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Abstract

This thesis describes a theoretical and experimental investigation of
electromagnetic methods for the detection and measurement of metal fatigue cracks.
The available methods are reviewed, with particular attention being paid to
mathematical models, and a new model of the electromagnetic field near a metal
fatigue crack for small skin-depths is presented which uses a surface impedance
boundary condition with the addition of a line source to represent the crack. This
leads to a coupled system of two magnetic scalar potentials, one on the crack face
which obeys the two-dimensional Laplace equation and one outside the test-piece
which obeys the three-dimensional Laplace equation. The behaviour of the field is
governed by a parameter m = l/(}1,0), where [ is the size of the field perturbation, |,
is the relative permeability and 8 is the skin-depth. When m is small, almost all the
flux is concentrated inside the metal and the exterior potential also obeys the
two-dimensional Laplace equation, on the test-piece surface. When m 1s large, the
perturbation part of the exterior field has a negligible effect on the field inside the
crack so that the crack-face potential may be found by the Born approximation. The
general m problem is solved for rectangular and semi-elliptical cracks in flat plates,
interrogated by uniform fields, and the solution is verified experimentally. A method
for calculating the crack depth from the magnetic field is given, with descriptions
of industrial applications. The theory is further developed to find the impedance
change in an air-cored circular coil caused by a crack, to find the field near -
overlapping cracks and to find the field near a crack in an interior corner. Finally, a
semi-empirical analysis is presented for a ferrite-cored measuring coil.
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1 Introduction - . - .. ) e

When a metal object is subjectto a cyclic load it is possible for a crack to grow

-and eventually cause fracture even if the stress in the uncracked region is well below
the yield point. This process, known as metalfatigue, is one of the commonestreasons
for the failure of engineering components and structures and can be the cause of
much loss of life, expense and environmental damage. Fatigue is a ubiquitous
-problem but it is of particular importance in the oil; gas, aerospace, nuclear and
electricity industries. When fatigue is expected, it is often the practice to replace the
vulnerable parts at regular intervals, but adequate protection can then only be
achieved if many sound components are discarded as well as the flawed ones.
.Moreover, this approach may be unpractical if fatigue is expected in a major
structural member. Consequently, much effort is devoted to testing components and
structures to see if they have suffered fatigue damage and need to be replaced or
repaired. This process is called non-destructive testing (NDT). Inspection may be
formally defined as non-destructive if the performance of the test-piece is not
permanently degraded by the test procedure itself. It may, in addition, be desirable
for inspection to be non-destructive in the broader sense of allowing normal
operations to continue. The component may even remain in service while it is tested;
a form of inspection called condition monitoring. In order to assess the danger
presented by a crack, it is necessary to know its size and location and to predict how
“quickly it will grow under service conditions. Quantitative NDT, with a criterion to
determine if a component is fit for its purpose, is termed non-destructive evaluation
There are several ways of inspecting for fatigue cracks, some of the best known

of which are the visual, ultrasonic, radiographic and dye-penetrant methods.
However, this thesis 1s concemed only with electromagnetic NDT methods, which
offer a potential for quantitative work that has not, as yet, been fully exploited. The
“first chapter is a review of electromagnetic NDT methods currently in use, with the
emphasis on mathematical modelling techniques. A distinction is drawn between
purely. magnetic methods that rely on the crack:being a break:in the magnetic
permeability of the metal, and eddy-current and potential difference methods that

|12
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The remainder of the thesis describes a new model of eddy-current and potential

difference NDT, based on the surface impedance boundary condition, and valid
gcale of the problem

when the skin-depth is small compared with the length ef-theeracleand interrogatmg
field: Detailed calculations of the field inside the metal are avoided by making use

of the fact that the exponential decay profile is unaffected by the presence of the
crack except at points immediately adjacent to the crack. It is shown in chapter three
how one may allow for the presence of a surface-breaking crack by adding a
line-source term to the boundary condition. The field in the exterior space and the
field on the faces of the crack are described by twomagnetic scalar potentials coupled
together by the boundary conditions. The behaviour of the fields is shown to be
governed by adimensionless parameter m which depends on the operating frequency,
the electromagnetic properties of the metal and the length-scale of the problemunder
consideration. This parameter is a measure of the ratio of the magnetic flux in the
exterior space in the region of the flaw to the magnetic flux inside the metal in the
region of the flaw. | S

Thelimiting cases of small and large m are shownto correspond to two existing
theories. When m 1s small, the magnetic flux is concentrated into a thin layer just
inside the metal and the potential obeys the two-dimensional Laplace equation both
~outside the crack and inside it, with continuity of potential and normal derivative on
the crack mouth. This behaviour corresponds to the "unfolding" model previously
- developed at UCL. In contrast, when m1s large, the perturbation of the exterior field
has no effect on the field inside the crack, which may therefore be found using the
Born approximation, as assumed by Auld and his co-workers at Stanford University.
- Explicit calculations for general m are presented for rectangular and semi-elliptical
_cracks in flat plates under interrogation by a uniform field. The predicted change in
the fields has been confirmed experimentally by measuring the field near a
rectangular notch over a range of frequencies. oY

Some practical applications of the model are given, including examples of
fatigue crack length and depth measurements. The new model is used to calculate
‘the impedance change for an air-cored eddy-current coil inspecting a fatigue crack
of uniform depth. It is explained briefly how the theory can also be used to find the
field when the flaw is a pair of overlapping cracks and when the crack is situated in
an interior corner. Finally, the response of a ferrite-cored probe is discussed using

a semi-empirical approach.
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2 Review of Methods of Electromagnetlc NDT -
- 2.1 General Principles " |

All metals are good electrical conductors in three scnsesfélc\}anp to NDT.
Firstly, their charge relaxation times [1] are much smaller than the periods of the
signals that are used. Any charges existing in the bulk of the mctal decay to zero

" instantaneously and the internal charge density may therefore be ne glected in any
calculations. Secondly, conduction currents in metals always dominate
~ displacement currents so that the latter may also be neglected. Thirdly, the
conductivity of a metal is much larger than that of air or any other likely
surrounding medium. Even sea-water typically has a conductivity about amillion
times smaller than, for example, carbon steel [2]. An interesting exception to the
third rule occurs in some nuclear reactors where a liquid metal coolant surrounds
the components to be inspected. Iron and steel are, of course, the most important
~industrial metals of all and many of the components that require inspection for
fatigue are ferromagnetic, having relative permeabilities as high as 10°, A fatigue
crack, therefore, not only constitutes a very large break in conductivity but
- . sometimes also a large break in permeability. Electromagnetic NDT for fatigue
crack damage may attempt to detect either of these features. For example, if an
- electric current is established in the metal, it will be diverted by the crack and the
consequentchangesin the electromagnetic field may be measured with contacting
electrodes or a suitable magnetometer. If a magnetic field is established in a
ferromagnetic metal, there may also be a detectable leakage of flux from the crack
which can be shown up with magnetic ink or measured with a magnetometer.

Mathematical modellin g of the signal obtained from a crack of a particular
size and shape isreferred to as solving the forward problem. However, the ultimate
aim of theory 1s to reveal as much information as possible about the crack’s size,

shape and position from the signals, which is referred to as solving the inverse
problem.

The discipline of fracture mechamcs is concerned with the prediction of
crack growth and remaining service life by analysmg the stresses in the
neighbourhood of a crack [3]. Information obtained from NDT is used in fracture
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mechanics assessments of cracks. The crack depth is an especially important
quantity to know because it is needed to determine the stress field and also to
determine how much uncracked material remains. |

Time-varying electromagnetic fields inside metals exhibit the classical
skin-effect [1]. As the frequency 1s increased, the fields are confined to a thin
- layer near the surface of the metal. For a uniform field in an infinite half-space
the profile in the thin layer is an exponential decay

E=E,exp[(i+1)z/9], (2.1.1)

where z is the coordinate normal to the metal surface. The decay length O is
referred to as the skin-depth and 1s given by

5= i-ga (2.1.2)

where @is the (angular) frequency, pt is the permeability and o is the conductivity.
For example, the skin-depth in aluminium [4] is 0.84mm at 10kHz. At the same
frequency in another non-magnetic metal, which had a lower conductivity than
aluminium, it would be a little higher and in a magnetic metal it might be
substantially lower. In mild steel, for example, the skin-depth is about 0.1mm at
10kHz. For more complex shapes of test-piece, the formula 2.1.1 is a reasonable
approximation if the depth of metal is much greater than 6 and the surface is flat
on a length scale comparable with 0.
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Fig. 2.1 Current flow near a fatigue crack at various frequencies,
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When the test-piece is cracked, the fields are changed significantly from the
‘usual exponential decay pattern, as shown in fig.2.1. If the crack is very small
and the frequencies are kept low, the skin-depth may be much larger than the
crack depth, this is referred to as the thick-skin case. A surface-breaking fatigue
crack then perturbs only a small part of the field. At higher frequencies the
- skin-depth may be much smaller than the crack depth: the thin-skin case. Such
fields are particularly sensitive to surface breaking defects; they are, however,
insensitive to buried defects. Therefore, the best strategy for inspection is to use
more than one frequency. In some alloys the penneabilitytis very sensitive to the
chemical composition and it may be difficult to distinguish a dangerous flaw
from a harmless minor local variation. This problem can be overcome by applying
a large d.c. magnetic field which magnetically saturates the material [5]. The
metal then behaves like a non-magnetic material in response to the small

superimposed a.c. inspection signal. This technique can also be used to increase
the skin-depth in order to detect buried flaws.
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The skin-depth equation 2.1.1 can also be thought of as describing waves
propagating into the material at different speeds. Note that the speeds 6w can be
quite slow, for example 53 m s™ for aluminium at 10kHz. For a uniform plane
wave, as above, the electric field E and the magnetic field H are related by

E,=ZH, (2.1.3)
Ey =7 ’Hx, (2.1.4)
Z, ='%/a. _(f;tg.. : (2.1.5)

where x and y are the coordinates tangential to the surface and Z,is called the
characteristic impedance [6] of the metal.

So far it has been implied that the field is sinusoidal. Most commercial
equipment is of this type, but it is also possible to excite the test-piece with a
pulsed signal, which contains a spectrum of frequencies. The lower frequency
components of the pulse travel at slower speeds and penetrate to larger depths.

2.2 Available Electromagnetic NDT Techniques

Perhaps the most widely used electromagnetic NDT method is the eddy
current method, in which the probe is inductively coupled to the test-piece.
Pioneering experiments were undertaken as early as 1879 by Hughes [7] who
demonstrated a device which could distinguish between different metal samples
and suggested using it to detect counterfeit coins. The technique then developed
slowly until the introduction of electronic measurement circuits, such as that
described by Vigness, Dinger and Gunn in 1942 [8]. Their electronics relied, of
course, on vacuum tube technology. Development then became much more rapid
with extensive research conducted for example, by Forster et al. [9]. A thorough
description of eddy-current NDT methods was given in a book by Libby {10] in
1971, by which time techniques such as multi-frequency and pulsed excitation
had become well established.
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In the usual modern variant, shown in fig.2.2, a coil is passed over the test
piece and its complex impedance monitored using an a.c. bridge circuit. If a
current flows in the coil itinduces eddy-currents in the metal which are perturbed
by the presence of a flaw. The flux through the coil, the induced voltage across
- the coil and the measured impedance are also changed. Coils are manufactured
for specific applications, for example: they may be wound around the outside of
a tubular test-piece, or on a bobbin to go inside a tube, or in the form of a pencil
probe to inspeét surfaces in general. Ferrite cores may be used to increase the
flux coupling with the coil and the probes may also be shielded to concentrate
the field in the region immediately beneath the probe. Itis conventional to display
- the complex.impedance plane on a storage oscilloscope and to rely on the
operator’s skill to d'istpingqibshﬂ the signature of a flaw from spurious signals such
- as a change caused by a pencil probe being lifted off the surface. . | ...«
- Although the use of one coil has the prefriitﬂ of simplicity, . more complex
. arrangements can improve the sensitivity. For example, two_balanced coils,

.., wound in opposite senses, can be connected in series to make a differential coil

.. eddy current probe. Separate exciter and receiver coils can be used, each one
“optimized for its purpose. For this type of probe, the impedance measured is the

-
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mutual inductive reactance. One arrangement, referred to as an eddy current
reflection probe [11] employs a large exciter coil and a small differential pair of
receiver coils.

Eddy current probes are usually placed as close as possible to the region to
beinspected and itis generally true that the signals depend only weakly on objects
further away. This is a consequence of the fact that the fields are quasistatic rather
than radiative. Another way of looking at this is to say that the flaws and probes
are much too small to act as efficient antennae at the frequencies used. However,
the small signal detected by a receiver coil placed far from an exciter coil may
still contain useful information about the region between them. This remote field
eddy current technique was originally devised by Schmidt [12] to inspect oil-well
casings for corrosion and has also been applied to large diameter pipelines [13].
Low frequencies and d.c. magnetic saturation are used so that eddy currents
" generated on the inside of a piece of tubing penetrate to the outer surface as well.

In some circumstances it is possible to make electrical contact with the
test-piece and fatigue cracks can then be measured by potential difference crack
" sizing. An electric current is injected into the metal or induced in it and the
potential difference between two points on the surface is monitored. If a crack
cuts the surface in the region between the two contacts the p.d. is increased: the
deeper the crack the bigger the increase. Both direct current potential difference
(DCPD) and alternating current potential difference (ACPD) variants exist.

The idea of using DCPD measurements for crack detection and sizing arose
out of work by B M Thornton and W M Thomton [14] on the problem of section
thickness measurement, reported in 1938. Another early system was described
by Trost[15] six years later. When used on small laboratbry samples [16], DCPD
can detect incremental crack growth to within S0pum under favourable conditions
and often requires only simple electronics. Unfortunately, it is not well-suited for
large objects because the current that needs to be supplied to obtain a measurable
potential difference is very large. Even a sample of a few centimetres in size

- might require 50A. Thermal emf’s can cause errors in d.c. systems if precautions
- arenot taken to- maintain constant temperature [17] which is especially
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inconvenient for experiments investigating fatigue over a range of temperatures.

Another problem is that the d.c. itself can cause unwanted electrochemical
phenomena [18] in corrosion-fatigue experiments, = - - oo 0 e
Athigh frequencies, the skin-effect causes the effective resistance of a piece
«;-of metal to be much higher than its d.c. value. Therefore, the p.d. obtained from
.. a given current is also much higher. Moreover, thermal e.mf.’s' and
- - electrochemical problems are eliminated and it is possible to use frequency and
phase discrimination to improve the signal to noise ratio. A number of authors
+ [181,[19],[20] described ACPD systems designed to take advantage of some of
these ideas and by 1980 Dover et al. [21],[22],[23] had developed a successful
instrument that measured the ACPD with a filtered amplifier and synchronous
. rectifier, phase-locked to a current source. Recent versions of this device employ
a 2A current at 6kHz and have been used for large scale laboratory fatigue tests
and also to inspect off-shore structures, pressure vessels and a variety of other
industrial plant. The main problems arise from the fact that the potential
differences that are measured are still very small, perhaps 100V, Large common
mode interference signals are often encountered but phase discrimination helps
- to overcome this difficulty because the interference is usually out of phase with
the desired voltage. Unwanted signals can also be induced in the probe leads, this
problem being especially troublesome with non-magnetic® materials.
Nevertheless, measurements of crack depth can be found witha precrston of about
100pum. Potential difference methods have the advantage of not requtnng any
| measurement of the hetght of the probe above the surface and often need only
relattvely srrnple modellm g, as will be dlscussed in'section 2 4. |
One of the most 1rnportant industrial crack detectron techmques 1S magnetzc
| partzcle mspectton (MPI), which is a purel; fnag'nettc method and suttable only
for ferromagnettc metals [4], [24]). A large magnetlc ﬁeld approachm g saturatton
strength is applted to the test-ptece, Wthh is then sprayed w1th magnette ink.
Flux leakrng from a surface-breaktng crack t:reatest'a regten w1th a srtrdngfiocal
magnetlc rfield whtch polanses and attraetS the Ink parttcles cauStng thdem to
accumulate at the crack mouth so that it is revealed as a bri ght line. Reﬁnements

include the use of ink that fluoresces under ultra-violet li ght to improve contrast

-1.‘-"1



~~and the use of Hall probes to measure the applied field to make sure that it is
. strong enough. No information is obtained about crack depth by the usual MPI

test methods but a technique for estimating depth was proposed by Adhikari [25].

. He masked the crack with increasing thicknesses of cellulose adhesive tape until

no indication remained and took the final tape thickness as his estimate of depth.
No justification has been given for the underlying assumption that the leakage
field from the crack extends vertically into space to a distance of one crack depth

-<and the technique can also be criticised because the point where the crack

indication vanishes is subjective. However, Adhikari obtained some surprisingly

"+ good experimental results on shallow cracks.

.« Hall probe or fluxgate magnetometers can also be used to measure the ficld
- i near a flaw in a ferromagnetic metal. This technique is used, for example, in the
-+ - British Gas "pig", an inspection vehicle that travels along the inside of. gas
pipelines, driven by the pressure of gas [26]. Magnetic particle inspection would
be very difficult to apply to such a test-site, because of its inaccessibility.

An unusual magnetic flaw detection system was described by Owston [27]
in which an eddy-current coil and d.c. bias coil were used to find changes in
incremental permeability of a magnetised tube. Superficially, this resembles an
ordinary eddy-current test, but because the d.c. component does not exhibit the
skin-effect, deeply buried flaws can be detected.

- 2.3 Modelling of Eddy Current Syétems

Classical electromagnctlc fields are described, of course, by the famous set

of pamal dlffercnual equations which were presented byJ C Maxwell [28] in

1864, some years bcforc Hughes’ experiments on hlS "induction balance"

‘ cddy-current 1nst:rumcnt However, adequate expenmental testing of theoretical
Jpredlctlons of probe response only bccamc possible after the introduction of
A%clectromc measurement. A review of theoretical models of eddy-current NDT

was presentcd by Lord and Palanisamy [29] in 1981. Early papers gave solutions

for probe reSponscs to unflawed samples only. Lord and Palanisamy attributed
to Forster and Stambke [30] thc calculanon of the 1mpcdancc of a cylmdncal coil
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“concentrically wound around a cylindrical rod and to Waidelich and Renken [31]
the equivalent solution for a circular coil over a conductmg plane. These axially
symmetric problems were solved using analytic methods.
~ A model of flaw detection was produced by Burrows [32] in which the flaw
was approxlmatcd as a dipole. He restricted his analysis to low frequencies such
that the skm-depth was much greater than the flaw size. As explained above, this
1snot an appropriate mode in which to mspect for surface-breaking fatigue cracks.
'Burrows used the Lorentz reciprocity theorem [1] to show that, in two coil
systems, itis immaterial which coilis used as the exciter and which as the receiver.
- With'the advent of high-speed ‘digital computers, evaluation of more
* complex theories became feasible. Dodd and Deeds [33] ‘generalised the axially
‘symmetric solutions to cover the problem of a coil encircling a conductor with a
- concentric layer of a different conductor and also the problem of a coil over a
two-layer conducting plane. They included a term taken from Burrows’ theory
" to model the effect of a flaw. Kahn, Spal and Feldman [34] found solutions for
eddy currents near the lip and tip of a long fatigue crack and by joining these
‘solutions constructed an approximate theory valid for situations where the crack
depth was as small as four times the skin-depth. Spal and Kahn [35] produced
the first model of the eddy-currents near a fatigue crack which was valid for all
‘skin-depths. In this paper, they considered the case of a tight radial crack in a
circular cylinder and found solutions using eigenfunction expansions. In a'later
paper they used the boundary integral equation method (BIE) [36] to gcneralise
* their model to cylinders of arbitrary cross-section and opencd up thc prOSpect of
" BIE solutions for a much wider range of geometries.

- The BIE method can be most casﬂy understood from the cxamplc of its use
_-in solving Laplace’s equation D e enn 2N T T
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where the derivatives with respect to n denote Spanal derivativcs in the

direction normal to S. -
Substitution of 2.3.1 and 2.3.2 in 2.3.3, followed by integration over the delta

function, gives the boundary integral equation
y(x)= f( Fl e aw

“The BIE method is implemented -numerically by dividing the boundary into
elements and approximating the potential within each element by a parametric
~equation so that the field is characterized by a set of unknown parameters. When

/0. (2.3.4)

]

- the BIE, expression 2.3.4, is applied at all points on S, subject to the relevant

. boundary conditions, a matrix equation for these unknowns is obtained, which

~ isthen solved to find the boundary field. This methodis referred to as the boundary
element method (BEM). BIE methods can be applied to other problems, providing
that a suitable Green’s function is known. The BIE does not give the field at all
points inside the volume V but this is not needed to find the probe response in
NDT problems. |

In ultrasonics it is often the practice to employ the Born approximation of
wave scattering theory [37], which involves neglecting the back-scattered wave
when calculating the field on the flaw surface. Auld et al. applied this concept to
eddy-current modelling of thin-skin fields near surface breaking fatigue cracks
[38],[39]. They began by finding a series solution for a rectangular shape and
went on to model semi-elliptical cracks using a finite difference method. In this
work, the Lorentz reciprocity relationship was used toinfer the impedance change
~_ directly from the flaw field, without first calculating the flux coupling with the
receiver coil. Moulder et al. [40] verified these models experimentally for two
cylindrical air-cored probes (qliantitativély) and for a ferrite-cored I;robc
(qualitatively). This was the first time that the effect of the two-dimensional shape
of a crack on an eddy current system had been taken into account. The Lorentz
‘reciprocity relationship is an exact theorem which can be derived ri gorously from
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Maxwell’s equations and is therefore applicable to all electromagnetic fields
whether radiative or not. The Born approximation, however, is a wave scattering
- result that, at first sight, would not be expected to apply to quasistatic fields such
as those encountered in NDT. Inchapter 3 itis explained how a general thin-skin
model can provide a criterion to determine when the Born approximation is
applicable. Auld’s model is simplest to evaluate when the eddy-current probe
gives a uniform field in the unflawed region. Moulderet al. [41] constructed such
- a device and were able to invert to find the depth of both electric-discharge
machined (EDM) notches and fatigue cracks in titanium alloys.
Palanisamy and Lord [42] first applied the finite element method (FEM) to
eddy current NDT analysis, solving a problem similar to one treated analytically
by Dodd and Deeds. Essentially, FEM is a numerical technique based on the
calculus of variations. The region of interest is divided into cells and the fields
or potentials are approximated with simple parametric equations within each cell.
The governing partial differential equations are then solved by minimizing some
- suitable functional, such as the energy, with respect to the parameters. Although
requiring intensive computation, FEM has the advantage of being able to deal
;with ferrite-cored probes and, in principle, with inhomogeneous and anisotropic
- materials. Atherton et al. [43] and Lord {44] et al. have used FEM to model the
remote field, effect, confirming that it can be understood as a quasistatic
phenomenon rather than a radiative one. French and Bond [45] have calculated
the eddy currents near slots 0.5, 1 and 2 skin-depths deep using a FEM model of
the field inside the metal. However, if the same technique was applied to a
thin-skin problem, a prohibitively large number of elements would be needed.
With the exception of the general skin-depth models of Kahn et al., it has
also proved difficult to apply the boundary integral equation method to thin-skin
problems with cracks. A BIE model of a cuboidal cavity was published by
Beissner [46], but, in this work, he restricted his calculations to the thick-skin
. case. S K Burke {47] used the BIE to calculate the impedance change of an eddy
- current probe brought near to the edge of a metal block and compared his results
with an analytic solution [48] in the thin-skin limit. Very good agreement with
experiment was obtained. .
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Electromagnetic fields are usually described by partial differential equations
~and boundary conditions. An alternative and equivalent formulation uses the
concept of action at a distance. In this description, contributions from all of the
charges, currents and electric and magnetic dipoles of media are summed to find
the electromagnetic field at each point. For example, the magnetic field due to
the currents is given by the Biot-Savart law [1]. In the volume integral method
of electromagnetic modelling the entire region of interest is discretized and the
relationships between the fields, currents, conductivities, permeabilities, charges
and dipoles expressed as large matrix equations which are then solved, usually
' on a supercomputer. A solution to the inverse problem can therefore be found a
priori, at least in principle. The size of the set of linear equations and, therefore,
the time needed to solve them is reduced in certain special cases, for example
quasistatic problems and problems not involving magnetic media. -

Prompted by its success in modelling geophysical problems, H A Sabbagh
and L D Sabbagh [49] applied the volume integral method to flaw shape inversion.
Fair agreement was found when their algorithm was used to find the shape of
circumferential notches on the interior of a stainless steel pipe [S0). The corners
of rectangular notches were poorly reconstructed. Dunbar [51] rederived
Burrows’ formula for a spherical flaw by the volume integral method and
suggested pure volume integral and hybrid finite element/volume integral
methods for NDE forward problems, again drawing on previous work in
geophysics. McKirdy [52] refined Dunbar’s pure volume integral model to give
excellent agreement with the experimental measurements of S K Burke [53] for
a coil over a cuboidal notch in aluminium. Whilst Dunbar pointed out that the
method is sufficiently general to be applied to ferromagnetic test-pieces, all these
calculations were restricted to non-magnetic ones. In common with FEM, the
volume integral method is computationally intensive but very flexible. Volume
integral -calculations for advanced problems involving ferrite-cored probes
[54],[55] and anisotropic media [56] have been performed more recently by H A
Sabbagh, L. D Sabbagh and Bowler. Jenkins and Bowler have also used volume
integrals to model an air-cored reflection probe [57]. |
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* In the thin-skin limit, the tangential variation of the fields takes place on a
length scale much greater than the normal variation due to the skin-effect, except

- at the crack itself. Locally, therefore, the ficlds resemble uniform plane waves
and E and H are related by equations 2.1.3,2.1.4 and 2.1.5. Senior [ 58] attributed
to M A Leontovich the idea of using this set of relationships as a boundary
condition on the fields outside the conductor, It is usually known as the surface
impedance boundary condition (SIBC) and is a highly appropriate approximation

" for NDT calculations because it enables the effort of computation to be put into
calculating the fields that couple with the receiver rather than into the irrelevant
calculation of the detailed behaviour inside the metal. Fawzi, Ahmed and P E
Burke [59] have compared eddy current boundary integral calculations with and
without the SIBC and their calculations were refined in a later paper by Ahmed,
Lavers and P E Burke [60]. The use of a BIE/SIBC formulation in NDT was
proposed by Nicolas [61], and Davey and Turner [62] solved both steady state
and transient problems in simple shell structures by this method. Davey and

- Tumer pointed out that the SIBC could also be used in finite element and finite

difference calculations. The application of BIE/SIBC methods to flaw detection

was developed by Beissner [63],[64],[65] who used reciprocity to write the

- impedance change in terms of “scalar potentials. Beissner and Graves [66]

extended this boundary element solution to ferrite cored probes. Unfortunately,

-+ the BIE expressions become singular inside a closed crack and numerical

evaluations of Beissner’s model by Ogilvy et al. [67] had to be restricted to open

notches. However, agreement withexperimental measurements on an EDM notch
was good. o e N

In its usual form, therefore, the SIBC is not applicable to a surface broken

by afatigue crack, whichis amajorlimitation onits use in NDT. The main original

work contained in this thesis is an extension of the surface impedance boundary

. condition to incorporate the presence of a surface breaking fatigue crack: The

. crack 1s considered to act as a line’source of magnetic flux, with a strength

proportional to the'cross-crack potentialﬁ difference. The justification for this

-approach is given in chapter 3. It is also shown that, under certain conditions, the
model reduces to the Born approximation used by Auldetal.: .« v
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In order to find crack depth, eddy current probes are sometimes calibrated
- againsta setof notches of various depths, cut in a block made of the same material
as the test-piece. An objection to this method is that it is not known if an open
notch changes the probe impedance in the same way as a closed crack. In chapter
3 it is shown that a correction factor can be included in the extended surface
impedance model to take account of finite notch opening. Using calibration
against notches, Oaten and Blitz [68] were able to size fatigue cracks in mild steel
by the touch method. This consists of lowering the eddy current probe vertically
onto the metal surface. Their success is consistent with the fact that the correction
factor to the SIBC model of chapter 3 is, under some circumstances, negligible
in ferromagnetic materials.

Fatigue cracks can occur in thin metal sheets as well as in bulk components.
When a.c: fields are used to inspect this type of test piece it is possible for the
skin-depth to be thicker that the test-piece. An analytical model of this situation,
proposed by S K Burke and Rose [69], is valid for cracks much longer than the
coil diameter. More recently, they have developed a general theory [70],[71] in
which the crack is represented by a line of vortices in the current field. The plate
was shown to be characterised by a length scale 8°/h where h is the plate thickness
and o the skin-depth. They presented solutions for the limiting cases valid when
the crack is long or short compared with this length and gave a numerical solution
for the intermediate case. Burke [72] also extended the solution to the problem
of two thin conducting plates separated by an insulating layer, one of the plates
being cracked. All of these models were verified experimentally. The basic
problem of a crack penetrating a thin plate was also treated by Rodger [73] using
FEM.

Finally, it should be mentioned that some models of potential difference
crack measurement, discussed in the next section, have been applied to eddy
current systems. An example is the work of Saddeghi and Mirshekar-Syahkal
[741,[75] which uses the unfolding theory of Collins, Dover and Michael,
discussed in detail in the next section, to model an eddy-current probe employing
a single wire U-shaped inducer. The ACFM probe described in chapter 4 also
uses a crack depth inversion scheme based on the unfolding theory.
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2.4 Modelling of Potential Difference Methods -~ . =+~

Calibration of DCPD measurements traditionally relied on comparison with
some analogous electrical system that had an adjustablé feature to represent the
crack, for example, a thin foil with a razor slit or a tank of electrolyte in which
was suspended a sheet of insulating material [76]. Direct currents flowing in a
" good conductor obey the 3-dimensional Laplace equation for each component,

B D
ox?> .E)y2 022 "
Since Laplace S equatlon does not contain any matenal constants, calibration
~ analogues can be made from any homogeneous conducting material of
appropnate geometry. Such calibrations require tedious expenmental work which
may have to be repeated if there is any change in the DCPD test conditions.

Moreover, it 1s often difficult to achieve the same accuracy 1n the calibration
measurements as can be achieved in the DCPD test iself. Mathemaucal modelling
is used to overcome these difficulties by eliminatin g the need for calibration.

(24.1)

Fig. 2.3 Equipotentials (broken) and streamlines (solid) for a DCPD test.



Translationally symmetric problems, where there is no variation on z, have
currents obeying the 2-dimensional Laplace equation which is satisfied if the
components of the field E are the x and y derivatives of a potential that itself
satisfies Laplace’s equation or, equivalently, the real and imaginary parts of an
analytic function (fig.2.3). Johnson [77] found a suitable function to model DCPD
systems using as a boundary condition the requirement that no current can cross
the crack. He considered in particular the growth of a fatigue crack from a starter
notch, showing that the crack length can be inferred from the ratio of potential
differences measured on the specimen in the cracked and uncracked state. It is
“not necessary to know the conductivity or field strength to evaluate his formula.
The estimate of crack length is given in proportion to the specimen width (the
meanings of the terms "crack length” and "crack depth" depend on the geometry
of the sample and are used in different ways by different authors). Picking a
suitable analytic function that satisfies the appropriate boundary conditions is
equivalent to finding a conformal mapping that transforms the problem of interest
into one for which a solution is known. This analytic approach has the advantage
that it often gives the solutions in closed form. Schwalbe and Hellmann [78]
pointed out that Johnson’s formula gives an approximate model for DCPD
measurements on the most common laboratory test geometries: the
centre-cracked tension (CCT), single-edge-notched bend (SEN) and compact
tension (CT) specimens. -

Numerical methods have also been used to model DCPD in more detail.
Ritchie and Bathe [79] used the finite element method to calibrate DCPD and
Aronson and Ritchie [80] used this type of calculation to optimize the positioning
of the contacts in a compact tqnsion specimen. Nath [81] et al. Used both FEM
and BIE methods for DCPD in CT and SEN specimens and concluded that
Johnson’s formula underestimates crack depth in the CT specimen. Unlike the
conformal mapping method, FEM 1is not restricted to 2-dimensional problems,
however, the computatiop times for 2-d cases are much shorter.
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Fig. 2.4 Crack depth measurement using ACPD.

A particularly simple 1-dimensional formula exists for crack depth
“measurements by the ACPD method (fig.2.4) when the skin-depth is small, if the

crack is of uniform depth. The p.d. measured in the uncrackcd region by a probe
- of lcngth lis | |

V,=El, - o (24.2)

where E is the field strcngth When the probe straddles a crack of depth b the
- currents must follow a longer path and the p. d 1s therefore mcreased to

V E(l+2b) S (243)

| Solvmg the smultaneous equatlons 2.4.2 and 2. 4 3, one obtams thc crack depth
LV s T s

| ==| - . 2.4.4

b Z(V,il)_ﬁ | S 1 “‘-( ., )

This formula 1s only applicablcéf-d&c-ﬁeid- if the field is uniform. In particular,
if the crack is short (in the direction perpendicular to the plane of the paper in
fig.2.4), some of the current will go around the ends, rather than underneath, so
that the 1-d formula 2.4.4 uhdercstimatcs the crack depth. Fig.2.5 shows a section
through a test-piece with such a crack; the electric fieldis appliedinthey dirc'ction:
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section
Fig.2.5 Section through a test-piece with a short crack

A great deal of experimental and theoretical work on ACPD has been
performed at University College London by Dover, Collins, Michael and
co-workers. This was prompted by the need to measure fatigue crack growth in
welded steel tubular joints, of the type used in off-shore structures. The tubes
concerned are of the order of 0.5m in diameter and, as explained above, the DCPD
“technique is unsuitable for use in such large objects. Having developed the
technique for this purpose, they also applied it to other types of test-piece,
including non-ferromagnetic ones. One of the aims of this thesis is to show that
much of the theory of ACPD developed in this programme is relevant to
eddy-current testing and vice versa. Most ACPD modelling assumes that the
incident field is uniform, so it is most readily applicable to uniform field
eddy-current probes.

In their original paper on ACPD, Dover, Charlesworth, Taylor, Collins and
Michael [21] derive a correction factor to the one-dimensional formula 2.4.4.
Their analysis begins with the eddy-current equation -

St +—=kE o (2.4.5)

for the field inside the metal. In this equation k* = ipcwis assumed to be constant.

In order to describe the thin layer of current they took a Laplace transform on z,
that is to say, they assumed a z dependency of the form exp(sz), so that
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They then observed that for a uniform field s=k and, since s and k are independent
of x and y, infer that s=k also for a uniform field perturbed by the presence of a
crack. This is not strictly correct, because the field in general will include
contributions from modes with different values of s, including modes that are
!« zero in the unperturbed region but have s not equal to k. When s is taken to be

“equal to k everywhere, 2.4.6 reduces to the two-dimensional Laplace equation.
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imposed by making the electric potential zero on ABCDE so that the bottom edge
- 1s a line of symmetry. Fig.2.6 shows the resulting field on one side of ABCDE;
,. the broken lines are electric equipotentials and the solid lines are currents. They
. referred to their solution as the "unfolding” model because the surface of fig.2.6
is produced by unfolding the surface of fig.2.5 along the line ABODE. Using this
unfolding model and conformal mapping, Dover et al. calculated correction
.. factors to the ACPD one-dimensional formula for a crack of circular-arc form.
In chapter 3, it is shown that the unfolding model can be derived as a limiting
case of the extended surface impedance model. The relevant limit occurs for short
cracks in strongly ferromagnetic metals, whichexplains why Dover et al. reported
good agreement with experimental measurements in mild steel plates. It must be
stressed that Laplace’s equation in ACPD is not aupliedwin the same way as it is
in DCPD and the rationale for its use is quite different. *- “
Different conformal maps provide models of other shapes of crack. The
Schwarz-Christoffel transformation [82] 1sa well known al gcrit}tm for generating
conformal maps of polygonal shapes and was used to model rectangular and
triangular [83] cracks. Whilst these shapes are not encountered in practice, they
give potential differences that differ very little from those given by more realistic
shapes. Shang et al. [8:4] used the Schwarz-Christoffel transformation in an
approxrmate analysis of the fields near a crack in the corner of a specimen. Inthe
original circular-arc model a two-stage trigonometric mapping was used, but the
same field can be generated in a single step by using an algebraic mapping called
the Kdrmdn-Trefftz transformation. A second application of this mapping gives
the field near the bow-shaped crack formed by two cracks running into each other
[85], which is of common occurrence in pracuce Sometimes, especrally on
tubular welded joints, cracks occur w1th a thin line of metal bridging the two
faces. Michael and Collins [86] gave a sunple algebraic transformatlon that can
be used to find the fields near such a line contact on a umformly deep crack It
“is also possible to cornbme thts map with, for example, the Karman-Trefftz to
give a c1rcular arc w1th a line contact. Two other useful mappln gs were given in
the same paper The first transforms fields that are zero at 1nﬁn1ty to ﬁelds with

- penodrc boundary condluons Wthh occur on the surface ot’ cyhndncal

l-u-!-
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% For the Same

aspect ralro.

_test-pieces. The second is applicable to a crack that penetrates right through a

plate. Such through-crack problems were discussed in detail in a more recent

.. . paper [87].

Itis, of course, possible to use other methods of solving the two-dimensional
Laplace equation in the unfolding model. In particular, a Fourier series solution
was derived by Collins et al. [88],[89] for semi-elliptical cracks, which yields

- potentials that are slightly different from those of a circular arc of the same aspect

ratio. Using finite differences, Haq et al. [90] solved the unfolded problem for

- overlapping rectangular cracks. Whatever method is used, the advantage of the

unfolding model is that the surface field distributions can be found by solving a
two-dimensional problem only.

Given sufficiently detailed and accurate measurements of the cross- crack
potential difference, it is possible to infer the complete profile of the crack. An
iterative algorithm, which relies in part on the intuition of the user, was developed
by Connolly etal. [85] toinvertin this way. He used the boundary element method
to solve the unfolded problem at each stage of the iteration. Bipolar coordinates
were used to handle singularities at the crack ends. More recently, a single-step
inversion algorithm was published by Mclver [91], which requires the user to
give only one parameter. Both of these algorithms use the unfolding concept and

-so are valid only for short cracks in ferromagnetic metals. Shape inversion seems
. to be numerically unstable in principle, so it is always necessary to include some

artificial smoothing. It is shown in chapter 3 that the potential difference across
a semi-elliptical xcrack differs by, at most, about 5% from the p.d. across a

. rectangular crack. Very accurate measurements are therefore needed if inversion

routines are to show the bottom corners of a rectangle. This conclusion 1s also
true of the volume integral inversion routine of Sabbagh and Sabbagh [50] for

y cucumferennal notches, described above.

'When an a.c. field is of sufficiently low frcqucncy that thc skm—depth 1S

- much greater than the crack depth, the right-hand side of 2.4.5 is negligible and
.. the field may be regarded as a d.c. field for theoretical purposes. This can happen

even at kHz frequencies in a poorly conducting non-magnetic metal. Michael et
al. [92] modelled ACPD tests on threaded bolts made of titanium and Inconel 1n
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this way, mapping the thread shape onto a straight line. Thin-skin ACPD gives
a depth measurement according to the one (or two) dimensional path only and is
therefore insensitive to the angle © which the crack face makes with the metal
surface. In situations where this is likely to differ significantly from 90°, it is thus
not possible to say, from the thin-skin data alone, whether the crack is close to
penetrating through the test-piece. Lugg et al. [93] investigated the use of
thicker-skin fields to measure crack inclination. An important practical
conclusion from this work was that an inclined crack could be immediately
- recognized by the asymmetric shape of the ACPD signal as the probe traverses
the crack. |

'

Fig. 2.7 Comparison of the crack depth estimates given by ACPD and TOFD.

This inability of thin-skin ACPD to determine crack inclination is a
limitation that applies to all high frequency techniques, as will be shown from

--+. the SIBC model in chapter 3. Although a detailed comparison of the various NDT

methods for measuring crack depth is beyond the scope of this thesis, it is
worthwhile contrasting the depth estimates of ACPD and ultrasonic time of flight
diffraction (TOFD) [94]. The former gives the distance in the plane of the crack
face from the surface to the crack tip whilst TOFD gives the vertical distance
from the surface to the crack tip. The TOFD depth estimate (fig.2.7) is found by

measuring the time taken for an ultrasonic wave to propagate between two

- transducers T via the crack tip.- The transducers are moved, keeping their

separation constant, until the time of ﬂig*ht 1S a minimum, which indicates that

-F_t T
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they are symmetrically positioned about the crack tip, and the depth d,is then

inferred by triangulation. Crack inclination could be deduced by makingan ACPD
depth measurement d, and using the formula

0=cos™(d/d,). - (2.4.7)

The two techniques are also complementary in the sense of relying on different
material properties. A discrepancy between the two depths should not, therefore,
be interpreted as an indication of crack inclination until the possibility of local
changes in material properties has been eliminated.

~ Itisimpossible in practice to construct a probe that only measures the surface
electric potential difference. Inevitably there is always some inductive coupling
as well, although it can be minimized by careful probe design. This effect 1S
especxally strong in non-magnetic materials where the flux density outside the
metal is of the same order of magnitude as it is inside the metal. When ACPD
‘measurements are made on open notches, rather than closed cracks, a finite
inductance arises just from the geometry of the test-piece. Mirshekar-Syahkal et
“al. [95] dernived a correction to the one- dimensional formula which allows for
the voltage induced by the magnetic field in a notch or because of probe design.

The notch correcnon factor is 1ncorporated mto the extended STBC model in
“chapter 3. "

2.5 Modellmg of Flux Leakage Methods - .

Flux leakage methods are discussed here rather briefly because they are less
relevant to the remainder of the thesis and because the literature has been reviewed
recently by Jiles [96]. . co
| . Calculations of leakage fields from cracks in ferromagnetic metals were
made by Zatsepin, Shcherbinin [97],[98],[99] and other. workers in the Soviet
Union from 1966. At this time, computers powerful enough to solve complex
. magnetostatic problems numerically were unavailable so they used approximate
analytical solutions in which the flaws were modelled as . pomt line or. strip
.. dipoles. Verifying experiments were also conducted.ﬁf.. RO A ORES FPY T R
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| Hwang and Lord [100] applied finite element analysis to leakage field
calculations and this method has been further developed by Lord et al. [101] and
Atherton et al. [102],[103] . An important advantage of FEM for this application
is thatitis potentially possible to allow for the non-linear and hysteretic behaviour
of strongly magnetised materials. Flux leakage is quite different in this respect
from eddy-current NDT, where the magnetisation is always much smaller than
that required for saturation and it is reasonable to neglect these effects. Forster
[104] reported poor agreement between Hall probe field mapping experiments
and FEM calculations. | | .

It might have been imagined from the development of the subject that the
possibility of finding analytic solutions had by now been completely exhausted.
However, in 1986 Edwards and Palmer [105] used the method of images to find
the surface polarity inside along semi-elliptical notch and showed that the polarity
inside a narrow notch or crack is nearly constant, as assumed by Zatsepin and
Scherbinin [97]. They also calculated the magnitude of the polarity in terms of
~ the applied field and predicted the field outside the notch by substituting this
dipole strength into the expressions of Zatsepin and Scherbinin. This prediction
was confirmed by Hall probe measurements. Edwards and Palmer also discussed
the significance of their results for practical MPI testing and concluded that an
applied field strength of the order of hundreds or thousands of Am™ is needed to
detect a crack. For comparison, the British Standard [24] in most circumstances
recommends that the field exceed 2400Am™.

Magnetic particle inspection is a quantitative technique only insofar as it
shows the crack length on the surface - only a crude estimate can be made of the
crackdepth. Modelling studies are therefore conducted with the aim of optimizing
sensitivity and reliability [106] rather than of determining crack profiles. McCoy
and Tanner [107] used the magnetic field of Edwards and Palmer to find the
equations of motion of small magnetic particles in a viscous fluid. From a
- computer simulation of the MPI process, based on these equations, they concluded
that 20itm particles gave better contrast then 10ium particles and that the optimum
viscosity of the carrier fluid was around 0.7 mPa s, close to that of the light oils
used in practice.



3 Theory of the Extended Surface Impedance Model
3.1 Introduction C

Beginning from Maxwell’s equations, this chapter explains how the field
near a crack in the surface of a metal object may be derived from a scalar potential
and how the field inside the metal may be accounted for by using the surface
impedance. The effect of the crack itself is modelled by considering it to act as

a line source, described mathematically using a Dirac delta function. A boundary
thete melhools,

condition on the scalar potential is derived frenrthese-prineiples: It is also shown
that on the crack face itself, the field obeys Laplace’s equation in two dimensions.

Two important limiting cases are then discussed, governed by the
dimensionless parameter m = a/(it,0) where a is the length scale of the problem.
When m is large, the new boundary condition is shown to reduce to the simple

requirement that the component of magnetic flux normal to the metal surface is

zero. This is the condition that was used by Auldet al. in their Born approximation
‘model. Conversely, when m is small, it is shown that the new boundary condition
implies that the field on the metal surface obeys Laplace’s equation in two
dimensions, just as it does on the crack face. Therefore, if the scalar potential is
symmetric about the crack line, the unfolding model of Collins, Dover and
Michael is correct. !

The model is further developed for the specific example of a crack in a half
space, interrogated by a uniform field. It is shown by symmetry that a uniform
field parallel to the crack is not perturbed at all, so only the component of the
uniform field perpendicular to the crack is considered. A Fourier transform
solution is obtained which enables the scalar potential to be written in terms of
the cross-crack potential difference. Inthe limiting cases, itis shown that the field
at‘any point in the three-dimensional spaee outside the craehk* can then be found
immediately by using the existing solutlons the condltlons for their valldtty now

| bemg known. For the mterrnedtate case, new solutlons using senes methods, are
* given for rectangular and semi- elltpttcal cracks, and they are shown to be in
| agreement wnh thie earlier models in the llmtnng cases A brief descnptton of a

'!.-;1

boundary element solutton due to McIver is also glven HE R
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Fig. 3.1 Coordinate system and terminology.

The coordinate system and terminology for the different parts of the crack shown
in fig. 3.1 will be used throughout the thesis, except where stated otherwise.

3.2 Derivation of the Surface Impedance Boundary Condition

Classical electromagnetic fields obey Maxwell’s equations

div D =p, | (3.2.1)
div B =0, (3.2.2)
oB |

l1E =——, 2.
cur 3 (3.2.3)
curlH = +-a—I-)-, (3.2.4)

ot
together with the relationships

B =uH, (3.2.5)
D=¢E, (3.2.6)

which are used to account for the effects of the dipoles of media. In this thesis,
only isotropic media will be considered, so the permeability it and conductivity
o are scalars. It will also be assumed that the media are homogeneous, so |t and
o are constants. As discussed in chapter 2, it is usually the practice to work with
individual frcqucncy components when making NDT measurements, S0 2 time
dependence of the form cxp(lcot) will be assumed. Assuming the test-p1ccc 1S
surrounded by air, or some other medium whose electromagnetic properties
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closely resemble those of free-space, the charge and current densities are zero

and Maxwell’s equations in the external region, for each frequency component,
are

div E =0, (3.2.7)
div' B =0, * | (3.2.8)
curl E =—iwB, ~ (3.2.9)
curl B ;—-r-iml.toeoE.r ) - - (3.2.10)

It is well-known that solutions to these equations may be written in terms of
travelling electromagnetic waves with speed ¢ = (l,€) ™, the speed of light.
However, in NDT problems the free-space wavelengths are always much larger
than the scale of the problem, so the time taken for a wave to propagate over the
region of interest 1s negligible compared with 1/®. For example, the minimum
free-space wavelength likely to be encountered is about 10m, corresponding to
a frequency of 30MHz and the fatigue cracks must usually be detected when they
are no more than a few millimetres long and sometimes less than Imm long,
depending on the metalin question. ForNDT purposes, therefore, the propagation
speed may be regarded as infinite and the right-hand side of 3.2.10 taken to be
zero. Such fields are said to be quasistatic and are distinguished from truly static
fields because Faraday’s law, equation 3.2.3, maintains timc'dcpendcncc. The

term that is.neglected originates from the second term on the right-hand side of
3.2.4, known as the displacement current.

Quasistatic magnetic fields are irrotational, that is to say, they obey
curl H =0, (3.2.11)

and may therefore be described, without loss of generality, by a scalar potential
 where

A H=Vy. = L (321y
Substitution of 3.2.12 and 3.2.5 into 3.2.8 shows that y obeys Laplace’s equation
| Viy=0 ‘" .~ & . (32.13)

in the external region.
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Next, consider the region inside the test-piece. The metal will be assumed
to be isotropic and homogeneous as far as its conductivity ¢ and relative
permeability g, are concerned. Ohm’s law

j=OCE (3.2.14)

is obeyed, if the magnetic field is never strong enough to deflect the conduction
electrons significantly. The internal charge density p will be assumed to be zero,
since metals are good conductors. For the same reason, the conduction current
density j will always far exceed the displacement current density, which can again
be ignored. Maxwell’s equations inside the test-piece are therefore

div E =0, (3.2.15)
divB =0, | (3.2.16)
curl E =-10B, (3.2.17)
| curl B =uoE. (3.2.18)
Taking the curl of 3.2.18

curl curl B =pocurl E | (3.2.19)

and substituting in 3.2.17, one obtains
curl curl B =-iouoB. | (3.2.20)

A vector identity 1s 1
ckilrl curl B= grad (divB) -V°B. (3.2.21)

From 3.2.20, 3.2.21 and 3.2.16, it follows that B inside the metal obeys the
Helmbholtz equation

V’B =k’B, (3.2.22)
where
k> =iopo. (3.2.23)

Note that the assumption of zero charge density implicit in 3.2.15 is not actually
required in deriving 3.2.22. However, by taking the curl of 3.2.17 in a similar
way and using 3.2.18 and 3.2.15, it may be shown that E and hence, from 3.2.14,
j also obey the Helmbholtz equation.

A field that is uniform in the x and y directions satisfies 3.2.22 1f
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‘B=Be", (3.2.24)
where B, is the value of B at z =0 (the surface) and it s understood that the sign
of the real part of k is positive, in order to keep B bounded as z — —eo deep inside
the metal. If the frequency is high, the exponential decay length & = 1/Re(k),

known as the skin depth, is small and the field is effectively confined to a layer
near the surface - the skin effect mentioned in the previous chapter. These

statements also apply to the fields E and j, since they obey the same differential

'+ equations and boundary conditions. The flux contained in the thin layer, per unit

. transverse length, is

f Boet'dz =%, (3.2.25)

Considering the surface of the test-piece near the crack, but not actually on
-the crack line itself, one may expect the perturbation of the field to occupy a
length comparable with the crack length. When the skin depth is much smaller
than this, contributions to V°B from changes in the tangential direction are
negligible compared with contributions from the changes in the normal direction
caused by the skin-effect. Therefore, the exponential decay profile of the fields
inside the metal is essentially unaffected by the presence of the crack, except in
the region within a distance 8 of the crack line. - |

On the interface between the metal and the space above, the standard
boundary conditions [1] apply: ftanéential compbnénts of H and normal
components of B are continuous. The B field inside the metal can therefore be
written 1n terms of the derivative of the scala;%potcntial v on z=+0 as

et 3V Ay Ay
B=y,e (u, =55 M, ay’az) (3.2.26)
- so that 3.2.16 implies that | | |
azli’+-‘?ﬂ+1‘--3-3\—-'1= e e, (3.2.2T)

This is the usual surface impedance boundary condition, written in terms of the
scalar potential .
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consider the x and y components of 3.2.18 inside the test-piece

9B, %5, oF (3.2.28)
dy o0z ~HOBs o
9B, 9B, _ E (3.2.29)
0z ox ooy o
If the tangential derivatives are neglected as before then
E.=-ZH, (3.2.30)
E,=+ZH, (3.231)
where
k_1+1
Ly = = (3.2.32)

Since the parallel components of E are also continuous at the interface [1}, 3.2.30
and 3.2.31 apply to the fields immediately outside the test-piece as well.

3.3 Extension to Cracked Test-Pieces

In the thin-skin limit, the fields decay exponentially from the crack faces in
the same manner as they decay from the top surface, except for small regions
near the mouth and near the bottom edge (this point is made clearer by reference
to figure 2.1 which shows schematically how the fields inside the test-piece vary
with frequency as the thin-skin limit is approached). The SIBC therefore applies
on the crack faces, the appropriate equations bein g

A a—\—y-O (3.3.1)

ox* 9z I, 9y
ony=-0and
oy v _kdy_
oy +az 9y 0 (3.3.2)

on y = +0. For a closed crack, continuity of B, implies that 3.3.1 and 3.3.2 can
only be consistent if y obeys the two-dimensional Laplace equation

a2“’+alw (3.3.3)
0z°
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On the crack faces, 3.2.30 and 3.2.31 still hold, it being understood that £z must

- " be substituted for y on y =30. Therefore, from 3.3.3 . '

0E, OE, 0 B “(334
h ) - ox 9z a 3.4)
PERTS : ﬂ g

i

This is a sufficient condition to enable (E,,E,) to be written in terms of a potential

9,

~_7 9 3

E.t — s ax$ ! (3.3.5)
__- 90 |

Ez — g az » 4 (3-3-6)

Fig. 3.2 Fields on opposite crack faces. e

The potential ¢ is related to the bbtcntizﬂ lp by the Cauchy-Riemanﬁ eqﬁétions

r J‘ 3 B -+ -
. ¢ 1 v : : b
¥ . S - ’ A 1 N .
e i
3 3
] - -]
b L
. z !;IF“-I:%- *a o v R LoF z 'y
™ j'i. N . N [ ¢
¢ - o 5‘1“’ a4 ¥ * -t e ¢ - '\nidﬂ‘

1 bt
2 T
=, 3.3.8
’J . - & L
* 02 ‘



which, in this context, follow immediately from 3.2.30, 3.2.31 and the definitions
of the potentials. For a closed crack, the measured a.c. potential difference is
‘equal to the line integral of E between the probe points, and the contribution from
the crack is equal to the difference in the potential ¢ across the crack, multiplied
by Z,. The electric fields on the two faces are antisymmetric, so the arbitrary
constant in the definition of ¢ can most conveniently be chosen to give ¢
antisymmetric also. The value of ¢ on the line z=0 will be denoted by ¢, so, the
cross-crack potential difference is 2¢,Z..

The field on the faces, which obeys the two-dimensional Laplace equation,
couples with the field outside the metal, which obeys the three-dimensional
Laplace equation. This coupling can be modelled by thinking of the crack as a
line source. Begin by considering a small element of the thin-skin layer of area
AxAy and centred on the point (x,y). The net flux leaving this region in the x
direction is, from 3.2.25,

1 Ax _Ax)|_pdy |
kA)’[Bx(x + 5 ) B ( > PRy AxAy. ! (3.3.9)

- Similarly, the net flux leaving in the y direction is

bl 2o 4] o

The flux leaving in the z direction is

%%}'Amy- - @311

The total flux leaving a region of the surface away from the crack is the sum of
3.3.9, 3.3.10 and 3.3.11

[ CAICAY }
{ (ax AW ) oo -fAxdy. . (33.12)

The effect of the crack can be included simply by adding to 3.3.12 the contribution
of the flux from the two crack faces, which is

~2B,0,0Ax =~ 1 (x, 0)Ax (3.3.13)
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where H (x,z)1s the field on the crack face. Therefore, conservation of flux implies
that

u(y oty } |
{ (ax ay ]+u082 AxAy =0. (3.3.14)

for all points on the test-piece surface except on the crack mouth where

{ (aw A

2
e J+“°az }AxAy “2H (x,0)Ax =0. (3.3.15)

k
Let

Y=k/J, (3.3.16)

then, in the limit as Ay goes to zero,

CAY +§_23’_ = 2H (¢, 0)5(y), (3.3.17)
ox? Yoz

where o(y) is the Dirac delta function (nor skin-depth in this equation). The
perturbation due to the crack depends on the normal component of the field in
the crack mouth or, equivalently, on the derivative parallel to the crack line of

200,

g:y+?+'y—a—; = 2——8(y) (3.3.18)
Equation 3.3.18 is the extended surface impedance boundary condition which
can be used to find the flux coupling with areceiver coil in terms of the cross-crack
potential difference. It constitutes a fundamental connection between the
eddy-current and ACPD methods of NDT. An important feature of the analysis
given above is that' the coupling between the two-dimensional and
three-dimensional fields is independent of the angle at which the crack meets the

surface. Consequently, thin-skin field methods give no information about crack
inclination, as stated in the previous chapter.
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3.4 The parameter m

The relationship of the new model to the existing Born approximation and
unfolding models can best be understood with reference to the parameter

B (3.4.1)

In this equation, a is a parameter giving the length-scale of the crack and it can
be given a more precise definition for a particular problem. For example, 2a will
be used in sections 3.7 and 3.8 to mean the surface length of rectangular and
semi-elliptical cracks respectively. In equation 3.3.18, the orders of magnitude
of the terms on the left-hand side are

A
ax2+ay2 yia, (3.4.2)

k k .
E%qz_{ —-:L-\Wa. (3.4.3)

The ratio of these two orders of magnitude is 1/m . As explained in the previous
section, 3.4.2 originates from the flux in the thin surface layer and 3.4.3 originates
from the flux that leaves the surface layer and goes into the exterior space. The
parameter m is therefore a measure of the ratio of the exterior flux to the interior
flux. In the limit as m becomes 1infinite, the boundary condition 3.3.18 becomes

—=5(y). T (3.4.4)

The perturbation part of the field caused by the line source is of order 1/m and
may be neglected when solving for the potential on the crack face. This is exactly
- the algorithm of the Born approximation. Therefore, when m is very large the
Born approximationis always valid. Conversely, whenmis small 3.3.18 becomes

-g;zw—z- +%3i2, = 2%238()!). (3.4.5)
which is exactly the equation that would have been obtained if the crack had been
coupled to a field obeying the two-dimensional Laplace equation, as in the
unfolding model. In non-magnetic metals, for any field of high enough frequency
to be in the thin-skin limit, m is large and the Born approximation is valid. In
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ferromagnetic metals, when the frequency is only just high-enough for the

--,,. thin-skin condition 6 << a to be true, m is small and the unfolding theory is valid.

At rather higher frequencies, when m 1is of order 1, the full three-dimensional

-model must be used and at still higher frequencies the Born approximation is
applicable.

An important feature of the unfolding limit is that the parameters L and ©
do not appear in the boundary condition 3.4.5. In a magnetic metal for which
- approximate values of these quantities are known, the operating frequency may
be chosen so thatmis small and one may then calculate the fields without knowing
precise values for these material constants. It is therefore possible, in principle,
to measure the crack depth without calibration. The practical implemcntation of

-, this idea 1s described in chapter 5.
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Fig. 3.3 Detail of the fields near the crack mouth
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To further clarify the mgmficance of 3 3 18 1t 18 helpful to exammc the
joining conditions 11nk1ng the fields on the crack faces on the top surface and in
the exterior. Equation 3.2.11 implies that the H field integrated around the loop
PQRS in fig. 3.3 should be zero, regardless of the value of m. If the loop is drawn
- yery near to the crack mouth y=z=0 then the contributions to the integral around
PQRS from the portions along QR and SP are small and the x component of the
exterior magnetic field H;; must be. continuous with the x component of the
magnetic field inside the crack H,;. From the surface impedance equations (3.2.30
and 3.2.31 on the top surface and the analogous expressions in x and z on the
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crack face) this corresponds to saying that the y component of the exterior electric
field E,, and the z component of the electric field inside the crack E,; are
continuous. Equivalently, continuity of E,, and E,; may be inferred from the fact
that the corresponding current densities j,, and j,;must be continuous because the
conductivity 1is too high to allow charges to build up on the crack lip.

However, the magnetic flux that comes out of the two thin-layers just behind
the crack faces is, in general, channelled partly into the thin-layer just below the
top surface and partly into the exterior space, so that H,, is not continuous with
H,;. From 3.2.25, the flux that leaks into the exterior per unit transverse length is

1
(8,5, =-E-(H,;—H,,). | | (3.4.6)

The e.m.f. induced around the loop TUVW by this leaking flux is given by
Faraday’s Law 3.2.3 as

i s
u'( ¢)' ’ ™ (3.4.7)
From 3.2.23, 3.2.30 (and the analogous equation in x and z) and 3.2#.32; this is
exactly equal to the discontinuity in the x components of E. |

~Z,H,;~-H,,)=E,, ~E, , (3.4.8)

In the limit as m approacfxes zero, the termin 3.3.18 which originates from
the flux that goes into the exterior space is negligible. Consequently, it may be
inferred that all the flux that comes out of the crack is channelled into the top
surface layer and that H, and H,; are then continuous. To summarise, whilst
continuity of H,, and H,; must always be imposed, continuity of H,, and H,; is
only 1mposed in the small m limit when the unfolding model is valid.

3.5 Modifications for Open Notches

For the purpose of experimental testing and calibration, it is common
practice to make measurements on narrow saw-cut or electric discharge machined
(EDM) notches, which are used as simulated cracks. The theory developed above
for cracks may be applied to this type of artificial flaw, providing that the notch
opening A is small enough, as may be seen from the following argument.

56



-+ The crack theory will only be applicable if the field distribution on the notch
faces obeys the two-dimensional Laplace equation. From 3.3.1 and 3.3.2, a

non-Laplacian field on the face implies a sharp change in the y component across
the notch, :

dy_ v _7v

A P 1|

5+ 2[ s (y =40 5 b=-0. (3.5.1)

. To first order, this difference is (assuming ¥ varies ona length seale of order a)
1 | |

However, since y obeys the three-dimensional form of Laplace’s equation inside
the gap between the faces,

— e :——2--|--——— (3.5.3)

so that, from 3.5.1, 3.5.2 and 3.5.3

AT ) R O
0z ox®* 21922 ox? T

This relationship is self-consistent if the dimensionless ratio hy/21s of the order
of 1. However, if hy/2 is much less than 1, then 3.5.4 is only self-consistent if y
obeys the two-dimensional Laplace equation. Itis therefore reasonable to assume
thatif / is small enou gh to make /ry/2 small, then open notches behave like cracks
in the sense that the two-dimensional Laplace equation is obeyed over the flaw
faces. In other circumstances, the notch opening will probably be wide enough
to enable BIE methods to be applied over the whole of the test-piece surface,

including the interior of the notch, as in the calculations of Beissner [66] and
Ogilvy et al. [67] mentioned in chapter 2.
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Notches also differ from cracks because the volume between the notch faces
contains magnetic flux which contributes to the strength of the line source
representing the flaw. Even when the notch is narrow enough for the crack model
to be applicable, it is still necessary to include a correction factor to take account
of this. Assuming that H, is continuous across the notch mouth, the extra
contribution to 3.3.13 is

H (x,0)hp,Ax. (3.5.4)
Consequently, 3.3.18 should be modified to
—-----2l|1+ﬂ a\y (l + hy/2). (3.5.5)
dx* dy°

The correction term kY/2 is exactly the quantity required above to be small in
order for the crack model to be valid. Therefore, in circumstances where the crack
model is applicable, the correction for notch opening will always be small.

The notch correction factor given here was originally derived by
Mirshekar-Syakhaletal. [95] for ACPD, butitis clearly applicable to eddy current
testing as well. Finally, it must be emphasised that fatigue cracks may also behave

differently from netehes+f-a-line-contacts
td(ea.”j narrow notches bec‘a.u_(e Lh fa,ﬁtjde Cracd(/g

(_'é R F‘Ssr'ble ﬂr '6!49 f‘a ceégs fo ’oe on 6/€cﬁr:c¢/
contact Aue To Che presence of c<mall

br:'ﬂ{J€$_> A(noa.m a § C!'V!e’ contfac:f.g',
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‘3.6 A Crack in a Thick Flat Plate with a Uniform Incident Field

‘The new model is relatively easy to solve for the example of a crack in a
half-space interrogated by a uniform field. This should be a good model of a crack
in a flat plate that is much thicker than the skin-depth and much larger than the
crack length, with an applied field that is uniform in the uncracked region. Since
. non-linear magnetic effects have been ignored, the field may be considered as a
superposition of the unperturbed uniform field and a disturbance caused by the
flaw. Similarly, the total incident field may be thought of as the sum of a uniform

field in the x direction and a uniform field in the y direction. By symmeﬁ'y, the
Tv component of the uniform electric field that is parallel to x causes no potential
difference across the crack. The basic equation of the model, 3.3.18, then implies
that there is no perturbation of this field by the crack. Therefore, there is no loss
of generality in considering only the effect of a uniform electric field parallel to
y, corresponding to a uniform magnetic field parallel to x.
The total scalar potential is written

v=vy +Hx., (3.6.1)

The unperturbed potential Hyx trivially satisfies Laplace’s equation 3.2.13,

therefore the perturbed part v, must also satisfy it. Consider the two-dimensional
Fourier transform of \, on a plane of constantz -

‘I’c(kx’ ,2)= J‘ j \Vc(x y,z)e_lkx ey dxdy. (3.6.2)

Consider also the transform of Laplace’s equation

f f [az“’ az“’ 82“’] hed e dxdy =0. (3.6.3)

d0z°
By integrating twice by parts on both x and y one obtains
(T 1212 az\l’ ~ik, x ~ik,y
J‘___ J‘_“{( kx ky )\Vc + aZ } dxdy 0. (3.6.5)
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If the differentiation on z is taken outside the integral; 3.6.5 may be rewritten in
terms of the transform as

Y.

=k, 6.
=2 =k V. (3.6.6)
where

ﬁ=ﬁ+g . (3.6.7)

The general solution to this differential equation is a linear combination of
growing and decaying exponentials but in this problem the growing solutions are
forbidden, because the field must be bounded as z = oo, In terms of the transform

on z=0, the transform at arbitrary positive z is therefore |
V. (ks Ky, 2) =W, (K, k), 0) exp(- £,] 2), (3.6.7)

so, by the Fourier inversion theorem, the total scalar potential at any point in
space 1s

ik_x d:)v o AL

w32 =25 [ [ Wbk, 0 e e ki d +Hx . (3.68)

The cquations 3.6.2-3.6.8 are true for any bounded quasistatic fields above
a flat plate. The new boundary condition for a cracked flat plate may be
incorporated by taking the transform of both sides of 3.3.18,

gl f(azw AL a“’] e dxdy =

f f 2— B(y)e-'“ B ”dxdy (3.6.9)

and the delta function may be integrated directly to give

f J ‘(324’ 3;;’ 88\4:) e ddy =

b0 i x
J‘ 2 Mo -ikxy (3.6.10)

60



If the z derivative is taken outside the integral and both sides are integrated by
parts 3.6.10 becomes

[—k’* K24y ]f f ve e e dxdy = mf 20, dx. (3.6.11)

* From 3.6.5 and 3.6.2, the left-hand side may be written in terms of \, so that

| (-2~ k2= k)1, = ik, f"2¢0e‘“*‘dx.” (36.12)
On rearranging 3.6.12, one obtains \, in the form |
.- 20
, = -ikx-—-z—-i)?——- (3.6.13)
| ky +Y| ki
where
‘T)o = J‘ Oo -uxxdx : (3.6.14)

The formula 3.6.13 may then be substituted into 3.6.8 in order to find the magnetic
scalar potential in terms of the cross-crack electric potential difference. The
magnetic field can then be found by differentiation. Numerically, 3.6.8 may be
evaluated using a Fast Fourier Transform (FFT) [108]. The whole field can be
generated with a two-dimensional FFT or the field values on a line of constant x
ory ata particular height z can be found using a one-dimensional FFT.
Magnetic fields can be calculated for the limiting cases by using the Born
approximation and the unfolding model to calculate ¢,. In the general m case, the
function ¢, is determined by the crack shape and the requtrernent that H, on the
line y=2=0 be consistent with the three-dimensional solution. That is to say, a
two-dimensional potential problem must be solved on the crack face subject to
the condition that when d, is substituted i into 3.6.14 and used in 3.6.13 and 3.6. 8,
the same function H,(x,0,0) is given by the two-dimensional and
three-dimensional solutions. Without loss of generality, continuity of H, may be
~ ensured by imposing continuity of the scalar potential . The presence of the
' exterior thre¢-dimensional space can therefore be allowed for by 1 1mposmg the
| followin g boundary COHdlthl‘l on the potentials inside the crack:”’ |

T i.-.- - "! L ; * - 1 ""ﬂ L] 3 -l-"i':Htj fi ¥ w " -
b j.a,,.‘,:.arr,- -, .gut_;'* o ¢
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w0 =5 [ KFEIRkI Yk +Hx  (36.15)
where

1

) - dk
F(k -..=-—f —_ 3.6.16
&)=z ~ ki + Y| k| ( )

In Appendix A this expression is integrated analytically. The function ik F (k,)
is plotted in fig. 3.4.
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Fig. 3.4 Béundary condition function.

To get a better understanding of 3.6.135 it may be rewritten using the convolution
theorem as

v, 08= [ Ha-x, 0F Y +Hr. (B617)

Equation 3.6.17 1s a rclﬁﬁonship bctwcené\p?and its derivative H, on the crack lip
whichis aboundary condition for the two-dimensional problem. Ithas the unusual
feature of being non-local, since it relates y at a particular point to H, at all points
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v}

on the lip. For numerical purposes, it is better to work with the potential ¢, than

the field H,, because the latter is discontinuous at the crack ends. The boundary
condition 1s then a relationship between the potentials

V(x,0,0) = f do(x —x° )aF 6D 4

"+ Hx. (3.6.18)

For closed cracks, the magnetic fields on the two crack faces must be equal,
as shown in figure 3.2, or 3.2.11 would be violated. Consequently, on the bottom
edge of the crack, the component of flux normal to the edge must be zero or else
there would a netdivergence in flux density, which is forbidden by 3.2.2. Interms
of the potentials, the normal derivative of y and the tangential derivative of ¢ are
zero on the bottom edge. This means, in particular, that the bottom edge is a line

of constant ¢. In section 3.3 the arbitrary constant in the definition of ¢ was chosen

so that ¢ was antisymmetric across the faces, which implies that, on the bottom
edge, ¢ = 0.
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3.7 Series Solution for a Rectangular Crack =

Solutions already exist for the limiting cases when m is very small [83] or
very large [38]. In this section, a series solution is presented for a rectangular
crack shape, as shown in fig. 3.5, that is valid for general m. The more realistic
example of a semi-elliptical crack is treated in the next section.
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