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Summary 

 

Errors are inherent to all spatial datasets and give rise to a level of uncertainty in the final 

product of a geographic information system (GIS). There is growing recognition that the 

uncertainty associated with spatial information should be represented to users in a 

comprehensive and unambiguous way. However, the effects on decision-making of such 

representations have not been thoroughly investigated. Studies from the psychological 

literature indicate decision-making biases when information is uncertain. This study explores 

the effects of representing spatial uncertainty, through an examination of how decision-

making may be affected by the introduction of thematic uncertainty and an investigation of 

the effects of different representations of positional uncertainty on decision-making. 

 

Two case studies are presented. The first of these considers the effects on decision-making of 

including thematic uncertainty information within the context of an airport siting decision 

task. An extremely significant tendency to select a zone for which the thematic classification 

is known to be of high certainty was observed. The reluctance to select a zone for which the 

thematic classification is of low certainty was strong enough to sometimes lead to decision-

making that can only be described as irrational. 

 

The second case study investigates how decision-making may be affected by different 

representations of positional uncertainty within the context of maritime navigation. The same 

uncertainty information was presented to participants using four different display methods. 

Significant differences in their decisions were observed. Strong preferences for certain display 

methods were also exhibited, with some representations being ranked significantly higher than 

others.  

 

The findings from these preliminary studies demonstrate that the inclusion of uncertainty 

information does influence decision-making but does not necessarily lead to better decisions. 

A bias against information of low certainty was observed, sometimes leading to the making of 

irrational decisions. In addition, the form of uncertainty representation itself may affect 

decision-making. Further research into the effects on decision-making of representing spatial 

uncertainty is needed before it can be assumed that the inclusion of such information will lead 

to more informed decisions being made. 
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1.  

Introduction 

 

1.1 Problem Statement and Significance 

 

With the growing use of Geographic Information Systems (GIS), the applications of spatial 

data have become more sophisticated and diverse. Decisions are increasingly being made on 

the basis of spatial information that is derived from GIS and the users of these systems may 

have little knowledge of the processes underlying the GIS output. Although the computer 

systems themselves may be relatively precise, the output of a GIS can only be as good as the 

data input. In recent years, it has been recognised as essential that both the quality of this 

input and its resultant effect on the output are fully understood if the decisions being made are 

to be informed and robust. However, to date, there has been little consideration of how the 

inclusion of uncertainty information and the mode of its representation may influence the 

decision-making process. 

 

It has been estimated that spatial data is now used in over 80% of decisions made by 

government departments. Indeed, its use is not restricted to such clientele as policy-makers, 

resource managers and emergency services; spatial information is widely used in the private 

sector, for example in marketing, insurance and transportation, as well as by the general 

public in functions such as car navigation systems. With such widespread application, it is in 

the interest of the entire community that spatial information is used appropriately. Errors are 

inherent to any spatial data set and it is essential that the resultant uncertainty in the spatial 

information product be communicated to the users of this information.  

 

The need for a better understanding of spatial uncertainty has been given greater emphasis in 

recent years, partly as a result of the increased tendency towards litigation. If a party is to be 

held responsible for the consequences of decisions being made on the basis of spatial data, 

there is more of a demand for those decisions to be informed and as correct as possible. 

Decision makers need to know the level of uncertainty within the GIS output that is informing 

their decisions, to decide if this information is sufficiently accurate to be applicable to the 

problem at hand. This is particularly important if non-specialised data sets are being used, 
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rather than data specifically created for a nominated purpose. To enable this, data providers 

need to supply appropriately detailed metadata on the lineage and accuracy of their products.  

 

Many countries have now introduced statutory obligations in the form of spatial data transfer 

standards to ensure that such metadata is provided. The pioneer amongst these is the Spatial 

Data Transfer Standard (SDTS) introduced by the United States (NIST, 1992). This mandates 

that metadata be reported for all datasets that are transferred using the standard. The quality 

component of this metadata is required to be documented along five themes: the lineage, 

spatial accuracy, attribute accuracy, logical consistency and completeness of the data set. The 

inclusion of metadata with spatial datasets has also been propelled by market forces within the 

private sector that dictate that, as one spatial data provider begins to include metadata as a 

matter of course, other providers will soon follow suit.   

 

Although the provision of metadata with spatial data sets is now becoming widespread, the 

decision of whether the data are suitable for the task at hand is, in practice, still left to the 

user. Many of those users have had little if any exposure to the issue of data quality and, 

without adequate training, cannot be expected to recognise from metadata reports whether or 

not a data set is fit for use in the current problem. There has been recognition, particularly 

within the academic field, that the functionality of GIS needs to be increased to include ways 

of representing the uncertainty in GIS output resulting from the quality of the data input. 

These representations need to communicate the uncertainty in a manner that is unambiguous, 

fully informative and best able to facilitate decision-making. 

 

There has also been substantial research into the means by which uncertainty representations 

may be included in GIS. Nonetheless, such functionality has been slow to appear in 

commercial systems, with software developers claiming that there is insufficient demand from 

the user community. As the importance of spatial uncertainty takes a higher profile, with 

decisions being made on the basis of spatial information being subject to greater scrutiny and 

with better education of spatial information users, this should change. Some GIS are already 

including means of representing the uncertainty in their output. However, since the nature of 

the representation may affect the manner in which decision-makers apply the uncertainty 

information, it is essential that further research be conducted into the effects of uncertainty 

representation on decision-making processes. 
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1.2 Sources of Error in Spatial Data 

 

As with any data, there will be a degree of error inherent to all spatial data. The accepted 

definition of error in spatial data is the deviation of the database value from the true field 

value. Since the true field value is often not known, the observed value is usually compared to 

a best model value, which represents an accepted truth value. This lack of knowledge of the 

true value causes the error to become uncertain. Due to the negative semantic implications of 

the term error, it is often replaced with the concept of accuracy, which is understood to 

represent the degree of closeness of the database value to the accepted best model value. Thus, 

errors in spatial data sets are often reported as confidence limits of the accuracy of the data, 

for example ‘95% of the values are accurate to within 14m of the true values’. 

 

There are many sources of error in spatial data (for a summary see Hunter et al, 2003). Hunter 

and Beard (1992) propose that these can be considered as arising from one of three stages: 

data collection and compilation, data processing or data usage. Collection and compilation 

errors are perhaps the least transparent, as many users are familiar with concepts such as the 

level of precision of measuring equipment, which will affect the accuracy of both attribute and 

positional measures. Other examples of how collection and compilation errors arise include 

the random fluctuations associated with measuring equipment and difficulties in measuring 

and modelling natural features. For example, the occurrence of random errors, such as 

fluctuations in platform stability of remote sensors, will affect the resulting images and their 

subsequent processing. Also, the tendency to represent natural environments as crisply 

defined polygons within maps, such as soil classification zones, introduces errors by not 

accurately conveying the fact that they typically display transition zones and a lack of 

homogeneity.  

 

Processing errors can occur through the digitisation of existing data sources and through the 

manipulation of data within GIS. These errors are often hidden and inexperienced users of 

GIS may be unaware that errors are propagating through their systems. Digitising errors arise 

through generalisation processes, such as line simplification, and feature editing processes, for 

example node snapping. Manipulation of the data introduces errors as a result of methods 

such as raster/vector conversion and Boolean overlay within GIS, and through analysis 

techniques such as interpolation and buffer creation.  
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The third type of error as classified by Hunter and Beard is that of data usage. Examples of 

this type of error would be users misusing GIS output through a lack of training or 

understanding, inappropriate use of a dataset that had been created for another purpose, 

decision-making without sufficient metadata regarding the lineage of the data set, and use of 

data that had been collected at a scale unsuitable for the use to which it is being put. While the 

first two sources (collection and compilation and processing) are to some extent unavoidable, 

it is possible that this third type of error can be removed, or at least lessened, through an 

increased understanding of spatial uncertainty among all spatial data users.  

 

1.3 Data Quality and Communicating Uncertainty 

 

Data quality is defined here as the fitness-for-use of a data set for the application at hand. 

Users need to be able to decide if a data set is of sufficient quality for its application to the 

current problem to be appropriate. The responsibility for this has traditionally been left to the 

user, although many novices do not have the experience or training to be able to accomplish 

this from a metadata report. In addition to the inclusion of appropriately detailed metadata by 

spatial data providers, correct usage of spatial information requires effective representation of 

the subsequent uncertainty in GIS output as well as better education of all those using such 

data. 

 

In recent years the issue of data quality has received a considerable amount of attention. 

Spatial data are becoming more widely available and are being used for purposes other than 

that for which they were originally collected. The need for metadata concerning the lineage 

and accuracy of the data set has been recognized and standards such as the SDTS are being 

established in many countries. Although many data providers are now including this metadata 

with their datasets, Hunter (2001) has provided several examples of poor metadata reportage 

along each of these themes. He has also emphasized the need for greater detail in metadata 

reporting, particularly in areas such as the level of autocorrelation of errors (Hunter & 

Goodchild, 1997) and data quality information at local levels as well as the global level (for 

example, Qiu & Hunter, 2002). 

 

However, metadata are of limited use if the information they provide is restricted to the input 

data; users need to know what this means with respect to the spatial information output of the 

GIS upon which they are basing their decisions. In the early 1990s, the National Centre for 
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Geographic Information and Analysis (NCGIA) established a research initiative focusing on 

the issue of visualization of spatial data quality (Beard et al, 1991). In addition to metadata 

reporting, research challenges were identified in the areas of communication of data quality to 

users, error propagation through GIS and the application of data quality information to 

decision-making. In essence, the conclusion was that users of spatial information need to 

know if this information is sufficiently accurate for them to make the correct decisions. It is 

the output of GIS upon which decisions will be made; it is therefore imperative that the 

quality of this spatial information output is communicated to users in a manner that enables 

them to apply uncertainty in the data to their decisions in an appropriate manner. 

 

Since the Research Initiative on Visualization of Spatial Data Quality, some progress has been 

made within these areas. There has been a considerable number of papers written on 

quantifying spatial data uncertainty and a substantial amount of research into methods of 

visualizing this uncertainty in GIS. Innovative methods that utilise the advantages of 

computer systems over paper maps have also been developed, such as interactive displays, 

dynamic representations and multiple simulations (Hunter, 1999). However, there has been 

little research conducted into the effectiveness of these methods as communicators of spatial 

uncertainty and, specifically, how these uncertainty representations may affect the decisions 

being made.  

 

The few studies that have considered the effectiveness of uncertainty representations have 

generally been limited to an examination of the extra cognitive demands placed upon 

decision-makers. They have been concerned with the question of whether or not users can 

cope with the additional information that is being provided in a display that incorporates 

uncertainty information together with thematic information (for example Leitner & 

Buttenfield, 2000). Effective representations have been concluded as being those that do not 

detract from the accuracy or speed of simple decisions and which users rate as easiest to 

understand. Whilst this is important, these studies have been run in simple experimental 

settings that have been limited to binary representations of uncertainty. They have tested 

whether users can comprehend such representations, without considering how it is that the 

inclusion of uncertainty information may affect the decisions being made on the basis of 

spatial data.  
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Studies in the psychological literature on decision-making have indicated that introducing 

uncertainty may bias the decisions being made. Many people do not have an intuitive feeling 

for how to deal with uncertainty and show a tendency to avoid ambiguous situations. 

Academics within the spatial data sector have identified the need to represent spatial 

uncertainty, without consideration of how it is that decision-makers may respond to such 

information. The question of how it is that information about spatial uncertainty may 

influence the decision-making process requires a lateral step into the realms of psychology, 

and studies need to be conducted within the framework of behavioural decision research. 

 

1.4 Behavioural Decision Research  

 

The goals of behavioural decision research have been to describe and explain human 

judgement and choice behaviour so as to aid and improve decision-making performance. 

Human decision-making often deviates from the rational choice of maximising expected 

value, especially as decision complexity increases. From an experimental psychology 

perspective, it has been proposed that this is due to information processing limitations and that 

decision-makers apply simplified heuristics to lessen the cognitive effort demanded by a 

problem. Nonetheless, decision-makers often show preference reversals for the same decision 

under different task conditions. These and other incongruities have been explained through a 

tendency towards certain biases (Tversky & Kahnemann, 1991). 

 

An understanding of the psychology of human decision-making is important to any 

assessment of the effectiveness of spatial uncertainty representations. In a groundbreaking 

experiment, Ellsberg (1961) demonstrated that humans respond differently to information 

when probabilities are ambiguous (uncertain) than when the same probabilities are 

represented as fixed, a bias that has strong relevance to studies of decision-making under 

conditions of spatial uncertainty. However, Ellsberg’s study, like much of the early work on 

human decision-making, focussed on hypothetical gambles. Later studies have shown that 

similar biases are displayed when humans are making decisions in real life applications such 

as the purchase of life insurance (Hogarth and Kunreuther, 1985) and the selection of potential 

employees (Highhouse & Hause, 1995). If the same biases are demonstrated to uncertainty in 

spatial data, there may be significant consequences on the decisions being made on the basis 

of uncertainty information being represented. Since decision-making behaviour has also been 
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shown to be task and context dependent within psychological studies, the nature of any spatial 

uncertainty representation may also affect the decision-making process.  

 

1.5 Research Aim and Objectives 

 

It follows that research is needed to develop an understanding of how the provision of 

uncertainty information and the mode of its representation may influence decision-making 

behaviour with spatial information. Within the GIS literature, there has been little testing of 

the effects on decision-making of representing uncertainty. Within the decision-making 

literature, there has been little consideration of spatial uncertainty. This thesis focuses on the 

ways in which the inclusion of spatial uncertainty and the mode of any such representation 

may affect the decisions being made within the context of behavioural decision research. 

Existing research into decision-making under conditions of spatial uncertainty is sparse and 

this study complements the current literature by introducing a psychological perspective into 

decision-making on the basis of uncertain spatial information.  

 

Accordingly, the aims of this research are to:  

• test the effects of introducing the uncertainty in spatial information to decision makers; 

and 

• investigate the effects of different uncertainty representations on the decisions being 

made. 
 

The objectives are to: 

• examine the different types of spatial data error and uncertainty; 

• explore the methods for representing uncertain spatial information; 

• investigate how decision-makers deal with uncertainty; 

• identify suitable case studies to form the basis for experimental testing; and 

• conduct experimental tests and evaluate the results. 

The hypotheses that are proposed and tested are that: 

• decision-makers will exhibit ambiguity aversion when uncertainty information is 

included in thematic maps, which may lead to the making of irrational decisions; and 

• different decisions will be made when the same positional uncertainty information is 

displayed, dependent upon the nature of the uncertainty representation. 
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1.6 Thesis Outline 

 

This thesis begins with a review of the current literature and research relevant to the topic of 

decision-making under spatial uncertainty. Initially, the types of error in spatial data are 

outlined and how these errors contribute to uncertainty in GIS output is examined. This is 

followed by a review of the methods that have been used to quantify and depict the 

uncertainty in spatial information and the limited research into assessments of the 

effectiveness of these representations. A lateral step is then taken, into the realm of 

behavioural decision research, to explore the developments in this field towards an 

understanding of decision-making and, in particular, decision-making under conditions of 

uncertainty.  

 

The domains of spatial information and human decision-making are then integrated within an 

experimental study of the effects of representing spatial uncertainty to decision makers. Two 

case studies are established. In one of these studies, the uncertainty in the spatial information 

is a result of thematic uncertainty (airport siting case study), whereas in the second study, the 

uncertainty relates to position (navigation case study). The airport siting case study examines 

the effects on spatial decision-making of providing thematic uncertainty information. It 

investigates how the introduction of this information may affect the relative rankings of 

different regions as the potential site of a new airport. The hypothesis being tested is that 

decision-makers will exhibit ambiguity aversion when uncertainty information is provided, 

which may lead to the making of irrational decisions. The navigation case study considers the 

effects of different representations of positional uncertainty upon decision-making.  The 

decision as to when a boat should turn away from a restricted zone is examined under 

different depictions of positional uncertainty. The hypothesis being tested is that different 

decisions will be made to the same information, dependent upon the nature of the uncertainty 

representation. 

 

1.7 Scope of Thesis 

 

The title of this thesis, decision-making under spatial uncertainty, is extremely broad, 

suggesting perhaps more than a single study is able to offer. However, since there has been 

little research to date in this area, the initial findings from such a study may be general enough 

to be applicable to all types of spatial decision-making. There are many sources of uncertainty 
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in spatial data; in addition to positional and thematic uncertainty, the logical consistency and 

completeness of spatial information is uncertain. Temporal uncertainty is also applicable 

across each of these elements and some academics have made a case for the existence of 

semantic uncertainty. However, this study is restricted only to consideration of positional and 

thematic uncertainty in spatial information. The temporal and semantic uncertainty, logical 

consistency and completeness of the case study data are not considered. 

 

This thesis is concerned with the effects of representing uncertainty in spatial information to 

decision-makers. However, the diversity of applications of spatial data is huge and continuing 

to grow. The variety of decisions being made on the basis of spatial information is 

correspondingly large. A single experimental study can only consider a small number of 

applications, although if well designed, the results can be generalized across many fields. 

Accordingly, this study is based upon two such applications; it examines the effects of 

introducing thematic uncertainty information on siting decisions and explores how different 

representations of positional uncertainty may also influence decision-making. The findings 

have potential relevance to all applications of spatial information. 

 

1.8 Chapter Summary 

 

Spatial information is being used in GIS by a diverse group of users and in an increasingly 

widespread range of applications. Errors from a variety of sources and processes are inherent 

to spatial data, causing uncertainty in the spatial information output. There is growing 

recognition of the need for this uncertainty to be represented to users in a comprehensive and 

unambiguous way, to ensure that their decision-making is fully informed. However, the 

effects on decision-making of representing uncertain spatial information have not been 

thoroughly investigated. Studies from the psychological literature indicate decision-making 

biases when information is uncertain, although these biases have not been examined with 

spatial data. This study aims to explore the effects of representing spatial uncertainty, through 

an examination of how decision-making may be affected by the introduction of thematic 

uncertainty and an investigation of the effects of different representations of positional 

uncertainty on decision-making.  
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2.  

Errors in Spatial Data and Methods of Visualising Spatial 

Uncertainty 

 

2.1 Introduction 

 

As Hunter and Beard (1992) note, the manual production of paper maps has traditionally been 

the domain of experts, specialized in the skills of cartography. These specialists have long 

been aware of the limitations of the data with which they work and have typically represented 

the accuracy of their final product using conventional map reliability diagrams and statements 

of positional accuracy. However, the ease with which spatial data can be used within GIS to 

produce digital maps has opened up the field of map production to a range of far less 

specialized users. Many of these users have only a limited awareness of how errors will be 

inherent to the data sets and propagated through the GIS processes. It is therefore necessary 

that the limitations of spatial data sets be communicated to their potential users. 

 

In this chapter, the premise that errors are inherent to spatial data is assumed. The sources of 

these errors are reviewed, under the three-way classification framework of collection errors, 

application errors and misuse errors. Data sets have an associated level of uncertainty as a 

result of these errors and current requirements to report data quality along the five elements of 

spatial, attribute and temporal accuracy, logical consistency and completeness are discussed. 

The chapter continues with a review of methods aiming to quantify and visualise the 

uncertainty in spatial data. It concludes with a discussion of the research to date that has 

considered the effectiveness of visualisation methods to communicate uncertainty to users of 

spatial data. 

 

2.2 Sources of Error in Spatial Data 

 

Geographic information systems require spatial data input, on which a multitude of operations 

may be performed, in order to obtain the desired information output. Errors are inherent to all 

data sets, and these errors will be further propagated throughout any manipulation processes 

within the GIS. In addition to data acquisition errors and processing errors, Beard (1989) 

identifies a third source of error in spatial data, that of data usage. Hunter and Beard (1992) 
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propose a model in which these three types of source error lead to two forms of error in the 

final product, both positional and thematic error. Additional forms of error, those of 

completeness, logical consistency and temporal error, have since been incorporated into this 

model (Hunter et al, 2003). 

 

2.2.1 Collection and compilation errors 

 

Errors at the stage of acquisition of spatial data are an inherent source of inaccuracy within a 

data set. Veregin (1989) presents a comprehensive overview of such errors, which include 

those arising from the technologies and techniques used to measure and record data. For 

example, remote sensing data is subject to errors arising from factors such as platform tremor 

and atmospheric variability. The accuracy of photogrammetry and surveying are dependent 

upon the techniques, geodetic base and equipment used.  Different map projections introduce 

differing distortions in distance, shape or area.  

 

Many natural phenomena do not exist as homogeneous regions, although we often attempt to 

classify areas such as vegetation or soil type into polygons, and the existence of transition 

zones between regions is often ignored. Definitions of natural features or class boundaries will 

affect the accuracy of the resulting data set, as will the method and completeness of sampling. 

Data currency is also an important factor as the data set attempts to represent a continually 

changing world.  

 

2.2.2 Processing errors 

 

Errors are further introduced into a data set as it is manipulated within a computer system. If 

not already in digital form, errors will occur in the digitization process. For example, manual 

line following will introduce under-shoots, over-shoots and spurious polygons. Feature editing 

techniques that attempt to rectify these, such as line snapping and the elimination of slivers 

through the use of tolerance levels, can themselves bring in unwanted results. Generalization 

methods, for instance line simplification and curve fitting, will also introduce errors. 

 

The manipulation of digital data within the GIS is a hidden source of error, of which 

inexperienced users may be unaware.  Co-ordinate adjustments, for example through rubber 

sheeting, edge matching or changes of datum will introduce errors, as will techniques such as 
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raster-vector conversions. Errors will further propagate through surface modeling procedures, 

polygon overlay and spatial analysis techniques, for example network analysis.  Spatial 

statistics and interpolation methods may not adequately account for autocorrelation within the 

data and the spatial variability of the data set. In addition, the method used to display results, 

for example the selection of class intervals in a choropleth map, can have a significant effect 

on the final product.  

 

2.2.3 Application errors 

 

The third source of error identified by Beard is that of data usage. She proposes that 

inexperience in cartographic principles or lack of knowledge about the limitations of data sets 

can result in the misuse of data. As an example, Hunter and Beard (1992) suggest that 

inexperienced users may attempt to add ordinal data values when overlaying raster themes. 

Such a mathematical operation is not valid on this type of data, although users who are not 

experienced in handling data may unwittingly perform this form of misuse error and the GIS 

software will permit them to complete the operation.  

 

Convenience and cost of spatial data are major factors for most users to consider, which may 

take greater priority than the appropriateness of a data set. Hunter and Beard refer to 

Blakemore’s (1985) example of how data can be inadvertently misused. He describes how a 

digital data set of administrative districts was collected by the British Department of the 

Environment for use as a thematic mapping base. Attribute accuracy, rather than positional 

accuracy, was of greater importance to the intended use of this data set and the position of 

boundaries was not recorded to a high degree of accuracy. However, as time passed and the 

data set became popular, agencies began to use it for purposes other than its original intention. 

Positional accuracy assumed a far greater importance to some of these further applications and 

it was found that the data set was not of sufficient quality for these uses, with point-in-

polygon searches indicating some locations to be several kilometers out into the North Sea. 

Such errors in the final product are attributable to misuse of a data set that was created for a 

different purpose. 
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2.3 Data Quality Elements and Metadata Reporting 

 

The three sources of error lead to errors in the final product of the GIS. However, the true 

values represented in the final product are not usually known, preventing us from giving an 

accuracy statement for GIS output. Instead, we refer to the level of uncertainty of the final 

product. Goodchild (1989) suggests that the term ‘uncertainty’ does not have the negative 

connotations of the term ‘error’ and is therefore a more appropriate descriptor.  

 

Acquisition errors are inherent to a data set and, as such, cannot be avoided. Similarly, the 

propagation of errors through a GIS is intrinsic to the manipulation of spatial data and is 

inescapable. However, if the level of accuracy of a data set is known, it should be possible to 

track the propagation of these errors through a GIS and to determine the level of uncertainty 

of the final product. In addition, knowledge of the accuracy of a data set is required if we are 

to minimise, and possibly eliminate, the third source of error, that of data misuse. If the 

limitations of a data set could be communicated to the user, with education and training, the 

frequency of such usage errors would be greatly reduced. Complete knowledge of the quality 

of a data set is therefore essential to both the assessment of the uncertainty of a GIS product 

and the reduction of data misuse errors. 

 

The need for reporting of data quality has long been recognized by those working with spatial 

data. The U.S. Spatial Data Transfer Standard (NIST, 1992; ANSI, 1998) requires that the 

quality component of spatial data be communicated to users along five themes. These are 

those of lineage, positional accuracy, attribute accuracy, logical consistency, and 

completeness of the dataset. Temporal accuracy of the data is one further aspect that must be 

considered, as this cuts along each of these five themes. Lineage refers to the history of the 

data set and is, as such, untestable. However, the remaining themes are testable and the quality 

of a data set with respect to each must be understood by decision-makers, since the erroneous 

application of a data set can lead to serious consequences. 

 

2.3.1 Positional accuracy 

 

A lack of consideration of the positional accuracy of data led to grave consequences recently 

in the United Kingdom. Following an outbreak of foot and mouth disease, the government 

partook in a policy of culling livestock exposed to infected animals. Five hundred sheep were 
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slaughtered at a farm in Cumbria, by soldiers believing that the farm lay within a 3km buffer 

zone of a confirmed case of the disease. However, the grid reference was wrong by one digit 

and they should have been slaughtering animals several miles away (Source: the Daily 

Telegraph newspaper, 21 April 2001). 

 

Reporting of the positional accuracy of a data set is usually done at the global level. Accuracy 

statements are typically based on the root mean square error, RMSE, (ANSI, 1998) which is 

calculated from a sample of n test points, for which the true x values are known and compared 

to the data set’s values, x̂ , using the rule: 
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The RMSE can then be used to estimate confidence intervals for the data accuracy, a typical 

positional accuracy statement being that 95% of values are within ± 20m of the true value. 

Such statements assume that the errors are normally distributed and are independent. 

However, much spatial data exhibits autocorrelation and the spatial distribution of errors is 

often not homogeneous.  

 

Hunter et al (2002) reflect on the need for more complete data quality descriptions that 

include local, rather than global, measures and also report the level of autocorrelation within 

the data. Indeed, Hunter and Goodchild (1997) demonstrate the importance of including 

information about the spatial autocorrelation of errors in data quality reports for digital 

elevation models (DEMs). They modeled the spatial uncertainty within a digital elevation 

model from which slope and aspect calculations were derived, by producing multiple 

alternative realisations of the DEM. These realisations were produced using different levels of 

spatial autocorrelation within random error fields applied as a disturbance term to the 

elevation model. They found that the errors in the calculated slope and aspect values were 

dependent on the level of autocorrelation used in generating the disturbance field. They 

concluded that since digital elevation models are generally derived using some form of 

interpolation, the errors within each must have an associated level of autocorrelation.  This 

spatial autocorrelation will affect subsequent calculations, such as slope and aspect, and must 

therefore be reported to users of the data set. 
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2.3.2 Thematic accuracy 

 

Thematic accuracy refers to the correctness of the information concerning attributes of the 

geo-referenced locations or features. The type of attribute can vary widely, for example, it 

may be the name of a lake, the soil type of a region or the population of a city. Within a 

database, many attributes may be recorded for a particular feature, such as the name, length, 

pH value, salinity and fish population of a river. These attributes may be of different data 

types, such as categorical or numerical.  

 

Many of those using spatial data further categorize the level of measurement into nominal, 

ordinal, interval or ratio, following the classification scale of Stevens (1946). However, 

Chrisman (1995, 1997) proposes that other levels of measurement are relevant to geographic 

date, such as cyclic ratios for circular data. A further level of measurement that is of particular 

importance as we consider uncertainty within GIS products is that of absolute ratio. 

Probability values are within the range from zero to one and meet Ellis’ (1966) definition of 

an absolute scale, that there are no possible transformations that can be applied to these values 

that retain the original meaning of the measurement. 

 

An understanding of level of measurement is important as it restricts the mathematical 

operations that are applicable to a data set. For example, it is not appropriate to calculate the 

mean of a set of ordinal data values, as the values do not necessarily differ by equal intervals. 

However, as Goodchild (1995) points out, current GIS rarely restrict the use of mathematical 

operations to those that are appropriate to the data type. Such restrictions should be 

reasonably straightforward to implement, if the data types were included in the metadata, and 

would reduce the likelihood of data misuse errors.  

 

The level of measurement of a data set also affects the manner in which thematic accuracy can 

be reported. For interval or ratio data, measures similar to those used for positional accuracy, 

such as the RMSE, are applicable. However, different measures are necessary for nominal 

data. One commonly used statistic is the percent correctly classified (PCC). This requires that 

the true classification of a set of sample data points is known. A misclassification matrix is 

then produced, plotting the data set classification against the true classification of each sample 

point. From this matrix, the PCC is calculated by summing the number of classifications that 

are in agreement and dividing by the total number of classifications in the sample. 
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Congalton (1991) has shown that this measure is sensitive to sampling technique, at least in 

the reporting of classification accuracy for remotely sensed images. He created several sets of 

sample points, using different sampling techniques, and derived the misclassification matrix 

for each sample. From these matrices, he calculated the percentage of cells correctly classified 

within the remotely sensed image. These PCC values differed significantly between the 

sampling techniques; Congalton concluded that certain techniques were more appropriate than 

others in assessing classification accuracy. 

 

Furthermore, the PCC value does not take into account the number of correct classifications 

that would be a result of chance. Goodchild (1995) states that a preferred index is the Kappa 

statistic, which returns the percentage of cells correctly classified above that expected from 

chance alone. Two other measures of thematic accuracy for categorical data are producer’s 

accuracy and consumer’s accuracy. Producer’s accuracy returns the probability that features 

of a particular class do appear as that class in the database. Consumer’s accuracy, on the other 

hand, returns the probability that features that appear to be of a particular class from the 

database are actually of that class in reality. These different measures are all useful statistics. 

However, they are all global, rather than local, measures and do not report the spatial variation 

in data set accuracy. 

 

These measures of reporting the accuracy of nominal data may sound similar but they return 

values that can be quite different and have very different meanings. They should all be quoted, 

as many people do not have an intuitive understanding of the differences between them. For 

example, the contingency matrix below shows a sample of data that has been classified into 

two categories: A and B. The true classifications are plotted against the dataset classifications, 

with the classifications that agree shaded.  Thematic accuracy statistics are calculated as 

shown. 
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PCC = 75/100 = 0.75  

Kappa = (75-59)/(100-59) = 0.39,   where 59 = (80x65 + 20x35)/100 

Producer’s accuracy for A = 60/80 = 0.75,  for B = 15/20 = 0.75 

Consumer’s accuracy for A = 60/65 = 0.92,  for B = 15/35 = 0.43 

 

Table 2.1. Sample misclassification matrix and associated calculations for 

thematic accuracy statistics. 

 

 
It can be seen that the Kappa statistic is considerably lower than the PCC, as it does not 

include the proportion of cells that are correctly classified as a result of chance. Both the PCC 

value and the producer’s accuracy values are 0.75, meaning that three quarters of the cells are 

correctly identified in the database, for both class A and class B. However, the consumer’s 

accuracy figure for B indicates that only 43% of those cells that appear to be of class B in the 

database are actually of this class in reality. Unless this figure is explicitly stated, it is 

understandable that many people would incorrectly interpret the PCC value of 0.75 to mean 

that three quarters of those cells that appear to be class B are truly of this class. 

 

Although positional and thematic accuracy have been discussed as two distinct measures, 

several researchers have contended that they often interact and are at times inseparable.  

Veregin (1989, p.45) states that ‘…polygon boundaries are defined in terms of the values of 

the thematic attribute themselves and thus attribute and positional errors are not 

independent’. Goodchild (1995) provides a good introduction to some of the complexities of 

describing thematic data. These include the different ways that attributes may be related to the 

earth’s surface, such as cities being represented as points at low scales but being composed of 

a multitude of features, all having their individual attributes, at higher scales. In addition, the 

accuracy of an attribute such as the area of a feature will be dependent upon the positional 

accuracy of the dataset and, similarly, attributes such as population density require the use of 

A B Total 

A 60 5 65 

B 20 15 35 

Total 80 20 100 

True classification 

Dataset 

classification 
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aggregation areas in their calculation, causing positional accuracy and thematic accuracy of 

such a data set to be compounded. It is often helpful to consider data quality in terms of the 

five elements identified in the SDTS, although, in practice, the components may not be easily 

separable. 

 

2.3.3 Logical consistency 

 

Logical consistency is defined within the SDTS as “the fidelity of relationships” encoded 

within the data structure. For example, it includes issues such as the conformity of topological 

relationships; the use of tolerance levels to remove under-shoots and over-shoots and to close 

polygons must be reported. The importance of communicating the logical consistency 

component of data quality is illustrated in this example of a German motorist relying on his 

vehicle’s GPS-based navigation system to select a route between two towns. Approaching a 

ferry terminal, he drove his car straight into the Harvel River. The navigation system, in 

which the motorist had shown complete faith, had depicted the ferry crossing as a bridge 

(Source: The Observer newspaper, 27 Dec. 1998).  

 

2.3.4 Completeness 

 

The completeness report mandated by the SDTS includes information about omissions, 

selection criteria, definitions used and other rules that may have been applied in deriving the 

data set. For example, geometric thresholds, such as the minimum width of a bridge for its 

inclusion in the data set, must be reported. The importance of being aware of the completeness 

of a spatial data set was demonstrated with disastrous consequences in 1998, when a U.S. 

military aircraft sliced through an Italian cable car line. The New York Times newspaper 

reported that the map on which the pilot had been relying did not include the cable car line 

(source: CNN.com, 1998). 

 

2.3.5 Temporal accuracy 

 

Temporal accuracy is not, in itself, a component that the SDTS identifies as mandatory in the 

reporting of spatial data quality. However, any representation of a dynamic world needs to be 

regularly up-dated if it is to remain relevant. The temporal accuracy of a data set relates to 

each of the previously described components: positional accuracy, thematic accuracy, logical 
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consistency and completeness. The level of temporal accuracy may therefore need to be 

reported with respect to each of these. The following example illustrates how important an 

appreciation of temporal accuracy can be. 

 

In 1999, NATO accidentally bombed the embassy of the People's Republic of China in 

Belgrade. In the subsequent report, apologizing to the president and people of China, the U.S. 

Under Secretary of State for Political Affairs admitted that it had been a mistake arising from 

faulty intelligence reports and poorly maintained spatial databases. The intended target of the 

NATO bombing was the headquarters of the Yugoslav Federal Directorate for Supply and 

Procurement. However, in attempting to locate this building, officers had relied on imprecise 

techniques. None of the maps or spatial databases used to verify the target location contained 

the correct position of the Chinese embassy. Each located the Chinese embassy on the other 

side of Belgrade, although the embassy had moved to its current location four years earlier. 

The report from the United States consulate (Source: U.S. State Department Report on 

Accidental Bombing of Chinese Embassy, 1999) admitted that ‘..although database 

maintenance is one of the basic elements of our intelligence efforts, it has been routinely 

accorded low priority’. This failure to update spatial information had catastrophic 

consequences. 

 

2.4 Communicating Uncertainty in Spatial Information 

 

Acquisition and processing errors that are inherent to the data within a GIS will result in 

uncertainty in the final product. It is widely accepted that this uncertainty must be 

communicated to users of spatial information, so that they can be made aware of the 

limitations of the GIS output on which they may be basing their decisions. However, the 

current requirements of spatial data standards, such as the SDTS, to report metadata 

concerning data quality may not be conveying the information in a manner that is 

comprehensible to many users. Of those users that do understand statistical statements of data 

quality, such as positional accuracy statements, it would be reasonable to assume that some 

may experience difficulties in understanding how these relate to the level of uncertainty 

within a final GIS output. 

 

In light of this, many researchers have proposed that visualisation of uncertainty information 

may be the most effective means of communicating it to users. Buttenfield and Mackaness 
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(1991) review the historical use of visualisation to convey information and argue for its 

effectiveness in communicating complex patterns in both spatial and statistical data, 

particularly as the volume of this data increases. They contend (p.427) that ‘the nature of 

spatial data and more generally of geographic information mandates the use of visualization 

for both efficiency and acuity in the analytic process.’ 

 

Buttenfield and Mackaness regard visualisation as the interface between three processes. 

These include computational analysis, human cognition and graphic design. The latter 

process, that of graphic design, is concerned with the principles underlying effective 

communication of information through visual representations. Tufte (1983, 1997, 2001) has 

demonstrated numerous examples of both graphical excellence and failing in his books on 

visual communication. His principles of graphical excellence include the need for 

communicating complex ideas with clarity, precision and efficiency. These same principles 

would make sensible guidelines underlying the use of visualisation to communicate 

uncertainty information. However, guidelines regarding the interactions of computational 

analysis, human cognition and graphical design are, as yet, not so well defined.  

 

Three impediments to the communication of uncertainty are described by Buttenfield (1993). 

In addition to the problems associated with defining and assessing data quality, she describes 

the difficulties that arise in attributing data quality elements within a spatial database, 

particularly when manipulating multiple data sets within a GIS, and goes on to consider the 

impediments to graphical representation of data quality. She concludes that there is a need for 

empirical research and cognitive testing of data quality representations, to assess user 

comprehension of such displays and their ability to convey uncertainty information in a 

manner that meets the needs of the user. 

 

Beard and Mackaness (1993) identify three levels to the process of communicating 

uncertainty information through visualisation. The lowest of these levels is notification, which 

simply alerts the user to the fact there may be a data quality problem. The second level, 

identification, serves to locate and to identify the nature of this potential problem and the third 

level, quantification, provides a measure of the problem. They propose that visual displays of 

uncertainty information should be able to address the issue at any of these levels and also need 

to take into consideration the use to which the user is to put the information, for example data 

exploration, assisting decision-making or analyzing patterns in uncertainty.  
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Reinke and Hunter (2002) propose a theory for communicating uncertainty information to 

users that incorporates a fourth level beyond these three, that of evaluation. They suggest that 

the system should also evaluate the significance of the uncertainty measure to the given 

application. This requires a method that enables users to understand the changes that may 

occur between the original data and that data when its uncertainty is acknowledged. They 

conclude that a representation of the quantified uncertainty information needs to be 

incorporated with the original data. 

 

2.4.1 Quantifying the level of uncertainty in spatial data 

 

To date, much of the research concerning the inclusion of uncertainty information in spatial 

data has focused on methods of quantifying the level of uncertainty and methods of 

visualizing this uncertainty. Drummond (1995) describes how the technique of propagation of 

variances can be used as a means of measuring how positional errors propagate through GIS. 

For example, if A is a function of variables B, C and D, then the variance of A can be 

estimated as the sum of the weighted variances of each of the contributors B, C and D, 

together with their weighted co-variances if they are not independent. In the simplest case: 
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However, this method is computationally extensive and its accuracy is necessarily dependent 

upon the accuracy of the given variances of contributors B, C and D. Drummond concludes 

that in many applications it may be more practical to consider simulation as a means of 

tracking error propagation.  

 

A complete understanding of how error propagates through GIS may be a long way away, 

although Hunter (1999) demonstrates a method for tracking the positional changes to feature 

coordinates as they are subject to editing procedures within GIS. In developing a 

mathematical model to predict probabilities, rather than Boolean results, of a point-in-polygon 

analysis within GIS, Cheung et al (2004) consider the propagation of positional errors of both 

the point and the polygon vertices. Similarly, Cheung and Shi (2004) propose a model for 

estimating the positional uncertainty of a line following the propagation of errors associated 

with line simplification in a GIS. 
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Error propagation is an extremely complex process as data sets of differing quality may be 

implemented in a GIS. These can be overlaid and manipulated in many ways before the 

product of the system appears before the user. Petry et al (2003) propose a framework that 

uses software agents to manage the uncertainty associated with integrating multiple data 

sources, through the application of fuzzy logic. However, this remains a preliminary 

framework and they acknowledge that the integration of multiple data sources remains a 

challenge to researchers. 

 

Rather than understanding the exact nature of error propagation, considerable research has 

been focused on the effects that the accuracy of spatial data may have on the system output. 

Openshaw (1989) reflects that users need to learn to live with errors in spatial databases and 

has proposed that many equally probable realizations of the same data input can be readily 

output from GIS. An examination of these multiple realizations can give the user an 

understanding of the influence that errors in the data may have on the product of the GIS and 

therefore assist in their decision as to whether or not a particular data set is fit for use in their 

specific application. 

 

Goodchild (1995) expounds this idea in his discussion of using Monte Carlo simulation as a 

means of modelling error propagation. If the accuracy of a data set is provided, randomly 

perturbed error fields can be added as distortions, resulting in multiple realizations of the data. 

The differences in these multiple realizations can be used as a measure of the uncertainty in 

the dataset, or the multiple realizations can be further manipulated within GIS, providing 

users with the resultant effects on GIS output. A simple Monte Carlo method simulates an 

error value for each grid cell by randomly selecting a value from the assumed normal error 

distribution. Conditional simulation takes into account spatial autocorrelation of errors in 

generating the simulated error values for each grid cell. 

 

Englund (1993) used simple Monte Carlo simulation to produce three realizations of two 

surfaces from their variogram models, which he compared to the surfaces obtained from 

kriging. He found that, when overlaid, the maps from the simulated surfaces were more 

realistic than that from the kriged surface. The kriging process produces an over-simplified 

map due to the smoothing nature of the averaging process. The natural spatial variability was 

better modeled using simple Monte Carlo simulation. 
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Many researchers have used the Monte Carlo method to examine the effects of data accuracy 

on output quality. Davis and Keller (1997) used fuzzy surfaces and Monte Carlo procedures to 

produce multiple realizations to model slope stability. Ehlschlager et al. (1997) applied 

multiple realizations in their finding of a minimal cost route in modelling road construction 

through rough terrain and Hunter et al. (1999) demonstrated how random error grids perturbed 

in two dimensions can be used to produce multiple realizations representing the uncertainty in 

vector data. In a study of uncertainty and sensitivity analysis, Crosetto and Tarantola (2001) 

ran multi simulations in a case study of hydrologic modelling to assess flood vulnerability in 

Italy. These and other similar studies have demonstrated that the effects of error in data input 

can be represented as uncertainty in the information output, reflected in the differences in the 

equally probable multiple realizations of the same data.  

 

Holmes et al (2000) used conditional simulation to study the effects of error in digital 

elevation models on terrain modeling. Their exploratory data analysis revealed that, although 

the global error was relatively small, local errors could be comparatively large and exhibited 

spatial correlation. They generated 50 realisations of the DEM by applying spatially correlated 

random error fields to the data set and were able to provide a map showing probability of 

hillside slope failure, rather than the binary will/will not fail map derived from the original 

DEM alone. Heo (2003) observes that the generation of spatially correlated error fields is 

computationally extremely extensive. He compares several methods of computing spatially 

correlated random error fields for use in Monte Carlo simulations to conclude that the method 

of steepest descent is the best of those methods with linear computation complexity. 

 

However, Van Niel and Laffan (2003) have demonstrated that the Monte Carlo method of 

producing multiple realisations of a GIS output is subject to bias, as a result of the biases 

inherent to random number generators. Depending upon the type of pseudo-random number 

generator used in the simulation, they showed that significantly different results could be 

obtained in a Monte Carlo analysis. They concluded that some types of random number 

generators are more appropriate for spatial analysis than are others and further study into the 

way that these biases may propagate through such analysis is required. At the least, 

researchers should report which type of random number generator they have used in a Monte 

Carlo analysis. 
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2.4.2 Methods of visualising the uncertainty in spatial data 

 

Although considerable progress has been made into methods of quantifying the level of 

uncertainty in spatial information, the question still remains as to what is the most effective 

way to communicate this spatial uncertainty to users. The portrayal of positional uncertainty 

appears to be the least problematic, particularly with regards to vector data. Typical 

visualisation methods have placed probabilistic buffer zones around the object of interest, to 

represent confidence intervals of the object’s position.  

 

Often, a circular zone may be placed around a point object, for example, to visualise the 90% 

Circular Map Accuracy Standard (U.S. Bureau of the Budget, 1947). This assumes that the 

horizontal positional accuracy is constant in each direction. An error ellipse that divides the 

horizontal positional error into two components, one in each coordinate direction (ASPRS, 

1990), may be more appropriate in some applications (for example, Fraser et al, 2003). 

Similarly, the Perkal epsilon band (Perkal, 1966) is widely used to represent the error band 

around linear features and this concept can be developed to represent the positional accuracy 

of polygon boundaries.  

 

These buffer zones tend to be represented as internally homogeneous.  However, it would be 

expected that the object is more likely to be at the centre of the zone than towards the edge if 

the positional errors are normally distributed. Graduated shading of the buffer zone could be 

used to represent the probability distribution of the object’s position, although this more 

complicated representation may become confusing. An example of the use of graduated 

shading to represent positional uncertainty is tested in this study. 

 

Clapham and Beard (1991) propose the potential use of the visual variables identified by 

Bertin  (1983) to display the uncertainty of thematic data. Bertin refers to six retinal variables: 

size, value, texture, colour, orientation and shape. Colour has been further differentiated into 

the two variables of hue and saturation (Morrison, 1974). The order of these variables 

represents the proposed hierarchy of perceptual properties that Bertin suggests these variables 

hold, with the former variables more suited to numerical data and the latter more suited to 

nominal data. Reinke (2002) summarises the findings of several researchers who have 

assessed the suitability of these seven visual variables to portray data of different 

measurement levels. She reports that these results have generally been in agreement with 
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Bertin’s findings. Her summation is shown in the following table, with each cross indicating a 

researcher finding the variable unsuitable, each open circle indicating a researcher finding the 

variable suitable with modification and each closed circle indicating a researcher finding the 

variable suitable for that level of data. 

 

Visual variable Nominal data Ordinal data Numerical data 

Size    

Value    

Texture    

Colour (saturation)    

Colour (hue)    

Orientation    

Shape    

 

Adapted from Reinke (2002), summarising the findings of Andrienko and Andrienko (1999), Slocum (1999), 

MacEachren (1995), Senay and Ignatius (1994), McGranaghan (1993), DiBiase et al (1992), Mackinlay (1986) 

and Morrison (1974). 

 

Table 2.2. Summary of appropriateness of using the seven visual variables to 

portray data of different measurement levels.  

 

It can be seen that size and value are the only two variables generally considered to be suitable 

for numerical data, whilst hue, orientation and shape are generally considered to be most 

appropriate for nominal data. The level of uncertainty of a GIS product may be represented as 

nominal, ordinal or numerical data, depending upon the requirements of the application. For 

example, it would be possible to produce binary maps to represent slope stability, with regions 

where the probability of landslide exceeded a set threshold being of one colour and regions 

below the threshold being another colour. Hue is an appropriate visual variable for this binary 

representation of the quantified uncertainty. However, hue would not necessarily be 

appropriate if a choropleth map were used to represent ordered classes of uncertainty levels. 

In this case, value, saturation or glyph size would be more applicable, as these variables, 

unlike hue, have an intuitive ordering. Aerts et al (2003) used hue in a binary representation 

of uncertainty but value in an ordinal representation of the same information in a web-based 

survey assessing the effectiveness of different representation methods. They found that the 
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majority of participants preferred the ordinal representation, although they could see some 

merit in the binary one. 

 

Clapham and Beard (1991) also argue that the mode of display, such as overlay, inset, 

adjacency, animation and three-dimensionality, must also be taken into consideration. The 

possibility of overlaying uncertainty information on a thematic map would only be practical if 

this information did not interfere with our perception of the underlying thematic information. 

Several researchers have suggested that overlaying maps with uncertainty information may 

overload our cognitive abilities and lead to reduced comprehension (for example, Buttenfield 

& Beard, 1994). MacEachren (1992) suggests that uncertainty information may be overlaid 

through the use of colour saturation, focus of the image (through blurring or the addition of a 

fog overlay) or spatial resolution. Similarly, MacEachren et al (1998) propose the use of 

texture as an overlay to represent the level of uncertainty in health statistics information. They 

found that texture remained visually separable to the hues that were used to represent the 

statistical data, whereas saturation tended to be integrated with hue and interfered with 

participants’ ability to extract cluster and pattern information from the morbidity rate data. 

 

Fisher (1993) offers the potential use of animation in GIS representations. He proposes that 

the level of uncertainty in thematic data could be displayed by causing pixels to blink. Using 

soil maps, he represented greater levels of uncertainty by increasing the frequency with which 

the pixels blinked, hence lowering the stability of the image. Ehlschlaeger et al (1997) utilise 

a different method of animation to represent the level of uncertainty of costing potential 

roadways. They made a movie of the different cost realisation maps, causing the less certain 

cost routes to change more frequently as the movie ran. 

 

An alternative approach to representing the uncertainty in spatial information was adopted by 

Fisher (1994) and Krygier (1994). They used sound to represent the level of uncertainty 

within visual representations of thematic information. As the mouse moved over uncertain 

regions of the map, a high pitch sound was emitted, whereas a lower pitch accompanied more 

certain regions. Although the use of a second sense to portray the level of uncertainty prevents 

interference between the uncertain and thematic representations, the use of sound may not be 

intuitive and may become annoying to users. 
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Researchers have proposed a variety of different ways to portray the level of uncertainty in 

spatial information but with little testing of the effectiveness of these methods. Kardos et al 

(2003) conducted a survey amongst subscribers to a GIS user group, to assess how useful 

these users found a selection of these techniques to be in communicating spatial uncertainty. 

The assessment scale was from 0 (not useful) to 5 (excellent). Of the nine methods tested, the 

majority of participants rated all but one of the techniques to be of class 0, not useful. Only 

the method of blinking pixels was rated as useful by more participants than found it to be of 

no use. This study highlights the need for empirical research into the effectiveness of 

techniques for representing spatial uncertainty. 

 

2.5 Effectiveness Research 

 

MacEachren and Kraak (2001) emphasise this need for cognitive testing of representations of 

uncertainty in spatial data, in both their ability to convey knowledge and to assist decision-

making. They also reflect on the need to consider individual differences among users, such as 

gender, experience, culture and sensory disabilities. Research has not typically been focused 

in this area. Academics have generally been concerned with quantifying measures of 

uncertainty and producing innovative methods of visualizing these in spatial data, without 

necessarily testing the effectiveness of these representations. However, it is imperative that 

the effectiveness of any method designed to communicate information to users is assessed. 

 

Crossland et al (1995) performed one of the first examples of cognitive testing with GIS. 

They conducted an experiment to empirically assess the effectiveness of using GIS to assist in 

decision-making. Subjects were presented with a spatial decision task that required them to 

rank several potential sites for a center developing a new fuel technology. Multiple spatial 

criteria were provided and the subjects were divided into two groups: those given traditional 

paper maps of the spatially referenced information and those with access to a GIS. They 

hypothesized that the subjects using GIS to assist in their decision-making would make faster, 

more accurate decisions than those without access to a GIS, particularly as the decision 

complexity increased. The results supported this, although the interaction with task 

complexity did not reach significance at the 5% level. They were able to conclude that the use 

of GIS does result in better decision-making. 
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The few researchers who have attempted to test the effectiveness of representations of spatial 

uncertainty have taken a similar approach. Leitner and Buttenfield (1997, 2000) introduced 

uncertainty information into a study of siting decisions for a park and an airport when the 

complexity of the problem (number of attribute classes) changed. They used static 

representation of the uncertainty information by value, saturation or texture, which was 

overlaid on a map using hue to represent attribute information. Subjects were asked to select 

the best site for the park and the worst site for the airport. Greater accuracy rates, faster 

response times and greater confidence in decisions were considered to reflect improved 

decision-making.  

 

Leitner and Buttenfield (2000) found that the uncertainty information did not increase 

response times, correctness or confidence in the decisions and even decreased response times 

for the park siting decision. They concluded that users are able to handle the uncertainty 

information without any cognitive overload and that it may actually serve to help clarify the 

attribute information. However, this study only introduced a binary level of certainty 

information and did not account for learning effects.  

 

The nature of the task in the Leitner and Buttenfield study, which was to identify the optimal 

site for the park and the worst site for the airport, required little interpretation of the 

uncertainty information. Indeed, it may be that subjects simply used this information to 

restrict their search to regions that were certain. This would explain the finding that reaction 

times in the park siting decisions actually decreased when the additional certainty information 

was supplied. In selecting the worst possible site for the airport, the frequency of correct 

responses was only around 50 percent, both with and without the inclusion of uncertainty 

information. The task itself may have been unclear to many participants, masking any effects 

that the inclusion of uncertainty information may have had. 

 

Additional research into the effectiveness of uncertainty representations has been conducted 

by Evans (1997). She included binary uncertainty information in land use maps and asked 

users to interpret the information portrayed. Her representations included adjacent maps 

depicting thematic and uncertainty information, a toggling of the thematic and uncertainty 

maps, static maps overlaying thematic and uncertainty information, and dynamic (blinking 

pixel) maps. She investigated how novice and expert users of both genders used and rated the 

uncertainty information in interpreting the land use maps. She found that both groups used the 
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uncertainty information and tended to prefer the combination maps, overlay and blinking 

pixel, to the adjacent depictions and toggling display. However, her subjects were either 

students or academics. Both of these groups may be expected to be more interested in critical 

evaluation of represented data, through an analysis of uncertainty information, than the more 

general user. 

 

Despite this objection, these findings support those of Leitner and Buttenfield in suggesting 

that users are able to comprehend uncertainty information when it is included in 

representations of thematic spatial data and that they are able to do this when the uncertainty 

and thematic information are overlaid on the same map. In both of these studies, the 

uncertainty information was presented as binary data, either reliable or not. If a threshold level 

is introduced to uncertainty representations, it may well be that users are able to comprehend 

this information and incorporate it into their decisions. This requires an a priori assumption as 

to the level at which the uncertainty information is significant, since the data has to be 

classified into binomial classes of certain or uncertain. Such assumptions and depictions may 

be more appropriate for some user groups and applications than others. It may be useful to 

novices to have uncertainty information in this simplistic form. However, analysts may 

require a more detailed representation of uncertainty if their final decisions are to be truly 

informed. 

 

Aerts et al (2003) conducted a web-based survey for which the participants were GIS users, 

rather than students or academics. They also represented the uncertainty information as 

ordinal classes, portrayed with lightness values, rather than binary data. However, possibly 

due to the complexity of having ordinal, rather than binary, uncertainty information, they did 

not overlay this on the attribute information but presented subjects with adjacent or toggling 

displays. They concluded, in agreement with Evans and Leitner & Buttenfield, that subjects 

were able to understand the uncertainty information included in both the adjacent and toggling 

displays. However, one question asked subjects whether they were able to make simple 

approximations (for example, 50%, 75%) about the amount of uncertainty associated with the 

data. The majority of subjects’ responses, on a scale from 1 (not at all) to 5 (completely), were 

in the 2-3 range. This indicates only a limited understanding of the uncertainty information 

alone, without any requirement to apply it to decision-making. The confidence of Aerts et al 

in the ability of the display to communicate uncertainty information seems rather optimistic. 
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These studies have investigated subjects’ ability to comprehend uncertainty information when 

it is presented together with thematic information, without interference or cognitive overload. 

Similarly, MacEachren et al (1998) were able to conclude that texture overlaid on choropleth 

maps was able to display uncertainty without interfering with the underlying morbidity rate 

data and Kardos et al (2004) are currently assessing survey participants’ ability to 

comprehend the uncertainty information in tessellation overlays. However, with the exception 

of Leitner and Buttenfield (1997, 2000) none of these studies has required an interpretation of 

the uncertainty information within the context of a decision task. It can be argued that even 

the Leitner and Buttenfield study did not require interpretation of the uncertainty information, 

as the correct decision could have been made by simply using the uncertainty information to 

restrict the search to certain areas.  

 

It is acknowledged that the uncertainty inherent to spatial data must be communicated to the 

users of GIS in the manner that is most effective to the decisions being made. However, how 

the effectiveness of such uncertainty representations is to be assessed is a question that has 

arisen (for example Slocum et al, 2001) without having been satisfactorily answered. The 

question is not an easy one, since effectiveness would appear to be specific to the task at hand. 

Slocum et al suggest the need for analysis of user tasks, software evaluation by experts, 

formative user-centred evaluation and task-based comparison of alternatives. 

 

It would appear that the logical approach to answering the question of what is the best way to 

depict uncertainty in spatial information would be to focus on the users and to address their 

needs. Knapp (1994) has argued for a task analysis approach to the visualization of 

geographical data, stating Casner’s (1989) finding that visual displays are of optimal support 

only when they directly support user tasks. He contends that closer relationships are required 

between the needs of users and the output of software systems. Suchan (2001) conducted a 

study of the usability of geovisualization software through interviewing population census 

analysts in the workplace. In addition to the application-specific functionality requirements, 

she identified more general user wishes for representations that are visually easy to work, 

visually easy to interpret, able to speed up the process of data exploration and able to make 

the process more interesting. Beard and Mackaness (1993, p.43) agree with this, stating that 

‘if the visualization techniques for investigating data quality are difficult to use, users will 

simply not access them’. 
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The user-desirability of ‘quick and easy’ representations is of little surprise but is at odds with 

the nature of uncertainty in GIS output. Indeed, many users are uncomfortable with the 

concept of uncertainty per se, and education in the use of even the most simplistic binary 

uncertainty representations may well be required. When more complex decisions are being 

made, researchers are arguing the need for a more detailed depiction of uncertainty 

information to prevent the mis-interpretation of GIS output. However, for researchers to 

assume that their job is finished in passing these representations to users seems naive. If 

pictures are speaking their thousand words, the nature of these thousand words and their 

application to the decision at hand may be far from clear. Even the most expert users may 

require assistance in deciding how this uncertainty information is to be applied to decision-

making. 

 

There has been some research into the question of how uncertainty information can be 

incorporated into decision-making. This research has primarily focused on using uncertainty 

information to assess the fitness for use of the data set. Agumya and Hunter (1999) propose 

that a risk-based approach to assessing the fitness for use of spatial data is more appropriate 

than a standards-based approach. Rather than assessing how much uncertainty is acceptable in 

the decision and taking that back to the data, they argue that it is more appropriate to consider 

the level of uncertainty in the data and assess how that will affect the level of risk in the 

decision. A cost-benefit approach can then be used to decide if this level of risk is acceptable.  

 

This approach has been further expanded by De Bruin et al (2001). They utilized decision 

trees and Bayes’ theorem to assess the expected value of information. This theory was then 

successfully applied to a case study to decide which of two available DEM data sets would be 

the most cost effective in determining the volume of sand required to build a container port. 

Nonetheless, research in this area is relatively sparse and there are no clear guidelines 

indicating how users of spatial information can utilize the uncertainty information that is 

provided.  

 

Slocum et al (2001) have identified that one of the difficulties that researchers have 

encountered in assessing the effectiveness of uncertainty representations is that it has not been 

clearly stated exactly what needs to be assessed. The question remains as to what the 

depiction of uncertainty is attempting to communicate to the user and how this is applicable to 

the decision at hand before the effectiveness of the representation can be assessed. It may well 
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be that this is to some extent dependent upon the specific application of the user but it still 

remains that the provision of some guidelines here is an area in need of much research. 

 

There is a widely held assumption amongst academics working within the GIS community 

that, if decisions being made on the basis of spatial information are to be as informed and 

robust as possible, it is essential that the level of certainty of that information be 

communicated to the decision-makers. It is implied that the inclusion of certainty information 

in the output of a GIS will lead to better decision-making. For example, Fairbairn et al (2001, 

p.20) state that ‘making information available about data uncertainty… is essential, if users 

are to make informed decisions’. In a similar vain, within the executive summary to the 

NCGIA research initiative into visualization of spatial data quality, Beard et al (1991, p.iv) 

argue that: 

 

‘Information on the quality of data is essential for effective use of GIS data… The 

credibility of spatial decision support using GIS may indeed depend on the 

incorporation of quality information within the database and display.’ 

 

However, nobody seems to be asking what it is that decision-makers are going to make of this 

certainty information. It may well be that the concept of uncertainty is not an intuitive one and 

the inclusion of such information may not actually assist rational decision-making. Kardos et 

al (2003) report that their subjects, 39% of whom were experts in GIS, 48% advanced and 

13% beginners, found that the concept of an uncertainty measure was difficult to grasp. If 

these subjects, over half of whom were employed in professions using GIS or in government, 

were hesitant around the notion of uncertainty, one can only speculate as to what users less 

experienced in GIS are going to make of it. 

 

Is it, then, a fair assumption that the provision of the information per se is sufficient to result 

in better decisions? Mark Harrower (2003, p.1) poses the question: ‘…does displaying 

uncertainty on maps fundamentally change the way people think and problem-solve and 

ultimately lead to better decisions?’ Studies from the psychological literature indicate that 

people are averse to the concept of uncertainty and tend to avoid it wherever possible. If this 

is the case with spatial information, the provision of certainty information may simply lead to 

bias in decision-making, rather than informed, robust decisions. If this is the case, extensive 

education may need to accompany the inclusion of certainty information in GIS output. 
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2.6 Chapter summary 

 

Errors are inherent to spatial data and will lead to uncertainty in the product of GIS. This 

uncertainty must be communicated to users if the GIS output is to truly inform the decision-

making process. Research has primarily focussed on quantifying the level of uncertainty and 

producing methods of visualising this, without testing the effectiveness of these methods. For 

example, multiple realization studies, using Monte Carlo simulation to quantify uncertainty, 

have generally opted for visualization methods to communicate the uncertainty to users. These 

have included probability maps with colours representing differing susceptibility to landslide 

as identified from the multiple realizations, dynamic representation of minimal cost and 

superimposed representations of polygon boundaries complemented with statistical analysis. 

 

Visualisation lends itself to the representation of the spatial distribution of output uncertainty. 

However, which forms of visualisation are most effective in communicating the level of 

uncertainty is an area that has received little research. The research to date has generally 

considered whether or not users are able to comprehend the uncertainty information without it 

interfering with their perception of the underlying data. When the uncertainty information is 

binary and presented as overlay or by toggling displays, the findings have generally agreed 

that users are able to extract this information without interference and without cognitive 

overload.  However, these studies have not questioned what users are to do with the 

uncertainty information. 

 

There has been little research into what decision-makers actually make of uncertainty 

information when it is included in GIS output. Academics working with spatial data have 

assumed that the inclusion of such information will lead to more robust, informed decisions, 

without testing how decision-makers might use uncertainty information. There appears to be a 

presumption that decision-makers will respond to uncertainty in a rational manner. However, 

studies from the psychological literature suggest that most people are averse to uncertainty 

and tend to avoid it. If such tendencies are apparent with spatial data, the inclusion of 

uncertainty information may simply lead to bias in decision-making, rather than fully 

informed decisions. 
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3.  

Behavioural Decision Research 

 

3.1 Introduction 

 

Behavioural decision research is the collective name for studies into human decision-making 

behaviour under experimental conditions. Its aim is to understand decision-making processes 

in different choice and judgement tasks, with the goal of assisting decision-makers and 

enhancing decision-making performance. As such, the findings from behavioural decision 

research have direct applications to most, if not all, fields. Although generally considered to 

lie within the realm of psychology, the research focus cuts across many disciplines, including 

economics, sociology, political science and statistics. In fact, the domain of behavioural 

decision research has been of keen interest to economists, who have contributed to models of 

decision-making strategies and found many real life applications to exploit the research 

findings (for example Einhorn & Hogarth, 1986). However, other fields have been slower to 

take such findings on board and to apply them to decision-making within their own domains. 

 

If the ultimate goal of studies into decision-making is to improve decision performance, it is 

necessary that we have a common understanding of what constitutes ‘best practice’ in 

decision-making. It is widely accepted that, in making the best possible decision, one is 

required to act rationally. However, the concept of rationality as applied to decision-making 

has given rise to some debate. It needs to go beyond the standard dictionary definition of 

rational as being agreeable to reason (Oxford English Dictionary, 1989) and to consider the 

decision outcomes. As such, rational decisions have traditionally been considered to be those 

that are expected to maximize accepted goals, given a set of premises. 

 

Neoclassical economics, supported by the work of Savage (1954) in his book Foundations of 

Statistics, proposes exactly this and that such decision-making processes are characteristic of 

human behaviour. It argues that rational decisions are consistent and are made to optimise the 

expected outcomes, from the given information. Although the neoclassical economists 

concede to human fallibility and acknowledge that people may sometimes make a decision 

that is deemed incorrect on such a premise, they believe that decision-makers will recognise 

such an error when it is brought to their attention and will, on reflection, choose to change 
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their decision to that which would optimise the outcomes. Rationality as applied to decision-

making can be considered to be maximising the expected utility.  

 

Simon (1955) contended that, in fact, human decision-making often deviates from such 

rational behaviour. Simon proposed that information-processing limitations exist, causing 

decision-makers to exhibit ‘bounded rationality’. The greater the complexity of a decision, 

through an increased number of conditions or possible outcomes to consider, the greater 

would be the effect of such limited processing capability. Humans, he suggested, show a 

tendency to trade-off the ‘correctness’ of a decision for the level of cognitive effort required to 

make it. In order to understand actual decision behaviour, Simon argued that research was 

needed to systematically investigate how humans deviate from rational choice.  

 

Simon’s view is not necessarily in opposition to the normative models. Savage accepts that 

people do make mistaken decisions and these mistakes may well be a result of having 

employed heuristics of the type that Simon suggests. However, Savage would argue that, 

given time to reflect on any such mistakes, decision-makers would change their decision to 

that which is deemed rational in terms of maximising expected utility. Simon’s proposal that 

decision-makers employ simplifying heuristics may be descriptive of what decision-makers 

are doing in practice, whereas the normative strategy is more a prescriptive definition of what 

constitutes rational decision-making behaviour. However, such a definition requires that, 

given time to reflect, all deliberate decisions would conform to the Savage axioms. The 

findings from decision research suggest that theories of maximising expected utility do not 

adequately describe all decision-making behaviour. Some decisions may be reversed 

according to the task conditions and decision-makers may continue to believe in the 

correctness of certain ‘irrational’ decisions, even after any contradictions to normative values 

are brought to their attention. 

 

3.2 Normative Decision-Making Strategies: Prescribing Rational Behaviour  

 

The early studies of human decision-making processes assumed that normative strategies 

based on rational axioms could be used to model actual decision behaviour. These studies 

generally concerned two types of decision-making task: choice tasks and decisions under risk. 

Choice behaviour was investigated by facing subjects with a decision between several 

alternatives that varied along multiple attributes. No single alternative best met all of the 
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objectives, so subjects had to choose between conflicting values. Decisions under risk 

involved offering subjects gambles, requiring them to choose between bets with differing 

payouts and probabilities of occurrence. From both types of task, the resulting models were 

based on the proposition that decision-makers attempted to optimize the expected value of the 

decision outcome.  

  

3.2.1 Choice behaviour: Weighted additive value model (WADD) and its variations 

 

In the WADD model, it is assumed that the different attributes (i = 1….n) are each given a 

weighting, wi, according to their relative importance to the decision at hand. The value of the 

attribute for alternative X is then multiplied by its weight to determine its weighted value 

(wiXi). These weighted values are then summed over the n attributes to give the WADD value 

for alternative X: 
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This summative procedure is repeated for each alternative and the resulting WADD values 

compared to determine the optimal decision. 

 

A modification to this model was later introduced, constraining the weights to sum to one. 

This caused the model to become an averaging rather than an additive model. The purely 

additive nature of the original WADD model meant that if an additional attribute with a 

positive value were to be included, the overall WADD value for that alternative would 

improve, even if this value were only mildly positive. However, in practice, we commonly 

encounter the situation where finding additional information on a particular option lessens its 

desirability. For example, we may consider a digital camera with high resolution and a high-

zoom lens to be extremely desirable. The additional information that its battery life is only 

moderate to good may dampen its appeal rather than add to it. Research has shown that the 

averaging modification to the WADD model has improved its application to many decision-

making tasks (Anderson, 1981). More recent modifications include variations that allow for 

first impressions of options and interaction between attributes.  
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One of the major criticisms of the WADD model has been its assumption that people can 

reliably evaluate attributes along a common value scale. People do not have pre-defined 

values for most attributes and objects but appear to construct such values within the 

experimental constraints of decision tasks. Slovic (1995) argued for the theory of constructive 

preferences, demonstrating that in decision-making experiments, values are constructed on the 

spot as needed. This makes expressed choice and judgment open to the effects of task and 

context factors, such as the presentation order of options. If values are constructed in such an 

ad hoc fashion, it appears difficult to argue that the application of these models to real life 

decisions is to result in the consistent, rational choices demanded of neoclassical economics. 

 

3.2.2 Decisions under risk: Expected value and expected utility models 

 

Instead of choosing between multi-attribute alternatives each with a known value, some 

decision tasks, such as gambles, involve the choice between alternatives under conditions of 

risk. Risk is defined as referring to situations where the consequences of a decision depend 

upon future outcomes having known probabilities of occurrence. Rational models of decision-

making strategies under conditions of risk are the expected value model and its utility 

variations. The expected value of each outcome, (i = 1…n), for gamble X is the product of its 

value, V(Xi,) and the probability, Pi, of its occurrence. For each gamble, these products are 

summed over the n outcomes to give the expected value: 
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Consideration of this expected value therefore enables the decision-maker to evaluate the 

gamble. 

 

In early studies of risky choice, Kahneman and Tversky (1979) found that most subjects do 

not behave in a manner that is rational in terms of the expected value model. For example, 

they asked questions offering choices similar to the following. 

 

Which would you prefer: $3000 for sure or an 80% chance of winning $4000? 
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The expected value of the latter option is $3200, although the majority of subjects chose the 

former. However, in a similar question with the outcome representing loss rather than gain: 

 

Which would you prefer: a loss of $3000 for sure or an 80% chance of losing $4000? 

 

Most subjects chose the latter option, despite this resulting in a greater expected loss. 

 

Kahneman and Tversky proposed that these preferences could still be considered rational if 

the expected value model were modified to reflect expected utility. Bernoulli introduced the 

concept of utility in 1738, stating that ‘any increase in wealth, no matter how insignificant, 

will always result in utility which is inversely proportional to the quantity of goods already 

possessed’ (Bernoulli, 1967, p.25). He suggested that a poor man having found a lottery ticket 

with a 50% chance of winning 20 000 ducats and a 50% chance of winning nothing might be 

well advised to sell that ticket for 9 000 ducats, despite its expected value being 1000 ducats 

greater than this. In the same situation, a rich man would be better advised not to sell the 

ticket for any less than its 10 000 ducats value. 

 

Instead of money having absolute value, Bernoulli argued that it has diminishing marginal 

utility. This means that each additional dollar is appreciated less as the person becomes richer 

and utility is a subjective measure of value. In the risky choice example of Kahneman and 

Tversky, the expected utility of the risky $4000 option becomes less than the expected utility 

of the certain $3000 option, making the choice rational. However, when considering losses, it 

is the loss of each additional dollar that exhibits diminishing utility, rather than the gain. This 

makes it rational for the same person to prefer the risky gamble of 80% chance of losing 

$4000 to a certain loss of $3000.  

 

Kahneman and Tversky also found that most people display loss aversion in risky choice. For 

example, most people are unwilling to accept a bet where they have an equal chance of losing 

as winning a given amount and this aversion is greater the higher the stake. People tend to 

value the loss of the set amount more than its gain. They proposed that the utility function for 

losses exhibits a steeper gradient than that for gains. Taken together with the diminishing 

sensitivity of utility, this gives rise to the “S-shaped” utility function, rather than a linear value 

function, as illustrated below. 
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Figure 3.1. A typical utility function. 

 

A model based on expected utility could therefore replace the expected value model to still 

provide a rational description of choice behaviour under conditions of risk, where the 

expected utility of gamble X is described by the function:  
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However, some risky behaviour is still found to deviate from this model. Many people buy 

lottery tickets despite their expected value being less than the ticket cost and their expected 

utility being less still. In their proposed Prospect Theory, Kahneman and Tversky (1979) 

explained this behaviour by introducing a weighting function (Figure 2) to represent subjects’ 

attitudes to probabilities. Probabilities close to zero are weighted higher, to reflect the risk-

seeking behaviour demonstrated when probabilities are low and payoff is high, in situations 

such as the purchase of lottery tickets.  

 

 

 

 

 

 

 

 

Figure 3.2. A typical weighting function from Prospect Theory. 
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Prospect theory is therefore an expected utility model that incorporates a weighting function 

according to subjects’ attitude to probabilities.  
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Again, there are aspects of decision behaviour that are not captured by Prospect Theory. 

Fennema and Wakker (1997) provide an example that illustrates one of its failings. If a 

gamble has many possible outcomes, all with a low probability, the typical weighting function 

will cause all of these outcomes to be overweighted. For example, if there are 20 equally 

likely outcomes of losing $10 through to winning $180 in $10 increments, the probability of 

each outcome is 0.05. If the weighting function is such that this probability is overweighted, 

18 gains will be overweighted and only one loss. Subjects will overestimate the prospect of 

this gamble, although in reality they tend to prefer its expected value of $85 for sure.  

 

Tversky and Kahneman (1992) later modified their model to Cumulative Prospect Theory, in 

which the weighting function is applied to cumulative probabilities. The shape of the function 

(see figure 3), together with its application to cumulative probabilities ensures that only the 

extreme values are overweighted. Cumulative Prospect Theory also differs from the original 

in its use of two different weighting functions, reflecting differing attitudes to probabilities of 

loss than of gain. The two weighting functions are typically similar in shape, although that for 

losses is often less curved than that for the gain function. 

 

 

 

 

 

 

 

 

 

Figure 3.3. A typical weighting function from Cumulative Prospect Theory. 
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Cumulative Prospect Theory proposes that the expected utility of a gamble is the total of two 

summations, one for the loss outcomes and one for the gain outcomes. If outcomes i = 1…k 

represent losses and outcomes i = k+1…n represent gains, the expected value of taking up the 

gamble is given by: 
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The decision weights, wi, are given by: 
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Fennema and Wakker demonstrated that Cumulative Prospect Theory and the original 

Prospect Theory make different predictions in certain conditions. They found that Cumulative 

Prospect Theory better modeled the actual decision behavior of subjects in two experiments 

originally conducted by Lopes (1993). Cumulative Prospect Theory has become a universally 

recognized and widely used model of rational decision-making. 

 

Nonetheless, not all human decision-making follows such a rational model. There are 

instances when people respond differently to the same decision at different times. The WADD 

model and expected utility models are deterministic, directing that the single decision that 

optimises the outcome should always be chosen. Probabilistic versions of these models, such 

as the multinomial logit model (McFadden, 1981), have been proposed to account for the 

variance of decision choices in seemingly identical conditions. McFadden’s model calculates 

the probability of choosing alternative X, from a set of m possible options, as a logistic 

function of the weighted sum of the n attributes that X possesses together with an 

attractiveness value for that particular option. 

 

 

∑
=

=
m

j

XV

XV

m

je

e
XXXP

1

)(

)(

1 }...{;( ,    where    i

n

i

ijj XbbXV ∑
=

+=
1

)(  

 

All of these rational models have been shown to be consistent with some choice behaviour, 

although they all exhibit discrepancies, where decision-making behaviour deviates from their 
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predictions. In attempting to account for the observed idiosyncrasies in actual behaviour, the 

models have become increasingly complicated. Expected value has been modified to expected 

utility, a subjective weighting has been introduced to probabilities, which in turn have been 

made cumulative, and logistic functions have been used to transform deterministic models to 

probabilistic ones. The resulting models can be used to predict decision behaviour reasonably 

successfully but it is doubtful that humans are actually using such complex strategies 

themselves.  Rather than relying on complicated calculations to make their decisions, decision 

behaviour can, instead, be explained through a consideration of some simple heuristics. 

 

3.3 Simplifying Heuristics: Describing Actual Behaviour 

 

Simon’s studies of decision-making (1955) led him to propose that, in practice, people do not 

apply these maximising expected utility models to their day-to-day decisions. He suggested 

that such models have far too great an information-processing demand and that cognitive 

limitations lead to simpler heuristics being applied to many decision-making tasks. Simon 

argued that evidence of such a trade-off between decision-accuracy and cognitive-effort 

would be greater when tasks become more complex or decisions are made under stress. Under 

such conditions, non-optimal decisions are more likely to be made and can be predicted 

through the assumption of certain heuristics being applied. These heuristics are typical of the 

self-reports that subjects make on the strategies that they are conscious of utilising in decision 

tasks.  

 

3.3.1 Decision-making heuristics 

 

In his introduction to the theory of bounded rationality, Simon (1955) suggested the heuristic 

of satisficing. He proposed that people might sometimes choose simply the first option that 

meets all minimum requirements. As with all heuristics, this strategy would more likely be 

used for complex decisions, such as those with many alternatives or a high number of 

attributes to consider. It would also be more likely to be used when decision-makers were 

under time pressure. In these cases, information-processing demands are high and people 

might trade-off decision accuracy for the amount of cognitive effort involved.  

 

Tversky (1972) proposed the elimination by aspects heuristic as another means by which 

people may simplify decision-making. This strategy involves a step-by-step consideration of 
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the different attributes shared by the decision options. Starting with the attribute that is 

considered to be most important to the decision at hand, all alternatives that do not meet a 

minimum requirement are eliminated from the option bank. This process continues through 

the attributes, with all options below a set cut-off value being removed, until a single option 

remains and this is taken to be the decision choice. 

 

Russo and Dosher (1983) put forward the majority of confirming dimensions heuristic as a 

strategy to choose between multi-attribute alternatives. They suggested that alternatives are 

considered two at a time. The values of each attribute are compared across the two options 

and the alternative with the greater number of favourable attributes is retained. This option is 

then paired with the next alternative and these pairwise comparisons continue until the most 

favourable alternative remains. This heuristic is quite different to the elimination by aspects 

strategy, since it compares all attributes across paired alternatives. It limits its focus to just 

two options and considers all of the attributes for these two alternatives. The elimination by 

aspects strategy considers all alternatives but focuses on just one attribute at a time. 

 

Rather than limiting comparisons to a small number of alternatives or consideration of one 

attribute at a time, the decision-making process can be simplified using the equal weight 

heuristic. This proposes that all attribute values are simply summed for each alternative, with 

no attention given to their relative importance or, for outcomes, their probability of 

occurrence. Dawes (1979) demonstrated that this heuristic is often highly accurate in 

modelling the decision-making process, although it does assume that all attributes can be 

evaluated along a common value scale.  

 

Perhaps the most simple of the decision-making heuristics is the lexicographic rule. This 

proposes that the decision-maker chooses the most important attribute to the task at hand and 

the alternative with the highest value along this attribute is selected. If two or more 

alternatives rate similarly highly along that attribute, a comparison between these options will 

then be performed for the next most important attribute. Fishburn (1991) demonstrated that 

subjects sometimes exhibit intransitivity among choices, which can be explained through use 

of this heuristic. For example, if option A is preferred over B and B is preferred over C, in 

particular circumstances option C may be selected over A. Such intransitivity may be 

explained if A, B and C are similarly spaced along one attribute but quite differently valued 

along a less important attribute.  
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For example, in choosing between computers of similar capabilities, cost may be considered 

the most important attribute and the cheaper option selected if prices differ by at least $200. If 

prices are within $200, the warranty may be the next most important attribute to decide 

between alternatives. Considering the following options: 

 

   Cost  Warranty 

 Option A $2640  5 years 

 Option B $2480 3 years 

 Option C $2325  1 year 

 

Option A would be selected over B and option B over C, since their costs are within $200 and 

warranty becomes the deciding factor. However, option C would be selected over A since it is 

more than $200 cheaper. 

 

Normative decision theory claims that transitivity among preferences is essential for rational 

behaviour. It considers binary preferences to construct an order between alternatives, such that 

if A is preferred to B, and B preferred to C it follows that A will be preferred to C. Examples 

of intransitivity, such as those provided by Fishburn (1991) are assumed to be mistakes that 

decision-makers would correct if the intransitivity were made apparent to them. However, the 

rationale behind decisions like the computer preferences above seem reasonable enough. It 

would appear to be harsh to label the behaviour of a decision-maker who maintained these 

preferences, even after the intransitivity were pointed out, as irrational. Fishburn argues that 

intransitivity is not an essential assumption of rational decision behaviour. He proposes that 

binary preferences between two alternatives may exhibit intransitivity and do not necessarily 

tell us anything about how the decision-maker would choose between three alternatives.  

 

Many examples of deviations from normative decision behaviour can be explained in terms of 

the use of simplifying heuristics. Such strategies may reduce the cognitive demands on 

decision-makers, although sometimes at the price of making an incorrect decision. Many 

researchers have argued that the use of particular heuristics may be influenced by task factors, 

such as presentation mode. It is essential that these effects be fully understood if we are to be 

aware of how task conditions may influence decision-making behaviour. 
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3.3.2 Effects of task factors on decision-making behaviour 

 

If the rationale behind decision-making were solely to maximize expected utility, it would be 

expected that the same decision would invariably be made whenever the same options were 

presented. However, there have been numerous studies of examples where subjects show 

preference reversals when factors that should have no effect on the decision are changed. 

These preference reversals are not random but tend to be exhibited in a systematic, predictable 

manner. Such factors include the mode by which the subject is to respond; the wording of the 

decision problem; the response scale presented; the presentation mode; the form of attribute 

representation and the inclusion of irrelevant alternatives. 

 

3.3.2.1 Response mode effects 

 

Experimental decision tasks generally require one of two response modes: choice or 

judgment. Choice tasks require that the subject choose between alternatives, whereas 

judgment tasks require that the subject assess the value of an option.  Judgment decisions are 

often given in the form of a matching task, where subjects are asked to give a value for one 

alternative that would make it comparable to a given option. The following example is 

adapted from Payne et al (1998) to illustrate the two response modes with decision tasks 

regarding road safety programs. 

 

Choice task:  

Which program do you most prefer? 
 

 Fatalities per year Annual cost 

Program A 570 $12 million 

Program B 500 $55 million 

 

Matching task:  

Fill in a value for the cost of program B such that it would equate the overall value 

of the two programs. 
 

 Fatalities per year Annual cost 

Program A 570 $12 million 

Program B 500  
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Given these particular values, most people prefer Program B to Program A in the choice task 

but give a value of significantly less than $55 million in the matching task. Their decision in 

the choice task values the saving of 70 lives as greater than $43 million. Conversely, in the 

matching task, the saving of 70 lives is valued at less than $43 million.  

 

Tversky et al (1988) refer to this effect of response mode on decision-making as the 

prominence effect. They argue that the differing decisions can be explained on the basis of 

different heuristics being employed. Since the choice task requires a qualitative response, the 

lexicographic heuristic is most appropriate. This avoids conflict by selecting the option that is 

superior on the most salient attribute, in this case the number of fatalities. The matching task 

requires a quantitative response and a consideration of the values along both attributes, 

together with their relative weights. The greater level of information processing required for 

such a decision can therefore result in different decisions to those from the choice task. 

 

A second example of response mode effect is the classic preference reversal phenomenon 

(Lichtenstein & Slovic, 1971). They offered subjects the choice between two bets, one 

offering a high probability of winning a small amount, the other offering a low probability of 

winning a large amount. Lichtenstein and Slovic found that when choosing between two bets, 

most people preferred the one with the high probability. However, when assigning a value to 

each of the two bets, most people offered a higher amount of money for the low probability 

bet, thus exhibiting preference reversal when the response mode was changed. The low 

probability bet tends to be over-valued in these cases, causing Tversky et al (1990) to argue 

for the concept of scale compatibility. They propose that people may be attempting to 

reconcile their evaluation of the low probability wager with the size of the potential win. 

 

3.3.2.2 Presentation mode effects 

 

The dramatic effects that the wording of a problem can have on decision-making were 

demonstrated by Tversky and Kahneman (1981). They presented subjects with the same 

choice task, framed in two different ways. The choice was between two medical programs that 

were to be used to combat a new disease expected to kill 600 people. When the decision task 

was posed in terms of lives saved, A versus B, 72% of subjects preferred the former. 
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 Program A  200 people will be saved 

Program B  1/3 chance that 600 people will be saved and 2/3 chance that no 

one will be saved. 

However, when the same decision was posed in terms of lives lost, C versus D, only 22% 

preferred the former. 

 

Program C  400 people will die 

Program D  1/3 chance that no one will die and 2/3 chance that 600 people 

will die. 

 

Tversky and Kahneman found that such preference reversals were characteristic of 

undergraduate students, university lecturers and practicing physicians. Several researchers 

have found similar framing effects, these demonstrations all having the crucial distinction 

between framing that codes outcomes as losses and that which codes outcomes as gains. The 

concept of loss aversion (Tversky & Kahneman, 1991) explains these framing effects through 

its premise that people treat negative and positive consequences differently. The greater 

impact of a given loss than a corresponding gain causes people to assign different values to 

losses than to gains.  

 

A similar result that supports the finding that even experts are prone to effects similar to 

framing was more recently demonstrated by Slovic et al (2000). They presented psychiatrists 

and forensic psychologists with case studies on people with psychological disorders who had 

been convicted of committing violent crimes. The psychiatrists and psychologists were asked 

to judge the probability that these people would re-offend within six months of release. Two 

groups of respondents were given identical case studies but different scales, as below, upon 

which to mark these judged probabilities: 

 

Low probability      1%    2%    5%    10%    15%    20%    25%    30%    35%    40%    >40% 

High probability     1%   10%   20%  30%    40%    50%    60%    70%    80%    90%    100% 

 

Slovic et al (2000) found that that the group responding on the low probability scale 

consistently judged the probability of re-offence to be lower than did the group responding on 

the high probability scale. This was despite the fact that the two groups were experts who 

frequently made such judgments in their work. Their decisions were significantly influenced 

by the scale upon which they were to make their response. 
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In addition to these framing and response scale effects, presentation mode can influence 

decision-making.  Slovic (1972) proposed that decision-makers use information in the same 

mode as that in which it is presented. Not transforming the displayed information into an 

alternative mode saves the decision-maker cognitive effort. This ‘concreteness’ principle 

explains many of the research findings on presentation effects on decision behaviour. Russo 

(1977) demonstrated that shoppers are more likely to use unit price information in deciding 

which brand to buy when this information is displayed in a list. He argued that it is difficult to 

compare brands in the typical shelf displays of supermarkets.  

 

Jarvenpaa (1989) demonstrated that the display format affects the way that information is 

processed. Information about the attribute values of the various options can be displayed 

either by attribute or by alternative and this display format will influence the strategy used to 

decide between the options. The salience of a particular attribute within the display is also 

important. For example, cues that are highly prominent but less important may overly-

influence decisions, as was demonstrated by MacGregor and Slovic (1986).  

 

The way in which information is represented can also affect decision behaviour. Stone and 

Schkade (1991) proposed that the heuristic employed to choose between alternatives might 

depend upon the form of representation of attribute information. They compared numeric and 

worded representation of computer system attributes in a decision choice task. Since the 

worded presentation made comparisons within attributes more difficult, in these presentations 

subjects were found to use qualitative alternative-based information search. However, when 

the same decision tasks were presented but the attribute information given numerically, direct 

quantitative attribute comparisons formed the basis of decisions.  

 

Other researchers have found similar effects dependent upon the form by which information is 

represented. Johnson et al (1988) demonstrated preference reversals when probability 

information was represented by vulgar fractions rather than decimals. They concluded that 

subjects found the vulgar fractions difficult to directly compare and resorted to alternative 

decision-making strategies. Erev and Cohen (1990) have demonstrated that subjects prefer to 

receive numerical probability information, although they tend to convey this probability 

information verbally. They found that, although people believe that they make decisions more 

accurately from numerical probabilities, their performance was not significantly improved 

from that given verbal probability information. Schkade and Kleinmuntz (1994) investigated 
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the effects of display, form of representation and presentation sequence on decision behaviour 

in choosing between loans. They found that the mode of display, either by matrix (alternative) 

or by list (attribute) had a strong influence on information acquisition. The form of 

information representation affected the combination and evaluation of information and the 

sequence of presentation had only a weak influence on acquisition. 

 

3.3.2.3 Context effects 

 

The inclusion of some alternatives in a choice task may have effects contrary to those 

expected from rational models of decision-making. The normative model of rational decision 

behaviour predicts that the inclusion of an additional alternative to a choice task cannot 

increase the probability of selecting one of the original alternatives. However, in the case of 

asymmetric dominance, exactly this does occur. An option is said to be asymmetrically 

dominated if it is dominated by at least one alternative in the choice set but not dominated by 

at least one other. For example, option A may be greatly preferred to option B, whereas there 

may be little difference in preference between options B and C. Option B is said to be 

asymmetrically dominated by option A. If option B is added to the choice set of options A and 

C, the probability of selecting option A actually increases. This effect is observed despite 

there now being an additional alternative to A, option B as well as option C, so if anything the 

probability of selecting A would be expected to decrease. 

 

3.4 Decision-making Biases 

 

A considerable amount of behavioural decision research has been performed under conditions 

of risk, where subjects evaluate gambles according to their payoff and probability of 

occurrence. These experimental conditions, where the probability of a future outcome is given 

are not true to many real life decision tasks. In reality, people have to make decisions under 

uncertainty, in which the probability of future outcomes is not known but has to be estimated. 

In making these subjective estimates, many people exhibit decision-making biases that appear 

to be a result of their misperceptions of probability. These cognitive failings have 

considerable effect on decision-making behaviour and lead to predictable deviations from the 

expectations of normative decision theory. Tversky and Kahneman (1982a) have identified 

several such biases, which they attribute to the use of heuristics in estimating the likelihood of 
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an event occurring. Three of these heuristics and the types of bias to which they give rise are 

discussed below. 

 

3.4.1 Availability 

 

The availability heuristic proposes that the frequency of a given event is estimated using the 

ease with which examples come to mind. It would be expected that such availability would be 

related to the class size of the event and therefore a reasonable measure of frequency. 

However, other factors will also affect availability, giving rise to a bias in the estimated 

frequency when this heuristic is employed. Tversky and Kahneman (1973) offer several 

examples of an availability bias. In one experiment, they asked subjects to estimate how many 

committees of either two or eight members could be made from a group of 10 people. The 

median estimate for the number of two-person committees was 70, whereas that for eight-

member committees was 20 (Tversky & Kahneman, 1973). The correct number is the same 

for both sized committees, 45
2

10
=C . They proposed that it is far easier to imagine groups of 

two members than groups of eight members, hence the vastly different estimates. 

 

Slovic et al (1982) demonstrated an example of the availability bias that can be readily 

applied to real life decision-making tasks. They asked people to estimate the probability of 

death from various causes. Estimates of highly publicized causes of death, such as tornado 

and flood, were over-estimated, whereas those of less “glamorous” causes, such as stomach 

cancer and diabetes, were under-estimated. The ease with which examples of a class come to 

mind is related to the class size but is also open to the influence of factors such as recency and 

salience, hence the bias that arises from using the availability heuristic. 

 

3.4.2 Representativeness  

 

Sometimes a decision-maker has to judge the likelihood that an object belongs to a certain 

class or will generate a certain event. In such decisions, Tversky and Kahneman (1982a) 

suggest that the decision-maker will employ the representativeness heuristic. This proposes 

that the judged likelihood will depend upon the level of similarity between the object and the 

proposed member class. Although this sounds reasonable, it fails to take into account the base 

rate probabilities of the possible member classes and leads to a bias known as the base rate 



51 

fallacy. This bias produces a systematic deviation from the normative conditional probability 

rule of Bayes’ theorem:      
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Since the similarity between A and B is symmetrical, the representativeness heuristic assumes 

that ) () ( ABpBAp = , which only occurs if p (A) = p (B). 

 

Examples of the base rate fallacy were provided by Kahneman and Tversky (1973). They 

presented two groups of subjects with short personality profiles of professional people and 

asked them to judge whether each profile was more likely to belong to an engineer or a 

lawyer. One group were told that the sample profiles had been randomly drawn from a 

collection of 70 engineers and 30 lawyers. A second group were told that they had been drawn 

from a sample of 30 engineers and 70 lawyers. However, this base rate information did not 

affect the probability judgments; both groups made essentially the same assessments. When 

no profiles were provided, or when the profiles were no more similar to one stereotype than 

the other, the two groups did use base rate information and made different probability 

judgments of approximately 0.7 and 0.3. 

 

The base rate fallacy is so strong that it often leads to decision-makers judging the probability 

of two events both occurring as being greater than the probability of the occurrence of just one 

of those events. The following example of this conjunction fallacy is from a similar 

experiment to the personality profiles described above and is taken from Tversky and 

Kahneman (1982b, p.92). 

 

Bill is 34 years old. He is intelligent, but unimaginative, compulsive and generally 

lifeless. In school, he was strong in mathematics but weak in social studies and 

humanities. 

 

Please rank in order the following statements by their probability, using 1 for the most 

probable and 8 for the least probable: 
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A  Bill is a physician who plays poker for a hobby. 

B  Bill is an architect. 

C  Bill is an accountant. 

D  Bill plays jazz for a hobby. 

E  Bill surfs for a hobby. 

F  Bill is a reporter. 

G  Bill is an accountant who plays jazz for a hobby. 

H  Bill climbs mountains for a hobby. 

 

Tversky and Kahneman found that 87% of subjects rated the probability of G as being greater 

than D. This means that they rated the likelihood of Bill being an accountant who plays jazz 

as greater than the chance that he plays jazz (regardless of his profession). When repeated on 

students who had taken several advanced courses in probability and statistics, they found that 

80% of these subjects still made the conjunction fallacy. 

 

Eddy (1982) reports how prevalent the base rate fallacy can be, even amongst experienced 

professionals. He discusses the example of breast cancer and mammography, for which many 

physicians do not adequately consider the low base rate of malignancy. The following 

example illustrates the sort of information that was provided to doctors. 

 

In patients complaining of painful lumps in breast tissue, the frequency of malignant cancer is 

one in 100. The accuracy of mammography is 90%, meaning that the probability of a positive 

x-ray given a malignant cancer is 0.9 and the probability of a negative x-ray given no cancer 

is 0.9. 

 

The physicians were asked to judge the probability that a woman complaining of painful 

breast tissue and having a positive mammogram result did actually have a malignant cancer. 

This can be calculated using Bayes’ theorem: 
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The probability of the woman having cancer given a positive x-ray is approximately 8%. 

However, the vast majority of the physicians informally interviewed estimated the probability 

as being around 75%. The physicians had made an estimate that was too close to that of the 

probability of a positive x-ray given that there was a malignant cancer, assuming that 

)( +Cp was similar in value to )( Cp + . They had not sufficiently accounted for the effect of 

the low base rate of malignant cancer in their estimates. 

 

3.4.3 Anchoring and adjustment 

 

In certain instances when asked to estimate a probability, people may start from an initial 

value and make adjustments. The initial value may arise as a part computation of the required 

value or it may be suggested by the problem. However, this strategy of anchoring and 

adjustment is prone to mistakes as the adjustment from the initial anchor value is typically 

insufficient. The anchoring and adjustment heuristic therefore gives rise to a bias towards the 

initial anchor value.  

 

An illustration of the use of part computation as an anchor value was provided by Tversky and 

Kahneman (1973). They asked high school students to mentally evaluate the product of the 

numbers from 1 to 8. For one group of students the product was presented in ascending order, 

87654321 ××××××× , whereas for a second group it was presented in descending order, 

12345678 ××××××× . The two groups had to make their estimates within five seconds. In 

such a short timeframe, Tversky and Kahneman proposed that the students would evaluate 

only the first three or four steps of the calculation. Their estimates would then be extrapolated 

from these initial anchors. They therefore predicted that both groups would under-estimate the 

true value of 40320, this under-estimation being greater for the ascending group who would 

have a lower anchor value. Both of these predictions were realised. Both groups under-

estimated the true value and the ascending group tended to make estimates that were 

considerably lower than those of the descending group, the median value being 512 as 

opposed to 2215.  

 

Tversky and Kahneman (1982a) report of an example where the initial anchor values were 

randomly generated but still produced a bias in the estimated values. Subjects were asked 

questions such as the percentage of the member countries of the United Nations that are 
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African. Before replying, a wheel with the numbers from 0 to 100 was spun. The subjects had 

to answer firstly whether the percentage of African nations was higher or lower than this 

random value and then to make an estimate of the percentage. The estimates varied greatly, 

dependent upon the number that was randomly generated and regardless of payoffs for 

accuracy. For example, the median answer to the above question was 25 when the number 10 

was spun but 45 when the number 65 was spun. 

 

Some lapses from the normative view of rational decision-making behaviour may be 

examples of task factors influencing the decision-maker. Others may be a result of biases 

resulting from the use of heuristics that misperceive probability. Normative theorists assume 

that any such deviations are unwitting and will be corrected when they are brought to the 

attention of a rational decision-maker. The examples above demonstrate the extent of such 

‘irrationality’ in actual decision behaviour. Although many of these decisions are undoubtedly 

unwitting mistakes, some may be deliberate choices by decision-makers who would not 

consider themselves to be acting irrationally. The following section considers decisions made 

under conditions of ambiguity and offers examples of decision-making behaviour that are 

difficult to reconcile with the normative view of rationality.  

 

3.5 Decision-making and Ambiguity 

 

Much behavioural decision research has been performed under conditions of risk, where 

gambles are assessed according to their payoff and probability of occurrence, or conditions of 

uncertainty, where the likelihood of future outcomes has to be subjectively estimated. Ellsberg 

(1961) introduced an additional experimental condition under which to perform decision-

making research, that of ambiguity. This can be considered as the uncertainty associated with 

an outcome’s probability, due to incomplete or vague knowledge of the task conditions or 

contradictory information. 

 

 It can be argued that many decisions made in real life are decisions made under the condition 

of ambiguity, since the facts informing decisions are typically incomplete, vague or 

contradictory. For example, in tossing a standard coin, it is accepted that the probability of it 

landing on Heads is one half, since we know that there are two equally likely outcomes: 

Heads or Tails. However, if we are told that the names of all of the students in a particular 

class are to be put into a hat and one drawn at random, the probability that the name drawn 
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belongs to a male student is ambiguous. Our knowledge of the facts is incomplete, as we do 

not know the proportion of males in the class. This ambiguity might be lessened slightly if we 

were told, perhaps, that it was an engineering class, although the probability would remain 

ambiguous until we were told the group’s exact composition. From the initial problem, the 

probability that the drawn name belongs to a male student is best described as one half, but 

there is uncertainty attached to this probability. 

 

Ellsberg (1961) demonstrated that many people appear to demonstrate aversion to such 

ambiguity. He described to subjects two urns, each filled with one hundred balls. In the first 

urn, U1, fifty of these balls were red and the other fifty were black. In the second urn, U2, it 

was known that the hundred balls were made up of red and/or black balls only, but the 

numbers of each colour were unknown. He offered subjects a hypothetical $100 prize if the 

outcome were to match their bet and presented the following four questions: 

 

 Would you prefer to bet on a red or a black ball being drawn from U1? 

 Would you prefer to bet on a red or a black ball being drawn from U2? 

 Would you prefer to bet on a red ball being drawn from U1 or U2? 

Would you prefer to bet on a black ball being drawn from U1 or U2? 

 

Not surprisingly, Ellsberg found that most people were indifferent to the choice of red or 

black in the first two questions. However, the majority of people preferred to bet on U1 rather 

than U2 in questions 3 and 4. This is inconsistent with the use of the normative principle of 

maximizing expected utility. A preference for a red ball from U1 over a red ball from U2 

would imply that the subjective rating of the probability of drawing a red ball from U1 is 

greater than that from U2, since the prize is the same in each condition. However, the 

concurrent preference for a black ball from U1 over a black ball from U2 implies that the 

probability of drawing a not-red ball from U1 is also considered greater than that from U2. 

Clearly, in terms of maximizing expected utility, these preferences are self-contradictory. 

 

Ellsberg found that most of his subjects maintained their preferences even after this 

contradiction was made explicit. Normative theorists claim that any violations of the 

maximizing expected utility principle are unwitting mistakes and will be corrected by 

decision-makers who are given time to reflect on their decisions. However, the finding that 
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many ‘reasonable’ people persisted in this violation caused Ellsberg to question the normative 

definition of rational behaviour. 

 

In a further experiment, Ellsberg presented his subjects with choice questions based on an urn 

filled with balls of three colours. The urn was known to contain 30 red balls, with the 

remaining 60 balls being in an unknown ratio of black to yellow. Ellsberg asked his subjects 

whether they would prefer to bet: 

 

(I) on a red ball  

      or  (II)  on a black ball  

 

being drawn from the urn, with again a hypothetical $100 prize at stake. Most people 

preferred to bet on the red ball, which had a known probability of 1/3, than the black ball, 

whose probability was ambiguous but best considered as 1/3. 

 

Ellsberg then asked his subjects which bet they would prefer if the prize were to be offered:  

 

(III) on drawing either a red or a yellow ball 

      or  (IV) on drawing either a yellow or a black ball. 

 

Most people preferred the latter bet, with a known probability of 2/3, than the former, with its 

ambiguous probability best described as 2/3.  

 

The choice questions are summarized below, adapted from Ellsberg (2001, p.137). 

 

 30 60 

 Red Black Yellow 

    

I $100 0 0 

II 0 $100 0 

    

III $100 0 $100 

IV 0 $100 $100 

 

The preference pattern for I over II and for IV over III is at odds with normative theory. 

Specifically it violates Postulate 2 of Savage’s theory, known as the ‘Sure-thing Principle’ 

(Savage, 1954). The ‘Yellow’ column remains constant over conditions I and II and also over 
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conditions III and IV. It should therefore not influence preferences between I and II, neither 

should it influence preferences between III and IV. However, if this third column can 

effectively be ignored, it would be expected that anyone selecting I over II would also have to 

select III over IV. Even when this was pointed out to Ellsberg’s subjects, the majority 

persisted in their contradictory preferences for I over II, but for IV over III. 

 

This behaviour pattern is also inconsistent with the principle of maximizing expected utility. 

There is no ratio of black to yellow balls that would simultaneously support the preference for 

I over II and for IV over III. The proportion of yellow balls in the urn could vary between 0 

and 2/3, with the corresponding expected utility for each preference varying as illustrated 

below: (Adapted from Ellsberg, 2001, p.166) 

 

  

 

 

 

 

 

  

Ellsberg argued that the tendency for ambiguity aversion in decisions is deliberate and in 

violation of Savage’s axioms. He proposed that the normative model needed revision to 

account for this paradox and suggested a decision rule that included consideration of the 

minimum expected utility of each alternative, in addition to the actual expected utility. The 

actual expected utilities of both decision choices in the three-colour urn example are equal. 

However, the minimum utility of II is less than that of I, as is the minimum utility of III 

compared to that of IV. This decision rule would therefore support the preference of I over II 

and IV over III. Ellsberg’s decision rule uses p to represent the degree of confidence in the 

probability function, estx to represent the actual expected utility and minx to represent the 

minimum expected utility. He then proposes that the expression below is evaluated for each 

alternative, x, and the option with the highest value is selected: 

 

 est (1 ) minx xp p× + − ×  

 

Figure 3.4. Graph showing 

expected utility for each of the 

bets I to IV, as the proportion of 

yellow balls in the urn varies.  

 Proportion of yellow  

Utility ($) 

33 

67 
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I 
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This is a conservative rule, since the minimum expected utility receives increased salience, 

being used in the calculation of the actual estimated utility in addition to its separate 

representation in the expression.  However, most people do tend to be conservative in their 

decision-making behaviour, as demonstrated by Tversky and Kahneman (1991) in their loss 

aversion experiments. Ellsberg suggested that for some people, it might be more appropriate 

to replace the minimum expected utility term with maximum expected utility. These people 

would be ambiguity prone, showing the reverse preference pattern for II over I and for III over 

IV. Such preferences were exhibited by a minority of respondents. 

 

Ellsberg (2001) also provided an example where most people prefer an ambiguous option to a 

more definite one. He asked subjects to imagine two urns, each filled with 100 coloured balls. 

The first urn, U1, contained equal numbers of ten different colours. The second urn, U2, 

contained no balls of colour different to these ten, although the exact composition was 

unknown. He asked subjects whether they would prefer to bet on a green ball being drawn 

from U1 or U2. The majority of people preferred the ambiguous second urn, although the 

expected utility of the two options is again equal. Ellsberg’s explanation for this ambiguity 

prone behaviour is easiest understood with reference to the following diagram: (Adapted from 

Ellsberg, 2001, p. 203). 

 

 

  

 

 

 

 

 

  

 

 

The expected utility of U2 is ambiguous. However, it can be seen from figure 3.5 that the 

maximum value of this expected utility is considerably greater than the actual expected utility 

of $10, whereas the minimum value is only slightly less. Expected utilities that are higher than 

the actual expected value may be more available to the decision-maker. If the decision rule is 

Figure 3.5. Graph showing 

expected utility for the two 

bets U1 and U2, as the 

proportion of green balls in 

the urn varies.  Proportion of green in U2  

Utility ($) 

10 

100 

0.1 1 

U2 

U1 
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modified to consider both the minimum and maximum expected utility values, as well as the 

actual expected utility, such preferences can be easily understood.  

 

Ellsberg’s experiments demonstrate that many people display ambiguity averse behaviour, 

tending to over-emphasise the minimum expected utility of an option for which the 

probability is ambiguous. Mukerji and Tallon extend the concept of ambiguity aversion to 

portfolio inertia (2004a) and wage indexation (2004b). Hogarth and Kunreuther (1985) 

develop Ellsberg’s work into a subjective model of human decision-making behaviour that 

they apply to insurance decisions. They found that people were more likely to pay for 

insurance in low probability, high risk scenarios where the expressed probabilities were 

ambiguous. Einhorn and Hogarth (1986) develop this model to incorporate the addition of 

new information over time and it has been used to successfully model decision-making 

behaviour in other contexts, such as the recruitment of potential employees (Highhouse & 

Hause, 1995).  

 

Ellsberg’s decision rule accounts for his findings that most people exhibit ambiguity aversion 

except at low probabilities. However, the rule is similar in complexity to the modified 

expected utility models of normative theorists. Ellsberg was also unclear as to whether the 

decision rule was to be prescriptive of ‘rational’ behaviour or was simply to model actual 

decision behaviour. Is it rational to be conservative in decision-making? The normative 

theorists were willing to accept the concepts of subjective utility and loss aversion, should 

ambiguity aversion be similarly assimilated into a theory of what constitutes rational decision-

making? Alternatively, both loss aversion and ambiguity aversion may be considered as 

human biases, of which decision-makers need to be aware if their decisions are to be truly 

rational. 

 

It is generally acknowledged that uncertainty should be included in spatial information (for 

example, Zhang & Goodchild, 2002). However, representation of the uncertainty inherent to 

spatial data is tantamount to emphasizing the ambiguity of the information. It would therefore 

be expected that the effects of ambiguity aversion would be prevalent in spatial decision-

making when uncertainty information is included. In an experimental study, Van Dijk and 

Zeelenberg (2003) found that participants tended to discount ambiguous information in 

making decisions about costs and benefits. If uncertainty information is included in spatial 

data, a similar bias to avoid regions for which the information is labeled uncertain may be 
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apparent. Rather than informing the decision-making process, the representation of 

uncertainty information may simply lead to biased decisions. 

 

3.6 Chapter Summary 

 

In attempting to describe human decision-making behaviour, models have been developed 

that are based on the strategy of maximising expected utility. However, these have introduced 

subjective measures of both probability and value, making them difficult to disprove and less 

applicable to predicting behaviour without prior knowledge of the individual decision-maker. 

In addition, as they have been refined to accommodate some of the idiosyncrasies in actual 

behaviour, they have evolved into complicated mathematical functions. Particularly as 

decisions become more complex, it would appear to be highly unlikely that people are 

actually utilising such strategies in practice.  

 

The use of simpler heuristics has been proposed, particularly as decisions become more 

complex. These do not place such high information-processing demands on decision-makers 

and predict actual behaviour with a similar level of accuracy. They are also more similar to 

subjective self-reports of conscious decision-making strategies. Some of the preference 

reversals that are inconsistent with normative strategies can be systematically predicted in 

terms of the use of heuristics. This gives strong support for the theory that heuristics may be 

employed in practice and particularly when processing demands are high.  

 

People do not always make the same decision when presented with the same information. 

They can be sensitive to the effects of presentation, task and context. Humans are also prone 

to decision-making biases, particularly in subjectively judging probabilities. It is assumed by 

normative theorists that any decisions that deviate from the normative ideal of maximising 

expected utility are unwitting mistakes and would be corrected if decision-makers were able 

to reflect on their decisions.  

 

Ellsberg demonstrated that most people display ambiguity aversion, tending to prefer options 

for which the probabilities are known to those for which the probabilities are ambiguous. This 

behaviour can be modelled by giving greater emphasis to the minimum expected utility of an 

ambiguous option. This conservatism reflects human behaviour, even after reflection, 

although it does not necessarily lead to a decision that maximises expected utility. It can be 
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argued that the concept of a rational decision needs to incorporate ambiguity aversion in 

addition to the already assimilated loss aversion. Otherwise, ambiguity aversion can be 

considered as another human decision-making bias.  

 

Most real life decisions are made under conditions of vague or incomplete knowledge and can 

therefore be considered to be made under ambiguity. An explicit acknowledgement of the 

uncertainty in our information would be expected to accentuate the effects of ambiguity 

aversion. This would lead to the decision-maker tending to under-value options that are 

labelled as uncertain and not necessarily making a rational decision, as defined in terms of 

maximising expected utility. It is essential that we appreciate these effects of ambiguity 

aversion on decision-making behaviour if we are to represent the uncertainty in spatial data. In 

the next section, an experiment is conducted to test the effects on decision-making of 

representing the uncertainty associated with thematic information. 
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4. 

Methodology 

 

4.1  Introduction 

 

Two case studies were designed to investigate decision-making under spatial uncertainty. The 

first of these tested the effects of introducing thematic uncertainty information on decision-

making. The second study investigated how different representations of positional uncertainty 

may affect decision-making. 

 

4.2  Thematic Uncertainty: Airport Siting Case Study 

 

4.2.1 Background 

 

GIS are being widely used to support decision-making. However, the uncertainty that is 

inherent to GIS output is not usually communicated to the decision-maker. This study aims to 

explore the effects of introducing spatial uncertainty information within a decision support 

context. It examines how decision-making may be affected by the introduction of thematic 

uncertainty into the GIS output. Specifically, it tests the hypothesis that the inclusion of 

thematic uncertainty information may lead to the making of irrational decisions as a result of 

decision-makers exhibiting ambiguity aversion. 

 

4.2.2 Case study 

 

Similar to the research by Leitner and Buttenfield (2000), this case study investigated 

decision-making in the context of siting a new airport. Subjects were presented with thematic 

maps depicting several zones that were classified in terms of their potential land suitability for 

the new airport. The land suitability classification was represented using block colouring. The 

level of certainty associated with this classification was represented using glyphs overlaid 

within each zone. A full cylinder represented high certainty and an empty cylinder represented 

low certainty.  
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Question 3.1

Land suitability map for airport siting, 
including certainty information.

X

Y

&HUWDLQW\
+LJK�������/RZ

Question 3.3

Land suitability map for airport siting, 
including certainty information.

X

Y

Certainty

High          Low

In each of six questions, subjects selected which of two zones, marked X and Y, they would 

prefer for the new airport. They were also able to give a ‘no preference’ response. Both zones 

were of similar area. In some questions the zones were of equal land suitability and in others 

the land suitability classes differed. However, in all questions the classification of one of the 

two zones was high certainty whereas that of the other zone was low certainty. Examples of 

the maps presented for a simple (3 land suitability classes) and a complex (5 land suitability 

classes) question are shown below: 

 

 

Select whether you would choose Zone X or Zone Y as the airport site.  

For each question, tick the box for the zone you would choose in the table below: 

 Zone X Zone Y No preference 

Question 3.1    

Question 3.2    

 

 

Figure 4.1. Example of a simple and complex pairwise comparison for testing of 

thematic uncertainty representation. 
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These pairwise comparisons required a level of decision-making that went beyond the 

decisions made in the Leitner and Buttenfield study. In their research, they only considered 

selection of the optimal zone and the worst zone for siting the airport. These simple decision 

tasks do not require much interpretation of the certainty information. Indeed, it may be that 

subjects responded faster when certainty information was included as they could simply 

narrow their search by only considering zones that were classified as certain.  In this study 

however, subjects were selecting between zones that may not be optimal in terms of land 

suitability. It therefore required an interpretation of the certainty information in light of the 

level of land suitability. Sometimes the higher level of certainty was advantageous but 

sometimes the lower level of certainty was associated with the more preferable land. 

 

Similarly, an interpretation of the certainty information with regards to the level of land 

suitability was required in a final question. In this, a simple map was presented, with six zones 

labelled A to F. These comprised one zone of each of the six suitability-by-certainty 

combinations. Subjects were asked to rank the six zones in terms of their preference as the 

potential site of the new airport. Again, it was ensured that all six zones were of similar area. 

An example of this ranking question is shown in figure 4.2: 
 

 

Question 3.7 requires you to rank the six labeled      

zones. Decide the order in which you would 

arrange the zones, from the most preferred site 

to the least preferred. 
 

Enter the letters of the ranked zones in the 

boxes below: 

 

Question 3.7 
 

Most preferred    

      

      

      

      

   Least preferred    

 

 

Figure 4.2. Example of a ranking question for testing of thematic uncertainty 

representation. 

Question 3.7

Land suitability map for airport siting, 
including certainty information.

&HUWDLQW\
+LJK�������/RZ

A

E

C

D

B

F
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4.3  Positional Uncertainty: Navigation Case Study 

 

4.3.1 Background 

 

In this next case study, an investigation was conducted into how different representations of 

positional uncertainty may impact on decision-making. This was examined within a marine 

navigation context. Positional uncertainty of maritime cadastre boundaries is a topical issue 

and is a subject of current research (Fraser et al, 2003). However, this research is primarily 

concerned with quantifying the positional uncertainty of nautical boundaries and has not 

really addressed the issue of how this uncertainty can most usefully be represented. The 

current study aims to investigate how decisions may vary according to the nature of the 

positional uncertainty representation and to assess both participants’ understanding of, and 

subjective preferences for, the different representations. Specifically, it tests the hypothesis 

that the same people may make different decisions when presented with the same information, 

dependent upon the nature of the positional uncertainty representation. 

 

4.3.2 Case study 

 

The study was divided into two sections: testing of dynamic representations of positional 

uncertainty and testing of static representations. The former component investigated how the 

four different representations may have different effects on decision-making. The latter 

component investigated participants’ understanding of the information portrayed and their 

subjective preferences for the four representations. 

 

The dynamic testing stage required subjects to respond to animations depicting a hand-held 

GPS receiver that displayed a boat advancing from Zone A towards Zone B. Subjects were 

told that Zone B represented a restricted region and they were asked to make a decision as to 

when they would turn away from the restricted zone. Information concerning the positional 

uncertainty of both the boat and the inter-zone boundary location was included in a legend for 

each animation. Subjects were shown four animations, one for each of the four different 

methods used to depict the positional uncertainty. 
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The Limits representation used dotted lines to depict the outer limits of the likely position 

(99%) of both boat and boundary. The Scale and Probability representations both displayed 

the most likely boat and boundary positions. However, the Scale representation included a 

written statement in the legend as to the positional accuracy of the displayed boat and 

boundary positions, whereas the Probability representation provided an on-screen probability 

statement as to the likelihood that the boat was in Zone B. The Graduated representation 

portrayed the positional uncertainty of the boundary using graduated shading which became 

darker as the probability of being in Zone B increased. The outer limit of the boat’s likely 

position was depicted with a dotted circle. Examples of these four representations are shown 

below: 
 

Limits representation: 

 

 

 

 
Figure 4.3. Example slide showing the Limits representation of positional 

uncertainty in the navigation case study. 

Slide 30

Legend:

B

A

Possible boat 
position, within a 
circle that contains 
the true boat 
position 99% of the 
time.

Possible boundary 
position between 
Zones A and B,
within two outer 
lines that contain 
the true boundary  
position 99% of the 
time.

300 50m10 20 40
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Scale representation: 

 

 

 

 

 
 

Figure 4.4. Example slide showing the Scale representation of positional 

uncertainty in the navigation case study. 

Slide 30

Legend:

B

A

Boat position. 
Positional accuracy 
of +/- 10m (99% 
confidence limit).

Boundary position 
between Zones A 
and B. 
Positional accuracy 
of +/- 20m (99% 
confidence limit). 300 50m10 20 40
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Probability representation: 

 

 

 
 
 

 

Figure 4.5. Example slide showing the Probability representation of positional 

uncertainty in the navigation case study. 

 
 

Slide 30
Legend:

B

A

Possible boat 
position.

Possible boundary   
position between 
Zones A and B.

300 50m10 20 40

Probability of boat  being

in Zone B = 36%
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Graduated representation: 

 
 
 

 
 

 
 

Figure 4.6. Example slide showing the Graduated representation of positional 

uncertainty in the navigation case study. 

 

Towards the end of the testing phase, one participant pointed out a mistake in the Graduated 

representation. Only the transition zone between Zones A and B was shaded. The region 

above this, which was intended to depict ‘definitely in Zone B’, should have been coloured 

purple rather than white. This inadvertent mistake may have led to some bias in the results. 

However, only this one participant questioned the representation and stated that he understood 

what the display had been intended to portray. All other participants responded to this 

representation without question. Nonetheless, it would be worthwhile repeating the testing 

with the appropriate correction being made to the Graduated representation. 

Slide 30

Legend:

Circle within 
which the true 
boat position 
should lie 99% 
of the time.

Probability of 
being in Zone 
B.

1%

99%

50%

B

A
300 50m10 20 40
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The static testing stage investigated subjects’ comprehension of the information portrayed 

within these four representations of positional uncertainty. Five forms of multiple choice 

question were generated for each representation. These five forms were considered to be 

typical examples of displays representing the boat in each of five possible locations: 

Definitely in Zone A; Probably in Zone A; Equal chance of being in either zone; Probably in 

Zone B; Definitely in Zone B. 

 

Participants were required to select which of these alternatives best described the boat’s 

position for each of eight multiple choice questions. The option ‘Cannot understand the 

diagram’ was also available. The example below shows the multiple choice question for the 

Graduated representation, for which the expected response was ‘Equal chance of being in 

either zone’: 

 

 
Figure 4.7. Example multiple choice question for the Graduated representation, 

for which the expected response was ‘Equal chance of being in either zone’. 

Question 2.7

300 50m10 20 40

Legend:

Circle within 
which the true 
boat position 
should lie 99% 
of the time.

Probability of 
being in Zone 
B.

1%

99%

50%

B

A
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Participants were also asked to rank the four representation methods from most preferred to 

least preferred. 

 
 
 

4.4  Experimental design 

 

The testing of both thematic and positional uncertainty representations was conducted in a 

single experimental session, composed of three sections: testing of thematic uncertainty, 

dynamic testing of positional uncertainty and static testing of positional uncertainty. 

 
4.4.1   Testing of thematic uncertainty  

 
To test the effects of introducing the level of uncertainty associated with thematic 

information, participants were asked to select between two regions for the potential siting of a 

new airport.   Twelve maps were prepared, using ArcView software. In six of these, the two 

zones had equal land suitability classifications and, in the other six, the land suitability classes 

differed. The ‘minerals’ colour ramp was used to block colour the zones according to their 

land suitability classification. In all twelve maps, one of the two zones had a high level of 

certainty associated with this classification, whereas the other zone had a low level of 

certainty. This was depicted using glyphs overlaid within each zone. A filled cylinder was 

used to represent high certainty and an empty cylinder depicted low certainty. No numerical 

value was assigned to the high and low certainties. 

 
A second group of twelve questions was prepared by reversing the land suitability and 

certainty information assigned to the two zones, to account for any semantic or positional 

effects that may be associated with the zones labelled X and Y. A total pool of 24 questions 

was available. From these, two sets of six questions were generated, with a further two (1b 

and 2b) being question reverals of these. In each set, the first two questions were simple, in 

that the land suitability classification was along three levels: good, fair or poor. The other four 

questions were complex, having five levels of land suitability classification, from very good 

to very poor. The order of the two simple questions and four complex questions was also 

reversed between sets a and b, in an attempt to compensate for any order effects. Three 

questions of each set were comparisons between zones of equal land suitability and the 

remaining three questions compared zones of differing land suitability.  
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The four question sets are shown below, using 1-3 (3 being good) or 1-5 (5 being very good) 

to represent land suitability and H (high certainty) or L (low certainty) to represent the 

associated certainty level: 
 

 Set 1a: 2H1L  2L2H 4L3H 4L4H 2L4H 1H1L 

 Set 1b: 2H2L 1L2H 1L1H 4H2L 4H4L 3H4L 

 Set 2a: 3L3H 3L2H 2H2L 3L4H 3H3L 3H5L 

 Set 2b: 2H3L 3H3L 5L3H 3L3H 4H3L 2L2H 

 

A set of six questions was randomly allocated to each of the subjects within a test group, 

under the constraint of approximately equal numbers.  

 
A final question required subjects to rank 6 zones that differed in land suitability classification 

and level of certainty. Two questions were prepared and randomly allocated within each 

group. The certainty information was reversed between the two questions, again to account for 

any semantic or positional effects between the labelled zones. 

 
4.4.2 Dynamic testing of positional uncertainty 

 
Participants were initially shown four animations depicting a boat advancing from Zone A 

towards the restricted region, Zone B. They were required to make a judgment as to when 

they would turn away from the restricted zone. Each animation was prepared in Microsoft 

PowerPoint, with a background positional change of 1mm between slides and slide transition 

of 0.6 seconds. This gave a realistic portrayal of movement as depicted in a typical hand-held 

GPS receiver. In total, 70 slides were prepared for each animation. The slides were numbered, 

to give a measure of relative position at which subjects chose to turn away from Zone B. 

 
Each of the four representations depicted the same information but used different methods. 

Although this was not made explicit to subjects, the starting slide of each of the four 

animations was offset, so that the same slide number for each representation depicted different 

relative positions. This offset was taken into account when analysing the slide numbers at 

which subjects responded. 

 
Four presentation orders were generated using a Latin Square design, with the letters A-D 

used to signify the four representations. This design ensured that each representation was 

placed once in each ordered position and that each representation was subsequently followed 

once each by the other three representations: CBDA;  DCAB; ADBC; BACD. A different 
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presentation order was made to each of the four groups tested. The dynamic testing was thus 

designed to be balanced for both order and carry-over effects. 

 

4.4.3 Static testing of positional uncertainty  

 

Twenty static multiple choice questions were prepared to test subjects’ understanding of the 

positional uncertainty representations. These comprised one of each of the five forms for each 

of the four representations. The same slide, considered to be a typical example of its form, 

was used for each representation, as below: 

 

    Form Slide 

1. Definitely in Zone A 15 

2. Probably in Zone A 33 

3. Equal chance of being in either zone 38 

4. Probably in Zone B 55 

5. Definitely in Zone B 61 

 
Participants were each presented with eight multiple-choice questions. Five question sets were 

generated and allocated randomly within each experimental group, under the constraint of 

approximately equal numbers. Each question therefore appeared twice within the five 

question sets. The 4 representations were ordered using a Latin Square design for the first four 

questions of the first four sets, then reversed for the last 4 of these sets. The order of the first 

four questions of the final set was randomly selected, then reversed for the remaining 

questions. Each representation and each form were equally, as far as possible, placed in each 

of the eight possible positions: 

 

 Set 1: C1 B4 D3 A2 A5 D1 B3 C2 

 Set 2: B2 A1 C4 D5 D3 C5 A4 B1 

 Set 3: A3 D2 B5 C1 C4 B2 D5 A4 

 Set 4: D4 C5 A2 B3 B1 A5 C3 D1 

 Set 5: B5 C3 A1 D4 D2 A3 C2 B4 
 

The question sets were thus balanced, as far as possible, for both order and carry-over effects. 
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4.4.4 Question and answer booklets  

 
Question booklets were prepared, using colour printed A4 paper (see appendix B). These 

comprised of the eight static positional uncertainty questions, the positional uncertainty 

survey question, the six pairwise comparisons of thematic uncertainty representations and the 

thematic uncertainty ranking question. Twenty different booklets were prepared, using the 

five question sets for the static positional uncertainty testing and the four question sets for the 

thematic uncertainty testing. These booklets were allocated randomly among the participants 

within each test group. An answer booklet was also prepared (see appendix C). 

 
4.4.5 Pre-testing  

 

The whole experiment (comprising of both the thematic and positional uncertainty 

components) was initially pre-tested on twelve subjects in groups of two or three. Following a 

brief introduction to the nature of the experiment, the dynamic representations were viewed 

on a desktop computer. Subjects recorded their answers in individual answer booklets. They 

were then each issued with a question booklet and completed the static testing at separate 

desks. The pre-testing sessions concluded with group interviews, where subjects were asked 

to comment on the clarity of the tasks and instructions and to give suggestions as to how the 

testing may be improved. 

 

Most subjects stated that the instructions were easy to understand and that at all stages they 

felt that they knew what was required of them. However, one subject had not initially 

understood what was required in the dynamic representations and had not been able to 

respond to the first animation. It was suggested that a dynamic demonstration be presented 

before the first animation, to clarify the nature of the first task.  

 

Three survey questions had initially been included to test for subjects’ preferred method of 

testing positional uncertainty. These assessed ease of use, level of informativeness and overall 

preference. Several subjects stated that they had not really understood the difference between 

the three survey questions and had responded in the same way to them all. They proposed that 

only a single survey, that for overall preference was necessary. It was also suggested that the 

written instructions for the third stage, testing of thematic uncertainty, be broken down into 

bullet points as it was difficult to take in all of the information as presented. These 
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recommendations were all adopted before the commencement of the actual experimental 

testing. 

 

4.5 The Experiment 

 
4.5.1 Participants 

 

Participants were undergraduate and postgraduate students of the Department of Geomatics at 

the University of Melbourne. They voluntarily participated in the research at the conclusion of 

a lecture. Although there are methodological arguments against using students as a sample 

representative of the population at large (Gordon et al, 1986), other researchers have 

countered these arguments (Greenberg, 1987). In this study, it was considered that the 

students should represent a random sample of potential users of spatial information. Many of 

those using GIS to support their decision-making are not experts in the field of spatial 

information. The participants in this study had varying levels of experience in GIS and spatial 

information in general, reflective of the diverse user group that they were considered to 

represent. 

 

Participants’ experience in dealing with spatial data varied from novices to postgraduate 

students employed in positions where they were using spatial information to assist in 

decision-making on a daily basis. The students subjectively classified themselves into one of 

three experience levels, which were described as: 

 

1: Novice (less than six months experience of using GIS) 

2: Some experience (between six months and two years experience of using GIS) 

3: Experienced (more than two years experience of using GIS) 

 

Gender was also recorded. 

 

In total, 100 students participated. The following table shows their numbers by experience 

level and by gender: 
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       Experience level 

 1 2 3 total 

male 33 23 13 69 

female 14 14 3 31 

total 47 37 16 100 

 

Table 4.1. Participant numbers, by experience level and by gender. 

 

The subjects were tested in four groups. It had been assumed that these groups would consist 

of approximately equal numbers, with similar distributions of experience and gender between 

the four groups. However, the actual composition of the four groups varied considerably, as 

shown in the table below. This caused the dynamic testing phase of the experiment to be 

unbalanced. This was accounted for in the data analysis by completing a residual maximum 

likelihood (REML) analysis of the data from this stage. 

 

Experience 1 Experience 2 Experience 3 Total 
Group 

Male Female Male Female Male Female Male Female 

1 23 5 8 4 0 0 31 9 

2 8 7 3 3 0 0 11 10 

3 0 0 8 3 4 2 12 5 

4 2 2 4 4 9 1 15 7 

 

Table 4.2. Group participant numbers, by experience level and by gender. 

 

 

4.5.2 Data variables 

 
There were two between-subjects variables, relevant to each of the three stages of testing: 

Experience was an ordinal variable representing subjects’ level of experience in using GIS (1-

3, 3 being highest). 

Gender was a binary variable denoting subjects’ gender. 

 
 4.5.2.1 Testing of thematic uncertainty  

 
The test variable, Pr(Expected), was a continuous variable [0,1] representing the sample 

proportion selecting the expected zone. 

Land suitability class was an ordinal variable denoting the suitability of a zone as a potential 

airport site. (Simple case, 1(poor)-3(good); Complex case, 1(very poor)-5(very good)). 

Gender 
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Certainty level was a binary variable, signifying the two certainty levels (H = high certainty, 

L = low certainty). 

Ranking was an ordinal variable representing assigned rank (1-6, 6 being highest). 

 

4.5.2.2 Dynamic testing of positional uncertainty  

 
The test variable, slide number, was a discrete variable representing the slide number at 

which subjects decided to turn away from Zone B. 

Representation was a categorical variable, denoting the four representations of positional 

uncertainty. 

 

4.5.2.3 Static testing of positional uncertainty  

 

The test variable, frequency, was a discrete variable representing the frequency with which 

choices were selected. 

Form was a categorical variable, denoting the five question forms (1-5).  

Rank was an ordinal variable representing the assigned rank (1-4, 4 being highest). 

 
4.5.3 Conduct of the experiment 

 

The students chose to voluntarily participate in the study, after a brief introductory 

explanation of the nature of the experiment. At the end of a lecture, approximately one week 

prior to testing, they were issued with a Plain Language Statement (see appendix A) that 

introduced the purpose of the study and explained what would be expected of participants.  It 

was emphasized that there were no correct answers to the test questions, but that the study 

was concerned with their individual responses to the uncertainty representations. They were 

invited to contact the researchers if they required further information, although nobody took 

up this offer. The actual testing was conducted at the conclusion of their subsequent lecture in 

that subject. 

 

The four groups of subjects were tested in separate sessions of approximately thirty minutes 

duration. Initially, consent forms were signed and again the voluntary nature of their 

participation and the study’s concern with individual responses rather than correct answers 

were emphasized. Participants were each issued with an Answer Booklet (see appendix C). 

They were asked to complete the details on the front of this booklet, concerning their group 
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number, their experience in using GIS and their gender. It was then briefly explained that 

there would be three stages to the experiment, beginning with the testing of dynamic 

representations of positional uncertainty. 

 
A demonstration animation was displayed on the screen at the front of the lecture theatre and 

it was explained that this represented a boat moving through a channel of water from Zone A 

towards Zone B. It was pointed out that the slide number, on screen to the right of the GPS 

receiver, continually ticked over to represent time as the boat advanced towards Zone B. 

Participants’ attention was then brought to the instructions on the Answer Booklet, which 

stated that Zone B was a restricted zone and that they were to decide as to when they would 

choose to turn away from this zone. They were told that they would see four different 

representations and that, for each, the method of representing the boat and boundary positions 

would be shown in the legend. They were to firstly familiarize themselves with this legend, 

then the animation would run and they were to record the slide number at which they would 

turn away from the restricted Zone B. Participants were asked at this point if they had any 

questions, as they would only have the opportunity to see each animation once. 

 
The four animations were presented on the front screen one after the other, with 

approximately three minutes between presentations to allow subjects to record their responses 

and familiarise themselves with the  subsequent legend. After the fourth animation, 

participants were issued with a Question Booklet (see appendix B). They were asked to record 

the number of their question booklet  in the appropriate box on their answer booklet. They 

were then told that they could work through the remaining two stages of the experiment, static 

testing of the positional uncertainty representations and testing of thematic uncertainty 

representation, at their own pace, following the written instructions in their answer booklets. 

They were asked to ensure that they recorded all answers in the appropriate spaces in this 

booklet and were told that no writing in the question booklet was required. They were free to 

ask questions throughout these two stages, although few participants actually did so. 

 

4.6 Chapter Summary 

 
The effects of introducing thematic uncertainty information on decision-making were 

investigated within the context of an airport siting case study. An investigation of how 

different representations of positional uncertainty may affect decision-making was performed 

within a marine navigation context. Both case studies were carefully designed to be balanced 



79 

for order and carry-over effects. The experiment was pre-tested on 12 volunteers and 

refinements were made as a result of their feedback. However, a mistake on the Graduated 

representation of positional uncertainty was not picked up. 

 
Four groups of students, numbering 100 in total, participated in the experiment. The two case 

studies were conducted within a single experimental session for each group. Each session 

began with the dynamic representations of positional uncertainty being presented on a screen 

at the front of the lecture theatre. Participants responded to each of the four animations in turn, 

before moving on to individual question booklets. They proceeded to answer the static 

positional uncertainty questions and survey. They also completed the pairwise comparisons 

and ranking task that comprised the testing of thematic uncertainty. 
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5. 

Results and Discussion: Airport Siting Case Study 

 

5.1 Introduction 

 
In this chapter, the results of the airport siting case study are presented. This study explored 

the effects on decision-making of including thematic uncertainty information in GIS output. 

The study had two components: pairwise comparisons of two regions and a task requiring six 

regions to be ranked. The results from each of these components are presented. The chapter 

continues with a discussion of the two sets of results and finishes with a section concluding 

the findings. 

 

5.2 Results 

 
In the following results sections, land suitability is coded from 1 (poor) to 3 (good) for the 

simple classification scale and from 1 (very poor) to 5 (very good) for the complex scale. The 

level of certainty is coded as H (high) or L (low). Hence the comparison 2H2L simple, for 

example, refers to a pairwise comparison of fair, high certainty land with fair, low certainty 

land. 

 
5.2.1 Pairwise testing of thematic uncertainty 

 
Analysis of the pairwise data was performed through an examination of the proportions 

selecting the high or low certainty zone in each comparison. Two-tailed tests were performed 

against the null hypothesis that there was no difference between the proportion selecting the 

high or low certainty zones. The analysis was divided into two conditions: those where the 

high and low certainty zones were rated equally in terms of land suitability and those where 

the two zones differed in land suitability classification. There were few effects of gender or 

experience on individual comparisons (these are considered in section 5.2.1.3, which 

considers the overall data).  

 

5.2.1.1    Equal land suitability classes 

 

Six pairwise comparisons in which the two regions were of equal land suitability classes were 

tested. In only two of these, 2H2L simple and 3H3L complex, were the two zones of equal 
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expected value. These results are presented first. The two regions in the comparisons 2H2L 

complex and 4H4L complex were not of equal expected value, despite being of equal land 

suitability. It was expected that participants would exhibit a preference for the low certainty 

land in the former comparison but for the high certainty land in the latter case. These results 

are considered second. Finally, the results from the comparisons 1H1L complex and 3H3L 

simple are presented. It is argued that the only logical response to these comparisons is to 

select the low certainty land in the former case and land of high certainty in the latter. 

 

5.2.1.1.1  Pairwise comparisons: 2H2L simple, 3H3L complex 

 

The data from the two comparisons 2H2L simple and 3H3L complex were combined, as these 

two comparisons were equivalent. The two zones being compared were of equal expected 

value in each case, since they were rated equally in terms of land suitability and this 

classification was at the mid-class level. As there are an equal number of suitability classes 

above and below the assigned value, it would be expected that the low certainty zone would 

have as great a chance of being in a better land suitability class as it would have of being 

lower in land suitability. From a normalist point of view, we would therefore predict that 

subjects exhibit no preference for either zone in these comparisons. The table below 

summarises the aggregated responses to the two comparisons by gender and by experience 

level, with the columns H, L and N representing the number of subjects selecting the high 

certainty zone, low certainty zone or indicating no preference respectively: 

 

Experience  

 1   2   3  
Total 

Gender H L N H L N H L N H L N 

Male 31 0 2 18 1 4 12 1 0 61 2 6 

Female 11 0 1 13 0 1 2 0 0 26 0 2 

Total 42 0 3 31 1 5 14 1 0 87 2 8 

 
Table 5.1. Aggregated responses, by gender and experience level,  

to 2H2L simple and 3H3L complex pairwise comparisons. 

 

The null hypothesis was that the probability of selecting the high certainty zone was equal to 

that of selecting the low certainty zone, Pr(High) = 0.5, with the test statistic being the 

proportion H/(H+L) and two-tailed tests being performed. The ‘no preference’ responses were 

ignored in calculating this sample proportion. 
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There was no significant difference between the proportion selecting the high certainty zone 

by either gender or experience. The overall proportion selecting this zone was therefore tested 

against Pr(High) = 0.5 and a 95% confidence interval for this proportion was calculated: 

 
Sample Pr(High) 95% confidence interval p (Fisher’s) 

87/89 = 97.8% (92.1%, 99.7%) <0.001 

 
Table 5.2. Two-tailed test results of null hypothesis that Pr(High) = 0.5 

for 2H2L simple and 3H3L complex pairwise comparisons. 

 

Regardless of gender and experience, the proportion selecting the high certainty zone was 

much greater than 0.5. In fact, all but two of the 89 subjects who expressed a preference 

between the two zones in these comparisons selected the high certainty zone. 

 

Only eight of the 97 subjects indicated ‘no preference’ between the two zones. Even though 

this was the predicted response, since both zones were of equal expected value, this sample 

proportion was significantly lower than would be predicted from the null hypothesis that 

Pr(No pref) = 0.5: 

 

Sample Pr(No pref) 95% confidence interval p (Fisher’s) 

8/97 = 8.2% (3.6%, 15.6%) <0.001 

 

Table 5.3. Two-tailed test results of null hypothesis that Pr(No pref) = 

0.5 for 2H2L simple and 3H3L complex pairwise comparisons. 

 

Subjects tended to indicate a preference and this preference strongly favoured the high 

certainty zone over the low certainty zone when the two zones were of equal expected value. 

 

 

5.2.1.1.2 Pairwise comparisons: 2H2L complex, 4H4L complex 

 

The comparisons 2H2L complex and 4H4L complex were a little different to those above. 

Although both zones were classed equally in terms of land suitability, it might be expected 

that subjects would show a preference for the low certainty zone in the 2H2L comparison, and 

a preference for the high certainty zone in the 4H4L comparison. This is due to the ease with 

which a better scanario may be imagined for the low certainty zone. If it is classed as 2 for 

land suitability, it could only be worse if it were in reality class 1, whereas it would be better 

if it were any of classes 3, 4 or 5. The expected value of the low certainty zone is therefore 
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higher than that of the high certainty zone in the 2H2L comparison, despite the assigned land 

suitability classes being equal in each case. Conversely, there would be only one potentially 

better class when comparing land of class 4, whereas there would be three potentially worse 

classes. The expected value of the low certainty zone is therefore less than that of the high 

certainty zone in the 4H4L comparison. The results for these two comparisons are summarised 

in the tables below: 

 
Experience 

2H2L 
 1   2   3  

Total 

Gender H L N H L N H L N H L N 

Male 6 5 1 3 5 3 7 3 0 16 13 4 

Female 3 3 1 2 3 2 0 0 0 5 6 3 

Total 9 8 2 5 8 5 7 3 0 21 19 7 

 
Experience 

4H4L 
 1   2   3  

Total 

Gender H L N H L N H L N H L N 

Male 20 1 0 12 0 0 3 0 0 35 1 0 

Female 4 1 0 6 1 0 2 0 0 12 2 0 

Total 24 2 0 18 1 0 5 0 0 47 3 0 

 
Table 5.4.  Summarised responses, by gender and experience level, to 

2H2L complex and 4H4L complex pairwise comparisons. 

 
For these two comparisons, the proportion selecting the expected zone was calculated and 

tested against the null hypothesis Pr(Expected) = 0.5. For the 2H2L comparison, the sample 

proportion was L/(H+L) whereas for the 4H4L comparison it was H/(H+L). Again, there were 

no significant effects of gender or experience, so the overall totals were used to calculate the 

sample proportions: 

 
Comparison Sample Pr(Expected) 95% confidence interval p (Fisher’s) 

2H2L 19/40 = 47.5% (31.5%, 63.9%) 0.88 

4H4L 47/50 = 94% (83.5%, 98.7%) <0.001 

 
Table 5.5. Two-tailed test results of null hypothesis that Pr(Expected) = 

0.5 for 2H2L complex and 4H4L complex  pairwise comparisons. 

 

When the expected zone was of low certainty, the sample proportion was not significantly 

different to the null hypothesis, suggesting that there is no difference between the probability 

of selecting either zone in this case. However, when the expected zone was of high certainty, 
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the sample proportion was significantly higher than that predicted from the null hypothesis. In 

this comparison, subjects showed a strong tendency to select the expected zone. 

 

A two-proportion test was also performed on these results to test the difference in the 

proportions selecting the expected zone. This showed an extremely significant difference, 

with the proportion selecting the expected zone being much greater when it was of high 

certainty as opposed to low certainty: 

 
Difference in sample proportions 95% confidence interval p (Fisher’s) 

46.5% (29.7%, 63.3%) <0.001 

 
Table 5.6. Two-tailed test results of difference in proportions selecting 

the expected zone in 2H2L complex and 4H4L complex comparisons. 

 
In both comparisons, few subjects indicated ‘no preference’ between the two zones, the 

sample proportions being significantly lower than would be predicted from the null hypothesis 

that Pr(No pref) = 0.5: 

 

Comparison Sample Pr(No pref) 95% confidence interval p (Fisher’s) 

2H2L 7/47 = 14.9% (6.2%, 28.3%) <0.001 

4H4L 0/50 = 0.0% (0%, 5.8%) <0.001 

 

Table 5.7. Two-tailed test results of null hypothesis that Pr(No pref) = 

0.5 for 2H2L complex and 4H4L complex pairwise comparisons. 

 

Although subjects did tend to indicate a preference in each of these two comparisons, the 

proportion indicating ‘no preference’ was significantly higher when the low certainty zone 

was the expected choice as opposed to the high certainty zone. 

 

5.2.1.1.3 Pairwise comparisons: 1H1L complex, 3H3L simple 

 

There were also expected preferences for the 1H1L complex and 3H3L simple comparisons. In 

these, we would expect a strong tendency for subjects to select the low certainty zone when 

the land is in the lowest possible land suitability class (1H1L) and a strong tendency towards 

the high certainty zone when it is in the highest possible land suitability class (3H3L). In fact, 

for the 1H1L comparison it would be irrational to select the high certainty zone, seeing as this 

is land of the lowest suitability class. The logical preference must be for the low certainty 

zone in this case, as there is some potential that the suitability of this land will actually be 
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better than recorded. Similarly, choosing the low certainty zone in the 3H3L comparison 

would defy logic and the rational choice would have to be for the high certainty zone. The 

results for these comparisons are summarized in the following tables: 

 
Experience 

1H1L 
 1   2   3  

Total 

Gender H L N H L N H L N H L N 

Male 7 9 5 5 5 2 1 2 0 13 16 7 

Female 2 1 2 1 4 2 2 0 0 5 5 4 

Total 9 10 7 6 9 4 3 2 0 18 21 11 

 
Experience 

3H3L 
 1   2   3  

Total 

Gender H L N H L N H L N H L N 

Male 12 0 0 10 1 0 10 0 0 32 1 0 

Female 7 0 0 7 0 0 0 0 0 14 0 0 

Total 19 0 0 17 1 0 10 0 0 46 1 0 

 
Table 5.8.  Summarised responses, by gender and experience level, to 

1H1L complex and 3H3L simple  pairwise comparisons. 

 
Again, the sample proportion for the expected zone was tested against the null hypothesis 

Pr(Expected) = 0.5. There were no significant effects of gender or experience, so the overall 

totals were used to calculate the sample proportions. 

 
Comparison Sample Pr(Expected) 95% confidence interval p (Fisher’s) 

1H1L 21/39 = 53.8% (37.2%, 69.9%) 0.75 

3H3L 46/47 = 97.9% (88.7%, 99.9%) <0.001 

 

Table 5.9. Two-tailed test results of null hypothesis that Pr(Expected) = 

0.5 for 1H1L complex and 3H3L simple  pairwise comparisons. 

 

For the 1H1L comparison, the sample proportion was not significantly different to the null 

hypothesis, indicating no preference for the low certainty zone over the high certainty zone. 

However, for the 3H3L comparison, the sample proportion selecting the expected zone was 

extremely significant, revealing a strong preference for the high certainty zone. A two-

proportion test showed that the proportion selecting the expected zone was significantly 

higher when this zone was of high certainty rather than low certainty: 
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Difference in sample proportions 95% confidence interval p (Fisher’s) 

44.0% (27.8%, 60.2%) <0.001 
 

Table 5.10. Two-tailed test results of difference in proportions selecting 

the expected zone in 1H1L complex and 3H3L simple comparisons. 

 

Again, in both comparisons few subjects indicated ‘no preference’ between the two zones, the 

proportions that did so being significantly lower than would be predicted from the null 

hypothesis that Pr(No pref) = 0.5: 

 

Comparison Sample Pr(No pref) 95% confidence interval p (Fisher’s) 

1H1L 11/50 = 22% (11.5%, 36.0%) <0.001 

3H3L 0/47 = 0% (0%, 6.2%) <0.001 

 

Table 5.11. Two-tailed test results of null hypothesis that Pr(No pref) = 

0.5 for 1H1L complex and 3H3L simple  pairwise comparisons. 

 

However, as before, although subjects did tend to indicate a preference in each of these two 

comparisons, the proportion indicating ‘no preference’ was significantly higher when the low 

certainty zone was the expected choice. 

 

5.2.1.1.4  Summary of results for equal land suitability classes 

 
The following bar graph summarises the results from the pairwise comparisons between 

regions of equal land suitability classes. It also includes, in dashed boxes, the responses 

expected from a consideration of expected utility. It is clear that the actual responses only 

follow those predicted when the expected response is the high certainty zone. When the low 

certainty zone or no preference between the two zones was expeced, the tendency to select the 

high certainty zone was much greater then predicted from a consideration of expected utility. 
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Figure 5.1. Bar graph showing actual responses to pairwise 

comparisons between zones of equal land suitability classes, together 

with expected responses from a consideration of expected utility. 

 

5.2.1.2    Different land suitability classes 

 

In each of the six pairwise comparisons between zones differing in land suitability 

classification, it was expected that subjects would select the zone of higher land suitability. In 

the analysis, the appropriate sample proportion was tested against Pr(Expected) = 0.5. 

 

5.2.1.2.1  Pairwise comparisons: 3H4L complex, 4H3L complex 

 

The pairwise comparisons 3H4L and 4H3L are analysed together as, in these conditions, the 

certainty information is reversed. In the former comparison, the expected preference was for 

the low certainty zone, as this is of higher land suitability. In the latter comparison, the high 

certainty zone was the expected preference. The results are summarized in the following 

tables: 

Definitely 

low 

Definitely 

high 

No 

preference 

Low 

certainty 

High 

certainty 
Expected 

responses 
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Experience 
3H4L 

 1   2   3  
Total 

Gender H L N H L N H L N H L N 

Male 15 5 1 3 6 3 2 1 0 20 12 4 

Female 2 0 3 2 3 2 2 0 0 6 3 5 

Total 17 5 4 5 9 5 4 1 0 26 15 9 

 

Experience 
4H3L 

 1   2   3  
Total 

Gender H L N H L N H L N H L N 

Male 11 1 0 11 0 0 10 0 0 32 1 0 

Female 7 0 0 7 0 0 0 0 0 14 0 0 

Total 18 1 0 18 0 0 10 0 0 46 1 0 

 

Table 5.12. Summarised responses, by gender and experience level, to 

3H4L complex and 4H3L complex pairwise comparisons. 

 

The results of the one-proportion test on the null hypothesis that Pr(Expected) = 0.5 are shown 

in the table below, together with 95% confidence intervals for this probability: 

 

Comparison Sample Pr(Expected) 95% confidence interval p (Fisher’s) 

3H4L 15/41 = 36.6% (22.1%, 53.1%) 0.117 

4H3L 46/47 = 97.9% (88.7%, 99.9%) <0.001 

 

Table 5.13. Two-tailed test results of null hypothesis that Pr(Expected) 

= 0.5 for 3H4L complex and 4H3L complex  pairwise comparisons. 

 

Again, it can be seen that when the expected zone is of low certainty, the sample proportion is 

not significantly different from the null hypothesis, whereas when the expected zone is of 

high certainty, the sample proportion was much higher than would be expected from the null 

hypothesis. A two-proportion test confirms that the difference in the sample proportions is 

significantly different according to the level of certainty associated with the expected zone: 

 

Difference in sample proportions 95% confidence interval p (Fisher’s) 

61.3% (46.0%, 76.6%) <0.001 

 

Table 5.14. Two-tailed test results of difference in proportions selecting 

the expected zone in 3H4L complex and 4H3L complex comparisons. 

 

In both comparisons, few subjects indicated ‘no preference’ between the two zones, causing 

us to reject the null hypothesis that Pr(No pref) = 0.5: 
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Comparison Sample Pr(No pref) 95% confidence interval p (Fisher’s) 

3H4L 9/50 = 18% (8.6%, 31.4%) <0.001 

4H3L 0/47 = 0% (0%, 6.2%) <0.001 

 

Table 5.15. Two-tailed test results of null hypothesis that Pr(No pref) = 

0.5 for 3H4L complex and 4H3L complex  pairwise comparisons. 

 

Similar to previous findings, subjects did tend to indicate a preference in each of these two 

comparisons, although the proportion indicating ‘no preference’ was significantly higher 

when the low certainty zone was the expected choice. 

 

5.2.1.2.2 Pairwise comparisons: 2H1L simple, 2H3L simple 

 

The results for these two comparisons are summarized in the following tables: 

  

Experience 
2H1L 

 1   2   3  
Total 

Gender H L N H L N H L N H L N 

Male 20 1 0 10 1 1 3 0 0 33 2 1 

Female 3 1 1 6 1 0 2 0 0 11 2 1 

Total 23 2 1 16 2 1 5 0 0 44 4 2 

 

Experience 
2H3L 

 1   2   3  
Total 

Gender H L N H L N H L N H L N 

Male 8 2 2 9 1 1 8 1 1 25 4 4 

Female 4 1 2 7 0 0 0 0 0 11 1 2 

Total 12 3 4 16 1 1 8 1 1 36 5 6 

 

Table 5.16. Summarised responses, by gender and experience level, to 

2H1L simple and 2H3L simple  pairwise comparisons. 

 

Again, there were no significant differences in the sample proportions by gender or by 

experience, so the overall totals were used in the sample proportions tested against the null 

hypothesis that Pr(Expected) = 0.5. 

 

Comparison Sample Pr(Expected) 95% confidence interval p (Fisher’s) 

2H1L 44/48 = 91.7% (80.0%, 97.7%) <0.001 

2H3L 5/41 = 12.2% (4.1%, 26.2%) <0.001 

 

Table 5.17. Two-tailed test results of null hypothesis that Pr(Expected) 

= 0.5 for 2H1L simple and 2H3L simple  pairwise comparisons. 
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There is a clear difference in the way that subjects responded to these two comparisons. In 

both cases, the null hypothesis is to be rejected. However, when the expected zone is of high 

certainty, this is because the sample proportion is much higher than predicted by the null 

hypothesis. In contrast, when the expected zone is of low certainty, the proportion selecting it 

is much lower than would be expected. A two-proportion test shows an extremely significant 

difference between the two sample proportions: 

 

Difference in sample proportions 95% confidence interval p (Fisher’s) 

79.5% (66.8%, 92.2%) <0.001 

 

Table 5.18. Two-tailed test results of difference in proportions selecting 

the expected zone in 2H1L simple and 2H3L simple comparisons. 

 

In fact, we can see that the proportion selecting the high certainty zone is almost as high in the 

2H3L comparison as it is in the 2H1L comparison. A two-proportion test on the proportions 

selecting the high certainty zone in each of these conditions reveals no significant difference. 

Subjects are tending to select the high certainty zone in both comparisons, regardless of the 

difference in land suitability class of the low certainty zone. 

 

Difference in sample proportions 95% confidence interval p (Fisher’s) 

3.9% (-8.8%, 16.6%) 0.73 

 

Table 5.19. Two-tailed test results of difference in proportions selecting 

the high certainty zone in 2H1L simple and 2H3L simple comparisons. 

 

As before, few subjects indicated ‘no preference’ between the two zones, causing us to reject 

the null hypothesis that Pr(No pref) = 0.5: 

 

Comparison Sample Pr(No pref) 95% confidence interval p (Fisher’s) 

2H1L 2/50 = 4% (0.5%, 13.7%) <0.001 

2H3L 6/47 = 12.8% (4.8%, 25.7%) <0.001 

 

Table 5.20. Two-tailed test results of null hypothesis that Pr(No pref) = 

0.5 for 2H1L simple and 2H3L simple  pairwise comparisons. 

 

In these two comparisons, a greater proportion of subjects indicated ‘no preference’ when the 

low certainty zone rather than the high certainty zone was the expected choice, although this 

difference did not reach significance. 
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5.2.1.2.3 Pairwise comparisons: 4H2L complex, 3H5L complex 

 

The following tables summarise the results for these two comparisons, in which the two zones 

differed by two land suitability classes: 

 

Experience 
4H2L 

 1   2   3  
Total 

Gender H L N H L N H L N H L N 

Male 20 0 1 11 0 1 3 0 0 34 0 2 

Female 5 0 0 6 0 1 2 0 0 13 0 1 

Total 25 0 1 17 0 2 5 0 0 47 0 3 

 

Experience 
3H5L 

 1   2   3  
Total 

Gender H L N H L N H L N H L N 

Male 3 8 1 5 4 2 6 3 1 14 15 4 

Female 1 4 2 3 2 2 0 0 0 4 6 4 

Total 4 12 3 8 6 4 6 3 1 18 21 8 

 

Table 5.21. Summarised responses, by gender and experience level, to 

4H2L complex and 3H5L complex pairwise comparisons. 

 
 

The overall proportion selecting the expected zone in each comparison was tested against the 

null hypothesis that Pr(Expected) = 0.5 and 95% confidence intervals for these sample 

proportions were calculated: 

 

 

Comparison Sample Pr(Expected) 95% confidence interval p (Fisher’s) 

4H2L 47/47 = 100% (93.8%, 100%) <0.001 

3H5L 21/39 = 53.8% (37.2%, 69.9%)) 0.75 

 

Table 5.22. Two-tailed test results of null hypothesis that Pr(Expected) 

= 0.5 for 4H2L complex and 3H5L complex  pairwise comparisons. 

 

Similar to earlier comparisons, it can be seen that when the expected zone is of low certainty, 

the sample proportion is not significantly different from the null hypothesis, whereas when the 

expected zone is of high certainty, the sample proportion was much higher than would be 

expected from the null hypothesis. A two-proportion test confirms that the difference in the 

sample proportions is extremely significant according to the certainty associated with the 

expected zone. 
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Difference in sample proportions 95% confidence interval p (Fisher’s) 

46.2% (30.5%, 61.8%) <0.001 

 

Table 5.23. Two-tailed test results of difference in proportions selecting 

the expected zone in 4H2L complex and 3H5L complex comparisons. 

 

As in previous findings, the null hypothesis that Pr(No pref) = 0.5 was rejected for both of 

these comparisons: 

 

Comparison Sample Pr(No pref) 95% confidence interval p (Fisher’s) 

4H2L 3/50 = 6% (1.3%, 16.5%) <0.001 

3H5L 8/47 = 17.0% (7.6%, 30.8%) <0.001 

 

Table 5.24. Two-tailed test results of null hypothesis that Pr(No pref) = 

0.5 for 4H2L complex and 3H5L complex  pairwise comparisons. 

 

Again, there was a greater tendency for subjects to indicate ‘no preference’ when the low 

certainty zone was the expected choice, although this difference did not reach significance. 

 

5.2.1.2.4 Summary of results for different land suitability classes 

 
The bar graph below summarises the results from the pairwise comparisons between regions 

of differing land suitability classes. It also includes, in dashed boxes, the responses expected 

from a consideration of expected utility. Again, it can be seen that the actual responses 

differed from those predicted whenever it was expected that the low certainty zone would be 

selected. 
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Figure 5.2.  Bar graph showing actual responses to pairwise 

comparisons between zones of different land suitability classes, together 

with expected responses from a consideration of expected utility. 

 

5.2.1.3   Overall gender and experience effects 

 

The following table summarises the overall responses to the 12 comparisons by experience 

and gender: 

Experience 
Overall 

 1   2   3  
Total 

Gender H L N H L N H L N H L N 

Male 153 32 13 97 24 17 65 11 2 315 67 32 

Female 49 11 12 60 14 10 12 0 0 121 25 22 

Total 202 43 25 157 38 27 77 11 2 436 92 54 

 

Table 5.25.  Aggregated responses, by gender and experience level, 

to the 12 pairwise comparisons. 

 

There were no significant differences between the responses of the two genders to each of the 

individual comparisions. Overall, it was found that females showed a higher tendency to 

High certainty Expected 

responses 

Low certainty 
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indicate ‘no preference’ than did males, although this did not reach significance at the 5% 

level (estimated difference = 5.4%, p=0.066). 

 

However, some differences were evident in the way that subjects of different experience 

levels responded. In the 3H4L comparison, the sample proportion selecting the low certainty 

zone was significantly greater for experience level 2 than the other subjects (estimated 

difference = 42.1%, Fisher’s p = 0.015). In the 3H5L comparison, the sample proportion 

selecting the low certainty zone was significantly greater for experience level 1 than the other 

subjects (estimated difference = 35.9%, Fisher’s p = 0.049). Overall, subjects of experience 

level 3 (most experienced) showed a significantly higher tendency to select the high certainty 

zone than did other subjects (estimated difference = 12.6%, p = 0.003) and a significantly 

lower tendency to indicate ‘no preference’ (estimated difference = -8.3%, Fisher’s p = 0.009). 

 

Looking at the aggregated totals, subjects exhibited an extremely strong tendency to select the 

high certainty zone over the low certainty zone. This was evident despite the fact that the land 

suitability classes were balanced over the 12 comparisons and was typical of both genders and 

all experience levels. The overall sample proportion H/(H+L) was tested against the null 

hypothesis that Pr(High) = 0.5: 

 

 Sample Pr(H) 95% confidence interval p (Fisher’s) 

Overall 436/528 = 82.6% (79.1%, 85.7%) <0.001 

 

Table 5.26.   Two-tailed test results of null hypothesis that Pr(High) = 

0.5 for the 12  pairwise comparisons. 

 

5.2.2 Ranking of suitability/certainty zones 

 
The ranking rask was only performed for the simple (3 class) land suitability classification. In 

the following results and discussion, the six zones have been coded from 1 (poor) to 3 (good) 

for land suitability, and using H for high certainty and L for low certainty. For example, 1H 

represents poor land suitability, high certainty. The boxplot below shows the distribution of 

rankings against zone, experience and gender: 
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Figure 5.3. Boxplot showing distribution of rankings for each 

suitability/certainty zone against experience level and gender. 

 
It can be seen that there are few apparent differences in the way that participants of both 

genders and all experience levels are ranking the six zones. It is clear that the zones of lowest 

land suitability, 1H and 1L, generally receive the lowest rankings, although with some 

variability. Zone 2L tends to be assigned the next lowest ranking, followed by zone 3L. Zone 

2H appears to be ranked second highest on average, with only a single outlier ranking it below 

4. Almost without exception, participants assigned the highest ranking to zone 3H.  

 

The following matrix plot indicates no apparent interactions between zone and experience or 

between zone and gender: 
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Figure 5.4. Matrix plot showing ranking interactions between zone, 

experience level and gender. 

 
The interactions plot suggests that subjects of different experience levels and different genders 

appear to be ranking the six zones in similar fashions. An analysis of variance was not 

appropriate for this data as the assumption of equal variances is violated (Bartlett’s test 

statistic = 146.38, p<0.001) and the rankings are not independent or normally distributed. A 

nonparametric Kruskal-Wallis test was therefore performed to test for differences in the 

rankings that subjects assigned to the six zones. This showed extremely significant differences 

(DF = 5, H = 454.28, p<0.001, adjusted for ties). Wilcoxon signed rank tests were performed 

to test for the significance of pairwise differences in the median rankings. These tests were 

significant at the 0.1% level for all pairwise comparisons except that between 1L and 1H. This 

latter comparison did not reach a significant level of difference. The estimated median 

difference, together with the 95% confidence interval and associated p-values for adjacent 

preferences are shown in the following table: 
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                   Wilcoxon    Estimated 95% confidence interval 
           n         Statistic             p    Median  Lower    Upper 
 
3H - 2H   95         4405    <0.001        1.50  1.00    1.50 
2H - 3L    95         3305    <0.001        0.50  0.00     1.00 
3L - 2L    95        4162    <0.001        1.50  1.00   1.50 
2L - 1H    95        3582    <0.001        1.00  1.00    1.50 
1H - 1L    95         2691    0.128        0.00  0.00    0.50 
 

Table 5.27. Results of Wilcoxon signed rank tests, including estimated 

median differences between adjacent ranked zones and associated p-values. 

 

The order of preference for the six zones is shown below, with the non-significant difference 

indicated by a line: 

 
          Most preferred                                    Least preferred 

 3H  2H  3L  2L  1H  1L 

 

 

5.3 Discussion 

 

5.3.1 Pairwise testing of thematic uncertainty  

 

Equal land suitability classes 

 

When the high and low certainty zones were equally classed in terms of land suitability and 

this classification was at the mid-class level, the two zones were of equal expected value. It 

was not expected that subjects would exhibit a preference for either zone.  However, an 

extremely significant tendency to select the high certainty zone over the low certainty zone 

was observed. Only 8.2% of subjects indicated ‘no preference’ as their response. Of the 89 

subjects who did indicate a preference, all but two chose the land with the high certainty 

classification as their preferred site. This tendency was similarly displayed across experience 

levels and both genders, with the 95% confidence interval for the proportion selecting the 

high over the low certainty zone being (92.1%, 99.7%).  

 

Although not expected from a normalist point of view, this finding is not surprising in the 

light of Ellsberg’s work on ambiguity. People generally dislike working ‘in the dark’ and 

prefer to work with data that is ‘certain’, despite it not necessarily having a greater intrinsic 

expected value. The observed responses in the 2H2L simple and 3H3L complex comparisons 
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demonstrate the strength of this bias. The inclusion of certainty information in a simple binary 

form can lead to extremely strong preferences that appear to be irrational in terms of expected 

value.  

 

However, it could be argued that from a loss aversion viewpoint, this behaviour is rational. 

People are generally conservative and suffer from a loss more strongly than they value the 

corresponding gain. The potential loss from the  low certainty zone being of inferior land 

suitability is seen as more damaging than the possible reward would be beneficial if the land 

were to be of greater suitability. Effectively, loss aversion may decrease the subjective 

expected value of the  low certainty zone by giving a greater weight to the possible result that 

the land is of lower suitability than its current classification. It would therefore make more 

sense to choose the high certainty zone. 

 

The possible effect of loss aversion provides a plausible explanation for the strong bias 

towards selecting the high certainty zone observed in the 2H2L simple and 3H3L complex 

comparisons. It would also provide an explanation for the pattern of subject responses in the 

2H2L complex and 4H4L complex comparisons. We would expect subjects to select the low 

certainty zone in the 2H2L comparison, since there are more classes of potentially higher land 

suitability than lower ones for this zone. Conversely, we would expect a preference for the 

high certainty zone in the 4H4L comparison, since there are a greater number of potentially 

lower classes for the low certainty zone. The results were not entirely consistent with this 

logic. There was no significant preference for either zone in the 2H2L comparison (p=0.88), 

although a strong preference for the high certainty zone in the 4H4L comparison was observed 

(p<0.001). 

 

If the loss aversion effect is introduced into subjects’ reasoning, these results can be 

explained. Although there are more potentially higher than lower land suitability classes for 

the  low certainty zone in the 2H2L comparison, if greater weighting were given to the lower 

class, some subjects may still, rationally, choose the high certainty zone. Approximately equal 

numbers of subjects chose the high and low certainty zone in this case. However, in the 4H4L 

comparison, increasing the weight given to the potential lower land suitability classes of the 

low certainty zone would serve to further lessen its attraction and therefore strengthen the 

preference for the high certainty zone. 
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However, loss aversion does not provide an explanation for the observed responses when 

zones of the extreme suitability classes were compared. In the 1H1L comparison, the land is 

of the lowest possible land suitability. The rational choice would therfore be for the low 

certainty zone, as this has potentially higher land suitability but no potentially worse 

outcomes. In this condition, loss aversion would have no effect and there can be no logical 

reason for selecting the high certainty zone. However, 18 of the 39 subjects who expressed a 

preference did exactly that. Only 53.8% of subjects expressing a preference responded in a 

logical manner and chose the low certainty zone. It was to this comparison that the greatest 

proportion of subjects, 22%, indicated no preference between the two zones. Logic dictates 

that preference for the low certainty zone is the only rational  response, but many subjects 

appear to be loath to select this option.  

 

There was no such unexpected result when the high certainty zone was the expected 

preference in the 3H3L comparison. All but one of the 47 subjects who expressed a preference 

did select the logical option. In contrast to the 22% who indicated no preference in the 1H1L 

comparison, no subjects indicated no preference in this condition. It appears that subjects have 

no problems with selecting the high certainty zone when it is the rational choice but are 

significantly less likely to select the low certainty zone in the converse condition (p<0.001). 

This pattern of behaviour is similar to that observed in the previous comparisons, although 

loss aversion cannot be used to explain the reluctance to select the low certainty zone in this 

case. 

 

Different land suitability classes  

 

When comparing zones of differing land suitability classes, it was expected that subjects 

would select the zone of greater land suitability, regardless of certainty information. It was 

assumed that greater expected value would be attributed to the zone with the higher land 

suitability class. However, the observed pattern of subjects’ behaviour was again inconsistent 

with this. In the 3H4L complex and 4H3L complex comparisons, the certainty information was 

reversed between the two conditions. A preference for the low certainty zone was expected in 

the 3H4L comparison and a preference for the high certainty zone was expected in the 4H3L 

comparison. However, only 36.6% of subjects expressing a preference responded as expected 

in the former comparison, while 97.9% responded as expected in the latter comparison. 
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It could again be argued that loss aversion can provide an explanation for the reluctance to 

select the low certainty zone in the 3H4L comparison. It was expected that subjects would 

choose the 4L zone. If the three potentially lower land suitability classes are weighted more 

heavily than the one potentially higher class, the expected value of this zone would decrease. 

Nonetheless, to adequately justify the responses of the 63.4% of subjects selecting the high 

certainty zone, this expected value would have to drop by more than one land suitability class. 

This would require that all of these subjects exhibit extremely strong loss aversion. Whether 

or not such extreme loss aversion can be considered rational would depend upon the context 

of the decision being made. Little context was provided in this example; for instance, no 

social, environmental, political or economic effects of the airport were discussed. If the loss 

aversion explanation is upheld, the level of conservatism exhibited was beyond that expected. 

 

A similar, but more pronounced, pattern of results was observed in the 2H1L simple and 2H3L 

simple comparisons. The strong preference for the high certainty zone in the former 

comparison was expected, with 91.7% of those subjects expressing a preference  responding 

in this manner. However, only 12.2% of subjects selected the low certainty zone in the 2H3L 

comparison. This caused us to reject the null hypothesis of no preference between the two 

zones. However, the significant preference was observed towards the high certainty zone and 

not, as expected, towards the low certainty zone. In both comparisons, subjects were selecting 

the high certainty zone, regardless of the land suitability class assigned to the low certainty 

zone.  

 

Again, this can be explained in terms of loss aversion. In the 2H1L comparison, the expected 

value of the low certainty zone would be expected to rise above one, but not by as much as the 

expected value of the low certainty zone in the 2H3L comparison would be expected to fall 

below three. If strong loss aversion were exhibited, it would be possible for the expected 

value of the low certainty zone to be similar in the two comparisons. This could explain the 

fact that there was no significant difference betweeen the proportion selecting the high 

certainty zone across the two comparisons (p=0.73). As before, such an explanation requires 

that extremely strong weights are applied to the potentially lower land suitability classes. 

 

Similar results were observed when the zones differed by two land suitability classes. In the 

4H2L complex comparison, all 47 subjects expressing a preference selected the high certainty 

zone. However, in the 3H5L complex comparison, only 53.8% of subjects expresssing a 
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preference responded as expected and selected the low certainty zone. An explanation in 

terms of loss aversion requires that the expected value of the low certainty zone in this latter 

comparison is actually lowered by more than two land suitability classes.  

 

Throughout these comparisons, subjects have shown a reluctance to select the low certainty 

zone when it was the expected choice but have shown no such deviation from expectation 

when selecting the high certainty zone. Ignoring the possible effects of subjective loss 

aversion, in the two comparisons when the zones were of equal expected value, an 

overwhelming majority of subjects selected the high certainty zone. Of the five comparisons 

in which the low certainty zone had the higher expected value, no significant preference was 

observed in four comparisons and in the fifth, the observed preference was for the high 

certainty, not the low certainty, zone. In all five comparisons when the high certainty zone had 

the higher expected value, an extremely strong preference (p<0.001) was observed for this 

zone. 

 

Although this strong reluctance to select the low certainty zone can be explained in terms of 

loss aversion for many of the comparisons, such an argument would not be applicable to the 

1H1L comparison. In this condition, only 21 of the 50 subjects correctly responded that the 

low certainty zone was the preferred option. There is no rational justification for the 11 

responses that indicated no preference and the 18 responses that selected the high certainty 

zone. It appears that subjects exhibit an aversion to selecting a zone labelled as low certainty, 

even when this zone has the higher expected value. This can lead to the making of irrational 

decisions when certainty information is included. 

 

Overall, 82.6% of expressed preferences favoured the high certainty zone, despite the 

comparisons being balanced so that the high and low certainty zones were expected with 

equal frequency. This strong bias toward the high certainty zone was evident across both 

genders and all experience levels. Although there were no significant differences between the 

genders, there were some differences between subjects of different experience levels. Two of 

the individual comparisons were significant at the 5% level, although this may be a chance 

result of making multiple comparisons. However, the overall proportions of experience level 3 

subject responses were significantly different to those of the other subjects. The level 3 

subjects were more likely to select the high certainty zone than the other subjects (p=0.003) 

and were less likely to indicate no preference (p=0.009). This result is somewhat surprising as 
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it might be expected that the more experienced subjects would be more familiar with the 

concept of uncertainty and would show less of a bias towards the high certainty zone. 

Conversely, this preliminary finding indicates that the more experienced subjects are no 

better, and may in fact be slightly worse, than other subjects in dealing with uncertainty. 

 

5.3.2 Ranking of suitability/certainty zones 

 

Irrespective of gender and experience, there were extremely significant differences in the 

rankings asssigned to the six zones. It was expected that zone 3H would be the most preferred 

zone, as this land is classed as most suitable and the classification is of high certainty. Of the 

95 subjects, 91 selected this as their most preferred zone. This result is consistent with the 

findings of other researchers (Leitner & Buttenfield, 2000) that  people are able to apply 

certainty information in a manner that assists in decision-making. Nevertheless, when subjects 

were asked to go beyond the optimal zone and rank the remaining land, irrational decisions 

became apparent. In agreement with the findings from the pairwise comparisons, zone 2H was 

preferred to zone 3L, despite the higher suitability classification of the latter zone. Although it 

could be argued that this finding is a result of loss aversion, subjects also repeated their 

illogical treatment of zones 1H and 1L. In fact, in this ranking task the poor, high certainty 

zone was actually preferred to the poor, low certainty zone, although this preference did not 

reach significance (p=0.128). 

 

These findings support the conclusion from the pairwise comparisons that people do not 

handle certainty information in a logical manner. Most people can identify the optimal zone 

when certainty information is incorporated into the attribute display, but beyond this many 

people respond in an irrational fashion. Several of the subjects who ranked zone 1H higher 

than 1L were incredulous as to their mistake when it was pointed out to them. When it was 

explained in terms of the 1H zone being definitely poor land but the 1L zone having some 

chance of better (but none of worse) suitability, they stated that they had not considered the 

information like this and could not believe that they had not done so. They appeared to 

quickly grasp the concept after a brief explanation, despite this not being intuitive from the 

display itself. Indeed, six of the 95 subjects (6.3%) ranked the data primarily by certainty and 

then by the apparently subordinate quality of land suitability, as below: 
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  Most preferred Least preferred 

 3H 2H 1H 3L 2L 1L 
 

This demonstrates how strong the aversion to a low certainty classification can be. 

 

5.4 Conclusion 

 

The introduction of thematic uncertainty can have significant effects on decision-making, 

although these may not always be rational. Within a siting task, an extremely significant 

tendency was observed for subjects to prefer the high over the low certainty zone when the 

zones had equal expected value in terms of land suitability. This preference was exhibited by 

subjects of both genders and all experience levels. When comparing zones that differed in 

land suitability, subjects did not show a preference for low certainty zones that were classified 

higher, despite their greater expected value. Although this could be explained in terms of loss 

aversion, the reluctance to select the low certainty zone in the 1H1L comparison can only be 

described as irrational.  

 

Overall, participants showed a strong tendency to select the high certainty zone more readily 

than the low certainty zone. The observed reluctance to select the low certainty zone is 

consistent with Ellsberg’s finding of ambiguity aversion. It implies that many people have an 

irrational bias against information labelled as low certainty, beyond that which can be 

explained through loss aversion. The inclusion of certainty information  may therefore lead to 

irrational decisions, rather than promoting informed, robust decision-making as intended. The 

bias towards selecting the high certainty zone was greatest in subjects of the highest 

experience level. This indicates that even experienced GIS users may not be able to intuitively 

handle uncertainty information, although with a little education, they appeared to understand 

its relevance with regards to this simple task.  
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6. 

Results and Discussion – Navigation Case Study 

 

6.1 Introduction 

 

In this section, the results from the navigation case study are presented. This study 

investigated how different representations of positional uncertainty may affect decision-

making. The results are presented in three sections. The first of these is concerned with 

participants’ responses to the four dynamic representations of positional uncertainty. The slide 

numbers at which they chose to turn the boat away from the restricted zone are analysed. In 

section 6.2.2, the responses to the static multiple-choice questions are presented. This section 

aims to demonstrate whether or not the participants were able to comprehend each of the four 

types of representation. Finally, the results from the survey question asking participants to 

rank their preference for the four representation types are analysed. A discussion of the results 

from the three sections follows and the chapter concludes with a summary of the findings. 

 

6.2 Results 
 

The four methods used to represent positional uncertainty in this study are referred to as 

Limits, Scale, Probability and Graduated (see figures 4.3-4.6, p.66-69). As with the airport 

siting case study, responses are analysed with respect to the gender and experience level of the 

participant. 

 
6.2.1 Dynamic testing of positional uncertainty  
 

The response variable, the slide number at which participants chose to turn the boat away 

from the restricted zone, was analysed against the treatment variables of representation, order, 

gender and experience. Representation and order were treated as variables that vary within 

subjects, whereas gender and experience varied between subjects. The following boxplot 

shows the distribution of responses (slide number) against the two within-subject variables of 

representation and order: 
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Figure 6.1. Boxplot showing the distribution of responses (slide number) 

against representation and order. 

 

The boxplot below shows the distribution of responses against the between-subject variables 

of gender and experience: 
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Figure 6.2. Boxplot showing the distribution of responses (slide number) 

against experience and gender. 
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From both boxplots, it can be seen that the participants’ responses were quite variable, 

although it is difficult to compare spreads as the sample sizes differed between these 

conditions. Several outliers were identified in the data. These were fairly evenly distributed 

between the four representation types but appeared to be more common when the 

representations were placed at order 3 than at the other orders. The outliers also appeared to 

be clustered around the male subjects of experience level 2, with six responses being 

unusually high in this group. There is no apparent reason for this cluster of outliers. 

 

Since the experiment was not balanced across all variables, a residual maximum likelihood 

(REML) analysis was performed to investigate the significance of any of the treatment 

variable effects or any interactions. A logarithmic transformation was applied to the response 

variable, slide number, as this provided a more satisfactory plot of residuals against the fitted 

values. Subject number 82 was also omitted from the analysis as two of this participant’s four 

responses exhibited abnormally large residuals. On further inspection, it was observed that 

subject 82 had responded in an atypical manner. His responses including the minimum slide 

number at which any participant decided to turn away from the restricted zone as well as the 

third highest response for slide number for any subject. It may be that this participant had not 

fully understood the task, as his responses were far more variable than the average. 

 

The  following matrix plot indicates any pairwise interactions between the four treatment 

variables of representation, order, experience and gender: 
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Figure 6.3. Matrix plot indicating any pairwise interactions between the four 

treatment variables. 

 

The plot reveals little interaction between gender and the two variables of representation and 

order, since the lines are approximately parallel for these two pairings. There is some 

evidence that there may be an interaction between gender and experience, with the more 

experienced females showing a tendency to select higher slide numbers than less experienced 

females; a tendency that is not evident amongst male subjects. There is also some indication 

that the more experienced subjects respond differently to the displays, depending upon the 

order and type of representation. However, the most noticeable interaction appears to be 

between representation and order. The plot suggests that responses to the Limits 

representation are more prone to order effects than those to the other representations, this 

being particularly noticeable when the Limits representation is displayed last in the sequence 

of four animations. 

 

The results of the REML analysis of variance are summarised in the following table: 
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   Fixed term               Wald stat. d.f.      Wald/d.f.     p 
 

   Experience                      3.76             2          1.88        0.152 
   Gender                         0.01             1          0.01        0.909 
   Representation                 37.18             3         12.39       <0.001 
   Order                          10.66             3          3.55        0.014 
   Representation*Order         20.98             9          2.33        0.013 
   Gender*Order                    3.40             3          1.13        0.333 
   Experience*Order                4.12             6         0.69        0.661 
   Gender*Representation        0.66             3          0.22        0.884 
   Experience*Representation  13.48             6          2.25        0.036 
   Experience*Gender               6.36             2          3.18        0.042 
 

Table 6.1. Results of REML analysis of variance for slide number against the 

four treatment variables and pairwise interactions. 

 

The analysis indicates significant interactions of representation*order, experience*gender and 

experience*representation. The two interactions involving experience may be a chance result, 

as the number of highly experienced subjects, especially females, was small. The REML 

analysis can also under-estimate p-values, so the calculated values of 0.036 and 0.042 may not 

actually reflect interactions that are significant at the 5% level. Nonetheless, the interaction of 

representation*order (W=20.98, DF=9, p=0.013) does appear to be significant and implies 

that the effects of order vary between the different representations of the uncertainty 

information.  

 

The REML analysis also indicates significant main effects of order and representation. The 

effect of order (W=10.66, DF=3, p=0.014) suggests that subjects are making different 

decisions dependent upon the order in which the display is viewed. Such an effect would be 

expected if subjects were learning throughout the duration of the experiment and is of no 

surprise, considering that they were given no prior training in tasks of this nature. Most 

importantly to this study, the analysis reveals an extremely significant effect of representation 

(W=37.18, DF=3, p < 0.001). Subjects’ responses to the different representations of 

uncertainty varied significantly, despite the four representations depicting the same 

information, albeit in different ways. 

 

The significant effects were further examined through an analysis of pairwise comparisons. 

There were 120 such comparisons for the representation*order interaction, so the analysis was 

restricted to a comparison of the four orders separately within each representation. Inspection 

of the interactions plot indicated that subjects might be responding differently to order within 
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the Limits representation than within the other three representations. The pairwise 

comparisons confirmed this. The responses to the Limits representation differed significantly, 

according to the order in which the representation was viewed. The only non-significant 

difference was that between orders 3 and 1. However, no order effects were significant at the 

5% level when each of the other three representations was considered individually. The figure 

below arranges the predicted means for log(slide number) for the four orders of each 

representation, with the non-significant differences indicated by lines: 

 

 Limits 3 Limits 1 Limits 2 Limits 4 
3.415  3.346  3.079  2.856 

 
 Prob 3 Prob 2 Prob 4 Prob 1 

3.471  3.381  3.361  3.341 

 
 Grad 1 Grad 2 Grad 4 Grad 3 

3.374  3.349  3.282  3.196 

 
 Scale 3  Scale 4 Scale 2 Scale 1 

3.456  3.314  3.307  3.285 

 

Figure 6.4. Predicted means for log(slide number), arranged for the four orders 

for each representation and with non-significant pairwise differences indicated 

by lines. 

 

Although this representation*order interaction appeared to be significant, a main effect of 

order was also indicated by the REML analysis. Pairwise comparisons of the four orders 

revealed that the slide number when a representation was presented third was significantly 

greater than when it was presented second or fourth. The slide number for a representation 

presented first was also significantly greater than that when the representation was presented 

fourth. The following figure arranges the predicted mean log(slide number) for the four 

orders, with non-significant differences indicated by lines: 

 

 Order 3 Order 1 Order 2 Order 4 
3.384   3.336  3.279  3.203 

 

 

Figure 6.5. Predicted means for log(slide number) for the four orders with non-

significant pairwise differences indicated by lines. 
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The main effect of representation type on the response variable was found to be extremely 

significant (p<0.001). As this effect was of primary concern to this study, descriptive statistics 

summarizing participants’ responses by representation type were calculated. These are shown 

below, together with a boxplot showing the distribution of responses against type of 

representation: 

 

 
Representation    n   Mean   StDev   Min    Q1    Med    Q3  Max 

 
Graduated        94   28.01   8.457    7   22 28 32 55 
Limits           94    25.67   10.38    12    16 25 33 59 
Probability      94   30.21   8.753    13 25 30 34 60 
Scale            94    27.93   7.170    11 23 28 32 50 
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Figure 6.6. Boxplot showing distribution of responses (slide number) for the 

four types of representation. 

 

In order to determine where the significant differences in responses lie, comparisons were 

performed between each pair of representations. The results of testing the null hypothesis that 

the difference in the predicted means of log(slide number) equalled zero are summarized 

below: 
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Two-tailed test of difference in predicted means = 0.00  
 
                     Estimated    Standard Effective      
               difference            Error      D.F.  p 

 

Prob-Scale      0.048  0.057 84  0.402 
Prob-Grad       0.088  0.049  84  0.076 
Prob-Limits     0.214  0.049  84             < 0.001 
Scale-Grad      0.040  0.049  84  0.416 
Scale-Limits    0.166  0.049  84  0.001 
Grad-Limits  0.126  0.057  84  0.030 

 
Table 6.2. Results of pairwise comparisons testing for significant 

differences in responses to the four representations, including estimated 

mean differences of log(slide number) and associated p-values. 

 
The slide number for the representation Limits was found to be significantly lower than that 

for all other representations. Subjects tended to turn away from the restricted zone sooner 

when the uncertainty was represented using Limits. The slide number for the representation 

Probability was higher than that for the representations Scale and Graduated, although these 

differences were not found to be significant at the 5% level (p=0.402 and p=0.076 

respectively). The predicted means for log(slide number) at which subjects turned away are 

illustrated below, with the line indicating non-significant differences: 

 
 Probability Scale Graduated Limits 
  3.388 3.340  3.300   3.174 
 

 

Figure 6.7. Predicted means for log(slide number) for the four types of 

representation, with non-significant pairwise differences indicated by lines. 

 
6.2.2   Static multiple-choice tests 
 

The following tables summarise subject responses to the 20 representation-by-form multiple-

choice questions, the values representing the number of participants making that particular 

response, using the legend: 

 

Code Response 

1 Definitely in Zone A 

2 Probably in Zone A 

3 Equal chance of being in either Zone 

4 Probably in Zone B 

5 Definitely in Zone B 

N Do not understand the diagram 
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Table 6.3. Responses to the 20 representation-by-form questions, 

organised by expected response. 

 

These results were aggregated across the four representation types and tabulated against the 

expected responses. An attribute agreement analysis was then performed. The following table 

shows, in the shaded boxes, the number of responses that are in agreement with the expected 

response. The overall agreement percentage is also given: 

Form 1  Expected response: 1 (Definitely in A)  
  

   1 2 3 4 5 N 

 scale 34 4 0 0 0 0 

 grad 33 3 1 0 0 1 

 limits 38 3 0 0 0 0 

 prob 36 2 0 0 2 0 

Form 2  Expected response: 2 (Probably in A) 
    

   1 2 3 4 5 N 

 scale 3 27 10 0 0 0 

 grad 4 19 11 3 1 1 

 limits 1 29 9 1 0 0 

 prob 7 27 4 1 0 0 

 
 
        

Form 3  Expected response: 3 (Equal chance of either Zone) 
 

   1 2 3 4 5 N 

 scale 0 2 33 3 1 0 

 grad 1 10 26 2 0 1 

 limits 0 0 34 3 1 0 

 prob 0 0 37 1 1 1 

  
 
       

Form 4  Expected response: 4 (Probably in B) 
   

    1 2 3 4 5 N 

 scale 0 0 1 15 23 0 

 grad 0 1 0 30 8 1 

 limits 0 2 0 25 12 0 

 prob 0 0 0 21 17 0 

    
 
     

Form 5 Expected response: 5 (Definitely in B) 
  

    1 2 3 4 5 N 

 scale 1 0 0 3 36 0 

 grad 1 0 0 2 35 1 

 limits 0 0 0 2 36 0 

 prob 0 0 0 1 38 0 
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Cumulative responses:  
 Actual response 

 
 1 2 3 4 5 N total 

1 141 12 1 0 2 1 157 

2 15 102 34 5 1 1 158 

3 1 12 130 9 3 2 157 

4 0 3 1 91 60 1 156 

5 2 0 0 8 145 1 156 

total 159 129 166 113 211 6 784     Agreement = 609/784 = 77.7% 
 

Table 6.4. Aggregated responses to the 20 representation-by-form 

questions. 

 
To enable an analysis of the level of agreement between subjects’ responses and the expected 

responses for the different types of representation, the data was then tabulated by 

representation type. A similar attribute agreement analysis was then performed separately for 

each. The following tables summarise the results by type of representation: 

Expected  
response 
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Scale representation:  
 Actual response 
 

 1 2 3 4 5 N total 

1 34 4 0 0 0 0 38 

2 3 27 10 0 0 0 40 

3 0 2 33 3 1 0 39 

4 0 0 1 15 23 0 39 

5 1 0 0 3 36 0 40 

total 38 33 44 21 60 0 196     Agreement = 145/196 = 74.0% 
 

Graduated representation:  
 Actual response 
 

 1 2 3 4 5 N total 

1 33 3 1 0 0 1 38 

2 4 19 11 3 1 1 39 

3 1 10 26 2 0 1 40 

4 0 1 0 30 8 1 40 

5 1 0 0 2 35 1 39 

total 39 33 38 37 44 5 196     Agreement = 143/196 = 73.0% 
 
Limits representation:  
 Actual response 
 

 1 2 3 4 5 N total 

1 38 3 0 0 0 0 41 

2 1 29 9 1 0 0 40 

3 0 0 34 3 1 0 38 

4 0 2 0 25 12 0 39 

5 0 0 0 2 36 0 38 

total 39 34 43 31 49 0 196     Agreement = 162/196 = 82.7% 
 

Probability representation:  
Actual response 

 

 1 2 3 4 5 N total 

1 36 2 0 0 2 0 40 

2 7 27 4 1 0 0 39 

3 0 0 37 1 1 1 40 

4 0 0 0 21 17 0 38 

5 0 0 0 1 38 0 39 

total 43 29 41 24 58 1 196     Agreement = 159/196 = 81.1% 
 

Table 6.5. Agreement analysis for the four types of representation. 

Expected  
response 

Expected  
response 

Expected  
response 

Expected  
response 
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A version of McNemar’s test was used to determine whether the levels of subject agreement 

varied significantly between the four representation types. The test had to be modified as each 

subject responded to a total of eight questions, two of each of the four representation types. 

The responses were therefore not independent. This was accounted for by comparing the 

number of times each subject was in total agreement with the expected response for each 

representation, with the number of times they were in some disagreement (either one or two 

discrepancies). Two-way tables were calculated for each pair of representations and two-tailed 

sign tests were performed on the off-diagonals to test the null hypothesis of no difference 

between the agreement levels. The results are summarised below: 

 
 

  
 

 test proportion  p 

 
Scale display vs Graduated display   21/44   0.880 
Scale display vs Limits display   14/41   0.060 
Scale display vs Probability display   15/41   0.117 
Graduated display vs Limits display  13/41   0.028 
Graduated display vs Probability display  16/45   0.072 
Limits display vs Probability display  20/42   0.878 
 

Table 6.6. Modified McNemar’s test of differences between levels of 

participant agreement for the four types of representation. 

 

These two-tailed tests only reveal one pairing to differ significantly at the 5% level; subject 

agreement for Limits was significantly higher than that for Graduated (p=0.028). The greater 

Agree Disagree Total Agree Disagree Total

Agree 30 23 53 Agree 38 13 51

Disagree 21 24 45 Disagree 28 19 47

Total 51 47 98 Total 66 32 98

Agree Disagree Total Agree Disagree Total

Agree 39 14 53 Agree 35 16 51

Disagree 27 18 45 Disagree 29 18 47

Total 66 32 98 Total 64 34 98

Agree Disagree Total Agree Disagree Total

Agree 38 15 53 Agree 44 22 66

Disagree 26 19 45 Disagree 20 12 32

Total 64 34 98 Total 64 34 98

Graduated display

Scale 

display

Limits display

Scale 

display

Probability display

Scale 

display

Probability display

Limits 

display

Limits display

Graduated 

display

Probability display

Graduated 

display
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subject agreement for Limits than for Scale approached, but did not reach, significance 

(p=0.060), as did the greater subject agreement for Probability than for Graduated (p=0.072). 

These findings are summarised below, with the lines indicating non-significant differences: 

 
Representation Limits  Probability  Scale   Graduated 
Agreement level 82.7%  81.1%   74.0%  73.0% 
 
 

Figure 6.8. Agreement levels for the four representation types, with non-

significant differences indicated by lines. 

 
These agreement levels do not account for the level of agreement that would be expected from 

chance alone. In light of this, Cohen’s kappa values were also calculated for each type of 

representation and for the aggregated data. The following table gives the kappa values for 

each of the five forms, together with the overall kappa value, for the four representations and 

for the cumulative responses.  

 

  Scale Graduated Limits Probability Cumulative 

Form 1 0.869 0.822 0.937 0.832 0.865 

Form 2 0.681 0.422 0.734 0.752 0.647 

Form 3 0.740 0.584 0.798 0.891 0.754 

Form 4 0.419 0.725 0.653 0.620 0.612 

Form 5 0.629 0.801 0.779 0.716 0.728 

Overall K 0.675 0.664 0.783 0.764 0.722 

 
Table 6.7. Cohen’s kappa values, by form, for each of the four 

representation types and aggregated values. 

 
The data was also organised by experience and by gender and an attribute agreement analysis 

was performed on each. The following tables summarise the kappa values from these 

analyses: 
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Cohen’s kappa values by experience level: 
 

  Experience 1 Experience 2 Experience 3 

Form 1 0.888 0.876 0.770 

Form 2 0.613 0.683 0.658 

Form 3 0.706 0.787 0.821 

Form 4 0.589 0.720 0.407 

Form 5 0.696 0.814 0.621 

Overall K 0.698 0.776 0.658 

 
Table 6.8. Cohen’s kappa values, by form, for each of the three 

experience levels and aggregated values. 

 
Cohen’s kappa values by gender: 
 

  Female Male 

Form 1 0.803 0.892 

Form 2 0.657 0.641 

Form 3 0.790 0.738 

Form 4 0.624 0.606 

Form 5 0.707 0.736 

Overall K 0.719 0.723 

 

Table 6.9. Cohen’s kappa values, by form, for each gender 

and aggregated values. 

 
It can be seen that the kappa values are extremely similar for both genders but appear to be 

more variable across the three experience levels. 
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6.2.3  Survey of participants’ preferred representation type 
 

The boxplot below shows the distribution of rankings against the treatment variables of 

representation, experience and gender: 
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Figure 6.9. Boxplot showing distribution of subjective preference rankings for 

the four types of representation by experience level and gender. 

 
From the boxplot it is clear that the Limits representation tended to receive higher rankings 

than the other three representation types, with participants of all experience levels and both 

genders responding similarly. The Scale representation tended to be the least preferred, again 

irrespective of experience level and gender. It appears that the Probability representation is the 

second most preferred, although the rankings it receives are quite variable. Similarly, the 

rankings assigned to the Graduated representation are quite variable, although this seems to be 

the third most preferred overall. 

 
The following matrix plot reveals little interaction between the three treatment variables of 

representation, experience and gender, since the lines are approximately parallel: 
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Figure 6.10. Matrix plot indicating any pairwise interactions between the three 

treatment variables. 

 

In light of the apparent lack of interaction between the variables, the data were aggregated and 

the following boxplot summarises the overall preference rankings assigned to the four 

representations: 
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Figure 6.11. Boxplot showing the preference rankings assigned to the four 

types of representation, aggregated across experience levels and gender. 
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Since the ranked values are dependent, ordinal data and are not normally distributed, an 

analysis of variance is not appropriate for this data. A nonparametric Kruskal-Wallis test was 

therefore performed on the rankings, to investigate whether any of the representations were 

preferred over the others. This confirmed that there were significant differences in the 

rankings assigned to the four representations (DF = 3, H = 49.4, p<0.001, adjusted for ties). 

Wilcoxon signed rank tests between each pair of representations confirmed that Limits was 

significantly preferred to all other forms of uncertainty representation and also revealed a 

significant preference for Probability over Scale. Subjects’ preference for Probability over 

Graduated did not quite reach significance at the 5% level: 

 

                     Wilcoxon  Estimated 95% confidence interval 
              n     Statistic         P   Median Lower   Upper 

 
lim-prob     100     3309.0   0.007   0.5000 0.00    1.00 
lim-grad     100     3899.0   <0.001       1.000 0.50  1.50 
lim-scale    100     4088.0   <0.001       1.000 0.50  1.50 
prob-grad    100     3085.0   0.054         0.5000 0.00   1.00 
prob-scale   100    3343.0   0.005         0.5000 0.00    1.00 
grad-scale   100    2623.0   0.737        0.0000 0.00    0.50 
 

Table 6.10. Results of Wilcoxon signed rank tests, including 

estimated median differences between each pair of representations 

and associated p-values. 

 

These findings are summarized in the following figure, with the representations ordered by 

preference and the lines indicating non-significant differences: 

 
  Most preferred           Least preferred 

 Limits Probability Graduated Scale 

 
 

Figure 6.12. The four representation types ordered by preference, with non-

significant differences indicated by lines. 

 
6.3   Discussion 

 
6.3.1 Dynamic testing of positional uncertainty  

 
The interactions of experience*gender, experience*representation and representation*order 

were found to be significant at the 5% level. However, the experience*gender (p=0.042) and 

experience*representation (p=0.036) interactions may be chance results, partly due to the 

REML analysis under-estimating p-values. Study of the interactions plot shows that the 
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interactions appear to be due to subjects of experience level 3 responding in a different 

manner to subjects of the other experience levels, interacting with both gender and 

representation. It could therefore be that these are chance interactions due to the small 

numbers, especially females, in the highly experienced group. Nonetheless, there is some 

evidence that subjects of differing experience levels may be responding to the four 

representations in different ways. Further research is required to confirm the presence of such 

an interaction.  

 
The representation*order (p=0.013) interaction is less likely to be a chance result and suggests 

that the effect of representation on response differed according to the order in which the 

representations were viewed. Responses to the Limits representation varied significantly with 

order, subjects choosing to turn away from the restricted zone soonest when the representation 

was viewed fourth in the sequence of animations. There was no significant order effect for 

any of the other three representation types when considered individually. It could be 

considered that the prior animations set some context to the task, or provide an opportunity for 

learning, and the interaction indicates that this context has differential effects on the four 

representation types. This is an interesting possibility and study of the effects of context on 

spatial decision-making is an area requiring further research. 

 
There was no main effect of either gender or experience on slide number, indicating that 

subjects responded in similar fashions irrespective of these two variables. However, there was 

a significant effect of order on subjects’ responses (p=0.014). Other than the demonstration 

animation, to which subjects were not asked to respond, no prior training had been given to 

the subjects before they viewed the four animations. It is therefore not surprising to see an 

effect of order, as this may be a consequence of subject learning throughout the task. 

However, the order effect is not systematic. Subjects responding soonest to order 3, followed 

by 1, then 2 and finally order 4. This effect may also be a result of prior animations setting a 

context to the task and may be confounded with the representation*order interaction. It is 

difficult to provide a full explanation without further information. 

 
There was extremely strong evidence that the type of positional uncertainty representation 

affects people’s judgments as to when to turn away from the restricted zone (p<0.001).  The 

predicted mean log(slide number) for the Limits representation was 3.174, corresponding to a 

slide number of 24, which was significantly lower than that for all other representations. The 

fact that subjects tended to turn away soonest when the uncertainty was represented using 
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Limits may be due to the physical nature of the boundary depiction in this case. The predicted 

mean slide number at which subjects turned away was at the point where they could be 

considered to be ‘crossing a line’ (see figure below); something which subjects appeared to be 

reluctant to do. The other three representations had no physical line drawn at this boundary 

limit and subjects were more willing to advance further towards Zone B in these cases. 

 

 

Slide 24

Legend:

B

A

Possible boat 
position, within a 
circle that contains 
the true boat 
position 99% of the 
time.

Possible boundary 
position between 
Zones A and B,
within two outer 
lines that contain 
the true boundary  
position 99% of the 
time.

300 50m10 20 40

 
 

Figure 6.13. Predicted mean slide for Limits representation. 

 
One subject remarked that he had not wanted to cross the line when the uncertainty was 

represented in this manner, although he was happy to advance further toward Zone B when 

the boundary was ‘fuzzy’, as it was in the other forms of representation. Interestingly, subjects 

tended to advance farthest towards Zone B when the uncertainty was represented using 

Probability. For this representation, the predicted mean log(slide number) was 3.388, 

corresponding to a slide number of 30. This form of representation attempts to interpret the 

uncertainty information for the decision-maker and it could be argued that this would be the 

easiest to understand in terms of responsibility and potential consequences. However, subjects 

advanced furthest in this case. It may be that they do not fully comprehend how the other 

forms of representation correspond to the probability of being in Zone B and are therefore 

responding differently, particularly to the Limits representation of uncertainty.  
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It can be concluded that the form by which uncertainty information is portrayed can have an 

effect on the decisions being made. The fact that subjects tended to exhibit reluctance to cross 

a bounday line, albeit an uncertain limit, may be used by agencies attempting to enforce 

restricted zones. The use of ‘fuzzy’ representations of uncertain boundaries does not appear to 

act as such a strong deterrent, with subjects advancing further towards the restricted zone in 

these cases. This preliminary finding suggests that further research into the ways in which 

decision makers interact with different uncertainty representations is required. 

 
6.3.2 Static multiple-choice tests  

 
Participants’ responses to the static representations of positional uncertainty were generally in 

agreement with the expected responses. Overall, 77.7% of responses were in agreement, 

indicating that, on the whole, subjects were able to understand the information portrayed in 

the positional uncertainty displays. Cohen’s kappa statistic for the overall proportion of 

agreement, above that expected by chance alone, is 0.722. However, the kappa statistics for 

the cumulative data show that some forms were easier to understand than others. Agreement 

was extremely strong for Form 1 (K = 0.865), followed by Form 3 (K = 0.754) and Form 5 (K 

= 0.728). These values indicate that subjects’ responses tended to be as expected when the 

boat was definitely in one of the two zones or had equal chance of being in either zone. 

However, the kappa values were lower for Form 2 (K = 0.647) and Form 4 (K = 0.612), 

indicating that subjects were not reliably responding as expected when the boat was probably 

in one  of the two zones.  

 
This might be due to a problem with the imprecision of language concerning probability 

rather than subjects misinterpreting the information conveyed by the displays. Karelitz and 

Budescu (2004) report on the potential for miscommunication when uncertain events are 

described using verbal probability terms and this may have been a factor in these findings. An 

example of a Form 2 question is shown in figure 6.14 for the Scale representation. The 

expected response for this question was Probably in Zone A. The most common response that 

did not agree with this was response 3, Equal chance of being in either Zone. This response 

could be considered reasonable, dependent on how rigidly we apply the term ‘equal chance’. 

The boat was fairly close to the most likely boundary position in the Form 2 displays. It may 

be that participants considered the boat to be close enough to the expected boundary position 

that they believe the equal chance response to be the most appropriate. 
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Question 2.4

Legend:

B

A

Boat position. 
Positional accuracy 
of +/- 10m (99% 
confidence limit).

Boundary position 
between Zones A 
and B. 
Positional accuracy 
of +/- 20m (99% 
confidence limit).

300 50m10 20 40

 
 

Figure 6.14. Example of a Form 2 question for Scale representation. 

 

Similarly, the expected response for Form 4 was Probably in Zone B. The most common 

‘incorrect’ response for this form was response 5, Definitely in Zone B. Inspection of the Scale 

representation for Form 4, shown below, reveals why this might be a reasonable answer. The 

boat is  approximately 25 metres from the most likely boundary position, with a total 

positional uncertainty of both boat and boundary of up to 30m. Dependent on our 

understanding of the term ‘definitely’, the boat could be considered to be certainly in Zone B. 

Question 2.7

Legend:

B

A

Boat position. 
Positional accuracy 
of +/- 10m (99% 
confidence limit).

Boundary position 
between Zones A 
and B. 
Positional accuracy 
of +/- 20m (99% 
confidence limit).

300 50m10 20 40

 
 

Figure 6.15. Example of a Form 4 question for Scale representation. 
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Examination of the Cohen’s kappa values by representation reveals that, not only are some 

question forms easier to understand than others, but so are some representation types. 

Subjects’ responses were in stronger agreement with the expected responses when the Limits 

representation (K = 0.783) or Probability representation (K = 0.764) were used. The level of 

agreement was less when the representations of Scale (K = 0.675) or Graduated (K = 0.644) 

were used to depict the positional uncertainty. The results of a modified McNemar’s test to 

determine the significance of these differences in agreement levels indicated that only the 

difference between the Limits representation and the Graduated representation was significant 

at the 5% level. However, the difference between the Limits and Scale representations and 

between the Probability and Graduated representations also approached significance (p=0.060 

and p=0.072 respectively). It may be that the modification to the McNemar’s test to account 

for the dependence in the data may have reduced the sensitivity of the test. 

 

The different types of representation appeared to differ in their reliability of depicting 

uncertain information according to the form of the question. Subjects’ responses were in least 

agreement with the expected responses for Form 4 when the Limits, Scale and Probability 

representations were used. As discussed above, this may be partly due to the vagueness 

surrounding probabilistic language. However, subjects’ responses were in least agreement 

with Form 2, followed by Form 3, when the Graduated representation was used. In fact, closer 

inspection of the results tabulated by representation type reveals that the responses to the 

Graduated representation were quite disparate compared to those of the other three types of 

representation. The Graduated representation appears to be the most confusing to subjects. In 

support of this, it is also notable that in five of the six occurences that the subject responded 

that they did not understand the diagram, the Graduated representation was being used to 

depict the information (p=0.005). It should be noted that there was a mistake in the Graduated 

display, with the shading not extending into the region considered to be definitely in Zone B. 

It may be that this mistake caused some confusion, although only one participant questioned 

this display.  

 

An attribute agreement analysis was also performed on the data when it was tabulated by 

subjects’ experience level. The Cohen’s kappa values indicate differences in the levels of 

agreement, according to subject experience. The responses of experience level 2 subjects were 

generally in better agreement with the expected responses than those of the other two 

experience levels. This would be expected when comparing experience level 2 (k = 0.776) 
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with the novice subjects of experience level 1 (k = 0.698). However, it was also evident when 

comparing level 2 with the more experienced level 3 subjects (k = 0.658). These most 

experienced subjects had particularly low agreement with the expected responses for 

questions of form 4 (k = 0.407). As previously argued, this may be attributable to the 

imprecision of language concerning probability. It could also be that subjects with the greatest 

experience with GIS have incorporated uncertainty into their subjective definitions of terms 

like ‘probably’ and ‘definitely’. This is an area that requires further research before any 

definite conclusions can be drawn. 

 

A possible effect of gender on the agreement between subjects’ responses and the expected 

responses was also investigated. However, it was found that both genders exhibited extremely 

similar levels of agreement. Cohen’s kappa value for female subjects was 0.719 and that for 

male subjects was 0.723. As observed in the responses to the animations, females and males 

reacted in similar fashions to the static representations of positional uncertainty. 

 

6.3.3  Survey of participants’ preferred representation type 

 

There was strong evidence that subjects preferred some representations over others, 

irrespective of their experience level or gender. The Limits representation was ranked 

significantly higher than its nearest contender, Probability. The Probability representation was 

not significantly preferred to the Graduated representation, although it was ranked 

significantly higher than the least-preferred Scale representation. The preferences assigned to 

the Probability and Graduated representations were more variable than those assigned to 

Limits and Scale. 

 

It is interesting to note that the least preferred representation, Scale, is the one that offers no 

attempt to either visualise the uncertainty information or to interpret it. This form of 

representation is effectively the provision of metadata concerning positional uncertainty and is 

typical of current practice. The strong preferences displayed for other forms of uncertainty 

representation reflect the need for an improved method of handling uncertainty in GIS. One 

subject reported that he liked both the Limits and the Probability displays and would be 

interested to see both offered to the decision-maker. Such a display would provide both a 

visualisation of the uncertainty information and an attempt to interpret it. However, it would 
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be interesting to see how subjects would respond to an integrated approach, seeing as the 

responses to these two forms of representation were the most disparate. 

 

It is also noteworthy that this order of subjective preferences is very similar to the ordering 

obtained using agreement between subjects’ response and the expected response. Subjects 

prefer the Limits representation and are also in greatest agreement with the expected response 

when the Limits representation is used. The Probability representation is second best on both 

scales; whilst there is little difference between subjective preferences for Scale and Graduated, 

despite the lowest agreement evident when the Graduated rerpesentation is used. 

 

6.4   Conclusion 

 

The results of this study provide evidence that the form of representation of positional 

uncertainty can have significant effects on the decisions being made. The observed differences 

in subjects’ responses to the dynamic displays were strongest between the representations of 

Limits and Probability, despite there being no significant differences in subjects’ apparent 

ability to comprehend the information provided by these two representations. Users also 

report strong subjective preferences for certain representations of positional uncertainty over 

others, which generally corresponded to the level of agreement noted between subjects’ 

responses and expected responses. 

 
 



128 

7. 

Conclusions and Recommendations 

 

This thesis has assumed the premise that all spatial datasets are representations of a reality 

and, as such, will contain inherent errors. In accordance with the established classification of 

data errors into those of collection, processing and usage, the potential sources of such errors 

have been discussed. Recently, standards such as the SDTS have been introduced for 

reporting metadata of spatial datasets along the quality dimensions of positional, thematic and 

temporal accuracy, completeness and logical consistency. However, it is argued that these do 

not adequately convey the level of uncertainty associated with a dataset to many potential 

users.  

 

Academics have argued for visualization as a means of communicating the uncertainty 

associated with spatial information, contending that it particularly lends itself to the portrayal 

of the spatial variability of uncertainty. The NCGIA research initiative, principally concerned 

with the use of visualisation methods to display the level of uncertainty associated with a 

dataset, aimed to prioritise a research agenda into the associated issues. In addition, of equal 

importance to the decision-maker is the representation of uncertainty in the final product of a 

GIS. The research arising from the NCGIA initiative has primarily focused on quantifying the 

level of uncertainty in GIS output and in developing visualisation methods to represent this 

uncertainty. However, there has been little research that has empirically tested the 

effectiveness of these visualisation methods and, more recently, this has been identified as a 

major research challenge. 

 

Most of the cognitive testing of uncertainty representations to date has considered whether or 

not the inclusion of uncertainty information interferes with the user’s ability to comprehend 

the underlying thematic information. Although researchers have concluded that several 

visualisation methods can be integrated with thematic displays without interference, these 

have tended to use a binary classification of uncertainty level which is rather simplistic in 

nature. These studies have also required little interpretation of the uncertainty information.  It 

may be that users can read uncertainty displays but we must also ask what they are to make of 

this information and, most pertinently, how it is to affect their decision-making.  
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If researchers are claiming that it is essential that the level of uncertainty associated with a 

GIS product be communicated to the decision-maker, it follows that we must investigate how 

decision-makers might use this information. A recent survey of GIS users indicated that the 

majority of uncertainty visualisation methods are considered to be of no use whatsoever. This 

finding calls into question the assumption that the inclusion of uncertainty information will 

lead to improved, fully informed decisions. Instead, it invites us to ask exactly what it is that 

we are expecting decision-makers to do with uncertainty information when it is included in a 

GIS output. 

 

Studies from the psychological literature indicate that most people display ambiguity aversion 

and tend to under-value options that are classified as uncertain. This is a powerful bias that 

often remains even when the apparent irrationality of such behaviour is overtly pointed out to 

the decision-maker. It could be argued that such conservatism is acceptable and should be 

incorporated into our definition of a rational decision, just as expected utility has been used to 

replace expected value. However, if this is the case, we still need to be aware of this bias in 

the options that decision-makers may select. By explicitly including a representation of the 

uncertainty associated with a spatial information, it would be expected that the tendency 

towards ambiguity aversion will be exacerbated and those classifications that are labelled as 

uncertain will be under-valued by decision-makers. 

 

This hypothesis was tested within the first of two experiments designed as part of the current 

research. The case study investigated the effects of introducing thematic uncertainty 

information on decision-making. Participants were asked to judge which of two land parcels 

they would choose as the potential site of a new airport, given a land suitability classification 

and the level of uncertainty associated with this classification for each parcel. They were also 

asked to rank six land parcels that differed in both land suitability and the associated level of 

uncertainty. The results showed an extremely significant tendency for participants to select the 

land for which the classification was of high certainty. This finding is consistent with the 

concept of ambiguity aversion and confirms that many people under-value options that are 

labelled as low certainty in spatial data.  

 

Although a tendency to display ambiguity aversion could be considered rational in terms of 

conservatism, one of the results obtained in the airport siting experiment can only be deemed 

to report irrational behaviour. In selecting between land parcels of the lowest suitability, 
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which differed only in terms of the uncertainty level associated with this classification, over 

45 percent of those participants exhibiting a preference selected the high certainty zone. In 

this comparison, the low certainty zone must be the rational choice since no parcel could be 

worse than land that is definitely of the lowest land suitability. However, the reluctance to 

select the low certainty zone exhibited by nearly one half of participants demonstrates that 

many people may not respond rationally to uncertainty information. The widely held 

assumption that the inclusion of such information will lead to better decision-making may be 

fundamentally flawed. 

 

The second experiment implemented within the current research considered positional 

uncertainty and had the aim of assessing whether or not participants respond in a consistent 

manner to different representations of the same uncertainty information. The study was 

designed within the context of GPS-guided navigation, with decision-makers deciding at 

which point they would turn away as a boat approached a restricted zone. The positional 

uncertainties of both the boat and boundary positions were represented in different ways, 

including (i) Graduated: graduated shading of a transition zone, (ii) Limits: portrayal of the 

outer-most boundaries of the 99% positional confidence interval, (iii) Probability: a 

probability statement concerning positional uncertainty and (iv) Scale: a metadata statement 

concerning positional uncertainty. 

 

The results indicated that there were significant differences in participants’ responses to the 

representations, although the same information was being portrayed in the four displays. 

Participants tended to turn away significantly sooner when the Limits representation was used 

to display the positional uncertainty than when any of the other three representations were 

used. This tendency was evident across the three experience levels and both genders. It is 

noteworthy that the median response time to the Limits representation corresponded to the 

position at which the boat first crossed the outer boundary line. It appears that participants 

exhibited a reluctance to cross a physically displayed line; this reluctance was less evident 

when the boundary demarcation was fuzzy.  

 

It could be argued that the differences in subjects’ responses to the various representation 

methods are a consequence of a lack of understanding of some of the display methods. 

However, an assessment of the agreement between participants’ responses and the expected 

responses indicated that agreement was relatively strong for all four display methods, 
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indicating that participants generally understood the information that was being presented. 

The only significant difference was the greater level of agreement for the Limits 

representation than the Graduated representation, which may be attributable to the confusion 

caused by the mistaken colouring of the 100% zone in the Graduated representation. 

Participants were also asked to rank their preferences for the four representation methods. The 

results indicated a strong overall preference for the Limits representation and a significant 

preference for the Probability representation over the other least preferred Scale display. This 

preference pattern corresponded to the trend in the kappa results assessing comprehension of 

the displays, suggesting that participants tended to most easily understand those 

representations for which they also showed the greatest preference.  

 

The results from both the experiment testing the effects of introducing thematic uncertainty 

information and the experiment investigating different representations of positional 

uncertainty information were extremely significant. They suggest that great care must be 

taken in incorporating the level of uncertainty associated with spatial information. Decision-

makers do not necessarily respond in a rational manner to the inclusion of uncertainty 

information and can make significantly different decisions dependent upon the form by which 

the information is portrayed. Academics may be guilty of having made too great an 

assumption in claiming that the visualisation of uncertainty will lead to better decision-

making. 

 

However, these are preliminary results from two experiments. The decision-making tasks 

were highly specific and the findings need to be verified through additional cognitive testing 

of many different tasks if the results are to be generalised to decision-making with spatial 

information as a whole. A decision-making context was provided for both experiments but it 

is not clear whether this was sufficient to immerse participants in the tasks. The effects noted 

may be relatively bottom-up perception effects rather than being characteristic of considered 

decision-making. In addition, the participants in these experiments were students. Cognitive 

testing of GIS users in their workplace needs to be conducted, to investigate whether or not 

the same findings are typical of experienced decision-makers. 

 

Nonetheless, these results raise some important questions that are worthy of further research. 

The inclusion of thematic uncertainty information resulted in participants under-valuing land 

that was labelled as low certainty and sometimes making irrational decisions. Can thematic 



132 

uncertainty information be provided in a manner that does not lead to this bias? Perhaps a bar 

chart or histogram showing the probability of a zone belonging to each class would be more 

useful to decision-makers than a binary representation of uncertainty. Alternatively, an 

animation in which the zone’s classification changes over time, according to this probability 

could replace the bar chart. Such representations require testing to see whether they are 

effective in reducing the bias against uncertainty. 

 

These displays also require testing as to whether or not they remain comprehensible. It may be 

that more complicated representations of uncertainty information are required if the decision-

maker is to be truly informed. However, it is probable that such displays will become 

confusing if incorporated into thematic maps and it may be that they will need to remain 

separate from the underlying information. If this is the case, the question remains as to how 

the user is to be alerted to the issue of uncertainty in GIS output. Perhaps this issue can be 

solved through a greater emphasis on educating spatial data users in the concept of uncertainty 

and including message boxes or similar means in GIS interfaces to attract users’ attention to 

uncertainty information. 

 

The effects on decision-making of including types of uncertainty information other than 

thematic also need to be investigated. In this study, the manner in which positional uncertainty 

information was displayed had significant effects on the decisions being made. Further testing 

is required to see if the physical depiction of a boundary line consistently has effects that 

differ to more fuzzy representations of boundaries. If this is the case, the appropriateness of 

the different styles for particular applications is an area in need of research. The possible 

effects of wording and context on spatial decision-making also warrant further investigation.  

 

A strong preference was stated in this study for the representation of uncertainty information 

using the visualisation method Limits or the interpretative method Probability. The least 

preferred representation was the Scale method, which was most similar to the metadata 

reports in current use. This suggests that visualisation and interpretative representations are of 

greater potential use in communicating uncertainty information than metadata statements. It 

may be possible to combine both visualisation and interpretative methods into a single, 

optimum representation, although further research is required to investigate this possibility. 
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In conclusion, the research conducted within this thesis has indicated that the inclusion of 

uncertainty information in spatial data may affect decision-making in ways that have not 

generally been given a great deal of consideration by academics. Participants exhibited a 

strong tendency towards ambiguity aversion when thematic uncertainty was explicitly 

represented in a GIS output. This tendency to select a high certainty region over a low 

certainty one was so powerful that many participants made decisions that can only be 

described as irrational. This finding is contrary to the assumption that the inclusion of 

uncertainty information in spatial data will lead to better decision-making.  

 

In addition, the study concerning different representations of positional uncertainty indicated 

that decision-makers may behave differently to the same information, according to the nature 

of its representation. This finding raises questions as to how uncertainty may be most 

appropriately represented for the application at hand. Participants also exhibited strong 

preferences for certain styles of representation over others. The least preferred style was most 

similar to the metadata statements currently used to communicate uncertainty. Subjective 

preferences for the more visual and interpretative representation methods indicate that further 

research is required to identify the most effective means of communicating the uncertainty 

associated with GIS output in a manner that is truly informative to decision-makers. 
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