not overly complex, the presence of the equality

constraint 1Tα = 0 does add some unwanted complexity to the problem. Further-

more, the need to calculate b afterwards is an unnecessary inconvenience. Rather

than use this form, it is desirable to use instead a partially-dual form of the problem.

In particular, do not eliminate b from the problem when constructing the dual. This
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gives the (partial-)dual problem:

min
α

max
b
QL1 (α, b) = 1

2


 b

α



T

H


 b

α


+ E

∣∣∣∣∣∣
b

α

∣∣∣∣∣∣

T 
 0

ε(∗)




such that: 0 ≤ αi ≤ C
N
ti∀i : xi ∈ Y≥

−C
N
t∗i ≤ αi ≤ 0∀i : xi ∈ Y≤

(4.13)

where:

H =


 0 1T

1 K




There are two main advantages (4.13) has over (4.12). Most obvious is the fact

that b and α are calculated together, rather than finding α first and then b based

on this. The other big advantage this form has (which will be especially noticeable

when considering incremental training issues) is that there is no equality constraint

present in the constraint set. The disadvantages of this form are the indefiniteness

of the hessian and the increased dimensionality (N + 1, as opposed to N). It will be

seen in chapters 7 and 8 that the indefiniteness issue is not serious, and unless N is

particularly small, the increase in dimension will not be noticeable.

The stationary or KKT (Karush-Kuhn-Tucker) conditions for the program (4.13),

see [40], are as follows:

αi ≤




C
N
ti if xi ∈ Y≥

0 if xi ∈ Y≤

αi ≥




0 if xi ∈ Y≥

−C
N
t∗i if xi ∈ Y≤

ei





≥ −Eεi if αi = 0 ∧ xi ∈ Y≥

= −Eεi if 0 < αi <
C
N
ti

≤ −Eεi if αi = C
N
ti

≤ Eε∗i if αi = 0 ∧ xi ∈ Y≤

= Eε∗i if − C
N
t∗i < αi < 0

≥ Eε∗i if αi = −C
N
t∗i

f = 0

(4.14)
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where: 
 f

e


 = H


 b

α


 (4.15)

At this point, it is important to note that ei = g (xi) for all xi ∈ Y. Given this,

one immediately sees that the KKT conditions on e in (4.14) are just a relaxed form

of the original conditions (4.4) in the separable case. Indeed (see [13]), αi may be

interpreted as the amount of force exerted on the decision surface by a training point

to keep it the required distance away from this point (the decision is considered to

be a solid plate under this interpretation). Hence C
N
t
(∗)
i may be seen as an effective

upper bound on the amount of force any one training point may impart on the

decision surface, thereby limiting the amount of influence that point may have on

the position of the decision surface (it also prevents the force becoming infinite in

the inseparable case). Under this interpretation, the condition f = 0 is simply

a statement that the total force on the decision surface is 0, placing the decision

surface in a position of mechanical equilibrium.

It is useful to split the set of support vectors into boundary vectors, for which

0 < |αi| < C
N
t
(∗)
i , and error vectors, for which |αi| = C

N
t
(∗)
i . The major difference

between the two subclasses is that boundary vectors must be on the correct side of

the decision surface (i.e. be correctly classified by the classifier), while error vectors

need not be. Note also that the margin of separation (4.5) is, in the inseparable

case, measured between the boundary vectors of the relevant classes. For later use,

NS is defined to be the number of support vectors, NB the number of boundary

vectors and NE the number of error vectors. Hence NS = NB +NE.

4.2 SVMs and Risk Minimisation

In previous sections, I tentatively identified:

φ (λ) = 1
2
wTw

Remp (λ|Y) = 1
N

t(∗)Tξ(∗)
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so that:

R (w, b) = Rreg (λ|Y) = φ (λ) + CRemp (λ|Y)

Assuming this identification is reasonable, it places the SVM approach to binary

classification on a firm theoretical footing, and helps to explain the excellent results

that have been achieved using SVMs. In this section this identification is shown to

be theoretically valid.

4.2.1 The VC Dimension and the Risk Bound

An important first step to understanding the link between max-margin methods and

the regularisation principle is to find a concrete means of measuring the capacity of

a set of classifiers. The Vapnik-Chervonenkis (VC) dimension of a class of classifiers

is one such measure.

The VC dimension is a characteristic of the complete set of possible classification

functions, T =
{
γ (λ) : <dL → J̄

∣∣λ ∈ Λ
}

. Before defining the VC dimension, it is

necessary to define the concept of shattering of points in an dL-dimensional space.

Definition 4.2. A set of l distinct points (vectors) is said to be shattered by a set of

functions T if, for each of the 2l possible ways of labelling the points in an arbitrary

binary manner, there exists a member of the classifier set T which can correctly

assign these labels.

Definition 4.3. The VC dimension h of a set of binary functions T is defined to be

the maximum number of distinct points h which can be shattered by T .

It should be noted that the definition of the VC dimension of a set of binary

functions T does not imply that all sets of h points can be shattered by T , just that

at least one such set of points exists which can be. Generally speaking, the following

observations may be made:

• Learning networks selected from sets with a high VC dimensions are able to

learn very complex tasks.
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• However, they have a tendency to overfit. That is, they learn incidental (ir-

relevant) information and noise as though it was relevant, and as a result may

not generalise well.

• Conversely, if the VC dimension is too low, the classifier may generalise well,

but will generally not work well when applied to a difficult task.

The following result due to Vapnik [94] helps to explain these observations:

Theorem 4.2. For any 0 ≤ η ≤ 1 there is a probability of 1− η that the following

bound will hold:

R (λ) ≤ Remp (λ|Y) +

√√√√
(
h
(
log
(

2N
h

)− log
(
η
4

))

N

)

This is known as the risk bound, and the second term on the right is the VC

confidence. If h is too small then the empirical risk Remp (λ) may be large, and so

the actual risk R (λ) may be large. Conversely, if h is too large, the VC confidence

will be large, and so the above bound will be ineffectual in limiting the size of the

actual risk. Ideally, h will be chosen to minimise the risk bound. One method of

doing just that is to use structural risk minimisation.

4.2.2 Structural Risk Minimisation

Consider a set of functions T =
{
γ (λ) : < → J̄

∣∣λ ∈ Λ
}

. If the choice of λ is further

restricted in some manner, then so to is the VC dimension associated with the

(restricted) set of functions. Indeed, the following nested structure may be defined:

Ti = {γ (λ)|λ ∈ Λi}
T = ∪

i
Ti

T1 ⊂ T2 ⊂ . . . ⊂ Ti ⊂ Ti+1 ⊂ . . .

h1 ≤ h2 ≤ . . . ≤ hi ≤ hi−1 ≤ . . .

where hi is the VC dimension of the set of functions Ti.
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For each function subset Ti it is in principle possible to minimise the empirical risk

to find an optimal parameter choice λi ∈ Λ. Using this, it is possible to calculate the

risk bound of each of these function subsets, from which one may select the solution

associated with the minimal risk bound, namely:

imin = arg min
i


Remp (λi|Y) +

√√√√√

hi

(
log
(

2N
hi

)
− log

(
η
4

))

N






The classifier γ (λimin) : <dL → J̄ is in a sense the “optimal” trade-off between

empirical risk minimisation and capacity control, as it minimises the risk bound.

This approach to finding g (λ∗) is known as structural risk minimisation (SRM). As

will be seen, SVMs implement a form of SRM.

4.2.3 SVMs and Structural Risk Minimisation

For SVMs the set of functions T =
{
γ (λ) : < → J̄

∣∣λ ∈ Λ
}

takes the form of a set

of oriented hyperplanes in some dH dimensional feature space, i.e.:

γ (λ) (x) = sgn
(
wTϕ (x) + b

)

where ϕ : <dL → <dH is some pre-defined map and λ = (w, b). It is not difficult to

show that the VC dimension of the set of all linear classifiers in <dH is dH + 1. So

the capacity of a SVM is directly related to the dimension of its feature space.

This leads to an apparent contradiction. Support vector machines have been

observed to generalise very well in many cases. However, the VC dimension corre-

sponding to many SVM kernels is very high (or even infinite), which at first glance

would appear to imply that they should generalise badly. The key to understanding

this apparent contradiction lies in the relationship between the SVM method and

the theory of structural risk minimisation.

Consider the primary cost function of the basic SVM:

R1 (w, b, ξ, ξ∗) =
1

2
wTw +

C

N
t(∗)Tξ(∗)
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The second term is just a measure of empirical risk, as stated previously. To

understand the first term, the following theorem due to Vapnik [94] may be used:

Theorem 4.3. Let D denote the diameter of the smallest ball in feature space con-

taining the images of all training vectors x ∈ X mapped to feature space. The set of

hyperplanes described by the equation g (λ) (x) = 0 has a VC dimension h bounded

above by:

h ≤ min

{⌈
D2

ρ2

⌉
, dH

}
+ 1

where ρ is the margin of separation, defined previously.

Using this, and assuming that
⌈
D2

ρ2

⌉
≤ dH , the risk bound may be re-formulated

thusly:

R (λ) < Remp (λ|Y) +

√√√√√
(⌈

D2

ρ2

⌉
+ 1
)(

log

(
2N⌈
D2

ρ2

⌉
+1

)
− log

(
η
4

))

N

The term 1
2
wTw in the primal formulation of the SVM optimisation problem

attempts to maximise ρ, thereby making it more likely that classifiers with larger

margins of separation will be chosen in preference to those with small margins of

separation, which is basically SRM at work (i.e. preferential consideration given to

those classifiers which minimise the VC dimension, h, and therefore minimise the

risk bound).

So the identification:

φ (λ) = 1
2
wTw

Remp (λ|Y) = 1
N

t(∗)Tξ(∗)

so that:

R (w, b) = Rreg (λ|Y) = φ (λ) + CRemp (λ|Y)

is reasonable.

This explains why SVMs are able to generalise well despite their potentially ex-

cessive VC dimension - during training, they tune the VC dimension to be sufficient

to avoid underfitting but not large enough to cause the risk bound to blow out and
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Figure 4.3: The alternative views of kernel mapping.

cause overfitting. It also highlights the importance of choosing C with care.

4.3 Kernel Geometry

As already stated, the standard interpretation of the Mercer kernel in the SVM

setting is to treat it as a standard dot product between two vectors that are first

mapped to feature space using a non-linear feature map, as shown schematically in

figure 4.3. Thus, although SVM methods are non-linear in nature, they correspond to

a linear problem in some higher dimensional feature space. Under this interpretation,

the kernel function is simply a means of hiding the complexity of this feature space,

thereby circumventing (to some degree) the so-called “curse of dimensionality”.

While this is, strictly speaking, all that is necessarily to understand SVM meth-

ods, it is none-the-less instructive to look at the non-Euclidean geometry induced on

input space from feature space by the non-linear feature map in more detail (follow-

ing the work of [12]) to gain further insight into the structure of input space, which

can be useful when choosing an appropriate kernel function for a given training set.

It is assumed that ϕ : <dL → <dH ⊂ C∞. As usual, feature space is assumed to

be Euclidean (and hence equipped with the usual Euclidean metric). The input space
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is assumed to be a (torsionless) Riemann manifold with coordinates inherited from

the implicit coordinate system already existing on the input space. For notational

simplicity, S is defined to be the input space, and F the associated feature space.

So ϕ : S → F . Lower case Latin indices (i, j etc) range from 1 to dL, and lower

case greek indices (α, β etc) from 1 to dH . The Einstein summation convention

of automatic summation over repeated indices of different types (one raised, one

lowered) will be used. Appendix B gives a short introduction to the necessary

background to the essentials of differential geometry.

4.3.1 Constructing the Metric Tensor on Input Space

The following is largely based on [12]. For an SVM there exist two spaces, input

space S and feature space F , connected by some map ϕ : S → F . Feature space is

Euclidean with standard orthonormal coordinates, and has metric δαβ. Given two

points ξα and τα in feature space, the shortest path from ξα to τα (the geodesic) is

the curve σα (t) = tξα + (1− t) τα, where 0 ≤ t ≤ 1. If ξα and τα both lie on the

decision surface, so will all points on the geodesic.

Moreover, any smooth curve σα (t), 0 ≤ t ≤ 1 between ξα and τα in feature space

will have length:

l (σ) =

∫ 1

0

√
δαβ

∂σα

∂t

∂σβ

∂t
dt

and the geodesic represents the shortest path, using this measure.

Now consider two points xi and yi in input space, where ξα = ϕα (xi) and

τα = ϕα (yi), along with a smooth curve ci (t), 0 ≤ t ≤ 1, between these points in

input space. The length of this curve in (non-Euclidean) input space is:

l (c) =

∫ 1

0

√
gαβ

∂xα

∂t

∂xβ

∂t
dt

where gαβ is the metric tensor in input space.

Suppose that the curve σα (t), 0 ≤ t ≤ 1 in feature space is the image of the

curve ci (t), 0 ≤ t ≤ 1 in input space under the feature map ϕ : S → F . Now, if xi

were a training vector, and yi some point on the decision surface, then the distances
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l (c) in input space and l (σ) in feature space should be the same. In general, this

does not restrict either xi or yi, and so it is sensible to require that the length of all

curves c in input space must correspond to the length of the image of that curve in

feature space.

Consider the infinitesimal path from xi to xi + dxi in input space. The squared

length of the image of this path mapped to feature space is:

ds2 = δαβ (ϕα (xi + dxi)− ϕα (xi))
(
ϕβ (xi + dxi)− ϕβ (xi)

)

= K (x + dx,x + dx)−K (x + dx,x)−K (x,x + dx) +K (x,x)

To second order:

K (x + dx,x + dx) = K (x,x) +
(

∂
∂xi
K (x,y)

)∣∣∣
y=x

dxi +
(
∂
∂xi
K (y,x)

)∣∣
y=x

dxi

+ 1
2

(
∂2

∂xi∂xj
K (x,x)

)
dxidxj

K (x + dx,x) = K (x,x) +
(
∂
∂xi
K (x,y)

)∣∣
y=x

dxi

+ 1
2

(
∂2

∂xi∂xj
K (x,y)

)∣∣∣
y=x

dxidxj

K (x,x + dx) = K (x,x) +
(
∂
∂xi
K (y,x)

)∣∣
y=x

dxi

+ 1
2

(
∂2

∂xi∂xj
K (y,x)

)∣∣∣
y=x

dxidxj

Using the symmetry K (x,y) = K (y,x), it follows that in feature space:

ds2 =

(
1

2

(
∂

∂xi
∂

∂xj
K (x,x)

)
−
(
∂

∂yi
∂

∂yj
K (x,y)

))

y=x

dxidxj

Therefore the induced metric in input space (at x) is:3

gij =

(
1

2

(
∂

∂xi
∂

∂xj
K (x,x)

)
−
(
∂

∂yi
∂

∂yj
K (x,y)

))

y=x

(4.16)

So, given any kernel function, (4.16) may be used to calculate the metric gij in

3Amari and Wu [4] obtain the result:

gij =
(

∂

∂xi
∂

∂yj
K (x,y)

)

x=y

However, this result is only correct for kernels of the form K (f (x− y)), and may fail otherwise.
Note however that as [4] only considers the RBF kernel in detail, this mistake does not effect the
validity of the method presented in [4].
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input space induced by the feature map implicitly defined by this kernel function.

While the reverse process (using a metric to construct a kernel function) is in prin-

ciple possible using equation (4.16), care must be taken to ensure that the result

satisfies Mercer’s condition. Furthermore, there is no guarantee of uniqueness (for

example, the RBF kernel and the linear dot-product kernel are both associated with

the same (up to linear scaling) metric).

It should be noted that geodesics in input space do not necessarily map to

geodesics in feature space (as there is no guarantee that the shortest path in feature

space will even lie in the image of the input space in feature space). Furthermore,

the decision surface in input space need not be geodesic (flat) in input space - it

is the pre-image of the intersection of the decision surface in feature space and the

image of input space in feature space.

4.3.2 The Metric Kernel for Euclidean Difference Kernels

A Euclidean distance kernel function K (x,y) is kernel which is a function of the

Euclidean distance ‖x− y‖2 - that is, K (x,y) = K
(‖x− y‖2) (i.e. K (x,y) =

K (δmn(xm − ym)(xn − yn))). For this case, it can be shown [12] that:

gij = −2δijK
′ (0)

gij = −δij
2K′(0)

Γijk = 0

Γij
k = 0

where K ′ (r) = ∂K(r)
∂r

. Note that this implies that the curvature induced by the

kernel mapping is zero, and hence the space is flat (Ri
jkl = 0). The volume element

is:

dV =

√
(−2K ′ (0))dLdxdL

An example of this kind of kernel function is the standard RBF kernel:

K (z) = e−
z

2σ2

K ′ (z) = − 1
2σ2 e

− z
2σ2



56 Chapter 4. SUPPORT VECTOR MACHINE BASICS

wherein:

gij = σ−2δij

gij = σ2δij

Γijk = 0

Γij
k = 0

Note also that dV = σ−dLdxdL . Thus the parameter σ in the standard RBF kernel

may be interpreted as a scale on the volume of input space. The smaller σ is, the

more compressed the induced input space will be (i.e. more volume in an apparently

small area). Alternately, and equivalently, it may be interpreted as meaning that

a smaller σ means the scale on the axis of input space is more stretched, thereby

increasing the volume encompassed by an arbitrary cube constructed on these axis.

4.3.3 The Metric Kernel for Dot Product Kernels

A dot product kernel is a kernel function K (x,y) which is actually just a function

of the dot product xTy - that is, K (x,y) = K
(
xTy

)
= K (δmnx

myn). Hence [12]:4

gij = δijK
′ + δmiδnjx

mxnK ′′

gij = δij 1
K′ − xixj K′′

K′(K′+zK′′)

Γijk = δmiδnjδqkx
mxnxqK ′′′ + 2δq{iδj}kxqK ′′

Γij
k = δmiδnjx

mxnxk K
′′′K′−2K′′2

K′(K′+zK′′) + 2δq{iδj}kxq K
′′′
K′

where K = K (z), K ′ = ∂K
∂z

(z), K ′′ = ∂2K
∂z2 (z), etc; and z = δmnx

mxn. So, as

expected, the metric and connection are both spherically symmetric about the origin

for all dot product kernels.

Calculation of the curvature tensor for the general case here is rather difficult

due to the number of terms involved, and not particularly informative in any case.

Therefore I will not give the exact expression for the curvature in the general case.

Suffice to say that it is non-zero.

4There is a minor abuse of notation in [12], wherein the definition xi = δijx
j is used rather than

the standard xi = gijx
j (the former is only true if gij (x) = δij).
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One example of a dot product kernel is the quadratic kernel:

K (z) = (1 + z)2

K ′ (z) = 2 (1 + z)

K ′′ (z) = 2

K ′′′ (z) = 0

K ′′′′ (z) = 0

therefore:

gij = 2 (1 + z) δij + 2δimδjnx
mxn

gij = δij

2(1+z)
− xixj

2(1+z)(1+2z)

Γijk = 4δq{iδj}kxq

Γij
k = −2δimδjnx

mxnxk

(1+z)(1+2z)

Ri
jkl = 4

(
δjmδn[kδl]

ixmxn−δj[kδl]mxmxi
(1+z)(1+2z)

)

The volume element for a general dot product kernel is:

dV =
√

det (δijK ′ + δimδjnxmxnK ′′)dxdL

or, writing in matrix notation:

dV =
√

det (K ′ (xTx) I +K ′′ (xTx) xxT )dxdL

This may be simplified further using the following theorem:

Theorem 4.4. For any n-dimensional vector b, det
(
I + bbT

)
= 1 + bTb.

Proof. See appendix E.

Hence:

dV =

√
(K ′ (xTx))dL

(
1 +

K ′′ (xTx)

K ′ (xTx)
xTx

)
dxdL

For the quadratic kernel given above, then, the volume element will be:

dV =

√
2dL (1 + xTx)dL−1 (1 + 2xTx)dxdL



58 Chapter 4. SUPPORT VECTOR MACHINE BASICS

4.4 Support Vector Machine Regression

For regression, the training set is:

Y = Y= = {(x1, z1) , (x2, z2) , . . . , (xN , zN)}
xi ∈ <dL
zi ∈ <

(4.17)

Motivated by the SVM method for pattern recognition, it is usual to define a

map ϕ : <dL → <dH from input space to feature space. The system is approximated

using the following linear function of position (in feature space):

g (x) = wTϕ (x) + b

where λ = (w, b) is the parameter set. Following the template of the pattern recog-

nition case, the cost function is modelled on the empirical risk formula, namely:

R (w, b) = Rreg (λ|Y) = CRemp (λ|Y) + φ (λ)

where:

φ (λ) =
1

2
wTw

To understand this choice, note that:

∂g(x)
∂x

=
dH∑
i=1

wi
∂ϕi(x)
∂x

=
√

wTw
dH∑
i=1

ŵi
∂ϕi(x)
∂x

where ŵ is a unit vector in the direction of w. So, to first order:

g (x + δx) = g (x) +
√

wTw

(
dH∑
i=1

ŵi
∂ϕi (x)

∂x

)T

δx + . . .

If the inputs x (training data or otherwise) are affected by noise δx, the magni-

tude of the error seen at the output will be proportional to
√

wTw. Hence minimising
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Figure 4.4: Vapnik’s ε-insensitive cost function (ε = 1 in this case).

φ (λ) will minimise the noise sensitivity of the of the regressor. Geometrically, this

term flattens the function in feature space (minimises the gradient).

The choice of cost function is motivated by the dual objectives of computational

simplicity and machine veracity. Ideally, motivated by the maximum likelihood

theory of section 3.3, the cost function used would be the maximum likelihood cost

for the type of noise affecting the training data. This is not practical for two main

reasons:

• Incomplete knowledge - the type of noise present in the training data may not

be known.

• Computational complexity - it may not be practical to use this cost function

for reasons of computational complexity.

Vapnik [94] [95] suggests the following loss function (called the ε-insensitive loss

function) as a compromise:

c (x, y, z) = |y − z|ε =





0 if |y − z| ≤ ε

|y − z| − ε otherwise
(4.18)

where it is assumed that ε ≥ 0. This is shown in figure 4.4.

The parameter ε inserts a “dead-zone” so that training errors below this threshold
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do not contribute the cost. This is beneficial when dealing with noisy data, as it

lends a degree of noise insensitivity to the cost function. Hence a simple choice of

cost function [47] is:

Remp (λ|Y) =
1

N

∑

i:(xi,zi)∈Y

ti
∣∣wTϕ (xi) + b− zi

∣∣
Eεi

for ti > 0, εi ≥ 0 for all i, and E ≥ 0.

So, overall:

R1 (w, b) =
1

2
wTw +

C

N

∑

i:(xi,zi)∈Y

ti
∣∣wTϕ (xi) + b− zi

∣∣
Eεi

(4.19)

For mathematical convenience, this equation is usually re-written in terms of the

non-negative slack variables ξ defined by:

ξi ≥
∣∣wTϕ (xi) + b− zi

∣∣
Eεi
∀i : (xi, zi) ∈ Y

ξ ≥ 0

thusly:

R1 (w, b, ξ) =
1

2
wTw +

C

N
tTξ

so the primal form of the SVM regression problem is:

min
w,b,ξ

R1 (w, b, ξ) = 1
2
wTw + C

N
tTξ

such that: ξi ≥
∣∣wTϕ (xi) + b− zi

∣∣
Eεi
∀i : (xi, zi) ∈ Y=

ξ ≥ 0

(4.20)

More generally, it may be desirable to make the cost function asymmetrical -

that is, apply a different penalty if g (λ) is to large than would be applied if it was
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too small. This gives the final primal form:

min
w,b,ξ,ξ∗

R1 (w, b, ξ, ξ∗) = 1
2
wTw + C

N
tTξ + C

N
t∗Tξ∗

such that: wTϕ (xi) + b ≥ zi − Eεi − ξi∀i : (xi, zi) ∈ Y=

wTϕ (xi) + b ≤ zi + Eε∗i + ξ∗i ∀i : (xi, zi) ∈ Y=

ξ ≥ 0

ξ∗ ≥ 0

(4.21)

Note that, for regression, both ε and ε∗ must be positive vectors, whereas for

pattern recognition they were negative (more on this later). Note also that one of ξi

and ξ∗i will be zero for all i. Of course, there is (in this case) no reason to define ε

and ε∗ separately, as the effect of having εi 6= ε∗i will be the same as that of adding

a bias to zi. However, this differentiation of terms will be required later.

Geometrically, this regression formulation may be visualised as shown in figure

4.5. In this interpretation, feature space is extended by 1 dimension, namely z.

The training points in this (extended) feature space are (ϕ (xi) , zi), and one aims

to construct an ε-tube (a tube whose width along the z axis is ε, as shown in the

figure), such that all (extended) training points lie inside this tube (or as close to

the tube as possible if this is not achievable), and the tube itself is as flat as possible

with respect to the z axis. The empirical risk term of the cost function works toward

the former goal, and the regularisation term the latter.

4.4.1 The Dual and Partially Dual Forms

As for pattern recognition, the primal form (4.21) of the regression problem may

not be convenient to solve directly, especially if dH is large. Hence the dual form is

usually used instead, and is derived as follows.

There are three inequalities in (4.21). Following the same approach as was used

when constructing the dual form for SVMs for pattern recognition, introduce four

vectors of Lagrange multipliers, β ≥ 0, β∗ ≤ 0 and γ ≥ 0 and γ∗ ≥ 0 associ-

ated with the four constraints in the primal (4.21) in the usual fashion. Using this
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Figure 4.5: Geometric interpretation of the standard SV regressor.

notation, the maximin form of (4.21) will be:

min
w,b,ξ,ξ∗

max
β,β∗,γ ,γ∗

L1 = 1
2
wTw + C

N
tTξ + C

N
t∗Tξ∗ − γTξ − γ∗Tξ∗

− ∑
i:(xi,zi)∈Y=

βi
((

wTϕ (xi) + b
)− zi + Eεi + ξi

)

− ∑
i:(xi,zi)∈Y=

β∗i
((

wTϕ (xi) + b
)− zi − Eε∗i − ξ∗i

)

such that: β ≥ 0

β∗ ≤ 0

γ ≥ 0

γ∗ ≥ 0

(4.22)

Now, given that E ≥ 0, ε ≥ 0 and ε∗ ≥ 0, it follows from the primal (4.21) that

one or both of ξi or ξ∗i must be zero for all i. Therefore one may define two new

vectors, ξ(∗) and γ(∗), where:

ξ
(∗)
i =





ξi if ξ∗i = 0

ξ∗i otherwise

γ
(∗)
i =





γi if ξ∗i = 0

γ∗i otherwise

Furthermore, for any given i, at most one of the first two constraints on the
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primal (4.21) can be met exactly (where by “met exactly” I mean that the two sides

of the expression are equal).5 Hence at least one of βi and β∗i must be zero for all i.

This makes it possible to define a new vector α (or, alternatively, β(∗)) where:

αi = β
(∗)
i =





βi if β∗i = 0

β∗i otherwise

Using this notation, (4.22) may be re-written thusly:

min
w,b,ξ(∗)

max
α,γ(∗)

L1 = 1
2
wTw + C

N
t(∗)Tξ(∗) − γ(∗)Tξ(∗)

− ∑
i:(xi,zi)∈Y=∧αi>0

αi

((
wTϕ (xi) + b

)− zi + Eεi + ξ
(∗)
i

)

− ∑
i:(xi,zi)∈Y=∧αi<0

αi

((
wTϕ (xi) + b

)− zi − Eε∗i − ξ(∗)
i

)

such that: γ(∗) ≥ 0

Solving for the primal variables:

∂L1

∂w
= 0 ⇒ w =

∑
i:(xi,zi)∈Y=

αiϕ (xi)

∂L1

∂b
= 0 ⇒ 1Tα = 0

∂L1

∂ξ(∗) = 0 ⇒ αi + γ
(∗)
i = C

N
ti if αi ≥ 0

⇒ −αi + γ
(∗)
i = C

N
t∗i if αi < 0

Hence the dual form of (4.21) may be written:

min
α

Q1 (α) = 1
2
αTKα−αTz + E|α|Tε(∗)

such that: −C
N

t∗ ≤ α ≤ C
N

t

1Tα = 0

(4.23)

5Technically, this assumes that E (εi + ε∗i ) > 0 for all 1 ≤ i ≤ N , which may not be true in all
cases. For a complete derivation including this case, see appendix A. This has no effect on the end
result.
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where K is defined in the same way as for pattern recognition, and:

ε
(∗)
i =





εi if αi ≥ 0

ε∗i if αi < 0

As for pattern recognition:

g (λ) (y) =
N∑
i=1
αi 6=0

αiK (xi,y) + b (4.24)

and:

b = −E sgn (αj) ε
(∗)
j −

N∑
i=1
αi 6=0

αiKi,j∀j ∈
{

1 ≤ j ≤ N | 0 < |αj| < Ctj
N

}

The presence of |α|, and also the vector ε(∗) (which is implicitly a function of

sgn (α)) in the dual form (4.23) may cause concern. However, re-writing (4.23) in

terms of β and β∗ the dual becomes:

min
β,β∗

Q1 (β,β∗) = 1
2


 β

β∗



T
 K K

K K




 β

β∗


−


 β

β∗



T
 z− Eε

z + Eε∗




such that: 0 ≤ β ≤ C
N

t

−C
N

t∗ ≤ β∗ ≤ 0

1Tβ − 1Tβ∗ = 0

(4.25)

Now,


 K K

K K


 is positive semidefinite (as K is positive semidefinite) and the

constraints are linear, so the (4.23) will be convex. I choose to consider (4.23)

because, like (4.12), it does not present any real computational difficulty and also

makes the relationship between pattern recognition and regression forms of the SVM

clearer. Also, the number of variables α is half the number contained in (4.25).

As for pattern recognition, the equality constraint present in (4.23) may be re-
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moved by considering instead the partially dual form, which is:

min
α

max
b
QL1 (α, b) = 1

2


 b

α



T

H


 b

α


−


 b

α



T 
 0

z


+ E

∣∣∣∣∣∣
b

α

∣∣∣∣∣∣

T 
 0

ε(∗)




such that: −C
N

t∗ ≤ α ≤ C
N

t

(4.26)

where:

H =


 0 1T

1 K




The stationary or KKT (Karush-Kuhn-Tucker) conditions for the program (4.13),

see [40], are as follows:

α ≥ −C
N

t∗

α ≤ C
N

t

f = 0

ei





∈ [zi − Eεi, zi + Eε∗i ] if αi = 0

= zi − Eεi if 0 < αi <
C
N
ti

≤ zi − Eεi if αi = C
N
ti

= zi + Eε∗i if − C
N
t∗i < αi < 0

≥ zi + Eε∗i if αi = −C
N
t∗i

(4.27)

where: 
 f

e


 = H


 b

α


 (4.28)

Once again, ei = g (xi) for all training vectors.
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Chapter 5

EXTENSIONS TO THE BASIC SVM METHOD

With sufficient thrust, pigs fly just fine. However, this is not necessarily

a good idea. It is hard to be sure where they are going to land, and it

could be dangerous sitting under them as they fly overhead.

– RFC 1925

5.1 Regression with Inequalities

O
ne simple extension of the SVM regression problem is the inclusion of in-

equalities in the training data. For example, it may be necessary to impose

constraints on a system so that the output, given a particular input, stays within

certain physically realisable bounds. In this section, I describe how this may be

achieved.

First, extend the training set thusly.

Y = {(x1, z1) , (x2, z2) , . . . , (xN , zN)}
Y = Y= ∪Y≥ ∪Y≤

Y≥ ∩Y≤ = Y= ∩Y≤ = Y= ∩Y≥ = ∅
xi ∈ <dL
zi ∈ <

(5.1)

The set Y= is the usual regression training set. Points in the set Y≥ are those

points which are to be used as lower bounds (that is, it is required that g (λ) (xi) ≥
zi − Eεi, where Eεi here is a “margin of error” akin to the ε-insensitive region of

(4.18)) and likewise points in Y≤ are to be used as upper bounds (i.e. g (λ) (xi) ≤

67
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zi + Eεi). The primal is:

min
w,b,ξ,ξ∗

R1 (w, b, ξ, ξ∗) = 1
2
wTw + C

N
tTξ + C

N
t∗Tξ∗

such that: wTϕ (xi) + b ≥ zi − Eεi − ξi∀i : (xi, zi) ∈ Y= ∪Y≥

wTϕ (xi) + b ≤ zi + Eε∗i + ξ∗i ∀i : (xi, zi) ∈ Y= ∪Y≤

ξ ≥ 0

ξ∗ ≥ 0

(5.2)

where εi ≥ 0, ε∗i ≥ 0 for all (xi, zi) ∈ Y= (there are two reasons for this assump-

tion. Practically, it is a convenience factor which makes forming the dual problem

significantly simpler. Philosophically, as regression with inequalities is an extension

of the standard regression problem, it is required to maintain consistency between

the two). No constraint is placed on εi when (xi, zi) /∈ Y=.

The maximin form of (5.2) is:

min
w,b,ξ,ξ∗

max
β,β∗,γ ,γ∗

L1 = 1
2
wTw + C

N
tTξ + C

N
t∗Tξ∗ − γTξ − γ∗Tξ∗

− ∑
i:(xi,zi)∈Y=∪Y≥

βi
((

wTϕ (xi) + b
)− zi + Eεi + ξi

)

− ∑
i:(xi,zi)∈Y=∪Y≤

β∗i
((

wTϕ (xi) + b
)− zi − Eε∗i − ξ∗i

)

such that: β ≥ 0

β∗ ≤ 0

γ ≥ 0

γ∗ ≥ 0

(5.3)

As for regression, it may be noted that for all (xi, zi) ∈ Y= only one of the

constraints:

wTϕ (xi) + b ≥ zi − Eεi − ξi
wTϕ (xi) + b ≤ zi + Eε∗i + ξ∗i

may be met exactly (i.e. left side equals right side).1 So at least one of βi and β∗i

1Technically, this assumes that E (εi + ε∗i ) > 0 for all 1 ≤ i ≤ N such that (xi, zi) ∈ Y=, which
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will be zero for all (xi, zi) ∈ Y=. Likewise, at least one of ξi and ξ∗i will be zero for

all (xi, zi) ∈ Y=. Hence it is possible to define the vectors α (alternatively written

β(∗)), ξ(∗), γ(∗) and ε(∗) using:

ξ
(∗)
i =





ξi if (ξ∗i = 0 ∧ (xi, zi) ∈ Y=) ∨ (xi, zi) ∈ Y≥

ξ∗i otherwise

γ
(∗)
i =





γi if (ξ∗i = 0 ∧ (xi, zi) ∈ Y=) ∨ (xi, zi) ∈ Y≥

γ∗i otherwise

ε
(∗)
i =





εi if (β∗i = 0 ∧ (xi, zi) ∈ Y=) ∨ (xi, zi) ∈ Y≥

ε∗i otherwise

αi =





βi if (β∗i = 0 ∧ (xi, zi) ∈ Y=) ∨ (xi, zi) ∈ Y≥

β∗i otherwise

such that the maximin problem may be re-written as:

min
w,b,ξ(∗)

max
α,γ(∗)

L1 = 1
2
wTw + C

N
t(∗)Tξ(∗) − γ(∗)Tξ(∗)

− ∑
i:(xi,zi)∈Y=∪Y≥,αi≥0

αi

((
wTϕ (xi) + b

)− zi + Eε
(∗)
i + ξ

(∗)
i

)

− ∑
i:(xi,zi)∈Y=∪Y≤,αi<0

αi

((
wTϕ (xi) + b

)− zi − Eε(∗)i − ξ(∗)
i

)

such that: αi ≥ 0∀i : (xi, zi) ∈ Y≥

αi ≤ 0∀i : (xi, zi) ∈ Y≤

γ(∗) ≥ 0

Following the usual method (details in appendix A) to remove the primal vari-

ables, it is not difficult to show that the dual form of regression with inequalities

may not be true in all cases. For a complete derivation including this case, see appendix A. This
has no effect on the end result.
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is:

min
α

Q1 (α) = 1
2
αTKα−αTz + E|α|Tε(∗)

such that: −C
N
t∗i ≤ αi ≤ 0∀i : (xi, zi) ∈ Y≤

0 ≤ αi ≤ C
N
ti∀i : (xi, zi) ∈ Y≥

−C
N
t∗i ≤ αi ≤ C

N
ti∀i : (xi, zi) ∈ Y=

1Tα = 0

(5.4)

As was the case for regression, the presence of both |α| and the vector ε(∗)

(which is implicitly dependent on sgn (α)) is merely a convenience factor. They

may be removed by appropriately re-expressing (5.4) in terms of β and β∗. The

form of g (λ) and b is the same as for regression.

The partially dual form (H as before) of the problem is:

min
α

max
b
QL1 (α, b)= 1

2


 b

α



T

H


 b

α


−

 b

α



T
 0

z


+E

∣∣∣∣∣∣
b

α

∣∣∣∣∣∣

T
 0

ε(∗)




such that: −C
N
t∗i ≤ αi ≤ 0∀i : (xi, zi) ∈ Y≤

0 ≤ αi ≤ C
N
ti∀i : (xi, zi) ∈ Y≥

−C
N
t∗i ≤ αi ≤ C

N
ti∀i : (xi, zi) ∈ Y=

(5.5)

and has the KKT conditions:

αi ≤




C
N
ti if (xi, zi) ∈ Y= ∪Y≥

0 if (xi, zi) ∈ Y≤

αi ≥




0 if (xi, zi) ∈ Y≥

−C
N
t∗i if (xi, zi) ∈ Y= ∪Y≤

ei





≥ zi − Eεi if αi = 0 ∧ (xi, zi) ∈ Y= ∪Y≥

= zi − Eεi if 0 < αi <
C
N
ti

≤ zi − Eεi if αi = C
N
ti

≤ zi + Eε∗i if αi = 0 ∧ (xi, zi) ∈ Y= ∪Y≤

= zi + Eε∗i if − C
N
t∗i < αi < 0

≥ zi + Eε∗i if αi = −C
N
t∗i

f = 0

(5.6)
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where: 
 f

e


 = H


 b

α


 (5.7)

As before, ei = g (xi).

5.1.1 Regression With Inequalities as a Superset of Regres-

sion and Pattern Recognition

It turns out that both regression and pattern recognition may be done under the

general framework of regression with inequalities - that is, the regression with in-

equalities SVM formulation is a superset of the regression and pattern classification

SVM formulations.

Firstly, note that the final form of g (λ) (in terms of α and b) is the same for all

the types of SVM considered thus far. Hence to show equivalence all that is required

is to show equivalence of α and b obtained using the different methods.

Now consider the regression with inequalities primal, (5.2). In the special case

when Y≤ = Y≥ = ∅ this may be reduced to:

min
w,b,ξ,ξ∗

R1 (w, b, ξ, ξ∗) = 1
2
wTw + C

N
tTξ + C

N
t∗Tξ∗

such that: wTϕ (xi) + b ≥ zi − Eεi − ξi∀i : (xi, zi) ∈ Y=

wTϕ (xi) + b ≤ zi + Eε∗i + ξ∗i ∀i : (xi, zi) ∈ Y=

ξ ≥ 0

ξ∗ ≥ 0

But this is precisely identical to the regression primal problem, (4.21), and so

will have same global solution (or solutions). Clearly, then, it is possible to use the

general regression with inequalities SVM for the task of regression by the simple

expediency of choosing Y≤ = Y≥ = ∅.

Alternatively, consider the regression with inequalities primal, (5.2), but this
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time with the requirements Y= = ∅, z = 0 and ε, ε∗ ≤ 0. Then the primal becomes:

min
w,b,ξ,ξ∗

R1 (w, b, ξ, ξ∗) = 1
2
wTw + C

N
tTξ + C

N
t∗Tξ∗

such that: wTϕ (xi) + b ≥ −Eεi − ξi∀i : (xi, 0) ∈ Y≥

wTϕ (xi) + b ≤ Eε∗i + ξ∗i ∀i : (xi, 0) ∈ Y≤

ξ ≥ 0

ξ∗ ≥ 0

which is precisely identical to the pattern classification primal, (4.10), except for

a minor notational inconsistency in the definition of the sets Y≥ and Y≤, namely

that in the pattern classification formulation, elements of these sets are vectors

xi, whereas for regression with inequalities, these elements are pairs of the form

(xi, zi). This notational inconsistency may be overcome by defining the shorthand

that xi ∈ YT is equivalent to (xi, zi) ∈ YT - that is, unless zi is given explicitly,

assume that it is zero.

To summarise:

• A (pure) regression SVM (or SV regressor (SVR)) is equivalent to a regression

with inequalities SVM where Y≤ = Y≥ = ∅.

• A pattern classification SVM (or SV classifier (SVC)) is equivalent to a regres-

sion with inequalities SVM where Y= = ∅, z = 0 and ε, ε∗ ≤ 0.

An important implication of this is that many results and techniques may be

applied directly to regression with inequalities, rather than separately to pattern

classification and regression, thereby halving the amount of work needed.

Given this “equivalence” between the various forms of SVM, the obvious ques-

tion is: what is the relationship between the max-margin principle (for pattern

recognition) and gradient flattening (for regression)? To answer this question, con-

sider figure 5.1, which shows the graph of g (x) as distance above (or below) feature

space. For the two boundary vectors shown, the perpendicular distance between the

support vector xi in feature space and the graph g (xi) is fixed. If the margin of

separation is ρ then the gradient is
ε
(∗)
i +ε

(∗)
j

ρ
. Clearly, minimising this gradient will
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Figure 5.1: Relationship between the concepts of max-margin (for the pattern recog-
nition case and graph flattening (for the regression case). (a) shows the max-margin
case, and (b) a non-optimal margin. Note that the gradient of the surface is smaller
in case (a) - i.e. it is “flatter”.

maximise ρ, and vice-versa. This explains the connection between the two concepts.

5.2 Fixed Bias SVMs

In some cases, it is convenient to make the bias term b in the SVM problem a

constant, rather than a variable for optimisation. Indeed, in section 5.3 it will be

shown that the bias term b is essentially superfluous for the pattern recognition

problem if the kernel function is selected appropriately.

The effect of making b constant is minimal (for details, see appendix A). The

primal problem (5.2) becomes:

min
w,ξ,ξ∗

R1 (w, ξ, ξ∗) = 1
2
wTw + C

N
tTξ + C

N
t∗Tξ∗

such that: wTϕ (xi) + b ≥ zi − Eεi − ξi∀i : (xi, zi) ∈ Y= ∪Y≥

wTϕ (xi) + b ≤ zi + Eε∗i + ξ∗i ∀i : (xi, zi) ∈ Y= ∪Y≤

ξ ≥ 0

ξ∗ ≥ 0

(5.8)

which is unchanged, except that b is now a constant. Skipping the intermediate
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steps, the dual problem is:

min
α

Q1 (α) = 1
2
αTKα+αT1b−αTz + E|α|Tε(∗)

such that: −C
N
t∗i ≤ αi ≤ 0∀i : (xi, zi) ∈ Y≤

0 ≤ αi ≤ C
N
ti∀i : (xi, zi) ∈ Y≥

−C
N
t∗i ≤ αi ≤ C

N
ti∀i : (xi, zi) ∈ Y=

(5.9)

There is no partially dual form in this case. The KKT conditions are as follows:

αi ≤




C
N
ti if (xi, zi) ∈ Y= ∪Y≥

0 if (xi, zi) ∈ Y≤

αi ≥




0 if (xi, zi) ∈ Y≥

−C
N
t∗i if (xi, zi) ∈ Y= ∪Y≤

ei





≥ zi − Eεi if αi = 0 ∧ (xi, zi) ∈ Y= ∪Y≥

= zi − Eεi if 0 < αi <
C
N
ti

≤ zi − Eεi if αi = C
N
ti

≤ zi + Eε∗i if αi = 0 ∧ (xi, zi) ∈ Y= ∪Y≤

= zi + Eε∗i if − C
N
t∗i < αi < 0

≥ zi + Eε∗i if αi = −C
N
t∗i

(5.10)

where:

e = Kα+ 1b (5.11)

As before, ei = g (xi).

5.3 Automatic Biasing

Consider the primal form of the SVM problem, (5.2). As was shown in section 4.2,

the first term in the cost is actually a regularisation term for w. In [55], Mangasarian

showed that by adding an additional regularisation term for the bias, b, it is possible

to simplify the dual form (5.4) so that the equality constraint 1Tα = 0 is removed

(making the partially dual form of the problem superfluous).
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Mangasarian’s extension of (5.2) is:

min
w,b,ξ,ξ∗

R1 (w, b, ξ, ξ∗) = 1
2
wTw + β

2
b2 + C

N
tTξ + C

N
t∗Tξ∗

such that: wTϕ (xi) + b ≥ zi − Eεi − ξi∀ (xi, zi) ∈ Y= ∪Y≥

wTϕ (xi) + b ≤ zi + Eε∗i + ξ∗i ∀ (xi, zi) ∈ Y= ∪Y≤

ξ ≥ 0

ξ∗ ≥ 0

(5.12)

and differs from (5.2) by the addition of the new term β
2
b2 (β > 0), which is a

regularisation term for b (Mangasarian further required that β = 1). It is essentially

trivial (appendix A) to show that the dual form of this is:

min
α

Q1 (α) = 1
2
αT
(
K + 1

β
11T

)
α−αTz + E|α|Tε(∗)

such that: −C
N
t∗i ≤ αi ≤ 0∀i : (xi, zi) ∈ Y≤

0 ≤ αi ≤ C
N
ti∀i : (xi, zi) ∈ Y≥

−C
N
t∗i ≤ αi ≤ C

N
ti∀i : (xi, zi) ∈ Y=

(5.13)

where b = 1
β
1Tα. The discriminant g (λ) takes its usual form (4.24). As (5.13)

contains no equality constraints, there is no need to form the partial dual. This

form has the advantage of the partially dual form of the standard SVM, insofar

as it lacks an equality constraint. Furthermore, the hessian in this case is positive

semidefinite, not indefinite as was the case for the partially dual form, which makes

optimisation marginally simpler.

While this form certainly has advantages over the usual form, some care is re-

quired. In particular, the use of automatic biasing in the context of SVM regression

is not advised for reasons that will be discussed in the following section.

5.3.1 Geometric Interpretation

In [79], I showed how this idea may be interpreted geometrically. Given a feature

map ϕ : <dL → <dH , an augmented feature map ϕb : <dL → <dH+1 may be defined
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to thusly:

ϕb(x) =


 ϕ(x)

1




by identifying wb =


 w

b


. Using this notation, it follows that:

g (λ) (x) = wTϕ (x) + b

= wT
b ϕb (x)

and hence the modified primal problem (5.12) may be re-written:

min
wb,ξ,ξ

∗R1 (wb, ξ, ξ
∗) = 1

2
wT
b Qwb + C

N
tTξ + C

N
t∗Tξ∗

such that: wT
b ϕb (xi) ≥ zi − Eεi − ξi∀ (xi, zi) ∈ Y= ∪Y≥

wT
b ϕb (xi) ≤ zi + Eε∗i + ξ∗i ∀ (xi, zi) ∈ Y= ∪Y≤

ξ ≥ 0

ξ∗ ≥ 0

(5.14)

where:

Q =


 I 0

0T β




Clearly, 1
2
wT
b Qwb = 1

2
‖wb‖2

Q is just a mildly non-Euclidean norm (and is pre-

cisely Euclidean if β = 1), and so (5.14) is essentially just the usual SVM primal

with explicit bias terms removed (as biasing is now implicit in the feature map).

Geometrically, this formulation is shown in figure 5.2 from a pattern recognition

standpoint (the regression interpretation will be dealt with later). In this diagram,

the original “feature space” is now a hyperplane in augmented feature space, ly-

ing at a fixed point on the (dH + 1)th axis. The decision surface associated with

g (λ) in augmented feature space passes through the origin in this space, but the

intersection with (non-augmented) feature space will not pass though the origin in

this (non-augmented) feature space. Thus there is an effective (automatic) bias in

feature space, which is selected implicitly when constructing the decision surface in
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Figure 5.2: Geometry of Automatic Biasing.

augmented feature space.

It is informative to consider the relationship between the margin of separation

ρb in augmented feature space and the margin of separation ρ in non-augmented

feature space. From (4.5):

ρ =
E
(
−ε(∗)i +−ε(∗)j

)
‖w‖2

ρb =
E
(
−ε(∗)i +−ε(∗)j

)
‖wb‖Q

Hence:

ρ = 1√√√√1−β ρ2
b
b2

E2(−ε(∗)i +−ε(∗)j )
2

ρb (5.15)

ρb = 1√
1+β ρ2b2

E2(−ε(∗)i +−ε(∗)j )
2

ρ (5.16)

Now, in the pattern recognition case, it is my experience that the affect of in-

cluding an “automatic biasing” term is essentially neutral in terms of performance

(although the parameter C may need to be adjusted to compensate for the narrower

margin of separation in augmented feature space). In the regression case, however,

this is not true. This is because, for the regression case, not only the sign, but

also the magnitude of g (λ) is of interest. The βb2 term in the cost function (5.13)

will pull the mean of {g (λ) (xi)} toward 0, causing a systematic bias in the result.
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Therefore use of automatic biasing for regression is not recommended.

From (5.16) it can bee seen that:

lim
β→0

ρb = ρ

5.3.2 The Connection with Fixed Bias SVMs

Consider the special case of automatic biasing where β = 1. The kernel function

associated with the augmented feature map is then:

Kb (x,y) = K (x,y) + 1

so the dual form of the automatically biased SVM may be re-written:

min
α

Q1 (α) = 1
2
αTKbα−αTz + E|α|Tε(∗)

such that: −C
N
t∗i ≤ αi ≤ 0∀i : (xi, zi) ∈ Y≤

0 ≤ αi ≤ C
N
ti∀i : (xi, zi) ∈ Y≥

−C
N
t∗i ≤ αi ≤ C

N
ti∀i : (xi, zi) ∈ Y=

(5.17)

where Kb is the kernel matrix associated with the augmented kernel mapping (so

Kbi,j = Kb (xi,xj) = K (xi,xj) + 1). Furthermore, it is not difficult to show that:

g (λ) (y) =
∑
xi∈X
αi 6=0

αiKb (xi,y)

But this is identical to the fixed bias SVM constructed using the kernel function

Kb (x,y) with fixed bias b = 0. So, in the special case β = 1, a fixed bias SVM

with b = 0 using the augmented kernel function will give the same result as an

automatically biased SVM using the original kernel.

Consider a Mercer kernel K (x,y) (for example, K (x,y) =
(
1 + xTy

)n
) such

that there exists a Mercer kernel K−b (x,y) and an associated positive constant

η > 0 such that:

K (x,y) = K−b (x,y) + η (5.18)
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A fixed bias SVM with b = 0 constructed using this Mercer kernel K (x,y) will

be equivalent to an automatically biased SVM with β = 1 constructed using the

Mercer kernel K−b (x,y) (the constant term η makes no practical difference, so long

as η > 0. Essentially, b → ηb). So, in a sense, the fixed bias SVM so constructed

contains an effective automatic (non-fixed) biasing term that is implicit in the Mercer

kernel. Indeed, this may be said of any fixed bias SVM constructed using a Mercer

kernel that may be split in this way.

5.4 Generalised Empirical Risk

Consider the primal form of the SVM regression problem, (4.21). If ε = 0 and t = 1

then the empirical risk component of this is just:

Remp (λ|Y) =
1

N

∑

i:(xi,zi)∈Y

∣∣wTϕ (xi) + b− zi
∣∣

From table 3.1, it can be seen that this cost function is optimal if the training

set is affected by Laplacian noise. If the training set is affected by non-Laplacian

noise, however, better results may be achieved by selecting a different cost function.

However, the selection process is somewhat limited by the practical requirement

that the resultant optimisation problem should not be too difficult or impractical

to solve. Therefore the process of selecting a cost function is a trade-off between

optimality and practicality, which is what motivated the original selection of:

Remp (λ|Y) =
1

N

∑

i:(xi,zi)∈Y

ti
∣∣wTϕ (xi) + b− zi

∣∣
Eεi

This is not, however, the only usable choice, nor even necessarily the best.

Suykens [87], for example, suggests a least-squares cost function which is optimal

for Gaussian noise. More generally still, Smola et. al. [85] consider a whole family

of symmetric, convex loss functions with discontinuity at ±ε, which may be viewed

as the general extension of the ε-insensitive cost function discussed in the previous

chapter. In general, when using these more general forms, one is faced with a trade-
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off between accuracy and practicallity. In particular, the optimisation that may

arise when attempting to optimally match the empirical risk component of the cost

function and the form of the training noise may be too complex to be solved prac-

tically, and hence a compromise may be necessary to make the problem practical.

Similarly, as will be seen in chapter 6, to maintain sparsity it may be necessary to

choose a non-optimal empirical risk component.

In the present section, I will introduce the formulation given [85] and then con-

centrate in particular on the monomial form of this, which will be analysed in some

detail in chapter 6.

5.4.1 General Convex Cost Functions

In [85], the following cost function is considered:

Remp (λ|Y) =
1

N

∑

i:(xi,zi)∈Y

tid
(∣∣wTϕ (xi) + b− zi

∣∣
Eεi

)

or, equivalently:

Remp (λ|Y) =
1

N

∑

i:(xi,zi)∈Y

ti (d (ξi) + d (ξ∗i ))

where d ∈ C1 is a convex function with d (0) = 0. In this form, εi and ti serve

the same purpose as in the standard formulation, except that the form of the cost

function outside of the “dead-zone” is now arbitrary. The special case d (ξ) = ξ

gives the standard formulation. For complete generality, the following extension will

be considered here:

Remp (λ|Y) =
1

N

∑

i:(xi,zi)∈Y

tid (ξi) +
1

N

∑

i:(xi,zi)∈Y

t∗i d
∗ (ξ∗i )

where d, d∗ ∈ C1 are both convex functions with d (0) = d∗ (0) = 0.
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The associated primal form of the SVM problem is:

min
w,b,ξ,ξ∗

dRd∗ (w, b, ξ, ξ∗) = 1
2
wTw + C

N

N∑
i=1

tid (ξi) + C
N

N∑
i=1

t∗i d
∗ (ξ∗i )

such that: wTϕ (xi) + b ≥ zi − Eεi − ξi∀i : (xi, zi) ∈ Y= ∪Y≥

wTϕ (xi) + b ≤ zi + Eε∗i + ξ∗i ∀i : (xi, zi) ∈ Y= ∪Y≤

ξ ≥ 0

ξ∗ ≥ 0

(5.19)

In the general case d (ξ) 6= d∗ (ξ) it can be seen that the variable ε∗ is no longer

superfluous. Indeed, it may be necessary to choose ε∗ 6= ε so-as to not skew the

training vector z.

The maximin form of (5.19) is:

min
w,b,ξ,ξ∗

max
β,β∗,γ ,γ∗

dLd∗ = 1
2
wTw + C

N

N∑
i=1

tid (ξi) + C
N

N∑
i=1

t∗i d
∗ (ξ∗i )− γTξ − γ∗Tξ∗

− ∑
i:(xi,zi)∈Y=∪Y≥

βi
((

wTϕ (xi) + b
)− zi + Eεi + ξi

)

− ∑
i:(xi,zi)∈Y=∪Y≤

β∗i
((

wTϕ (xi) + b
)− zi − Eε∗i − ξ∗i

)

such that: β ≥ 0

β∗ ≤ 0

γ ≥ 0

γ∗ ≥ 0

(5.20)

Skipping the usual workings (the derivation follows much the same template as

previous derivations of duals - details can be found in appendix A), the dual can be

shown to be:

min
α dQd∗ (α)= 1

2
αTKα−αTz+E|α|Tε(∗)− C

N

N∑
i=1

tiT (ξi)− C
N

N∑
i=1

t∗iT
∗ (ξ∗i )

such that: αi ≤ 0∀i : (xi, zi) ∈ Y≤

αi ≥ 0∀i : (xi, zi) ∈ Y≥

1Tα = 0

(5.21)
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where:

ξi =





inf
{
ξ| C

N
ti
∂d
∂ξ

(ξ) > |αi|
}

if αi > 0

0 if αi ≤ 0

ξ∗i =





0 if αi ≥ 0

inf
{
ξ| C

N
t∗i
∂d∗
∂ξ

(ξ) > |αi|
}

if αi < 0

and:

T (ξ) = d (ξ)− ξ ∂d
∂ξ

(ξ)

T ∗ (ξ) = d∗ (ξ)− ξ ∂d∗
∂ξ

(ξ)

It will be noted that this general form is more complex than previous forms of

SVM given. This is the price paid for generality. In [85] an algorithm is given for

solving this general optimisation problem. However, in the present thesis I will not

be looking at this general form in any detail. Instead, I consider some special cases,

focussing in particular on the case where d (ξ) = d∗ (ξ) = 1
q
ξq, which in the special

case q = 2, E = 0 corresponds to the LS-SVM [87]. Unless otherwise stated, it is

assumed that d (ξ) = d∗ (ξ).

5.4.2 Monomial ε-Insensitive Risk and LS-SVMs

One variant of the standard SVM method known to have a particularly simple dual

form is the LS-SVM [87], which (assuming E = 0) uses the cost function d (ξ) = 1
2
ξ2.

This is optimal (in the maximum likelihood sense) if the training data is effected

by Gaussian noise. More generally, in [79] we proposed the monomial cost function

d (ξ) = 1
q
ξq, where q ∈ Z+ is a constant. This corresponds to the ML cost function

for degree q polynomial noise, where polynomial noise of degree q (unit variance,

zero mean assumed) is characterised by the density function pstd (τ) = cqe
−c′q |τ |q ,

where:

cq = 1
2

q

Γ( 1
q )

√
Γ( 3

q )
Γ( 1

q )

c′q =

(√
Γ( 3

q )
Γ( 1

q )

)q

In terms of the usual slack variables, the SVM primal problem corresponding to
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the monomial cost function may be written:

min
w,b,ξ,ξ∗

Rq (w, b, ξ, ξ∗) = 1
2
wTw + C

qN

N∑
i=1

tiξ
q
i + C

qN

N∑
i=1

t∗i ξ
∗
i
q

such that: wTϕ (xi) + b ≥ zi − Eεi − ξi∀i : (xi, zi) ∈ Y= ∪Y≥

wTϕ (xi) + b ≤ zi + Eε∗i + ξ∗i ∀i : (xi, zi) ∈ Y= ∪Y≤

ξ ≥ 0

ξ∗ ≥ 0

(5.22)

I shall refer to a regressor of form (5.22) as a monomial ε-SVM. Unfortunately,

for the general case q 6= 1, 2 the dual form of (5.22) is rather complicated. For this

reason I will restrict myself to the special case q = 2 (quadric ε-SVR), in which case

it turns out that the dual problem is mathematically “nice”. Moreover, as will be

seen in chapter 6, the quadric ε-SVR retains many of the useful properties of the

LS-SVR with additional advantages in the presense of non-gaussian training noise

(the parameter E may be tuned to maximise the efficiency of the emulator) and also

large data sets (in this case, E is useful for ensuring sparsity in the solution).

Before constructing the dual form of (5.22), it is convenient to show that if

q = 2 the positivity constraints ξ, ξ∗ ≥ 0 in the primal are superfluous, giving the

simplified problem:

min
w,b,ξ,ξ∗

R2 (w, b, ξ, ξ∗) = 1
2
wTw + C

2N

N∑
i=1

tiξ
2
i + C

2N

N∑
i=1

t∗i ξ
∗
i

2

such that: wTϕ (xi) + b ≥ zi − Eεi − ξi∀i : (xi, zi) ∈ Y= ∪Y≥

wTϕ (xi) + b ≤ zi + Eε∗i + ξ∗i ∀i : (xi, zi) ∈ Y= ∪Y≤

(5.23)

Theorem 5.1. For every solution (w, b, ξ, ξ∗) of (5.23), ξ, ξ∗ ≥ 0.

Proof. Suppose there exists a solution
(
w̄, b̄, ξ̄, ξ̄

∗)
of (5.23) such that ξ̄i < 0 for

some 1 ≤ i ≤ N . Then for all other (w, b, ξ, ξ∗) satisfying the constraints contained

in (5.23), R2 (w, b, ξ, ξ∗) ≥ R2

(
w̄, b̄, ξ̄, ξ̄

∗)
by definition.
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Consider (w, b, ξ, ξ∗) defined by:

w = w̄

b = b̄

ξj =





ξ̄j if i 6= j

0 otherwise

ξ∗= ξ̄
∗

First, note that as
(
w̄Tϕ (xi) + b̄

) ≥ zi − Eεi − ξ̄i, w = w̄, b = b̄, ξ̄i < 0 and

ξi = 0, it follows that
(
wTϕ (xi) + b

) ≥ zi − Eεi − ξi. Hence (w, b, ξ, ξ∗) satisfies

the constraints in (5.23).

Second, note that:

R2

(
w̄, b̄, ξ̄, ξ̄

∗)
= R2 (w, b, ξ, ξ∗) + C

2N
tiξ̄

2
i

∴ R2 (w, b, ξ, ξ∗) < R2

(
w̄, b̄, ξ̄, ξ̄

∗)

These two observations contradict the original statement that
(
w̄, b̄, ξ̄, ξ̄

∗)
with

ξ̄i < 0 for some 1 ≤ i ≤ N was a solution of (5.23). Hence, for all solutions

(w, b, ξ, ξ∗) of (5.23), ξ ≥ 0.

The proof of the non-negativity of ξ∗ follows from an analogous argument for

the elements of this vector.

Theorem 5.2. In the case q = 2, any solution (w, b, ξ, ξ∗) of (5.23) will also be a

solution of (5.22), and vice-versa.

Proof. This follows trivially from theorem 5.1.

Using (5.23) it is straightforward to construct the dual form of (5.22) when q = 2

via the usual method (see appendix A). The dual is:

min
α

Q2 (α) = 1
2
αT
(
K + diag

(
N

Ct
(∗)
i

))
α−αTz + E|α|Tε(∗)

such that: αi ≤ 0∀i : (xi, zi) ∈ Y≤

αi ≥ 0∀i : (xi, zi) ∈ Y≥

1Tα = 0

(5.24)



5.4. GENERALISED EMPIRICAL RISK 85

where K is as before. The trained machine takes the same form as always. Note

that there are now fewer constraints on the vector α. Furthermore, it can be shown

that (see appendix A for details):

ξi = max
{

0, N
Cti
αi

}

ξ∗i = max
{

0,− N
Ct∗i
αi

}

It is instructive to re-write (5.24) in terms of β and β∗, as done previously in

section 4.4.1. Substituting α = β + β∗ (5.24) becomes:

min
α

Q2 (α) = 1
2


 β

β∗



T
 K + D K

K K + D∗




 β

β∗


−


 β

β∗



T
 z− Eε

z + Eε∗




such that: βi ≥ 0∀i : (xi, zi) ∈ Y≥

βi = 0∀i : (xi, zi) ∈ Y≤

β∗i ≤ 0∀i : (xi, zi) ∈ Y≤

β∗i = 0∀i : (xi, zi) ∈ Y≥

1Tα = 0

where:

Di,j = δij
N
Cti

D∗i,j = δij
N
Ct∗i

From this, it is immediately clear that not only are there no non-global solutions

to (5.24), because the Hessian is positive definite (which follows from the fact that

it is a positive semidefinite matrix with positive diagonals added), the solution must

be unique. This makes quadric ε-SVMs particularly simple to solve. In particular,

selecting E = 0 and t = t∗ = 1, (5.24) is precisely Suykens’ LS-SVM formulation

(although LS-SVM is usually formulated in partially dual form, not fully dual),

which is known to be particularly easy to solve [87].
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The partially dual form of (5.24) is:

min
α

max
b
QL2 (α, b) = 1

2


 b

α



T

Ĥ


 b

α


−


 b

α



T
 0

z


+ E

∣∣∣∣∣∣
b

α

∣∣∣∣∣∣

T
 0

ε(∗)




such that: αi ≤ 0∀i : (xi, zi) ∈ Y≤

αi ≥ 0∀i : (xi, zi) ∈ Y≥
(5.25)

where:

Ĥ = H +


 0 0T

0 D(∗)




D
(∗)
i,j = δij

N

Ct
(∗)
i

and has the KKT conditions:

αi ≤



∞ if (xi, zi) ∈ Y= ∪Y≥

0 if (xi, zi) ∈ Y≤

αi ≥




0 if (xi, zi) ∈ Y≥

−∞ if (xi, zi) ∈ Y= ∪Y≤

ei





≥ zi − Eεi if αi = 0 ∧ (xi, zi) ∈ Y= ∪Y≥

= zi − Eεi if αi > 0

≤ zi + Eε∗i if αi = 0 ∧ (xi, zi) ∈ Y= ∪Y≤

= zi + Eε∗i if αi < 0

f = 0

(5.26)

where: 
 f

e


 = Ĥ


 b

α


 (5.27)

Unlike previously, in this case ei = g (xi) +D
(∗)
i,i αi (rather than ei = g (xi)).
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5.5 Tube Shrinking

Thus far in my thesis I have not considered the issue of parameter selection, where

by parameter here I mean the constants C and E.2 Consider E in particular. If

the problem comes with some specified target accuracy, this may be used to select

E (i.e. in regression, if the regressor is to be accurate to within ±10−2, then one

may reasonably select E ≈ 10−2). In many cases, however, such a benchmark will

not be provided - rather, one may simply want the regressor to be “as accurate as

possible”.

It will be shown in chapter 6 that optimal selection of this parameter (to make

the regressor “as accurate as possible”) actually requires knowledge of the type and

amount of noise present in the training data. But it is quite possible that this in-

formation will not be known, making the selection a matter of trial and error. To

overcome this problem, Schölkopf et. al. [70] introduced the ν-SV regression for-

mulation based on the concept of “shrinking the ε-tube”. This was subsequently

extended to cover pattern recognition by Schölkopf and Smola in [75], the extension

being called ν-SV classification (ν-SVC) (as opposed to “standard” C-SV classifica-

tion (C-SVC)).

The basic idea behind the “tube shrinking” concept is to change E > 0 from a

constant to a variable to be minimised w.r.t. when constructing the SVM. However,

simply doing this without changing the primal formulation of the problem will not

work. For regression (assuming ε, ε∗ > 0) this will simply stretch the width of the

dead-zone (the “ε-tube”) by increasing E > 0 until ξ = ξ∗ = 0, resulting in very

poor generalisation. For pattern recognition, E > 0 will be reduced in a analogous

manner, reducing the margin of separation ρ to (effectively) 0 in any non-separable

case and thereby negating the efficacy of the max-margin concept central to SVM

pattern recognition.

In general, the signs of the elements in ε and ε∗ are restricted only by the require-

ment that εi ≥ 0 for all (xi, zi) ∈ Y=. For the purposes of tube-shrinking, however,

2t(∗) and ε(∗) are also, in a sense, parameters. However, whereas E and C have a “global”
effect (that is, they effect the training process as a whole), the elements of these vectors have only
a “local” effect, in-so-far as they are intended for fine-tuning of the SVM, which is best done by
hand using knowledge of individual training points. As a general rule, ε(∗)i ≈ ±1 and t

(∗)
i ≈ 1.
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it is necessary to make the further requirement that either sgn (ε) = sgn (ε∗) = 1

or sgn (ε) = sgn (ε∗) = −1. This will be assumed true for all tube-shrinking SVMs

discussed in this thesis. For convenience, define:

χ = sgn (εi)∀1 ≤ i ≤ N

Consequently, if χ = −1, Y= = ∅, from which it may be concluded that if

χ = −1 then the SVM is essentially a pattern recognition SVM (ignoring, for the

moment, the potential influence of z 6= 0). Similarly, if χ = 1, although there may

be inequalities in the training set, the problem is clearly one of regression, as the

ε
(∗)
i parameters associated with these inequalities will be associated with an ε-tube

of positive width.

Consider the pattern recognition case χ = −1 (i.e. ε, ε∗ < 0). Rather than

thinking of this as pattern recognition with a positive margin of separation ρ, this

may be thought of as regression only in inequalities, where the width of the ε-tube

is negative with magnitude proportional to E.

Given this, it can be seen that for both pattern recognition and regression naively

converting E from a constant to a variable will result in stretching of the ε-tube.

To counteract this, an additional term χCνE may be added to the primal formu-

lation (5.2) to penalise this stretching (by shrinking the ε-tube. i.e. applying a

counteracting force), thusly:

min
w,b,ξ,ξ∗,E

R1,1 (w, b, ξ, ξ∗, E) = 1
2
wTw + χCνE + C

N
tTξ + C

N
t∗Tξ∗

such that: wTϕ (xi) + b ≥ zi − Eεi − ξi∀i : (xi, zi) ∈ Y= ∪Y≥

wTϕ (xi) + b ≤ zi + Eε∗i + ξ∗i ∀i : (xi, zi) ∈ Y= ∪Y≤

ξ ≥ 0

ξ∗ ≥ 0

E > 0

(5.28)

where ν ≥ 0 is a constant. Whilst it may seem that (5.28) has simply moved the

parameter selection problem from selecting E to selecting ν, this turns out to be

somewhat less arduous, as the effect of ν has a more convenient interpretation in
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the SVM context.

The maximin form of (5.28) is:

min
w,b,ξ,ξ∗,E

max
β,β∗,γ ,γ∗,ρ

L1,1 = 1
2
wTw + χCνE + C

N
tTξ + C

N
t∗Tξ∗ − γTξ − γ∗Tξ∗

− ∑
i:(xi,zi)∈Y=∪Y≥

βi
((

wTϕ (xi) + b
)− zi + Eεi + ξi

)

− ∑
i:(xi,zi)∈Y=∪Y≤

β∗i
((

wTϕ (xi) + b
)− zi − Eε∗i − ξ∗i

)

−ρE
such that: β ≥ 0

β∗ ≤ 0

γ ≥ 0

γ∗ ≥ 0

ρ ≥ 0

E 6= 0

(5.29)

Solving this is mostly routine (see appendix A), following the usual template.

However ([25]), note that ρ (the lagrange multiplier for the constraint E ≥ 0) must

be 0 unless E = 0. However, E 6= 0 is a constraint in the maximin formulation

(and is retained for this very reason, namely that E > 0, not just E ≥ 0), so ρ = 0.

Optimising (5.29) with respect to E, it must be true that:

∂L1,1

∂E
= 0

⇒
∣∣ε(∗)∣∣T |α| = Cν − χρ = Cν

Hence the dual form of (5.28) is:

min
α

Q1,1 (α) = 1
2
αTKα−αTz

such that: −C
N
t∗i ≤ αi ≤ 0∀i : (xi, zi) ∈ Y≤

0 ≤ αi ≤ C
N
ti∀i : (xi, zi) ∈ Y≥

−C
N
t∗i ≤ αi ≤ C

N
ti∀i : (xi, zi) ∈ Y=

1Tα = 0
∣∣ε(∗)∣∣T |α| = Cν

(5.30)
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The partially dual form (leaving both E and b in the dual) is:

min
α

max
b,E

QL1,1 (α, b, E)= 1
2




E

b

α




T

H̄




E

b

α


−




E

b

α




T


Cν

0

z




such that: −C
N
t∗i ≤ αi ≤ 0∀i : (xi, zi) ∈ Y≤

0 ≤ αi ≤ C
N
ti∀i : (xi, zi) ∈ Y≥

−C
N
t∗i ≤ αi ≤ C

N
ti∀i : (xi, zi) ∈ Y=

E > 0

(5.31)

where:

H̄ =




0 0
(∣∣ε(∗)∣∣ sgn (α)

)T

0 0 1T

(∣∣ε(∗)∣∣ sgn (α)
)

1 K




and has the KKT conditions:

αi ≤




C
N
ti if (xi, zi) ∈ Y= ∪Y≥

0 if (xi, zi) ∈ Y≤

αi ≥




0 if (xi, zi) ∈ Y≥

−C
N
t∗i if (xi, zi) ∈ Y= ∪Y≤

ei





≥ zi if αi = 0 ∧ (xi, zi) ∈ Y= ∪Y≥

= zi if 0 < αi <
C
N
ti

≤ zi if αi = C
N
ti

≤ zi if αi = 0 ∧ (xi, zi) ∈ Y= ∪Y≤

= zi if − C
N
t∗i < αi < 0

≥ zi if αi = −C
N
t∗i

f = 0

g = Cν

(5.32)

where: 


g

f

e


 = H̄




E

b

α


 (5.33)
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In this case, ei = g (xi) + E
∣∣∣ε(∗)i αi

∣∣∣.
Unfortunately, neither the dual nor the partially dual forms of this problem are

particularly “nice” to solve. This is (partially) what motivated us to construct the

generalised tube shrinking formulation, as will be described in the next subsection.

However, before considering this, it is worthwhile to note the salient features of

(5.31):

Theorem 5.3. Assuming |ε| = |ε∗| = 1 and t = t∗ = 1:

1. ν is an upper bound on the fraction NE
N

of error vectors.

2. ν is an lower bound on the fraction NS
N

of support vectors.

3. Suppose Y=, Y≥ and Y≤ were all generated iid from a distribution p (x, z) =

p (x) p (z|x) with p (z|x) continuous. With probability 1, asymptotically, NE
N

=

NS
N

= ν.

Proof. Note that under the assumptions of the theorem the equality constraint
∣∣ε(∗)∣∣T |α| = Cν in the dual form (5.30) reduces to 1T |α| = Cν. Furthermore,

0 ≤ |αi| ≤ C
N

. Given this:

1. At most NE = νN of all training examples can satisfy |αi| = C
N

(i.e. be error

vectors), and so NE
N
≤ ν.

2. At least NS = νN of all training samples must have |αi| > 0 (i.e. be support

vectors), and so NS
N
≥ ν.

3. See [70] and [75] for proof of item 3. In essence, the proof relies on the fact the

number of points lying exactly on the boundary of the decision region cannot

increase linearly with the training set size, and hance the ratio NB
N

= NS−NE
N

must go to zero at N →∞.

The following theorems from [70] and [75] are special cases of theorem 5.3:
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Theorem 5.4 (Proposition 1, [70]). Assuming ε = ε∗ = 1, t = t∗ = 1 and

Y≥ = Y≤ = ∅ (pure regression):

1. ν is an upper bound on the fraction NE
N

of error vectors.

2. ν is an lower bound on the fraction NS
N

of support vectors.

3. Suppose Y was generated iid from a distribution p (x, z) = p (x) p (z|x) with

p (z|x) continuous. With probability 1, asymptotically, NE
N

= NS
N

= ν.

Theorem 5.5 (Proposition 12, [75]). Assuming ε = ε∗ = −1 and t = t∗ = 1

(pattern recognition):

1. ν is an upper bound on the fraction NE
N

of error vectors.

2. ν is an lower bound on the fraction NS
N

of support vectors.

3. Suppose Y was generated iid from a distribution p (x, d) = p (x) Pr (d|x) such

that neither Pr (+1|x) nor Pr (−1|x) contains any discrete component. With

probability 1, asymptotically, NE
N

= NS
N

= ν.

In the literature [75], it is usual to call tube-shrinking when applied to regression

ν-SV regression (ν-SVR) (and standard regression ε-SV regression (ε-SVR)). When

applied to pattern recognition, tube shrinking is referred to as ν-SV classification

(ν-SVC) (and standard pattern recognition C-SV classification (C-SVC)).

5.5.1 Generalised Tube Shrinking

Of course, the concept of tube-shrinking may be extended to the more general case of

generalised convex empirical risk SVMs, as considered in section 5.4. As for standard

tube shrinking, it is necessary to assume that sgn (ε) = sgn (ε∗) = χ1. Adding the

general tube-shrinking term χCνc (E), where c ∈ C1 is convex (with c (0) = 0), to
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the primal form of the generalised convex empirical risk SVM (5.19) gives:

min
w,b,ξ,ξ∗,E

dRd∗,c (w, b, ξ, ξ∗, E) = 1
2
wTw + χCνc (E) + C

N

N∑
i=1

tid (ξi) + C
N

N∑
i=1

t∗i d
∗ (ξ∗i )

such that: wTϕ (xi) + b ≥ zi − Eεi − ξi∀i : (xi, zi) ∈ Y= ∪Y≥

wTϕ (xi) + b ≤ zi + Eε∗i + ξ∗i ∀i : (xi, zi) ∈ Y= ∪Y≤

ξ ≥ 0

ξ∗ ≥ 0

E ≥ 0

(5.34)

where d, d∗, c ∈ C1 are convex functions, d (0) = d∗ (0) = c (0) = 0) and ν > 0 is a

constant as before.

The maximin form of (5.34) is then:

min
w,b,ξ,ξ∗,E

max
β,β∗,γ ,γ∗,ρ

dLd∗,c = 1
2
wTw + χCνc (E) + C

N

N∑
i=1

tid (ξi) + C
N

N∑
i=1

t∗i d
∗ (ξ∗i )

−ρE − γTξ − γ∗Tξ∗

− ∑
i:(xi,zi)∈Y=∪Y≥

βi
((

wTϕ (xi) + b
)− zi + Eεi + ξi

)

− ∑
i:(xi,zi)∈Y=∪Y≤

β∗i
((

wTϕ (xi) + b
)− zi − Eε∗i − ξ∗i

)

such that: β ≥ 0

β∗ ≤ 0

γ ≥ 0

γ∗ ≥ 0

ρ ≥ 0

(5.35)

from which the dual can be derived as (see appendix A for details):

min
α dQd∗,c (α) = 1

2
αTKα−αTz− χCνS (E)− C

N

N∑
i=1

tiT (ξi)− C
N

N∑
i=1

t∗iT
∗ (ξ∗i )

such that: αi ≤ 0∀i : (xi, di) ∈ Y≤

αi ≥ 0∀i : (xi, di) ∈ Y≥

1Tα = 0

(5.36)
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where:

ξi =





inf
{
ξ| C

N
ti
∂d
∂ξ

(ξ) > |αi|
}

if αi > 0

0 if αi ≤ 0

ξ∗i =





0 if αi ≥ 0

inf
{
ξ| C

N
t∗i
∂d∗
∂ξ

(ξ) > |αi|
}

if αi < 0

E =





inf
{
E|Cν ∂c

∂E
(E) >

∣∣ε(∗)∣∣T |α|
}

if χ = +1

inf
{
E|Cν ∂c

∂E
(E) <

∣∣ε(∗)∣∣T |α|
}

if χ = −1

and:

T (ξ) = d (ξ)− ξ ∂d
∂ξ

(ξ)

T ∗ (ξ) = d∗ (ξ)− ξ ∂d∗
∂ξ

(ξ)

S (E) = c (E)− E ∂c
∂E

(E)

It will be noted that, like the dual form of generalised empirical risk SVM, this

dual form is much more complex than the standard SVM dual. To the best of my

knowledge no attempt has been made to solve this general form of tube shrinking

- indeed, I am unaware of any papers dealing with generalised tube shrinking (our

paper on monomial ν-SV regression [78] deals with the special case d = d∗ = c,

d (E) = Eq, and only considers d (E) = E2 in detail). However, it should not be

too difficult to extend the algorithm presented in [85] to cover this situation. In the

present thesis I will be concentrating on the case d = d∗ = c, d (E) = 1
q
Eq, q ∈ Z+.

5.5.2 Monomial ν-SV Regressors

The following is an extension of monomial the ε-SVM method given in section 5.4.2

to encompass tube shrinking. Taking the monomial ε-SVM cost d (ξ) = 1
q
ξq, q ∈

Z+, the monomial ν-SVM is defined by taking c (E) = 1
n
En, n ∈ Z+, as in [78].

Once again, this corresponds to the ML cost function for degree q polynomial noise,

but with tube-shrinking applied. Unfortunately, for the pattern classification case

χ = −1 certain difficulties arise which make this approach impractical in this case.

Hence only regression will be considered in this section, where χ = +1.
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The monomial ν-SVR primal cost function is:

min
w,b,ξ,ξ∗,E

Rq,n (w, b, ξ, ξ∗, E) = 1
2
wTw + Cν

n
En + C

qN

N∑
i=1

tiξ
q
i + C

qN

N∑
i=1

t∗i ξ
∗
i
q

such that: wTϕ (xi) + b ≥ zi − Eεi − ξi∀i : (xi, zi) ∈ Y= ∪Y≥

wTϕ (xi) + b ≤ zi + Eε∗i + ξ∗i ∀i : (xi, zi) ∈ Y= ∪Y≤

ξ ≥ 0

ξ∗ ≥ 0

E ≥ 0

(5.37)

In this thesis I will often restrict myself to the special case q = n = 2 (quadric ν-

SVR), in which case it turns out that the dual problem is not only mathematically

“nice” but retains the property that ν is, in a sense, “easier to select” than the

alternative parameter E in the ε-SVM case (the cases q = 1, n = 2 and q = 2, n = 1

are also mathematically tractable. However, they lose something of the elegance of

ν selection by comparison). From this point on, assume that q = n = 2.

From theorem 5.1 (the proof of which holds in this case), it is clear that the

positivity constraints ξ, ξ∗ ≥ 0 in the primal are superfluous when q = n = 2. I

will also show shortly that the positivity constraint E ≥ 0 is superfluous, giving the

simplified primal problem:

min
w,b,ξ,ξ∗,E

R2,2 (w, b, ξ, ξ∗, E) = 1
2
wTw + Cν

2
E2 + C

2N

N∑
i=1

tiξ
2
i + C

2N

N∑
i=1

t∗i ξ
∗
i

2

such that: wTϕ (xi) + b ≥ zi − Eεi − ξi∀i : (xi, zi) ∈ Y= ∪Y≥

wTϕ (xi) + b ≤ zi + Eε∗i + ξ∗i ∀i : (xi, zi) ∈ Y= ∪Y≤
(5.38)

The following theorems hold if χ = +1:3

Theorem 5.6. For every solution (w, b, ξ, ξ∗, E) of (5.38), E ≥ 0.

Proof. The proof is directly analogous to that of theorem 5.1.

Theorem 5.7. Any solution (w, b, ξ, ξ∗, E) of (5.38) will also be a solution of (5.37)

when q = n = 2, and vice-versa.

3It is the failure of the first of these theorems (theorem 5.6) when χ = −1 that makes this
working non-applicable to the pattern recognition case.
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Proof. This follows trivially from theorems 5.1 and 5.6.

Using (5.38) it is straightforward to construct the dual form of (5.37) when

q = n = 2 via the usual method (see appendix A). The dual is:

min
α

Q2,2 (α) = 1
2
αTKα−αTz + 1

2

N∑
i=1

α2
i

N

Ct
(∗)
i

+ 1
2Cν
|α|T

(∣∣ε(∗)∣∣∣∣ε(∗)∣∣T
)
|α|

such that: αi ≤ 0∀i : (xi, zi) ∈ Y≤

αi ≥ 0∀i : (xi, zi) ∈ Y≥

1Tα = 0

(5.39)

where K is as before. The trained machine takes the same form as always. Note

the absence of any additional constraints due to the presence if the tube-shrinking

term in the primal. As before:

ξi = max
{

0, N
Cti
αi

}

ξ∗i = max
{

0,− N
Ct∗i
αi

}

It is instructive to re-write (5.39) in terms of β and β∗, as done previously in

section 4.4.1. Substituting α = β + β∗ (5.39) becomes:

min
α

Q2,2 (α) = 1
2


 β

β∗



T
K + N + D K−N∗

K− ∗N K + ∗N∗ + D∗




 β

β∗


−


 β

β∗



T
 z

z




such that: βi ≥ 0∀i : (xi, zi) ∈ Y≥

βi = 0∀i : (xi, zi) ∈ Y≤

β∗i ≤ 0∀i : (xi, zi) ∈ Y≤

β∗i = 0∀i : (xi, zi) ∈ Y≥

1Tα = 0

where:

Di,j = δij
N
Cti

D∗i,j = δij
N
C∗t∗i
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and:

N = 1
Cν
|ε||ε|T

N∗ = 1
Cν
|ε||ε∗|T

∗N = 1
Cν
|ε∗||ε|T

∗N∗ = 1
Cν
|ε∗||ε∗|T

From this, it is immediately clear that there are no non-global solutions, and

furthermore that the solution must be unique, a feature in common with quadric

ε-SVR.

The partially dual form of (5.39) is:

min
α

max
b
QL2,2 (α, b) = 1

2


 b

α



T

Ĥ


 b

α


−


 b

α



T
 0

z




such that: αi ≤ 0∀i : (xi, zi) ∈ Y≤

αi ≥ 0∀i : (xi, zi) ∈ Y≥

(5.40)

where:

Ĥ = H +


 0 1T

1 N(∗) + D(∗)




D
(∗)
i,j = δij

N

Ct
(∗)
i

N
(∗)
i,j =





1
Cν

∣∣∣ε(∗)i

∣∣∣
∣∣∣ε(∗)j

∣∣∣ if sgn (αiαj) = +1

− 1
Cν

∣∣∣ε(∗)i

∣∣∣
∣∣∣ε(∗)j

∣∣∣ if sgn (αiαj) 6= +1

and has the KKT conditions:

αi ≤



∞ if (xi, zi) ∈ Y= ∪Y≥

0 if (xi, zi) ∈ Y≤

αi ≥




0 if (xi, zi) ∈ Y≥

−∞ if (xi, zi) ∈ Y= ∪Y≤

ei





≥ zi if αi = 0 ∧ (xi, zi) ∈ Y= ∪Y≥

= zi if αi 6= 0

≤ zi if αi = 0 ∧ (xi, zi) ∈ Y= ∪Y≤

f = 0

(5.41)
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where: 
 f

e


 = Ĥ


 b

α


 (5.42)

The only major weakness of this formulation is that the solution α may not be

as sparse as for standard SV regressors (as will be shown in section 6.4). However,

unless there is some given criteria which may be used to determine E (for example,

some pre-defined accuracy requirement, or detailed knowledge of any noise in the

training data), in my experience this formulation gives excellent results without the

difficulties, such as singular hessians, sometimes encountered with standard SVR

techniques.

5.6 Combining Methodologies

It is, of course, possible to combine multiple methodologies (for example, automatic

biasing and quadric tube shrinking) into a single SVM. In general this is easier if the

SVM is symmetric (that is, t = t∗, ε = ε∗, etc.), in which case t(∗), ε(∗) are simply

constant vectors, and not functions of sgn (α). Making this assumption, the effects

of different methodologies are summarised below, starting with either the dual base

formulation (5.4):

min
α

Q1 (α) = 1
2
αTKα−αTz + E|α|Tε

such that: −C
N
t∗i ≤ αi ≤ 0∀i : (xi, zi) ∈ Y≤

0 ≤ αi ≤ C
N
ti∀i : (xi, zi) ∈ Y≥

−C
N
t∗i ≤ αi ≤ C

N
ti∀i : (xi, zi) ∈ Y=

1Tα = 0
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or the partially dual base formulation (5.5):

min
α

max
b
QL1 (α, b)= 1

2


 b

α



T

H


 b

α


−

 b

α



T
 0

z


+E

∣∣∣∣∣∣
b

α

∣∣∣∣∣∣

T
 0

ε




such that: −C
N
t∗i ≤ αi ≤ 0∀i : (xi, zi) ∈ Y≤

0 ≤ αi ≤ C
N
ti∀i : (xi, zi) ∈ Y≥

−C
N
t∗i ≤ αi ≤ C

N
ti∀i : (xi, zi) ∈ Y=

where:

H =


 0 1T

1 K




5.6.1 Fixed Bias

Formulation choice: Use the dual formulation, not the partial dual.

Necessary change: Remove the equality constraint 1Tα = 0 from the problem.

Caveat: May not give satisfactory results.

Note: The resulting SVM will be automatically biased if the Mercer kernel chosen

satisfies (5.18).

5.6.2 Automatic Bias

Formulation choice: Use the dual formulation, not the partial dual.

Necessary change: Remove the equality constraint 1Tα = 0 from the problem.

Necessary change: Add the matrix 1
β
11T to K.

Caveat: May not give satisfactory results for the regression problem.

5.6.3 Quadric Empirical Risk

Necessary change: Add a positive diagonal perturbation diag
(
N
Cti

)
to K.

Necessary change: Remove upper bounds on the magnitude of α.



100 Chapter 5. EXTENSIONS TO THE BASIC SVM METHOD

Caveat: May make solution less sparse.

5.6.4 Linear Tube Shrinking

Necessary change: Remove all ε-dependant terms from the cost Q.

Necessary change: Add the new constraint |ε|T |α| = Cν to the problem.

Caveat: Cannot be combined with other forms of tube shrinking.

Note: Alternatively, rather than adding a new constraint, the (partial) dual may

be extended as shown in (5.31), section 5.5. In the case of fixed or automatic

biasing, the row/column relevant to b is removed.

5.6.5 Quadric Tube Shrinking

Necessary change: Remove all ε-dependant terms from the cost Q.

Necessary change: Add the matrix 1
Cν

(sgn (α) ε)(sgn (α) ε)T to K.

Caveat: Must remember that the perturbation to K is a function of sgn (α), and

therefore not constant during optimisation.



Chapter 6

ASYMPTOTIC ANALYSIS OF SV REGRESSION

If we knew what we were doing, it wouldn’t be called research!

– Albert Einstein

I
n chapters 4 and 5 I introduced the basic methodologies of SVM pattern recogni-

tion and regression. Subsequently, I introduced a common framework for both

of these as well as some extensions to the basic models. In particular, in section 5.5

I spent some time discussing the tube shrinking re-formulation of the SVR (ν-SVR)

whereby the E parameter may be replaced by an alternative parameter, ν, which

may be interpreted directly via theorem 5.3.

I consider two issues in this chapter, which is based on our work in [78]. First,

I perform some analysis of the SVR when the training set is arbitrarily large (the

asymptotic case). I consider the issues of sparsity (what fraction of the training

vectors are likely to be support vectors) and also the connection between the E

and ν parameters. Based on this work, I consider the issue of optimal parameter

selection for the parameters E and ν by applying the concept of efficiency introduced

in section 3.3.2.

In this section, it will be convenient to differentiate between the type of noise

present in the training data (specified by the distribution type) and the amount

present (which is assumed to be specified solely by the variance, σ, of the noise

distribution). The reason for this is that in many cases the type of noise (e.g.

gaussian) may well be known, whereas the amount may not be. It will be shown

that optimal selection of E requires knowledge of both type and amount, whereas

optimal selection of ν requires only knowledge of the type of noise. I will only be

considering noise processes with well defined variance.

101
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6.1 Assumptions

The following assumptions are based on [83]. While the assumptions made in [83]

are not strictly met by SV regressors, experimental results demonstrate that they

provide both a useful “first guess” of the correct results (e.g. what value ν is optimal)

(throughout this chapter, these will be referred to as “the usual assumptions”):

1. The training set is infinitely large (N →∞).

2. The general SVR model is replaced by an unregularised location parameter

estimator ( lim
N→∞

C
N

=∞, K → 0).

3. The empirical risk function used has the general form introduced in section

5.4, with the proviso that d∗ = d (symmetry) and:

d (ab) = d (a) d (b) (6.1)

4. t = t∗ = 1 and ε = ε∗ = 1.

It is worthwhile considering the implications of these assumptions. Assumption

1 is just the common assumption that the training set is arbitrarily large - the

asymptotic case. Assumption 2 states that the SVR is an unbiased mean estimator,

which is strictly false in all practical situations. Hence it is clearly unreasonable

to expect an approach making these assumptions to yield exact results. However,

given that the training set is, by definition, finite in size, it may be argued that

assumption 2 is no more false than the oft used assumption 1.

Indeed, it is not hard to imagine conditions where assumption 2 is a reasonable

approximation of reality. For example, if C
N

is sufficiently large the regularisation

term in the primal will be insignificant, in which case the SVR is unregularised for

practical purposes. Similarly, the role of the bias term b is significantly more impor-

tant than α in-so-far as b incorporates the “mean” of the training data z, whereas

α deals with what are essentially higher-order moments. In this light assumption 2

appears somewhat less tenuous.



6.2. ASYMPTOTICALLY OPTIMAL SELECTION OF E 103

Assumptions 3 and 4 are more technical in nature. In particular, assumption 3 is

necessary to allow the process of E selection to be split into two steps, one using the

type of training noise present and the other the amount, as will be shown shortly. It

should be noted that assumption 3 is satisfied by the standard SVM, the LS-SVM

and the general monomial cost function from section 5.4.2.1 In fact, (6.1) is just the

Cauchy Functional equation, and it has been known since 1821 [16] that the only

continuous functions satisfying this have the form [2]:

d (x) = xa

for some a ∈ <. So, as multiplicativity is assumed, it is sufficient to consider the

case of monomial cost. I will restrict myself to the case a = q ∈ Z+.

6.2 Asymptotically Optimal Selection of E

In [83], Smola describes how the parameter E (ε in the original notation of [83])

may be selected in an “optimal” fashion using the concept of maximum efficiency

introduced in section 3.3.2. In this section I show how the same essential concept

may be extended to cover the whole class of monomial SVRs and give a detailed

analysis of the polynomial noise case.

From equations (3.4) and (3.6), the efficiency of e of an unbiased mean estimator

is for zi is:

e =
Q2

IG

where:

I =
∫∞
−∞

(
∂ ln p( z|θ)

∂θ

)2

p (z| θ)dz
G =

∫∞
−∞

(
∂d(z,θ)
∂θ

)2

p (z| θ)dz
Q =

∫∞
−∞

(
∂2d(z,θ)
∂θ2

)
p (z| θ)dz

and p (z| θ) is the probability density from which training samples zi are selected.

Under the assumption that the SVR is acting simply as a mean estimator, the

parameter θ = b is just the mean of p (z| θ). σ is defined to be the variance of

1Neglecting the superfluous scaling factor of 1
q , which in any case may be incorporating into C.
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p (z| θ) (i.e. the amount of noise present in the training data).

As discussed previously, the efficiency provides a convenient means of measuring

the goodness of a regressor. This is what motivated Smola [83] to select E to

maximise the efficiency for the standard ε-SVR. In [78] we extended this idea to

cover all monomial SVRs, as will be described shortly.

Before proceeding, it is convenient to define the standardised (zero mean, unit

variance) version of p (z| θ), namely:

pstd (τ) = σp (στ − θ| θ) (6.2)

which characterises the type of noise present in the training data; and also:

qstd (τ) =
1

2
(pstd (−τ) + pstd (τ)) (6.3)

which is the symmetrised (qstd (τ) = qstd (−τ)) and standardised (zero mean, unit

variance) version of p (z| θ).

6.2.1 Training Noise - Splitting Type and Amount

Consider the expression for I:

I =
∫∞
−∞

(
∂ ln p( z|θ)

∂θ

)2

p (z| θ)dz
=
∫∞
−∞

(
∂p( z|θ)
∂θ

)2
1

p( z|θ)dz

Substituting τ = z+θ
σ

:

I =
∫∞
−∞

(
∂(σp(στ−θ|θ))

∂θ

)2
1

σp(στ−θ|θ)dτ

=
∫∞
−∞

(
∂(σp(στ−θ|θ))

∂τ

)2 (
∂τ
∂θ

)2 1
σp(στ−θ|θ)dτ

= 1
σ2

∫∞
−∞

(
∂pstd(τ)
∂τ

)2
1

pstd(τ)
dτ

= 1
σ2 Istd

where:

Istd =

∫ ∞
−∞

(
∂ ln pstd (τ)

∂τ

)2

pstd (τ)dτ
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is dependent on the type of noise affecting the training data, pstd (τ), but not the

amount, σ. Using this notation:

e = σ2 Q2

IstdG

By analogy with the construction of Istd, define:

G̃std =

(
∫ 0

−∞

(
∂d(σmax(−τ−Eσ ,0))

∂τ

)2

pstd (τ)dτ +
∫∞

0

(
∂d(σmax(τ−Eσ ,0))

∂τ

)2

pstd (τ)dτ

)

Q̃std =

(∫ 0

−∞

(
∂2d(σmax(−τ−Eσ ,0))

∂τ2

)
pstd (τ)dτ +

∫∞
0

(
∂2d(σmax(τ−Eσ ,0))

∂τ2

)
pstd (τ)dτ

)

Using assumption (6.1), this becomes:

G̃std = 2d2 (σ)
∫∞

0

(
∂d(max(τ−Eσ ,0))

∂τ

)2

qstd (τ)dτ

Q̃std = 2d (σ)
∫∞

0

(
∂2d(max(τ−Eσ ,0))

∂τ2

)
qstd (τ)dτ

(6.4)

As for Istd, it is not difficult to show that G = 1
σ2 G̃std and Q = 1

σ2 Q̃std. Hence:

e =
Q̃2

std

IstdG̃std

Noting that all factors of d (σ) cancel out of this expression, (6.4) may be sim-

plified by dropping the d (σ) factors to give:

Gstd = 2
∫∞

0

(
∂d(max(τ−Eσ ,0))

∂τ

)2

qstd (τ)dτ

Qstd = 2
∫∞

0

(
∂2d(max(τ−Eσ ,0))

∂τ2

)
qstd (τ)dτ

Istd = 2
∫∞

0

(
∂ ln qstd(τ)

∂τ

)2

qstd (τ)dτ

(6.5)

and hence:

e =
Q2

std

IstdGstd

(6.6)

Consider (6.5). It has already been mentioned that Istd is independent of the

amount of noise, σ. In the definitions of Gstd and Qstd the variance σ appears only
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in the ratio E
σ

. Furthermore, the only place that E appears is in the same ratio. So,

using the shorthand ω = E
σ

, (6.5) may be re-written thusly:

Gstd (ω) = 2
∫∞

0

(
∂d(max(τ−ω,0))

∂τ

)2

qstd (τ)dτ

Qstd (ω) = 2
∫∞

0

(
∂2d(max(τ−ω,0))

∂τ2

)
qstd (τ)dτ

Istd = 2
∫∞

0

(
∂ ln qstd(τ)

∂τ

)2

qstd (τ)dτ

(6.7)

or, equivalently:2

Gstd (ω) = 2
∫∞

0

(
∂d(max(τ,0))

∂τ

)2

qstd (τ + ω)dτ

Qstd (ω) = 2
∫∞

0

(
∂2d(max(τ,0))

∂τ2

)
qstd (τ + ω)dτ

Istd = 2
∫∞

0

(
∂ ln qstd(τ)

∂τ

)2

qstd (τ)dτ

(6.8)

and subsequently:

e (ω) =
Q2

std (ω)

IstdGstd (ω)

is a function of the ratio ω = E
σ

, but neither E nor σ alone.

Now, the aim of this section is to investigate how E may be selected to maximise

the efficiency given the type of noise effecting training data, pstd (τ), and also the

amount, σ. But e is only dependent on E through ω. Hence, using only the type of

noise effecting the training data, it should in principle be possible to find the value

ω = ωopt to maximise e (ω). Mathematically:

ωopt = arg min
ω

1

e (ω)
(6.9)

Given this, Eopt (the optimal (for maximum efficiency) value for E) is just:

Eopt = σωopt (6.10)

2Note that max (τ, 0) must remain in this expression, as the behaviour of the expressions inside
the integrals about τ = 0 will be of some importance.
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6.2.2 Deriving the Efficiency

As has previously been mentioned, the only possible cost functions satisfying the

multiplicativity assumption made are the monomial cost functions of the general

form:

d (max (τ, 0)) = max (τ, 0)a

where a ∈ < is a constant, and it is assumed that a = q ∈ Z+.

It is easy to see that:3

d (max (τ, 0)) = max (τ, 0)q

∂d(max(τ,0))
∂τ

=





qmax (τ, 0)q−1 if q 6= 1

u (τ) if q = 1

∂2d(max(τ,0))
∂τ2 =





q (q − 1) max (τ, 0)q−2 if q 6= 1

δ (τ) if q = 1

and hence:

Gstd (ω) = 2q2
∫∞

0
τ 2(q−1)qstd (τ + ω)dτ

Qstd (ω) =





2q (q − 1)
∫∞

0
τ q−2qstd (τ + ω)dτ if q 6= 1

pstd (−ω) + pstd (ω) if q = 1

Istd = 2
∫∞

0

(
∂ ln qstd(τ)

∂τ

)2

qstd (τ)dτ

which, substituting into (6.6), gives:

eq (ω) =
1

Istd





2 (q − 1)2 (
∫∞
ω (τ−ω)q−2qstd(τ)dτ)

2

∫∞
ω (τ−ω)2(q−1)qstd(τ)dτ

if q 6= 1

(pstd(−ω)+pstd(ω))2

1−2
∫ ω
0 qstd(τ)dτ

if q = 1
(6.11)

where the subscript q has been added for completeness.

3Where u (x) is the Heaviside step function:

u (x) =
{

0 if x < 0
1 if x ≥ 0
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Efficiency of the Least-Squares SV Regressor

It may be noted that this formula allows us to calculate the efficiency of the LS-SVR,

eLS. Specifically, this corresponds to the case q = 2, E = ω = 0, i.e.:

eLS = e2 (0) =
1

Istd

∫∞
−∞ τ

2pstd (τ)dτ
(6.12)

6.2.3 The Polynomial Noise Case

Suppose that the training noise is polynomial. That is, pstd (τ) = cpe
−c′p|τ |p , p ∈ Z+,

where:

cp = 1
2

p

Γ( 1
p)

√
Γ( 3

p)
Γ( 1

p)

c′p =

(√
Γ( 3

p)
Γ( 1

p)

)p

where Γ (x) is the (complete) gamma function (C.1). Note that this is just Laplacian

noise if p = 1, and Gaussian if p = 2.

For polynomial noise

Gstd (ω) = q2 Γq−2( 1
p)

Γq−1( 3
p)
k2q−2

(
1
p
, c′pω

p
)

Qstd (ω) =





q (q − 1)
Γ
q−4

2 ( 1
p)

Γ
q−2

2 ( 3
p)
kq−2

(
1
p
, c′pω

p
)

if q ≥ 2

p

Γ( 1
p)

√
Γ( 3

p)
Γ( 1

p)
e−c

′
pω

p
if q = 1

Istd =
p2Γ( 3

p)Γ(2− 1
p)

Γ2( 1
p)

where km (x, y) is the backgamma function (C.17), and use has been made of result

(C.16). Using results (C.20) and (C.18), it follows that:

eq,p (ω) =
1

Γ
(

2− 1
p

)





(
q−1
p

)2 k2
q−2( 1

p
,c′pωp)

k2q−2( 1
p
,c′pωp)

if q ≥ 2

e
−2c′pωp

Γ( 1
p
,c′pωp)

if q = 1
(6.13)

where the subscript p is included for completeness.

Table 6.1 shows the optimal value for E
σ

found from the above in the special cases

q = 1, 2 for polynomial noise of degrees p = 1 to 6. Unsurprisingly, the optimal value
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Table 6.1: Optimal ε
σ

and ν for standard and quadric (labelled (S) and (Q), re-
spectively) ε-SVR and ν-SVR methods with polynomial additive noise of degree
1 ≤ p ≤ 6, and asymptotic support vector ratio’s at optimality.

Polynomial degree 1 2 3 4 5 6

Optimal ε
σ

(S) 0 0.61 1.12 1.36 1.48 1.56
Optimal ν (S) 1 0.54 0.29 0.19 0.14 0.11

lim
N→∞

NS
N

(S) 1 0.54 0.29 0.19 0.14 0.11

Optimal ε
σ

(Q) 0 0 0.61 0.97 1.17 1.30
Optimal ν (Q) ∞ ∞ 0.56 0.18 0.09 0.05

lim
N→∞

NS
N

(Q) 1 1 0.59 0.39 0.30 0.23

for E for the quadric ε-SVR in the presence of Gaussian noise (p = 2) is 0, as in

this case the quadric ε-SVR primal and the maximum-likelihood estimator both take

approximately the same form if E = 0 and C is large (just as Eopt = 0 for standard

ε-SVR in the presence of Laplacian noise (p = 1)). Note also that, for the cases

represented in the table, Eopt > 0 for all p > q and Eopt = 0 for all p ≤ q. Generally:

Theorem 6.1. Under the usual assumptions, given a set of training data affected

by polynomial noise of degree p = q with non-zero variance, the optimal value (Eopt

which maximises e) for the parameter E as defined by (6.13) will be zero.

Proof. From (6.13), if p = q then, using (C.18) and (C.3):

ep,p (0) = 1

Γ(2− 1
p)





1
Γ(1)

if p = 1(
p−1
p

)2 k2
p−2( 1

p
,0)

k2p−2( 1
p
,0)

if p ≥ 2

=





1 if p = 1(
p−1
p

)2 Γ2(1− 1
p)

Γ2(2− 1
p)

if p ≥ 2

=





1 if p = 1(
1− 1

p

)2 Γ2(1− 1
p)

Γ2(2− 1
p)

if p ≥ 2

= 1

But ep,q (ω) ≤ 1 by the Cramer-Rao bound (3.3) [67], so optimal efficiency is

achieved for ω = E
σ

= 0. Hence Eopt = 0 is a solution.

Theorem 6.2. Under the usual assumptions, given a set of training data affected
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by polynomial noise of degree p > q with non-zero variance, the optimal value (Eopt

which maximises e) for the parameter E as defined by (6.13) will be positive.

Proof. Note that ep,q (ω) ∈ C2 for ω ≥ 0. Note also that the range of ω is ω ∈ [0,∞).

If Eopt = 0, and hence ωopt = 0, ep,q (ω) must have a (global) maxima at ω = 0,

which implies that the gradient dep,q(ω)

dω
of ep,q (ω) must be non-positive at 0.4 Given

this, to prove the theorem, it is sufficient to prove that the gradient dep,q(ω)

dω
of ep,q (ω)

at ω = 0 is positive for all p > q (intuitively it may be seen that if the gradient is

positive at zero then increasing ω must result in an increase in ep,q (ω), and so ω = 0

cannot be a maxima of ep,q (ω), global or otherwise).

To simplify the mathematics, define x = c′p
1
pω. Hence:

dep,q (ω)

dω
= c′p

1
p
dep,q (x)

dx

sgn

(
dep,q (ω)

dω

)
= sgn

(
dep,q (x)

dx

)

Using (C.21), it is straightforward to show that dep,q(x)

dx
= dp,q (x) ē′p,q (x), where:

ē′p,q (x) =





e−x
p − 2xp−1Γ

(
1
p
, xp
)

q = 1

1
p
k0

(
1
p
, xp
)
− e−xp k2( 1

p
,xp)

k1( 1
p
,xp)

q = 2

(q−1)
(q−2)

kq−2( 1
p
,xp)

kq−3( 1
p
,xp)
− k2q−2( 1

p
,xp)

k2q−3( 1
p
,xp)

q ≥ 3

(6.14)

and:

dq,p (x) =





pe−2xp

Γ(2− 1
p)Γ2( 1

p
,xp)

q = 1

2k0( 1
p
,xp)k1( 1

p
,xp)

pΓ(2− 1
p)k2

2( 1
p
,xp)

q = 2

2(q−1)2(q−2)kq−2( 1
p
,xp)kq−3( 1

p
,xp)k2q−3( 1

p
,xp)

p2Γ(2− 1
p)k2

2q−2( 1
p
,xp)

q ≥ 3

is a positive function for ω ≥ 0, p, q ∈ Z+. Hence if ē′p,q (0) > 0 for p > q ∈ Z+

then dep,q(ω)

dω

∣∣∣
ω=0

> 0 for p > q ∈ Z+, which is sufficient to prove the theorem. Using

4As ω = 0 is at the end of the range ω ∈ [0,∞) it follows that if the gradient is negative at
ω = 0 then there will be a local maxima at that point.
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(C.18), for all p, q ∈ Z+:

ē′p,q (0) =





1 if q = 1

1
p
Γ
(

1
p

)
− Γ( 3

p)
Γ( 2

p)
if q = 2

q−1
q−2

Γ( q−1
p )

Γ( q−2
p )
− Γ( 2q−1

p )
Γ( 2q−2

p )
if q ≥ 3

(6.15)

Which proves the theorem in the case q = 1. Consider the case p > q > 2.

Writing q = 2 +m, p = 2 +m+ n, where m,n ∈ Z+, and using (C.3), if q ≥ 3:

ē′p,q (0) =
q−1
p
q−2
p

Γ( q−1
p )

Γ( q−2
p )
− Γ( 2q−1

p )
Γ( 2q−2

p )

=
Γ( 2m+n+3

m+n+2 )
Γ( 2m+n+2

m+n+2 )
− Γ( 2m+3

m+n+2)
Γ( 2m+2

m+n+2)

= Γ(a+c)
Γ(a)

− Γ(b+c)
Γ(b)

= Γ(a+b+c)
Γ(a)Γ(b)

(B (a+ c, b)−B (a, b+ c))

where a = 2m+n+2
m+n+2

> 0, b = 2m+2
m+n+2

> 0, c = 1
m+n+2

> 0 and B (a, b) is the beta

function (see appendix C). As a > b, it follows from theorem C.2 that B (a+ c, b) >

B (a, b+ c), and hence ē′ (0) > 0, which proves the theorem for the case q ≥ 3.

Suppose that m (and subsequently q) is treated as a real number such that m ≥ 0

(so q ≥ 2). The inequality B (a+ c, b) > B (a, b+ c) will still hold, as a > b for all

m ∈ [0,∞), n > 0. Hence lim
q→2+

ē′p,q (0) > 0. Furthermore, using theorem C.1:

lim
q→2+

q−1
q−2

Γ( q−1
p )

Γ( q−2
p )
− Γ( 2q−1

p )
Γ( 2q−2

p )
= 1

p
Γ
(

1
p

)
− Γ( 3

p)
Γ( 2

p)

which implies that:

ē′p,2 (0) = lim
q→2+

ē′p,q (0) > 0

and so ē′p,q (0) > 0 for all p > q ∈ Z+. Hence dep,q(ω)

dω

∣∣∣
ω=0

> 0 for all p > q ∈ Z+,

which proves the theorem.

Conjecture 6.3. Under the usual assumptions, given a set of training data affected

by polynomial noise of degree p < q with non-zero variance, the optimal value (Eopt

which maximises e) for the parameter E as defined by (6.13) will be zero.

Partial proof of conjecture 6.3. To prove that Eopt = 0 it is necessary (although
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insufficient) to prove that ep,q (ω) has a local maxima at ω = 0. By analogy with

the proof of theorem 6.2 it is necessary to prove that the gradient dep,q(ω)

dω
of ep,q (ω)

at ω = 0 is non-positive for all p < q. From the proof of theorem 6.2, dep,q(ω)

dω
=

dp,q (ω) ē′p,q (ω), dp,q (ω) > 0, for all ω ≥ 0, p, q ∈ Z+, where ē′p,q (ω) is given by

(6.14). Hence, if ē′p,q (0) ≤ 0, dep,q(ω)

dω

∣∣∣
ω=0
≤ 0, and therefore ep,q (ω) will have a local

maxima at ω = 0.

As 1 < p < q, q ≥ 2. If q = 2, p = 1, and hence by (6.15) ē′1,2 (0) = −1. Therefore

ep,2 (ω) has a local maxima at ω = 0. If q ≥ 3, writing q = 2 + m, p = 2 + m − n,

where m ∈ Z+, n ∈ {1, 2, . . . ,m+ 1}, it can be seen that if p > q > 2:

ē′p,q (0) = Γ(a+b+c)
Γ(a)Γ(b)

(B (a+ c, b)−B (a, b+ c))

where a = 2m−n+2
m−n+2

> 0, b = 2m+2
m−n+2

> 0 and c = 1
m−n+2

> 0. As a < b, it follows

from theorem C.2 that B (a+ c, b) < B (a, b+ c), and hence ē′ (0) < 0. Therefore,

in general, ep,q (ω) has a local maxima at ω = 0 for all p > q ∈ Z+. �

Unfortunately, this is not sufficient to prove the theorem. To do this, it would be

necessary to prove that the maxima at ω = 0 is global (or unique, which would imply

globality), and hence ωopt = Eopt = 0. Alternatively, proving that e′p,q (ω) ≤ 0 for all

ω ≥ 0 would demonstrate that the maxima at ω = 0 is global and thereby prove the

conjecture. Unfortunately this part of the proof remains incomplete. Empirically

(using a search approach on the PC) it has been observed [78] that conjecture 6.3

appears to hold for 1 ≤ q ≤ 1000.

Figures 6.1 to 6.6 show the inverse efficiency 1
eq,p(ω)

as a function of ω = E
σ

for

same. Note that with the exception of Laplacian noise (p = 1) the optimal theoret-

ical efficiency of the quadratic ε-SVR exceeds the optimal theoretical efficiency of

the standard ε-SVR. Also note that the efficiency of the monomial ε-SVR method

exceeds that of the LS-SVR for all p > 2.
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Figure 6.1: Comparative inverse asymptotic efficiency versus E
σ

of standard ε-SVR,
quadric ε-SVR and LS-SVR for polynomial noise of degree 1 (Laplacian noise). The
solid line represents the efficiency of quadric ε-SVR, the dotted line the efficiency of
standard ε-SVR, and the dashed line the efficiency of the LS-SVR.
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Figure 6.2: Comparative inverse asymptotic efficiency versus E
σ

of standard ε-SVR,
quadric ε-SVR and LS-SVR for polynomial noise of degree 2 (Gaussian noise). The
solid line represents the efficiency of quadric ε-SVR, the dotted line the efficiency of
standard ε-SVR, and the dashed line the efficiency of the LS-SVR.
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Figure 6.3: Comparative inverse asymptotic efficiency versus E
σ

of standard ε-SVR,
quadric ε-SVR and LS-SVR for polynomial noise of degree 3. The solid line rep-
resents the efficiency of quadric ε-SVR, the dotted line the efficiency of standard
ε-SVR, and the dashed line the efficiency of the LS-SVR.
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Figure 6.4: Comparative inverse asymptotic efficiency versus E
σ

of standard ε-SVR,
quadric ε-SVR and LS-SVR for polynomial noise of degree 4. The solid line rep-
resents the efficiency of quadric ε-SVR, the dotted line the efficiency of standard
ε-SVR, and the dashed line the efficiency of the LS-SVR.



6.2. ASYMPTOTICALLY OPTIMAL SELECTION OF E 115

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
p = 5

Figure 6.5: Comparative inverse asymptotic efficiency versus E
σ

of standard ε-SVR,
quadric ε-SVR and LS-SVR for polynomial noise of degree 5. The solid line rep-
resents the efficiency of quadric ε-SVR, the dotted line the efficiency of standard
ε-SVR, and the dashed line the efficiency of the LS-SVR.
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Figure 6.6: Comparative inverse asymptotic efficiency versus E
σ

of standard ε-SVR,
quadric ε-SVR and LS-SVR for polynomial noise of degree 6. The solid line rep-
resents the efficiency of quadric ε-SVR, the dotted line the efficiency of standard
ε-SVR, and the dashed line the efficiency of the LS-SVR.
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Efficiency of the Least-Squares SV Regressor - Polynomial Training Noise

If the training data is affected by polynomial noise:

eLS =
Γ2
(

1
p

)

p2Γ
(

2− 1
p

)
Γ
(

3
p

) (6.16)

Note that if p = 2 then eLS = 1 (i.e. the least-squares support vector regressor

is optimal in the presence of gaussian training noise, as expected).

6.3 Asymptotically Optimal Selection of ν

6.3.1 The Connection Between ν and E

It has been noted in section 6.2 that the efficiency, e, of an ε-SVR is, under the

usual assumptions, a function of ω = E
σ

. The implication of this was that E may be

selected using a two stage process. First, ωopt is selected to maximise the efficiency

based on the noise type (independent of the noise variance σ), according to (6.9).

Then Eopt is given by:

Eopt = σωopt

I now show that e may also be expressed (somewhat indirectly) as a function of

ν (making the usual assumptions), independent of σ if q = n. The advantage of this

form is that, unlike Eopt, calculation of νopt does not require knowledge of σ.

Consider the regularised cost function (5.37) in its primal form, making the usual
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assumptions:5

min
w,b,ξ,ξ∗,E

Rq,n (w, b, ξ, ξ∗, E) = 1
2
wTw + Cν

n
En + C

qN

N∑
i=1

ξqi + C
qN

N∑
i=1

ξ∗i
q

such that: wTϕ (xi) + b ≥ zi − E − ξi∀ (xi, zi) ∈ Y= ∪Y≥

wTϕ (xi) + b ≤ zi + E + ξ∗i ∀ (xi, zi) ∈ Y= ∪Y≤

ξ ≥ 0

ξ∗ ≥ 0

E ≥ 0

where n ≥ 1 and q ≥ 1 are integers. First, note that:

∂Rq,n

∂E
= C

(
νEn−1 +

1

N

N∑
i=1

(
ξq−1
i

∂ξi
∂E

+ ξ∗q−1
i

∂ξ∗i
∂E

))

where, using the optimality result:

ξi = max (0,−g (x) + zi − E)

ξ∗i = max (0, g (x)− zi − E)

it follows that:6

∂ξi
∂E

=





0 if g (xi) > zi − E or (g (xi) = zi − E, δE > 0)

−1 otherwise

∂ξ∗i
∂E

=





0 if g (xi) < zi + E or (g (xi) = zi + E, δE > 0)

−1 otherwise

5It is important to note that the additional term Cν
n E

n will not vanish in the limit C → ∞.
However, this term will not make the resulting SVM biased in the limit, as this term will only affect
the form of the empirical risk term in the cost function (via the width of the insensitive region),
not the form of the resulting trained machine.

6I have taken some liberties here when calculating this derivative, which is not actually well
defined. However, the rate of change as E is either increased or decreased is well defined, which is
what is indicated here.
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and hence:

∂Rq,n
∂E

= C





νEn−1 − NS
N

q = 1, δE < 0

νEn−1 − NE
N

q = 1, δE > 0

νEn−1 − 1
N

N∑
i=1

(
ξq−1
i + ξ∗i

q−1
)

otherwise

= C





νEn−1 − NS
N

q = 1, δE < 0

νEn−1 − NE
N

q = 1, δE > 0

νEn−1 − 1
N

N∑
i=1

max (|zi − g (xi)| − E, 0)q−1 otherwise

(6.17)

The process of selection Eopt has already been given previously. In the tube

shrinking case, however, E will be selected automatically based on ν. The optimality

condition for E is that ∂Rq,n
∂E

= 0, where ∂Rq,n
∂E

is given by (6.17). So, the optimal

value νopt for ν to achieve maximum efficiency is the value which, in the solution to

the primal, gives E = Eopt; and the relationship between νopt and Eopt is given by

(6.17). If q ≥ 2 then the functional relationship between E and ν is:

ν = E1−n 1
N

N∑
i=1

(
ξq−1
i + ξ∗q−1

i

)

= E1−n 1
N

N∑
i=1

max (|zi − g (xi)| − E, 0)q−1

Applying the usual assumptions (g (x) = b, N →∞), it follows that in all cases:7

ν = σq−n
[
2ω1−n

∫ ∞
ω

(τ − ω)q−1 qstd (τ)dτ

]

7If q = 1 then in the limit N →∞ (6.17) becomes:

lim
N→∞

∂R1,r
∂ε = C

{
νEn−1 − lim

N→∞
NS
N if δε < 0

νEn−1 − lim
N→∞

NE
N if δε > 0

which is well defined, as lim
N→∞

NS
N = lim

N→∞
NE
N . For optimality, ∂Rq,r

∂ε = 0, and so using theorem

6.4 it follows that, if q = 1:
ν = σ1−n [2ω1−n ∫∞

ω
qstd (τ)dτ

]
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where, as usual, ω = E
σ

. If q = n then:

ν = tq (ω) = 2ω1−q
∫ ∞
ω

(τ − ω)q−1 qstd (τ)dτ (6.18)

which is also 1-1 (invertible) if qstd (τ) is positive for all τ ≥ 0.

This implies that, if q = n, ν may be selected to achieve a particular efficiency

eselect (assuming that efficiency is achievable) by finding ω required to achieve this

and then substituting this into the relevant expression for ν. At no point is it

necessary to use σ, so only the noise type is required. If q = n:

ν = tq
(
e←q (E)

)
(6.19)

Note that if q = n = 1, (6.18) reduces to Smola’s original result [70]:

ν = 1−
∫ ω

−ω
pstd (τ) dτ

Hence, for a standard ν-SVR, if ν = 1 then, in the limit N → ∞, ω = E = 0.

Generally, if q = n then in order to achieve maximum efficiency one should choose:

νopt = tq

(
arg min

ω

1

eq (ω)

)
(6.20)

In the special case of polynomial noise:

ν = σq−n


 Γ

q−3
2

(
1
p

)

Γ
q−1

2

(
3
p

)
ωn−1

kq−1

(
1

p
, c′pω

p

)


and, if q = n:

ν =
Γ
q−3

2

(
1
p

)

Γ
q−1

2

(
3
p

)
ωq−1

kq−1

(
1

p
, c′pω

p

)
(6.21)

Table 6.1 shows the optimal value for ν found from the above in the special cases

q = 1, 2 for polynomial noise of degrees p = 1 to 6. Figures 6.7 to 6.12 show the

inverse asymptotic efficiency versus ν for both standard and quadratic ν-SVRs, as

well as LS-SVR. The important thing to note from these graphs is that, although
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Figure 6.7: Comparative inverse asymptotic efficiency versus ν of standard ν-SVR,
quadric ν-SVR and LS-SVR for polynomial noise of degree 1 (Laplacian noise). The
solid line represents the efficiency of quadric ν-SVR, the dotted line the efficiency
of standard ν-SVR and the dashed line the efficiency of the LS-SVR. Note that the
ν-scale differs for standard and quadric ν-SVRs. For standard ν-SVRs, the actual
value of ν is one tenth of that indicated on the x axis (for quadric ν-SVRs, ν is as
indicated).

the range of ν is much larger for quadratic ν-SVR methods than for standard ν-

SVR methods, the efficiency itself quickly flattens out. In particular, although the

theoretically optimal value for Gaussian noise is ν → ∞, it can be seen that even

when ν = 1 the efficiency is very close to it’s maximum, e = 1. Also note the

comparative flatness of the efficiency curves for quadratic ν-SVR.

6.4 Sparsity Analysis

As discussed previously, part of the motivation for developing the framework for

monomial ε-SVR is Suykens’ LS-SVR technique. Indeed, if C is sufficiently large

and the noise affecting measurements Gaussian, LS-SVR corresponds approximately

to the ML estimator for the parameters w and b. However, a downside of the LS-

SVR approach is the lack of sparsity in the solution [87], where by sparsity I am

referring here to the number of non-zero elements in the vector α or, equivalently

as N →∞ (see theorem 5.3), the fraction of training vectors that are also support
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Figure 6.8: Comparative inverse asymptotic efficiency versus ν of standard ν-SVR,
quadric ν-SVR and LS-SVR for polynomial noise of degree 2 (Gaussian noise). The
solid line represents the efficiency of quadric ν-SVR, the dotted line the efficiency
of standard ν-SVR and the dashed line the efficiency of the LS-SVR. Note that the
ν-scale differs for standard and quadric ν-SVRs. For standard ν-SVRs, the actual
value of ν is one tenth of that indicated on the x axis (for quadric ν-SVRs, ν is as
indicated).
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Figure 6.9: Comparative inverse asymptotic efficiency versus ν of standard ν-SVR,
quadric ν-SVR and LS-SVR for polynomial noise of degree 3. The solid line rep-
resents the efficiency of quadric ν-SVR, the dotted line the efficiency of standard
ν-SVR and the dashed line the efficiency of the LS-SVR. Note that the ν-scale differs
for standard and quadric ν-SVRs. For standard ν-SVRs, the actual value of ν is one
tenth of that indicated on the x axis (for quadric ν-SVRs, ν is as indicated).
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Figure 6.10: Comparative inverse asymptotic efficiency versus ν of standard ν-SVR,
quadric ν-SVR and LS-SVR for polynomial noise of degree 4. The solid line rep-
resents the efficiency of quadric ν-SVR, the dotted line the efficiency of standard
ν-SVR and the dashed line the efficiency of the LS-SVR. Note that the ν-scale differs
for standard and quadric ν-SVRs. For standard ν-SVRs, the actual value of ν is one
tenth of that indicated on the x axis (for quadric ν-SVRs, ν is as indicated).

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
p = 5

Figure 6.11: Comparative inverse asymptotic efficiency versus ν of standard ν-SVR,
quadric ν-SVR and LS-SVR for polynomial noise of degree 5. The solid line rep-
resents the efficiency of quadric ν-SVR, the dotted line the efficiency of standard
ν-SVR and the dashed line the efficiency of the LS-SVR. Note that the ν-scale differs
for standard and quadric ν-SVRs. For standard ν-SVRs, the actual value of ν is one
tenth of that indicated on the x axis (for quadric ν-SVRs, ν is as indicated).
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Figure 6.12: Comparative inverse asymptotic efficiency versus ν of standard ν-SVR,
quadric ν-SVR and LS-SVR for polynomial noise of degree 6. The solid line rep-
resents the efficiency of quadric ν-SVR, the dotted line the efficiency of standard
ν-SVR and the dashed line the efficiency of the LS-SVR. Note that the ν-scale differs
for standard and quadric ν-SVRs. For standard ν-SVRs, the actual value of ν is one
tenth of that indicated on the x axis (for quadric ν-SVRs, ν is as indicated).

vectors. In the LS-SVR case, all training vectors are support vectors, i.e. NS = N .

While the sparsity problems of the LS-SVR may be overcome to a degree using

the weighted LS-SVR approach [88], this approach is somewhat heuristic in nature,

requiring some external arbiter (either human or machine) to decide when to cease

pruning the dataset. However, by maintaining the ε-insensitive component of the

cost function, the need for such heuristics (at least at this level of abstraction) is

removed.8

So long as E > 0, one would expect that the solution α to the monomial ε-SVR

dual problem will contain some non-zero fraction of non-support vectors. Under the

usual assumptions, in [78] we showed that:

Theorem 6.4. The fraction of support vectors found by the ε-SVR under the usual

8Of course, some heuristic input will still be required for each approach, either for E selection or
when deciding how much compromise is acceptable during pruning. The advantage of the former
is that there exist alternative criteria which may be used to select E (i.e. optimal performance
for a given noise model), with sparsity properties being just a useful side affect of this choice. If
the dataset is very large, however, sparsity may be of primary importance, in which case neither
approach will have a clear advantage.
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assumptions will, asymptotically, be:

lim
N→∞

NS

N
= 2

∫ ∞
ω

qstd (τ) dτ

where ω = E
σ

.

Proof. Theorem 5.3 says that:

lim
N→∞

NS

N
= lim

N→∞
NE

N

Furthermore, since error vectors are those for which |g (xi)− zi| > E (i.e. those

lying outside the ε-tube):

lim
N→∞

NS

N
= Pr (|g (x)− ĝ (x)| > E)

Therefore:

lim
N→∞

NS
N

=
∫

z∈<\[θ−E,θ+E]

p (z| θ) dz

=
∫

z∈<\[−E,E]

p (z + θ| θ) dz

=
∫

z∈<\[−ω,ω]

σp (στ + θ| θ) dτ

=
∫

z∈<\[−ω,ω]

pstd (τ) dτ

= 2
∫∞
ω
qstd (τ) dτ

This proves the theorem.

Note that this implies:

lim
N→∞
E→0

NS

N
= 1

as expected for LS-SVR. It also implies that any decrease in E is likely to lead to

a decrease in the sparsity of the solution. So, in general, if the training set is large

then E should be chosen to be as large as possible while still maintaining acceptable

performance to maximise the sparsity of the solution.
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6.4.1 Sparsity of the Monomial ν-SVR

Theorem 6.4 showed that, under the usual assumptions:

s (ω) = lim
N→∞

NS

N
= 2

∫ ∞
ω

qstd (τ) dτ (6.22)

which is a 1-1 (invertible) function if the distribution qstd (τ) is everywhere positive.

It was also shown in the previous section that if q = n then from (6.18), ν = tq (ω),

where tq (ω) is invertible if qstd (τ) is positive everywhere.

These two functions demonstrate that in general there exists a direct relation

between the asymptotic value s (ω) of the fraction of support vectors in the training

set (and hence the sparsity of the solution) and the parameter ν. Specifically:

lim
N→∞

NS

N
= s

(
t←q (ν)

)

In general, the exact nature of this relation will be dependent of the form of the

noise process affecting the training data, and may not be expressible in closed form.

In the special case q = n = 1 (i.e. standard ν-SVR), however, it is clear that:

ν = lim
N→∞

NS

N

which coincides with theorem 5.3.

6.4.2 Sparsity in Polynomial Noise

In the case of polynomial noise then, from (6.22):

s (ω) =
Γ
(

1
p
, c′pω

p
)

Γ
(

1
p

)

Assuming q = n, it follows from (6.21) that:

ν (ω) =
Γ
q−3

2

(
1
p

)

Γ
q−1

2

(
3
p

)
ωq−1

kq−1

(
1

p
, c′pω

p

)
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Or, in the special cases q = 1 and q = 2:

ν (ω) =





Γ( 1
p
,c′pωp)

Γ( 1
p)

if q = 1

k1( 1
p
,c′pωp)

ω
√

Γ( 1
p)Γ( 3

p)
if q = 2

In the case q = 1, as expected, this implies:

lim
N→∞

NS

N
= ν

The case q = 2 is slightly more complex, and best illustrated graphically as in

figures 6.13 to 6.18, which show the predictions for the fraction of support vectors

found as a function of ν for both standard and quadratic ν-SVR methods for poly-

nomial noise of degree 1 ≤ p ≤ 6. Note that the general shape of the curves is

essentially identical in all cases. Generally, the fraction of support vectors found

by the quadratic ν-SVR will increase quickly while ν is small and then level out,

approaching 1 as ν → ∞ (as expected, given that the LS case corresponds with

ν →∞ and treats all vectors as support vectors).

Table 6.1 gives the expected asymptotic ratio of support vectors to training

vectors when ν is optimally selected for the usual degrees of polynomial noise. On

average, the results given in the table imply that quadratic ν-SVRs may require

approximately twice as many support vectors as standard ν-SVRs to achieve optimal

accuracy on the same dataset. This may be understood by realising that the act of

extracting support vectors is essentially a form of lossy compression. The modified

ν-SVR is (theoretically) able to achieve more accurate results than standard ν-SVR

because it can handle more information (by using less compression or, equivalently,

finding more support vectors) before over-fitting (and subsequent degradation in

performance) begins.

6.5 Experimental Results

Due to the restrictive assumptions made when deriving the results for theoretical

efficiency given in the preceding sections (which will, in the strictest sense, never
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Figure 6.13: Comparative asymptotic fraction of support vectors versus ν of stan-
dard and quadric ν-SVR for polynomial noise of degree 1 (Laplacian noise). The
solid line represents the efficiency of modified ν-SVR and the dotted line standard
ν-SVR. Note that the ν-scale differs for standard and quadric ν-SVRs. For standard
ν-SVRs, the actual value of ν is one tenth of that indicated on the x axis (for quadric
ν-SVRs, ν is as indicated).
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Figure 6.14: Comparative asymptotic fraction of support vectors versus ν of stan-
dard and quadric ν-SVR for polynomial noise of degree 2 (Gaussian noise). The
solid line represents the efficiency of modified ν-SVR and the dotted line standard
ν-SVR. Note that the ν-scale differs for standard and quadric ν-SVRs. For standard
ν-SVRs, the actual value of ν is one tenth of that indicated on the x axis (for quadric
ν-SVRs, ν is as indicated).
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Figure 6.15: Comparative asymptotic fraction of support vectors versus ν of stan-
dard and quadric ν-SVR for polynomial noise of degree 3. The solid line represents
the efficiency of modified ν-SVR and the dotted line standard ν-SVR. Note that the
ν-scale differs for standard and quadric ν-SVRs. For standard ν-SVRs, the actual
value of ν is one tenth of that indicated on the x axis (for quadric ν-SVRs, ν is as
indicated).
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Figure 6.16: Comparative asymptotic fraction of support vectors versus ν of stan-
dard and quadric ν-SVR for polynomial noise of degree 4. The solid line represents
the efficiency of modified ν-SVR and the dotted line standard ν-SVR. Note that the
ν-scale differs for standard and quadric ν-SVRs. For standard ν-SVRs, the actual
value of ν is one tenth of that indicated on the x axis (for quadric ν-SVRs, ν is as
indicated).
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Figure 6.17: Comparative asymptotic fraction of support vectors versus ν of stan-
dard and quadric ν-SVR for polynomial noise of degree 5. The solid line represents
the efficiency of modified ν-SVR and the dotted line standard ν-SVR. Note that the
ν-scale differs for standard and quadric ν-SVRs. For standard ν-SVRs, the actual
value of ν is one tenth of that indicated on the x axis (for quadric ν-SVRs, ν is as
indicated).
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Figure 6.18: Comparative asymptotic fraction of support vectors versus ν of stan-
dard and quadric ν-SVR for polynomial noise of degree 6. The solid line represents
the efficiency of modified ν-SVR and the dotted line standard ν-SVR. Note that the
ν-scale differs for standard and quadric ν-SVRs. For standard ν-SVRs, the actual
value of ν is one tenth of that indicated on the x axis (for quadric ν-SVRs, ν is as
indicated).
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be satisfied for any SVR), it is important to seek some form of experimental con-

firmation of these results. The experimental results presented in this section were

previously published in [78].

For ease of comparison the experimental procedure used here is modelled on

that of [18]. The risk (in the form of root mean squared error (RMSE)) has been

numerically computed as a function of ν for both standard and quadric ν-SVR

methods, allowing clear comparison between the two methods. Furthermore, the

RMSE for LS-SVR (which is the limiting case of quadric ν-SVR as ν → ∞) and

(non-sparse) weighted LS-SVR has also been computed [88]. Plots of risk versus

ν are given for polynomial noise of degree 1 ≤ p ≤ 6 to compare the theoretical

and experimental results, and some relevant results are given for the effect of other

parameters on the ν curves.

Finally, the sparsity of standard and quadric ν-SVR for different orders of polyno-

mial noise 1 ≤ p ≤ 6 has been computed, and comparisons made with the theoretical

predictions.

As in [18], the training set consisted of 100 examples (xi, zi) where xi is drawn

uniformly from the range [−3, 3] and zi is given by the noisy sinc function:

zi = sinc (xi) + ζi

= sin(πxi)
πxi

+ ζi

where ζi represents additive polynomial noise. The test set consisted of 500 pairs

(xi, zi) where the xi’s were equally spaced over the interval [−3, 3] and zi was given

by the noiseless sinc function. 500 trials were carried out for each result.

By default, we set the parameter C = 100 and noise variance σ = 0.5. In all

experiments we use the Gaussian RBF kernel function K (x,y) = e
− 1

2σ2
kernel

‖x−y‖2

where 2σ2
kernel = 1 by default.

6.5.1 Additive Polynomial Noise

In the first experiment, the training data has been affected by polynomial noise of

degree 1 ≤ p ≤ 6. Plots of RMSE for standard ν-SVR, quadric ν-SVR, LS-SVR
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Figure 6.19: Risk (RMSE) versus ν for sinc data with polynomial noise of degree 1
(c.f. [18], figure 2). In these experiments, σ = 0.5, C = 100 and 2σ2

kernel = 1. Note
that the ν-scale differs for standard and modified ν-SVRs. For standard ν-SVRs, the
actual value of ν is one tenth of that indicated on the x axis (for modified ν-SVRs,
ν is as indicated).

and weighted LS-SVR are shown in figures 6.19 to 6.24. With the exception of

Laplacian noise (p = 1), these results resemble the theoretical predictions shown in

figures 6.7 to 6.12. Note that the quadric ν-SVR outperforms both standard ν-SVR

and (weighted and unweighted) LS-SVR in all cases except Laplacian noise (p = 1).

Whilst the general shape of the RMSE curves closely resembles the shape of the

predicted efficiency curves, it is important to note that the sharp optimum predicted

by the theory for p ≥ 4 (see figures 6.10 to 6.12) is not present in the experimental

results. Instead, the region of optimality is somewhat to the right of this and also

somewhat blunter.

From an application point of view, this is actually an advantage, as it means that

results are far less sensitive to ν than expected. Indeed, from these results one may

empirically say that the “sweet spot” for ν lies between 0.5 and 1 for polynomial noise

of degree p ≥ 3 and anything above 2 otherwise. But, roughly speaking, selecting

ν = 1 will in all cases presented give results superior to the standard ν-SVR method

and at least comparable to the LS-SVR methods (better if p ≥ 3).

In the case of Laplacian noise the actual performance (in terms of RMSE) of
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Figure 6.20: Risk (RMSE) versus ν for sinc data with polynomial noise of degree 2
(c.f. [18], figure 2). In these experiments, σ = 0.5, C = 100 and 2σ2

kernel = 1. Note
that the ν-scale differs for standard and modified ν-SVRs. For standard ν-SVRs, the
actual value of ν is one tenth of that indicated on the x axis (for modified ν-SVRs,
ν is as indicated).
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Figure 6.21: Risk (RMSE) versus ν for sinc data with polynomial noise of degree 3
(c.f. [18], figure 2). In these experiments, σ = 0.5, C = 100 and 2σ2

kernel = 1. Note
that the ν-scale differs for standard and modified ν-SVRs. For standard ν-SVRs, the
actual value of ν is one tenth of that indicated on the x axis (for modified ν-SVRs,
ν is as indicated).
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Figure 6.22: Risk (RMSE) versus ν for sinc data with polynomial noise of degree 4
(c.f. [18], figure 2). In these experiments, σ = 0.5, C = 100 and 2σ2

kernel = 1. Note
that the ν-scale differs for standard and modified ν-SVRs. For standard ν-SVRs, the
actual value of ν is one tenth of that indicated on the x axis (for modified ν-SVRs,
ν is as indicated).
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Figure 6.23: Risk (RMSE) versus ν for sinc data with polynomial noise of degree 5
(c.f. [18], figure 2). In these experiments, σ = 0.5, C = 100 and 2σ2

kernel = 1. Note
that the ν-scale differs for standard and modified ν-SVRs. For standard ν-SVRs, the
actual value of ν is one tenth of that indicated on the x axis (for modified ν-SVRs,
ν is as indicated).
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Figure 6.24: Risk (RMSE) versus ν for sinc data with polynomial noise of degree 6
(c.f. [18], figure 2). In these experiments, σ = 0.5, C = 100 and 2σ2

kernel = 1. Note
that the ν-scale differs for standard and modified ν-SVRs. For standard ν-SVRs, the
actual value of ν is one tenth of that indicated on the x axis (for modified ν-SVRs,
ν is as indicated).

both the quadric ν-SVR and the LS-SVRs is better than that of the standard ν-

SVR, whereas theory would suggest that this should not be the case. The reason

for this anomaly remain unclear.

Figures 6.25 to 6.30 show the ratio of support vectors to training vectors for both

standard and quadric ν-SVRs as a function of ν. These curves closely match the

predictions given in figures 6.13 to 6.18. It is clear from figures 6.19 to 6.24 and 6.25

to 6.30 that, as expected, the number of support vectors found by the quadric ν-SVR

is substantially larger than the number found by the standard ν-SVR. However, this

is still substantially less than the number of support vectors found by the LS-SVR

(which uses all training vectors as support vectors).

6.5.2 Parameter Variation with Additive Gaussian Noise

In the second experiment, the performance of the standard and quadric ν-SVR in the

presence of additive Gaussian noise is analysed as other parameters of the problem

(particularly σ (the noise variance), C and σkernel) are varied, the aim being to see

if the RMSE versus ν curves retains the same general form as these parameters are
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Figure 6.25: Number of support vectors (out of 100 training vectors) versus ν for sinc
data with polynomial noise of degree 1. For this experiment, σ = 0.5, C = 100 and
2σ2

kernel = 1. The dotted line shows standard ν-SVR, and the solid line quadric ν-
SVR. Note that the ν-scale differs for standard and modified ν-SVRs. For standard
ν-SVRs, the actual setting for ν is one tenth of that indicated on the x axis (for
modified ν-SVRs, ν is as indicated).
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Figure 6.26: Number of support vectors (out of 100 training vectors) versus ν for sinc
data with polynomial noise of degree 2. For this experiment, σ = 0.5, C = 100 and
2σ2

kernel = 1. The dotted line shows standard ν-SVR, and the solid line quadric ν-
SVR. Note that the ν-scale differs for standard and modified ν-SVRs. For standard
ν-SVRs, the actual setting for ν is one tenth of that indicated on the x axis (for
modified ν-SVRs, ν is as indicated).
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Figure 6.27: Number of support vectors (out of 100 training vectors) versus ν for sinc
data with polynomial noise of degree 3. For this experiment, σ = 0.5, C = 100 and
2σ2

kernel = 1. The dotted line shows standard ν-SVR, and the solid line quadric ν-
SVR. Note that the ν-scale differs for standard and modified ν-SVRs. For standard
ν-SVRs, the actual setting for ν is one tenth of that indicated on the x axis (for
modified ν-SVRs, ν is as indicated).
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Figure 6.28: Number of support vectors (out of 100 training vectors) versus ν for sinc
data with polynomial noise of degree 4. For this experiment, σ = 0.5, C = 100 and
2σ2

kernel = 1. The dotted line shows standard ν-SVR, and the solid line quadric ν-
SVR. Note that the ν-scale differs for standard and modified ν-SVRs. For standard
ν-SVRs, the actual setting for ν is one tenth of that indicated on the x axis (for
modified ν-SVRs, ν is as indicated).
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Figure 6.29: Number of support vectors (out of 100 training vectors) versus ν for sinc
data with polynomial noise of degree 5. For this experiment, σ = 0.5, C = 100 and
2σ2

kernel = 1. The dotted line shows standard ν-SVR, and the solid line quadric ν-
SVR. Note that the ν-scale differs for standard and modified ν-SVRs. For standard
ν-SVRs, the actual setting for ν is one tenth of that indicated on the x axis (for
modified ν-SVRs, ν is as indicated).
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Figure 6.30: Number of support vectors (out of 100 training vectors) versus ν for sinc
data with polynomial noise of degree 6. For this experiment, σ = 0.5, C = 100 and
2σ2

kernel = 1. The dotted line shows standard ν-SVR, and the solid line quadric ν-
SVR. Note that the ν-scale differs for standard and modified ν-SVRs. For standard
ν-SVRs, the actual setting for ν is one tenth of that indicated on the x axis (for
modified ν-SVRs, ν is as indicated).
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varied.

The top row of figure 6.31 shows the form of the RMSE versus ν curve for a range

of noise levels. In all cases the form of the curves remains essentially unchanged.

It will be noted, however, that for the lowest noise case (σ = 0.1) the standard

ν-SVR is able to out-perform the quadric ν-SVR. Once again, selecting ν > 1 gives

reasonable performance in all cases (c.f. Smola’s result for standard ν-SVR [83],

where the “optimal area” is ν ∈ [0.3, 0.8]).

The middle row of figure 6.31 shows the same curve with the noise variance σ

fixed for different values of C, namely C ∈ {10, 100, 1000}. Once again, the RMSE

curve for quadric ν-SVR is roughly as predicted, and ν > 1 gives reasonable results.

In this case, C = 10 provides an anomalous result.

Finally, in the bottom row of figure 6.31, shows the RMSE versus ν curves when

the kernel parameter 2σ2
kernel is varied. These results follow the same pattern as for

variation of σ and C.

It is interesting to note here that, while the RMSE versus ν curve obtained using

the quadric ν-SVR fits more closely the predicted curve than does the same curve

for standard ν-SVR when parameters are chosen badly, this does not imply that

the performance of the quadric ν-SVR will necessarily be better than the standard

ν-SVR in this case. Indeed, the two cases where other SV parameters (i.e. not ν)

have been chosen badly (i.e. C = 10 and 2σ2
kernel = 0.1 in figure 6.31) are the two

cases where the standard ν-SVR most outperforms the quadric ν-SVR. However, as

one should continue to search until appropriate parameters are found, this should

not be too much of a problem in practical situations.
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Figure 6.31: Risk (RMSE) versus ν for sinc data with Gaussian noise (c.f. [18], figure
1). The top row shows performance for different noise variances, σ ∈ {0.1, 1} from
left to right, with C = 100 and 2σ2

kernel = 1. The middle row gives performance for
C ∈ {10, 1000}, respectively, with σ = 0.5 and 2σ2

kernel = 1. Finally, the bottom row
shows performance for 2σ2

kernel ∈ {0.1, 10}, respectively, with σ = 0.5 and C = 100.
Note that for all graphs the ν-scale differs for standard and quadric ν-SVRs. For
standard ν-SVRs, the actual setting for ν is one tenth of that indicated on the x
axis (for quadric ν-SVRs, ν is as indicated).
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Chapter 7

TRAINING THE SVM - PRELIMINARIES

You know, I always say that a day without an autopsy is like a day

without sunshine.

– Buffy

I
mplementation of the various SVM formulations introduced in chapters 4 and

5 invariably requires the solving of some form of quadratic program (although

it should be noted that not all SVM formulations result in quadratic programs, e.g.

[86] [50] [11] [98]), whether this be the SVM optimisation primal, the dual or the

partial dual (where applicable). Over the next two chapters I will introduce the SVM

optimisation algorithm presented in [81] (and prior to that, in somewhat limited

form, [80]), which was later extended [63] to cover regression with inequalities. This

chapter will introduce the necessary background material and definitions. Details of

the algorithm itself are contained in chapter 8.

7.1 Scope and Limitations

Because there exist such a wide range of SVM formulations and modifications (some

of which have been introduced in chapters 4 and 5), it is important to clearly define

the scope of applicability for any algorithm dealing with the SVM optimisation

problem. In this section I outline the limitations of my algorithm and the reasoning

behind these limits

7.1.1 Primal, Dual and Partially Dual

In the basic regression with inequalities SVM introduced in section 5.1 (which covers

both regression and pattern classification in their basic form), there are (usually)

141
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three forms in which the problem may be solved, namely primal, dual and partially

dual.

The primal form of the problem is a quadratic program in dH dimensions with

complex linear constraints. However, as has been discussed previously, this form

makes high dimensional feature spaces difficult to deal with, and infinite dimensional

feature spaces impossible. Furthermore one cannot use the kernel trick here. This

makes direct solution of the primal problem unattractive, so I have chosen to ignore

this method.

The dual form overcomes many of the shortcomings of the primal form. It to

is a quadratic programming problem. However the feature map is now hidden by

the kernel function, and the size of the problem is N (where N is the size of the

training set). Each of the dual variables αi has at least a lower bound, and there are

between 0 (fixed bias) and 2 (variable bias, linear tube shrinking) additional linear

equality constraints. Furthermore, the hessian is at least positive semidefinite (and

may be positive definite, depending on the exact form of the problem - for example,

the LS-SVR is guaranteed to have a positive definite hessian). I have chosen to

use this form for the fixed-bias SVM (where there are no additional linear equality

constraints) because in this case the dual is particularly simple.

Finally, in all but the fixed bias case (without linear tube shrinking) there is

the partially dual form. This form is very similar to the dual form, except that the

size of the quadratic program is increased from N to either N + 1 or N + 2, and

the constraint set now consists only of simple bounds on each of the dual variables

α. The downside to this is that the positive semi-definite nature of the hessian is

lost (although if the hessian of the dual is positive definite then the hessian of the

partially dual must be non-singular, as will be shown later). This is the form I will

be using for all but the fixed bias SVM.

7.1.2 Limits on the SVM Formulation

In developing a training algorithm for SVM methods (both regression and pattern

classification), it is necessary to trade-off between the conflicting requirements of

generality, speed and space. Specifically:
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• Generality: The algorithm should cover as many of the diverse SVM types

as possible, from the standard pattern classification and regression methods

of chapter 4 to the general cost function regressor with inequalities and tube

shrinking of section 5.5.1.

• Speed: The algorithm should be find the optimal (or close enough for practical

purposes) solution as quickly as possible.

• Memory use: Computer memory is finite, and SVM training sets can be ex-

tremely large, so memory conservation is an important design factor, especially

given that one may wish to use whatever algorithms are developed in applica-

tions where memory resources are scarce (mobile telephony, for example).

Of course, the requirement for speed is essentially in conflict with the require-

ment for generality. To optimise an algorithm’s speed, one must be able to take

advantage of the specific properties of the problem at hand, avoiding all unneces-

sary calculations and tests. But to increase generality some calculations and checks

must be done “just in case”, even though they may not be needed for the particular

case at hand, compromising the algorithm’s speed.

Similarly, the requirements of speed and minimum memory usage are in some

ways conflicting. Storing very large matrices, for example, takes a lot of memory.

However, if the elements of such matrices are needed repeatedly then re-calculating

them at regular intervals may result in a noticeable degradation of performance.

Of course, if memory usage is excessive (i.e. exceeds the available conventional

memory) then there will be an impact on speed due to the practical necessity of

swapping blocks of data in and out of physical memory, resulting in thrashing, so

these requirements are not entirely at odds.

As a trade-off I have restricted my work thusly:

1. Only SVMs with linear or quadratic empirical risk functions will be dealt with.

2. Linear (conventional) tube shrinking will not be considered.

3. It will be assumed that the training dataset is sufficiently small, and the com-

puters memory sufficiently large that all data will fit into conventional memory,
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avoiding thrashing problems due to disk/memory swapping.

So I will be not be considering the SVM optimisation problem associated with a

general cost function, as described in section 5.5.1, nor the standard tube-shrinking

problem. I will, however, be considering the case of quadratic cost (including LS-

SVMs, although it should be noted that my approach in this special case is not

optimal), and quadratic tube shrinking. It should be noted that assumption 3 is not

intended to imply that I pay no attention to memory usage. It simply means that

I will be ignoring the complex issues of thrashing and other effects due to memory

limitations that, while important for very large datasets, are beyond the scope of

this thesis.

7.2 Abstract Problem Formulation

In section 5.1 I introduced the new SVM formulation of regression with inequali-

ties and (in subsection 5.1.1) demonstrated how the standard SVM formulations of

binary pattern recognition and regression may be viewed as simply special cases of

regression with inequalities. Specifically, the special cases are retrieved by applying

restrictions to the general training set, namely:

1. Pattern recognition: Y= = ∅, z = 0, ε, ε∗ ≤ 0.

2. Standard regression: Y≤ = Y≥ = ∅.

One key advantage of taking this approach is that it reduces the amount of rep-

etition required when dealing with extensions to the basic model that are applicable

to both the pattern recognition and regression forms of the SVM - rather than re-

peating essentially the same method for both pattern recognition and classification,

one need only describe the method once for the more general formulation.

The aim of the abstract problem formulation is much the same. Rather than

describing several essentially identical variants of the same algorithm to deal with the

variants of the SVM problem, a single algorithm is described which may be applied

to many of the variants by appropriately mapping the original (specific) training set
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onto an abstract training set and then using the generic training algorithm, with

appropriate interpretation of the resulting function g (x).

7.2.1 The Abstract Training Set

The abstract training set T consists of the training data:

T = (ϑ,BiasType, bfix, K)

where : ϑ = (ϑ1, ϑ2, . . . , ϑN)

ϑi = (xi, zi, ρi, ρ
∗
i , hi, vi, γi, γ

∗
i , µi, µ

∗
i )

xi ∈ <dL
bfix ∈ <
zi, ρi, ρ

∗
i , vi, hi, γi, γ

∗
i , µi, µ

∗
i ∈ <

ρi, ρ
∗
i ≥ 0 if vi < 0 < hi

γi, γ
∗
i , µi, µ

∗
i ≥ 0

vi ≤ 0

hi ≥ 0

FixBias ∈ {Var,Fix}
K ∈Mκ

(7.1)

where the binary variable BiasType is Fix for fixed bias operation (b = bfix) or Var

for normal (variable bias) operation, and K is the usual kernel function. The exact

connection between this training set and the standard SVM training sets will be

described shortly. Roughly speaking, however:

• xi and zi are the standard training pair for regression with inequalities.

• ρi and µi play a role similar to Eεi. However, in this case ρi refers specifically

to the non tube-shrinking case, whereas µi relates specifically to the quadratic

tube shrinking case. While it is possible to have give both elements non-

zero values, this will not correspond to any of the SVM formulations given

previously. The positivity requirement made on ρi if vi < 0 < hi (which, as

will be seen, is only applicable to regression) is a technicality which will be

required later.
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• ρ∗i and µ∗i play the analogous role for Eε∗i .

• vi and hi act as lower and upper bounds on αi. That is, αi ∈ [vi, hi]. Thus these

play the role of C
N
t∗i and C

N
ti in the standard SVM formulation. While they

must be finite, for quadratic cost they are typically set to a very large value, so

providing an effectively infinite range. This requirement of finiteness is both

technically (as it makes the proof of convergence easier) and also practically

(as computers typically cannot handle arbitrarily large numbers well) useful.

• γi and γ∗i provide a diagonal offset to the Hessian, making possible the use of

quadratic cost functions.

7.2.2 The Abstract Optimisation Problem

Given a training set T, consider the following optimisation problem:

{β,β∗, b} = arg min
β,β∗∈<N

max
b∈<

QBiasType (β,β∗, b) (7.2)

such that: b = bfix if BiasType = Fix

0 ≤ β ≤ h

v ≤ β∗ ≤ 0

where:

QVar (β,β∗, b) =
1

2




β

β∗

b




T 
 Q 1

1T 0







β

β∗

b


−




β

β∗

b




T 


z− ρ
z + ρ∗

0


 (7.3)

QFix (β,β∗, b) =
1

2


 β

β∗



T

Q


 β

β∗


−


 β

β∗



T 
 z− 1b− ρ

z− 1b+ ρ∗


 (7.4)

and:

Q =


 K + µµT + diag (γ) K− µµ∗T

K− µ∗µT K + µ∗µ∗T + diag (γ∗)




Kij = K (xi,xj)
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Now:

Theorem 7.1. For any training set T as defined by (7.1) and an associated solution

{β,β∗, b} to (7.2), one or both of βi and β∗i must be zero for all 1 ≤ i ≤ N .

Proof. Note that:

e =
∂QBiasType

∂β

= k− z + Eµ+ γβ + ρ (7.5)

e∗ =
∂QBiasType

∂β∗

= k− z− Eµ∗ + γ∗β∗ − ρ∗ (7.6)

where the following are defined for convenience:

E = µTβ − µ∗Tβ∗

k = K (β + β∗) + 1b

noting that this implies that E ≥ 0.

Suppose the theorem is false. That is, suppose 0 < βi ≤ hi and vi ≤ β∗i < 0

for some 1 ≤ i ≤ N . Then, for optimality, ei ≤ 0 and e∗i ≥ 0 or, equivalently,

ei + ri = e∗i − r∗i = 0 for some ri, r
∗
i ≥ 0. Substituting into (7.5) and (7.6) it may be

seen that βi =
γ∗i
γi
β∗i − Eµi+Eµ

∗
i+ρi+ρ

∗
i+ri+r

∗
i

γi
. As E, γi, γ

∗
i , µi, µ

∗
i , ρi, ρ

∗
i , ri, r

∗
i ≥ 0 (the

constraint ρi, ρ
∗
i ≥ 0 follows from the fact that vi < 0 < hi, which in turn follows

from the supposition that 0 < βi ≤ hi and vi ≤ β∗i < 0) and β∗i < 0, it follows that

βi < 0, which contradicts the original supposition 0 < βi ≤ hi. Hence the solution

cannot satisfy both 0 < βi ≤ hi and vi ≤ β∗i < 0 for any 1 ≤ i ≤ N .

It follows that for any optimal solution it cannot be true that both 0 < βi ≤ hi

and vi ≤ β∗i < 0 for any 1 ≤ i ≤ N , which means that one or both of βi and β∗i

must be zero for all 1 ≤ i ≤ N .

Consider the optimisation functions (7.3) and (7.4). It will be noted that both

are particularly simple 2N -dimensional (or (2N + 1)-dimensional) quadratic equa-
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tions, with none of the (apparent) discontinuities found in the SVM regression with

inequalities partial dual (5.5). However, the (apparent) dimensionality of (7.3) and

(7.4) is roughly twice that of (5.5), which is not a good sign if we intend using (7.4)

for SVM optimisation work. Theorem 7.1 holds the key to reducing this dimension-

ality without losing the underlying smoothness of the problem.

Before doing so, however, some useful notation must be introduced. The type

vector τ ∈ {−2,−1, 0, 1, 2}N is defined thusly:

τi =





−2 if vi = αi ∧ vi < 0

−1 if vi ≤ αi ≤ 0 ∧ vi < 0

0 if αi = 0

+1 if hi ≥ αi ≥ 0 ∧ hi > 0

+2 if hi = αi ∧ hi > 0

(7.7)

neglecting (for now) the apparent ambiguity in this definition. Based on this, it is

also convenient to define the vectors ρ
(∗)
τ ∈ <N , γ

(∗)
τ ∈ <N and µ

(∗)
τ ∈ <N using:

ρ
(∗)
τ i =





ρi if τi > 0

0 if τi = 0

ρ∗i if τi < 0

γ
(∗)
τ i =





γi if τi > 0

0 if τi = 0

γ∗i if τi < 0

µ
(∗)
τ i =





µi if τi > 0

0 if τi = 0

µ∗i if τi < 0

(7.8)

where the subscript τ indicates the implicit dependence on the type vector τ .

Noting that g (y) is dependent only on β+β∗ and b it can be seen that, defining
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α = β + β∗, the abstract optimisation problem may be re-written:

{α, b} = arg min
α∈[v,h]

arg max
b∈<

QBiasType (α, b) (7.9)

such that: b = bfix if BiasType = Fix (7.10)

where:

QVar (α, b) =
1

2


 α
b



T 
 Gτ 1

1T 0




 α
b


−


 α
b



T 
 z− sgn (τ )ρ

(∗)
τ

0


(7.11)

QFix (α, b) =
1

2
αTGτα+αT1b−αT

(
z− sgn (τ )ρ

(∗)
τ

)
(7.12)

and:

Gτ = K + diag
(
γ

(∗)
τ

)
+
(

sgn (τ )µ
(∗)
τ

)(
sgn (τ )µ

(∗)
τ

)T

There are several things to note here. Firstly, note that theorem 7.1 allows us to

reconstruct the complete solution {β,β∗, b} to (7.2) using the solution {α, b} to the

N -dimensional (or (N + 1)-dimensional) optimisation problem (7.9) using the type

vector τ thusly:

βi =





αi if τi > 0

0 otherwise

β∗i =





αi if τi < 0

0 otherwise

or, reversing this logic:

αi =





βi if τi > 0

0 if τi = 0

β∗i if τi < 0

(7.13)

Secondly, note that whereas (7.2) is a smooth optimisation problem, (7.9) would

appear to be discontinuous due to the discontinuous implicit dependencies on τ

throughout. Fortunately, this presents no real difficulties so long one views (7.9)

not as a problem in its own right, but simply as a shorthand way of writing (7.2) to
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1

( )kαααα

( )1k +αααα
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(a) (b)

( ) ( )( )*,k kβ ββ ββ ββ β

( )k∆ββββ
( )* k∆ββββ

( ) ( )( )1 * 1,k k+ +β ββ ββ ββ β

Figure 7.1: Effect of changing the sign of α in one step. (a) shows the apparent
change in α, while (b) shows (schematically) the actual two steps involved in terms
of β and β∗.

highlight the sparseness given by theorem 7.1.

Of course, when solving (7.9) some care must be taken. In particular, noting

that αi is simply a placeholder for a variable which is either strictly non-negative or

strictly non-positive, if an iterative method is used to find the solution care must

be taken to ensure that the sign of αi does not go from positive to negative (or

vice-versa) for any given iteration, as this would imply that what αi is acting as a

placeholder for is changing mid-step, which could lead to difficulties. This problem

is shown schematically in figure 7.1. As will be seen shortly, this is the same as

ensuring that τ is held constant for any given iteration.

Given a solution {α, b} of (7.9), the “trained machine” associated with this is

defined to be the function:

g (y) =
N∑
i=1

αiK (xi,y) + b

7.3 The Order Vector

When formulating the abstract optimisation problem (7.9) it has been assumed

that the ordering of the elements in the solution {α, b} is of little import, and

hence for convenience corresponds to the ordering of elements in the training set T

(and in particular ϑ). However, this ordering may not be convenient when actually
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attempting to find this solution - for example, it may be more convenient to group

the support vectors together. Of course, if an iterative method is used to find the

solution then this order will not be constant, but will instead vary from one iteration

to the next.

While it is convenient to re-order the elements of the problem after each iteration,

actually doing so would be an unnecessary exercise in bookkeeping which may have

a serious impact of the speed of the training algorithm. Fortunately it is possible to

attain this convenience without the added book-keeping by making the re-ordering

implicit. One way to do this is to define an order vector m ∈ ZN , where 1 ≤ mi ≤ N

for all 1 ≤ i ≤ N is an integer, and mi 6= mj for all 1 ≤ i, j ≤ N , i 6= j.

Using this order vector, one may associate with any other vector q a alternative

“view” q of this vector, where:

q
i

= qmi

similarly, for any N ×N matrix R, one may define R using:

Ri,j = Rmi,mj

then, rather than re-ordering q, R, and any other vectors and matrices in use for

each iteration, one can simply re-order the order vector m instead, which implicitly

re-orders the other objects (via the above definition).

Using this notation, the abstract optimisation problem (7.9) can be trivially

re-written:

{α, b} = arg min
α∈[v,h]

arg max
b∈<

QBiasType (α, b) (7.14)

such that: b = bfix if BiasType = Fix (7.15)

where:

QVar (α, b) =
1

2


 α
b



T 
 Gτ 1

1T 0




 α
b


−


 α
b



T 
 z− sgn (τ )ρ(∗)

τ

0


(7.16)

QFix (α, b) =
1

2
αTGτα+αT1b−αT

(
z− sgn (τ )ρ(∗)

τ

)
(7.17)
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7.3.1 Standard Form

For notational convenience, unless otherwise stated I will assume that m is chosen

such that:

τ =




0

−2

+2

1±




(7.18)

This is standard form. By definition, in (7.18), 0 ∈ <NZ , −2 ∈ <NL , +2 ∈ <NU and

1± ∈ <NF . Hence N = NZ + NL + NU + NF . Finally, define NF− is the number of

elements τ i = −1, and NF+ the number for which τ i = +1. So NF = NF+ +NF−.

Variables αi for which τ i ∈ {−2, 0,+2} are called actively constrained variables,

and the corresponding inequality constraints which hold as equality constraints (i.e.

αi = vi, αi = 0 or αi = hi) are called active constraints, and are treated as equality

constraints. Constraints that are not active are called inactive constraints. The

total number of actively constrained variables is NC = NZ +NL +NU .

All other variables (i.e. variables αi for which τ i = ±1) are called free variables.

The number of free variables is NF = NF+ + NF−, where NF+ is the number of

free positive variables (τ i = +1), and NF− is the number of free negative variables

(τ i = −1). All of the constraints relating to the free variables are inactive.

Note that the free variables correspond to boundary vectors, and the constrained

variables for which τ i = ±2 to error vectors. So there are NB = NF boundary

vectors, NE = NL + NU error vectors and NS = NL + NU + NF support vectors in

total.

When in standard form, all vectors (for example, z) can be split thusly:

z =




zZ

zL

zU

zF



, etc.

where zZ ∈ <NZ , zL ∈ <NL , zU ∈ <NU , and zF ∈ <NF correspond consecutively
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to those variables actively constrained at (Z)ero, those actively constrained at the

(L)ower bound v, those actively constrained at an (U)pper bound h and the (F)ree

variables. Hence:

τZ = 0 αZ = 0

τL = −2 αL = vL

τU = +2 αU = hU

τF = 1± αF ∈ [vF ,hF ]

Likewise, symmetric matrices (which includes all matrices of interest here, for

example, K) may be split thusly:

K =




KZ KZL KZU KZF

KT
ZL KL KLU KLF

KT
ZU KT

LU KU KUF

KT
ZF KT

LF KT
UF KF




where KZ ∈ <NZ×NZ , KZL ∈ <NL×NZ etc. Using this notation:

Gτ =




KZ KZL KZU . . .

KT
ZL KL + µ∗Lµ

∗T
L + diag (γ∗L) KLU − µ∗LµTU . . .

KT
ZU KT

LU − µUµ∗TL KU + µUµ
T
U + diag (γU) . . .

KT
ZF KT

LF −
(

sgn (τ F )µ
(∗)
τ F

)
µ∗TL KT

UF +
(

sgn (τ F )µ
(∗)
τ F

)
µTU . . .

. . . KZF

. . . KLF − µ∗L
(

sgn (τF )µ
(∗)
τF

)T

. . . KUF + µU

(
sgn (τ F )µ

(∗)
τ F

)T

. . . KF +
(

sgn (τ F )µ
(∗)
τ F

)(
sgn (τF )µ

(∗)
τF

)T
+ diag

(
γ

(∗)
τ F

)




Note that:

g (y) =
N∑

i=NZ+1

αiK (xi,y) + b

The active set approach [40] to solving (7.14) is an iterative method whereby one

approaches the solution by testing a sequence of possible active sets for optimality.

For each iteration, an active set is proposed (and τ set appropriately and put in
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standard form via pivoting of m) and, treating the constrained variables as constants,

the optimal value for the free variables is found. This proposed solution is tested for

optimality (for both free and constrained variables), and if it is non-optimal then the

active set is modified (τ is changed) and the process is repeated. The key advantage

of this approach is that typically when dealing with SVMs NF � N . Hence the

optimisation problem to be solved for each iteration of the optimisation procedure

should be small and therefore quickly solvable.

7.4 Optimality Conditions

Consider the abstract optimisation problem (7.14) in standard form.

{α, b} = arg min
α∈[v,h]

arg max
b∈<

QBiasType (α, b)

such that: b = bfix if BiasType = Fix

where:

QVar (α, b) =
1

2


 α
b



T 
 Gτ 1

1T 0




 α
b


−


 α
b



T 
 z− sgn (τ )ρ(∗)

τ

0




QFix (α, b) =
1

2
αTGτα+αT1b−αT

(
z− sgn (τ )ρ(∗)

τ

)
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Before deriving the optimality conditions it is useful to define:

E = µ(∗)T
τ |α| (7.19)

 k

f


 =


 K 1

1T 0




 α
b


 (7.20)


 eτ

f


 =


 Gτ 1

1T 0




 α
b


−


 z− sgn (τ )ρ(∗)

τ

0


 (7.21)

=


 k

f


−


 z− sgn (τ )

(
ρ(∗)
τ + Eµ(∗)

τ

)
− γ(∗)

τ α

0


 (7.22)




eτZ

eτL

eτU

eτF




=




kZ

kL

kU

kF



−




zZ

zL

zU

zF




+




0

γ∗
L
vL

γ
U
hU

γ(∗)
τFαF




+




0

−
(
ρ∗
L

+ Eµ∗
L

)
(
ρ
U

+ Eµ
U

)

τ F

(
ρ(∗)
τ F + Eµ(∗)

τF

)




(7.23)

noting that ki = g (xi).

Returning to the longform version of the abstract optimisation problem (7.2), it

is easy to see that the optimality conditions for β, β∗ and b are simply:

∂QBiasType

∂β
i





≥ 0 if β
i

= 0 ∧ hi > 0

= 0 if 0 < β
i
< hi ∧ hi > 0

≤ 0 if β
i

= hi ∧ hi > 0

∂QBiasType

∂β∗
i





≥ 0 if β∗
i

= vi ∧ vi < 0

= 0 if vi < β∗
i
< 0 ∧ vi < 0

≤ 0 if β∗
i

= 0 ∧ vi < 0

∂QBiasType

∂b
= 0 if BiasType = Var
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where:

∂QBiasType

∂β
= k− z + Eµ+ γβ + ρ

∂QBiasType

∂β∗
= k− z− Eµ∗ + γ∗β∗ − ρ∗

∂QVar

∂b
= f

Now, note that:

∂QBiasType

∂β
i

= eτ i if τ i > 0

∂QBiasType

∂β∗
i

= eτ i if τ i < 0

Also, as ρ
i
, ρ∗

i
≥ 0 when vi < 0 < hi, it follows that:

∂QBiasType

∂β∗
i

≤ ∂QBiasType

∂β
i

∀i : vi < 0 < hi

Using these results, it is not too difficult to see that in terms of eτ and f , the

optimality conditions (KKT conditions) for the abstract optimisation problem (7.14)

are just:

eτZi ∈





[
−
(
ρ
Zi

+ Eµ
Zi

)
,
(
ρ∗
Zi

+ Eµ∗
Zi

)]
if vi < 0 < hi[

−
(
ρ
Zi

+ Eµ
Zi

)
,∞
)

if vi = 0 < hi(
−∞,

(
ρ∗
Zi

+ Eµ∗
Zi

)]
if vi < 0 = hi

(−∞,∞) if vi = 0 = hi

eτL ≥ 0

eτU ≤ 0

eτF = 0

f = 0 if BiasType = Var

α ∈ [v,h]

(7.24)

It is this form (7.24) which will be used most in this thesis. The KKT conditions
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may be expressed in terms of k thusly:

kZi ∈





[
zZi −

(
ρ
Zi

+ Eµ
Zi

)
, zZi +

(
ρ∗
Zi

+ Eµ∗
Zi

)]
if vi < 0 < hi[

zZi −
(
ρ
Zi

+ Eµ
Zi

)
,∞
)

if vi = 0 < hi(
−∞, zZi +

(
ρ∗
Zi

+ Eµ∗
Zi

)]
if vi < 0 = hi

(−∞,∞) if vi = 0 = hi

kL ≥ zL − γ∗vL +
(
ρ∗
L

+ Eµ∗
L

)

kU ≤ zU − γhU −
(
ρ
U

+ Eµ
U

)

kF = zF − γ(∗)
τ αF − τF

(
ρτ

(∗)
F + Eµτ

(∗)
F

)

f = 0 if BiasType = Var

α ∈ [v,h]

Note that this is really just a statement about the range in which the output of

the system g (y) must lie for the various elements of the training set. In particular,

for the non-support vectors it states that the output must lie within some margin

±
(
ρ(∗)
i

+ Eµ(∗)
i

)
of the target value, zi. Likewise, for boundary vectors, the output

must lie at the edge of this region with some margin for variation if quadratic cost

is used (i.e. γ(∗)
i

is non-zero). Only the error vectors may lie outside this region.

7.5 Abstract Solution

For completeness, given an abstract training set T as in (7.1), the abstract solution

of the optimisation problem (7.14) is defined to be:

z = (α, b, τ ,m)
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7.6 Connection with Standard SV Classifiers

To use the abstract problem formulation given above for binary pattern classification,

start with a training set of the standard form (4.2):

Y = {(x1, d1) , (x2, d2) , . . . , (xN , dN)}
xi ∈ <dL
di ∈ {+1,−1}

as well as the additional (implicitly defined) data C > 0, E ≥ 0, ti > 0, t∗i > 0,

εi < 0 and ε∗i < 0 (1 ≤ i ≤ N). Then the abstract training set (7.1) is constructed

using the recipe appropriate to the formulation under consideration.

In all cases, H is assumed to be a very large number. Ideally, H =∞. In reality,

however, H represents the largest value which the computer solving the generalised

optimisation problem can deal with appropriately.

It is convenient to define C̃ = C
N

.

Standard SVM - Linear Risk, Variable Bias

T = (ϑ,Var, 0)

ϑ = (ϑ1, ϑ2, . . . , ϑN)

ϑi =





(
xi, 0, Eεi, 0, C̃ti, 0, 0, 0, 0, 0

)
if di = +1(

xi, 0, 0, Eε
∗
i , 0,−C̃t∗i , 0, 0, 0, 0

)
if di = −1

(7.25)

Linear Risk, Fixed Bias

T = (ϑ,Fix, bfix)

ϑ = (ϑ1, ϑ2, . . . , ϑN)

ϑi =





(
xi, 0, Eεi, 0, C̃ti, 0, 0, 0, 0, 0

)
if di = +1(

xi, 0, 0, Eε
∗
i , 0,−C̃t∗i , 0, 0, 0, 0

)
if di = −1

(7.26)
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Quadratic Risk, Variable Bias

T = (ϑ,Var, 0)

ϑ = (ϑ1, ϑ2, . . . , ϑN)

ϑi =





(
xi, 0, Eεi, 0,H, 0, 1

C̃ti
, 0, 0, 0

)
if di = +1(

xi, 0, 0, Eε
∗
i , 0,−H, 0, 1

C̃t∗i
, 0, 0

)
if di = −1

(7.27)

Quadratic Risk, Fixed Bias

T = (ϑ,Fix, bfix)

ϑ = (ϑ1, ϑ2, . . . , ϑN)

ϑi =





(
xi, 0, Eεi, 0,H, 0, 1

C̃ti
, 0, 0, 0

)
if di = +1(

xi, 0, 0, Eε
∗
i , 0,−H, 0, 1

C̃t∗i
, 0, 0

)
if di = −1

(7.28)

7.7 Connection with Standard SV Regressors

To use the abstract problem formulation given above for nonlinear regression, start

with a training set of the standard form (4.17):

Y= = {(x1, z1) , (x2, z2) , . . . , (xN , zN)}
xi ∈ <dL
zi ∈ <

as well as the additional (implicitly defined) data C > 0 (and possible ν > 0 for

tube shrinking), E ≥ 0, ti > 0, t∗i > 0, εi > 0 and ε∗i > 0 (1 ≤ i ≤ N). Then

the abstract training set (7.1) is constructed using the recipe appropriate to the

formulation under consideration.

Once again, H is assumed to be a very large number, and C̃ = C
N

. Also, in this

case, ν̃ = Nν
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Standard SVR - Linear Risk, Variable Bias, No Tube Shrinking

T = (ϑ,Var, 0)

ϑ = (ϑ1, ϑ2, . . . , ϑN)

ϑi =
(
xi, zi, Eεi, Eε

∗
i , C̃ti,−C̃t∗i , 0, 0, 0, 0

) (7.29)

Linear Risk, Fixed Bias, No Tube Shrinking

T = (ϑ,Fix, bfix)

ϑ = (ϑ1, ϑ2, . . . , ϑN)

ϑi =
(
xi, zi, Eεi, Eε

∗
i , C̃ti,−C̃t∗i , 0, 0, 0, 0

) (7.30)

Quadratic Risk, Variable Bias, No Tube Shrinking

T = (ϑ,Var, 0)

ϑ = (ϑ1, ϑ2, . . . , ϑN)

ϑi =
(
xi, zi, Eεi, Eε

∗
i ,H,−H, 1

C̃ti
, 1
C̃t∗i
, 0, 0

) (7.31)

Quadratic Risk, Fixed Bias, No Tube Shrinking

T = (ϑ,Fix, bfix)

ϑ = (ϑ1, ϑ2, . . . , ϑN)

ϑi =
(
xi, zi, Eεi, Eε

∗
i ,H,−H, 1

C̃ti
, 1
C̃t∗i
, 0, 0

) (7.32)

Linear Risk, Variable Bias, Quadratic Shrinking

T = (ϑ,Var, 0)

ϑ = (ϑ1, ϑ2, . . . , ϑN)

ϑi =
(
xi, zi, 0, 0, C̃ti,−C̃t∗i , 0, 0, εiC̃ν̃ ,

ε∗i
C̃ν̃

) (7.33)
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Linear Risk, Fixed Bias, Quadratic Shrinking

T = (ϑ,Fix, bfix)

ϑ = (ϑ1, ϑ2, . . . , ϑN)

ϑi =
(
xi, zi, 0, 0, C̃ti,−C̃t∗i , 0, 0, εiC̃ν̃ ,

ε∗i
C̃ν̃

) (7.34)

Quadratic Risk, Variable Bias, Quadratic Shrinking

T = (ϑ,Var, 0)

ϑ = (ϑ1, ϑ2, . . . , ϑN)

ϑi =
(
xi, zi, 0, 0,H,−H, 1

C̃ti
, 1
C̃t∗i
, εi
C̃ν̃
,
ε∗i
C̃ν̃

) (7.35)

Quadratic Risk, Fixed Bias, Quadratic Shrinking

T = (ϑ,Fix, bfix)

ϑ = (ϑ1, ϑ2, . . . , ϑN)

ϑi =
(
xi, zi, 0, 0,H,−H, 1

C̃ti
, 1
C̃t∗i
, εi
C̃ν̃
,
ε∗i
C̃ν̃

) (7.36)

7.8 Connection with SV Regression With Inequal-

ities

To use the abstract problem formulation given above nonlinear regression with in-

equalities, start with a training set of the standard form (5.1):

Y = {(x1, z1) , (x2, z2) , . . . , (xN , zN)}
Y = Y= ∪Y≥ ∪Y≤

Y≥ ∩Y≤ = Y= ∩Y≤ = Y= ∩Y≥ = ∅
xi ∈ <dL
zi ∈ <

as well as the additional (implicitly defined) data C > 0 (and possible ν > 0 for

tube shrinking), E ≥ 0, ti > 0, t∗i > 0, εi and ε∗i (1 ≤ i ≤ N). Then the abstract
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training set (7.1) is constructed using the recipe appropriate to the formulation

under consideration.

H, C̃ and ν̃ are defined as before.

Standard SVR - Linear Risk, Variable Bias, No Tube Shrinking

T = (ϑ,Var, 0)

ϑ = (ϑ1, ϑ2, . . . , ϑN)

ϑi =





(
xi, zi, Eεi, Eε

∗
i , C̃ti,−C̃t∗i , 0, 0, 0, 0

)
if (xi, zi) ∈ Y=(

xi, zi, Eεi, 0, C̃ti, 0, 0, 0, 0, 0
)

if (xi, zi) ∈ Y≥(
xi, zi, 0, Eε

∗
i , 0,−C̃t∗i , 0, 0, 0, 0

)
if (xi, zi) ∈ Y≥

(7.37)

Linear Risk, Fixed Bias, No Tube Shrinking

T = (ϑ,Fix, bfix)

ϑ = (ϑ1, ϑ2, . . . , ϑN)

ϑi =





(
xi, zi, Eεi, Eε

∗
i , C̃ti,−C̃t∗i , 0, 0, 0, 0

)
if (xi, zi) ∈ Y=(

xi, zi, Eεi, 0, C̃ti, 0, 0, 0, 0, 0
)

if (xi, zi) ∈ Y≥(
xi, zi, 0, Eε

∗
i , 0,−C̃t∗i , 0, 0, 0, 0

)
if (xi, zi) ∈ Y≥

(7.38)

Quadratic Risk, Variable Bias, No Tube Shrinking

T = (ϑ,Var, 0)

ϑ = (ϑ1, ϑ2, . . . , ϑN)

ϑi =





(
xi, zi, Eεi, Eε

∗
i ,H,−H, 1

C̃ti
, 1
C̃t∗i
, 0, 0

)
if (xi, zi) ∈ Y=(

xi, zi, Eεi, 0,H, 0, 1
C̃ti
, 0, 0, 0

)
if (xi, zi) ∈ Y≥(

xi, zi, 0, Eε
∗
i , 0,−H, 0, 1

C̃t∗i
, 0, 0

)
if (xi, zi) ∈ Y≥

(7.39)
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Quadratic Risk, Fixed Bias, No Tube Shrinking

T = (ϑ,Fix, bfix)

ϑ = (ϑ1, ϑ2, . . . , ϑN)

ϑi =





(
xi, zi, Eεi, Eε

∗
i ,H,−H, 1

C̃ti
, 1
C̃t∗i
, 0, 0

)
if (xi, zi) ∈ Y=(

xi, zi, Eεi, 0,H, 0, 1
C̃ti
, 0, 0, 0

)
if (xi, zi) ∈ Y≥(

xi, zi, 0, Eε
∗
i , 0,−H, 0, 1

C̃t∗i
, 0, 0

)
if (xi, zi) ∈ Y≥

(7.40)

Linear Risk, Variable Bias, Quadratic Shrinking

T = (ϑ,Var, 0)

ϑ = (ϑ1, ϑ2, . . . , ϑN)

ϑi =





(
xi, zi, 0, 0, C̃ti,−C̃t∗i , 0, 0, εiC̃ν̃ ,

ε∗i
C̃ν̃

)
if (xi, zi) ∈ Y=(

xi, zi, 0, 0, C̃ti, 0, 0, 0,
εi
C̃ν̃
, 0
)

if (xi, zi) ∈ Y≥(
xi, zi, 0, 0, 0,−C̃t∗i , 0, 0, 0, ε

∗
i

C̃ν̃

)
if (xi, zi) ∈ Y≥

(7.41)

Linear Risk, Fixed Bias, Quadratic Shrinking

T = (ϑ,Fix, bfix)

ϑ = (ϑ1, ϑ2, . . . , ϑN)

ϑi =





(
xi, zi, 0, 0, C̃ti,−C̃t∗i , 0, 0, εiC̃ν̃ ,

ε∗i
C̃ν̃

)
if (xi, zi) ∈ Y=(

xi, zi, 0, 0, C̃ti, 0, 0, 0,
εi
C̃ν̃
, 0
)

if (xi, zi) ∈ Y≥(
xi, zi, 0, 0, 0,−C̃t∗i , 0, 0, 0, ε

∗
i

C̃ν̃

)
if (xi, zi) ∈ Y≥

(7.42)

Quadratic Risk, Variable Bias, Quadratic Shrinking

T = (ϑ,Var, 0)

ϑ = (ϑ1, ϑ2, . . . , ϑN)

ϑi =





(
xi, zi, 0, 0,H,−H, 1

C̃ti
, 1
C̃t∗i
, εi
C̃ν̃
,
ε∗i
C̃ν̃

)
if (xi, zi) ∈ Y=(

xi, zi, 0, 0,H, 0, 1
C̃ti
, 0, εi

C̃ν̃
, 0
)

if (xi, zi) ∈ Y≥(
xi, zi, 0, 0, 0,−H, 0, 1

C̃t∗i
, 0,

ε∗i
C̃ν̃

)
if (xi, zi) ∈ Y≥

(7.43)
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Quadratic Risk, Fixed Bias, Quadratic Shrinking

T = (ϑ,Fix, bfix)

ϑ = (ϑ1, ϑ2, . . . , ϑN)

ϑi =





(
xi, zi, 0, 0,H,−H, 1

C̃ti
, 1
C̃t∗i
, εi
C̃ν̃
,
ε∗i
C̃ν̃

)
if (xi, zi) ∈ Y=(

xi, zi, 0, 0,H, 0, 1
C̃ti
, 0, εi

C̃ν̃
, 0
)

if (xi, zi) ∈ Y≥(
xi, zi, 0, 0, 0,−H, 0, 1

C̃t∗i
, 0,

ε∗i
C̃ν̃

)
if (xi, zi) ∈ Y≥

(7.44)

7.9 Virtual Bounds

As noted in theorem 7.1 that at least one of βi and β∗i must be zero for all 1 ≤ i ≤ N .

Using this, the type vector τ can be interpreted in terms of the values of the elements

of β and β∗ thusly:

• If τi = −2 then βi = 0 and β∗i = vi.

• If τi = −1 then βi = 0 and vi ≤ β∗i ≤ 0.

• If τi = 0 then βi = 0 and β∗i = 0.

• If τi = +1 then 0 ≤ βi ≤ hi and β∗i = 0.

• If τi = +2 then βi = hi and β∗i = 0.

So, if αi is viewed as shorthand for “whichever one of βi and β∗i is non-zero”,

then the type τi is the key that defines explicitly which one it is (unless τi = 0, in

which case the answer is neither, both are zero and we have no preference either

way).

As will be discussed later, the process of finding the optimal solution to the

abstract optimisation problem (7.14) is an iterative one. As the optimisation process

proceeds the value of the type vector τ (and hence meaning of α and the values of

elements with subscript τ ) will change. Because of this, some care is required when

the value of τ is changed. For example, the method described here is an active set

method, which basically means that at each iteration the solution to a subproblem

where only some fraction of the vector α is involved must be calculated. If the sign
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of α is allowed to change during such a calculation then the problem of finding this

“step” becomes complex.

The solution to this apparent difficulty is to note that if the sign of some element

αi is allowed to change then in reality both βi and β∗i have changed sequentially

(first one goes to zero, then the other becomes non-zero). In other words, this is not

a single “step”, but rather two steps, as shown in figure 7.1. Such problems can be

avoided by only taking steps that either maintain the sign of αi for all 1 ≤ i ≤ N or

send it to/from zero. In this way, only one of βi and β∗i will ever change for a single

step. Changes in sign are achieved by first taking a step such that αi = 0 afterwards,

and then another step such that the sgn (αi) is the negative of its original value.

Formally, this can be achieved by defining the virtual bound vectors v̄τ and h̄τ :

v̄τ i =





0 if τi = +1

vi otherwise

h̄τ i =





0 if τi = −1

hi otherwise

which are used as effective replacements for the bounds v and h when calculating

the step, thereby preventing a change in sign during a step. To change the sign, the

value of τ must be changed first in a manner compatible with α.

7.10 Optimisation State

Because of the inequality constraints in the optimisation problem (7.14) it is neces-

sary to solve it iteratively. To this end, it is necessary to have a way of defining the

“state” of the problem at any point before, during or after the optimisation. Each

iteration of the solution process is then simply means of mapping the present state

to the next state of the problem.

The state of the optimisation process can be unambiguously defined by:

(z,T)
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However, for reasons which will become apparent later, the following definition

of state is used instead:

ג = (z,z,T) (7.45)

where z describes whatever “other” information may be kept by a particular algo-

rithm.

As the state will be evolving as the optimisation process proceeds, the superscript

k ∈ Z+ is used to indicate the iteration to which the state refers, so:

(k)ג =
(
z(k),z(k),T

)

z(k) =
(
α(k), b(k), τ (k),m(k)

)

refers to the state directly after iteration k (where T is assumed to be constant

throughout). Hence the process of solving (7.14) can be summarised by a sequence

of T states:
(
,(1)ג ,(2)ג . . . , T)ג )

)

where T is the number of iterations to reach the final solution. (1)ג is the initial

state, and for the final (optimal) solution is also denoted (∗)ג (i.e. (∗)ג = T)ג )).

7.11 Pivoting

During an iterative algorithm, it will be necessary to change the active set, and in

particular τ and m, while ensuring that the z remains in standard form. There are

two basic operations involved here, namely:

1. Activation of constraints on previously free variables. That is, changing an

element of the type vector τ from τi = ±1 to τ ∈ {−2, 0,+2) whilst simulta-

neously re-ordering the order vector m to retain standard form.

2. De-activation of constraints on previously actively constrained variables. This

is essentially the reverse of the previous operation.

The first of operations will be denoted constrain (i), which is to be read as “ac-

tivate the relevant constraint on variable αi” (where it is assumed that τ i = ±1,
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and αi ∈ {vi, 0, hi}). Similarly, item 2 is encapsulated by the operations freeL (i)

and freeU (i), which is to be read as “de-activate the current active constraint on

αi” (where it is assumed that αi ∈ {−2, 0,+2}, and hence that αi ∈ {vi, 0, hi}).
The difference between freeL (i) and freeU (i) is that freeL (i) will convert αi into a

negative free variable, whereas freeU (i) will make αi into a positive free variable.

Note that none of these operations will change the value of αi itself.

The effect of the constrain (i) operation, assuming NZ + NL + NU + 1 ≤ i ≤ N

and αi ∈ {vi, 0, hi}, is defined by:

constrain (i) ג = constrain (i) (z,z,T)

= (constrain (i)z, constrain (i)z, constrain (i) T)

where, neglecting for the moment the operation constrain (i)z:

constrain (i) T = T

constrain (i)z = constrain (i) (α, b, τ ,m)

= constrain (i)

(
α, b, τ ,

[
m1 m2 . . . mi−1 mi mi+1 . . . mN

]T)

=

(
α, b, τ ′,

[
m1 m2 . . . mNX mi mNX+1 . . . mi−1 mi+1 . . . mN

]T)

and:

NX =





NZ if αmi = 0

NZ +NL if αmi = vmi ∧ vmi < 0

NZ +NL +NU if αmi = hmi ∧ hmi > 0

τ ′j =





τj if mi 6= j

0 if mi = j ∧ αmi = 0

−2 if mi = j ∧ αmi = vmi ∧ vmi < 0

+2 if mi = j ∧ αmi = hmi ∧ hmi > 0
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The effect of the freeL (i) operation, assuming 1 ≤ i ≤ NZ +NL and vmi < 0, is

defined by:

freeL (i) ג = freeL (i) (z,z,T)

= (freeL (i)z, freeL (i)z, freeL (i) T)

where, neglecting for the moment the operation freeL (i)z:

freeL (i) T = T

freeL (i)z = freeL (i) (α, b, τ ,m)

= freeL (i)

(
α, b, τ ,

[
m1 m2 . . . mi−1 mi mi+1 . . . mN

]T)

=

(
α, b, τ ′,

[
m1 m2 . . . mi−1 mi+1 . . . mN mi

]T)

and:

τ ′j =





τj if mi 6= j

−1 if mi = j

Finally, the effect of the freeU (i) operation, assuming 1 ≤ i ≤ NZ or NZ +NL +

1 ≤ i ≤ NZ +NL +NU ; and hmi > 0, is defined by:

freeU (i) ג = freeU (i) (z,z,T)

= (freeU (i)z, freeU (i)z, freeU (i) T)

where, neglecting for the moment the operation freeU (i)z:

freeU (i) T = T

freeU (i)z = freeU (i) (α, b, τ ,m)

= freeU (i)

(
α, b, τ ,

[
m1 m2 . . . mi−1 mi mi+1 . . . mN

]T)

=

(
α, b, τ ′,

[
m1 m2 . . . mi−1 mi+1 . . . mN mi

]T)
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and:

τ ′j =





τj if mi 6= j

+1 if mi = j

For technical reasons, the following pivoting operation is also necessary to allow

one to modify the order vector m without modifying the active set. The eswap (i, j)

operation (which is only defined if either τ i = ±1 and τ j = ±1; or τ i = τ j) is defined

by:

eswap (i, j) ג = eswap (i, j) (z,z,T)

= (eswap (i, j)z, eswap (i, j)z, eswap (i, j) T)

where, neglecting for the moment the operation eswap (i, j)z:

eswap (i, j) T = T

eswap (i, j)z = eswap (i, j) (α, b, τ ,m)

= eswap (i, j)




α, b, τ ,




m1

m2

· · ·
mi−1

mi

mi+1

· · ·
mj−1

mj

mj+1

· · ·
mN







=

(
α, b, τ ,

[
m1 m2 . . . mi−1 mj mi+1 . . . mj−1 mi mj+1 . . . mN

]T)
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7.11.1 Effect of Pivoting on z

The z part of the training state ג represents any “other” not strictly necessary, but

potentially useful, information used by the training algorithm. It is assumed that

the order of any matrices and vectors therein is fixed, being aligned with the order

of elements in T (i.e. the same order as the original training data), and dereferenced

in the usual manner using the order vector m. Such vectors may also be implicit

function of τ .

Unless explicitly stated otherwise, it may be assumed thatz = {E, eτ , f,Gτ ,iτ },
where iτ is defined in chapter 8. Clearly, the value of E and f are both independent

of any pivoting operations. However, the gradient vector eτ and the hessian matrix

Gτ are both implicit functions of τ , and hence will both be affected by pivoting

operations constrain (i), freeL (i), freeU (i) and eswap (i, j) thusly:

constrain (i)z = {E, constrain (i) eτ , f, constrain (i) Gτ , constrain (i)iτ }
freeL (i)z = {E, freeL (i) eτ , f, freeL (i) Gτ , freeL (i)iτ }
freeU (i)z = {E, freeU (i) eτ , f, freeU (i) Gτ , freeU (i)iτ }

eswap (i, j)z = {E, eτ , f,Gτ , eswap (i, j)iτ }

assuming the operations constrain (i)iτ , freeL (i)iτ , freeU (i)iτ and eswap (i, j)iτ
are appropriately defined.

The affect of the operations on eτ and Gτ is:

constrain (i) eτ j =





eτ j if mi 6= j ∨ αmi 6= 0

eτ j − τj
(
ρ

(∗)
j + Eµ

(∗)
j

)
if mi = j ∧ αmi = 0

freeL (i) eτ j =





eτ j if mi 6= j ∨ αmi 6= 0

eτ j −
(
ρ∗j + Eµ∗j

)
if mi = j ∧ αmi = 0

freeU (i) eτ j =





eτ j if mi 6= j ∨ αmi 6= 0

eτ j + (ρj + Eµj) if mi = j ∧ αmi = 0
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constrain (i)Gτ j,k =





Gτ j,k (if mi 6= j ∧mi 6= k) ∨ αmi 6= 0

Gτ j,k − τjτkµ(∗)
j µ

(∗)
k (if mi = j Ymi = k) ∧ αmi = 0

Gτ j,k − γ(∗)
j − µ(∗)

j µ
(∗)
k (if mi = j ∧mi = k) ∧ αmi = 0

freeL (i)Gτ j,k =





Gτ j,k (if mi 6= j ∧mi 6= k) ∨ αmi 6= 0

Gτ j,k − τkµ∗jµ(∗)
k (if mi = j ∧mi 6= k) ∧ αmi = 0

Gτ j,k − τjµ(∗)
j µ∗k (if mi 6= j ∧mi = k) ∧ αmi = 0

Gτ j,k + γ∗j + µ∗jµ
∗
k (if mi = j ∧mi = k) ∧ αmi = 0

freeU (i)Gτ j,k =





Gτ j,k (if mi 6= j ∧mi 6= k) ∨ αmi 6= 0

Gτ j,k + τkµjµ
(∗)
k (if mi = j ∧mi 6= k) ∧ αmi = 0

Gτ j,k + τjµ
(∗)
j µk (if mi 6= j ∧mi = k) ∧ αmi = 0

Gτ j,k + γj + µjµk (if mi = j ∧mi = k) ∧ αmi = 0

7.12 Properties of the Hessian

The Hessian of the abstract optimisation problem (7.14) is:

Hτ =






 Gτ 1

1T 0


 if BiasType = Var

Gτ if BiasType = Fix

As usual, Hτ may be split into:

Hτ =




HτZ HτZL HτZU HτZF

HT
τZL HτL HτLU HτLF

HT
τZU HT

τLU HτU HτUF

HT
τZF HT

τLF HT
τUF HτF




except that, in this case, if BiasType = Var then HτF ∈ <(NF+1)×(NF+1), HτZF ∈
<NZ×(NF+1), HτLF ∈ <NL×(NF+1) and HτUF ∈ <NU×(NF+1).

Theorem 7.2. Gτ is a positive semidefinite matrix.

Proof. Recall that by definition a positive semidefinite matrix A is a matrix for
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which aTAa ≥ 0 for all vectors a. Consider K. This may be re-written:

K =




ϕ (x1)T

ϕ (x2)T

...

ϕ (xN)T




[
ϕ (x1) ϕ (x2) · · · ϕ (xN)

]

where ϕ : <dL → <dH is the feature map associated with the kernel function. For

an arbitrary vector a ∈ <N :

aTKa = aT







ϕ (x1)T

ϕ (x2)T

...

ϕ (xN)T




[
ϕ (x1) ϕ (x2) · · · ϕ (xN)

]




a

= (a1ϕ (x1) + a2ϕ (x2) + · · ·+ aNϕ (xN))T (a1ϕ (x1) + a2ϕ (x2) + · · ·+ aNϕ (xN))

= wTw ≥ 0

Hence K is positive semidefinite. Now consider Gτ . Again, for an arbitrary

vector a:

aTGτ a = aTKa + aT diag (γ) a + aT
((

sgn (τ )µ
(∗)
τ

)(
sgn (τ )µ

(∗)
τ

)T)
a

= aTKa + aT diag (γ) a +
(
aT
(

sgn (τ )µ
(∗)
τ

))2

Given that γ ≥ 0, it follows that aTGτ a ≥ 0 for any a. Hence Gτ is a positive

semidefinite matrix.

Corollary 7.3. There are no non-global solutions to the abstract optimisation prob-

lem (7.14).

Proof. Compare (7.2) with (10.2.2) in [40]. If we identify b with the lagrange mul-

tiplier b in this equation then the two are equivalent. Theorem 7.2 says that G

is positive semidefinite, so the reasoning on page 79 of [40] applies, and hence all

solutions will be global.

Theorem 7.4. If NF = 1 and BiasType = Var then HτF is non-singular.
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Proof. If NF = 1 then det (HτF ) = det




 Gτ F 1

1T 0




 = −1, so Hτ F is non-

singular.

7.12.1 Singular Hessian Decomposition

Variable Bias Case (BiasType = Var)

Suppose HτF is singular and NF > 1. Then it follows from theorem 7.4 that the

free variables may be repartitioned (without re-ordering) as follows:

αF =




αFN

αFB

αFS


 , etc.

Gτ F =




Gτ FN gτ FBN GT
τFSN

gTτ FBN gτFB gTτ FSB

GτFSN gτ FSB GτFS




such that:

• HτFN =


 GτFN 1

1T 0


 is non-singular.

• HτFNB =




GτFN gτ FBN 1

gTτFBN gτFB 1

1T 1 0


 is singular.

So, αFN ∈ <NFN (0 ≤ NFN ≤ NF − 1) represents those free variables corre-

sponding to the (N)on-singular sub-Hessian Hτ FN and αFB ∈ < may be thought of

as lying on the (B)oundary of the non-singular sub-Hessian HτFNB. By definition,

αFS ∈ <NF−NFN−1.

If NF = 0 then HτF = [0] will be singular, in which case Hτ FN is defined to be

the empty matrix. It is also useful to define:

HτR =





HτF if Hτ F is non-singular.

HτFN otherwise.
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as a shorthand for the (R)elevant part of the Hessian. GτR ∈ <NR×NR , αR ∈ <NR
etc. are defined analogously, where NR = NF if Hτ F is non-singular, NR = NFN

otherwise.

Fixed Bias Case (BiasType = Fix)

Suppose GτF is singular and NF ≥ 1. Then it follows that it is possible to write:

αF =




αFN

αFB

αFS


 , etc.

Gτ F =




Gτ FN gτFBN GT
τFSN

gTτFBN gτ FB gTτ FSB

GτFSN gτ FSB Gτ FS




such that:

• HτFN = Gτ FN is either non-singular or empty.

• HτFNB =


 GτFN gτ FBN

gTτFBN gτFB


 is singular.

Once again:

HτR =





HτF if Hτ F is non-singular.

HτFN otherwise.

is a shorthand for the (R)elevant part of the Hessian.

7.13 A Note on the Least-Squares Case

It should be noted that, while the least-squares regressor (quadratic symmetric em-

pirical risk (γ∗ = γ > 0), no tube shrinking (µ(∗) = 0), zero margin (ρ(∗) = 0),

variable bias (BiasType = Var)) may be placed in the abstract form, the resulting

optimisation problem is significantly more complicated than is necessary. In partic-

ular, noting that v = −∞1 and h = +∞1 (and subsequently no variables will be
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constrained at a bound, upper or lower), (7.24) reduces to:

eτZ = 0

eτ F = 0

f = 0

which shows that the KKT condition for variables constrained at zero is precisely

the same as for free variables. Indeed, as the range within which eτZ may optimally

vary has zero width, any change to the free variables will invalidate any existing

optimality of eτZ . So there is nothing to be gained from having any variables

constrained at zero, meaning that a better approach may be to treat all variables as

free variables.

The problem with this is that the algorithm presented here is designed based

on the assumption that the number of support vectors is relatively small. But for

LS-SVRs NS = NB = N , so this is clearly a bad assumption in this case. So while

the algorithm described here will successfully deal with the LS-SVR case, it will

do so rather badly (in terms of speed and memory use - of course, the resulting

LS-SVR will be exactly the same as for any other optimisation algorithm which can

successfully find the unique global minima).

For this reason, it is preferable (where feasible) to solve the LS-SVR optimisation

problem directly by computing:


 α
b


 =


 K + diag (γ) 1

1T 0



−1 
 z

0






176 Chapter 7. TRAINING THE SVM - PRELIMINARIES



Chapter 8

TRAINING THE SVM - AN ACTIVE SET APPROACH

“Ford, you’re turning into a penguin. Stop it.”

– Arthur Dent

A
s noted previously, only those αi’s associated with support vectors will have

non-zero values. An attractive feature of SVMs is that support vectors

usually make up only a small fraction of the total training set (the ratio of support

vectors to training set size may increase if the training set is noisy, but even in

this case the ratio will tend to remain relatively small). Of all the methods of

solving linearly constrained quadratic programming problems, active set methods

[40] seem best suited to take advantage of this feature of SVMs. This is because,

by using an active set method, they are able to reduce the effective dimensionality

of the problem from the number of training points, which may be very large, to the

number of support vectors (or some interim guess of the number of support vectors),

which is typically small.

In an active set method, constraints are divided into two sets, namely the set of

active constraints (the active set) and the set of inactive constraints, as described

previously. The algorithm then iteratively steps towards the solution, adjusting the

active set after each step, until the optimal active set (and hence optimal solution)

is arrived at. For any given iteration, the step is calculated by treating the active

constraints as equality constraints, temporarily discarding the inactive constraints,

and solving the resultant unconstrained optimisation problem (for a detailed intro-

duction to active set methods, see for example [40]).

Unless otherwise stated, it is assumed throughout that the state ג is in standard

form.

177
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8.1 The Hessian Factorisation iτ

For (nearly) every iteration of the algorithm, it will be necessary to solve the equa-

tion HτRr = s for r, where HτR and s are known. However, actually calculating

the inverse of HτR is too computationally expensive to be feasible. To overcome

this problem, it is useful to calculate (and maintain throughout the algorithm) a

factorisation, iτ ∈ z, of HτR. In principle any number of factorisations could

be used, the only criterion being the ability to quickly solve HτRr = s for r using

iτ and also that the factorisation itself may be quickly modified to reflect changes

in HτR (through pivoting operations). Two factorisations considered here are the

inverse and Cholesky factorisations.

8.2 Overall Structure of the Active Set Algorithm

The basic structure of my algorithm is shown in figure 8.1. In future, the algorithm

in figure 8.1 will be referred to simply as the algorithm. Structurally, the algorithm

is typical of active set methods. A Newton step (or some other step if the Hessian is

singular) for the free variables is calculated. This step is then scaled (β(k) being the

scale factor) to prevent moving outside of the feasible region, and the scaled step is

taken. If the KKT conditions are not met after this, the active set is modified in a

minimal fashion (a single constraint is activated or deactivated using the pivoting

operations) and the process is repeated. Otherwise, the algorithm terminates, the

optimal solution being: 
 α

(∗)

b(∗)


 =


 α̂

(k)

b̂(k)




Notes on the algorithm:

• The relevant section number for each block is given beside that block for easy

reference.

• The default state (1)ג upon entering the algorithm (if none has already been
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defined) is:

m
(1)
i = i∀ 1 ≤ i ≤ N

τ (1) = 0

α(1) = 0

b(1) = 0

E = 0

e = −z

f = 0

•
(

∆e
(k)
τZ ,∆e

(k)
τL,∆e

(k)
τU

)
is always calculated using the formula:




∆e
(k)
τZ

∆e
(k)
τL

∆e
(k)
τU


 =




GτZF 1

GτLF 1

GτUF 1





 ∆α

(k)
F

∆b(k)


 (8.1)

• ∆E(k) is always calculated using:

∆E(k) = µ(∗)T
F

(
∆α

(k)
F τF

)

• The largest possible scaling factor β(k) (which is used here) satisfying the

constraint −v̄
(k)
τ F ≤ α(k)

F ≤ h̄
(k)
τF will be:

β(k) = min
i:τ i=±1

(
1, min

i:∆α
(k)
i <0

v̄
(k)
τ i − α(k)

i

∆α
(k)
i

, min
i:∆α

(k)
i >0

h̄
(k)
τ i − α(k)

i

∆α
(k)
i

)
(8.2)

• As will be shown in section 8.2.5, it is sufficient, when checking the KKT
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conditions (7.24), to check:

ê
(k)
τZi ∈





[
−
(
ρ
Zi

+ Ê(k)µ
Zi

)
− ε,

(
ρ∗
Zi

+ Ê(k)µ∗
Zi

)
+ ε
]

if vi < 0 < hi[
−
(
ρ
Zi

+ Ê(k)µ
Zi

)
− ε,∞

)
if vi = 0 < hi(

−∞,
(
ρ∗
Zi

+ Ê(k)µ∗
Zi

)
+ ε
]

if vi < 0 = hi

(−∞,∞) if vi = 0 = hi

ê
(k)
τL ≥ ε1

ê
(k)
τU ≤ −ε1
f̂ (k) ∈ [−ε, ε] if BiasType = Var

(8.3)

where the constant 0 < ε� 1 is necessary to prevent cycling due to cumulative

numerical errors. Typically, ε ' 10−3 was found to be sufficient for pattern

classification. For regression, ε typically must be of the order of ε ' 10−6,

depending on the width of the ε-insensitive zone (note that ε 6= ε).

8.2.1 Modifying the Active Set

In the algorithm, modification of the active set always takes the form of activating

or deactivating a single constraint. The heuristic of [40] (used here) is particularly

simple, namely:

1. If the most recent step was scaled (i.e. β(k) < 1) then (k+1)ג = constrain
(
p(k)
)
(k)ג̂

where:

p(k) = arg min
i:τ i=±1

(
min

i:∆α
(k)
i <0

v̄
(k)
τ i − α(k)

i

∆α
(k)
i

, min
i:∆α

(k)
i >0

h̄
(k)
τ i − α(k)

i

∆α
(k)
i

)
(8.4)

This constrains whichever element α
(k)
i has “run into” a boundary.

2. Otherwise (if β(k) = 1), find the element ê
(k)

τ q(k) corresponding to an actively

constrained α̂
(k)

q(k) (i.e. τ
(k)

q(k) ∈ {−2, 0,+2}) that most violates the simplified

KKT conditions (8.3) (according to the criteria detailed below). Then (k+1)ג =

freeX
(
q(k)
)
.(k)ג̂
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Initialise .(1)ג
(If not already done)

Set k = 1.

8.2.

?

?

r
Calculate (α∗F , b

∗) by
solving (8.8). Then:[

∆b(k)

∆α(k)
F

]
=
[
b∗

α∗F

]
−
[
b(k)

α
(k)
F

]

8.2.2.

?
Using ∆α(k)

F and ∆b(k), calculate
∆E, ∆e(k)

τ and ∆f (k).

8.2,
8.2.2.

?

!!
!!
!!
!

aaaaaaa

aa
aa

aa
a

!!!!!!!

Is α∗F ≥ v̄(k)
τF and

α∗F ≤ h̄
(k)
τF ?

Y

N

?

β(k) = 1

?

?
Calculate max 0 ≤ β(k) < 1 s.t.:
v̄(k)
τF ≤ α(k)

F + β(k)∆α(k)
F ≤ h̄

(k)
τF

8.2.

?
Define (k)ג̂ = ,(k)ג where: Ê(k) = E(k) + ∆E(k)[

b̂(k)

α̂
(k)
F

]
=
[
b(k)

α
(k)
F

]
+ β(k)

[
∆b(k)

∆α(k)
F

]

[
f̂ (k)

ê(k)
τ

]
=
[
f (k)

e(k)
τ

]
+ β(k)

[
∆f (k)

∆e(k)
τ

]

?

!!
!!
!!
!

aaaaaaa

aa
aa

aa
a

!!!!!!!

β(k) = 1 and KKT
cond. (8.3) met?

8.2.
Y

N

?
(∗)ג = (k)ג̂

Stop.

?
(k+1)ג = (k)ג̂

with the active set modified.
k := k + 1

8.2.1.

�

Figure 8.1: Outline of active set algorithm.
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In case 2, if N
(k)
F > 0 or BiasType = Fix then q(k) is selected by finding the

element ê
(k)

τ q(k) that most violates the KKT condition associated with it. This is

equivalent to using the simple rule:

q(k) = arg min
i:τ i∈{−2,0,+2}

(
min
i:τ i=+2

−ê(k)
τ i ,

min
i:τ i=0∧v̄i<0

−
(
ê

(k)
τ i −

(
ρ∗
i

+ Ê(k)µ∗
i

))
,

min
i:τ i=0∧h̄i>0

(
ê

(k)
τ i +

(
ρ
i
+ Ê(k)µ

i

))
,

min
i:τ i=−2

ê
(k)
τ i

)
(8.5)

X =





L if τ
(k)

q(k) = −2 ∨
(
τ

(k)

q(k) = 0 ∧ v̄i < 0 ∧ −
(
ê

(k)

τ q(k) −
(
ρ∗
q(k) + Ê(k)µ∗

q(k)

))
< 0
)

U otherwise.

If BiasType = Var it is not necessary to check that ê
(k)

τ q(k) violates a KKT condi-

tion in (8.3), because, as will be shown later, if N
(k)
F > 0 and β(k) = 1, it follows that

f̂ (k) = 0, and hence some constrained element will fail to meet the KKT conditions

(8.3) which, by virtue of the minima used in (8.5), is sufficient to ensure that ê
(k)

τ q(k)

violates a KKT condition. Likewise, if BiasType = Fix then the simplified KKT

conditions (8.3) are sufficient to ensure that ê
(k)

τ q(k) will violate a KKT condition in

(8.3).

Continuing case 2, if N
(k)
F = 0 and BiasType = Var then there is no guarantee

that f̂ (k) = 0. This is a potential problem as it is possible that the algorithm may

enter an endless loop. To see why this may occur, consider the explicit form of the

next step, in the variable bias case, from equation (8.11):1


 ∆b(k+1)

∆α
(k+1)
m
q(k)


 =


 Gτm

q(k)mq(k)
f̂ (k) − ê(k)

τm
q(k)

−f̂ (k)


 (8.6)

Note that α
(k+1)
m
q(k) = α

(k)
m
q(k) (and hence by definition α

(k+1)
m
q(k) = α

(k)

q(k)). Given this,

if either α
(k)

q(k) = v̄
(k+1)
τ and f̂ (k) > 0 or α

(k)

q(k) = h̄
(k+1)
τ and f̂ (k) < 0, then it can

1Note that the indexing used here is with respect to the order of the original training set, not
the standard form.
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be seen from (8.2) and (8.6) that β(k+1) = 0, and hence the magnitude of f (k+1)

will not decrease in the next iteration. Subsequently α
(k+1)
m
q(k) will be immediately re-

constrained (as it is the only free variable, this is the only option), and, as (k+2)ג =

(k)ג up to pivoting, an infinite loop will result. To avoid this problem, the following

(slightly modified) definition of q(k) is used when N
(k)
F = 0 and BiasType = Var:

q(k) = arg min
i:τ i∈{−2,0,+2}

(
min

i:τ i=+2∧f̂ (k)≥0
−ê(k)
τ i ,

min
i:τ i=0∧v̄i<0∧f̂ (k)≥0

−
(
ê

(k)
τ i −

(
ρ∗
i

+ Ê(k)µ∗
i

))
,

min
i:τ i=0∧h̄i>0∧f̂ (k)≤0

(
ê

(k)
τ i +

(
ρ
i
+ Ê(k)µ

i

))
,

min
i:τ i=−2∧f̂ (k)≤0

ê
(k)
τ i

)

(8.7)

X =





L if τ
(k)

q(k) = −2 ∨
(
τ

(k)

q(k) = 0 ∧ v̄i < 0 ∧ f̂ (k) ≥ 0 ∧ −
(
ê

(k)

τ q(k) −
(
ρ∗
q(k) + Ê(k)µ∗

q(k)

))
< 0
)

U otherwise.

where the additional constraint on f̂ (k) ensures that a loop condition cannot occur.

Note that equations (8.5) and (8.7) are equivalent if f̂ (k) = 0. When proving the

convergence of the algorithm (section 8.2.5), the following technical result will be

needed:

Theorem 8.1. If N
(k)
F = 0 and BiasType = Var then the solution to equation (8.7)

is well defined.

Proof. First, suppose that f̂ (k) = 0. In this case, the solution to equation (8.7) must

be well defined, as it is equivalent to (8.5) in this case, and hence some constrained

element must have failed to meet the KKT conditions (8.3) which, by virtue of the

minima used in (8.5), is sufficient to ensure that ê
(k)

τ q(k) is well defined and violates a

KKT condition.

Otherwise, suppose that the theorem is not correct when f̂ (k) 6= 0 - i.e. the

solution to (8.7) is not well defined. It must be true that N
(k)
U +N

(k)
L > 0 (otherwise

f̂ (k) = 0).

If f̂ (k) > 0 then, by the definition of f̂ (k), N
(k)
U > 0, and so there must be some

i for which τ i = +2. But this makes the solution to (8.7) well-defined. Hence if the
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solution to (8.7) is not well defined, it must be true that f̂ (k) < 0. But in this case,

N
(k)
L > 0, so there must be some i such that τ i = −2, which once again, this makes

the solution to (8.7) well-defined.

Hence if N
(k)
F = 0 and BiasType = Var then the solution to equation (8.7) must

be well defined.

Theorem 8.2. In the algorithm, if N
(k)
F = 0 and BiasType = Var then ∆min ≤∣∣f (k+2) − f (k)

∣∣ ≤
∣∣f (k)

∣∣ and
∣∣f (k+2)

∣∣ ≤
∣∣f (k)

∣∣, where:

∆min = min

(∣∣f (k)
∣∣ , min

i:v̄i<0
(|v̄i|), min

i:h̄i>0

(∣∣h̄i
∣∣)
)
> 0

Proof. First, suppose f (k) = 0. As ∆f (k) = 1T∆α(k), it follows that ∆f (k) =

0, f (k+1) = 0, and, from equation (8.6), f (k+2) = 0. Hence
∣∣f (k+2) − f (k)

∣∣ =

min
(∣∣f (k)

∣∣ ,∆min

)
and

∣∣f (k+2)
∣∣ ≤

∣∣f (k)
∣∣, as required.

Now suppose f (k) > 0. Following the same reasoning as for the previous case

it is clear that ∆f (k) = 0. It can be seen from (8.6) that ∆α
(k+1)
F = −1f (k),

which implies that ∆f (k+1) = −f (k). Given that 0 < β(k+1) ≤ 1,
∣∣f (k+2)

∣∣ ≤
∣∣f (k)

∣∣.
Also, as α

(k+1)

q(k) = h̄
(k+1)

q(k+1) and v̄(k+1) ≤ α(k+1) ≤ h̄
(k+1)

, it follows from (8.2) that
∣∣f (k+2) − f (k)

∣∣ = min
(∣∣f (k)

∣∣ , h̄(k+1)

q(k+1) − v̄(k+1)

q(k+1)

)
. Furthermore, as one of v̄

(k+1)

q(k+1) and

h̄
(k+1)

q(k+1) must be zero, v̄
(k+1)

q(k+1) ≤ 0 and h̄
(k+1)

q(k+1) ≥ 0, it follows that:

min
(∣∣f (k)

∣∣ ,
∣∣∣h̄(k+1)

q(k+1)

∣∣∣ ,
∣∣∣v̄(k+1)

q(k+1)

∣∣∣
)
≤
∣∣f (k+2) − f (k)

∣∣ ≤
∣∣f (k)

∣∣

Clearly ∆min ≤ min
(∣∣f (k)

∣∣ ,
∣∣∣h̄(k+1)

q(k+1)

∣∣∣ ,
∣∣∣v̄(k+1)

q(k+1)

∣∣∣
)

, so, if f (k) > 0:

∆min ≤
∣∣f (k+2) − f (k)

∣∣ ≤
∣∣f (k)

∣∣

The argument for the case f (k) < 0 is essentially the same and has been omitted

for brevity.
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8.2.2 Calculating the Step

Treating the active constraints as equality constraints, and ignoring the inactive

constraints, the abstract optimisation problem (7.14) reduces to the following un-

constrained quadratic programming problem:

{αF , b} = arg min
αF∈<NF

arg max
b∈<

QFBiasType (αF , b)

such that: b = bfix if BiasType = Fix

(8.8)

where:

QFVar (αF , b) =
1

2


 αF

b



T

Hτ F


 αF

b


+


 αF

b



T 
 rF

rb


 (8.9)

QF Fix (αF , b) =
1

2
αTFHτFαF +αTF1b+αTF rF (8.10)

and: 
 rF

rb


 =


 GT

τFUhU + GT
τ FLvL − zF + τFρ

(∗)
τ F

1ThU + 1TvL




The solution to (8.8) (assuming that it is well defined) is denoted (α∗F , b
∗). The

aim, if possible, is to calculate a finite step
(

∆α
(k)
F ,∆b(k)

)
= (α∗F , b

∗)−
(
α

(k)
F , b(k)

)

or, if (α∗F , b
∗) is ill-defined (due to singularity of the hessian), move in an appropriate

direction towards the optimal solution.

8.2.3 Variable Bias Case (BiasType = Var)

If the Hessian Hτ F is non-singular (which implies N
(k)
F > 0) then:


 ∆α

(k)
F

∆b(k)


 = −H−1

τR


 e

(k)
τF

f (k)


 (8.11)

where the matrix inversion is avoided by using iτ , as described in section 8.3. It

follows that: 
 ∆e

(k)
τ F

∆f (k)


 = −


 e

(k)
τF

f (k)


 (8.12)
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If the Hessian is singular then either N
(k)
F = 0 or N

(k)
F ≥ 2 (it follows from

theorem 7.4 that N
(k)
F 6= 1 here). In either case, it is clear that either the current

active set is not optimal or there exists an alternative optimal active set with fewer

free variables than the present active set. If N
(k)
F = 0, noting that the quadratic

programming problem (8.8) is an unconstrained linear programming problem, it is

clear that either the solution will not be unique (if f (k) = 0), or will lie at b = ±∞,

which is not reachable with a finite step (obviously ;). So, for simplicity, in this case:

∆b(k) = 0

∆f (k) = 0

If the Hessian is singular and N
(k)
F ≥ 2, one approach is to move in a direction of

linear non-ascent with respect to αF and linear non-descent with respect to b. The

step should be large enough to lead to the activation of a constraint (i.e. β(k) < 1),

thereby preventing termination of the algorithm in a non-optimal state. Consider

the step: 
 ∆α

(k)
FN

∆b(k)


 = −θH−1

τR


 gτ FBN

1


 = −θ


 s

(k)
τα

s
(k)
τ b





 ∆α

(k)
FB

∆α
(k)
FS


 =


 θ

0




(8.13)

where once again the matrix inversion is avoided by using iτ .

Consequently:


 ∆e

(k)
FN

∆f (k)


 =


 0

0





 ∆e

(k)
FB

∆e
(k)
FS


 =


 0

1∆b(k) + GτFSN∆α
(k)
FN + g(k)

τ FSB∆α
(k)
FB




(8.14)

It is easy to see that this step is in a direction of linear descent/ascent with

respect to both αF and b. When selecting θ, the aim is to ensure that the magnitude

of the step is sufficiently large to ensure that the β(k) < 1, and furthermore that

the direction is one of linear non-ascent with respect to αF and linear non-descent
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with respect to b. Unfortunately, it is not in general possible to satisfy both of the

constraints on the direction of the step. Because of this, ignore the requirement of

linear non-descent with respect to b if f (k) 6= 0 (if f (k) = 0 then this requirement

will be met regardless of our choice of θ). This makes implementing the algorithm

simpler and, as will be shown in section 8.2.5, does not affect the convergence of the

algorithm (whereas choosing to ignore the requirement of non-ascent with respect

to αF would lead to problems of cycling when f (k) = 0 and subsequent failure of

the algorithm to convergence).

It is not difficult to see that the following simple definition of θ will satisfy the

requirement of linear non-ascent with respect to αF :

θ =




− (1 + ν)

∣∣∣v(k)
τFB + h

(k)

τ FB

∣∣∣ if e
(k)
τ FB ≥ s

(k)
τα

T
e

(k)
τFN

(1 + ν)
∣∣∣v(k)
τFB + h

(k)

τ FB

∣∣∣ if e
(k)
τ FB < s

(k)
τα

T
e

(k)
τ FN

(8.15)

In this equation, ε < ν < 1 is a small positive constant.

8.2.4 Fixed Bias Case (BiasType = Fix)

If the Hessian Hτ F is non-singular and N
(k)
F > 0 then:

∆α
(k)
F = −H−1

τRe
(k)
τF (8.16)

where the matrix inversion is avoided by using iτ , as described in section 8.3. It

follows that:

∆e
(k)
τ F = −e

(k)
τ F (8.17)

and by definition, ∆b(k) = ∆f (k) = 0 (as f (k) is not used here there is little point in

updating it).

If the Hessian is singular then, as for the variable bias case, it is possible to find
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a direction of linear non-ascent w.r.t. αF using the step:

∆α
(k)
FN = −θH−1

τRgτ FBN = −θs(k)
τα

 ∆α
(k)
FB

∆α
(k)
FS


 =


 θ

0


 (8.18)

where once again the matrix inversion by utilising iτ .

Consequently:

∆e
(k)
FN = 0

 ∆e
(k)
FB

∆e
(k)
FS


 =


 0

GτFSN∆α
(k)
FN + g(k)

τ FSB∆α
(k)
FB


 (8.19)

It is easy to see that this step is in a direction of linear ascent/descent with

respect to αF . To make sure that the direction is one of non-ascent, choose:

θ =




− (1 + ν)

∣∣∣v(k)
τFB + h

(k)

τ FB

∣∣∣ if e
(k)
τ FB ≥ s

(k)
τα

T
e

(k)
τ FN

(1 + ν)
∣∣∣v(k)
τ FB + h

(k)

τFB

∣∣∣ if e
(k)
τ FB < s

(k)
τα

T
e

(k)
τFN

(8.20)

where once again ε < ν < 1 is a small positive constant.

In the special case N
(k)
F = 0, no step will be taken.

8.2.5 Properties of the Algorithm

In this section I provide a proof of convergence for the algorithm. This is split into

two parts. First, I consider the standard variable bias case (BiasType = Var). This

proof was previously published in [81]. Then I give an essentially trivial proof of

convergence for the fixed bias case (BiasType = Fix).

Variable Bias Case BiasType = Var.

The proof of convergence for the variable bias case is split into two parts. Firstly, it

is shown that after a finite number of iterations of the algorithm certain conditions

must be met. Having arrived at a point where these conditions are satisfied, it is
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possible to directly apply a well-known convergence result, thus preventing unneces-

sary repetition of results readily available in the literature. In particular, reference

will be made to proofs contained in [40] and [27].

Theorem 8.3. If BiasType = Var and f (1) 6= 0 then after a finite number l of

iterations of the algorithm, f (l) = 0. Furthermore, for all subsequent iterations l+n,

n ≥ 0, f (l+n) = 0.

Proof. First, assume that N
(1)
F > 0. For each subsequent iteration k with N

(k)
F > 0

either a constraint will be activated (N
(k+1)
F < N

(k)
F ); or β(k) = 1, implying that

the most recent step was calculated using (8.11) and hence that f (k+1) = 0. As

NF is bounded and decreasing, after at most N
(1)
F iterations either f

(
N

(1)
F +1

)
= 0 or

N

(
N

(1)
F +1

)

F = 0, but not both.

Consider the latter possibility. By theorem 8.2,
∣∣f (k+2) − f (k)

∣∣ ≥ ∆min where

∆min > 0, and
∣∣f (k+2)

∣∣ ≤
∣∣f (k)

∣∣. Given that f (1) must be finite, it follows that

f (1) ≤ K∆min for some finite positive integer K ≤
⌈
f (1)

∆min

⌉
. So, starting from the

first iteration where NF = 0, f will become zero after at most m ≤ 2K iterations.

So, if f (1) 6= 0, after some l ≤ 2
⌈
f (1)

∆min

⌉
+N

(1)
F +2 iterations of the algorithm, f (l) = 0.

This proves the first part of the theorem.

Consider all possible methods of calculating subsequent steps, namely (8.11) and

(8.13). In either case, f (k) = 0 implies ∆f (k) = 0 and hence f (k+1) = 0, proving the

second part of the theorem.

Having obtained this result, one may now obtain the main result of this section,

namely:

Theorem 8.4. If BiasType = Var then given any valid initial state ,(1)ג the algo-

rithm will find an optimal solution (∗)ג to (7.14) in a finite time, where an optimal

solution is one satisfying (7.24).

Proof. There are two main steps to this proof:

1. Show that the algorithm will not terminate until an optimal solution has been

found.
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2. Show that an optimal solution will be found in a finite time.

Consider item 1. From (8.3) it is clear that the algorithm will not terminate un-

less f (k+1), e
(k+1)
Z , e

(k+1)
L and e

(k+1)
U all satisfy the appropriate optimality conditions

given in (7.24) (to within precision ε). Furthermore, v ≤ α ≤ h throughout the

algorithm. All that remains to be shown is that the algorithm will not terminate

unless e
(k+1)
F = 0 (or N

(k)
F = 0).

If N
(k)
F > 0 then the final step of the algorithm must be calculated using (8.11)

and, furthermore, it must be the case that β(k) = 1 (which will not be true for the

singular step). Therefore from (8.12) it follows that if N
(k)
F > 0 then on termination

of the algorithm e
(k+1)
F = 0. So the algorithm cannot terminate unless the solution

is optimal (i.e. the KKT conditions (7.24) are met).

Now consider item 2. Clearly, each iteration of the algorithm will take a finite

time to complete. Hence proving that the algorithm will terminate after a finite time

is equivalent to proving that it will terminate after a finite number of iterations.

Firstly, suppose that f (1) 6= 0. It is known from theorem 8.3 that after some

finite number of iterations, l, f (l) = 0, and that for all subsequent iterations, l + n,

n ≥ 0, f (l+n) = 0.

As already noted, if f = 0 (7.14) can be identified with Equations (10.2.2) and

(10.3.1) in [40]. Assuming that G is positive definite then the proof of convergence

given in [40] can be directly applied to the algorithm. For the more general case

where G is positive semidefinite the algorithm may be identified as a more general

form of that given in [27]. By analogy with the proof given in [27] it is straightforward

to prove that the algorithm will terminate after a finite number of iterations.

So, in general, after some finite number of iterations, l, f (l) = 0. Furthermore,

for all subsequent iterations of the algorithm, f (k) = 0. Given this condition the

algorithm will terminate after a finite number of iterations (after the first iteration

where f (l) = 0).

This proves the theorem.
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Fixed Bias Case BiasType = Fix.

Theorem 8.5. If BiasType = Fix then given any valid initial state ,(1)ג the algo-

rithm will find an optimal solution (∗)ג to (7.14) in a finite time, where an optimal

solution is one satisfying (7.24).

Proof. In this case, simply note that the algorithm reduces to a standard active

set algorithm, as in [40], [27], with a positive semidefinite Hessian, so the standard

convergence proof applies.

8.3 Factoring the Hessian

As defined previously, iτ is the inverse or some other factorisation of HτR defined

in such a way as to facilitate the fast calculation of r when s is known and HτRr = s.

In this section two such factorisations will be considered in detail, viz., the inverse

and the Cholesky factorisation respectively. For both cases, the following issues will

be considered:

• How to initially calculate iτ upon entering the algorithm (unless iτ is already

known).

• How to quickly find r when s is known and HτRr = s using iτ (fast matrix

inversion).

• How to re-invert or re-factorise iτ quickly when constraints are activated and

de-activated.

This section is organised as follows. In subsection 8.3.1 some fundamental results

related to the Hessian HτR are given, and in particular how the form of HτR may

(or may not) change when the active set is modified.

In subsections 8.3.2 and 8.3.3 two factorisation methods are introduced, the nec-

essary background information given and notation required in subsequent sections.

In subsections 8.3.4, 8.3.5, 8.3.6 and 8.3.7 how the factorisation is setup, modi-

fied and used is considered in some detail. Finally, subsection 8.3.8 considers how
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the algorithm may be optimised, and 8.3.9 compares the merits of the inverse and

Cholesky factorisations.

8.3.1 Properties of the Hessian Matrix

Variable Bias Case BiasType = Var.

For the purposes of this subsection alone, it is useful, if NR > 1, to partition GτR,

zR, etc. as follows:

zR =


 zRa

zRb


 , etc.

GτR =


 GτRa gτRab

gTτRab gτRb




If NF = 0 then Hτ F = [0] is singular by definition. If NF = 1 then, as shown

in theorem 7.4, HτF is non-singular. Suppose NF > 1. By definition, HτR is non-

singular. If NR = 1 then the form of GτR is restricted only by the requirement of

positive semi-definiteness of HτR. Otherwise:

Theorem 8.6. If NR > 1 and BiasType = Var then either GτR is non-singular or,

after re-ordering, GτR is singular, GτRa is non-singular (gτRb = gTτRabG
−1
τRagτRab)

and gTτRabG
−1
τRa1 6= 1.

Proof. Suppose GτR is non-singular. Given that GτR is positive definite in this

case, it follows that 1TG−1
τR1 6= 0. Therefore HτR is non-singular as required as its

inverse can be formed, i.e.:

H−1
τR =




G−1
τR −

G−1
τR11TG−1

τR
1TG−1

τR1

G−1
τR1

1TG−1
τR1

1TG−1
τR

1TG−1
τR1

− 1
1TG−1

τR1




Now suppose that GτR is singular. First, consider the case where GτR = 0. As

NR > 1 it follows that HτR is singular, which contradicts the defined non-singularity

of HτR. So GτR 6= 0. Hence it must be possible (after some pivoting) to write
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GτR in the form:

GτR =


 GτRX GτRY

GT
τRY GT

τRY G−1
τRXGτRY




where GτRX is positive definite. As HτR is non-singular its inverse must be:

H−1
τR =


 G−1

τRX + MTD−1M −MTD−1

−D−1M D−1




where:

D =


 0 1−GT

τRY G−1
τRX1

1T − 1TG−1
τRXGτRY −1TG−1

τRX1




M =


 GT

τRY

1T


G−1

τRX

So, D is singular iff HτR is singular. The two necessary conditions for D to be

non-singular are as stated in the theorem.

There are three basic forms which HτR may take, namely:

1. NF = 0 and HτR is empty.

2. NR = 1 and/or GτR is positive definite.

3. NR > 1, GτR is singular and, after appropriate re-ordering, GτRa is non-

singular and gTτRabG
−1
τRa1 6= 1.

It is important to consider the effect of the pivoting operations freeL (i), freeU (i)

and constrain (i) on the singular nature of the Hessian matrix.

Theorem 8.7. If BiasType = Var then for all k ≥ 1, (k+1)ג = freeX
(
q(k)
)
(k)ג̂ it

follows that N
(k+1)
R ≥ N

(k)
R .

Proof. If N
(k)
R = 0 then the theorem is trivial. Otherwise, note that the operation

freeX
(
q(k)
)
(k)ג̂ will result in a new row and column being added to the end of Hτ F ,

but otherwise Hτ F will not be modified, so NR cannot decrease.
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Theorem 8.8. If BiasType = Var then for all k ≥ 1, (k+1)ג = constrain
(
p(k)
)
(k)ג̂

it follows that N
(k+1)
R ≥ N

(k)
R − 1.

Proof. Clearly if constrain
(
p(k)
)

is a well defined operation then N
(k)
F ≥ 1 and hence,

from theorem 7.4, N
(k)
R ≥ 1.

The cases N
(k)
R = 1 and N

(k)
R = 2 are essentially trivial. Specifically, if N

(k)
R = 1

then, as N
(k)
R ≥ 1 by definition, it follows that N

(k+1)
R ≥ N

(k)
R − 1. Likewise, if

N
(k)
R = 2 then N

(k+1)
F ≥ 1, and hence by theorem 7.4, N

(k)
R ≥ 1, so N

(k+1)
R ≥ N

(k)
R −1.

The case N
(k)
R ≥ 3 is not so simple. First off, suppose that p(k) > N

(k)
R . As H

(k)
τR

is unaffected by the operation, it follows that its non-singular nature will not change

and hence N
(k+1)
R ≥ N

(k)
R − 1.

Now suppose 1 ≤ p(k) ≤ N
(k)
R . First, note that for the positive semidefinite

matrix GτR if GτRi,i = 0 then, due to the condition of positive semidefiniticity,

GτRi,j = GτRj,i = 0 for all 1 ≤ j ≤ N . So, at most 1 element on the diagonal of

GτR may be zero. To see why this is so, suppose n diagonals of GτR are zero. Then

re-order things so that all of the zero diagonals of GτR lie at the bottom right-hand

of the matrix, thus:

GτR =


 GτRX GτRY

GT
τRY GτRZ




where GτRZ = 0 ∈ <n×n and GτRY = 0. But by theorem 8.6, this is not possible, so

at most one element on the diagonal of GτR may be zero. Assume that GτR1,1 6= 0

(if this is not true, then it may be made so by appropriate re-ordering, so there is

no loss of generality involved in making such an assumption), and also assume that

p(k) = N
(k)
R (again, if this is not true, it may be made so by appropriate re-ordering).

Borrowing the notation of section 8.3.3, define:

H̄τR =




gτRa 1 gTτRba

1 0 1T

gτRba 1 GτRb




It is not difficult to show that under these circumstances it is always possible to
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find a lower triangular matrix L̄ with positive diagonals such that:

H̄τR = L̄




1 0 0T

0 −1 0T

0 0 I


 L̄T

Partition H̄τR and L̄ as follows:

H̄τR =


 H̄τRn h̄τRnl

h̄
T
τRnl h̄τRl




L̄ =


 L̄n 0

l̄Tnl l̄l




But this implies that it is possible to write:

H̄τRn = L̄n




1 0 0T

0 −1 0T

0 0 I


 L̄T

n

where L̄n is a lower triangular matrix with positive diagonals, and so H̄τRn must

be non-singular. Hence it is possible to conclude that if 1 ≤ p(k) ≤ N
(k)
R then

N
(k+1)
R ≥ N

(k)
R − 1.

On a practical note, it is necessary to allow for the finite numerical precision of

the computer. One implication of this is that theorem 8.8 may not, in practice, be

seen to be correct. However, the results do provide a rough guide as to what may

be expected from an implementation.

Fixed Bias Case BiasType = Fix.

The following two theorems are extend theorems 8.7 and 8.8 for the general case

BiasType ∈ {Fix,Var}:

Theorem 8.9. For all k ≥ 1, (k+1)ג = freeX
(
q(k)
)
(k)ג̂ it follows that N

(k+1)
R ≥ N

(k)
R .
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Proof. The variable bias case has been proven in theorem 8.7. The proof for the

fixed bias case is trivially analogous to the proof of theorem 8.7.

Theorem 8.10. For all k ≥ 1, (k+1)ג = constrain
(
p(k)
)
(k)ג̂ it follows that N

(k+1)
R ≥

N
(k)
R − 1.

Proof. The variable bias case has been proven in theorem 8.8. The proof for the

fixed bias case follows from the fact that removing a row or column from a positive

definite matrix will give another positive definite matrix.

8.3.2 The Inverse Update Method

The obvious method of factorising the Hessian matrix HτR is by direct inversion.2

This makes the solution of the fast matrix inversion problem trivial (i.e. use matrix

multiplication), and, as will be shown in subsequent sections, updating the factori-

sation may be done efficiently using a rank-1 updating technique.

Define:

H̆τR =






 0 1T

1 GτR


 if BiasType = Var

GτR if BiasType = Fix

Define:

Definition 8.11. For the inverse update method iτ = {V}, where V = H̆
−1

τR (the

inverse of an empty matrix is defined to be an empty matrix).

By default, V is assumed to be empty and NR = 0.

8.3.3 Cholesky Update Method

It is well known [44] that, for any positive definite and symmetric matrix M, there

exists a lower triangular matrix L with positive diagonal entries such that M = LLT .

The matrix L is known as the Cholesky factorisation of M, denoted chol (M), and

has some nice numerical properties [103].

2[17] uses this approach, but does not consider the case where HτF is singular.
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Suppose that BiasType = Var. So long as it exists, GτR must be positive

semidefinite and symmetric. If NF ≥ 1 define:

zR =


 zRa

zRb


 , etc.

GR =


 gτRa gTτRba

gτRba GτRb




Assuming gτRa 6= 0 (for numerical purposes, gτRa ≥ ε) and using theorem 8.6,

it is not difficult to show that it is possible to define L such that:




gτRa 1 gTτRba

1 0 1T

gτRba 1 GτRb


 = LJLT (8.21)

where L is a lower triangular matrix with positive diagonal elements, and:

J =




1 0 0T

0 −1 0T

0 0 I




Relation (8.21) is analogous to the standard Cholesky factorisation, except that

the matrix that is being factorised not positive definite (although it is non-singular),

and J2,2 = −1. If gτRa < ε then L cannot be defined to satisfy (8.21). In this case

there are two distinct possibilities:

1. NF = 1 or GτF2,2 < ε. In this case NR = 1, but there is no way to factorise

HτR ∈ <2×2 using a Cholesky type factorisation. Fortunately, however, the

inversion of HτR is trivial in this case.

2. NF > 1 and GτF2,2 ≥ ε. In this case, after the pivot eswap (NC + 1, NC + 2) it

is possible to find a lower triangular matrix L with positive diagonal elements

satisfying (8.21).

To deal with this technical difficulty, it is convenient to define a binary variable
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NoChol ∈ {TRUE,FALSE} to indicate whether L may (NoChol = FALSE, default)

or may not (NoChol = TRUE, case 1) be formed to satisfy equation (8.21). If at any

point GτF1,1 < ε then the algorithm will either pivot using eswap (NC + 1, NC + 2)

if NF > 1 and GτF2,2 ≥ ε, or set NoChol = TRUE.

Formally, define the Cholesky factorisation as follows:

Definition 8.12. For the Cholesky update method, iτ = {L,NoChol}. So long as

NF > 0 and NoChol = FALSE:

LJLT =








gτRa 1 gTτRba

1 0 1T

gτRba 1 GτRb


 if BiasType = Var

HτR if BiasType = Fix

where L is a lower triangular matrix with positive diagonals, and:

J =








1 0 0T

0 −1 0T

0 0 I


 if BiasType = Var

I if BiasType = Fix

If NF = 0 or NoChol = TRUE then for completeness L is defined to be an empty

matrix.

By default, L is assumed to be empty, NoChol = FALSE and NR = 0.

Basic Operations with Cholesky Factorisations

The following basic Cholesky operations will be needed. Firstly, given the column

vector z, it is possible to find r such that either Lr = z or LT r = z. This may

be done using forward elimination and back substitution, respectively, as described

in algorithms 4.1-1 and 4.1-2 of [44]. As both algorithms are quadratic time algo-

rithms, combining these operations allows one to perform fast matrix inversion. For

convenience these algorithms are reproduced in appendix D (see algorithms 1 and

2).
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Another necessary algorithm is the Cholesky rank-1 update algorithm. Given

some matrix M̄ = Q̄Q̄T where Q̄ = chol
(
M̄
)

is known, it is possible to find Q =

chol (M) such that M = QQT = M̄+hhT quickly using a rank-1 update algorithm.

Appropriate algorithms may be found in the standard texts [44], [42].

8.3.4 Setup algorithm

In this section, I detail how the factorisation iτ is calculated, if necessary, upon

entering the algorithm. Algorithms 3 (InvFact (Hτ F )) and 4 (CholFact (HτF )) are

used to calculate iτ during the initialisation phase of the optimisation algorithm,

and also to update iτ when the active set is modified. The algorithms themselves

are very slight variants of standard algorithms from the literature (for example, [44]),

and are therefore presented in appendix D without commentary.

Algorithm 3 is used if an inverse factorisation method is chosen, and algorithm 4

if a Cholesky factorisation is chosen (see [44], for example). Both algorithms share

two important features, namely:

1. If, as a result of a constraint being either activated or deactivated, HτR is

improperly defined in such a way that HτFNB is non-singular, the setup algo-

rithm may be called to extend HτR to its correct size.

2. If as a result of running the algorithm it is found that NF 6= NR then (sb, sα)

in (8.13) (or sα in (8.18)) will already be, at least partially, calculated. Hence

most of the computational cost involved in calculating a step using equation

(8.13) (or (8.18)) is avoided.

Indeed, based on point 1 above, the setup algorithm may be thought of as a

means maximising NR. Any prior knowledge (in the form of a partial factorisation)

is used to “kick-start” the algorithm, minimising computational cost. As the default

active set definition upon entering the algorithm in a “cold-start” situation is for all

variables αi to be actively constrained at a lower bound (i.e. NF = 0), the setup

algorithm will rarely be required to increase NR significantly, and hence contributes

little to the computational cost of the algorithm.
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Consider algorithm 3. If this algorithm terminates with NF 6= NR then, as noted

previously, the variable (sb, sα) (or just sα for the fixed bias case) calculated most

recently in algorithm 3 may be used directly during the subsequent iteration of the

main algorithm when calculating the step using equation (8.13).

The analogous situation when using a Cholesky update method is not quite so

simple. However, if BiasType = Var and algorithm 4 terminates with NF 6= NR a

significant computational cost saving may still be had when calculating (sb, sα) by

solving: 


sαa

sb

sαb


 = BackwardSub

(
LT , a

)

where a is as calculated during the final iteration of algorithm 4, and:

sα =


 sαa

sαb




is the vectorial part of (sb, sα) to be used directly in equation (8.13).

Likewise, if BiasType = Fix (the fixed bias case) one may solve:

sα = BackwardSub
(
LT , a

)

to achieve the same end.

8.3.5 Fast Matrix Inversion

One of the key aims in defining the factorisation iτ of the relevant part of the

Hessian matrix HτR was to be able to quickly calculate the vector r, given p, where

HτRr = p and, by assumption, HτR is non-singular and NR > 0.

Inverse Factorisation

In the fixed bias case BiasType = Fix:

r = Vp
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For the variable bias case BiasType = Var, define:

r =


 rα

rb




p =


 pα

pb




then: 
 rb

rα


 = V


 pb

pα




Cholesky Factorisation

In the fixed bias case BiasType = Fix:

t = ForwardElim (L,p) (8.22)

r = BackwardSub
(
LT , t

)
(8.23)

Likewise for the variable bias case BiasType = Var, if NoChol = FALSE, define:

r =




rαa

rαb

rb




p =




pαa

pαb

pb




t =




tαa

tαb

tb
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then:




tαa

tb

tαb


 = ForwardElim


L,




sαa

sb

sαb





 (8.24)




rαa

rb

rαb


 = BackwardSub


LT ,




tαa

−tb
tαb





 (8.25)

Otherwise, if NoChol = TRUE then, solving explicitly:


 r1

r2


 =


 p2

p1 −Gτ F1,1p2




8.3.6 Activating a Constraint

Consider the activation of a constraint, as in (k+1)ג = constrain
(
p(k)
)
.(k)ג̂ In this

section I consider the affect of this operation on the factorisation iτ . The following

possibilities must be considered:

1. p(k) > N
(k)
R + 1.

2. p(k) = N
(k)
R + 1.

3. p(k) = N
(k)
R = N

(k)
F = 1.

4. p(k) = N
(k)
R = 1 and N

(k)
F > 1.

5. p(k) ≤ N
(k)
R and N

(k)
R > 1.

Where the Hessian HτF must be singular in cases 1, 2 and 4, and may be singular

in case 5. For the first 4 cases, the modification to iτ is as follows:

1: As neither HτFN nor HτFNB are affected, iτ (k+1) = iτ (k).

2: While HτFN is not affected, Hτ FNB is, and so it may be possible to increase

NR if N
(k)
R 6= N

(k)
F − 1. Hence if N

(k)
R 6= N

(k)
F − 1 then, after making the
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appropriate changes to HτF , algorithm 3 (or 4, depending on the update

method used) is called to update iτ and maximise NR.

3: After this operation, iτ will revert to its default form. Hence all matrices in

iτ (k+1) will be empty, N
(k+1)
R = 0 and NoChol = FALSE if a Cholesky update

method is used.

4: iτ must be re-built from scratch after the appropriate changes have been

made to HτF .

For case 5, the modification is dependent on the factorisation used, as will now

be described.

Inverse update method

The inverse of HτR at iteration k, V(k), may be partitioned as follows:

V(k) =




Va vd VT
b

vTd ve vTf

Vb vf Vc




where Va ∈ <(p(k)−1)×(p(k)−1) if BiasType = Fix, or Va ∈ <p(k)×p(k)
if BiasType =

Var.

If Hτ F was non-singular prior the activation of the constraint (i.e. N
(k)
R = N

(k)
F )

then:

V(k+1) =


 Va VT

b

Vb Vc


− 1

ve


 vd

vf




 vd

vf



T

(8.26)

Otherwise, equation (8.26) may still be used to calculate an interim form of

iτ (k+1), and then algorithm 3 may be called to increase (to a maximum) N
(k+1)
R .

According to theorem 8.8, equation (8.26) must be well defined, and, in partic-

ular, ve 6= 0. Unfortunately, due to cumulative numerical errors, this may not be

true in practice. Even if ve 6= 0, if |ve| < ε it would be inadvisable to use equation

(8.26), as the likely result would be large numerical errors in V.
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Our strategy [81] for dealing with this problem is to attempt to reduce N
(k)
R by

some minimal amount to ensure that V(k+1) is non-singular to working precision

(i.e. |ve| ≥ ε in equation (8.26)).

Assume p(k) = N
(k)
R (if this is not true then, noting that V may be re-ordered in

the same way as Hτ F , use the operation eswap
(
NC + p(k), NC +N

(k)
R

)
to make it

so). Hence Vc has zero size. If N
(k)
R ≥ 4 the aim is to partition V as follows:

V(k) =


 Vα VT

β

Vβ Vγ




where Vγ ∈ <Nγ×Nγ , and 2 ≤ Nγ ≤
⌊
N

(k)
R

2

⌋
is as small as possible such that

det (Vγ) >= ε. If such an Nγ exists then:

V(k+1) = Vα −VT
βV−1

γ Vβ

where V−1
γ may be calculated using a simple variant of algorithm 3. Note that it

is not computationally worthwhile to increase Nγ past the limit set above, as the

computational cost of calculating V−1
γ would then exceed the computational cost

of re-calculating V(k+1) from scratch using algorithm 3. If this method fails set

NR := 0, V empty and use algorithm 3 to calculate V(k+1) from scratch.

From a computational perspective, this method is far from optimal if Nγ becomes

large. However, in our experience cases where Nγ > 2 are extremely rare, and in

any case indicates that a significant cumulative numerical error has occurred that is

best rectified by re-calculating V from scratch.

Cholesky update method

Firstly, let suppose that p(k) 6= 1. Hence L(k) may be partitioned as follows:

L(k) =




La 0 0

lTd le 0T

Lb lf Lc
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where La ∈ <(p(k)−1)×(p(k)−1) if BiasType = Fix and La ∈ <p(k)×p(k)
if BiasType =

Var. Assuming that N
(k+1)
R = N

(k)
R − 1:

L(k+1) :=


 La 0

Lb L̄c




where:

L̄cL̄
T
c = LcL

T
c + lf l

T
f

If N
(k)
R 6= N

(k)
F then algorithm 4 is called subsequently to maximise NR.

If, however, p(k) = 1, then the only recourse is make L empty, NR = 0 and

NoChol = FALSE, make the necessary changes to Hτ F etc., and then use algorithm

4 to make L(k+1) from scratch. In extreme cases, it may be found that (as a result

of numerical errors) that N
(k+1)
R < N

(k)
R − 1. However, unlike the similar problem

when dealing with an inverse update, this may occur only if p(k) = 1, and even then

is, in our experience, quite rare.

8.3.7 De-activating a Constraint

When a constraint is de-activated, as in (k+1)ג = freeX
(
q(k)
)
,(k)ג̂ iτ must be up-

dated to reflect the modification to the active set. Clearly, if Hτ F is singular and

N
(k)
F > 1 then adding a row and column to the end of this matrix will not ef-

fect HτR. Hence if N
(k)
R 6= N

(k)
F and N

(k)
F > 1, iτ (k+1) = iτ (k). Otherwise, the

re-entrant properties of algorithms 3 and 4 may be used to advantage by simply

updating Hτ F etc. appropriately and calling the relevant factorisation algorithm, 3

or 4.

8.3.8 Optimisations

Computational cost optimisation

In theorem 8.3 it was shown if f (1) 6= 0 then there exists some l such that f (l+n) = 0

for all n ≥ 0. Furthermore, for most of these iterations, if N
(l+n)
F > 0 then e

(l+n)
τF
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will have the form:

e
(l+n)
τ F =


 0

e
(l+n)
τ Fnz




where e
(l+n)
τFnz ∈ <N

(l+n)
Fnz . Indeed, in most cases (all if theorem 8.8 holds true in

spite of numerical errors), N
(l+n)
Fnz = 1. Using this fact, it is possible to significantly

accelerate the calculation of equation (8.11) using iτ .

First, suppose an inverse factorisation is used. In this case, if f (k) = 0 and

BiasType = Var, (8.11) reduces to:


 ∆b(k)

∆α
(k)
F


 = −Vnze

(k)
τ Fnz

where Vnz ∈ <
(
N

(k)
F +1

)
×N(k)

Fnz and:

V =
[

Vz Vnz

]

Similarly, if f (k) = 0 and BiasType = Fix, (8.11) reduces to:

∆α
(k)
F = −Vnze

(k)
τFnz

where Vnz ∈ <N
(k)
F ×N

(k)
Fnz and:

V =
[

Vz Vnz

]

Using a Cholesky factorisation then, if f (k) = 0, BiasType = Fix, NoChol =

FALSE, N
(k)
F > 1 and N

(k)
Fnz < N

(k)
F , (8.22) and (8.23) can be replaced by:

tnz = ForwardElim
(
Lnz, e

(k)
τ Fnz

)
(8.27)

r = BackwardSub


LT ,


 0

tnz




 (8.28)
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where Lnz ∈ <N
(k)
Fnz×N

(k)
Fnz and:

L =


 Lz 0

Lnzz Lnz




The variable bias case is much the same, except that (8.28) is replaced by:




rαa

rb

rαb


 = BackwardSub


LT ,


 0

tnz




 (8.29)

Another area where some computational cost savings may be made is the calcu-

lation of
(

∆e
(k)
τU ,∆e

(k)
τL

)
when Hτ F is singular. As was shown in equation (8.13),

∆α
(k)
FS = 0 in this case. Extending the notation in the obvious manner, it can be

seen that equation (8.1) may be simplified to:


 ∆e

(k)
τU

∆e
(k)
τL


 =


 1 GτUFN gτUFB

1 GτLFN gτLFB







∆b(k)

∆α
(k)
FN

∆α
(k)
FB




Memory usage optimisation

As our algorithm stores Gτ ∈ <N×N in full and also any matrices associated with

the factorisation iτ , it will naturally use significant amounts of memory if our

training set size N is excessively large. Hence, the algorithm we have described is

intended mainly for problems where the amount of training data is small to moder-

ate. Because of this, it is important to consider issues of memory use, and how it

may be minimised.

It will be noted that all matrices used in our algorithm are either lower triangular

(L, as used in the Cholesky update method) or symmetric (the large matrix Gτ , and

also V, as used in the inverse update method). To take advantage of this symmetry,

in [81] we stored all of these matrices in lower triangular form, thus reducing matrix

memory usage from N2 +O(N) (assuming NR � N) to 1
2
N2 +O(N).
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8.3.9 Comparative Merits

Inverse update method

The advantages and disadvantages of the inverse update method are:

• Advantages:

1. Speed - updating the inverse Hessian is significantly faster than calculat-

ing it from scratch.

2. Simplicity - the algorithms to form and update the factorisation are sim-

pler than their Cholesky update counterparts.

• Disadvantages:

1. Numerical stability - as was seen in section 8.3.6, numerical errors can

lead to significant inaccuracies in our inverse factorisation V and, conse-

quently, the “optimal” solution.

Cholesky update method

The advantages and disadvantages of the Cholesky update method are:

• Advantages:

1. Speed - calculating the step is significantly faster than calculating from

scratch.

2. Numerical stability - while it is still possible that, due to numerical errors,

we may have problems with previously known non-singular matrices “ap-

pearing” non-singular as a result of the de-activation of a constraint, the

likelihood of such an event is much lower when using a Cholesky update

method than when using an inverse update method.

• Disadvantages:

1. Complexity - the Cholesky update method is significantly more complex

than the inverse update method.
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Computational complexity comparisons

Consider the computational cost of an iteration. This may be split into factorisation

dependent and factorisation independent components, where “factorisation” refers to

either the inverse or Cholesky approach. The factorisation independent component

of each iteration is the cost of calculating ∆e
(k)
U and ∆e

(k)
L , as well as performing

the update. This operation takes in the order of 2NF (NU +NL) + 2N + 2NF flops

(a flop is defined here as a floating point multiplication, addition or square root).

The factorisation dependent cost of each iteration is the cost of calculating ∆α
(k)
F

and ∆b(k) and also the cost of updating the factorisation whenever a constraint is

activated or de-activated.

Let us consider the factorisation dependent cost in more detail. For simplicity,

assume NFnz = 1 (as is most often the case), and also that the Hessian is always

non-singular. With the exception of the final step, each such step calculation will be

followed by a constraint activation or de-activation. Hence it makes sense to look at

the combined step plus constraint activation/de-activation cost.

For a step followed by a constraint activation, the computational cost of the

inverse update method is approximately 3NF +
(
N − p(k)

)2
flops, compared to

N2
F + 4

(
N − p(k)

)2
flops for the Cholesky method. Clearly, the inverse update

method is significantly faster here. For a step followed by a constraint de-activation,

however, the computational cost of the inverse update method is approximately

3N2
F flops, which makes it significantly slower than the Cholesky method, which

takes approximately N2
F flops.

From this, it may be observed that neither algorithm has a significant com-

putational advantage over the other. In [81] we found the Cholesky method to be

marginally faster than the inverse update method. However, it is known that usually

NF � N , so the factorisation dependent cost tends to be swamped by the factori-

sation independent cost. Therefore, in most cases, the computational cost issues of

the two factorisation methods are likely to be less important than the complexity

versus numerical stability trade-off.
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8.4 Incremental Learning and Forgetting

It is straightforward to apply the algorithm presented here to incremental learning

and forgetting. Suppose that ג̄ =
{
z̄, z̄, T̄

}
(where T̄ =

(
ϑ̄, ¯BiasType, b̄fix

)
, z̄ =

{
ᾱ, b̄, τ̄ , m̄

}
and z̄ =

{
Ē, ēτ , f̄ , Ḡτ , īτ

}
) is the abstract state of some SVM, which

may or may not be optimal but must be in standard form. Incremental learning then

involves incorporating the additional training points ϑ̂ =
(
ϑ̂1, ϑ̂2, . . . , ϑ̂N̂

)
into the

existing abstract training set T̄ =
(
ϑ̄, ¯BiasType, b̄fix

)
, where ϑ̄ =

(
ϑ̄1, ϑ̄2, . . . , ϑ̄N̄

)
,

and then suitably extending z̄ and z̄ to give a new machine ג = {z,z,T}, which

is optimal.

The approach taken here is to split this process into two stages. Firstly, ג̄ is

extended to some intermediate ג̄¯ which includes the new training points and is in

standard form, but is not optimal. Define:

ג̄¯ =
{

¯̄z, ¯̄z, ¯̄T
}

¯̄T =
{

¯̄ϑ, ¯BiasType, ¯bfix

}

¯̄z =






 ᾱ

0


, b̄,


 τ̄

0


,

 m̄ + 1N̂

m̂







¯̄z =



Ē,


 ēτ

êτ


, f̄ ,


 Ḡτ ĜT

τ

Ĝτ
ˆ̂
Gτ


, īτ





¯̄ϑ =
(
ϑ̄1, ϑ̄2, . . . , ϑ̄N̄ , ϑ̂1, ϑ̂2, . . . , ϑ̂N̂

)

where:

ê = Ĝτ ᾱ+ 1b̄− ẑ

m̂i = i

Ĝτ i,j = K (x̂i,xj)

ˆ̂
Gτ i,j = K (x̂i, x̂j)
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Note that the new abstract training points are all actively constrained to zero in

,ג̄¯ and that ג̄¯ is in standard form. Also, there is a small problem here. Technically

speaking, as γ, γ∗, h and v are all proportional to C
N

, these should be modified

appropriately here. However, this is not practical at this point. If N̄ � N̂ this will

not be a problem, but if this is not true then it may be necessary to rescale γ, γ∗,

h and v as described in the next section.

If ג̄¯ satisfies the KKT conditions (8.3) then ג̄¯ is optimal, so set ג = .ג̄¯ Otherwise,

the algorithm may be re-entered with (1)ג = .ג̄¯ Note that it is not necessary to

re-calculate the factorisation i(1), as the old factorisation is correct already.

Forgetting may be implemented in a similar manner. Simply remove the ϑi’s

corresponding to the training points that are to be removed, re-calculate f , E and

eτ appropriately, and re-enter the optimisation algorithm if the KKT conditions are

no longer satisfied. Note that this will only happen if support vectors are removed.

During forgetting, the inverse or factorisation i(1) may be altered due to the

removal of free variables. The effect of the factorisation is the same as for the

activation of a constraint on that variable, and so the factorisation can be updated

in the same manner as would be used for constraint activation.

8.5 Constraint Parameter Variation

When designing and training an SVM, it is necessary to select a number of param-

eters, including C, the kernel function K and the width of the ε-insensitive region.

Traditionally, this has been done by trial-and-error for kernel selection and using a

search method for other parameters. More recently, [22] has given an algorithm for

automatically selecting the kernel parameters in order to minimise an upper bound

on the generalisation error. In either case, one must optimise the SVM for a large

number of different choices of parameter. Using a batch re-solve method tends to

make the process extremely slow.

In [80], [81], we demonstrated the efficacy of an alternative approach to this

problem, namely incremental training. Suppose that we have optimised our SVM

for a given set of parameters, and want to repeat the process for a slightly different
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set of parameters. It is reasonable to expect that, assuming the difference between

the parameters is sufficiently small, the solution for the new parameters will be close

to the solution for the old parameter set. As we demonstrated, it is possible to take

advantage of this feature in a warm-start approach.

8.5.1 ρ, ρ∗, z and bfix Variation

These parameters are the easiest to adjust. One simply needs to adjust f , E and

eτ appropriately to allow for any change and then re-enter the algorithm if the

optimality conditions are no longer met. For example, if we wish to scale ρ and ρ∗

by some scale factor κ then:

eτ := eτ + (κ− 1) sgn (τ )ρ
(∗)
τ

f := f

E := E

8.5.2 v and h Variation

The bounds are also not too difficult to adjust - one simply adjusts f , E and eτ

appropriately and re-enters the algorithm if the KKT conditions are no longer met.

However, some care must be taken if either there are points actively constrained at

an upper or lower (non-zero) bound which is changing, or the change in the bounds

will cause one of the free variables to move outside one of these bounds.

In the first case (i.e. when a point is actively constrained at a non-zero boundary

which is being changed) it is necessary to take this into account when adjusting f ,

E or eτ . In the latter case, the variation may need to be done in several stages. For

each stage, the bounds will be changed as far as possible, and then any free variables

lying on the new bound must be actively constrained using the appropriate pivoting

operations. In practice, it is uncommon to require more then two such stages.
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8.5.3 γ, γ∗, µ, µ∗, K and xi Variation

As for other parameters, when adjusting these parameters is necessary to first adjust

f , E and eτ appropriately, and then re-enter the algorithm if the KKT conditions

are no longer met. However, there is an additional complication here. Adjustment of

these parameters will also affect Gτ (and appropriate adjustments must be made)

and, potentially, the Hessian factorisation iτ .

Unfortunately, the cost of re-factorising the Hessian is likely to be significant, es-

pecially if the size of the support vector set is large. So, while there is no in-principle

problem with adjusting these parameters using this method, the computational cost

of such operations may be prohibitive.

8.5.4 Connection with Standard SVM Parameter Variation

The connection between the standard SVM parameters (like C, ν etc) and the

abstract parameters given here will, of course, be dependent on the SVM formulation

being used. However, using the information given in sections 7.6, 7.7 and 7.8, it

should be straightforward to see how adjustments to these parameters are to be

mapped to adjustment of the abstract parameters in each case.

8.6 Implementation Details

This algorithm, and Platt’s SMO algorithm [66], were both implemented in C++,3

and experiments were carried out on a 1GHz Pentium III with 512MB running

Windows 2000, using DJGPP for code compilation.

To ensure the comparison was based on algorithmic efficiency rather than the

efficiency of the implementation, ability of the compiler to optimise the code and

the speed of the computer on which the experiment was done, computational cost

has been measured explicitly in terms of flops, where one flop is defined here as one

floating point addition, multiplication or square root.

An accuracy of ε = 10−2 was chosen. The kernel function used for all experiments

3code available at http://www2.ee.mu.oz.au/pgrad/apsh/svm/
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was the quadratic kernel K(x,y) =
(

1 + 1
dL

xTy
)2

. Some of the following results

were first published in [81].

8.7 Experimental Methodology

The aim here is to investigate the advantages and disadvantages of using an incre-

mental training algorithm instead of a batch training algorithm in those situations

where a partial solution (either in the form of an SVM trained on some subset of the

complete training set, or an SVM trained using different parameters) is available.

As such, the accuracy of the resultant SVM (which is essentially independent of the

training algorithm in any case) is of secondary importance, with the computational

cost of updating (or re-training) the SVM being our primary concern.

When discussing the computational cost of updating an SVM, either through

incremental learning or incremental parameter variation, it is assumed that the

“old” solution is given a-priori. So the computational cost of updating this SVM

will include only the cost of modifying this old solution in an appropriate manner.

Specifically, when investigating incremental training, one is concerned with the cost

of updating an SVM with a base training set of N training pairs, to which M

additional training pairs have been added.

Three incremental training experiments are described here. In the first, the

problem at hand is relatively simple, and a high degree of accuracy may be achieved

using only a small fraction of the complete training set (UCI mushroom toxicity

dataset [10]). In this case, an error rate of less than 5% (tested using 800 vectors

not contained in the training set) was achieved using a training set of less than 100

vectors out of a possible 7000. In this way it is possible to investigate the “steady

state” computational cost where the decision surface is essentially static, suffering

only occasional perturbations when new training data is added to the training set.

The accuracy of the SVM for different training set sizes is shown in figure 8.2.

In the second experiment, the training problem is significantly more difficult (the

adult dataset from the delve repository4). In this case the lowest achievable error

4see http://www.cs.toronto.edu/∼delve/data/datasets.html
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Figure 8.2: Testing set error versus training set size - mushroom dataset

rate was approximately 20%, as shown by figure 8.3 (measured using 150 vectors

not contained in the training set). This allowed investigation of the properties of

the algorithm when the solution changes significantly with each increment.

The third experiment considers the computational cost of incrementally varying

the constraint parameter C, as may be required to find the optimal value for this

constraint parameter. The dataset used here is the smaller adult dataset.

8.8 Experimental results

8.8.1 Incremental Training

Figure 8.4 is typical of the computational cost for the SMO algorithm (adult dataset).

The dashed line in this figure shows the computational cost of batch optimising the

SVM using an SMO algorithm for different training set sizes, and the solid line the

computational cost of incrementally adding M = 1 training points to an existing

SVM (optimised for an existing training set size) using the SMO algorithm.5

5Incremental SMO learning may be achieved by simply keeping the old α value, setting α̂ = 0,
and starting at this value. This method is not applicable to decremental learning or constraint
parameter variation, as in general we must start the SMO algorithm with f = 0.
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Figure 8.3: Testing set error versus training set size - adult dataset

As can be seen from this graph, there is no advantage to be had using incremental

SMO methods. Figure 8.7 shows the same result for the mushroom toxicity dataset

using the same increment size (M = 1). For both datasets, the active set algorithm

was significantly faster than SMO (compare, for example, figures 8.4 and 8.11).

However, it must be born in mind that the datasets considered in the present paper

are relatively small, and the SMO algorithm is optimised for much larger datasets

where it becomes impractical to store the entire Hessian in memory. On average, it

was found that the number of flops taken by the active set algorithm to train the

SVM (batch method) was usually around 1
20

th
of the number of flops required by

the SMO to complete the same problem.

Figure 8.11 shows a comparison between batch and incremental cost using the

active set algorithm (adult dataset) for an increment size of M = 1. In this figure,

the base cost is the cost of extending Gτ , eτ etc. and thus represents the minimum

possible incremental update cost for an increment of size M = 1 given an existing

training set of the size indicated on the x-axis. As shown by the graph, the com-

putational cost for a significant proportion (52%) of updates is exactly equal to the

base cost, which indicates that the optimal SVM has not been changed when the

new training data was added. Even when the incremental cost exceeds this base
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Figure 8.4: Flop count vs. training set size (adult dataset) - SMO algorithm (dashed
line batch, solid line incremental (M = 1)).
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Figure 8.5: Flop count vs. training set size (adult dataset) - SMO algorithm (dashed
line batch, solid line incremental (M = 10)).
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Figure 8.6: Flop count vs. training set size (adult dataset) - SMO algorithm (dashed
line batch, solid line incremental (M = 100)).
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Figure 8.7: Flop count vs. training set size (mushroom dataset) - SMO algorithm
(dashed line batch, solid line incremental (M = 1)).
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Figure 8.8: Flop count vs. training set size (mushroom dataset) - SMO algorithm
(dashed line batch, solid line incremental (M = 10)).
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Figure 8.9: Flop count vs. training set size (mushroom dataset) - SMO algorithm
(dashed line batch, solid line incremental (M = 100)).
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Figure 8.10: Flop count vs. training set size (mushroom dataset) - SMO algorithm
(dashed line batch, solid line incremental (M = 1000)).

cost, the incremental computational cost is almost always significantly less (and al-

ways, for the datasets used here, at least slightly less) than the comparable batch

optimisation cost. On average, it was found that the incremental update method

was 870 times faster than the comparable batch method for this example. If only

those increments which modified the SVM in a non-trivial manner were considered,

this dropped to 37 times faster on average, which is still a significant improvement.

For larger increment sizes (for example, M = 100 for the adult dataset is shown in

figure 8.16, M = 1000 for mushroom toxicity dataset in figure 8.17), the incremental

cost is more likely to exceed the base cost. However, it was still found that the

incremental method was faster than the batch method in all cases (for the datasets

in question).

For this first part of the experiment, no significant differences were found between

the performance of the two proposed factorisation methods (inverse and Cholesky),

either in computational cost or the optimal SVM found. However, as will be seen in

the following section, this does not indicate that there are no differences in general.
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Figure 8.11: Flop count vs. training set size (adult dataset) - active set algorithm
(Cholesky factorisation) (in order of increasing magnitude: base cost, incremental
cost (M = 1) and batch cost).
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Figure 8.12: Flop count vs. training set size (adult dataset) - active set algorithm
(Cholesky factorisation) (in order of increasing magnitude: base cost, incremental
cost (M = 10) and batch cost).
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Figure 8.13: Flop count vs. training set size (adult dataset) - active set algorithm
(Cholesky factorisation) (in order of increasing magnitude: base cost, incremental
cost (M = 100) and batch cost).
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Figure 8.14: Flop count vs. training set size (mushroom dataset) - active set algo-
rithm (Cholesky factorisation) (in order of increasing magnitude: base cost, incre-
mental cost (M = 1) and batch cost).
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Figure 8.15: Flop count vs. training set size (mushroom dataset) - active set algo-
rithm (Cholesky factorisation) (in order of increasing magnitude: base cost, incre-
mental cost (M = 10) and batch cost).
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Figure 8.16: Flop count vs. training set size (mushroom dataset) - active set algo-
rithm (inverse factorisation) (in order of increasing magnitude: base cost, incremen-
tal cost (M = 100) and batch cost).
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Figure 8.17: Flop count vs. training set size (mushroom dataset) - active set algo-
rithm (Cholesky factorisation) (in order of increasing magnitude: base cost, incre-
mental cost (M = 1000) and batch cost).

8.8.2 Incremental Constraint Parameter Variation

Table 6.1 gives the computational cost of incrementally changing C from some initial

value (given at the top of the column) to new value (given at the left of the row), as

well as the batch computational cost of batch-optimising for the C value in question

along the diagonal, for the adult dataset.

It will be noted that, so long as C is being increased, the computational cost

of the incrementally modifying an SVM is usually smaller than the computational

Table 8.1: Computational cost matrix (MFlops) - C variation (Active set method -
Cholesky factorisation). Initial C values are shown in the top row, target C values
in the left column. Diagonal entries show batch costs.

batch 0.01 0.1 1 10 100 1000 10000

0.01 35.3 82.3 133 159 178 185 184
0.1 8.79 38.7 123 156 180 188 187
1 21.6 18.6 73 156 192 200 200
10 69.7 64.8 50.6 177 181 215 227
100 143 160 148 81 424 214 274
1000 320 335 299 180 87.3 1020 326
10000 426 451 468 257 167 107 1810
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cost associated with batch re-training for the new value of C. Indeed, for most cases

shown in table 6.1 it is computationally cheaper to batch train an SVM for a small

value of C (Csmall) and then incrementally modify C to some larger value (Clarge)

than it is to batch train the SVM using Clarge.

When decreasing C, however, in many cases (especially when either the change

in C was large or the target C was small) it was computationally cheaper to batch re-

train the SVM using the new value of C rather than using an incremental approach.

This is not too surprising, as when C is decreased one is more likely to have to

modify the Hessian factorisation i than when C is increased, resulting in a higher

computational cost for the former.

It was not possible to complete the table using an inverse factorisation, as the

numerical errors resulting from the inverse update factorisation procedure quickly

became unacceptably high, leading to convergence problems. This result, combined

with the similarity of computational cost between the two factorisation methods,

would appear to indicate that, in general, the Cholesky factorisation method is su-

perior to the inverse factorisation method, despite the additional algorithmic com-

plications involved in its implementation.
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Chapter 9

CONCLUSION

Ring the bells that still can ring

Forget your perfect offering

There is a crack in everything

That’s how the light gets in.

– Leonard Cohen, “Anthem”

9.1 Summary of Work

T
he main contributions of this thesis is the formulation, asymptotic analysis

and implementation of a number of novel SVM formulations. In particular,

the quadric ν-SVM formulation I have described has been shown to be an effective

regressor with many favorable properties, both in terms of simplicity of formulation

and performance. On a broader scale, I have demonstrated that by simple mod-

ification of the base SVM optimisation problem it is possible to implement many

different forms of SVM, ranging from Suykens’ LS-SVM formulation, to Mangasar-

ian’s automatically biased SVM and the tube-shrinking methods of Schölkopf.

The necessary background material in pattern recognition and regression has

been provided in chapters 2 and 3 of this thesis to give the reader a feel for the

problem at hand and an understanding of the difficulties which must be overcome,

as well as the underlying theory. In chapter 4 I have introduced the SVM approach to

these problems, giving the standard formulations in slightly non-standard notation.

In this thesis I have presented the theory of Support Vector Machines for binary

pattern classification and regression in a unified manner. To this end, at the start

of chapter 5 I introduced the new SVM formulation to solve the “regression with

inequalities” problem, and demonstrated that this effectively contained (as special
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cases) both the pattern classification and regression problems.

I then proceeded to present a series of generalisations to this base formulation,

including the novel monomial ν-SVM, which incorporates features drawn from LS-

SVM theory and tube-shrinking and combines them in such a way as to capture

many of the useful features of both. Using the dual and partially dual formulations,

these modifications were then summarised, and it was shown that most may be

viewed as relatively straightforward modifications to the traditional optimisation

problem.

In chapter 6 the problem of parameter selection was considered for the SVR using

a monomial cost function, with particular attention being paid to the quadric case.

The theoretical asymptotic efficiency of the monomial C-SVR and the monomial ν-

SVR was computed in the asymptotic case. By doing so, I was able to demonstrate

that the quadric ν-SVR method not only shares the standard ν-SVR method’s prop-

erty of (theoretical) noise variance insensitivity, but is also more efficient in many

cases (in particular, when the training data is affected by polynomial noise of degree

p ≥ 2). These predictions have been experimentally tested, and comparisons have

been made between the performances of quadric ν-SVR, standard ν-SVR, standard

LS-SVR and weighted LS-SVR methods in the presence of higher order polynomial

noise. Both theoretical and experimental results indicate that performance of the

quadric ν-SVR method in many cases exceeds that of both standard ν-SVR and

LS-SVR.

Finally, in chapters 7 and 8 I described our approach to the training problem,

and in particular the incremental training problem. In doing so, the abstract opti-

misation problem was formed, which is a generic SVM optimisation method which

may be applied to many of the SVM formulations given in chapter 5. An active set

optimiser was then developed to take advantage of the particular properties of the

SVM formulation. By choosing an active set method, I was able to construct an

algorithm directly applicable to the problem of incremental training and parameter

variation.
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9.2 Future Directions

There are a number of questions which are raised in this thesis which warrant further

investigation, including:

Chapter 4: Support Vector Machine Basics The issue of the geometry of the

various SVM kernels remains relatively obscure and little explored in the lit-

erature. However, understanding the geometry associated with the various

Mercer kernels is in many ways fundamental to understanding when a partic-

ular kernel may be (or may not be) applicable.

Chapter 5 - Extensions to the Basic SVM Method: The most general SVM

formulation given in this chapter (generalised tube shrinking) will require fur-

ther investigation. At present I have not proceeded past formulating the dual

optimisation problem, and so as yet I have not been able to actually test this

formulation.

Chapter 6 - Asymptotic Analysis of SV Regression: Most obviously, Conjec-

ture 6.3 remains unproven, which needs to be rectified. More generally, the

assumptions made in this chapter are still far to strict to be able to give

confident predictions of optimal values for the various parameters (although

the experimental results presented indicate that they do provide a good first

guess). Further analysis must be carried out in order to see what effect the

relaxation of some of these assumptions may make.

Chapter 7/8 - Training the SVM: The work presented in this thesis on this

area was first completed in early 2002 (although it was not published until

January 2005). In the intervening time, significant advances have occurred

in the area of SVM training algorithms. Using the knowledge gained in this

period, it is probable that a significantly faster algorithm could be constructed

to tackle the problem of incremental training.
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Appendix A

DETAILED DERIVATIONS OF (PARTIAL) DUAL
FORMS

For a moment, nothing happened. Then, after a second or so, nothing
continued to happen.

– Douglas Adams

For reasons of clarity and brevity, the derivations of the dual and partially dual
forms of some of the SVM formulations given in chapters 4 and 5 were either

not presented in full or not presented at all. This is because the method varies
little from form to form, and hence it should not be too difficult to construct using
previous derivations as a template. However, for completeness, the derivations are
included in full in this appendix.

In all cases, the training set is defined thusly:

Y = {(x1, z1) , (x2, z2) , . . . , (xN , zN)}
Y = Y= ∪Y≥ ∪Y≤
Y≥ ∩Y≤ = Y= ∩Y≤ = Y= ∩Y≥ = ∅
xi ∈ <dL
zi ∈ <

(A.1)

Each formulation also has training parameters, which are summarised in table
A.1.

A.1 Binary Classification (section 4.1)

In this case, Y= = ∅. The primal form (4.10) is:

min
w,b,ξ,ξ∗

R1 (w, b, ξ, ξ∗) =
1

2
wTw +

C

N
tTξ +

C

N
t∗Tξ∗ (A.2)

such that:

wTϕ (xi) + b ≥ zi − Eεi − ξi∀1 ≤ i ≤ N : (xi, zi) ∈ Y≥ (A.3)

wTϕ (xi) + b ≤ zi + Eε∗i + ξ∗i ∀1 ≤ i ≤ N : (xi, zi) ∈ Y≤ (A.4)

ξi ≥ 0∀1 ≤ i ≤ N (A.5)

ξ∗i ≥ 0∀1 ≤ i ≤ N (A.6)

Lagrange multipliers are defined for each constraint thusly. Each constraint
(A.3) is associated with a Lagrange multiplier βi ≥ 0, each constraint (A.4) with a
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240 Appendix A. DETAILED DERIVATIONS OF (PARTIAL) DUAL FORMS

Parameter Range Additional constraints Section

C <+ – All.
E <\<− For tube shrinking forms, E > 0 is a variable. All.
β <+ – A.5
χ {−1,+1} – A.8, A.9, A.10
ν <+ – A.8, A.9, A.10
K Mκ – All.

d : < → <+ C1 Must be convex, and d (0) = 0. A.6, A.9
d∗ : < → <+ C1 Must be convex, and d∗ (0) = 0. A.6, A.9
c : < → <+ C1 Must be convex, and c (0) = 0. A.9

t <+N – All.
t∗ <+N – All.

ε <N εi ∈
{ < if (xi, zi) ∈ Y≤ ∪Y≥
<\<− if (xi, zi) ∈ Y=

All.

For tube shrinking forms, sgn (ε) = χ1

ε∗ <N ε∗i ∈
{ < if (xi, zi) ∈ Y≤ ∪Y≥
<\<− if (xi, zi) ∈ Y=

All.

For tube shrinking forms, sgn (ε∗) = χ1

Table A.1: Training parameters used by various SVM formulations.
.

Lagrange multiplier β∗i ≤ 0, each constraint (A.5) with a Lagrange multiplier γ∗i ≥ 0
and each constraint (A.6) with a Lagrange multiplier γ∗i ≥ 0. By definition:

βi = 0∀1 ≤ i ≤ N : (xi, zi) /∈ Y≥
β∗i = 0∀1 ≤ i ≤ N : (xi, zi) /∈ Y≤

Hence the maximin form of (A.2) may be written:

min
w,b,ξ,ξ∗

max
β,β∗,γ ,γ∗

L1 = 1
2
wTw + C

N
tTξ + C

N
t∗Tξ∗ − γTξ − γ∗Tξ∗

−
N∑
i=1

βi
((

wTϕ (xi) + b
)− zi + Eεi + ξi

)

−
N∑
i=1

β∗i
((

wTϕ (xi) + b
)− zi − Eε∗i − ξ∗i

)
(A.7)

such that:

β ≥ 0

β∗ ≤ 0

γ ≥ 0

γ∗ ≥ 0

Note that for all 1 ≤ i ≤ N one of βi and β∗i must be zero. Hence it is possible
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to unambiguously define the vectors α and ε(∗) using:

αi =

{
βi if βi ≥ 0
β∗i if β∗i < 0

ε
(∗)
i =

{
εi if αi ≥ 0
ε∗i if α∗i < 0

Now:

∂L1

∂w
= w −

N∑
i=1

(βi + β∗i )ϕ (xi)

∂L1

∂ξ = C
N

t− γ − β
∂L1

∂ξ∗ = C
N

t∗ − γ∗ + β∗

must, for optimality, be zero. Hence:

w =
N∑
i=1

αiϕ (xi)

γ = C
N

t− β
γ∗ = C

N
t∗ + β∗

(A.8)

Substituting back into (A.7) (noting the constraints placed on the various mul-
tipliers) negating and expressing the result in terms of α, the partially dual form
may be derived, namely:

min
α

max
b
QL1 (α, b)= 1

2

[
b
α

]T
H

[
b
α

]
−
[
b
α

]T[
0
z

]
+E

∣∣∣∣
b
α

∣∣∣∣
T[

0
ε(∗)

]
(A.9)

such that:

−C
N
t∗i ≤ αi ≤ 0∀i : (xi, zi) ∈ Y≤

0 ≤ αi ≤ C
N
ti∀i : (xi, zi) ∈ Y≥

(A.10)

where:

H =

[
0 1T

1 K

]

and Ki,j = K (xi,xj).

To obtain the dual form, note that for optimality ∂L1

∂b
= 0, where it is trivial to

show that ∂L1

∂b
= 1Tα. Substituting into the partial dual (A.9), the dual form is

seen to be:
min
α

Q1 (α) = 1
2
αTKα−αTz + E|α|Tε(∗) (A.11)
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such that:

−C
N
t∗i ≤ αi ≤ 0∀i : (xi, zi) ∈ Y≤

0 ≤ αi ≤ C
N
ti∀i : (xi, zi) ∈ Y≥

1Tα = 0

In either case, the optimality conditions are:

αi ≤
{

C
N
ti if (xi, zi) ∈ Y≥

0 if (xi, zi) ∈ Y≤

αi ≥
{

0 if (xi, zi) ∈ Y≥
−C
N
t∗i if (xi, zi) ∈ Y≤

ei





≥ zi − Eεi if αi = 0 ∧ (xi, zi) ∈ Y≥
= zi − Eεi if 0 < αi <

C
N
ti

≤ zi − Eεi if αi = C
N
ti

≤ zi + Eε∗i if αi = 0 ∧ (xi, zi) ∈ Y≤
= zi + Eε∗i if − C

N
t∗i < αi < 0

≥ zi + Eε∗i if αi = −C
N
t∗i

f = 0

where: [
f
e

]
= H

[
b
α

]

A.2 Regression (section 4.4)

In this case, Y≥ = Y≤ = ∅. The primal form (4.20) is:

min
w,b,ξ,ξ∗

R1 (w, b, ξ, ξ∗) =
1

2
wTw +

C

N
tTξ +

C

N
t∗Tξ∗ (A.12)

such that:

wTϕ (xi) + b ≥ zi − Eεi − ξi∀1 ≤ i ≤ N : Eεi + Eε∗i > 0 (A.13)

wTϕ (xi) + b ≤ zi + Eε∗i + ξ∗i ∀1 ≤ i ≤ N : Eεi + Eε∗i > 0 (A.14)

wTϕ (xi) + b = zi − ξi + ξ∗i ∀1 ≤ i ≤ N : Eεi + Eε∗i = 0 (A.15)

ξi ≥ 0∀1 ≤ i ≤ N (A.16)

ξ∗i ≥ 0∀1 ≤ i ≤ N (A.17)

Lagrange multipliers are defined for each constraint thusly. Each constraint
(A.13) is associated with a Lagrange multiplier βi ≥ 0, each constraint (A.14) with
a Lagrange multiplier β∗i ≤ 0, each constraint (A.15) with a Lagrange multiplier
λi ∈ <, each constraint (A.16) with a Lagrange multiplier γ∗i ≥ 0 and each constraint
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(A.17) with a Lagrange multiplier γ∗i ≥ 0. By definition:

βi = 0∀1 ≤ i ≤ N : Eεi + Eε∗i = 0

β∗i = 0∀1 ≤ i ≤ N : Eεi + Eε∗i = 0

λi = 0∀1 ≤ i ≤ N : Eεi + Eε∗i > 0

Hence the maximin form of (A.12) may be written:

min
w,b,ξ,ξ∗

max
β,β∗,γ ,γ∗

L1 = 1
2
wTw + C

N
tTξ + C

N
t∗Tξ∗ − γTξ − γ∗Tξ∗

−
N∑
i=1

βi
((

wTϕ (xi) + b
)− zi + Eεi + ξi

)

−
N∑
i=1

β∗i
((

wTϕ (xi) + b
)− zi − Eε∗i − ξ∗i

)

−
N∑
i=1

λi
((

wTϕ (xi) + b
)− zi + ξi − ξ∗i

)

(A.18)

such that:

β ≥ 0

β∗ ≤ 0

γ ≥ 0

γ∗ ≥ 0

For any 1 ≤ i ≤ N where Eεi + Eε∗i > 0, only one of the constraints (A.13) and
(A.14) may be met exactly (i.e. left side equals right side). Hence at least one of
βi and β∗i must be zero for all such cases (and λi = 0 by definition). Otherwise, if
Eεi +Eε∗i = 0, both of βi and β∗i will be zero by definition. Hence for all 1 ≤ i ≤ N ,
only one of βi, β

∗
i and λi may be nonzero. Hence it is possible to unambiguously

define the vectors α and ε(∗) using:

αi =





βi if βi > 0
β∗i if β∗i < 0
λi otherwise

ε
(∗)
i =

{
εi if αi ≥ 0
ε∗i if α∗i < 0

Now:

∂L1

∂w
= w −

N∑
i=1

(βi + β∗i + λi)ϕ (xi)

∂L1

∂ξ = C
N

t− γ − β − λ
∂L1

∂ξ∗ = C
N

t∗ − γ∗ + β∗ + λ
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must, for optimality, be zero. Hence:

w =
N∑
i=1

αiϕ (xi)

γ = C
N

t− β − λ
γ∗ = C

N
t∗ + β∗ + λ

Substituting back into (A.18) (noting the constraints placed on the various mul-
tipliers) negating and expressing the result in terms of α, the partially dual form
may be derived, namely:

min
α

max
b
QL1 (α, b)= 1

2

[
b
α

]T
H

[
b
α

]
−
[
b
α

]T[
0
z

]
+E

∣∣∣∣
b
α

∣∣∣∣
T[

0
ε(∗)

]
(A.19)

such that:
− C

N
t∗ ≤ α ≤ C

N
t

where:

H =

[
0 1T

1 K

]

and Ki,j = K (xi,xj).

To obtain the dual form, note that for optimality ∂L1

∂b
= 0, where it is trivial to

show that ∂L1

∂b
= 1Tα. Substituting into the partial dual (A.19), the dual form is

seen to be:
min
α

Q1 (α) = 1
2
αTKα−αTz + E|α|Tε(∗) (A.20)

such that:

− C
N

t∗ ≤ α ≤ C
N

t

1Tα = 0

In either case, the optimality conditions are:

αi ≤ C
N
ti

αi ≥ −C
N
t∗i

ei





≥ zi − Eεi if αi = 0
= zi − Eεi if 0 < αi <

C
N
ti

≤ zi − Eεi if αi = C
N
ti

≤ zi + Eε∗i if αi = 0
= zi + Eε∗i if − C

N
t∗i < αi < 0

≥ zi + Eε∗i if αi = −C
N
t∗i

f = 0

where: [
f
e

]
= H

[
b
α

]
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A.3 Regression with inequalities (section 5.1)

The primal form (5.2) is:

min
w,b,ξ,ξ∗

R1 (w, b, ξ, ξ∗) =
1

2
wTw +

C

N
tTξ +

C

N
t∗Tξ∗ (A.21)

such that:

wTϕ (xi) + b ≥ zi − Eεi − ξi∀1 ≤ i ≤ N : (xi, zi) ∈ Y= ∧ Eεi + Eε∗i > 0 (A.22)

wTϕ (xi) + b ≤ zi + Eε∗i + ξ∗i ∀1 ≤ i ≤ N : (xi, zi) ∈ Y= ∧ Eεi + Eε∗i > 0 (A.23)

wTϕ (xi) + b = zi − ξi + ξ∗i ∀1 ≤ i ≤ N : (xi, zi) ∈ Y= ∧ Eεi + Eε∗i = 0 (A.24)

wTϕ (xi) + b ≥ zi − Eεi − ξi∀1 ≤ i ≤ N : (xi, zi) ∈ Y≥ (A.25)

wTϕ (xi) + b ≤ zi + Eε∗i + ξ∗i ∀1 ≤ i ≤ N : (xi, zi) ∈ Y≤ (A.26)

ξi ≥ 0∀1 ≤ i ≤ N (A.27)

ξ∗i ≥ 0∀1 ≤ i ≤ N (A.28)

Lagrange multipliers are defined for each constraint thusly. Each constraint
(A.22) or (A.25) is associated with a Lagrange multiplier βi ≥ 0 (noting that at
most one of these constraints will be relevant to each 1 ≤ i ≤ N), each constraint
(A.23) or (A.26) with a Lagrange multiplier β∗i ≤ 0 (noting that at most one of
these constraints will be relevant to each 1 ≤ i ≤ N), each constraint (A.24), with
a Lagrange multiplier λi ∈ <, each constraint (A.27) with a Lagrange multiplier
γ∗i ≥ 0 and each constraint (A.28) with a Lagrange multiplier γ∗i ≥ 0. By definition:

βi = 0∀1 ≤ i ≤ N : ((xi, zi) /∈ Y= ∨ Eεi + Eε∗i = 0) ∧ (xi, zi) /∈ Y≥
β∗i = 0∀1 ≤ i ≤ N : ((xi, zi) /∈ Y= ∨ Eεi + Eε∗i = 0) ∧ (xi, zi) /∈ Y≤
λi = 0∀1 ≤ i ≤ N : ((xi, zi) /∈ Y= ∨ Eεi + Eε∗i > 0)

Hence the maximin form of (A.21) may be written:

min
w,b,ξ,ξ∗

max
β,β∗,γ ,γ∗

L1 = 1
2
wTw + C

N
tTξ + C

N
t∗Tξ∗ − γTξ − γ∗Tξ∗

−
N∑
i=1

βi
((

wTϕ (xi) + b
)− zi + Eεi + ξi

)

−
N∑
i=1

β∗i
((

wTϕ (xi) + b
)− zi − Eε∗i − ξ∗i

)

−
N∑
i=1

λi
((

wTϕ (xi) + b
)− zi + ξi − ξ∗i

)

(A.29)

such that:

β ≥ 0

β∗ ≤ 0

γ ≥ 0

γ∗ ≥ 0
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For any (xi, zi) ∈ Y= where Eεi + Eε∗i > 0, only one of the constraints (A.22)
and (A.23) may be met exactly (i.e. left side equals right side). Hence at least
one of βi and β∗i must be zero for all such cases (and λi = 0 by definition). This
result also holds (by definition) for the case (xi, zi) /∈ Y=. For (xi, zi) ∈ Y= where
Eεi +Eε∗i = 0, both of βi and β∗i will be zero by definition. Hence for all 1 ≤ i ≤ N ,
only one of βi, β

∗
i and λi may be nonzero. Hence it is possible to unambiguously

define the vectors α and ε(∗) using:

αi =





βi if βi > 0
β∗i if β∗i < 0
λi otherwise

ε
(∗)
i =

{
εi if αi ≥ 0
ε∗i if α∗i < 0

Now:

∂L1

∂w
= w −

N∑
i=1

(βi + β∗i + λi)ϕ (xi)

∂L1

∂ξ = C
N

t− γ − β − λ
∂L1

∂ξ∗ = C
N

t∗ − γ∗ + β∗ + λ

must, for optimality, be zero. Hence:

w =
N∑
i=1

αiϕ (xi)

γ = C
N

t− β − λ
γ∗ = C

N
t∗ + β∗ + λ

Substituting back into (A.29) (noting the constraints placed on the various mul-
tipliers) negating and expressing the result in terms of α, the partially dual form
may be derived, namely:

min
α

max
b
QL1 (α, b)= 1

2

[
b
α

]T
H

[
b
α

]
−
[
b
α

]T[
0
z

]
+E

∣∣∣∣
b
α

∣∣∣∣
T[

0
ε(∗)

]
(A.30)

such that:

−C
N
t∗i ≤ αi ≤ 0∀i : (xi, zi) ∈ Y≤

0 ≤ αi ≤ C
N
ti∀i : (xi, zi) ∈ Y≥

−C
N
t∗i ≤ αi ≤ C

N
ti∀i : (xi, zi) ∈ Y=

where:

H =

[
0 1T

1 K

]

and Ki,j = K (xi,xj).
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To obtain the dual form, note that for optimality ∂L1

∂b
= 0, where it is trivial to

show that ∂L1

∂b
= 1Tα. Substituting into the partial dual (A.30), the dual form is

seen to be:
min
α

Q1 (α) = 1
2
αTKα−αTz + E|α|Tε(∗) (A.31)

such that:

−C
N
t∗i ≤ αi ≤ 0∀i : (xi, zi) ∈ Y≤

0 ≤ αi ≤ C
N
ti∀i : (xi, zi) ∈ Y≥

−C
N
t∗i ≤ αi ≤ C

N
ti∀i : (xi, zi) ∈ Y=

1Tα = 0

In either case, the optimality conditions are:

αi ≤
{

C
N
ti if (xi, zi) ∈ Y= ∪Y≥

0 if (xi, zi) ∈ Y≤

αi ≥
{

0 if (xi, zi) ∈ Y≥
−C
N
t∗i if (xi, zi) ∈ Y= ∪Y≤

ei





≥ zi − Eεi if αi = 0 ∧ (xi, zi) ∈ Y= ∪Y≥
= zi − Eεi if 0 < αi <

C
N
ti

≤ zi − Eεi if αi = C
N
ti

≤ zi + Eε∗i if αi = 0 ∧ (xi, zi) ∈ Y= ∪Y≤
= zi + Eε∗i if − C

N
t∗i < αi < 0

≥ zi + Eε∗i if αi = −C
N
t∗i

f = 0

where: [
f
e

]
= H

[
b
α

]

A.4 Fixed Bias SVM (section 5.2)

The primal form (5.8) is:

min
w,ξ,ξ∗

R1 (w, ξ, ξ∗) =
1

2
wTw +

C

N
tTξ +

C

N
t∗Tξ∗ (A.32)

such that:

wTϕ (xi) + b ≥ zi − Eεi − ξi∀1 ≤ i ≤ N : (xi, zi) ∈ Y= ∧ Eεi + Eε∗i > 0 (A.33)

wTϕ (xi) + b ≤ zi + Eε∗i + ξ∗i ∀1 ≤ i ≤ N : (xi, zi) ∈ Y= ∧ Eεi + Eε∗i > 0 (A.34)

wTϕ (xi) + b = zi − ξi + ξ∗i ∀1 ≤ i ≤ N : (xi, zi) ∈ Y= ∧ Eεi + Eε∗i = 0 (A.35)

wTϕ (xi) + b ≥ zi − Eεi − ξi∀1 ≤ i ≤ N : (xi, zi) ∈ Y≥ (A.36)

wTϕ (xi) + b ≤ zi + Eε∗i + ξ∗i ∀1 ≤ i ≤ N : (xi, zi) ∈ Y≤ (A.37)

ξi ≥ 0∀1 ≤ i ≤ N (A.38)

ξ∗i ≥ 0∀1 ≤ i ≤ N (A.39)
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Lagrange multipliers are defined for each constraint thusly. Each constraint
(A.33) or (A.36) is associated with a Lagrange multiplier βi ≥ 0 (noting that at
most one of these constraints will be relevant to each 1 ≤ i ≤ N), each constraint
(A.34) or (A.37) with a Lagrange multiplier β∗i ≤ 0 (noting that at most one of
these constraints will be relevant to each 1 ≤ i ≤ N), each constraint (A.35), with
a Lagrange multiplier λi ∈ <, each constraint (A.38) with a Lagrange multiplier
γ∗i ≥ 0 and each constraint (A.39) with a Lagrange multiplier γ∗i ≥ 0. By definition:

βi = 0∀1 ≤ i ≤ N : ((xi, zi) /∈ Y= ∨ Eεi + Eε∗i = 0) ∧ (xi, zi) /∈ Y≥
β∗i = 0∀1 ≤ i ≤ N : ((xi, zi) /∈ Y= ∨ Eεi + Eε∗i = 0) ∧ (xi, zi) /∈ Y≤
λi = 0∀1 ≤ i ≤ N : ((xi, zi) /∈ Y= ∨ Eεi + Eε∗i > 0)

Hence the maximin form of (A.32) may be written:

min
w,ξ,ξ∗

max
β,β∗,γ ,γ∗

L1 = 1
2
wTw + C

N
tTξ + C

N
t∗Tξ∗ − γTξ − γ∗Tξ∗

−
N∑
i=1

βi
((

wTϕ (xi) + b
)− zi + Eεi + ξi

)

−
N∑
i=1

β∗i
((

wTϕ (xi) + b
)− zi − Eε∗i − ξ∗i

)

−
N∑
i=1

λi
((

wTϕ (xi) + b
)− zi + ξi − ξ∗i

)

(A.40)

such that:

β ≥ 0

β∗ ≤ 0

γ ≥ 0

γ∗ ≥ 0

For any (xi, zi) ∈ Y= where Eεi + Eε∗i > 0, only one of the constraints (A.33)
and (A.34) may be met exactly (i.e. left side equals right side). Hence at least
one of βi and β∗i must be zero for all such cases (and λi = 0 by definition). This
result also holds (by definition) for the case (xi, zi) /∈ Y=. For (xi, zi) ∈ Y= where
Eεi +Eε∗i = 0, both of βi and β∗i will be zero by definition. Hence for all 1 ≤ i ≤ N ,
only one of βi, β

∗
i and λi may be nonzero. Hence it is possible to unambiguously

define the vectors α and ε(∗) using:

αi =





βi if βi > 0
β∗i if β∗i < 0
λi otherwise

ε
(∗)
i =

{
εi if αi ≥ 0
ε∗i if α∗i < 0
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Now:

∂L1

∂w
= w −

N∑
i=1

(βi + β∗i + λi)ϕ (xi)

∂L1

∂ξ = C
N

t− γ − β − λ
∂L1

∂ξ∗ = C
N

t∗ − γ∗ + β∗ + λ

must, for optimality, be zero. Hence:

w =
N∑
i=1

αiϕ (xi)

γ = C
N

t− β − λ
γ∗ = C

N
t∗ + β∗ + λ

Substituting back into (A.40) (noting the constraints placed on the various mul-
tipliers) negating and expressing the result in terms of α, the dual form may be
derived, namely:

min
α

Q1 (α) = 1
2
αTKα+αT1b−αTz + E|α|Tε(∗) (A.41)

such that:

−C
N
t∗i ≤ αi ≤ 0∀i : (xi, zi) ∈ Y≤

0 ≤ αi ≤ C
N
ti∀i : (xi, zi) ∈ Y≥

−C
N
t∗i ≤ αi ≤ C

N
ti∀i : (xi, zi) ∈ Y=

(A.42)

where Ki,j = K (xi,xj).

The optimality conditions are:

αi ≤
{

C
N
ti if (xi, zi) ∈ Y= ∪Y≥

0 if (xi, zi) ∈ Y≤

αi ≥
{

0 if (xi, zi) ∈ Y≥
−C
N
t∗i if (xi, zi) ∈ Y= ∪Y≤

ei





≥ zi − Eεi if αi = 0 ∧ (xi, zi) ∈ Y= ∪Y≥
= zi − Eεi if 0 < αi <

C
N
ti

≤ zi − Eεi if αi = C
N
ti

≤ zi + Eε∗i if αi = 0 ∧ (xi, zi) ∈ Y= ∪Y≤
= zi + Eε∗i if − C

N
t∗i < αi < 0

≥ zi + Eε∗i if αi = −C
N
t∗i

where:
e = Kα+ 1b



250 Appendix A. DETAILED DERIVATIONS OF (PARTIAL) DUAL FORMS

A.5 Automatically Biased SVM (section 5.3)

The primal form (5.12) is:

min
w,b,ξ,ξ∗

R1 (w, b, ξ, ξ∗) =
1

2
wTw +

β

2
b2 +

C

N
tTξ +

C

N
t∗Tξ∗ (A.43)

such that:

wTϕ (xi) + b ≥ zi − Eεi − ξi∀1 ≤ i ≤ N : (xi, zi) ∈ Y= ∧ Eεi + Eε∗i > 0 (A.44)

wTϕ (xi) + b ≤ zi + Eε∗i + ξ∗i ∀1 ≤ i ≤ N : (xi, zi) ∈ Y= ∧ Eεi + Eε∗i > 0 (A.45)

wTϕ (xi) + b = zi − ξi + ξ∗i ∀1 ≤ i ≤ N : (xi, zi) ∈ Y= ∧ Eεi + Eε∗i = 0 (A.46)

wTϕ (xi) + b ≥ zi − Eεi − ξi∀1 ≤ i ≤ N : (xi, zi) ∈ Y≥ (A.47)

wTϕ (xi) + b ≤ zi + Eε∗i + ξ∗i ∀1 ≤ i ≤ N : (xi, zi) ∈ Y≤ (A.48)

ξi ≥ 0∀1 ≤ i ≤ N (A.49)

ξ∗i ≥ 0∀1 ≤ i ≤ N (A.50)

Lagrange multipliers are defined for each constraint thusly. Each constraint
(A.44) or (A.47) is associated with a Lagrange multiplier βi ≥ 0 (noting that at
most one of these constraints will be relevant to each 1 ≤ i ≤ N), each constraint
(A.45) or (A.48) with a Lagrange multiplier β∗i ≤ 0 (noting that at most one of
these constraints will be relevant to each 1 ≤ i ≤ N), each constraint (A.46), with
a Lagrange multiplier λi ∈ <, each constraint (A.49) with a Lagrange multiplier
γ∗i ≥ 0 and each constraint (A.50) with a Lagrange multiplier γ∗i ≥ 0. By definition:

βi = 0∀1 ≤ i ≤ N : ((xi, zi) /∈ Y= ∨ Eεi + Eε∗i = 0) ∧ (xi, zi) /∈ Y≥
β∗i = 0∀1 ≤ i ≤ N : ((xi, zi) /∈ Y= ∨ Eεi + Eε∗i = 0) ∧ (xi, zi) /∈ Y≤
λi = 0∀1 ≤ i ≤ N : ((xi, zi) /∈ Y= ∨ Eεi + Eε∗i > 0)

Hence the maximin form of (A.43) may be written:

min
w,b,ξ,ξ∗

max
β,β∗,γ ,γ∗

L1 = 1
2
wTw + β

2
b2 + C

N
tTξ + C

N
t∗Tξ∗ − γTξ − γ∗Tξ∗

−
N∑
i=1

βi
((

wTϕ (xi) + b
)− zi + Eεi + ξi

)

−
N∑
i=1

β∗i
((

wTϕ (xi) + b
)− zi − Eε∗i − ξ∗i

)

−
N∑
i=1

λi
((

wTϕ (xi) + b
)− zi + ξi − ξ∗i

)

(A.51)

such that:

β ≥ 0

β∗ ≤ 0

γ ≥ 0

γ∗ ≥ 0
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For any (xi, zi) ∈ Y= where Eεi + Eε∗i > 0, only one of the constraints (A.44)
and (A.45) may be met exactly (i.e. left side equals right side). Hence at least
one of βi and β∗i must be zero for all such cases (and λi = 0 by definition). This
result also holds (by definition) for the case (xi, zi) /∈ Y=. For (xi, zi) ∈ Y= where
Eεi +Eε∗i = 0, both of βi and β∗i will be zero by definition. Hence for all 1 ≤ i ≤ N ,
only one of βi, β

∗
i and λi may be nonzero. Hence it is possible to unambiguously

define the vectors α and ε(∗) using:

αi =





βi if βi > 0
β∗i if β∗i < 0
λi otherwise

ε
(∗)
i =

{
εi if αi ≥ 0
ε∗i if α∗i < 0

Now:

∂L1

∂w
= w −

N∑
i=1

(βi + β∗i + λi)ϕ (xi)

∂L1

∂b
= βb−

N∑
i=1

(βi + β∗i + λi)

∂L1

∂ξ = C
N

t− γ − β − λ
∂L1

∂ξ∗ = C
N

t∗ − γ∗ + β∗ + λ

must, for optimality, be zero. Hence:

w =
N∑
i=1

αiϕ (xi)

b = 1
β
1Tα

γ = C
N

t− β − λ
γ∗ = C

N
t∗ + β∗ + λ

Substituting back into (A.51) (noting the constraints placed on the various mul-
tipliers) negating and expressing the result in terms of α, the dual form may be
derived, namely:

min
α

Q1 (α) = 1
2
αT
(
K + 1

β
11T

)
α−αTz + E|α|Tε(∗) (A.52)

such that:

−C
N
t∗i ≤ αi ≤ 0∀i : (xi, zi) ∈ Y≤

0 ≤ αi ≤ C
N
ti∀i : (xi, zi) ∈ Y≥

−C
N
t∗i ≤ αi ≤ C

N
ti∀i : (xi, zi) ∈ Y=

(A.53)
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where Ki,j = K (xi,xj).

The optimality conditions are:

αi ≤
{

C
N
ti if (xi, zi) ∈ Y= ∪Y≥

0 if (xi, zi) ∈ Y≤

αi ≥
{

0 if (xi, zi) ∈ Y≥
−C
N
t∗i if (xi, zi) ∈ Y= ∪Y≤

ei





≥ zi − Eεi if αi = 0 ∧ (xi, zi) ∈ Y= ∪Y≥
= zi − Eεi if 0 < αi <

C
N
ti

≤ zi − Eεi if αi = C
N
ti

≤ zi + Eε∗i if αi = 0 ∧ (xi, zi) ∈ Y= ∪Y≤
= zi + Eε∗i if − C

N
t∗i < αi < 0

≥ zi + Eε∗i if αi = −C
N
t∗i

where:

e = Kα+ 1b

b = 1Tα

A.6 General Convex Cost Functions (section 5.4.1)

The primal form (5.19) is:

min
w,b,ξ,ξ∗

dRd∗ (w, b, ξ, ξ∗) =
1

2
wTw +

C

N

N∑
i=1

tid (ξi) +
C

N

N∑
i=1

t∗i d
∗ (ξ∗i ) (A.54)

such that:

wTϕ (xi) + b ≥ zi − Eεi − ξi∀1 ≤ i ≤ N : (xi, zi) ∈ Y= ∧ Eεi + Eε∗i > 0 (A.55)

wTϕ (xi) + b ≤ zi + Eε∗i + ξ∗i ∀1 ≤ i ≤ N : (xi, zi) ∈ Y= ∧ Eεi + Eε∗i > 0 (A.56)

wTϕ (xi) + b = zi − ξi + ξ∗i ∀1 ≤ i ≤ N : (xi, zi) ∈ Y= ∧ Eεi + Eε∗i = 0 (A.57)

wTϕ (xi) + b ≥ zi − Eεi − ξi∀1 ≤ i ≤ N : (xi, zi) ∈ Y≥ (A.58)

wTϕ (xi) + b ≤ zi + Eε∗i + ξ∗i ∀1 ≤ i ≤ N : (xi, zi) ∈ Y≤ (A.59)

ξi ≥ 0∀1 ≤ i ≤ N (A.60)

ξ∗i ≥ 0∀1 ≤ i ≤ N (A.61)

Lagrange multipliers are defined for each constraint thusly. Each constraint
(A.55) or (A.58) is associated with a Lagrange multiplier βi ≥ 0 (noting that at
most one of these constraints will be relevant to each 1 ≤ i ≤ N), each constraint
(A.56) or (A.59) with a Lagrange multiplier β∗i ≤ 0 (noting that at most one of
these constraints will be relevant to each 1 ≤ i ≤ N), each constraint (A.57), with
a Lagrange multiplier λi ∈ <, each constraint (A.60) with a Lagrange multiplier
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γ∗i ≥ 0 and each constraint (A.61) with a Lagrange multiplier γ∗i ≥ 0. By definition:

βi = 0∀1 ≤ i ≤ N : ((xi, zi) /∈ Y= ∨ Eεi + Eε∗i = 0) ∧ (xi, zi) /∈ Y≥
β∗i = 0∀1 ≤ i ≤ N : ((xi, zi) /∈ Y= ∨ Eεi + Eε∗i = 0) ∧ (xi, zi) /∈ Y≤
λi = 0∀1 ≤ i ≤ N : ((xi, zi) /∈ Y= ∨ Eεi + Eε∗i > 0)

Hence the maximin form of (A.54) may be written:

min
w,b,ξ,ξ∗

max
β,β∗,γ ,γ∗

dLd∗ = 1
2
wTw + C

N

N∑
i=1

tid (ξi) + C
N

N∑
i=1

t∗i d
∗ (ξ∗i )− γTξ − γ∗Tξ∗

−
N∑
i=1

βi
((

wTϕ (xi) + b
)− zi + Eεi + ξi

)

−
N∑
i=1

β∗i
((

wTϕ (xi) + b
)− zi − Eε∗i − ξ∗i

)

−
N∑
i=1

λi
((

wTϕ (xi) + b
)− zi + ξi − ξ∗i

)

(A.62)
such that:

β ≥ 0

β∗ ≤ 0

γ ≥ 0

γ∗ ≥ 0

For any (xi, zi) ∈ Y= where Eεi + Eε∗i > 0, only one of the constraints (A.55)
and (A.56) may be met exactly (i.e. left side equals right side). Hence at least
one of βi and β∗i must be zero for all such cases (and λi = 0 by definition). This
result also holds (by definition) for the case (xi, zi) /∈ Y=. For (xi, zi) ∈ Y= where
Eεi +Eε∗i = 0, both of βi and β∗i will be zero by definition. Hence for all 1 ≤ i ≤ N ,
only one of βi, β

∗
i and λi may be nonzero. Hence it is possible to unambiguously

define the vectors α and ε(∗) using:

αi =





βi if βi > 0
β∗i if β∗i < 0
λi otherwise

ε
(∗)
i =

{
εi if αi ≥ 0
ε∗i if α∗i < 0

Now:

∂dLd∗
∂w

= w −
N∑
i=1

(βi + β∗i + λi)ϕ (xi)

∂dLd∗
∂ξi

= C
N
ti
∂d
∂ξ

(ξi)− γi − (βi + λi)

∂dLd∗
∂ξ∗i

= C
N
t∗i
∂d∗
∂ξ∗ (ξ∗i )− γ∗i + (β∗i + λi)
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must, for optimality, be zero. Hence:

w =
N∑
i=1

αiϕ (xi)

γi = C
N
ti
∂d
∂ξ

(ξi)− (βi + λi)

γ∗i = C
N
t∗i
∂d∗
∂ξ∗ (ξ∗i ) + (β∗i + λi)

Substituting back into (A.62) (noting the constraints placed on the various mul-
tipliers) negating and expressing the result in terms of α, the partially dual form
may be derived, namely:

min
α

max
b

dQLd∗ (α, b) = 1
2

[
b
α

]T
H

[
b
α

]
−
[
b
α

]T[
0
z

]
+E

∣∣∣∣
b
α

∣∣∣∣
T[

0
ε(∗)

]

−C
N

N∑
i=1

tiT (ξi)− C
N

N∑
i=1

t∗iT
∗ (ξ∗i )

(A.63)

such that:

αi ≤ 0∀i : (xi, zi) ∈ Y≤
αi ≥ 0∀i : (xi, zi) ∈ Y≥

(A.64)

where:

H =

[
0 1T

1 K

]

ξi =

{
inf
{
ξ| C

N
ti
∂d
∂ξ

(ξ) > |αi|
}

if αi > 0

0 if αi ≤ 0

ξ∗i =

{
0 if αi ≥ 0

inf
{
ξ∗| C

N
t∗i
∂d∗
∂ξ∗ (ξ∗) > |αi|

}
if αi < 0

T (ξ) = d (ξ)− ξ ∂d
∂ξ

(ξ)

T ∗ (ξ∗) = d∗ (ξ∗)− ξ∗ ∂d∗
∂ξ∗ (ξ∗)

and Ki,j = K (xi,xj).

To obtain the dual form, note that for optimality ∂dLd∗
∂b

= 0, where it is trivial to

show that ∂dLd∗
∂b

= 1Tα. Substituting into the partial dual (A.63), the dual form is
seen to be:

min
α dQd∗ (α)= 1

2
αTKα−αTz+E|α|Tε(∗)− C

N

N∑
i=1

tiT (ξi)− C
N

N∑
i=1

t∗iT
∗ (ξ∗i ) (A.65)
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such that:

αi ≤ 0∀i : (xi, zi) ∈ Y≤
αi ≥ 0∀i : (xi, zi) ∈ Y≥
1Tα = 0

The optimality conditions are not simple in this case.

A.7 Quadric Cost Functions (section 5.4.2)

The primal form (5.23) is:

min
w,b,ξ,ξ∗

R2 (w, b, ξ, ξ∗) =
1

2
wTw +

C

2N

N∑
i=1

tiξ
2
i +

C

2N

N∑
i=1

t∗i ξ
∗
i

2 (A.66)

such that:

wTϕ (xi) + b ≥ zi − Eεi − ξi∀1 ≤ i ≤ N : (xi, zi) ∈ Y= ∧ Eεi + Eε∗i > 0 (A.67)

wTϕ (xi) + b ≤ zi + Eε∗i + ξ∗i ∀1 ≤ i ≤ N : (xi, zi) ∈ Y= ∧ Eεi + Eε∗i > 0 (A.68)

wTϕ (xi) + b = zi − ξi + ξ∗i ∀1 ≤ i ≤ N : (xi, zi) ∈ Y= ∧ Eεi + Eε∗i = 0 (A.69)

wTϕ (xi) + b ≥ zi − Eεi − ξi∀1 ≤ i ≤ N : (xi, zi) ∈ Y≥ (A.70)

wTϕ (xi) + b ≤ zi + Eε∗i + ξ∗i ∀1 ≤ i ≤ N : (xi, zi) ∈ Y≤ (A.71)

Lagrange multipliers are defined for each constraint thusly. Each constraint
(A.67) or (A.70) is associated with a Lagrange multiplier βi ≥ 0 (noting that at
most one of these constraints will be relevant to each 1 ≤ i ≤ N), each constraint
(A.68) or (A.71) with a Lagrange multiplier β∗i ≤ 0 (noting that at most one of
these constraints will be relevant to each 1 ≤ i ≤ N), each constraint (A.69), with
a Lagrange multiplier λi ∈ <. By definition:

βi = 0∀1 ≤ i ≤ N : ((xi, zi) /∈ Y= ∨ Eεi + Eε∗i = 0) ∧ (xi, zi) /∈ Y≥
β∗i = 0∀1 ≤ i ≤ N : ((xi, zi) /∈ Y= ∨ Eεi + Eε∗i = 0) ∧ (xi, zi) /∈ Y≤
λi = 0∀1 ≤ i ≤ N : ((xi, zi) /∈ Y= ∨ Eεi + Eε∗i > 0)

Hence the maximin form of (A.66) may be written:

min
w,b,ξ,ξ∗

max
β,β∗

L2 = 1
2
wTw + C

2N

N∑
i=1

tiξ
2
i + C

2N

N∑
i=1

t∗i ξ
∗
i

2

−
N∑
i=1

βi
((

wTϕ (xi) + b
)− zi + Eεi + ξi

)

−
N∑
i=1

β∗i
((

wTϕ (xi) + b
)− zi − Eε∗i − ξ∗i

)

−
N∑
i=1

λi
((

wTϕ (xi) + b
)− zi + ξi − ξ∗i

)

(A.72)
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such that:

β ≥ 0

β∗ ≤ 0

(A.73)

For any (xi, zi) ∈ Y= where Eεi + Eε∗i > 0, only one of the constraints (A.67)
and (A.68) may be met exactly (i.e. left side equals right side). Hence at least
one of βi and β∗i must be zero for all such cases (and λi = 0 by definition). This
result also holds (by definition) for the case (xi, zi) /∈ Y=. For (xi, zi) ∈ Y= where
Eεi +Eε∗i = 0, both of βi and β∗i will be zero by definition. Hence for all 1 ≤ i ≤ N ,
only one of βi, β

∗
i and λi may be nonzero. Hence it is possible to unambiguously

define the vectors α and ε(∗) using:

αi =





βi if βi > 0
β∗i if β∗i < 0
λi otherwise

ε
(∗)
i =

{
εi if αi ≥ 0
ε∗i if α∗i < 0

Now:

∂L2

∂w
= w −

N∑
i=1

(βi + β∗i + λi)ϕ (xi)

∂L2

∂ξi
= C

N
tiξi − βi − λi

∂L2

∂ξ∗i
= C

N
t∗i ξ
∗
i − β∗i + λi

must, for optimality, be zero. Hence:

w =
N∑
i=1

αiϕ (xi)

ξi = max
(

0, N
Cti
αi

)

ξ∗i = max
(

0,− N
Ct∗i
αi

)

Substituting back into (A.72) (noting the constraints placed on the various mul-
tipliers) negating and expressing the result in terms of α, the partially dual form
may be derived, namely:

min
α

max
b
QL2 (α, b)= 1

2

[
b
α

]T
Ĥ

[
b
α

]
−
[
b
α

]T[
0
z

]
+E

∣∣∣∣
b
α

∣∣∣∣
T[

0
ε(∗)

]
(A.74)
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such that:

αi ≤ 0∀i : (xi, zi) ∈ Y≤
αi ≥ 0∀i : (xi, zi) ∈ Y≥

(A.75)

where:

Ĥ = H +

[
0 0T

0 D(∗)

]

H =

[
0 1T

1 K

]

D
(∗)
i,j = δij

N

Ct
(∗)
i

and Ki,j = K (xi,xj).

To obtain the dual form, note that for optimality ∂L2

∂b
= 0, where it is trivial to

show that ∂L2

∂b
= 1Tα. Substituting into the partial dual (A.74), the dual form is

seen to be:

min
α

Q2 (α) = 1
2
αT
(
K + D(∗))α−αTz + E|α|Tε(∗) (A.76)

such that:

αi ≤ 0∀i : (xi, zi) ∈ Y≤
αi ≥ 0∀i : (xi, zi) ∈ Y≥
1Tα = 0

In either case, the optimality conditions are:

αi ≤
{ ∞ if (xi, zi) ∈ Y= ∪Y≥

0 if (xi, zi) ∈ Y≤

αi ≥
{

0 if (xi, zi) ∈ Y≥
−∞ if (xi, zi) ∈ Y= ∪Y≤

ei





≥ zi − Eεi if αi = 0 ∧ (xi, zi) ∈ Y= ∪Y≥
= zi − Eεi if αi > 0
≤ zi + Eε∗i if αi = 0 ∧ (xi, zi) ∈ Y= ∪Y≤
= zi + Eε∗i if αi < 0

f = 0

where: [
f
e

]
= Ĥ

[
b
α

]
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A.8 Linear Tube Shrinking (section 5.5)

The primal form (5.28) is:

min
w,b,ξ,ξ∗,E

R1,1 (w, b, ξ, ξ∗, E) =
1

2
wTw + χCνE +

C

N
tTξ +

C

N
t∗Tξ∗ (A.77)

such that:

wTϕ (xi) + b ≥ zi − Eεi − ξi∀1 ≤ i ≤ N : (xi, zi) ∈ Y= ∧ Eεi + Eε∗i > 0 (A.78)

wTϕ (xi) + b ≤ zi + Eε∗i + ξ∗i ∀1 ≤ i ≤ N : (xi, zi) ∈ Y= ∧ Eεi + Eε∗i > 0 (A.79)

wTϕ (xi) + b = zi − ξi + ξ∗i ∀1 ≤ i ≤ N : (xi, zi) ∈ Y= ∧ Eεi + Eε∗i = 0 (A.80)

wTϕ (xi) + b ≥ zi − Eεi − ξi∀1 ≤ i ≤ N : (xi, zi) ∈ Y≥ (A.81)

wTϕ (xi) + b ≤ zi + Eε∗i + ξ∗i ∀1 ≤ i ≤ N : (xi, zi) ∈ Y≤ (A.82)

ξi ≥ 0∀1 ≤ i ≤ N (A.83)

ξ∗i ≥ 0∀1 ≤ i ≤ N (A.84)

E > 0 (A.85)

Lagrange multipliers are defined for each constraint thusly. Each constraint
(A.78) or (A.81) is associated with a Lagrange multiplier βi ≥ 0 (noting that at
most one of these constraints will be relevant to each 1 ≤ i ≤ N), each constraint
(A.79) or (A.82) with a Lagrange multiplier β∗i ≤ 0 (noting that at most one of
these constraints will be relevant to each 1 ≤ i ≤ N), each constraint (A.80), with
a Lagrange multiplier λi ∈ <, each constraint (A.83) with a Lagrange multiplier
γ∗i ≥ 0, each constraint (A.84) with a Lagrange multiplier γ∗i ≥ 0 and constraint
(A.85) with a Lagrange multiplier ρ ≥ 0. By definition:

βi = 0∀1 ≤ i ≤ N : ((xi, zi) /∈ Y= ∨ Eεi + Eε∗i = 0) ∧ (xi, zi) /∈ Y≥
β∗i = 0∀1 ≤ i ≤ N : ((xi, zi) /∈ Y= ∨ Eεi + Eε∗i = 0) ∧ (xi, zi) /∈ Y≤
λi = 0∀1 ≤ i ≤ N : ((xi, zi) /∈ Y= ∨ Eεi + Eε∗i > 0)

Hence the maximin form of (A.77) may be written:

min
w,b,ξ,ξ∗,E

max
β,β∗,γ ,γ∗,ρ

L1,1 = 1
2
wTw + χCνE + C

N
tTξ + C

N
t∗Tξ∗ − γTξ − γ∗Tξ∗

−
N∑
i=1

βi
((

wTϕ (xi) + b
)− zi + Eεi + ξi

)

−
N∑
i=1

β∗i
((

wTϕ (xi) + b
)− zi − Eε∗i − ξ∗i

)

−
N∑
i=1

λi
((

wTϕ (xi) + b
)− zi + ξi − ξ∗i

)

−ρE
(A.86)
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such that:

β ≥ 0

β∗ ≤ 0

γ ≥ 0

γ∗ ≥ 0

ρ ≥ 0

E 6= 0

For any (xi, zi) ∈ Y= where Eεi + Eε∗i > 0, only one of the constraints (A.78)
and (A.79) may be met exactly (i.e. left side equals right side). Hence at least
one of βi and β∗i must be zero for all such cases (and λi = 0 by definition). This
result also holds (by definition) for the case (xi, zi) /∈ Y=. For (xi, zi) ∈ Y= where
Eεi +Eε∗i = 0, both of βi and β∗i will be zero by definition. Hence for all 1 ≤ i ≤ N ,
only one of βi, β

∗
i and λi may be nonzero. Hence it is possible to unambiguously

define the vectors α and ε(∗) using:

αi =





βi if βi > 0
β∗i if β∗i < 0
λi otherwise

ε
(∗)
i =

{
εi if αi ≥ 0
ε∗i if α∗i < 0

Now:

∂L1,1

∂w
= w −

N∑
i=1

(βi + β∗i + λi)ϕ (xi)

∂L1,1

∂ξ = C
N

t− γ − β − λ
∂L1,1

∂ξ∗ = C
N

t∗ − γ∗ + β∗ + λ

must, for optimality, be zero. Hence:

w =
N∑
i=1

αiϕ (xi)

γ = C
N

t− β − λ
γ∗ = C

N
t∗ + β∗ + λ

As noted in section 5.5, ρ = 0 due to the constraint E > 0 (rather than E ≥ 0).
Hence:

∂L1,1

∂E
= 0

⇒
∣∣ε(∗)∣∣T |α| = Cν − χρ = Cν

Substituting back into (A.86) (noting the constraints placed on the various mul-
tipliers) negating and expressing the result in terms of α, the partially dual form
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may be derived, namely:

min
α

max
b,E

QL1,1 (α, b, E)= 1
2



E
b
α



T

H̄



E
b
α


−


E
b
α



T

Cν
0
z


 (A.87)

such that:

−C
N
t∗i ≤ αi ≤ 0∀i : (xi, zi) ∈ Y≤

0 ≤ αi ≤ C
N
ti∀i : (xi, zi) ∈ Y≥

−C
N
t∗i ≤ αi ≤ C

N
ti∀i : (xi, zi) ∈ Y=

where:

H̄ =




0 0
(∣∣ε(∗)∣∣ sgn (α)

)T
0 0 1T(∣∣ε(∗)∣∣ sgn (α)

)
1 K




and Ki,j = K (xi,xj).

To obtain the dual form, note that for optimality ∂L1,1

∂b
= 0, where it is trivial to

show that ∂L1,1

∂b
= 1Tα, and similarly ∂L1,1

∂E
=
∣∣ε(∗)∣∣T |α| −Cν = 0. Substituting into

the partial dual (A.87), the dual form is seen to be:

min
α

Q1,1 (α) = 1
2
αTKα−αTz (A.88)

such that:

−C
N
t∗i ≤ αi ≤ 0∀i : (xi, zi) ∈ Y≤

0 ≤ αi ≤ C
N
ti∀i : (xi, zi) ∈ Y≥

−C
N
t∗i ≤ αi ≤ C

N
ti∀i : (xi, zi) ∈ Y=

1Tα = 0
∣∣ε(∗)∣∣T |α| = Cν

In either case, the optimality conditions are:

αi ≤
{

C
N
ti if (xi, zi) ∈ Y= ∪Y≥

0 if (xi, zi) ∈ Y≤

αi ≥
{

0 if (xi, zi) ∈ Y≥
−C
N
t∗i if (xi, zi) ∈ Y= ∪Y≤

ei





≥ zi if αi = 0 ∧ (xi, zi) ∈ Y= ∪Y≥
= zi if 0 < αi <

C
N
ti

≤ zi if αi = C
N
ti

≤ zi if αi = 0 ∧ (xi, zi) ∈ Y= ∪Y≤
= zi if − C

N
t∗i < αi < 0

≥ zi if αi = −C
N
t∗i

f = 0
g = Cν
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where: 

g
f
e


 = H̄



E
b
α




A.9 Generalised Tube Shrinking (section 5.5.1)

The primal form (5.34) is:

min
w,b,ξ,ξ∗,E

dRd∗,c (w, b, ξ, ξ∗, E) =
1

2
wTw+χCνc (E)+

C

N

N∑
i=1

tid (ξi)+
C

N

N∑
i=1

t∗i d
∗ (ξ∗i )

(A.89)
such that:

wTϕ (xi) + b ≥ zi − Eεi − ξi∀1 ≤ i ≤ N : (xi, zi) ∈ Y= ∧ Eεi + Eε∗i > 0 (A.90)

wTϕ (xi) + b ≤ zi + Eε∗i + ξ∗i ∀1 ≤ i ≤ N : (xi, zi) ∈ Y= ∧ Eεi + Eε∗i > 0 (A.91)

wTϕ (xi) + b = zi − ξi + ξ∗i ∀1 ≤ i ≤ N : (xi, zi) ∈ Y= ∧ Eεi + Eε∗i = 0 (A.92)

wTϕ (xi) + b ≥ zi − Eεi − ξi∀1 ≤ i ≤ N : (xi, zi) ∈ Y≥ (A.93)

wTϕ (xi) + b ≤ zi + Eε∗i + ξ∗i ∀1 ≤ i ≤ N : (xi, zi) ∈ Y≤ (A.94)

ξi ≥ 0∀1 ≤ i ≤ N (A.95)

ξ∗i ≥ 0∀1 ≤ i ≤ N (A.96)

E ≥ 0 (A.97)

Lagrange multipliers are defined for each constraint thusly. Each constraint
(A.90) or (A.93) is associated with a Lagrange multiplier βi ≥ 0 (noting that at
most one of these constraints will be relevant to each 1 ≤ i ≤ N), each constraint
(A.91) or (A.94) with a Lagrange multiplier β∗i ≤ 0 (noting that at most one of
these constraints will be relevant to each 1 ≤ i ≤ N), each constraint (A.92), with
a Lagrange multiplier λi ∈ <, each constraint (A.95) with a Lagrange multiplier
γ∗i ≥ 0, each constraint (A.96) with a Lagrange multiplier γ∗i ≥ 0, and constraint
(A.97) with a Lagrange multiplier ρ ≥ 0. By definition:

βi = 0∀1 ≤ i ≤ N : ((xi, zi) /∈ Y= ∨ Eεi + Eε∗i = 0) ∧ (xi, zi) /∈ Y≥
β∗i = 0∀1 ≤ i ≤ N : ((xi, zi) /∈ Y= ∨ Eεi + Eε∗i = 0) ∧ (xi, zi) /∈ Y≤
λi = 0∀1 ≤ i ≤ N : ((xi, zi) /∈ Y= ∨ Eεi + Eε∗i > 0)
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Hence the maximin form of (A.89) may be written:

min
w,b,ξ,ξ∗,E

max
β,β∗,γ ,γ∗,ρ

dLd∗,c = 1
2
wTw + χCνc (E) + C

N

N∑
i=1

tid (ξi) + C
N

N∑
i=1

t∗i d
∗ (ξ∗i )

−ρE − γTξ − γ∗Tξ∗

−
N∑
i=1

βi
((

wTϕ (xi) + b
)− zi + Eεi + ξi

)

−
N∑
i=1

β∗i
((

wTϕ (xi) + b
)− zi − Eε∗i − ξ∗i

)

−
N∑
i=1

λi
((

wTϕ (xi) + b
)− zi + ξi − ξ∗i

)

(A.98)
such that:

β ≥ 0

β∗ ≤ 0

γ ≥ 0

γ∗ ≥ 0

ρ ≥ 0

For any (xi, zi) ∈ Y= where Eεi + Eε∗i > 0, only one of the constraints (A.90)
and (A.91) may be met exactly (i.e. left side equals right side). Hence at least
one of βi and β∗i must be zero for all such cases (and λi = 0 by definition). This
result also holds (by definition) for the case (xi, zi) /∈ Y=. For (xi, zi) ∈ Y= where
Eεi +Eε∗i = 0, both of βi and β∗i will be zero by definition. Hence for all 1 ≤ i ≤ N ,
only one of βi, β

∗
i and λi may be nonzero. Hence it is possible to unambiguously

define the vectors α and ε(∗) using:

αi =





βi if βi > 0
β∗i if β∗i < 0
λi otherwise

ε
(∗)
i =

{
εi if αi ≥ 0
ε∗i if α∗i < 0

Now:

∂dLd∗,c
∂w

= w −
N∑
i=1

(βi + β∗i + λi)ϕ (xi)

∂dLd∗,c
∂ξi

= C
N
ti
∂d
∂ξ

(ξi)− γi − (βi + λi)

∂dLd∗,c
∂ξ∗i

= C
N
t∗i
∂d∗
∂ξ∗ (ξ∗i )− γ∗i + (β∗i + λi)

∂dLd∗,c
∂E

= χCν ∂c
∂E

(E)− ρ−
N∑
i=1

βiεi +
N∑
i=1

β∗i ε
∗
i
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must, for optimality, be zero. Hence:

w =
N∑
i=1

αiϕ (xi)

γi = C
N
ti
∂d
∂ξ

(ξi)− (βi + λi)

γ∗i = C
N
t∗i
∂d∗
∂ξ∗ (ξ∗i ) + (β∗i + λi)

ρ = χCν ∂c
∂E

(E)−
N∑
i=1

βiεi +
N∑
i=1

β∗i ε
∗
i

Substituting back into (A.98) (noting the constraints placed on the various mul-
tipliers) negating and expressing the result in terms of α, the partially dual form
may be derived, namely:

min
α

max
b

dQLd∗,c (α, b) = 1
2

[
b
α

]T
H

[
b
α

]
−
[
b
α

]T[
0
z

]
+E

∣∣∣∣
b
α

∣∣∣∣
T[

0
ε(∗)

]

−χCνS (E)− C
N

N∑
i=1

tiT (ξi)− C
N

N∑
i=1

t∗iT
∗ (ξ∗i )

(A.99)

such that:

αi ≤ 0∀i : (xi, zi) ∈ Y≤
αi ≥ 0∀i : (xi, zi) ∈ Y≥

(A.100)

where:

H =

[
0 1T

1 K

]

ξi =

{
inf
{
ξ| C

N
ti
∂d
∂ξ

(ξ) > |αi|
}

if αi > 0

0 if αi ≤ 0

ξ∗i =

{
0 if αi ≥ 0

inf
{
ξ∗| C

N
t∗i
∂d∗
∂ξ∗ (ξ∗) > |αi|

}
if αi < 0

E =





inf
{
E|Cν ∂c

∂E
(E) >

∣∣ε(∗)∣∣T |α|
}

if χ = +1

inf
{
E|Cν ∂c

∂E
(E) <

∣∣ε(∗)∣∣T |α|
}

if χ = −1

T (ξ) = d (ξ)− ξ ∂d
∂ξ

(ξ)

T ∗ (ξ∗) = d∗ (ξ∗)− ξ∗ ∂d∗
∂ξ∗ (ξ∗)

S (E) = c (E)− E ∂d
∂E

(E)

and Ki,j = K (xi,xj).

To obtain the dual form, note that for optimality
∂dLd∗,c
∂b

= 0, where it is trivial
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to show that
∂dLd∗,c
∂b

= 1Tα. Substituting into the partial dual (A.99), the dual form
is seen to be:

min
α dQd∗,c (α)= 1

2
αTKα−αTz− χCνS (E)− C

N

N∑
i=1

tiT (ξi)− C
N

N∑
i=1

t∗iT
∗ (ξ∗i )

(A.101)
such that:

αi ≤ 0∀i : (xi, zi) ∈ Y≤
αi ≥ 0∀i : (xi, zi) ∈ Y≥
1Tα = 0

The optimality conditions are not simple in this case.

A.10 Quadric ν-SVR (section 5.5.2)

It is assumed here that χ = +1. The primal form (5.23) is:

min
w,b,ξ,ξ∗,E

R2,2 (w, b, ξ, ξ∗) =
1

2
wTw +

Cν

2
E2 +

C

2N

N∑
i=1

tiξ
2
i +

C

2N

N∑
i=1

t∗i ξ
∗
i

2 (A.102)

such that:

wTϕ (xi) + b ≥ zi − Eεi − ξi∀1 ≤ i ≤ N : (xi, zi) ∈ Y= ∧ Eεi + Eε∗i > 0 (A.103)

wTϕ (xi) + b ≤ zi + Eε∗i + ξ∗i ∀1 ≤ i ≤ N : (xi, zi) ∈ Y= ∧ Eεi + Eε∗i > 0(A.104)

wTϕ (xi) + b = zi − ξi + ξ∗i ∀1 ≤ i ≤ N : (xi, zi) ∈ Y= ∧ Eεi + Eε∗i = 0 (A.105)

wTϕ (xi) + b ≥ zi − Eεi − ξi∀1 ≤ i ≤ N : (xi, zi) ∈ Y≥ (A.106)

wTϕ (xi) + b ≤ zi + Eε∗i + ξ∗i ∀1 ≤ i ≤ N : (xi, zi) ∈ Y≤ (A.107)

Lagrange multipliers are defined for each constraint thusly. Each constraint
(A.103) or (A.106) is associated with a Lagrange multiplier βi ≥ 0 (noting that at
most one of these constraints will be relevant to each 1 ≤ i ≤ N), each constraint
(A.104) or (A.107) with a Lagrange multiplier β∗i ≤ 0 (noting that at most one of
these constraints will be relevant to each 1 ≤ i ≤ N), each constraint (A.105) and
with a Lagrange multiplier λi ∈ <. By definition:

βi = 0∀1 ≤ i ≤ N : ((xi, zi) /∈ Y= ∨ Eεi + Eε∗i = 0) ∧ (xi, zi) /∈ Y≥
β∗i = 0∀1 ≤ i ≤ N : ((xi, zi) /∈ Y= ∨ Eεi + Eε∗i = 0) ∧ (xi, zi) /∈ Y≤
λi = 0∀1 ≤ i ≤ N : ((xi, zi) /∈ Y= ∨ Eεi + Eε∗i > 0)
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Hence the maximin form of (A.102) may be written:

min
w,b,ξ,ξ∗

max
β,β∗

L2,2 = 1
2
wTw + Cν

2
E2 + C

2N

N∑
i=1

tiξ
2
i + C

2N

N∑
i=1

t∗i ξ
∗
i

2

−
N∑
i=1

βi
((

wTϕ (xi) + b
)− zi + Eεi + ξi

)

−
N∑
i=1

β∗i
((

wTϕ (xi) + b
)− zi − Eε∗i − ξ∗i

)

−
N∑
i=1

λi
((

wTϕ (xi) + b
)− zi + ξi − ξ∗i

)

(A.108)

such that:

β ≥ 0

β∗ ≤ 0

(A.109)

For any (xi, zi) ∈ Y= where Eεi + Eε∗i > 0, only one of the constraints (A.103)
and (A.104) may be met exactly (i.e. left side equals right side). Hence at least
one of βi and β∗i must be zero for all such cases (and λi = 0 by definition). This
result also holds (by definition) for the case (xi, zi) /∈ Y=. For (xi, zi) ∈ Y= where
Eεi +Eε∗i = 0, both of βi and β∗i will be zero by definition. Hence for all 1 ≤ i ≤ N ,
only one of βi, β

∗
i and λi may be nonzero. Hence it is possible to unambiguously

define the vectors α and ε(∗) using:

αi =





βi if βi > 0
β∗i if β∗i < 0
λi otherwise

ε
(∗)
i =

{
εi if αi ≥ 0
ε∗i if α∗i < 0

Now:

∂L2,2

∂w
= w −

N∑
i=1

(βi + β∗i + λi)ϕ (xi)

∂L2,2

∂ξi
= C

N
tiξi − βi − λi

∂L2,2

∂ξ∗i
= C

N
t∗i ξ
∗
i − β∗i + λi

∂L2,2

∂E
= CνE −

N∑
i=1

βiεi +
N∑
i=1

β∗i ε
∗
i
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must, for optimality, be zero. Hence:

w =
N∑
i=1

αiϕ (xi)

ξi = max
(

0, N
Cti
αi

)

ξ∗i = max
(

0,− N
Ct∗i
αi

)

E = 1
Cν
|α|T ε(∗)

Substituting back into (A.108) (noting the constraints placed on the various
multipliers) negating and expressing the result in terms of α, the partially dual
form may be derived, namely:

min
α

max
b
QL2,2 (α, b)= 1

2

[
b
α

]T
Ĥ

[
b
α

]
−
[
b
α

]T[
0
z

]
+E

∣∣∣∣
b
α

∣∣∣∣
T[

0
ε(∗)

]

(A.110)
such that:

αi ≤ 0∀i : (xi, zi) ∈ Y≤
αi ≥ 0∀i : (xi, zi) ∈ Y≥

(A.111)

where:

Ĥ = H +

[
0 0T

0 N(∗) + D(∗)

]

H =

[
0 1T

1 K

]

N
(∗)
i,j =





1
Cν

∣∣∣ε(∗)i

∣∣∣
∣∣∣ε(∗)j

∣∣∣ if sgn (αiαj) = +1

− 1
Cν

∣∣∣ε(∗)i

∣∣∣
∣∣∣ε(∗)j

∣∣∣ if sgn (αiαj) 6= +1

D
(∗)
i,j = δij

N

Ct
(∗)
i

and Ki,j = K (xi,xj).

To obtain the dual form, note that for optimality ∂L2,2

∂b
= 0, where it is trivial to

show that ∂L2,2

∂b
= 1Tα. Substituting into the partial dual (A.110), the dual form is

seen to be:

min
α

Q2 (α) = 1
2
αT
(
K + N(∗) + D(∗))α−αTz + E|α|Tε(∗) (A.112)
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such that:

αi ≤ 0∀i : (xi, zi) ∈ Y≤
αi ≥ 0∀i : (xi, zi) ∈ Y≥
1Tα = 0

In either case, the optimality conditions are:

αi ≤
{ ∞ if (xi, zi) ∈ Y= ∪Y≥

0 if (xi, zi) ∈ Y≤

αi ≥
{

0 if (xi, zi) ∈ Y≥
−∞ if (xi, zi) ∈ Y= ∪Y≤

ei





≥ zi if αi = 0 ∧ (xi, zi) ∈ Y= ∪Y≥
= zi if αi > 0
≤ zi if αi = 0 ∧ (xi, zi) ∈ Y= ∪Y≤
= zi if αi < 0

f = 0

where: [
f
e

]
= Ĥ

[
b
α

]
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Appendix B

DIFFERENTIAL GEOMETRY

I reject your reality, and substitute my own.
- Adam Savage

In this appendix, I give a quick introduction to the theory of differential geometry.
This is not intended to be a rigorous treatment of the subject. Instead, I hope

to give sufficient detail to give a feel for the subject without going too far into
obscurities. The notation used here is the older style indexed notation of [92] [32],
and infinitesimals will often be used somewhat carelessly, ignoring the more modern
mathematical treatment which avoids this approach at the expense (in my opinion)
or clarity and insight.1

B.1 Vector Space, Space and Tensors

B.1.1 Vector Spaces

I will begin with the formal definitions of a (real) vector space and a (real) vector
subspace of a vector space:

Definition B.1.1. A (real) vector space consists of a set V together with two op-
erations, namely addition of the form + : V × V → V and scalar multiplication of
the form V ×< → V , satisfying the following axioms:

Properties of addition:

1. Associativity of vector addition: u+(v + w) = (u + v)+w for all u,v,w ∈ V .

2. Commutativity of vector addition: u + v = v + u for all u,v ∈ V .

3. Existence of additive identity in V : there exists 0 ∈ V such that 0 + u = u
for all u ∈ V .

4. Existence of additive inverse in V : for every u ∈ V there exists −u ∈ V such
that u +−u = 0.

Properties of scalar multiplication:

1. Distributivity with respect to vector addition: a (u + v) = au + av for all
a ∈ <, u,v ∈ V .

1Which is not to say that infinitesimals cannot be used in a rigorous approach, as in [43].

269
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2. Distributivity with respect to scalar addition: (a+ b) u = au + bu for all
a, b ∈ <, u ∈ V .

3. Associativity of scalar multiplication in V : (ab) u = a (bu) for all a, b ∈ <,
u ∈ V .

4. Neutrality of 1: 1u = u for all u ∈ V .

Definition B.1.2. A (real) vector subspace W of a (real) vector space V is a subset
of W ⊆ V such that W , along with the operations of addition and multiplication
inherited from V , is itself a (real) vector space.

All vectors will be written in bold type, e.g. u. For any vector space, it can be
shown that one may construct a basis for that vector space, defined by:

Definition B.1.3. A basis for a (real) vector space V is a set of vectors {ei ∈ V | i ∈ I}
satisfying:

1. Span: For all u ∈ V there exists ai ∈ <, i ∈ I such that u =
∑
i∈I
aiei.

2. Independence:
∑
i∈I
aiei = 0 if and only if ai = 0 for all i ∈ I.

There may, of course, be many different basis for a given vector space V . How-
ever, it can be shown that all such basis will have the same number of elements
(assuming finiteness). This number of elements is known as the dimension of the
vector space. Formally:

Definition B.1.4. The dimension of a vector space V is defined to be the number
of elements, N , in some basis {ei ∈ V | i ∈ I} of that vector space.

As only real finite dimensional vector spaces are of interest here, it may be
assumed that any vector spaces mentioned herein are real and finite dimensional.

Given an N -dimensional vector space V and a basis {ei ∈ V | 1 ≤ i ≤ N} for that
vector space, any vector u in that vector space may be completely and uniquely
defined by the N -tuple

(
u1, u2, . . . , uN

) ∈ <N using the relation:

u =
N∑
i=1

uiei (B.1)

Taking the definition of the basis set {ei ∈ V | 1 ≤ i ≤ N} to be implicitly along
with the vector space V the shorthand notation ui may be used for the vector u,
where use of equation (B.1) is implicit, along with the range convention:

Notation B.1.1 (Range convention). When a small Latin suffix (superscript or
subscript) occurs, it is understood to take all values 1, 2, . . . , N , where N is the
dimension of the vector space.
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Given a different basis
{

ēī ∈ V
∣∣ 1 ≤ ī ≤ N

}
for the same vector space, the same

vector u is written ūī with the obvious interpretation, where the differing basis is
denoted by the overbars shared with the basis vectors. Suppose that:

ēī =
N∑
i=1

aiīe
i

This is known as a change of basis. The restriction which must be made here is
that the matrix [aiī] must be non-singular (otherwise independence will be lost, and
subsequently

{
ēī ∈ V } will not form a basis for V ). Noting that:

u =
N∑
i=1

uiei

and:

u =
N∑

ī=1

ūīēī =
N∑
i=1

aiīū
īei

it follows that:
ūī = bi

īui

where
[
bi
ī
]

= [aiī]
−1

, and use has been made of the Einstein summation convention:

Notation B.1.2 (Einstein summation convention). If a small Latin suffix is
repeated twice in a term, where one instance is a subscript and the other a super-
script, there is an implied summation with respect to that suffix over the range 1 to
N .

It should be noted that summation over a repeated indices where both incidences
are of the same type (both superscript or both subscript) is not defined, and hence
should be avoided. The term will also be ill-defined if an index is repeated more
than twice.

B.1.2 Spaces, Subspaces, Points and Curves

I will now move away from the concept of a real vector space to a more general,
abstract concept of space. Specifically, consider a set X of points p ∈ X. A set
of values

(
x1, x2, . . . , xN

)
is assigned to each point, and the variables x1, x2, . . . , xN

are called the coordinates of that point (and are not vectors). Each coordinate is
assumed to have some range (usually −∞ to ∞, but more restricted ranges are
possible, e.g. 0 to 2π), which is assumed to be an open subset of <. Assuming that
every

(
x1, x2, . . . , xN

)
where each xi is within it’s given range corresponds to a unique

point, X is called an N -dimensional space, and is denoted by, for example, VN , where
the capital Latin subscript indicates the dimensionality of the space. As there is a
one-to-one correspondence between points p and coordinate sets

(
x1, x2, . . . , xN

)
, the

coordinate set
(
x1, x2, . . . , xN

)
may itself be unambiguously called a point. Using

the usual range convention, a point p may be written xi.2

2There are also certain smoothness assumptions here too, which I will neglect for simplicity.
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A curve is defined to be all points given by the set of N continuous functions:

xi = f i (u)

as u varies over its range ú ≤ u ≤ ù.

More generally, an M dimensional subspace WM of VN is defined to be the set of
all points given by the set of N continuous functions:

xi = f i
(
u1, u2, . . . , uM

)

as u1, u2, . . . , uM vary over the ranges ú1 ≤ u1 ≤ ù1, ú2 ≤ u2 ≤ ù2, . . . ,
úM ≤ uM ≤ ùM . Hence a curve is just a 1-dimensional subspace. Another set
of subspaces of special interest are the N − 1-dimensional subspaces, which are
called hypersurfaces by way of analogy with 2-dimensional surfaces defined in 3-
dimensional space. Hypersurfaces are of interest because they can be used to bisect
a space (divide it into two separate regions).

The following piece of shorthand will be useful:

Definition B.1.5. By definition, ∂i = ∂
∂xi

and likewise ∂̄i = ∂
∂x̄i

.

B.1.3 Change of Coordinates

The choice of coordinates in a space VN is, of course, entirely arbitrary (so long as
neighbouring points remain neighbouring), and in no way influences the properties
of that space. Indeed, selection of coordinates is little more than a matter of con-
venience. Hence it would be unwise to restrict ones self to any single coordinate
system. To this end, it is necessary to consider the issue of changing coordinates.

Suppose VN is equipped with coordinates xi. To change coordinates to a different
set x̄ī requires a differentiable bijective map f̄ ī : <N → <N so that:

x̄ī = f̄ ī
(
xi
)

(B.2)

which will assign to a point xi a new set of coordinates x̄ī. It follows immediately
from (B.2) that:

dx̄ī =
(
∂ix̄

ī
)
dxi

Where the overbar is used to implicitly indicate the coordinate system. That is,
an object T i is implicitly with respect to the coordinate system xi. The same object
with respect to a different coordinate system x̂î will be written T̂ î.

As the coordinate change f i is a bijection, there must exist a coordinate change
map f i = f̄ ī← : <N → <N to reverse the process, so:

xi = f i
(
x̄ī
)

is also a change of coordinates; and f̄ ī • f i and f i • f̄ ī are identity maps.

The following definitions will be useful later:
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Definition B.1.6. The Jacobian of the change of coordinates x̄ī to ¯̄x
¯̄i is defined to

be:

¯̄J = det
([

∂̄ī ¯̄x
¯̄j
])

= det







∂̄1̄ ¯̄x
¯̄1 ∂̄2̄ ¯̄x

¯̄1 · · · ∂̄N̄ ¯̄x
¯̄1

∂̄1̄ ¯̄x
¯̄2 ∂̄2̄ ¯̄x

¯̄2 · · · ∂̄N̄ ¯̄x
¯̄2

...
...

. . .
...

∂̄1̄ ¯̄x
¯̄N ∂̄2̄ ¯̄x

¯̄N · · · ∂̄N̄ ¯̄x
¯̄N







Definition B.1.7. An object which remains unchanged by any change of coordinates
is known as an invariant.

B.1.4 Scalars, Contravariant Vectors and Covariant Vectors

It is constructive to investigate the set of “geometric objects” which may exist in a
space, where a geometric object is something whose physical structure is independent
of the coordinate system used, but whose representation may not be.

The simplest geometric object is the scalar, which is simply a number associated
with a point P . For example, the height of a point of land above sea level is a scalar.
Mathematically, a scalar is a number which, under a change of coordinates from xi

to x̄ī = x̄ī (xi), transforms as:
T̄ = T

The next most basic geometric object is the vector, which is analogous to a
vector in a vector space. Consider two infinitesimally separated points xi (point P )
and xi + dxi (point Q). Under change of coordinates, these points become x̄ī and
x̄ī + dx̄ī, where:

dx̄ī =
(
∂ix̄

ī
)
dxi (B.3)

where ∂ix̄
ī is a function of P but independent of Q. This indicates that, on an

infinitesimal scale, the general space VN has certain properties in common with a
real vector space (where dxi is analogous to a vector).

Indeed, it is possible to construct a tangent (vector) space TP to the point P in
VN . To do this, choose some arbitrary infinitesimal ds. Based on this, construct a
set of points QI (with coordinates yI) infinitesimally close to P with coordinates:

yI
i = xi + δI

ids

where δI
i is the Kronecker-delta function:

δI
i =

{
1 if I = i
0 if I 6= i

This gives us a set of arrows
−−→
PQI from the point P to the neighbouring points

QI . Identifying P with the origin 0 of the tangent (vector) space TP , the arrows−−→
PQI can then be used to construct a basis {ei| 1 ≤ i ≤ N} for TP by identifying:

eI =
1

ds

−−→
PQI
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Formally, the vector space TP is then:

TP =

{
N∑
i=1

aiei

∣∣∣∣∣ a
i ∈ <

}

Using this, the offset dxi from the point xi to the point xi+dxi may be identified
with an infinitesimal vector dx in the tangent space TP using the construction:

dx =
N∑
i=1

dxiei

Roughly speaking, the tangent space TP is to the space VN at point P what the
tangent is to a curve at a point. The tangent space is a vector space obeying the
usual expectations of Cartesian space, as is any infinitesimal region of the space VN .
A vector u in the tangent space TP of some point P is known as contravariant vector
at this point. Formally, a contravariant vector is defined thusly:

Definition B.1.8. An array T i at a point P is said to be a contravariant vector at
P if, under change of coordinates from xi to x̄ī = x̄ī (xi):

T̄ ī =
(
∂ix̄

ī
)
T i

where ∂ix̄
ī is evaluated at P .

The following notational convention is useful:

Notation B.1.3. A contravariant vector T i is always written with an upper (super-
script) index.

It is important to note, however, that whereas the infinitesimal vector dxi at a
point xi may be validly thought of as a arrow from xi to xi + dxi, a finite vector ai

at the same point is not an arrow from xi to xi + ai. Furthermore, regardless of the
notational irregularity, the coordinate xi is not a contravariant vector. Examples of
contravariant vectors include the infinitesimal displacement dxi and the gradient dxi

du

of a curve xi (u).

A concept closely related to the contravariant vector is the covariant vector.
Whereas the contravariant vector may be thought of as an arrow at a point P , a
covariant vector may be thought of as the gradient (at P ) of some scalar function
defined in the neighbourhood of P , rather like a topographical map about P .

Let ψ be a differentiable scalar function defined about P . At the set of points
QI defined previously:

ψ
(
yI
i
)

= ψ
(
xi
)

+
∂ψ

∂xI
(
xi
)
ds

Moreover, ∂ψ
∂xI

is the rate of change of ψ moving in the direction of the basis vector
eI in the infinitesimal neighbourhood about P . Using these observations, a linear
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homogeneous function ψP : TP → < can be constructed using:

ψP
(
ui
)

= ciu
i + d

where ui ∈ TP , d = ψ (xi) and:

ci =
∂ψ

∂xi
(
xk
)

Now, under a change of coordinates:

ψP

(
ūī
)

= c̄īū
ī + d̄

It is not difficult to show that:

d̄ = d

c̄ī =
(
∂̄īx

i
)
ci

The array ci is the gradient of a linear homogeneous function in the tangent space
TP . As this is a constant throughout TP (for a given set of coordinates), ci may be
thought of as a single covariant vector defined at the point P . Formally speaking, a
covariant vector is defined as:

Definition B.1.9. An array Ti at a point P is said to be a covariant vector at P
if, under change of coordinates from xi to x̄ī = x̄ī (xi):

T̄ī =
(
∂̄īx

i
)
Ti

where ∂̄īx
i is evaluated at P .

The following notational convention is useful:

Notation B.1.4. A covariant vector Ti is always written with an lower (subscript)
index.

Note that given a contravariant vector T i and a covariant vector Si at a point
the construction:

U = T iSi

is a scalar at that point. Interpreting Si = ∂ψ
∂xi

, it can be seen that:

U = ψP
(
T i
)− ψP (0)

B.1.5 Relative Tensors and Densities

Scalars, contravariant vectors and covariant vectors are simply special cases of a
more general object known as a relative tensor, which is defined thusly:

Definition B.1.10. A relative tensor of weight w and order n+m at a point P is
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an ordered array a
w

i1i2...in
j1j2...jm

defined at P that transforms according to the rule:

ā
w

ī1 ī2...̄in
j̄1j̄2...j̄m

= J̄w
(
∂̄j̄1x

j1
) (
∂̄j̄2x

j2
)
. . .
(
∂̄j̄mx

jm
)
a
w

i1i2...in
j1j2...jm

(
∂i1x̄

ī1
)(

∂i2x̄
ī2
)
. . .
(
∂inx̄

īn
)

where ∂̄k̄x
k, ∂kx̄

k̄ and J̄ are evaluated at P .

Note that in an actual relative tensor there is a definite ordering of upper and
lower indices, for example a

w

i
j
k. This is not done in this prototype to maintain

notational simplicity. The underscript w is used to indicate the weight w of the
relative tensor. If w = 0 this may be left out. The following objects are special cases
of relative tensor:

Definition B.1.11. A contravariant relative tensor is a relative tensor order n+0.

Definition B.1.12. A covariant relative tensor is a relative tensor of order 0 +m.

Definition B.1.13. A tensor density is a relative tensor of weight +1.

Definition B.1.14. A contravariant tensor density is a tensor density of order n+0.

Definition B.1.15. A covariant tensor density is a tensor density of order 0 +m.

Definition B.1.16. A tensor is a relative tensor of weight 0.

Definition B.1.17. A contravariant tensor is a tensor of order n+ 0.

Definition B.1.18. A covariant tensor is a tensor of order 0 +m.

Definition B.1.19. A contravariant vector is a tensor of order 1 + 0.

Definition B.1.20. A covariant vector is a tensor of order 0 + 1.

Definition B.1.21. A relative scalar is a relative tensor of order 0 + 0,

Definition B.1.22. A scalar density is a relative scalar of weight +1.

Definition B.1.23. A scalar is a relative scalar of weight 0.

It is essentially trivial to prove that relative tensors defined at some common
point P may be combined according to the following rules:

• Addition: Any two relative tensors, a
w

i1i2...in
j1j2...jm

and b
w

i1i2...in
j1j2...jm

of the same weight

w and the same order n + m may be added to form another relative tensor,
c
w

i1i2...in
j1j2...jm

, also of weight w and order n+m, using:

c
w

i1i2...in
j1j2...jm

= a
w

i1i2...in
j1j2...jm

+ b
w

i1i2...in
j1j2...jm

• Multiplication: Any two relative tensors, a
w

i1i2...in
j1j2...jm

and b
v

i1i2...ip
j1j2...jq

of weight w and

v and order n+m and p+ q, respectively, may be multiplied to give a another
relative tensor, c

w+v

i1i2...in+p

j1j2...jm+q
, of weight w+v and order (n+m)+(p+ q) using:

c
w+v

i1i2...in+p

j1j2...jm+q
= a

w

i1i2...in
j1j2...jmb

v

in+1in+2...in+p

jm+1jm+2...jm+q
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• Contraction: Given a relative tensor, a
w

i1i2...in
j1j2...jm

of weight w and order n + m,

another relative tensor, c
w

i1i2...in−1

j1j2...jm−1
, of weight w and order (n− 1) + (m− 1)

may be formed by contracting an upper and lower index thusly:

c
w

i1i2...in−1

j1j2...jm−1
= a

w

i1i2...ii−1kii+1...in
j1j2...jj−1kjj+1...jm

Note, however, that contraction of indices of the same type (both upper or both
lower) is not a well-defined operation, as the result of such a (naively applied) con-
traction may not, in general, be a tensor density.

The reason such emphasis is placed on tensors is that tensors transform, under
change of coordinates, in a linear and homogeneous manner, so if a purely tensorial
equation holds in one coordinate system, it will hold in all others. This is known as
transitivity of the tensorial character.

Finally, a relative tensor field is defined thusly:

Definition B.1.24. A relative tensor field is a tensor assigned to all points in a
subspace of VN in a smooth manner.

So, if the value of the field at a point xi is a
w

i1i2...in
j1j2...jm

then the value at xi + dxi

for some infinitesimal displacement dxi (assuming that xi + dxi is not outside the
subspace in question) must be a

w

i1i2...in
j1j2...jm

+ da
w

i1i2...in
j1j2...jm

, where da
w

i1i2...in
j1j2...jm

is infinitesimal.

However, as will be seen in subsequent sections, this infinitesimal need not be a
tensor in general.

Other fields (tensor fields, relative scalar fields, etc.) are defined in an analogous
manner.

A property of all relative tensors which will have some importance later is that
any relative tensor a

w

i1i2...in
j1j2...jm

of weight w may be re-written thusly:

a
w

i1i2...in
j1j2...jm

= b
w

Nn+m∑

k=1

c(k,1)
i1c(k,2)

i2 . . . c(k,n)
ind(k,1)j1d(k,2)j2 . . . d(k,m)jm (B.4)

where b
w

is a (non-zero) relative scalar of weight w, c(k,l)
il (where 1 ≤ k ≤ Nn+m,

1 ≤ l ≤ n) is a contravariant vector and d(k,l)il (where 1 ≤ k ≤ Nn+m, 1 ≤ l ≤ m)
is a covariant vector.

To see why the decomposition (B.4) must be possible, first note that for any
non-zero relative scalar b

w
of weight w:

a
w

i1i2...in
j1j2...jm

= b
w
hi1i2...inj1j2...jm

where:
hi1i2...inj1j2...jm

= b
w

−1ai1i2...inj1j2...jm

is a tensor of order n+m (it is trivial to prove that if b
w

is a relative scalar of weight

w, b
w

−1 must be a relative scalar of weight −w. The fact that hi1i2...inj1j2...jm
is a tensor
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follows directly).

Now, for the current coordinates, if n ≥ 1, define:

k(l)
i = δil

where 1 ≤ l ≤ N , and extend these to other coordinates by defining their behaviour
under change of coordinates to be that of a contravariant vector. Then, also in the
current coordinates, define h(l)i2...in

j1j2...jm
by:

h(l)i2...in
j1j2...jm

= δi1
lhi1i2...inj1j2...jm

where 1 ≤ l ≤ N , and once again extend to other coordinates by defining the
behaviour under change of coordinates to be that of a tensor of order (n− 1) + m.
Then:

hi1i2...inj1j2...jm
=

N∑

l=1

k(l)
i1h(l)i2...in

j1j2...jm

The same procedure may then be applied to each of h(l)i2...in
j1j2...jm

, and so on for
subsequent decompositions until only contravariant vectors and covariant tensors
remain. The end result of this process will be the decomposition:

hi1i2...inj1j2...jm
=

Nn∑

k=1

c(k,1)
i1c(k,2)

i2 . . . c(k,n)
inp(k)j1j2...jm

where p(k)j1j2...jm (1 ≤ k ≤ Nn) are covariant tensors of order 0 + m, and c(k,l)
il

(1 ≤ k ≤ Nn, 1 ≤ l ≤ n) are contravariant vectors. An analogous method may then
be applied to decompose these covariant tensors into covariant vectors.

Specifically, suppose pj1j2...jm , m > 1 is a covariant tensor. Then define:

κ(l)
i = δi

l

where 1 ≤ l ≤ N , and extend these to other coordinates by defining their behaviour
under change of coordinates to be that of a covariant vector. Then, also in the
current coordinates, define p(l)j2...jm by:

p(l)j2...jm = δj1 lpj1j2...jm

where 1 ≤ l ≤ N , and once again extend to other coordinates by defining the
behaviour under change of coordinates to be that of a covariant tensor of order
0 + (m− 1). Then:

pj1j2...jm =
N∑

l=1

κ(l)
ip(l)j2...jm

Applying this recursively, one will eventually arrive at the required decomposi-
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tion, namely:

hi1i2...inj1j2...jm
=

Nn+m∑

k=1

c(k,1)
i1c(k,2)

i2 . . . c(k,n)
ind(k,1)j1d(k,2)j2 . . . d(k,m)jm

where c(k,l)
il (1 ≤ k ≤ Nn+m, 1 ≤ l ≤ n) are contravariant vectors and where d(k,l)jl

(1 ≤ k ≤ Nn+m, 1 ≤ l ≤ m) are covariant vectors, from which the required result
(B.4) follows directly.

The importance of this result is not in the mathematical detail, however. The
above construction is not the only possible construction, and definitely not the most
useful. The importance lies in the interpretation of this result. Specifically, it tells
us that any relative tensor is really just a construction of contravariant vectors
(arrows), covariant vectors (gradients) which are in some way connected together;
and a single relative scalar whose weight w defines how the magnitude of the whole
construction depends on the coordinate system of choice. Specifically, under a change
of coordinates, the arrows will still point in the same directions (although their
representation will change), the gradients will still have the same slope in the same
direction (although, again, their representations will change) and any change in the
scalar magnitude will be completely dependent on w.

It is worthwhile at this point to explain the use of the term “density” in this
context. Physically, densities represent the density of something (tensor or scalar)
per unit volume. The Jacobian measures the (inverse) change in the local “scale”
of the coordinates under the transform. Hence the J̄ factor in the conversion of
densities is included to correct for this change in scale. For example, consider a
Euclidean 3 dimensional space with orthonormal axis, where 1 unit on any axis
represents 1 cm. Further, suppose a

1
= 2000 is a scalar density constant everywhere

representing the number gas molecules per cm3. Now suppose the coordinate system
is changed so that 1 unit on any axis represents 1 mm, rather than 1 cm. This is
achieved by the change of coordinates x̄ = x

10
, ȳ = y

10
, z̄ = z

10
. Subsequently:

J̄ = det






1
10

0 0
0 1

10
0

0 0 1
10




 =

1

1000

and hence:
ā
1

= J̄a
1

= 2

which just means that there are 2 gas molecules per mm3, which is of course identical
to 2000 gas molecules per cm3. Hence use of the term “density” is appropriate in
this case.

More generally, the term “relative” tensor simply indicates that the value mea-
sured is in some way relative to the scale of the axis, where the exact nature of the
relationship is controlled by w.
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Oriented Relative Tensors

As well as relative tensors (and the related special cases), there is one other set of
object which will be of interest here. These are the oriented relative tensors, which
are defined as follows:

Definition B.1.25. An oriented relative tensor of weight w and order n + m at a
point P is an ordered array a

w+

i1i2...in
j1j2...jm

defined at P that transforms according to the

rule:

ā
w+

ī1 ī2...̄in
j̄1j̄2...j̄m

= sgn
(
J̄
)
J̄w
(
∂̄j̄1x

j1
) (
∂̄j̄2x

j2
)
. . .
(
∂̄j̄mx

jm
)
a
w+

i1i2...in
j1j2...jm

(
∂i1x̄

ī1
)(

∂i2x̄
ī2
)
. . .
(
∂inx̄

īn
)

where ∂̄k̄x
k, ∂kx̄

k̄ and J̄ are evaluated at P .

Oriented tensor densities, oriented scalars etc. are all defined by analogy with
definitions B.1.11 to B.1.23. The usual rules of combination of oriented (or non-
oriented) relative tensors are defined, noting that:

• The product of two oriented relative tensors is a (non-oriented) relative tensor.

• The product of an oriented relative tensor and a (non-oriented) relative tensor
is an oriented relative tensor.

• The result of contracting the indices of a oriented relative tensor is an oriented
relative tensor.

• The sum of two oriented relative tensors is an oriented relative tensor. How-
ever, the sum of an oriented relative tensor and a (non-oriented) tensor is a
non-tensorial object.

Like (non-oriented) relative tensors, oriented relative tensors can be decomposed
into a set of covariant and contravariant vectors in the form (B.4). However, in this
case b must be an oriented relative scalar of weight w. Physically, this means that,
in addition to the properties described previously for the relative tensor, an oriented
relative tensor has a definite orientation with respect to the coordinate axis.3

B.1.6 The Generalised Kronecker-Delta Symbol

I will now present the formal definitions of three objects which play a central role in
tensor theory, namely the Kronecker-Delta symbol, the generalised Kronecker-Delta
symbol and the permutation symbols.

The Kronecker-Delta symbol is defined to be:

Definition B.1.26. The Kronecker-Delta symbol δi
j = δj i is defined to be, for all

coordinate systems:

δi
j = δj i =

{
1 if i = j
0 if i 6= j

3Technically speaking, the previous example was actually an oriented scalar density (consider
a change of coordinates with a negative Jacobian.



B.1. VECTOR SPACE, SPACE AND TENSORS 281

Now, by definition, δi
j = δ̄i

j. Given this, it is not difficult to see that the
Kronecker-delta symbol δi

j = δj i is an invariant tensor. The invariant nature of the
Kronecker delta symbol follows from the definition. To see that it is also a tensor,
one need only note that: (

∂̄īx
i
) (
∂jx̄

j̄
)
δi
j = δī

j̄

The Kronecker-delta symbol may be generalised thusly:4

Definition B.1.27. The generalised Kronecker-Delta symbol δi1i2...in
j1j2...jn is de-

fined to be, for all coordinate systems:

δi1i2...in
j1j2...jn =





0 if ik = il, k 6= l or {i1, i2, . . . , in} 6= {j1, j2, . . . , jn}
+1 if (i1, i2, . . . , in) is an even perm. of (j1, j2, . . . , jn)
−1 if (i1, i2, . . . , in) is an odd perm. of (j1, j2, . . . , jn)

(B.5)

= δj1j2...jn i1i2...in

It is not difficult to see that:

δi1i2...in
j1j2...jn = det







δi1
j1 δi2

j1 · · · δin
j1

δi1
j2 δi2

j2 · · · δin
j2

...
...

. . .
...

δi1
jn δi2

jn · · · δin
jn







from which it follows that δi1i2...in
j1j2...jn is a invariant tensor of order n + n. It can

be shown that:

δk1k2...kpj1j1...jN−p
j1j2...jN−pi1i1...ip = p!(N − p)!δk1

i1δ
k2
i2 . . . δ

kp
ip (B.6)

δk1k2...kpj1j1...jN−p
j1j2...jN−pi1i1...ip = p!(N − p)!δk1

i1δk2

i2 . . . δkp
ip (B.7)

In the special case n = N , it is not difficult to see that one may write:

δi1i2...iN
j1j2...jN = εi1i2...iN ε

j1j2...jN (B.8)

where εi1i2...iN and εj1j2...jN are the permutation symbols, which are defined thusly:

Definition B.1.28. The permutation symbols εi1i2...iN and εj1j2...jN are defined to

4An ordered set (a1, a2, . . . , am) is said to be an odd permutation of some other set
(b1, b2, . . . , bm) of like elements (i.e. {a1, a2, . . . , am} = {b1, b2, . . . , bm}) if the particular order-
ing (a1, a2, . . . , am) nay be constructed from (b1, b2, . . . , bm) by choosing two elements, swapping
them, and repeating the process an odd number of times. Otherwise, the permutation is said to
be even.
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be, for all coordinate systems:

εi1i2...iN =





0 if ik = il, k 6= l
+1 if (i1, i2, . . . , iN) is an even perm. of (1, 2, . . . , N)
−1 if (i1, i2, . . . , iN) is an odd perm. of (1, 2, . . . , N)

(B.9)

= δi1i2...iN
1 2 ... N

εj1j2...jN =





0 if jk = jl, k 6= l
+1 if (j1, j2, . . . , jN) is an even perm. of (1, 2, . . . , N)
−1 if (j1, j2, . . . , jN) is an odd perm. of (1, 2, . . . , N)

(B.10)

= δ1 2 ... N
j1j2...jN

I will now demonstrate that εi1i2...iN is an invariant relative tensor of weight −1
and order N + 0, and εj1j2...jN an invariant relative tensor of weight +1 and order
0 + N (i.e. an invariant tensor density). To do so, consider a tensor aij, such that
the matrix of its elements [aij] has a positive determinant. Define a

−2
to be this

determinant - that is, a
−2

= det ([aij]). Then, under the usual change of coordinates:

āīj̄ =
(
∂̄īx

i
) (
∂̄j̄x

j
)
aij

or, in matrix notation: [
āīj̄
]

=
[
∂̄īx

i
]

[aij]
[
∂̄j̄x

j
]

Hence:
ā
−2

= J̄−2 a
−2

(B.11)

and so a
−2

must be a relative scalar of weight −2 which is positive in all coordinate

systems. However, by definition of the determinant:

a
−2

= εi1i2...iN εj1j2...jNai1j1ai2j2 . . . aiN jN (B.12)

ā
−2

= ε̄ī1 ī2...̄iN ε̄j̄1j̄2...j̄N āī1j̄1 āī2j̄2 . . . āīN j̄N

= ε̄ī1 ī2...̄iN ε̄j̄1j̄2...j̄N . . .

. . .
(
∂̄ī1x

i1
) (
∂̄j̄1x

j1
)
ai1j1

(
∂̄ī2x

i2
) (
∂̄j̄2x

j2
)
ai2j2 . . .

(
∂̄īNx

iN
) (
∂̄j̄Nx

jN
)
aiN jN

=
((
∂̄ī1x

i1
) (
∂̄ī2x

i2
) (
∂̄īNx

iN
)
ε̄ī1 ī2...̄iN

)
. . .

. . .
((
∂̄j̄1x

j1
) (
∂̄j̄2x

j2
) (
∂̄j̄Nx

jN
)
ε̄j̄1j̄2...j̄N

)
ai1j1ai2j2 . . . aiN jN (B.13)

It follows from (B.11) and (B.12) that:

ā
−2

= J̄−2 a
−2

=
(
J̄−1εi1i2...iN

) (
J̄−1εj1j2...jN

)
ai1j1ai2j2 . . . aiN jN (B.14)

Comparing (B.13) and (B.14), it can be seen that:

ε̄ī1 ī2...̄iN = J̄−1
(
∂i1x̄

ī1
)(

∂i2x̄
ī2
)
. . .
(
∂iN x̄

īN
)
εi1i2...iN
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which proves that εi1i2...iN is an invariant relative tensor of weight −1 and order N+0
(the invariant nature following from the definition). An analogous argument based
on a tensor bij may be used to demonstrate that εj1j2...jN is an invariant relative
tensor of weight +1 and order 0 +N (an invariant tensor density).

B.1.7 Symmetries and Symmetrisations

Given a tensor (or some other indexed object, in general), it will occasionally be
useful to extract the completely symmetric (unchanged by the swapping of any 2
indices) and completely anti-symmetric (negated by the swapping of any 2 indices)
parts. For example, given Tij, the following:

T{ij} =
1

2
(Tij + Tji)

T[ij] =
1

2
(Tij − Tji)

are, respectively, the completely symmetric and completely anti-symmetric compo-
nents of Tij (noting that T{ij} = T{ji} and T[ij] = −T[ji]). Note that Tij = T{ij}+T[ij],
and that if Tij is a tensor, so too will be T{ij} and T[ij].

The same shorthand is applied to upper indices. For example:

S{ij} =
1

2

(
Sij + Sji

)

S[ij] =
1

2

(
Sij − Sji)

and once again Sij = S{ij} + S[ij], and any tensorial character is retained.

For mixed indices, some care is needed. Specifically, the symmetrisation and
antisymmetrisation operations can be defined only if the relevant raising/lowering
operation is defined (see section B.2). The same shorthand is used, with a dot •
acting as a placeholder for the indices not at the same level as the relevant bracket.
For example:

U{i•j
} =

1

2

(
U i

j + Uj
i
)

V[i
j
•] =

1

2

(
Vi
j − V j

i

)

where as usual either tensor is the sum of it’s symmetric and anti-symmetric parts,
and tensorial character is retained.

Given an object with more than two indices the same shorthand may be applied,
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for example:

S[ij]k =
1

2

(
Sijk − Sjik)

Ti{j
k
•} =

1

2

(
Tij

k + Ti
k
j

)

V[i
jW k

l]m =
1

2

(
Vi
jW k

lm − VljW k
im

)

where the final example illustrates the need for the placeholder, •, to avoid any pos-
sible ambiguity. In all of these examples (and indeed all cases where only two indices
are affected), the original indexed object can be completely reconstructed by adding
together its completely symmetric and completely anti-symmetric components, and
tensorial character is retained.

More generally, much the same procedure may be applied to more than two in-
dices at once. However, it should be noted that if more than two indices are involved
then there is no way to re-construct the original object using only its completely
symmetric and completely anti-symmetric parts (although the any tensorial char-
acter will be retained). This is done using the generalised kronecker-delta symbols
thusly:

T[i1i2...im] =
1

m!
δi1i2...im

j1j2...jmTj1j2...jm

S{i1i2...im} =
1

m!

∣∣δj1j2...jm i1i2...im
∣∣Sj1j2...jm

which can be extended to mixed indices (tensors only), etc., as required.

To avoid confusion, the following alternative notation will occasionally be used:

Ti1i2 . . . im︸ ︷︷ ︸ =
1

m!
δi1i2...im

j1j2...jmTj1j2...jm

Si1i2...im =
1

m!

∣∣δj1j2...jm i1i2...im
∣∣Sj1j2...jm

so:

Ti1i2 . . . im︸ ︷︷ ︸ = T[i1i2...im]

Si1i2...im = T{i1i2...im}

The symmetry properties of an array can often be used to advantage by the use of
some common “tricks”. In particular, it is not uncommon to encounter expressions
of the form:

A...... = B...ij...
... C ...

...ij...

Now, suppose that B...ij...
... is completely symmetric in the indices ij, and C ...

...ij...
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completely anti-symmetric in the indices ij. Then:

A...... = B...ij...
... C ...

...ij...

= −B...ij...
... C ...

...ji...

= −B...ji...
... C ...

...ji...

but the indices ij are just placeholders in the implied summation. So they may be
swapped, and hence:

A...... = B...ij...
... C ...

...ij...

= −B...ji...
... C ...

...ji...

= −B...ij...
... C ...

...ij...

which can only be true if A...... = 0.
Exactly the same reasoning may be applied if B...ij...

... is completely anti-symmetric
in the indices ij, and C ...

...ij... completely symmetric in the indices ij. The upshot of
this is that any such double contraction, where one pair (either both superscript or
both subscript) is anti-symmetric and the other symmetric will give a result of zero.

It is also worth noting that, given Ai, the product AiAj is completely symmetric.
Likewise, given Bi, the product BiBj is completely symmetric.

B.1.8 p-Cells, p-Forms and Duality

So far, I have concentrated on the contravariant and covariant vectors as the prim-
itives from which other objects (relative tensors, oriented densities etc.) may be
constructed. However, this picture is somewhat misleading, as arrows (contravariant
vectors) and gradients (covariant vectors) are most definitely not the only geometric
objects which one may be interested in. In this section I will introduce more gen-
eral objects, known as forms that, while trivially expressible in terms of vectorial
primitives, represent distinct geometrical objects in themselves.

I will start with contravariant p-forms. An infinitesimal contravariant vector ai

represents the primitive of the directed line element - it has a beginning and an end
(in tangent space), and also a direction (the beginning and end are distinct). More-
over, the infinitesimal offset dxi may be seen to be the primitive for 1-dimensional
objects (curves) - the tuple dxi at a point xi tells how to get from this point to
another point nearby, using an implicitly defined set of tangent axis at this point.
Another “simple” shape in tangent space is the p dimensional parallelogram, or p-
cell, as shown for example in figure B.1. Using infinitesimal p-cells, an arbitrary
p-dimensional region (subspace) in space may be defined. That is, p-cells are the
primitive objects from which such structures may be made.

Consider the infinitesimal 2-dimensional parallelogram (2-surface/cell) shown in
figure B.2. This is partially characterised by the offset vectors d(1)x

i and d(2)x
i from

which it was constructed. However, it also has a characteristic sign (direction) (one
could say that a particular side is facing forwards, and then reverse this), which
is dependent on the precise ordering of the offsets d(1)x

i and d(2)x
i. Hence, the

parallelogram corresponding to d(2)x
i and d(1)x

i (i.e. order reversed) is in a sense
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1

Figure B.1: A simple 3-cell.

P
( )1d xα

( )2d xα

Figure B.2: Construction of an infinitesimal parallelogram. The direction here can
be determined by taking your right hand, pointing the thumb in the direction of the
first offset d(1)x

i and your fingers in the direction of the second offset d(2)x
i. The

palm of your hand is then facing in the “direction” of the parallelogram.

the negative of the original.

Mathematically, the infinitesimal 2-surface defined by the ordered pair d(1)x
i and

d(2)x
i (at P ) is defined to be dAi1i2 = d(1)x

[i1d(2)x
i2], which has N(N+1)

2
independent

components. The basis for these components are ordered pairs of tangent axis,
so any element of dAI1I2 is the signed area of the complete parallelogram when
projected onto the 2-surface defined by that (ordered) pair of tangent axis

(
eI1 , eI2

)
.

In this way, any anti-symmetric 2 + 0 order tensor Aij may be thought to represent
a 2-surface like object in tangent space.

Note that:
d(1)x

[i1d(2)x
i2] = −d(2)x

[i1d(1)x
i2]

d(1)x
[i1d(1)x

i2] = 0

which implies that this object is indeed signed and, furthermore, that a parallelo-
gram constructed by two parallel offsets is not a parallelogram (insofar as it is a
1-dimensional object with 0 area).

This can be extended to an arbitrary infinitesimal p-cell constructed from p
infinitesimal offsets d(i)x

j via:

dτ(p)
i1i2...ip = d(1)x

[i1d(2)x
i2 . . . d(p)x

ip]
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1

P

Figure B.3: The rotation of a fluid in a fluid in a 2 dimensional space about a point
P

which has as it’s basis the ordered p-tuples of tangent axis (ei1 , ei2 , . . . , eip). Note
that unless the set of offsets d(i)x

j are independent dτ(p)
i1i2...ip = 0, and hence it is

not possible to construct nonzero p-cells where p > N . This is reasonable, as such a
p-cell would be unphysical.

From this, it may be seen that any completely antisymmetric p+ 0 order tensor
will represent a finite p-cell in tangent space. Such an object is technically known
as a contravariant p-form of weight 0, where a contravariant p-form of weight w is
defined thusly:

Definition B.1.29. A contravariant p-form of weight w is a completely antisym-
metric relative tensor of weight w and order p+ 0.

Closely related to this is the covariant p-form. Now, a covariant vector ri repre-
sents the (local) rate of change of some scalar function. Physically, a more useful way
of picturing this is to imagine a fluid permeating our N -dimensional space. Then a
covariant vector ri at a point P represents the rate of flow of that fluid going past
P - that is, each element rI represents that rate of flow of the fluid along the axis
eI at P .

Of course, a covariant vector ri at a point cannot completely capture the flow of
a fluid at that point. For example, suppose that space is 2 dimensional, and that
our fluid is rotating about the point P , as shown in figure B.3. In this case, there
is no fluid flow along any axis at P , but none-the-less there is something non-trivial
happening at this point!

Once again, the key to understanding and describing such situations lies in con-
sidering objects whose basis are ordered sets of basis vectors, for example (ei, ej).
The flow in the above example may be described using a completely antisymmetric
covariant tensor Aij. In this simple 2-dimensional example, AI1I2 represents that
rate of flow of the fluid around the 2-cell defined by the ordered pair

(
eI1 , eI2

)
-

leaving P in the direction of eI1 and returning along −eI2 after circumnavigating
the 2-cell. So, using standard cartesian coordinates, Axy is the anticlockwise rate of
rotation of the fluid, and Ayx = −Axy the clockwise rate of rotation.

This extends to the rate of flow (rotation) around arbitrary p-cells in N dimen-
sional space (which is unfortunately rather difficult to visualise for p ≥ 4), this being
represented by a covariant p-form of weight 0, where a covariant p-form of weight
w is defined by:
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Definition B.1.30. A covariant p-form of weight w is a completely antisymmetric
relative tensor of weight w and order 0 + p.

There is a close connection between contravariant and covariant p-forms, known

as duality. Suppose f
w

i1i2...ip is a contravariant p-form of weight w. The dual
d

f
w

i1i2...ip =

f
w+1

j1j2...jN−p of f
w

i1i2...ip is defined to be:

f
w+1

j1j2...jN−p =
d

f
w

i1i2...ip =
1

p!
εj1j2...jN−pi1i1...ipf

w

i1i2...ip

and is a covariant (N − p)-form of weight w + 1. Similarly, if f
w
i1i2...ip is a covariant

p-form of weight w, the dual f
w−1

j1j2...jN−p =
d

f
w
i1i2...ip of f

w
i1i2...ip is defined to be:

f
w−1

j1j2...jN−p =
d

f
w
i1i2...ip =

1

p!
εj1j2...jN−pi1i1...ipf

w
i1i2...ip

and is a contravariant (N − p)-form of weight w − 1. Because of the notational
ambiguity involved here, the use of overscript d to indicate duality will be avoided
where possible. The dual of an oriented object will also be oriented.

Using (B.6) and (B.7), it can be seen that:

dd

f
w

k1k2...kp =
1

(N − p)!ε
k1k2...kpj1j1...jN−p

d

f
w

j1j2...jp

=
1

p! (N − p)!ε
k1k2...kpj1j1...jN−pεj1j2...jN−pi1i1...ipf

w

i1i2...ip

=
1

p! (N − p)!δ
k1k2...kpj1j1...jN−p

j1j2...jN−pi1i1...ipf
w

i1i2...ip

= f
w

k1k2...kp

dd

f
w
k1k2...kp =

1

(N − p)!εk1k2...kpj1j1...jN−p

d

f
w
j1j2...jp

=
1

p! (N − p)!εk1k2...kpj1j1...jN−pε
j1j2...jN−pi1i1...ipf

w
i1i2...ip

=
1

p! (N − p)!δk1k2...kpj1j1...jN−p
j1j2...jN−pi1i1...ipf

w
i1i2...ip

= f
w
k1k2...kp

Clearly, computing the dual of a p-form leaves the geometric information stored
by that p-form essentially untouched (otherwise the operation would not be re-
versible). So what is the connection between a p-form and its dual?

This question can be answered by considered some examples. First off, consider
the infinitesimal contravariant 1-form ai in a 3-dimensional space, which is a con-
travariant vector in tangent space. The dual of this is a covariant 2-form in the same
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tangent space, representing a fluid rotation around (but not along) the direction ai

- that is, a flow around an 2-cell perpendicular to ai. More generally, the dual of
any contravariant 1-form in an N dimensional space is a covariant (N − 1)-form
representing the flow of some fluid about an (N − 1)-cell which is perpendicular to
direction of the original contravariant 1-form (which in the 2-dimensional case just
means flow at right angles to the original contravariant 1-form).

Similarly, it is not hard to see that the dual of an contravariant (N − 1)-form
will be a covariant 1-form representing flow perpendicularly through the original
contravariant (N − 1)-cell in the direction of the (N − 1)-cell. More generally, the
duals of all contravariant forms of order 0 to N − 1 may be visualised similarly as
flows essentially “perpendicular” to some cell (be they linear flows, 2 dimensional
rotations or higher order rotations), represented by the original contravariant form.

A case of special interest is the dual of the infinitesimal contravariant N -form
dτ(N)

i1j2...jN defined previously, which is an infinitesimal scalar density:

d

dτ (N)
i1i2...iN = εi1i2...iNdτ(N)

i1i2...iN

= εi1i2...iNdx
[i1
1 dx

i2
2 . . . dx

iN ]
N

=
1

N !
εi1i2...iN δ

i1i2...iN
j1j2...jNdx

j1
1 dx

j2
2 . . . dx

jN
N

=
1

N !
δi1i2...iN

i1i2...iN εj1j2...jNdx
j1
1 dx

j2
2 . . . dx

jN
N

= εi1i2...iNdx
i1
1 dx

i2
2 . . . dx

iN
N

Now, if dxI
j = δI

jdy then:

d

dτ (N)
i1i2...iN = dyN (B.15)

For the standard Cartesian basis, (B.15) is obviously the standard infinitesimal
volume element. However, for other basis, this is not true, which is clear from the

fact that
d

dτ (N)
i1i2...iN is a density, whereas one would expect the volume of an N -cell

to be an oriented scalar. The drive to construct a scalar measure of the volume of
an N -cell leads to the construction of a much more practical definition of duality in
section B.2.4.

B.2 The Metric Tensor

B.2.1 Magnitude and Angle in Vector Spaces

Consider a real vector space with standard Cartesian basis. In this vector space the
length of a vector ai is usually (i.e. in the usual Euclidean setting) defined to be:

∥∥ai
∥∥ =

√
δijaiaj
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Now, under an arbitrary change of basis:

∣∣∣āī
∣∣∣
2

=
∣∣ai
∣∣2 = ḡīj̄ ā

īāj̄

where:
ḡīj̄ = δij b̄ī

ib̄j̄
j

or, in matrix notation: [
ḡīj̄
]

=
[
b̄ī
i
] [
b̄j̄
i
]T

The only limitation on the change of coordinates is that the matrix
[
b̄ī
i
]

is a non-
singular. Given this,

[
ḡīj̄
]

can be made to be (by choosing an appropriate change of
coordinates) any symmetric positive definite matrix.

Rather than starting with a standard Cartesian basis, one may instead simply
define the length of a vector ai in some arbitrary coordinate system to be:

∥∥ai
∥∥ =

√
gijaiaj

where gij is some array defined such that [gij] is symmetric and positive definite.
Changing to another basis this becomes:

∣∣∣āī
∣∣∣
2

=
∣∣ai
∣∣2

= ḡīj̄ ā
īāj̄

where:
ḡīj̄ = gij b̄ī

ib̄j̄
j (B.16)

In this manner, one may define a cartesian basis (and cartesian coordinates) to
be the basis for which gij = δij. So in this sense gij defines the basis of the vector
space, and if gij = δij then the basis so defined is the usual orthonormal Cartesian
basis.

More generally (when considering the geometry of special relativity, for exam-

ple) a vector may have a negative magnitude (i.e. |ai|2 < 0). To construct this
magnitude, start with: ∣∣ai

∣∣2 = γija
iaj

where:

γij =

{ ±1 if i = j
0 if i 6= j

It is useful to define:

Definition B.2.1. The signature of a vector space is defined to be (γ1 1, γ2 2, . . . , γNN).

The effect of this modification is that gij need not be positive definite so long as

[gij] is non-singular and symmetric. Of course, if |ai|2 < 0 then one cannot simply
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take the square root to find the length. Instead, the length may be defined thusly:

∥∥ai
∥∥ =

√
|gijaiaj|

However, it should be noted that in this case the sign of the magnitude gija
iaj

is also informative. In special relativity, for example, this sign defines the difference
between a timelike vectors (for which gija

iaj < 0) and spacelike vectors (for which
gija

iaj > 0).
Given two tensors ai and bi the inner (dot) product for a general basis is:

〈
ai, bj

〉
= gija

ibj

which has the usual interpretation as the squared length of the vector ai projected
onto bi. Using this, the angle θ between the vectors ai and bi is given by:

cos θ =
gija

ibj

‖ak‖ ‖bk‖

Some care is warranted here, however, as if gija
ibj < 0 then the resultant angle

θ will be complex as defined by the above formula.

B.2.2 The Metric Tensor (Field)

As discussed previously, in a general space each point P has associated with it a
tangent vector space TP , which is a vector space at that point rather like the tangent
to a curve at a point. Furthermore, in the infinitesimal neighbourhood of a point P ,
the offsets dxi act like the vectors in this tangent space.

One may take this one step further and require that the space be locally Euclidean
or, more generally, locally metric (making the space a metric space equipped with
Reimannian geometry). This is done by defining the length ds of an offset dxi (which
is the distance between the points xi and xi + dxi) using the standard formulas of
the previous section. That is:

ds2 = gijdx
idxj

where gij is defined at the point xi such that [gij] is symmetric and non-singular. As
length is a property of the vector dx and not the coordinate system, it follows that
the magnitude ds2 should be a scalar. Using this requirement, it is not difficult to
show that the gij must be a tensor of order 0 + 2.

The metric tensor is a tensor field of order 0 + 2, which assigns to every point a
tensor gij (which is implicitly a function of position) as above, thereby defining the
concept of length throughout the space, and allowing one to measure the length of
curves in a space. For example, if xi = f i (u), ú ≤ u ≤ ù, defines a curve in space
then the length of that curve l (f i) will be:

l
(
f i
)

=

∫ ù

u=ú

√∣∣∣∣gij
df i

du

df j

du

∣∣∣∣du
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By analogy with the definition of the metric tensor, the conjugate tensor gij

may be defined to give the magnitude of a covariant vector ai at a point xi via
‖ai‖2 = gijaiaj. For example, the N -dimensional Laplacian is defined by:

∇2 = gij∂i∂j

Naturally, for an orthonormal Cartesian basis at a point xi one would expect
that gij = γij at that point. Using an analogous argument to the construction of
the metric tensor, it follows logically that gij should be a symmetric tensor of order
2 + 0.

Consider two tensors ai and bi at a point xi. Then f = aib
i will be a scalar at

xi. Choosing an orthonormal basis for Txi , it follows that:

f = aib
i = cidi

where:

ci = γijaj

= gijaj (B.17)

di = γijb
j

= gijb
j (B.18)

are, by definition, tensors. For arbitrary coordinates:

f = cidi = aig
ijgjkb

k

but by definition f = aib
i, so it may be concluded that:

gijg
jk = γijγ

jk = δi
k

or, in matrix notation:
[gij]

[
gjk
]

= I

and therefore: [
gij
]

= [gij]
−1

The tensor gij is the contravariant tensor, and gij is its covariant conjugate.

Consider the change in gij under change of coordinates:

ḡīj̄ =
(
∂̄īx

i
)
gij
(
∂̄j̄x

j
)

Defining g = det ([gij]), it follows that:

ḡ = J̄−2g

which implies that g is a relative scalar of weight −2 (although for brevity the under-
script−2 is not included). Furthermore, in Cartesian coordinates, g = γ1 1γ2 2 . . . γNN =
±1, and hence sgn (g) = γ1 1γ2 2 . . . γN N . Being careful to ensure that the relevant
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square-roots are defined (both argument and result are positive), it follows that:

√
sgn (ḡ) ḡ = sgn

(
J̄
)
J̄−1
√

sgn (g) g (B.19)

so
√

sgn (g) g is an oriented relative tensor of weight −1.

Another useful result (which will not be proven here) is:

∂g

∂gij
= ggij

or:
∂ ln (sgn (g) g)

∂gij
= gij

and:
∂ ln (sgn (g) g)

∂xk
=
∂ ln (sgn (g) g)

∂gij

∂gij
∂xk

= gij
∂gij
∂xk

(B.20)

B.2.3 Raising and Lowering Indices

When defining general relative tensors (and subsequently tensor densities and ten-
sors) in definition B.1.10, I noted that, in general, superscripts should not be placed
directly over subscripts and vice-versa, giving a definite order to the indices. I will
now show why this was done.

Consider the definitions of covariant and contravariant vectors. Clearly, they are
expressing much that same thing (namely, the concept of directed magnitude), but in
different ways (namely, a movement of something in a given direction (contravariant
vectors) versus the rate of change of something (covariant vectors)).

The expression gija
iaj holds the clue to this connection. Suppose this is re-

written aia
i, where ai has been defined by ai = gija

j. Clearly, ai is a covariant
vector, defined by the contravariant vector ai and a characteristic of space, namely
the metric tensor gij. So, in a very real sense, ai and ai are the same thing. Formally,
the operation of moving from ai to ai using ai = gija

j is called lowering the index i.

Likewise, given a covariant vector bi, it is possible to raise the index to get a
contravariant vector bi = gijbj, and as before, gijbibj = bibi. Note the raising and
then lowering an index will not change the tensor. Hence:

ai = gijaj = gijgjka
k = δika

k

bi = gijb
j = gijg

jkbk = δi
kbk

More generally, any index of a relative tensor (or an oriented relative tensor) may
be unambiguously raised or lowered in this way. However, some care is required when
dealing with “special” objects. For example, δij may be treated like a tensor (which
it is), but δij may not (and neither may γij). In this case, raising j in δij will give the
conjugate metric tensor, gij, and lowering i will give the metric tensor gij. Likewise,
raising and lowering indices of δj1j2...jn

i1i2...in , εi1i2...iN and εj1j2...jN is to be avoided.
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B.2.4 Duality and Volume Revisited

In section B.1.8 it was noted (see equation (B.23)) that the dual
d

dτ (N)
i1j2...jN of an

N -cell is closely related to the concept of volume. In this section an alternative
definition of duality will be given that makes this connection exact.

First, define:

ηi1i2...iN =
√

sgn (g) g εi1i2...iN (B.21)

ηi1i2...iN =
1√

sgn (g) g
εi1i2...iN (B.22)

noting that ηi1i2...iN is an oriented tensor of order 0 + N and ηi1i2...iN an oriented
tensor of order N + 0. These tensors may be used in an alternative (more practical)
definition of duality, namely:

• The dual f
w+

j1j2...jN−p =
D

f
w

i1i2...ip of a contravariant p-form f
w

i1i2...ip of weight w

is defined to be:
D

f
w

i1i2...ip =
1

p!
ηj1j2...jN−pi1i2...ipf

w

i1i2...ip

and is an oriented covariant (N − p)-form of weight w.

• The dual f
w+

j1j2...jN−p =
D

f
w
i1i2...ip of a covariant p-form f

w
i1i2...ip of weight w is

defined to be:
D

f
w
j1j2...jp =

1

p!
ηj1j2...jN−pi1i2...ipf

w
i1i2...ip

and is an oriented contravariant (N − p)-form of weight w.

• The dual f
w
j1j2...jN−p =

D

f
w+

i1i2...ip of an oriented contravariant p-form f
w+

i1i2...ip of

weight w is defined to be:

D

f
w+

i1i2...ip =
1

p!
ηj1j2...jN−pi1i2...ip f

w+

i1i2...ip

and is a covariant (N − p)-form of weight w.

• The dual f
w

j1j2...jN−p =
D

f
w+

i1i2...ip of an oriented covariant p-form f
w+

i1i2...ip of

weight w is defined to be:

D

f
w+

j1j2...jp =
1

p!
ηj1j2...jN−pi1i2...ip f

w+
i1i2...ip

and is a contravariant (N − p)-form of weight w.

Once again, it can be shown that the duality operation is its own inverse. That
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is:

DD

f
w
i1i2...ip = f

w
i1i2...ip

DD

f
w+

i1i2...ip = f
w+

i1i2...ip

DD

f
w

i1i2...ip = f
w

i1i2...ip

DD

f
w+

i1i2...ip = f
w+

i1i2...ip

Applying this definition of duality to the N -cell dτ(N)
i1i2...iN , it is clear that:

D

dτ(N)
i1i2...iN = ηi1i2...iNdx

i1
1 dx

i2
2 . . . dx

iN
N

is an oriented scalar. Furthermore, if dxI
j = δI

jdy and the coordinates are cartesian
(i.e. gij = γij) then:

D

dτ (N)
i1i2...iN = dyN (B.23)

from which one may conclude that
D

dτ(N)
i1i2...iN is an appropriate measure of the

volume of the N -cell dτ(N)
i1i2...iN , namely an oriented scalar which, for cartesian

coordinates, corresponds to the standard infinitesimal volume measure.
Moving from Cartesian coordinates to arbitrary coordinates x̄ī then using (B.19)

it is possible to derive the standard formula:

D

dτ (N)
i1i2...iN = dyN

=
√

sgn (ḡ) ḡ dx̄1dx̄2 . . . dx̄N

=
∣∣J̄−1

∣∣ dx̄1dx̄2 . . . dx̄N

So in general the infinitesimal volume element is:

dV =
√

sgn (g) g dx1dx2 . . . dxN

B.2.5 Of Geodesics and Christoffel Symbols

Until the present I have only considered the local properties of a space. In the
present section, I will be considering a non-local property of space for the first time,
namely the concept of shortest paths. Before proceeding however it is important to
correct a common misconception. It is not uncommon for books, when discussing
geodesics, to confuse the quite distinct concepts of shortest paths and straightest
paths. This confusion of concepts is not problematic if space is assumed to be
torsionless (torsion will be defined in section B.3), and consequently difficulties do
not typically arise in books which assume (sometimes explicitly, often implicitly)
that torsion is zero. However, in general it is important to be clear from the start.
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Given two non-coincident points xi and yi:

• A geodesic path between xi and yi is the curve of extreme (either shortest,
longest or inflected) length between the two points.

• An autoparallel path between xi and yi is a straight path between the two
points, as will be defined in section B.3.

• The geodesic and autoparallel paths between xi and yi are not, in general, the
same.

Consider two points yi and zi. A path from yi to zi is a curve xi = f i (u),
ú ≤ u ≤ ù, such that yi = f i (ú) and zi = f i (ù). The length l

(
fk
)

is defined to be:

l
(
fk
)

=

∫ ù

u=ú

√∣∣∣∣gij
df i

du

df j

du

∣∣∣∣du

Geodesics in Locally Euclidean Spaces

To begin, let us assume that the space is locally Euclidean - that is, the signature of
the space is (+1,+1, . . . ,+1). Suppose that the curve f i (u) is a member of a family
of curves hi (vn) (u) (assuming continuity in vn, which is not a tensor) where every
choice vn ∈ V defines a curve from yi to zi, and the curve so chosen is parametrised
by u in the usual manner. The length of a particular curve vn is defined as:

lh (vn) = l
(
hk (vn)

)
=

∫ ù

u=ú

√∣∣∣∣gij
dhi (vn)

du

dhj (vn)

du

∣∣∣∣du

If hi (vn) (u) is the set of all paths from yi to zi then the geodesic path is the
curve whose length is an extrema of this family. i.e.

∂lh (vn)

∂vq
= 0

Defining pi = dhi(vn)
du

, it follows that:

∂lh (vn)

∂vq
=

∫ ù

u=ú

(
∂

∂vq

√
|gijpipj|

)
du = 0

Now:

∂

∂vq

√
|gijpipj| =

(
∂

∂xk

√
|gijpipj|

)
∂xk

∂vq
+

(
∂

∂pk

√
|gijpipj|

)
∂pk

∂vq

=

(
∂

∂xk

√
|gijpipj|

)
∂xk

∂vq
+

(
∂

∂pk

√
|gijpipj|

)
∂

∂vq
dxk

du

=

(
∂

∂xk

√
|gijpipj|

)
∂xk

∂vq
+

(
∂

∂pk

√
|gijpipj|

)
d

du

∂xk

∂vq



B.2. THE METRIC TENSOR 297

Noting that:

d

du

((
∂

∂pk

√
|gijpipj|

)
∂xk

∂vq

)
=

(
d

du

∂

∂pk

√
|gijpipj|

)
∂xk

∂vq
+

(
∂

∂pk

√
|gijpipj|

)
d

du

∂xk

∂vq

it follows that:

∂

∂vq

√
|gijpipj| =

(
∂

∂xk

√
|gijpipj|

)
∂xk

∂vq
+

d

du

((
∂

∂pk

√
|gijpipj|

)
∂xk

∂vq

)

−
(
d

du

∂

∂pk

√
|gijpipj|

)
∂xk

∂vq

and hence:

∂lh (vn)

∂vq
=

[(
∂

∂pk

√
|gijpipj|

)
∂xk

∂vq

]ù

u=ú

−
∫ ù

u=ú

(
d

du

∂

∂pk

√
|gijpipj| − ∂

∂xk

√
|gijpipj|

)
∂xk

∂vq
du

However, by definition, ∂xi

∂vq
= 0 at u = ú, ù (as hi (vn) (ú) = yi and hi (vn) (ù) =

zi for all vn ∈ V). Therefore:

∂lh (vn)

∂vq
= −

∫ ù

u=ú

(
d

du

∂

∂pk

√
|gijpipj| − ∂

∂xk

√
|gijpipj|

)
∂xk

∂vq
du

This gives us the rate of change of the length of the members of the curve family
hi (vn) (u) as the continuous selector vn ∈ V is varied. For a geodesic, ∂lh(vn)

∂vq
= 0,

so:
d

du

∂

∂pk

√
|gijpipj| − ∂

∂xk

√
|gijpipj| = 0

Using the assumption that the signature of the space is (+1,+1, . . . ,+1) (and
hence [gij] must be positive definite everywhere), it is not too difficult to show that
this implies:

d

du

∂

∂pk
(
gijp

ipj
)− ∂

∂xk
(
gijp

ipj
)

=
1

2 (gijpipj)

[
d

du

(
gijp

ipj
)] ∂

∂pk
(
gijp

ipj
)

(B.24)

Define s = s (u) be the length of the path (specified by vq) from ú to u. Suppose

that s = u. Then pi = dxi

ds
, and so:

d

ds

(
gijp

ipj
)

=
d

ds

(
gij
dxi

ds

dxj

ds

)

=
d

ds

(
gijdx

idxj

ds2

)

=
d

ds

(
ds2

ds2

)
= 0
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Hence (B.24) becomes:

d

ds

∂

∂pk
(
gijp

ipj
)− ∂

∂xk
(
gijp

ipj
)

= 0

and so:

2
d

ds

(
gikp

i
)− ∂gij

∂xk
pipj = 0 (B.25)

The first term can be simplified thusly:

2
d

ds

(
gikp

i
)

= 2
∂

∂xl
(
gikp

i
) dxl
ds

+ 2
∂

∂pl
(
gikp

i
) dpl
ds

= 2
∂gik
∂xj

pipj + 2gik
dpi

ds

so (B.25) may be re-written:

2
∂gik
∂xj

pipj + 2gik
dpi

ds
− ∂gij
∂xk

pipj = 0

Trivially, this implies the following:

1

2
gik
dpi

ds
+

1

2

∂gik
∂xj

pipj − 1

4

∂gij
∂xk

pipj = 0 (B.26)

1

2
gik
dpi

ds
+

1

2

∂gkj
∂xi

pipj − 1

4

∂gij
∂xk

pipj = 0 (B.27)

Adding (B.26) and (B.26) it follows that a curve xi = f i (s) is a geodesic if:

gik
dpi

ds
+ [ij k] pipj = 0

where:

[ij k] =
1

2
(∂jgik + ∂igkj − ∂kgij)

is called the Christoffel symbol of the first kind. It is customary to define a Christoffel
symbol of the second kind by:

{
k
ij

}
= gkl [ij l]

Then a curve xi = f i (s) is a geodesic if:

d2xk

ds2
+

{
k
ij

}
dxi

ds

dxj

ds
= 0 (B.28)

everywhere along the curve, where s is the length of the curve measured from some
arbitrary point on the curve (noting that an arbitrary offset for s will not change
(B.28)). This is known as the geodesic equation.

It should be noted that as (B.28) is a second order differential equation, to
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determine a geodesic everywhere it is sufficient to have a point which the geodesic
will starting point (or intercept), say yi, and the gradient at that point (say dyi

ds
) -

that is, a starting point (or intercept) and a direction.

Now, in general, u = u (s), where s is the length of the path (specified by vn)
from ú to u. Then:

d2xk

ds2
+

{
k
ij

}
dxi

ds

dxj

ds
= 0

∴ d

du

(
dxk

du

du

ds

)
du

ds
+

{
k
ij

}
dxi

du

du

ds

dxj

du

du

ds
= 0

∴ d2xk

du2

(
du

ds

)2

+
dxi

du

(
d

du

du

ds

)
du

ds
+

{
k
ij

}
dxi

du

dxj

du

(
du

ds

)2

= 0

∴ d2xk

du2

(
du

ds

)2

+
dxi

du

d2u

ds2
+

{
k
ij

}
dxi

du

dxj

du

(
du

ds

)2

= 0

which gives an alternate form of the geodesic equation:

d2xk

du2
+

{
k
ij

}
dxi

du

dxj

du
= λ

dxk

du
(B.29)

where:

λ = −
d2u
ds2(
du
ds

)2

Now, note that in (B.29) the left-hand side is a tensor (specifically, contravariant

vector), as is dxi

du
on the right hand side. Given that u can be any function of the

distance s from yi, λ can be made to be any scalar. So, in general, a curve with an
arbitrary parameter u is a geodesic if it satisfies:

d2xi

du2
+

{
k
ij

}
dxi

du

dxj

du
∝ dxi

du
(B.30)

Geodesics in Generic Spaces

While the construction of the geodesic given above makes the assumption that the
space is locally Euclidean, it will be noted that throughout the argument the only
assumption that is strictly necessary is that the curves are not null. That is, at no
point does the tangent dxi to the curve satisfy the equality ds2 = gijdx

idxj = 0.

For the case ds = 0, a geodesic null line is defined to be a curve satisfying (B.29)
where λ = 0.
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B.2.6 Properties of the Christoffel Symbols

The Christoffel symbols of the first and second kind, respectively, were defined pre-
viously as:

[ij k] =
1

2
(∂jgik + ∂igkj − ∂kgij) (B.31)

{
k
ij

}
= gkl [ij l] (B.32)

Under change of basis, it can be shown that:

[̄
ij̄ k̄

]
=
(
∂̄īx

i
) (
∂̄j̄x

j
) (
∂̄k̄x

k
)

[ij , k] + gkj
(
∂̄k̄x

k
) (
∂̄ī∂̄j̄x

j
)

(B.33)
{

k̄
īj̄

}
=
(
∂̄īx

i
) (
∂̄j̄x

j
) (
∂kx̄

k̄
){ k

ij

}
+
(
∂kx̄

k̄
) (
∂̄ī∂̄j̄x

k
)

(B.34)

from which it is clear that neither symbol is a tensor.
For later reference, the following properties are presented without proof:

[ij k] =
1

2
(∂jgik + ∂igkj − ∂kgij) (B.35)

[[ij] k] = 0 (B.36)

[i[j k]] =
1

2
(∂jgik − ∂kgij) (B.37)

[
[• • ]
ij k

]
=

1

2
(∂igkj − ∂kgij) (B.38)

[{ij} k] = [ij k] (B.39)

[i{j k}] =
1

2
∂igjk (B.40)

[{• •}
ij k

]
=

1

2
∂jgik (B.41)

[
ij k︸︷︷︸

]
= 0 (B.42)

[
ij k

]
=

1

3!
(∂kgij + ∂igjk + ∂jgki) (B.43)

B.3 The Affine Connection

B.3.1 Non-tensorial Tensor Gradients

Consider a contravariant tensor field, Ai. At points xi and xi + δxi, define the value
of the field to be Ai and Ai + dAi, respectively. Then:

dAi =
(
∂jA

i
)
dxj

Naively, it would seem reasonable to expect that dAi should be a contravariant
tensor at xi, namely the difference between the value of the field at xi and xi + δxi,
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as measured at xi. However, this is not in general true. To see this, consider what
happens under a change of coordinates:

dĀī =
(
∂̄j̄Ā

ī
)
δx̄j̄

=
((
∂̄j̄x

j
)
∂j

((
∂ix̄

ī
)
Ai
))(

∂kx̄
j̄
)
δxk

=
((
∂̄j̄x

j
) (
∂ix̄

ī
) (
∂jA

i
)

+
(
∂̄j̄x

j
) (
∂j∂ix̄

ī
)
Ai
)(

∂kx̄
j̄
)
δxk

=
(
∂ix̄

ī
)
dAi +

(
∂i∂jx̄

ī
)
Aiδxj (B.44)

The presence of the second term,
(
∂i∂jx̄

ī
)
Aiδxj, in the above expression clearly

demonstrates that, in general, the difference between the values of a contravariant
tensor field at two infinitesimally separated points xi and xi + δxi is not a tensor.

Indeed, the gradient of a generic relative tensor field A
w

i1i2...in
j1j2...jm

is in general non-

tensorial. It is straightforward (although admittedly rather tedious) to show that,
under change of coordinates:5

∂̄k̄Ā
w

ī1 ī2...̄in
j̄1j̄2...j̄m

= . . .

J̄w
(
∂i1x̄

ī1
)(

∂i2x̄
ī2
)
. . .
(
∂inx̄

īn
) (
∂̄j̄1x

j1
) (
∂̄j̄2x

j2
)
. . .
(
∂̄j̄mx

jm
) (
∂̄k̄x

k
)
∂kA

w

i1i2...in
j1j2...jm

− wJ̄wῩq̄
q̄k̄

(
∂i1x̄

ī1
)(

∂i2x̄
ī2
)
. . .
(
∂inx̄

īn
) (
∂̄j̄1x

j1
) (
∂̄j̄2x

j2
)
. . .
(
∂̄j̄mx

jm
)
A
w

i1i2...in
j1j2...jm

+
( (
∂̄k̄x

k
) (
∂k∂i1x̄

ī1
)(

∂i2x̄
ī2
)
. . .
(
∂inx̄

īn
) (
∂̄j̄1x

j1
) (
∂̄j̄2x

j2
)
. . .
(
∂̄j̄mx

jm
)

+
(
∂̄k̄x

k
) (
∂i1x̄

ī1
)(

∂k∂i2x̄
ī2
)
. . .
(
∂inx̄

īn
) (
∂̄j̄1x

j1
) (
∂̄j̄2x

j2
)
. . .
(
∂̄j̄mx

jm
)

+ . . .

+
(
∂̄k̄x

k
) (
∂i1x̄

ī1
)(

∂i2x̄
ī2
)
. . .
(
∂k∂inx̄

īn
) (
∂̄j̄1x

j1
) (
∂̄j̄2x

j2
)
. . .
(
∂̄j̄mx

jm
)

+
(
∂i1x̄

ī1
)(

∂i2x̄
ī2
)
. . .
(
∂inx̄

īn
) (
∂̄k̄∂̄j̄1x

j1
) (
∂̄j̄2x

j2
)
. . .
(
∂̄j̄mx

jm
)

+
(
∂i1x̄

ī1
)(

∂i2x̄
ī2
)
. . .
(
∂inx̄

īn
) (
∂̄j̄1x

j1
) (
∂̄k̄∂̄j̄2x

j2
)
. . .
(
∂̄j̄mx

jm
)

+ . . .

+
(
∂i1x̄

ī1
)(

∂i2x̄
ī2
)
. . .
(
∂inx̄

īn
) (
∂̄j̄1x

j1
) (
∂̄j̄2x

j2
)
. . .
(
∂̄k̄∂̄j̄mx

jm
) )
J̄wA

w

i1i2...in
j1j2...jm

where for convenience I have defined:

Ῡk̄
īj̄ =

(
∂kx̄

k̄
) (
∂̄ī∂̄j̄x

k
)

= − (∂̄īxi
) (
∂̄j̄x

j
) (
∂i∂jx̄

k̄
)

5To derive this, you will need the result:

∂k
(
ln
∣∣det

[
∂qx̄

q̄
]∣∣) =

(
∂̄q̄x

q
) (
∂q∂kx̄

q̄
)



302 Appendix B. DIFFERENTIAL GEOMETRY

which is be obtained by considering the equation:

∂kδ
i
j = ∂k

((
∂jx̄

k̄
) (
∂̄k̄x

i
))

= 0

This is all rather inconvenient, and seems to preclude the possibility of comparing
any objects not positioned at exactly the same point. The problem with the above
is not serious, however - it is simply that indicative of a failure to account for
the fundamentally non-local character of such a comparison. Once the non-local
character is taken into account, the problem evaporates.

B.3.2 Parallel Transport and Covariant Differentiation

An approach to the problem of defining the actual difference between (relative)
tensors not defined at the same position is to use parallel transport, defining how the
numerical representation of such an object with respect to a given basis changes as
it is moved from position to position.

Consider a relative tensor A
w

...

... of weight w and order n + m defined at xi, and

another infinitesimal different relative tensor A
w

...

... + dA
w

...

..., also of weight w and order

n+m, defined at the infinitesimally close point xi + δxi. To obtain a relative tensor
representing the physical difference between the two relative tensors, we first parallel
transport A

w

...

... to xi + δxi. i.e.:

1. Start with a relative tensor A
w

...

... at xi.

2. Move A
w

...

... parallelly by the infinitesimal displacement δxi from xi to xi + δxi.

3. This leaves the relative tensor physically unchanged, but results in a numerical
change δA

w

...

....

4. We now have a relative tensor A
w

...

...+δA
w

...

... at xi+δxi which is physically identical

(by definition) to the original relative tensor A
w

...

... at xi.

The physical difference between the two infinitesimally separated relative tensors
is defined to be the numerical difference between A

w

...

...+δA
w

...

... and A
w

...

...+dA
w

...

... at xi+δxi,

namely:
DA

w

...

... = dA
w

...

... − δA
w

...

...

and is a relative tensor of the same type at xi + δxi. This is shown schematically in
figure B.4

Let us define the parallel transport process using the smooth function:

δA
w

...

... = f
(
xi
)(

A
w

...

..., δx
i

)

where both A
w

...

... and δA
w

...

... are relative tensors of weight w and order n+m.
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1

ix i ix xδ+

ALL
A dA+L LL L

(a)

ix i ix xδ+

ALL
A dA+L LL LA Aδ+L LL L

(b)

ix i ix xδ+

ALL
A dA+L LL LA Aδ+L LL L

DALL
(c)

Figure B.4: Schematic illustration of parallel transport. (a) shows the starting
situation, with A...... at xi and A

w

...

... + dA
w

...

... at xi + δxi. A
w

...

... is then parallel transported

to xi + δxi to give A...... + δA
w

...

... at this point. The physical difference DA
w

...

... between

the relative tensors, both located at xi + δxi, is shown in figure (c).

Now, in reality this function will only ever be encountered in path integrals of
the form: ∫ ù

u=ú

f

(
dhi

du
du

)(
A
w

...

..., δx
i

)

where hi (u) defines some curve. This is basically the finite change in A
w

...

... due to

parallel transport along the curve hi (u). To ensure a finite answer, it must be true
that:

f
(
xi
)(

A
w

...

..., δx
i

)
= o

(
δxi
)

Furthermore, as none of the higher order components (that is, o
(

(δxi)
2
)

) will have

any effect on the integral, only the behaviour of f to first order is of interest.
It is also reasonable to expect that parallel transport would satisfy the following

conditions (technically, this defines the affine connection):

• If A
w

...

... = βB
w

...

... + γC
w

...

... then:

f
(
xi
)(

A
w

...

..., δx
i

)
= βf

(
xi
)(

B
w

...

..., δx
i

)
+ γf

(
xi
)(

C
w

...

..., δx
i

)
+ o

((
δxi
)2
)

• If A
w

...

... = B
w

...

...C
w

...

... then:

f
(
xi
)(

A
w

...

..., δx
i

)
= f

(
xi
)(

B
w

...

..., δx
i

)
f
(
xi
)(

C
w

...

..., δx
i

)
+ o

((
δxi
)2
)

• If A
w

...

... = B
w

...i...

...i... then:

f
(
xi
)(

A
w

...

..., δx
i

)
= δi

jf
(
xi
)(

B
w

...i...

...j..., δx
i

)
+ o

((
δxi
)2
)
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• If δxi = βδyi + γδzi then:

f
(
xi
)(

A
w

...

..., δx
i

)
= βf

(
xi
)(

A
w

...

..., δy
i

)
+ γf

(
xi
)(

A
w

...

..., δz
i

)
+ o

((
δxi
)2
)

• If A
w

is a relative scalar:

f
(
xi
)(

A
w
, δxi

)
= o

((
δxi
)2
)

Ignoring terms of order o
(

(δxi)
2
)

, the following special cases turn out to be

particularly simple:

• If Bi is a contravariant vector then:

δBk = Ωij
kBiδxj

where Ωij
k is implicitly a function of position.

• If Ci is a covariant vector then:

δCk = Ξkj
iCiδx

j

where Ξij
k is implicitly a function of position.

Now, it was shown previously (B.4) that any relative tensor A
w

i1i2...in
j1j2...jm

of weight

w and order n+m may be written thusly:

A
w

i1i2...in
j1j2...jm

= B
w

Nn+m∑

k=1

c(k,1)
i1c(k,2)

i2 . . . c(k,n)
ind(k,1)j1d(k,2)j2 . . . d(k,m)jm

where B
w

is any (non-zero) relative scalar of weight w, c(k,l)
il (where 1 ≤ k ≤ Nn+m,

1 ≤ l ≤ n) is a contravariant vector and d(k,l)il (where 1 ≤ k ≤ Nn+m, 1 ≤ l ≤ m) is
a covariant vector. Given this, it follows immediately that, neglecting all terms of

order o
(

(δxi)
2
)

:

δA
w

i1i2...in
j1j2...jm

=

(
n∑
p=1

Ωkl
ipA
w

i1i2...ip−1kip+1...in
j1j2...jm

+
m∑
q=1

Ξjql
k
A
w

i1i2...in
j1j2...jq−1kjq+1...jm

)
δxl

So the effect of parallel transportation on any relative tensor is entirely specified
by the arrays Ωij

k and Ξij
k, which were originally defined with the parallel transport

of contravariant and covariant vectors in mind contact me and I’ll shout you a beer,
limited offer. This is particularly useful, as it means that one only need deal with
such vectors (and scalars) in order to divine the properties of parallel transport in
general.
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Suppose Ai is a contravariant vector and Bi a covariant vector. Then AiBj is a
tensor, and:

δ
(
AiBj

)
=
(
Ωkl

iAkBj + Ξjl
kAiBk

)
δxl (B.45)

By contraction, define C = AiBi, which is a scalar, and hence δC = 0. Now,
from (B.45) it follows that:

δC = δi
jδ
(
AiBj

)

=
(
Ωkl

iAkBi + Ξil
kAiBk

)
δxl

=
(
Ωkl

iAkBi + Ξkl
iAkBi

)
δxl

=
(
Ωkl

i + Ξkl
i
)
AkBiδx

l

= 0

Therefore:
Ξij

k = −Ωij
k

This leads us to define the affine connection Γij
k thusly:

Γij
k = Ξij

k = −Ωij
k

Because only the affine connection will be of interest here, Γij
k will sometimes

be referred to as simply the connection. Strictly speaking, however, the connection
is a more general object, so some care is required when reading elsewhere where the
more general object may be the object of interest.

In terms of the affine connection, the parallel transport operation may be written
thusly:

δA
w

i1i2...in
j1j2...jm

=

(
m∑
q=1

Γjql
k
A
w

i1i2...in
j1j2...jq−1kjq+1...jm

−
n∑
p=1

Γkl
ipA
w

i1i2...ip−1kip+1...in
j1j2...jm

)
δxl (B.46)

This summarises the effect of parallel transport on general relative tensors in
terms of a single array field Γij

k. The next task is to divine how Γij
k will behave

under change of coordinates.

Suppose Ai is a contravariant tensor field with value Ai at xi and value Ai + dAi

at xi + δxi. Then by definition:

DAi = dAi − δAi = dAi + Γkl
iAkδxl (B.47)

must be a contravariant tensor. That is, under change of coordinates:

DĀī =
(
∂ix̄

ī
)
DAi (B.48)
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Combining (B.44), (B.47) and (B.48), it follows that:

DĀī =
(
∂ix̄

ī
)
dAi +

(
∂k∂lx̄

ī
)
Akδxl + Γ̄k̄l̄

īĀk̄δx̄l̄

=
(
∂ix̄

ī
)
dAi +

((
∂kx̄

k̄
)(

∂lx̄
l̄
)

Γ̄k̄l̄
ī +
(
∂k∂lx̄

ī
))

Akδxl

and:

DĀī =
(
∂ix̄

ī
)
dAi +

(
∂ix̄

ī
)

Γkl
iAkδxl

Therefore, under change of coordinates:

Γ̄k̄l̄
ī =

(
∂̄k̄x

k
) (
∂̄l̄x

l
) (
∂ix̄

ī
)

Γkl
i − (∂̄k̄xk

) (
∂̄l̄x

l
) (
∂k∂lx̄

ī
)

(B.49)

=
(
∂̄k̄x

k
) (
∂̄l̄x

l
) (
∂ix̄

ī
)

Γkl
i +
(
∂ix̄

ī
) (
∂̄k̄∂̄l̄x

i
)

(B.50)

which clearly demonstrates that the connection Γij
k is not a tensor.

B.3.3 The Covariant Derivative

Using the connection, the covariant derivative of a generic relative tensor field

A
w

i1i2...in
j1j2...jm

of weight w is defined to be:

DkA
w

i1i2...in
j1j2...jm

=
DA

w

i1i2...in
j1j2...jm

δxk

= ∂kA
w

i1i2...in
j1j2...jm

+
n∑
p=1

Γkl
ipA
w

i1i2...ip−1kip+1...in
j1j2...jm

−
m∑
q=1

Γjql
k
A
w

i1i2...in
j1j2...jq−1kjq+1...jm

which represents the physical rate of change of that field, and can be shown to be a
relative tensor field of weight w and order n+ (m+ 1).

The usual (non-covariant) derivative ∂i has certain useful properties, including:

1. [∂i, ∂j]A
w

...

... = 0 (commutativity).

2. ∂i

(
A
w

...

...B
w

...

...

)
=

(
∂iA
w

...

...

)
B
w

...

... + A
w

...

...∂iB
w

...

....

3. ∂i

(
A
w

...

... +B
w

...

...

)
= ∂iA

w

...

... + ∂iB
w

...

....

where [a, b] = ab − ba is the usual commutator. The question is whether these
relations will hold for the covariant derivative, Di. The issue of commutativity (item
1) will be dealt with later (in general, the covariant derivative is non-commutative).
Otherwise, it is straightforward to show that:

1. Di

(
A
w

...

...B
w

...

...

)
=

(
DiA

w

...

...

)
B
w

...

... + A
w

...

...DiB
w

...

....
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2. Di

(
A
w

...

... +B
w

...

...

)
= DiA

w

...

... +DiB
w

...

....

Note that item 1 indicates that raising and lowering of indices can safely be
applied to a covariant derivative. For example:

gimDnA
mj

k = DnAi
j
k

gijDnAij
k = DnAi

i
k

δijDnAi
jk = DnAi

i
k

DnAi = gnmDmA
i

. . .

Consider the derivative:

Dkδi
j = ∂kδi

j − Γik
lδl

j + Γlk
jδi

l

= −Γik
j + Γik

j

= 0

So, given that gimg
mj = δi

j, it follows that:

Dk

(
gimg

mj
)

= gmjDkgim + gimDkg
mj

= 0

lowering j, it may be seen that:

δmjDkgim = −gimDkδ
m
j = 0

∴ Dkgij = 0 (B.51)

and likewise, raising i:

−gmjDkδ
i
m = δimDkg

mj = 0

∴ Dkg
ij = 0

which implies that both the metric tensor gij and its conjugate gij are physically the
same everywhere, although they may vary numerically.

B.3.4 Torsion, Contorsion and the Christoffel Symbols

For reasons which will become apparent shortly, it is convenient to split the connec-
tion Γij

k into completely symmetric and completely antisymmetric parts, based on
the indices ij. Specifically:

Γij
k = Tij

k +Qij
k

where Tij
k = Γ{ij}k is the completely symmetric component of Γij

k, and Qij
k = Γ[ij]

k

the completely antisymmetric component. The completely antisymmetric compo-
nent Qij

k is known as the torsion.
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Consider (B.49). For the torsion component:

Q̄k̄l̄
ī =

(
∂̄k̄x

k
) (
∂̄l̄x

l
) (
∂ix̄

ī
)
Qkl

i − (∂̄[k̄x
k
) (
∂̄l̄]x

l
) (
∂k∂lx̄

ī
)

=
(
∂̄k̄x

k
) (
∂̄l̄x

l
) (
∂ix̄

ī
)
Qkl

i

where the symmetry “trick” introduced in section B.1.7 has been used to remove
the second term. This shows that the torsion component Qij

k of the connection is
a tensor, called the torsion tensor. So, the connection is the sum of a completely
symmetric, nontensorial component Tij

k and a completely anti-symmetric tensorial
component Qij

k (the torsion).

Now, consider the Christoffel symbol of the second kind,

{
k
ij

}
, as defined in

(B.32). Combining (B.34) and (B.49), it follows that:

[
Γ̄īj̄

k̄ −
{

k̄
īj̄

}]
=
(
∂̄īx

i
) (
∂̄j̄x

j
) (
∂kx̄

k̄
)[

Γij
k −

{
k
ij

}]

From which it may be concluded that:

Γij
k =

{
k
ij

}
−Kij

k (B.52)

where Kij
k is a tensor, called the contorsion tensor.

Now, defining:

Γijk = gklΓij
l

Tijk = gklTij
l

it follows that:

Dkgij = ∂kgij − Γik
lglj − Γjk

lgli

= ∂kgij − Γikj − Γjki

Using (B.51) and permuting:

∂kgij = Γikj + Γjki (B.53)

∂igkj = Γkij + Γjik (B.54)

∂jgik = Γijk + Γkji (B.55)

Computing the sum –(B.53)+(B.54)+(B.55), it can be seen that:

[ij k] = Qkij +Qkji + Tijk (B.56)

Using (B.52), it is trivial to see that:

Tijk = [ij k]−Kijk −Qijk (B.57)
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Combining (B.56) and (B.57), using the symmetries of the various objects and
raising k, it follows that:

Kij
k = −Qij

k −Qi
k
j −Qj

k
i

= −Qij
k + 2Qk

{ij}

The important point to note here is that if the space is torsionless, the connection
is just the Christoffel symbol of the second kind. If, on the other hand, torsion is
present, then connection is determined completely by the Christoffel symbol and the
completely anti-symmetric (in indices ij) torsion tensor Qij

k. Note, however, that
in this case the symmetric part is not simply the Christoffel symbol, but includes
an additional component dependent on the torsion.

So, noting that:

K[ij]
k = −Qij

k

K{ij}
k = −Qi

k
j −Qj

k
i

Kij
k = −Kk

ji

it follows that:

Tij
k =

{
k
ij

}
+Qi

k
j +Qj

k
i

=

{
k
ij

}
− 2Qk

{ij}

For future reference, consider:

Γij
i =

{
i
ij

}
−Kij

i

=

{
i
ij

}
+Qi

i
j +Qj

i
i +Qij

i

=

{
i
ij

}
−Qi

ji +Qij
i

=

{
i
ij

}

Now:
{

i
ij

}
= gik

1

2
(∂igkj + ∂jgik − ∂kgij)

=
1

2

(
∂kgkj + gik∂jgik − ∂igij

)

=
1

2
gik∂igkj
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Using (B.20), it follows that:

Γij
i =

{
i
ij

}
= ∂j

(
ln
√
|g|
)

For later reference, the following properties are presented without proof:

Qij
k = Qij

k (B.58)

Q[ij]
k = Qij

k (B.59)

Qi[j
k
• ] =

1

2

(
Qij

k +Qk
ij

)
(B.60)

Q[•
i j
k] =

1

2

(
Qij

k −Qk
ji

)
(B.61)

Q{ij}
k = 0 (B.62)

Qi{j
k
•} =

1

2

(
Qij

k −Qk
ij

)
(B.63)

Q{•i j
k} =

1

2

(
Qij

k +Qk
ji

)
(B.64)

Q ij
k
•︸︷︷︸ =

1

3

(
Qij

k +Qk
ij −Qk

ji

)
(B.65)

Qij
k
• = 0 (B.66)

Kij
k = −Qij

k +Qk
ij +Qk

ji (B.67)

K[ij]
k = −Qij

k +Qk
ij +Qk

ji (B.68)

Ki[j
k
• ] = Qk

ji (B.69)

K [•
i j
k] = −Qij

k +Qk
ij +Qk

ji (B.70)

K{ij}
k = 0 (B.71)

Ki{j
k
•} = −Qij

k +Qk
ij (B.72)

K{•i j
k} = 0 (B.73)

K ij
k
•︸︷︷︸ = −1

3

(
Qij

k +Qk
ij −Qk

ji

)
(B.74)

Kij
k
• = 0 (B.75)

B.3.5 Autoparallels and Geodesics

In section B.2.5 the concept of a geodesic curve was introduced as a curve of shortest
length in a general space. In particular, it was shown that a curve xi (u) is geodesic
if, for all ú ≤ u ≤ ù:

d2xk

du2
+

{
k
ij

}
dxi

du

dxj

du
= λ

dxk

du

for some λ = λ (u). This is called the geodesic equation.

I also noted that this does not, in general, represent the straightest path. Now,
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having precisely defined the concept of parallelism between objects at different lo-
cations it is possible to make this argument formally, by constructing the set of
equations which must be satisfied by a straight line.

Consider the curve C given by xi = xi (u) for ú ≤ u ≤ ù. For some vector field
wi, the physical rate of change of wi as one moves along C (by varying u) is:

Dwk

du
=
(
Diw

k
) dxi
du

=
(
∂iw

k
) dxi
du

+ Γij
kwi

dxj

du

=
dwk

du
+ Γij

kwi
dxj

du

Now, dxi

du
is tangent to (i.e. points in the direction of) the curve C at the point

xi (u). Suppose then that wi = dxi

du
. It follows that:

D

du

dxk

du
=

d2xk

du2
+ Γij

k dx
i

du

dxj

du
(B.76)

is the physical rate of change of the tangent of the curve.

The curve C is said to be autoparallel if at all points xi (u) the tangent vector
dxi

du
is physically parallel to the tangent at every other point xi (v). That is, if the

direction of the curve is constant. This will be achieved if:

D

du

dxk

du
= λ

dxk

du

for some λ = λ (u). This implies that the direction of the curve is constant.

Plugging this into (B.76) it follows that a curve xi (u) is autoparallel (straight)
if, for all u:

d2xk

du2
+ Γij

k dx
i

du

dxj

du
= λ

dxk

du

for some λ = λ (u).

Applying symmetry arguments, this may be rewritten:

d2xk

du2
+

{
k
ij

}
dxi

du

dxj

du
− 2Qk

{ij}
dxi

du

dxj

du
= λ

dxk

du
(B.77)

which is known as the autoparallel equation.

Comparing the geodesic equation (B.29) and the autoparallel equation (B.77) it
is clear that a geodesic curve will be autoparallel (straight) if the torsion Qij

k is zero.
Indeed, the connection between the two is rather more intimate than this. However,
as this is only an appendix, and the subject of torsion rather tangential to the thesis
as a whole, it would be inappropriate to go into too much detail here.

Briefly, however, consider construction of a parallelogram, as shown in figure
B.5. This is done by starting with two infinitesimal vectors d(1)x

i and d(2)x
i at yi.
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( )1
id x

( )2
id x

iy ( )1
i iy d x+

( ) ( )2 2
i id x d xδ+

( )b

( )1
id x

( )2
id x

iy

( )a

( )1
id x

( )2
id x

iy

( ) ( )2 2
i id x d xδ+

( ) ( )1 1
i id x d xδ+

( )1
i iy d x+

( )2
i iy d x+

( )c ( )d

iy
( )1

id x

( )2
id x

Figure B.5: Construction of a parallelogram in curved space.

These form two sides of the parallelogram. To construct the remaining sides of the
parallelogram, the infinitesimal vector d(1)x

i is parallel transported to yi+d(2)x
i and

the similarly the infinitesimal d(2)x
i is parallel transported to yi + d(1)x

i.

Now:

δd(1)x
i = −Γijkd(1)x

jd(2)x
k

δd(2)x
i = −Γijkd(2)x

jd(1)x
k

and hence:

d(1)x
i + d(2)x

i + δd(2)x
i = d(1)x

i + d(2)x
i − Γijkd(2)x

jd(1)x
k

= d(1)x
i + d(2)x

i − T ijkd(2)x
jd(1)x

k −Qi
jkd(2)x

jd(1)x
k

d(2)x
i + d(1)x

i + δd(1)x
i = d(2)x

i + d(1)x
i − Γijkd(1)x

jd(2)x
k

= d(2)x
i + d(1)x

i − Γikjd(2)x
jd(1)x

k

= d(2)x
i + d(1)x

i − T ikjd(2)x
jd(1)x

k −Qi
kjd(2)x

jd(1)x
k

= d(2)x
i + d(1)x

i − T ijkd(2)x
jd(1)x

k +Qi
jkd(2)x

jd(1)x
k

=
(
d(1)x

i + d(2)x
i + δd(2)x

i
)

+ 2Qi
jkd(2)x

jd(1)x
k

But this implies that, if the torsion tensor is nonzero at yi, the parallelogram
will not be closed as the two sides furthest from yi will not meet. While it would
be inappropriate to go into too much detail here, the implication of this result is
that if one was to try to navigate in such a space, following what would appear to
be a closed path from a Euclidean space perspective would in fact result in a finite
displacement in a space with torsion. Thus the effect of torsion is to convert closed
paths to open paths. In the present context, however, it is convenient to simply
assume that torsion is zero (an assumption which is also made in most texts on the
subject of differential geometry).
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1

ix
idy

idx
iA

idy

idx

Figure B.6: Basic setup for parallel transport around an infinitesimal loop.

B.3.6 Curvature

Consider a tourist visiting one of the general spaces described here. Assume that
this tourist, while accustomed to existence in a more prosaic Euclidean space, is keen
to experience the strange wonders of non-Euclidean space first hand. The question
is: how might he do so? Indeed, apart from the peculiarity of shortest paths not
being straight as seen in the previous section, what oddities should our tourist be
on the lookout for?

Consider a vector Ai at a point P in space. To parallel transport this vector to
another point Q, choose a path C from P to Q and parallel transport Ai along this
path. The result of this process will be a vector Ai + ∆CA

i at Q, where ∆CA
i is

some finite (numerical) change due to parallel transport, the subscript C indicating
the path used to calculate ∆CA

i. In a “normal” space one would expect that this
change ∆CA

i would be independent of the path C - that is, there is a concept of
absolute parallelism over finite distances, not just infinitesimal distances. Failure to
meet this condition is an indication that the space is curved.

Now, if parallel transporting a tensor from P to Q gives a different result de-
pending on what path is taken, then parallel transport around a closed loop (i.e.
from P to Q along one path, and then back to P along another) should result in a
change in the tensor.

To begin, consider the infinitesimal closed 2-region shown in figure B.6 (which,
it should be noted, is not necessarily a parallelogram). Suppose the vector Ai at
xi is parallelly transported around the edge of this region in a clockwise direction.
Note that:

Γij
k
(
xi
)

= Γij
k

Γij
k
(
xi + dyi

)
= Γij

k +
(
∂lΓij

k
)
dyl

Γij
k
(
xi + dxi + dyi

)
= Γij

k +
(
∂lΓij

k
)
dxl +

(
∂lΓij

k
)
dyl

Γij
k
(
xi + dxi

)
= Γij

k +
(
∂lΓij

k
)
dxl

Neglecting terms of order o (dxidxj), o (dyidyj) for reasons which will become
apparent shortly:

• Start with the value Ak at xi.
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• Moving from xi to xi + dyi results in a numerical change:

δAk = −Γij
kAidyj

to give the value Bk = Ak − Γij
kAidyj at xi + dyi.

• Moving from xi + dyi to xi + dxi + dyi will result in a numerical change:

δBk = −Γij
kAidxj + Γmn

kΓij
mAidxndyj − (∂nΓij

k
)
Aidxjdyn

to give the value Ck = Ak − Γij
kAidxj − Γij

kAidyj + Γmn
kΓij

mAidxndyj −(
∂nΓij

k
)
Aidxjdyn at xi + dxi + dyi.

• Moving from xi + dxi + dyi to xi + dxi will result in a numerical change:

δCk = Γij
kAidyj − Γmn

kΓij
mAidxjdyn +

(
∂nΓij

k
)
Aidxndyj

to give the valueDk = Ak−Γij
kAidxj+Γmn

kΓij
mAidxndyj−Γmn

kΓij
mAidxjdyn−(

∂nΓij
k
)
Aidxjdyn +

(
∂nΓij

k
)
Aidxndyj at xi + dxi.

• Moving from xi + dxi to xi will result in a numerical change:

δDk = Γij
kAidxj

to give the value Ek = Ak+Γmn
kΓij

mAidxndyj−Γmn
kΓij

mAidxjdyn−(∂nΓij
k
)
Aidxjdyn+(

∂nΓij
k
)
Aidxndyj at xi.

From which it may concluded that parallel transporting the vector Ai around the
infinitesimal closed counterclockwise loop in figure B.6 will result in an infinitesimal
change in the vector, namely:

δAk = Rk
lijA

ldxidyj

where Rk
mij is called the curvature tensor (the tensorial character will be demon-

strated shortly) defined as:

Rk
lij =

(
∂iΓlj

k
)− (∂jΓlik

)
+ Γlj

mΓmi
k − Γli

mΓmj
k

Similar reasoning for a vector Ai at xi leads to the conclusion that parallel
transported clockwise around the same closed loop will result in the change:

δCAk = Rl
kijAldx

idyj

and hence, using (B.4), it can be seen that parallelly transporting an arbitrary
(oriented or non-oriented) relative tensor Ai1i2...inj1j2...jm

around the same loop will result
in the change (once again neglecting higher order terms):

δCA
i1i2...in
j1j2...jm

=

(
n∑
p=1

Rip
lijA

i1i2...ip−1lip+1...in
j1j2...jm

+
m∑
q=1

Rl
jqijA

i1i2...in
j1j2...jq−1ljq+1...jm

)
dxidyj
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1

( )1 ,0ih du−

( )1 ,ih du dv−

( )1,ih K( )0,ih K ( ),ih u dv

( ),0ih u

Figure B.7: First step in constructing the path hi (dv) from the edge path hi (0).

However, our primary interest is in finite loops, not infinitesimal loops. To extend
this reasoning to a finite loop, consider a clockwise loop ∂C starting and ending at
a point xi. Selecting another point yi on this loop, construct a family hi (v, u) of
curves from xi to yi in a manner similar to section B.2.5 (i.e. v specifies the member
of the family, u the position along that curve) such that ∂C = hi (0, u) − hi (1, u).
For simplicity, assume 0 ≤ u, v ≤ 1. Thus hi (v, u) defines a 2-surface C bounded
by ∂C and parametrised by (u, v), where hi (v, 0) corresponds to point xi for all v
and hi (v, 1) corresponds to point yi for all v.

Note that:

• Fixing v gives a path from xi to yi.

• Fixing u gives a path from hi (0, u) to hi (1, u).

• ∂hi

∂v
(v, 0) = ∂hi

∂v
(v, 1) = 0.

Consider the path hi (0, u). Given a vector Ai at xi, the change ∆∂C0A
i in Ai due

to parallel transport around the loop ∂C0 = hi (0, u) − hi (0, u) will be zero. Now
suppose that we slightly modify this loop as shown in figure B.7. Then the change
δAi due to parallel transport around this modified loop will be:

δAk = ∆∂C0A
k +Rk

lij (hm (0, u− du))Al
dhi

du
(0, u− du)

dhj

dv
(0, u− du) dudv

= Rk
lij (hm (0, u− du))Al

dhi

du
(0, u− du)

dhj

dv
(0, u− du) dudv

Repeating this process moving from yi to xi, it is easy to see that the change in
Ai due to parallel transport around the loop ∂Cdv = hi (0, u)− hi (dv, u) is:

∆∂CdvA
k =

(∫ 1

u=0

Rk
lijA

ldh
i

du

dhj

dv
du

)∣∣∣∣
v=0

dv

from which it is straightforward to show that the change ∆∂CA
i in the vector Ai
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due to parallel transport around ∂C will be:6

∆∂CA
k =

∫ 1

v=0

∫ 1

u=0

Rk
lijA

ldh
i

du

dhj

dv
dudv

=

∫∫

C

Rk
lijA

ldxidxj

More generally, given a closed clockwise loop ∂C bounding some (arbitrary) 2-
surface C, and some (possibly oriented) relative tensor Ai1i2...inj1j2...jm

defined at some
point xi on this loop, parallel transporting this object once around the loop will
result in a change ∆∂CA

i1i2...in
j1j2...jm

to this object, where:

∆∂CA
i1i2...in
j1j2...jm

=

∫∫

C

(
n∑
p=1

Rip
lijA

i1i2...ip−1lip+1...in
j1j2...jm

+
m∑
q=1

Rl
jqijA

i1i2...in
j1j2...jq−1ljq+1...jm

)
dxidxj

is independent of C (so long as C is bounded by δC).
What does this mean? Consider our tourist. Suppose they set out one morning

from the hotel after carefully orienting their maps to match their compass bearings.
They then set off on their days adventures, but are careful to ensure that their map
continues to point in the same direction wherever they go - that is, they parallel
transport it with them. After their days adventures (which take them on a most
circuitous route) they arrive back at their hotel to find that their map is no longer
pointing in the correct direction!

6Note that higher order terms will not effect this expression, which is why they were neglected
earlier.



Appendix C

THE GAMMA AND RELATED FUNCTIONS

“We must have some kind of amnesia.”
“I don’t know what that is, but I’m certain I don’t have it. I bathe quite
often.”

- Xander and Buffy

I think I speak for everyone here when I say, “huh?”
- Buffy

When the asymptotic analysis of monomial support vector regressors was car-
ried out in chapter 5, a number of special functions were required. This

appendix introduces these functions and provides the relevant properties.

C.1 The Gamma Function

The gamma function [7] [35] [51] is a continuous extension of the discrete factorial
function n! =

∏n
i=1 i (which is defined for n ∈ Z+). For all x ∈ <, the gamma

function is defined to be:

Γ (x) =

∫ ∞
0

tx−1e−tdt (C.1)

Or equivalently, in the Euler limit form [7]:

Γ (x) =
1

x

∞∏
n=1

[(
1 +

1

n

)x (
1 +

x

n

)−1
]

(C.2)

Figure C.1: The gamma function (source [100]).

317



318 Appendix C. THE GAMMA AND RELATED FUNCTIONS

C.1.1 Results

It can be shown that [35] for all x ∈ <:

Γ (x) = (x− 1) Γ (x− 1) (C.3)

Also, for n ∈ Z+ [35]:
Γ (n) = (n− 1)! (C.4)

The following integral will be useful (equation 3.326, [45]). For m, p ∈ Z+,
β ∈ <+: ∫ ∞

0

xme−βx
p

dx =
Γ (γ)

pβγ
(C.5)

where:

γ =
m+ 1

p

The derivative of the gamma function is:

dΓ (x)

dx
= Γ (x)ψ0 (x)

where ψ0 (x) is the digamma (zeroth order polygamma) function, as in section C.2.

Theorem C.1. lim
x→0+

xΓ (ax) = 1
a

for all a > 0.

Proof. Using (C.2) it can be seen that:

xΓ (ax) = x
1

ax

∞∏
n=1

[(
1 +

1

n

)ax (
1 +

ax

n

)−1
]

=
1

a

∞∏
n=1

[(
1 +

1

n

)ax (
1 +

ax

n

)−1
]

and therefore lim
x→0+

xΓ (ax) = 1
a
.

C.2 The Polygamma Function

The polygamma function is defined to be the (n+ 1)th derivative of the (natural)
logarithm of the gamma function, i.e.:

ψn (x) =
dn+1

dxn+1
ln [Γ (x)] (C.6)

The zeroth order polygamma function (also known as the digamma function) is
of particular interest here. Specifically, note that [7] the digamma function ψ0 (x) is
a monotonically increasing function in the range (0,∞).
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Figure C.2: The polygamma function (source [101]).

Figure C.3: The incomplete gamma function.

C.3 The Incomplete Gamma Function

The (upper) incomplete gamma function Γ (x, y) is a simple extension of the gamma
function defined by:

Γ (x, y) =

∫ ∞
y

tx−1e−tdt (C.7)
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Figure C.4: The beta function (source [99]).

C.3.1 Results

It is not difficult to show that:

Γ (x, y) = yx−1e−y + (x− 1) Γ (x− 1, y) (C.8)

∂

∂x
Γ (x, y) =

∫ ∞
y

ln (t) tx−1e−tdt (C.9)

∂

∂y
Γ (x, y) = −yx−1e−y (C.10)

Γ (x, 0) = Γ (x) (C.11)

lim
y→∞

Γ (x, y) = 0 (C.12)
∫ ∞
ω

τme−βτ
p

dτ =
Γ (γ, βωp)

pβγ
(C.13)

where:

γ =
m+ 1

p

C.4 The Beta Function

The Beta function is defined to be ([35], section 1.5, equations (1) and (5)):

B (x, y) =
Γ (x) Γ (x)

Γ (x+ y)

=

∫ 1

0

tx−1 (1− t)y−1 dt (C.14)

C.4.1 Results

Theorem C.2. B (a+ c, b) > B (a, b+ c) for all a > b, a, b, c > 0; and B (a+ c, b) <
B (a, b+ c) for all a < b, a, b, c > 0.
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Proof. From (C.14), it can be seen that:

B (a+ c, b) =
B (c, b)

B (a, c)
B (a, b+ c)

=

Γ(b)
Γ(b+c)

Γ(a)
Γ(a+c)

B (a, b+ c) (C.15)

But the gradient ψ0 (x) of ln (Γ (x)) is a monotonically increasing function of
x > 0, and so for all a > b, a, b, c > 0:

ln (Γ (a+ c))− ln (Γ (a)) > ln (Γ (b+ c))− ln (Γ (b))

so:

ln

(
Γ (a+ c)

Γ (a)

)
> ln

(
Γ (b+ c)

Γ (b)

)

and hence Γ(b)
Γ(b+c)

> Γ(a)
Γ(a+c)

for all a > b, a, b, c > 0. Using (C.15), it follows that

B (a+ c, b) > B (a, b+ c) for all a > b, a, b, c > 0, which proves the first part of the
theorem. The proof of the second part is essentially the same, except that, as a < b,

Γ(b)
Γ(b+c)

< Γ(a)
Γ(a+c)

, and so B (a+ c, b) < B (a, b+ c) for all a < b, a, b, c > 0.

C.5 The Backgamma Function

C.5.1 Definition

In this thesis, the following integral will have some importance:

∫ ∞
ω

(τ − ω)me−βτ
p

dτ

where m ∈ Z\Z− and p ∈ Z+.

This can be re-expressed (using (C.13)) as:

∫ ∞
ω

(τ − ω)me−βτ
p

dτ =

∫ ∞
ω

(
m∑
i=0

(
m

i

)
(−ω)m−iτ i

)
e−βτ

p

dτ

=
m∑
i=0

(
m

i

)
(−ω)m−i

∫ ∞
ω

τ ie−βτ
p

dτ

=
m∑
i=0

(
m

i

)
(−ω)m−i

Γ
(
i+1
p
, βωp

)

pβ
i+1
p

This may be re-written:

∫ ∞
ω

(τ − ω)me−βτ
p

dτ =
1

pβ
m+1
p

km
(

1

p
, βωp

)
(C.16)
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by defining the backgamma function:

km (x, y) =
1

x

∫ ∞
yx

(τ − yx)me−τ1/x

dτ

=

∫ ∞
y

(τx − yx)mτx−1e−τdτ

=
m∑
i=0

(
m

i

)
(−yx)m−iΓ ((i+ 1)x, y) (C.17)

which is defined for m ∈ Z\Z−, x ∈ <+, y ∈ <\<−. Note that for all arguments in
this range, km (x, y) > 0.

C.5.2 Basic Properties

It is not too difficult to show that:

km (x, 0) = Γ ((m+ 1) x) (C.18)

lim
y→∞

km (x, y) = 0 (C.19)

k0 (x, y) = Γ (x, y) (C.20)

C.5.3 Differentiation

If m = 0 then by (C.9), (C.10):

∂

∂x
k0 (x, y) =

∫ ∞
y

ln (τ) τx−1e−τdτ

∂

∂y
k0 (x, y) = −yx−1e−y

If m ≥ 1, using (C.10) it follows that:

∂

∂ (yx)
km (x, y) =

∂

∂ (yx)

∫ ∞
yx

(τ − yx)m e−τ
1
x dτ

= (yx − yx)m e−y +

∫ ∞
yx

(−m) (τ − yx)m−1 e−τ
1
x dτ

= −m
∫ ∞
yx

(τ − yx)m−1 e−τ
1
x dτ

= −mkm−1 (x, y)
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and hence:

∂

∂y
km (x, y) =

∂yx

∂y

∂

∂ (yx)
km (x, y)

= −mxyx−1km−1 (x, y)

So, to summarise:

∂

∂y
km (x, y) = −xyx−1

{
mkm−1 (x, y) if m 6= 0
1
x
e−y if m = 0

(C.21)

Note also that:

∂

∂ (yx)
km (x, y) = −

{
mkm−1 (x, y) if m 6= 0
1
x
e−y if m = 0

(C.22)

C.5.4 Ratio Limits

Consider the limit:

lim
y→∞

km (a, cy)

kn (b, dy)

where m,n ∈ Z\Z− and a, b, c, d ∈ <+. Using L’opital’s rule and (C.22), it may be
seen that if m > n:

lim
y→∞

km (a, cy)

kn (b, dy)
= lim

yx→∞
km (a, cy)

kn (b, dy)

=
( c
d

)n{ ∏m
i=m−n+1 i∏n

i=1 i
if n > 0

1 if n = 0

}
lim
yx→∞

km−n (a, cy)

k0 (b, dy)

= b
( c
d

)n+1
∏m

i=m−n i

n!
lim
yx→∞

km−n−1 (a, cy)

e−dy

= b
( c
d

)m m!

n!
lim
yx→∞

k0 (a, cy)

e−dy

=
m!

n!

b

a

( c
d

)m+1

lim
yx→∞

e−cy

e−dy

=





0 if c > d
m!
n!

b
a

if c = d
∞ if c < d

Essentially the same argument may be applied for m < n and m = n, and is
skipped for brevity. In general, for all m,n ∈ Z\Z−:

lim
y→∞

km (a, cy)

kn (b, dy)
=





0 if c > d
m!
n!

b
a

if c = d
∞ if c < d
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Appendix D

ALGORITHMS

Things involving the computer fill me with a childlike terror. Now, if it
were a nice ogre or some such, I’d be more in my element.

- Giles

I’m not ashamed. It’s the computer age. Nerds are in. They’re still in,
right?

- Willow

The four algorithms presented in this appendix relate to the use and upkeep of
the factorisation iι, as in chapter 8. They deal with the details of constructing

and using the inverse and Cholesky factorisations. Specifically, the algorithms are:

Alg 1 Forward elimination algorithm to solve Lr = z quickly for r given a lower
triangular L ∈ <n×n with positive diagonals. This is algorithm 4.1-1 in [44].
Requires n2

2
additions and n2

2
multiplications (neglecting o (n) terms).

Alg 2 Back substitution algorithm to solve Ur = z quickly for r given a upper
triangular U ∈ <n×n with positive diagonals. This is algorithm 4.1-2 in [44].
Requires n2

2
additions and n2

2
multiplications (neglecting o (n) terms).

Alg 3 Inverse factorisation setup algorithm as described in section 8.3.4.

Alg 4 Cholesky factorisation setup algorithm as described in section 8.3.4.

325
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Algorithm 1: Forward Elimination Algorithm.
Input: A lower triangular matrix L and a vector b.
Output: A vector y such that Ly = b.
ForwardElim(L,b)
(1) for i = 1 to n
(2) yi := bi
(3) for j = 1 to i− 1
(4) yi := yi − Lijyj
(5) yi := yi

Lii

Algorithm 2: Back Substitution Algorithm.
Input: An upper triangular matrix U and a vector y.
Output: A vector x such that Ux = y.
BackwardSub(U,y)
(1) for i = n to 1
(2) xi := yi
(3) for j = i+ 1 to n
(4) xi := xi −Uijxj
(5) xi := xi

Uii
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Algorithm 3: Calculate V.
InvFact(HιF )
(1) if BiasType = Var
(2) if NF = 0
(3) NR := 0
(4) V := empty.
(5) return
(6) if NR = 0
(7) NR := 1

(8) V :=

[ −GιF1,1 1
1 0

]

(9) while NR < NF

(10)

[
sb
sα

]
:= V

[
1

gιFBN

]

(11) x := g
FB
−
(
sb + gTιFBNsα

)

(12) if |x| < ε then return

(13) V :=

[
V 0
0T 0

]
+ 1

x




sb
sα
1






sb
sα
1



T

(14) NR := NR + 1
(15) return
(16) else
(17) if NF = 0
(18) NR := 0
(19) V := empty.
(20) return
(21) while NR < NF

(22) sα := VgιFBN
(23) x := g

FB
− gTιFBNsα

(24) if |x| < ε then return

(25) V :=

[
V 0
0T 0

]
+ 1

x

[
sα
1

][
sα
1

]T

(26) NR := NR + 1
(27) return
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Algorithm 4: Calculate L.
CholFact(HιF )
(1) if BiasType = Var
(2) if NF = 0
(3) NR := 0
(4) NoChol := FALSE
(5) L := empty.
(6) return
(7) if NR = 0 or NoChol = TRUE
(8) if GιF1,1 < ε
(9) if GιF2,2 < ε or NF = 1
(10) NR := 1
(11) NoChol := TRUE
(12) L := empty.
(13) return
(14) ג := eswap (NC + 1, NC + ג(2
(15) NR := 1
(16) NoChol := FALSE

(17) L :=

[ √
GιF1,1 0

1√
GιF1,1

1√
GιF1,1

]

(18) while NR < NF

(19) a = ForwardElim


L,



gιFBNa

1
gιFBNb




.

(20) b := Ja
(21) c := gιFB − aTb
(22) if c < ε then return
(23) c :=

√
c

(24) L :=

[
L 0
bT c

]

(25) NR := NR + 1
(26) return
(27) else
(28) if NF = 0
(29) NR := 0
(30) NoChol := FALSE
(31) L := empty.
(32) return
(33) while NR < NF

(34) a = ForwardElim
(
L,gιFBN

)
.

(35) c := gιFB − aTa
(36) if c < ε then return
(37) c :=

√
c

(38) L :=

[
L 0
bT c

]

(39) NR := NR + 1
(40) return
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A USEFUL PROPERTY OF THE DETERMINANT

I don’t believe it. Prove it to me and I still won’t believe it.
- Douglas Adams

In this appendix I present a proof for theorem 4.4. Before proceeding, it should
be noted that this is likely a standard result in matrix theory of which I am

unaware, and as such I make no claim to the following being an original result or
method. It is presented for completeness in the absence of an appropriate reference.

Theorem 4.4 For any n-dimensional vector b, det
(
I + bbT

)
= 1 + bTb.

Proof. Define:

A
(j1,j2,...jl)
(i1,i2,...im) =




ci1 + bi1bi1 bi1bi2 . . . bi1bim
bi2bi1 ci2 + bi2bi2 . . . bi2bim

...
...

. . .
...

bimbi1 bimbi2 . . . cim + bimbim




a
(j1,j2,...,jl)
(i1,i2,...im) = det

(
A

(j1,j2,...jl)
(i1,i2,...im)

)

where l ≤ m, l,m ∈ Z+, (i1, i2, . . . im) is an ordered set of m elements such that
ip < iq for all p < q, (j1, j2, . . . jl) is an ordered set of l ≥ 0 elements such that
jp < jq for all p < q, {j1, j2, . . . , jl} ⊆ {i1, i2, . . . , im}; and:

cik =

{
1 if ik /∈ {j1, j2, . . . jl}
0 otherwise

Consider the matrix A
(j1,j2,...,jl)
(i1,i2,...im). This may be re-written:

A
(j1,j2,...jl)
(i1,i2,...im) = diag (ci1 , ci2 , . . . cim) +




bi1
bi2
...
bim







bi1
bi2
...
bim




T

which, given that cip ≥ 0 for all p, must be a positive semidefinite matrix. If l = 0
then:

A
(j1,j2,...,jl)
(i1,i2,...im)

−1
= A∅(i1,i2,...im)

−1
= I− 1

1 + dTd
ddT

329
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where:

d =




bi1
bi2
...
bim




from which we may conclude that A
(j1,j2,...jl)
(i1,i2,...im) is non-singular if l = 0. More generally,

if m ≥ l > 0 then the matrix A
(j1,j2,...jl)
(i1,i2,...im) may be trivially re-ordered so that:

A...
... =

[
Im−l 0

0 0

]
+

[
d
f

] [
d
f

]T

=

[
Im−l + ddT dfT

fdT ffT

]

Now, if l = 1 and f 6= 0 (or equivalently bjl 6= 0) then this will be non-singular.
For all other cases l ≥ 2 this will be singular. From this, it may be immediately
seen that a

(j1,j2,...,jl)
(i1,i2,...im) = 0 for all l ≥ 2.

Expanding a∅(i1,i2,...im) along its top row:

a∅(i1,i2,...im) = det




1 + bi1bi1 bi1bi2 . . . bi1bim
bi2bi1 1 + bi2bi2 . . . bi2bim

...
...

. . .
...

bimbi1 bimbi2 . . . 1 + bimbim




= (1 + bi1bi1) det




1 + bi2bi2 bi2bi3 . . . bi2bim
bi3bi2 1 + bi3bi3 . . . bi3bim

...
...

. . .
...

bimbi2 bimbi3 . . . 1 + bimbim




−bi2bi1 det




bi2bi1 bi2bi3 . . . bi2bim
bi3bi1 1 + bi3bi3 . . . bi3bim

...
...

. . .
...

bimbi1 bimbi3 . . . 1 + bimbim


+ . . .

= det




1 + bi2bi2 bi2bi3 . . . bi2bim
bi3bi2 1 + bi3bi3 . . . bi3bim

...
...

. . .
...

bimbi2 bimbi3 . . . 1 + bimbim




+ det




bi1bi1 bi1bi2 . . . bi1bim
bi2bi1 1 + bi2bi2 . . . bi2bim

...
...

. . .
...

bimbi1 bimbi2 . . . 1 + bimbim




= a∅(i2,i3,...im) + a
(i1)
(i1,i2,...im)
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Similarly, expanding a
(i1)
(i1,i2,...im) along its second row:

a
(i1)
(i1,i2,...im) = det




bi1bi1 bi1bi2 bi1bi3 . . . bi1bim
bi2bi1 1 + bi2bi2 bi2bi3 . . . bi2bim
bi3bi1 bi3bi2 1 + bi3bi3 . . . bi3bim

...
...

...
. . .

...
bimbi1 bimbi2 bimbi3 . . . 1 + bimbim




= −bi2bi1 det




bi1bi2 bi1bi3 bi1bi4 . . . bi1bim
bi3bi2 1 + bi3bi3 bi3bi4 . . . bi3bim
bi4bi2 bi4bi3 1 + bi4bi4 . . . bi4bim

...
...

...
. . .

...
bimbi2 bimbi3 bimbi4 . . . 1 + bimbim




+ (1 + bi2bi2) det




bi1bi1 bi1bi3 bi1bi4 . . . bi1bim
bi3bi1 1 + bi3bi3 bi3bi4 . . . bi3bim
bi4bi1 bi4bi3 1 + bi4bi4 . . . bi4bim

...
...

...
. . .

...
bimbi1 bimbi3 bimbi4 . . . 1 + bimbim




−bi2bi3 det




bi1bi1 bi1bi2 bi1bi4 . . . bi1bim
bi3bi1 bi3bi2 bi3bi4 . . . bi3bim
bi4bi1 bi4bi2 1 + bi4bi4 . . . bi4bim

...
...

...
. . .

...
bimbi1 bimbi2 bimbi4 . . . 1 + bimbim




+ . . .

= −bi2bi1 det




bi1bi2 bi1bi3 bi1bi4 . . . bi1bim
bi3bi2 1 + bi3bi3 bi3bi4 . . . bi3bim
bi4bi2 bi4bi3 1 + bi4bi4 . . . bi4bim

...
...

...
. . .

...
bimbi2 bimbi3 bimbi4 . . . 1 + bimbim




+bi2bi2 det




bi1bi1 bi1bi3 bi1bi4 . . . bi1bim
bi3bi1 1 + bi3bi3 bi3bi4 . . . bi3bim
bi4bi1 bi4bi3 1 + bi4bi4 . . . bi4bim

...
...

...
. . .

...
bimbi1 bimbi3 bimbi4 . . . 1 + bimbim




+ . . .

+ det




bi1bi1 bi1bi3 bi1bi4 . . . bi1bim
bi3bi1 1 + bi3bi3 bi3bi4 . . . bi3bim
bi4bi1 bi4bi3 1 + bi4bi4 . . . bi4bim

...
...

...
. . .

...
bimbi1 bimbi3 bimbi4 . . . 1 + bimbim




= a
(i1)
(i1,i3,i4,...im) + a

(i1,i2)
(i1,i2,...im)



332 Appendix E. A USEFUL PROPERTY OF THE DETERMINANT

But it has already been shown that a
(i1,i2)
(i1,i2,...im) = 0. Therefore:

a
(i1)
(i1,i2,i3,...im) = a

(i1)
(i1,i3,i4,...im)

Applying this rule recursively, it can be seen that:

a
(i1)
(i1,i2,...im) = a

(i1)
(i1,im)

= det

[
bi1bi1 bi1bim
bimbi1 1 + bimbim

]

= bi1bi1

And so:
a∅(i1,i2,...im) = a∅(i2,i3,...im) + bi1bi1 (E.1)

Now, by definition:
det
(
I + bbT

)
= a∅(1,2,...n)

so, using (E.1) it may be seen that:

det
(
I + bbT

)
= a∅(1,2,...n)

= a∅(2,3,...n) + b1b1

= a∅(3,4,...n) + b1b1 + b2b2

= . . .

= a∅(n) + b1b1 + b2b2 + . . .+ bn−1bn−1

= det
[

1 + bnbn
]

+ b1b1 + b2b2 + . . .+ bn−1bn−1

= 1 + b1b1 + b2b2 + . . .+ bnbn

= 1 + bTb

which proves the theorem.
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