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Abstract 

This thesis describes a theoretical and experimental investigation of 
electromagnetic methods for the detection and measurement of metal fatigue cracks. 
The available methods are reviewed, with particular attention being paid to 

mathematical models, and a new model of the electromagnetic field near a metal 
fatigue crack for small skin-depths is presented which uses a surface impedance 
boundary condition with the addition of a line source to represent the crack. This 
leads to a coupled system of two magnetic scalar potentials, one on the crack face 

which obeys the two-dimensional Laplace equation and one outside the test-piece 

which obeys the three-dimensional Laplace equation. The behaviour of the field is 

governed by a parameter m =1/(µ, S), where 1 is the size of the field perturbation, µ, 
is the relative permeability and S is the skin-depth. When m is small, almost all the 
flux is concentrated inside the metal and the exterior potential also obeys the 
two-dimensional Laplace equation, on the test-piece surface. When m is large, the 

perturbation part of the exterior field has a negligible effect on the field inside the 

crack so that the crack-face potential may be found by the Born approximation. The 

general m problem is solved for rectangular and semi-elliptical cracks in flat plates, 
interrogated by uniform fields, and the solution is verified experimentally. A method 
for calculating the crack depth from the magnetic field is given, with descriptions 

of industrial applications. The theory is further developed to find the impedance 

change in an air-cored circular coil caused by a crack, to find the field near 
overlapping cracks and to find the field near a crack in an interior corner. Finally, a 
semi-empirical analysis is presented for a ferrite-cored measuring coil. 
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1 Introduction 
When a metal object is subject to a cyclic load it is possible for a crack to grow 

and eventually cause fracture even if the stress in the uncracked region is well below 

the yield point. This process, known as metal fatigue, is one of the commonest reasons 
for the failure of engineering components and structures and can be the cause of 
much loss of life, expense and environmental damage. Fatigue is a ubiquitous 
problem but it is of particular importance in the oil, gas, aerospace, nuclear and 
electricity industries. When fatigue is expected, it is often the practice to replace the 

vulnerable, parts at regular intervals, but adequate protection can then only be 

achieved if many sound components are discarded as well as' the flawed ones. 

. Moreover, this approach may be unpractical if fatigue is expected in a major 
structural member. Consequently, much effort is devoted to testing components and 
structures to see if they have suffered fatigue damage and need to be replaced or 
repaired. This process is called non-destructive testing (NDT). Inspection may be 
formally defined as non-destructive if the performance of the. test-piece is not 

. permanently degraded by the test procedure itself. It may, in addition, be desirable 
for inspection to be non-destructive in the broader sense of allowing normal 
operations to continue. The component may even remain in service while it is tested; 
a form of inspection called condition monitoring. In order to assess the danger 

presented by a crack, it is necessary to know its size and location and to predict how 

quickly it will grow under service conditions. Quantitative NDT, with a criterion to 
determine if a component is fit for its purpose, is termed non-destructive evaluation 
(NDE). 

There are several ways of inspecting for fatigue cracks, some of the best known 

of which are the visual, ultrasonic, radiographic and dye-penetrant methods. 
However, this thesis is concerned only with electromagnetic NDT methods, which 
offer a potential for quantitative work that has not, as yet, been fully exploited. The 
first chapter is a review of electromagnetic NDT methods currently in use, with the 
emphasis on mathematical modelling techniques. A distinction is drawn between 

purely, magnetic methods that rely on the crack 1 being 'a, break ý in the , magnetic 
permeability of the metal, and eddy-current and potential difference ' methods that 

rely on the crack being a break in'the electric conductivity. = '` 
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The remainder of the thesis describes a new model of eddy-current and potential 
difference NDT, ý based on the surface impedance boundary condition, and valid 
when the skin-depth is small compared with the length of- c- 

tae 
eraek andinteffegating 

%elrl: Detailed calculations of the field inside the metal are avoided by making use 
of the fact that the exponential decay profile is unaffected by the presence of the 
crack except at points immediately adjacent to the crack. It is shown in chapter three 
how one may allow for the presence of a surface-breaking crack by adding a 
line-source term to the boundary condition. The field in the exterior space and the 
field on the faces of the crack are described by two magnetic scalar potentials coupled 
together by the boundary conditions. The behaviour of the fields is shown to be 

governed by a dimensionless parameter m which depends on the operating frequency, 

the electromagnetic properties of the metal and the length-scale of the problem under 
consideration. This parameter is a measure of the ratio of the magnetic flux in the 
exterior space in the region of the flaw to the magnetic flux inside the metal in the 
region of the flaw. .. r 

The limiting cases of small and large in are shown to correspond to two existing 
theories. When m is small, the magnetic flux is concentrated into a thin layer just 
inside the metal and the potential obeys the two-dimensional Laplace equation both 

outside the crack and inside it, with continuity of potential and normal derivative on 
the crack mouth. This behaviour corresponds to the "unfolding" model previously 

. 
developed at UCL. In contrast, when m is large, the perturbation of the exterior field 
has no effect on the field inside the crack, which may therefore be found using the 
Born approximation, as assumed by Auld and his co-workers at Stanford University. 
Explicit calculations for general m are presented for rectangular and semi-elliptical 
cracks in flat plates under interrogation by a uniform field. The predicted change in 

the fields has been confirmed experimentally by measuring the field near a 
rectangular notch over a range of frequencies. 

Some practical applications of the model are given, including examples of 
fatigue crack length and depth measurements. The new model is used to calculate 
the impedance change for an air-cored eddy-current coil inspecting a fatigue crack 
of uniform depth. It is explained briefly how the theory can also be used to find the 
field when the flaw is a pair of overlapping cracks and when the crack is situated in 

an interior corner. Finally, the response of a ferrite-cored probe is discussed using 
a semi-empirical approach. 
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2 Review of Methods of Electromagnetic NDT 
2.1 General Principles '"''' F 

All metals are good electrical conductors in three senses relevant to NDT. 

Firstly, their charge relaxation times*[ 1] are much smaller than the periods of the 

signals that are used. Any charges existing in the bulk of the metal decay to zero 
instantaneously and the internal charge density may therefore be neglected in any 

calculations. Secondly, conduction currents in metals always dominate 

displacement currents so that the latter may also be neglected. Thirdly, the 

conductivity' of a metal is much larger than that of air or any other likely 

surrounding medium. Even sea-water typically has a conductivity about a million 

times smaller than, for example, carbon steel [2]. An interesting exception to the 

third rule occurs in some nuclear reactors where a liquid metal coolant surrounds 
the components to be inspected. Iron and steel are, of course, the most important 

industrial metals of all and many of the components that require inspection for 
fatigue are ferromagnetic, having relative permeabilities as high as 10'. A fatigue 

crack, therefore, not only constitutes a very large break in conductivity but 

sometimes also a large break in permeability. Electromagnetic NDT for fatigue 

crack damage may attempt to detect either of these features. For example, if an 

electric current is established in the metal, it will be diverted by the crack and the 

consequent changes in the electromagnetic field may be measured with contacting 

electrodes or a suitable magnetometer. If a magnetic field is established in a 
ferromagnetic metal, there may also be a detectable leakage of flux from the crack 

which can be shown up with magnetic ink or measured with a magnetometer. 
Mathematical modelling of the signal obtained from a crack of a particular 

size and shape is referred to as solving the forward probl em. However, the ultimate 
aim of theory is to reveal as much information as possible about the crack's size, 
shape and position from the signals, which is 

, 
referred to as solving the inverse 

problem. 
The discipline of fracture mechanics is concerned with the prediction of 

crack growth and remaining service life by analysing the stresses in the 

neighbourhood of a crack [3]. Information obtained from NDT is used in fracture 
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mechanics assessments of cracks. The crack depth is an especially important 

quantity to know because it is needed to determine the stress field and also to 
determine how much uncracked material remains. 

Time-varying electromagnetic fields inside metals exhibit the classical 
skin-effect [1]. As the frequency is increased, the fields are confined to a thin 
layer near the surface of the metal. For a uniform field in an infinite half-space 

the profile in the thin layer is an exponential decay 

E= Eo exp[(i + 1)z/5J , (2.1.1) 

where z is the coordinate normal to the metal surface. The decay length S is 

referred to as the skin-depth and is given by 

S=ý 
µaw, 

(2.1.2) 

where co is the (angular) frequency, µ is the permeability and a is the conductivity. 
For example, the skin-depth in aluminium [4] is 0.84mm at 10kHz. At the same 
frequency in another non-magnetic metal, which had a lower conductivity than 

aluminium, it would be a little higher and in a magnetic metal it might be 

substantially lower. In mild steel, for example, the skin-depth is about 0.1mm at 
10kHz. For more complex shapes of test-piece, the formula 2.1.1 is a reasonable 
approximation if the depth of metal is much greater than 5 and the surface is flat 

on a length scale comparable with S. 
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Fig. 2.1 Current flow near a fatigue crack at various frequencies, 
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When the test-piece is cracked, the fields are changed significantly from the 
usual exponential decay pattern, as shown in fig. 2.1. If the crack is very small 
and the frequencies are kept low, the skin-depth may be much larger than the 

crack depth, this is referred to as the thick-skin case. A surface-breaking fatigue 

crack then perturbs only a small part of the field. At higher frequencies the 

skin-depth may be much smaller than the crack depth: the thin-skin case. Such 
fields are particularly sensitive to surface breaking defects; they are, however, 
insensitive to buried defects. Therefore, the best strategy for inspection is to use 
more than one frequency. In some alloys the permeability is very sensitive to the 
chemical composition and it may bedifficult to distinguish a dangerous flaw 
from a harmless minor local variation. This problem can be overcome by applying 
a large d. c. magnetic field which magnetically saturates the material [5]. The 

metal then behaves like a non-magnetic material in response to the small 
superimposed a. c. inspection signal. This technique can also be used to increase 

the skin-depth in order to detect buried flaws. 
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The skin-depth equation 2.1.1 can also be thought of as describing waves 
propagating into the material at different speeds. Note that the speeds &, u can be 

quite slow, for example 53 m s'1 for aluminium at 10kHz. For a uniform plane 
wave, as above, the electric field E and the magnetic field H are related by 

Es = Z, Hý,, (2.1.3) 

Ey = -ZH,, (2.1.4) 

Z, _ 
ýý+5 (2.1.5) 
ar 

where x and y are the coordinates tangential to the surface and Z, is called the 

characteristic impedance [61 of the metal. 
So far it has been implied that the field is sinusoidal. Most commercial 

equipment is of this type, but it is also possible to excite the test-piece with a 
pulsed signal, which contains a spectrum of frequencies. The lower frequency 

components of the pulse travel at slower speeds and penetrate to larger depths. 

2.2 Available Electromagnetic NDT, Techniques - 
Perhaps the most widely used electromagnetic NDT method is the eddy 

current method, in which the probe is inductively coupled to the test-piece. 
Pioneering experiments were undertaken as early as 1879 by Hughes [7] who 
demonstrated a device which could distinguish between different metal samples 
and suggested using it to detect counterfeit coins. The technique then developed 

slowly until the introduction of electronic measurement circuits, such as that 
described by Vigness, Dinger and Gunn in 1942 [8]. Their electronics relied, of 
course, on vacuum tube technology. Development then became much more rapid 
with extensive research conducted for example, by Förster et al. [9]. A thorough 
description of eddy-current NDT methods was given in a book by Libby [10] in 
1971, by which time techniques such as multi-frequency and pulsed excitation 
had become well established. 
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In the usual modem variant, shown in fig. 2.2, a coil is passed over the test 

piece and its complex impedance monitored using an a. c. bridge circuit. If a 
current flows in the coil it induces eddy-currents in the metal which are perturbed 
by the presence of a flaw. The flux through the coil, the induced voltage across 
the coil and the measured impedance are also changed. Coils are manufactured 
for specific applications, for example: they may be wound around the outside of 
a tubular test-piece, or on a bobbin to go inside a tube, or in the form of a pencil 
probe to inspect surfaces in general. Ferrite cores may be used to increase the 
flux coupling with the coil and the probes may also be shielded to concentrate 
the field in the region immediately beneath the probe. It is conventional to display 

the complex. impedance plane on a storage oscilloscope and and to, rely , on the 

operator's skill to distinguish the signature of a flaw from spurious signals such 

as a change caused by a pencil probe being lifted off the surface. 
Although the use of one coil has the merit of simplicity, , 

more complex 
arrangements can improve the sensitivity. For, example, two, balanced coils, 

wound in opposite senses, can be connected in series to make a differential coil 

eddy current probe. Separate exciter and receiver coils can be used, each one 

optimized for its purpose. For this type of probe, the impedance measured is the 

ý: ý, 
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mutual inductive reactance. One arrangement, referred to as an eddy current 
reflection probe [11] employs a large exciter coil and a small differential pair of 
receiver coils. 

Eddy current probes are usually placed as close as possible to the region to 
be inspected and it is generally true that the signals depend only weakly on objects 
further away. This is a consequence of the fact that the fields are quasistatic rather 
than radiative. Another way of looking at this is to say that the flaws and probes 
are much too small to act as efficient antennae at the frequencies used. However, 

the small signal detected by a receiver coil placed far from an exciter coil may 
still contain useful information about the region between them. This remote field 

eddy current technique was originally devised by Schmidt [ 12] to inspect oil-well 

casings for corrosion and has also been applied to large diameter pipelines [ 13]. 
Low frequencies and d. c. magnetic saturation are used so that eddy currents 
generated on the inside of a piece of tubing penetrate to the outer surface as well. 

In some circumstances it is possible to`make electrical contact with the 
test-piece and fatigue cracks can then be measured by potential difference crack 
sizing. An electric current is injected into the metal or induced in it and the 

potential difference between two points on the surface is monitored. If a crack 
cuts the surface in the region between the two contacts the p. d. is increased: the 
deeper the crack the bigger the increase. Both direct current potential difference 
(DCPD) and alternating current potential difference (ACPD) variants exist. 

The idea of using DCPD measurements for crack detection and sizing arose 
out of work by BM Thornton and WM Thornton [ 14] on the problem of section 
thickness measurement, reported in 1938. Another early system was described 
by Trost [ 15] six years later. When used on small laboratory samples [ 16], DCPD 

can detect incremental crack growth to within 50µm under favourable conditions 
and often requires only simple electronics. Unfortunately, it is not well-suited for 
large objects because the current that needs to be supplied to obtain a measurable 
potential difference is very large. Even a sample of a few centimetres in size 
might require 50A. Thermal emf's can cause errors in d. c. systems if precautions 
are', not taken to maintain constant temperature [17]' which is' especially 
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inconvenient for experiments investigating fatigue over a range of temperatures. 
Another problem is that the d. c. itself can cause unwanted electrochemical 
phenomena [18] in corrosion-fatigue experiments. . ,f. 

At high frequencies, the skin-effect causes the effective resistance of a piece 
of metal to be much higher than its d. c. value. Therefore, the p. & obtained from 

a given current is also much higher. Moreover, thermal e. m. f. 's, and 
electrochemical problems are eliminated and it is possible to use frequency and 

phase discrimination to improve the signal to noise ratio. A number of authors 
[18], [19], [20] described ACPD systems designed to take advantage"of some of 
these ideas and by 1980 Dover et al. [21], [22], [23] had developed a successful 
instrument that measured the ACPD with a filtered amplifier and synchronous 

;.: rectifier, phase-locked to a current source. Recent versions of this device employ 
a 2A current at 6kHz and have been used for large scale laboratory fatigue tests 

and also to inspect off-shore structures, pressure vessels and a variety of other 
industrial plant. The main problems arise from the fact that the potential 
differences that are measured are still, very small, perhaps 10µV. Large common 
mode interference signals are often encountered but phase discrimination helps 

to overcome this difficulty because the interference is usually out of phase with 
the desired voltage. Unwanted signals can also be induced in the probe leads, this 

problem being especially troublesome with non-magnetic ý materials. 
Nevertheless, measurements of crack depth can be found with a precision of about 
100µm. Potential difference methods have the advantage of not requiring any 
measurement of the height of the probe above the surface and often need only 
relatively simple modelling, as will be discussed in section 2.4. 

One of the most important industrial crack detection techniques is magnetic 
particle inspection (MPI), which is a purely magnetic 'method and suitable only 
for ferromagnetic metals [4], [24]. A large magnetic field, approaching saturation 

strength, is applied to, the test-piece, which is then sprayed with magnetic ink. 

Flux leaking from a surface-breaking crack creates a region with a strong local 

magnetic field which polarises and attracts the ink particles, causing 'them to 

accumulate at the crack mouth so that it is revealed as a bright line. ' Refinements 
include the use of ink that fluoresces under ultra-violet light to improve contrast, 
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and the use of Hall probes to measure the applied field to make sure that it is 

strong enough. No information is obtained about crack depth by the usual MPI 

test methods but a technique for estimating depth was proposed by Adhikari [25]. 
He masked the crack with increasing thicknesses of cellulose adhesive tape until 
no indication remained and took the final tape thickness as his estimate of depth. 

No justification has been given for the underlying assumption that the leakage 
field from the crack extends vertically into space to a distance of one crack depth 

and the technique can also be criticised because the point where the crack 
indication vanishes is subjective. However, Adhikari obtained some surprisingly 
good experimental results on shallow cracks. 

Hall probe or fluxgate magnetometers can also be used to measure the field 

near a flaw in a ferromagnetic metal. This technique is used, for example, in the 
British Gas "pig"; an inspection vehicle that travels along the inside of gas 
pipelines, driven by the pressure of gas [26]. Magnetic'particle inspection would 
be very difficult to apply to such a test-site, because of its inaccessibility. 

An unusual magnetic flaw detection system was described by Owston [27] 
in which an eddy-current coil'and d. c. bias coil were used to find changes in 

incremental permeability of a magnetised tube. Superficially, this resembles an 
ordinary eddy-current test, but because the d. c. component does not exhibit the 

skin-effect, deeply buried flaws can be detected. 

2.3 Modelling of Eddy Current Systems 
Classical electromagnetic fields are described, of course, by the famous set 

of partial differential equations which were presented by JC Maxwell [28] in 

1864, some years before Hughes' experiments on his "induction balance" 

eddy-current instrument. However, adequate experimental testing of theoretical 

predictions of probe response only became possible after the introduction of 
electronic measurement. A review of theoretical models of eddy-current NDT 

was presented by Lord and Palanisamy [29] in 1981. Early papers gave solutions 
for probe responses to unflawed samples only. Lord and Palanisamy attributed 
to Förster and Stambke [30] the calculation of the impedance of a cylindrical coil 
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concentrically wound around a cylindrical rod and to Waidelich and Renken [31] 

the equivalent solution for a circular coil over a conducting plane. These axially 
symmetric problems were solved using analytic methods. 

A model of flaw detection was produced by Burrows [32] in which the flaw 

was approximated as a dipole. He restricted his analysis to low frequencies such 
that the skin-depth was much greater than the flaw size. As explained above, this 
is not an appropriate mode in which to inspect for surface-breaking fatigue cracks. 

'Burrows used the Lorentz reciprocity theorem [1] to show that, in two coil 
systems, it is immaterial which coil is used as the exciter and which as the receiver. 

With' the advent of high-speed ' digital computers, evaluation of more 

complex theories became feasible. Dodd and Deeds [33] 'generalised the axially 
symmetric solutions to cover the problem of a coil encircling a conductor with a 
concentric layer of ä different conductor 'and also the problem of a coil over a 
two-layer conducting plane. They included a term taken from Burrows'- theory 
to model the effect of a flaw. Kahn, Spal and Feldman [34] found solutions for 
`eddy currents near the lip and tip of a long fatigue cracks and by joining these 
solutions constructed an approximate theory valid for situations where the crack 
depth was as small as four times the skin-depth. Spal and Kahn [35] produced 
the first model of the eddy-currents near a fatigue crack which was valid for all 
skin-depths. In this paper, they considered the case of a tight radial crack in a 
circular cylinder and found solutions using eigenfunction expansions. In ä later 

paper they used the boundary integral equation method (BIE) [36] to generalise 
'their model to cylinders of arbitrary cross-section'-and opened up the prospect of 
BIE solutions for a much wider range of geometries. 

The BIE method can be most easily understood from the example of its use 

-in solving Laplace's'equation- 

v=0. 

The Green's function for this equation obeys 

'. .. 
V2G8(X -x1, (2.3.2) 

_. where S here denotes the Dirac delta function. Application of the symmetric form 

of Green's theorem to yr and G over a volume V, bounded, by a surface S, gives 
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5(wV2G_Gv1)dV= f 
yý -G 

(2.3.3) 
n nn vs 

where the derivatives with respect to n denote spatial derivatives in the 
direction normal to S. 
Substitution of 2.3.1 and 2.3.2 in 2.3.3, followed by integration over they delta 
function, gives the boundary integral equation 

v(x') 
J(v_G)dS. ä 

,.. (2.3.4) 
s 

The BIE method is implemented, numerically by dividing the boundary into 

elements and approximating the potential within each element by a parametric 

equation so that the field is characterized by a set of unknown parameters. When 

the BIE, expression 2.3.4, is applied at all points on S, subject to the relevant 
boundary conditions, a matrix equation for these unknowns is obtained, which 
is then solved to find the boundary field. This method is referred to as the boundary 

elementmethod (BEM). BIE methods can be applied to other problems, providing 
that a suitable Green's function is known. The BIE does not give the field at all 

points inside the volume V but this is not needed to find the probe response in 

NDT problems. ., 
In ultrasonics it is often the practice to employ the Born approximation of 

wave scattering theory [37], which involves neglecting the back-scattered wave 

when calculating the field on the flaw surface. Auld et al. applied this concept to 

eddy-current modelling of thin-skin fields near surface breaking fatigue cracks 
[38], [39]. They began by finding a series solution for a rectangular shape and 

went on to model semi-elliptical cracks using a finite difference method. In this 

work, the Lorentz reciprocity relationship was used to infer the impedance change 
directly from the flaw field, without first calculating the flux coupling with the 

receiver coil. Moulder et al. [40] verified these models experimentally for two 

cylindrical air-cored probes (quantitatively) and for a ferrite-cored probe 

(qualitatively). This was the first time that the effect of the two-dimensional shape 
of a crack on an eddy current system had been taken into account. The Lorentz 

reciprocity relationship is an exact theorem which can be derived rigorously from 
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Maxwell's equations and is therefore applicable to all electromagnetic fields 

whether radiative or not. The Born approximation, however, is a wave scattering 

result that, at first sight, would not be expected to apply to quasistatic fields such 

as those encountered in NDT. In chapter 3 it is explained how a general thin-skin 

model can provide a criterion to determine when the Born approximation is 

applicable. Auld's model is simplest to evaluate when the eddy-current probe 

gives a uniform field in the unflawed region. Moulder et al. [41] constructed such 

a device and were able to invert to find the depth of both electric-discharge 

machined (EDM) notches and fatigue cracks in titanium alloys. 
Palanisamy and Lord [42] first applied the finite element method (FEM) to 

eddy current NDT analysis, solving a problem similar to one treated analytically 
by Dodd and Deeds. Essentially, FEM is a numerical technique based on the 

calculus of variations. The region of interest is divided into cells and the fields 

or potentials are approximated with simple parametric equations within each cell. 
The governing partial differential equations are then solved by minimizing some 
suitable functional, such as the energy, with respect to the parameters. Although 

requiring intensive computation, FEM has the advantage of being able to deal 

, with ferrite-cored probes and, in principle, with inhomogeneous and anisotropic 
materials. Atherton et al. [43] and Lord [44] et al. have used FEM to model the 

remote field, effect, confirming that it can be understood as a quasistatic 
phenomenon rather than a radiative one. French and Bond [45] have calculated 
the eddy currents near slots 0.5,1 and 2 skin-depths deep using a FEM model of 
the field inside the metal. However, if the same technique was applied to a 
thin-skin problem, a prohibitively large number of elements would be needed. 

With the exception of the general skin-depth models of Kahn et al., it has 

also proved difficult to apply the boundary integral equation method to thin-skin 

problems with cracks. A, BIE model of -a cuboidal cavity was published by 
Beissner [46], - but, in this work, he restricted his calculations to the thick-skin 

case. SK Burke [47] used the BIE to calculate the impedance change of an eddy 
current probe brought near to the edge of a metal block and compared his results 
with an analytic solution [48] in the thin-skin limit. - Very good agreement with 

experiment was obtained. 11 , 
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Electromagnetic fields are usually described by partial differential equations 
and boundary conditions. An alternative and equivalent formulation uses the 
concept of action at a distance. In this description, contributions from all of the 
charges, currents and electric and magnetic dipoles of media are summed to find 

the electromagnetic field at each point. For example, the magnetic field due to 
the currents is given by the Biot-Savart law [1]. In the volume integral method 
of electromagnetic modelling the entire region of interest is discretized and the 
relationships between the fields, currents, conductivities, permeabilities, charges 
and dipoles expressed as large matrix equations which are then solved, usually 
on a supercomputer. A solution to the inverse problem can therefore be found a 
priori, at least in principle. The size of the set of linear equations and, therefore, 
the time needed to solve them is reduced in certain special cases, for example 
quasistatic problems and problems not involving magnetic media. 

Prompted by its success in modelling geophysical problems, HA Sabbagh 

and LD Sabbagh [49] applied the volume integral method to flaw shape inversion. 
Fair agreement was found when their algorithm was used to find the shape of 
circumferential notches on the interior of a stainless steel pipe [50]. The corners 
of rectangular notches were poorly reconstructed. Dunbar [51] rederived 
Burrows' formula for a spherical flaw by the volume integral method and 
suggested pure volume integral and hybrid finite element/volume integral 

methods for NDE forward problems, again drawing on previous work in 

geophysics. McKirdy [52] refined Dunbar's pure volume integral model to give 
excellent agreement with the experimental measurements of SK Burke [53] for 

a coil over a cuboidal notch in aluminium. Whilst Dunbar pointed out that the 

method is sufficiently general to be applied to ferromagnetic test-pieces, all these 

calculations were restricted to non-magnetic ones. In common with FEM, the 

volume integral method is computationally intensive but very flexible. Volume 
integral, calculations for advanced problems involving ferrite-cored probes 
[54], [55] and anisotropic media [56] have been performed more recently by HA 
Sabbagh, LD Sabbagh and Bowler. Jenkins and Bowler have also used volume 
integrals to model an air-cored reflection probe [57]. 
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In the thin-skin limit, the tangential variation of the fields takes place on a 
length scale much greater than the normal variation due to the skin-effect, except 
at the crack itself. Locally, therefore, the fields resemble uniform plane waves 
and E and H are related by equations 2.1.3,2.1.4 and 2.1.5. Senior [5 8] attributed 
to M A, Leontovich the idea of using this set of relationships as a boundary 

condition on the fields outside the conductor. It is usually known as the surface 
impedance boundary condition (SIBC) and is a highly appropriate approximation 
for NDT calculations because it enables the effort of computation to be' put into 

calculating the fields that couple with the receiver rather than into the irrelevant 

calculation of the detailed behaviour inside the metal. Fawzi, Ahmed and PE 
Burke [59] have compared eddy current boundary integral calculations with and 
without the SIBC and their calculations were refined in a later paper by Ahmed, 
Lavers and PE Burke [60]. The use of a BIE/SIBC formulation in NDT was 
proposed by Nicolas [61], and Davey and Turner [62] solved both steady state 
and transient problems in simple shell structures by this method. Davey and 
Turner pointed out that the SIBC could also be used in finite element and finite 
difference calculations. The application of BIE/SIBC methods to flaw detection 

was developed by Beissner [63], [64], [65] who used reciprocity to write the 
impedance change in terms of -scalar., potentials.. Beissner and Graves [66] 

extended this boundary element solution to ferrite cored probes. Unfortunately, 

the BIE expressions become singular inside a closed crack and numerical 
evaluations of Beissner's model by Ogilvy et al. [67] had to be restricted to open 
notches. However, agreement with experimental measurements on anEDM notch 

was good. 
In its usual form, therefore, the SIBC is not applicable to a surface broken 

by a fatigue crack, which is a major limitation on its use in NDT. The main original 
work contained in this thesis is an extension of the surface impedance boundary 

condition to incorporate the presence of a surface breaking fatigue crack:. The 

crack is considered to act as a line: source of magnetic flux, with a strength 

proportional: to the'cross-crack potential difference. The justification for this 

approach is given in chapter 3. It is also shown that, under certain conditiöns, the 

model reduces to the Born approximation used by Auld et al. ; .ý 

; 33 



In order to find crack depth, eddy current probes are sometimes calibrated 
against a set of nbtches of various depths, cut in a block made of the same material 
as the test-piece. An objection to this method is that it is not known if an open 
notch changes the probe impedance in the same way as a closed crack. In chapter 
3 it is shown that a correction factor can be included in 'the extended surface 
impedance model to take account of finite notch opening. Using calibration 
against notches, Oaten and Blitz [68] were able to size fatigue cracks in mild steel 
by the touch method. This consists of lowering the eddy current probe vertically 
onto the metal surface. Their success is consistent with the fact that the correction 
factor to the SIBC model of chapter 3 is, under some circumstances, negligible 
in ferromagnetic materials. 

Fatigue cracks can occur in thin metal sheets as well as in bulk components. 
When a. c. fields are used to inspect this type of test piece it is possible for the 
skin-depth to be thicker that the test-piece. An analytical model of this situation, 
proposed by SK Burke and Rose [69], is valid for cracks much longer than the 

coil diameter. More recently, they have developed a general theory [70], [71] in 

which the crack is represented by a line of vortices in the current field. The plate 
was shown to be characterised by a length scale 82/h where h is the plate thickness 

and 8 the skin-depth. They presented solutions for the limiting cases valid when 
the crack is long or short compared with this length and gave a numerical solution 
for the intermediate case. Burke [72] also extended the solution to the problem 
of two thin conducting plates separated by an insulating layer, one of the plates 
being cracked. All of these models were verified experimentally. The basic 

problem of a crack penetrating a thin plate was also treated by Rodger [73] using 
FEM. 

Finally, it should be mentioned that some models of potential difference 

crack measurement, discussed in the next section, have been applied to eddy 
current systems. An example is the work of Sadgleghi and Mirshekar-Syahkal 
[74], [75] which uses the unfolding theory of Collins, Dover and Michael, 
discussed in detail in the next section, to model an eddy-current probe employing 
a single wire U-shaped inducer. The ACFM probe described in chapter 4 also 

uses a crack depth inversion scheme based on the unfolding theory. 
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2.4 Modelling of Potential Difference Methods 
Calibration of DCPD measurements traditionally relied on comparison with 

some analogous electrical system that had an adjustable feature to represent the 

crack, for example, a thin foil with ä razor slit or a tank of electrolyte in which 

was suspended a` sheet 'of insulating 'material [76]. Direct currents flowing in a 
good conductor obey the 3-dimensional Laplace equation for each component, 

Cal z i+ i=0. 
, 
(2.4.1) 

ax ay DZ 
Since Laplace's equation does not contain any material-constants, calibration 
analogues can be made 'from any homogeneous conducting material of 
appropriate geometry. Such calibrations require tedious experimental work which 
may have to be repeated if there is any change in the DCPD test conditions. 
Moreover, it is often difficult to achieve the same accuracy in the calibration 
measurements as can be achievedin the DCPD test itself. Mathematical modelling 
is used to overcome'these difficulties by eliminating the need for calibration. 
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Fig. 2.3 Equipotentials (broken) and streamlines (solid) for a DCPD test. 
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Translationally symmetric problems, where there is no variation on z, have 

currents obeying the 2-dimensional Laplace equation which is satisfied if the 
components of the field E are the x and y derivatives of a potential that itself 

satisfies Laplace's equation or, equivalently, the real and imaginary parts of an 
analytic function (fig. 2.3). Johnson [77] found a suitable function to model DCPD 

systems using as a boundary condition the requirement that no current can cross 
the crack. He considered in particular the growth of a fatigue crack from a starter 
notch, showing that the crack length can be inferred from the ratio of potential 
differences measured on the specimen in the cracked and uncracked state. It is 

not necessary to know the conductivity or field strength to evaluate his formula. 
The estimate of crack length is given in proportion to the specimen width (the 

meanings of the terms "crack length" and "crack depth" depend on the geometry 
of the sample and are used in different ways by different authors). Picking a 
suitable analytic function that satisfies the appropriate boundary conditions is 

equivalent to finding a conformal mapping that transforms the problem of interest 
into one for which a solution is known. This analytic approach has the advantage 
that it often gives the solutions in closed form. Schwalbe and Hellmann [78] 

pointed out that Johnson's formula gives an approximate model for DCPD 

measurements on the most common laboratory test geometries: the 

centre-cracked tension (CCT), single-edge-notched bend (SEN) and compact 
tension (CT) specimens. 

Numerical methods have also been used to model DCPD in more detail. 
Ritchie and Bathe [79] used the finite element method to calibrate DCPD and 
Aronson and Ritchie [80] used this type of calculation to optimize the positioning 
of the contacts in a compact tension specimen. Nath [81] et al. Used both FEM 

and BIE methods for DCPD in CT and SEN specimens and concluded that 
Johnson's formula underestimates crack depth in the CT specimen. Unlike the 

conformal mapping method, FEM is not restricted to 2-dimensional problems, 
however, the computation times for 2-d cases are much shorter. 
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Fig. 2.4 Crack depth measurement using ACPD. 

A particularly simple 1-dimensional formula exists for crack depth 

measurements by the ACPD method (fig. 2.4) when the skin-depth is small, if the 

crack is of uniform depth. The p. d. measured in the uncracked region by a probe 
of length 1 is 

V, =El, -(2.4.2) 

where E is the field strength. When the probe straddles a crack of depth b, the 

currents must follow a longer path and the p. d. is therefore increased to 
VV =E (1 + 2b_)_. 

Solving the simultaneous equations 2.4.2 and 2.4.3, one obtains the crack. depth 

b'_ý 
V, 

-1 
(2.4.4) 

This formula is only applicable -i¬-the-¬ield if the field is uniform. In particular, 
if the crack is short (in the direction perpendicular to the plane of the paper in 
fig. 2.4), some of the current will go around the ends; rather than underneath, so 
that the 1-d formula 2.4.4 underestimates the crack depth. Fig. 2.5 shows a section 
through a test-piece with such a crack; the electric field is applied in they direction. 
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A great deal of experimental and theoretical work on ACPD has been 

performed at University College London, by Dover, Collins, Michael and 
co-workers. This was prompted by the need to measure fatigue crack growth in 

welded steel tubular joints, of the type used in off-shore structures. The tubes 
concerned are of the order of 0.5m in diameter and, as explained above, the DCPD 

technique is unsuitable for use in such large objects. Having developed the 
technique for this purpose, they also applied it to other types of test-piece, 
including non-ferromagnetic ones. One of the aims of this thesis is to show that 

much of the theory of ACPD developed in this programme is relevant to 

eddy-current testing and vice versa. Most ACPD modelling assumes that the 
incident field is uniform, so it is most readily applicable to uniform field 

eddy-current probes. 
In their original paper on ACPD, Dover, Charlesworth, Taylor, Collins and 

Michael [21] derive a correction factor to the one-dimensional formula 2.4.4. 
Their analysis begins with the eddy-current equation . 

a2E + 
a2E aZE - k2E (2.4.5) 

axe aye+1 az2 
for the field inside the metal. In this equation k2 = iµaco is assumed to be constant. 

In order to describe the thin layer of current they took a Laplace transform on z, 
that is to say, they assumed az dependency of the form exp(sz), so that 
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axe aY2 
(2.4.6) 

They then observed that for a uniform field s=k and, since sand k are independent 

of x and y, infer'that s=k also 'for a uniform field perturbed by the presence of a 
'crack. This is not strictly correct, because the field in general will include 

contributions from modes with different values'of s, including modes that are 
zero in the unperturbed region but have s not equal to k. When s is taken to be 

equal to k everywhere, 2.4.6 reduces to the two -dimensional Laplace equation. 
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unfolded problem-, " 
Fig. 2.6 The unfolding model 

Dover et al. considered the two-dimensional Laplace equation to apply to 
the fields on the surface of the test-piece and also on the two faces of the crack, 

with the field components continuous at the crack mouth (BOD in fig. 2.5) and 
the crack bottom-edge (BCD in fig. 2.5).., The field was found byA solving a 
two-dimensional potential problem over the top surface and crack faces subject 

,, 
to the boundary condition of a uniform incident field. Continuity. of the field 

components on BOD is ensured automatically and continuity across BCD is 
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imposed by making the electric potential zero on ABCDE so that the bottom edge 
is a line of symmetry. Fig. 2.6 shows the resulting field on one side of ABCDE; 

the broken lines are electric equipotentials and the solid lines are currents. They 

referred to their solution as the "unfolding" model because the surface of fig. 2.6 
is produced by unfolding the surface of fig. 2.5 along the line ABODE. Using this 

unfolding model and conformal mapping, Dover et al. calculated correction 
factors to the ACPD one-dimensional formula for a crack of circular-arc form. 
In chapter 3, it is shown that the unfolding model can be derived as a limiting 

case of the extended surface impedance model. The relevant limit occurs for short 
cracks in strongly ferromagnetic metals, which explains why Dover et al. reported 
good agreement with experimental measurements in mild steel plates. It must be 

stressed that Laplace's equation in ACPD is not applied in the same way as it is 
in DCPD and the rationale for its use is quite different. ° 

Different conformal maps provide models of other shapes of crack. The 

Schwarz-Christoffel transformation [82] is a well known algorithm for generating 

conformal maps of polygonal shapes and was used to model rectangular and 

triangular [83] cracks. Whilst these shapes are not encountered in practice, they 

give potential differences that differ very little from those given by more realistic 

shapes. Shang et al. [84] used the Schwarz-Christoffel transformation in an 

approximate analysis of the fields near a crack in the corner of a specimen. In the 

original circular-arc model a two-stage trigonometric mapping was used, but the 

same field can be generated in a single step by using an algebraic mapping called 

the Kdrmdn-Trefftz transformation. A second application of this mapping gives 

the field near the bow-shaped crack formed by two cracks running into each other 
[85], which is of common occurrence in practice. Sometimes, especially on 

tubular welded joints, cracks occur with a thin line of metal bridging the two 
faces. Michael and Collins [86] gave a simple algebraic transformation that can 
be used to find the fields near such a line contact ön a uniformly deep crack. It 

is also possible to combine this map with, for example, the Kärmän-Trefftz to 

give a circular arc with a line contact. Two other useful mappings were given in 
the same paper. The first transforms fields that are zero at infinity' to fields with 

periodic boundary conditions, which occur on the surface" of cylindrical 
' f: $ . tL cri ar 'Y 
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test-pieces. The second is applicable to a crack that penetrates right through a 
plate. Such through-crack problems were discussed in detail in a more recent 
paper [87]. 

It is, of course, possible to use other methods of solving the two-dimensional 
Laplace equation in the unfolding model. In particular, a Fourier series solution 
was derived by Collins et al. [88], [89] for semi-elliptical cracks, which yields 
potentials that are slightly different from those of a circular arc of the same aspect 
ratio. Using finite differences, Haq et al. [90] solved the unfolded problem for 

overlapping rectangular cracks. Whatever method is used, the advantage of the 

unfolding model is that the surface field distributions can be found by solving a 
two-dimensional problem only. 

Given sufficiently detailed and accurate measurements of the cross- crack 
potential difference, it is possible to infer the complete profile of the crack. An 
iterative algorithm, which relies in part on the intuition of the user, was developed 
by Connolly et al. [85] to invert in this way. He used the boundary element method 
to solve the unfolded problem at each stage of the iteration. Bipolar coordinates 
were used to handle singularities at the crack ends. More recently, a single-step 
inversion algorithm was published by McIver [91],, which requires the user to 

give only one parameter. Both of these algorithms use the unfolding concept and 
so are valid only for short cracks in ferromagnetic metals. Shape inversion seems 
to be numerically unstable in principle, so it is always necessary to include some 
artificial smoothing. It is shown in chapter, 3 that the potential difference across 
a semi-elliptical crack differs by, at most, about 5% from the p. d. across a 

t For toe 'v«e rectangular crack. Very accurate measurements are therefore needed if inversion 
arpeýt patio. routines are to show the bottom corners of, a rectangle. This conclusion is also 

true of the volume, integral inversion routine of. Sabbagh and Sabbagh [50] for 

circumferential notches, described above. - 
When an a. c. field is of sufficiently low frequency that the skin-depth is 

much greater than the crack depth, the right-hand side of 2.4.5 is negligible and 
the field may be regarded as a d. c. field for theoretical purposes. This can happen 

even at kHz frequencies in a poorly conducting non-magnetic metal. Michael et 
al. [92] modelled ACPD tests on threaded bolts made of titanium and Inconel in 
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this way, mapping the thread shape onto a straight line. Thin-skin ACPD gives 
a depth measurement according to the one (or two) dimensional path only and is 

therefore insensitive to the angle 0 which the crack face makes with the metal 
surface. In situations where this is likely to differ significantly from 90', it is thus 

not possible to say, from the thin-skin data alone, whether the crack is close to 

penetrating through the test-piece. Lugg et al. [93] investigated the use of 
thicker-skin fields to measure ' crack inclination. An important practical 
conclusion from this work was that an inclined crack could be immediately 

recognized by the asymmetric shape of the ACPD signal as the probe traverses 
the crack. 

T 

I 
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Fig. 2.7 Comparison of the crack depth estimates given by ACPD and TOFD. 

This inability of thin-skin ACPD to determine crack inclination is a 
limitation that applies to all high frequency techniques, as will be shown from 

the SIBC model in chapter 3. Although a detailed comparison of the various NDT 

methods for measuring crack depth is beyond the scope of this thesis, it is 

worthwhile contrasting the depth estimates of ACPD and ultrasonic time of flight 
diffraction (TOFD) [94]. The former gives the distance in the plane of the crack 
face from the surface to the crack tip whilst TOFD gives the vertical distance 

from the surface to the crack tip. The TOFD depth estimate (fig. 2.7) is found by 

measuring the time taken for an ultrasonic wave to propagate between two 

transducers T via the crack tip. - The transducers are moved, ' keeping their 

separation constant, until the time of flight is a minimum, which indicates that 

(_j 
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they are symmetrically positioned about the crack tip, and the depth dd is then 
inferred by triangulation. Crack inclination could be deduced by making an ACPD 
depth measurement d, and using the formula 

0= cos '(d/d, ). (2.4.7) 

The two techniques are also complementary in the sense of relying on different 

material properties. A discrepancy between the two depths should not, therefore, 
be interpreted as an indication of crack inclination until the possibility of local 

changes in material properties has been eliminated. 
It is impossible in practice to construct a probe that only measures the surface 

electric potential difference. Inevitably there is always some inductive coupling 
as well, although it can be minimized by careful probe design. This effect is 

especially strong in non-magnetic materials where the flux density outside the 
metal is of the same order of magnitude as it is inside the metal. When ACPD 

measurements are made on open notches, rather than closed cracks, a finite 
inductance arises just from the geometry of the test-piece. Mirshekar-Syahkal et 
al. [95] derived a correction to the one- dimensional formula which allows for 

the voltage induced by the magnetic field in a notch or because of probe design. 
The notch correction factor'is incorporated into the extended SIBC model in 

chapter 3. 

2.5 Modelling of Flux Leakage Methods 
. ,. 

Flux leakage methods are discussed here rather briefly because they are less 

relevant to the remainder of the thesis and because the literature has been reviewed 
recently by Ales [96]. 

Calculations of leakage fields from cracks in ferromagnetic metals were 
made by Zatsepin, Shcherbinin [97], [98], [99] and other-workers in the Soviet 
Union from 1966. At this time, computers powerful enough to solve complex 
magnetostatic problems numerically were unavailable so they used approximate 
analytical solutions in which the flaws were modelled as, point, line or, strip 
dipoles. Verifying experiments were also conducted. -;;, 
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Hwang and Lord [100] applied finite element analysis to leakage field 

calculations and this method has been further developed by Lord et al. [101] and 
Atherton et al. [ 102], [ 103] . An important advantage of FEM for this application 
is that it is potentially possible to allow for the non-linear and hysteretic behaviour 

of strongly magnetised materials. Flux leakage is quite different in this respect 
from eddy-current NDT, where the magnetisation is always much smaller than 
that required for saturation and it is reasonable to neglect these effects. Förster 
[104] reported poor agreement between Hall probe field mapping experiments 
and FEM calculations. 

It might have been imagined from the development of the subject that the 

possibility of finding analytic solutions had by now been completely exhausted. 
However, in 1986 Edwards and Palmer [105] used the method of images to find 

the surface polarity inside a long semi-elliptical notch and showed that the polarity 
inside a narrow notch or crack is nearly constant, as assumed by Zatsepin and 
Scherbinin [97]. They also calculated the magnitude of the polarity in terms of 
the applied field and predicted the field outside the notch by substituting this 
dipole strength into the expressions of Zatsepin and Scherbinin. This prediction 
was confirmed by Hall probe measurements. Edwards and Palmer also discussed 

the significance of their results for practical MPI testing and concluded that an 
applied field strength of the order of hundreds or thousands of Am' is needed to 
detect a crack. For comparison, the British Standard [24] in most circumstances 
recommends that the field exceed 2400Am 1. 

Magnetic particle inspection is a quantitative technique only insofar as it 

shows the crack length on the surface - only a crude estimate can be made of the 

crack depth. Modelling studies are therefore conducted with the aim of optimizing 
sensitivity and reliability [ 106] rather than of determining crack profiles. McCoy 

and Tanner [107] used the magnetic field of Edwards and Palmer to find the 

equations of motion of small magnetic particles in a viscous fluid. From a 
computer simulation of the MPI process, based on these equations, they concluded 
that 20µm particles gave better contrast then 10µm particles and that the optimum 

viscosity of the carrier fluid was around 0.7 mPa s, close to that of the light oils 
used in practice. 
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3 Theory of the Extended. Surface Impedance Model 
3.1 Introduction 

Beginning fromMaxwell's equations, this chapter explains how the field 

near a crack in the surface of a metal object may be derived from a scalar potential 

and how the field inside the metal may be accounted for by using the surface 
impedance. The effect of the crack itself is modelled by considering it to act as 

a line source, described mathematically using a Dirac delta function. A boundary 
j these rwgtk o.. 

condition on the scalar potential is derived . It is also shown 
that on the crack face itself, the field obeys Laplace's equation in two dimensions. 

Two important limiting cases are then discussed, governed by the 
dimensionless parameter m= a/(µ, S) where a is the length scale of the problem. 
When m is large, the new boundary condition is shown to reduce to the simple 

requirement that the component of magnetic flux normal to the metal surface is 

zero. This is the condition that was used by Auld et al. in their Born approximation 

model. Conversely, when m is small, it is shown that the new boundary condition 
implies that the field on the metal surface obeys Laplace's equation in two 
dimensions, just as it does on the crack face. Therefore, if the scalar potential is 

symmetric about the crack line, the unfolding model of Collins, Dover and 
Michael is correct. 

The model is further developed for the specific example of a crack in a half 

space, interrogated by a uniform field. It is'shown by symmetry that a uniform 
field parallel to the crack is not perturbed at all, so only the component of the 

uniform field perpendicular to the crack is considered. A Fourier transform 

solution is obtained which enables the scalar potential to be written in terms of 
the cross-crack potential difference. In the limiting cases, it is shown that the field 

at'any point in thexthree-dimensional space'o'utside the crack can then be found 

immediately by using the existing solutions, the conditions for their validity now 
being known. For the intermediate case, new solutions, using series methods, are 

given for rectangular ands semi' elliptical cracks, and they areshow to be in 

agreement with the earlier models in the limiting cases. A' brief description of a 
boundary element solution, due to McIver, is also given. 

.,. -, i; - ..,. . jý . _.... ... jam 
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Fig. 3.1 Coordinate system and terminology. 

The coordinate system and terminology for the different parts of the crack shown 
in fig. 3.1 will be used throughout the thesis, except where stated otherwise. 

3.2 Derivation of the Surface Impedance Boundary Condition 

Classical electromagnetic fields obey Maxwell's equations 
div D =p, 

div B=0, 

curl E_ 
DB' 

curl H =j+---, 

together with the relationships 
B=pH, 

(3.2.1) 

(3.2.2) 

(3.2.3) 

(3.2.4) 

(3.2.5) 

D=cE, (3.2.6) 

which are used to account for the effects of the dipoles of media. In this thesis, 

only isotropic media will be considered, so the permeability µ and conductivity 
ß are scalars. It will also be assumed that the media are homogeneous, so µ and 
a are constants. As discussed in chapter 2, it is usually the practice to work with 
individual frequency components when making NDT measurements, so a time 
dependence of the form exp(iwt) will be assumed. Assuming the test-piece is 

surrounded by air, or some other medium whose electromagnetic properties 
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closely resemble those of free-space, the charge and current densities are zero 
and Maxwell's equations in the external region, for each frequency component, 
are 

div E =O, (3.2.7) 

div-B =0, (3.2.8) 

curl E =-iwB, (3.2.9) 

curl B= ico 4E. (3.2.10) 

It is well-known that solutions to these equations may be written in terms of 
travelling electromagnetic waves with speed c= (14 )-'n, the speed of light. 
However, in NDT problems the free-space wavelengths are always much larger 

than the scale of the problem, so the time taken for a wave to propagate over the 
region of interest is negligible compared with 1/w. For example, the minimum 
free-space wavelength likely to be encountered is about 10m, corresponding to 
a frequency of 30MHz and the fatigue cracks must usually be detected when they 

are no more than a few millimetres long and sometimes less than 1mm long, 
depending on the metal in question. For NDT purposes, therefore, the propagation 
speed may be regarded as infinite and the right-hand side of 3.2.10 taken to be 

zero. Such fields are said to be quasistatic and are distinguished from truly static 
fields because Faraday's law, equation 3.2.3, maintains time dependence. The 

term that is"neglected originates fromýthe second term on the right-hand side of 
3.2.4, known as the displacement current. 

Quasistatic magnetic fields are irrotational, that is to say, they obey 

curl 11 = 0, (3.2.11) 

and may therefore be described, without loss of generality, by a scalar potential 
yr where 

H=V. (3.2.12) 

Substitution of 3.2.12 and 3.2.5 into 3.2.8 shows that yr obeys Laplace's equation 

V21V 1 
in the external region. 

(3.2.13) 
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Next, consider the region inside the test-piece. The metal will be assumed 
to be isotropic and homogeneous as far as its conductivity a and relative 
permeability E4 are concerned. Ohm's law 

j= 6E (3.2.14) 

is obeyed, if the magnetic field is never strong enough to deflect the conduction 
electrons significantly. The internal charge density p will be assumed to be zero, 
since metals are good conductors. For the same reason, the conduction current 
densityj will always far exceed the displacement current density, which can again 
be ignored. Maxwell's equations inside the test-piece are therefore 

div E=0, (3.2.15) 

div B=0, (3.2.1 6) 

curl E_ -icoB, (3.2.17) 

curl B= µßE. (3.2.18) 

Taking the curl of 3.2.18 

curl curl B= µQ curl E (3.2.19) 

and substituting in 3.2.17, one obtains 

curl curl B= -iwµyB. (3.2.20) 

A vector identity is 

curl curl B- grad (div B) - V2 B. (3.2.21) 

From 3.2.20,3.2.21 and 3.2.16, it follows that B inside the metal obeys the 
Helmholtz equation 

V2B = k2B, (3.2.22) 

where 
k2 = iU ta. (3.2.23) 

Note that the assumption of zero charge density implicit in 3.2.15 is not actually 

required in deriving 3.2.22. However, by taking the curl of 3.2.17 in a similar 

way and using 3.2.18 and 3.2.15, it may be shown that E and hence, from 3.2.14, 
j also obey the Helmholtz equation. 

A field that is uniform in the x and y directions satisfies 3.2.22 if 
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B= Boe kz, (3.2.24) 

where Bo is the value of B at z=0 (the surface) and it is understood that the sign 
of the real part of k is positive, in order to keep B bounded as z --. ) --co deep inside 

the metal. If the frequency is high, the exponential decay length S= l/Re(k), 
known as the skin depth, is small and the field is effectively confined to a layer 

near the surface - the skin effect mentioned in the previous chapter. These 

statements also apply to the fields E and j, since they obey the same differential 

equations and boundary conditions. The flux contained in the thin layer, per unit 
transverse length, is 

0 
fBoeth 

= 
k°. 

(3.2.25) 

Considering the surface of the test-piece near the crack, but not actually on 
the crack line itself, one may expect the perturbation of -the 

field to occupy a 
length comparable'with the crack length. When the skin depth is much smaller 
than this, contributions to V2B from changes in the, tangential direction are 
negligible compared with contributions from the changes in the normal direction 

caused by the skin-effect. Therefore, the exponential decay profile of the fields 
inside the metal is essentially unaffected by the presence of the crack, except in 

the region within a distance S of the crack line. 
On the interface between the metal and the space above, the standard 

boundary conditions [1] apply: tangential components of H and normal 
components of B are continuous. The B field inside the metal can therefore be 

written in terms of the derivative of the scalar potential yr on z= +0 as 

B- ý°ek= µrä , µ. ää (3.2.26) y 
so, that 3.2.16 implies that 

+k0.. (3.2.27) ax ay az 

This is the usual surface impedance boundary condition,, written in terms of the 
scalar potential yi. 
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For an a l6erna dive approach ýo 7Iis concalierbº+ one m45 
In orde; to the- alt-ernatW&-f, 9Fm-Of4he- SIB G, it is simply neeessM to 

consider the x and y components of 3.2.18 inside the test-piece 

B. aBy 
ay aZ µ6Es, (3.2.28) 

DB,,, DBs 
az ax = µ'6E''. (3.2.29) 

If the tangential derivatives are neglected as before then 
Ex = Z, Hy, (3.2.30) 

E,, =+ZH, (3.2.31) 

where 

Z, =6 =165. (3.2.32) 

Since the parallel components of E are also continuous at the interface [ 1], 3.2.30 

and 3.2.31 apply to the fields immediately outside the test-piece as well. 

3.3 Extension to Cracked Test-Pieces 
In the thin-skin limit, the fields decay exponentially from the crack faces in 

the same manner as they decay from the top surface, except for small regions 

near the mouth and near the bottom edge (this point is made clearer by reference 
to figure 2.1 which shows schematically how the fields inside the test-piece vary 

with frequency as the thin-skin limit is approached). The SIBC therefore applies 

on the crack faces, the appropriate equations being 

DNf=0 
(3.3.1) 

axe aal µ, aY 

on y= -0 and 

+a- 
ä0 

(3.3.2) 
az2 DZ2 µ. Y 

on y= +0. For a closed crack, continuity of By implies that 3.3.1 and 3.3.2 can 

only be consistent if y! obeys the two-dimensional Laplace equation 
-aV a2V 

+= 0. (3.3.3) 
x 
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On the crack faces, 3.2.30 and 3.2.31 still hold, it being understood that ±z must 
be substituted for y on y =±0. Therefore, from 3.3.3, 

DE, DE 
_= ax Dz _0 (3.3.4) 

This is a sufficient condition to enable (Ex, EZ) to be written in terms of a' potential 

Ex = Z, 
aý 

(3.3.5) 

E. - Z, 
aý 

. (3.3.6) 
Dz 

The magnetic flux lines and electric field lines on the two faces are shown in fig. 
3.2. 

0,1 Y=-0 

E it ptrpcno(k#Iar 
ýo fý 

Eii 

Y_+0 

Fig. 3.2 Fields on opposite crack faces. 

The potential is related to the potential yi by the Cauchy-Riemann equations 
ayrý 

(3.3.7) 
ax az. s. ý .aaý; 

(3.3.8) 
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which, in this context, follow immediately from 3.2.30,3.2.31 and the definitions 

of the potentials. For a closed crack, the measured a. c. potential difference is 

equal to the line integral of E between the probe points, and the contribution from 

the crack is equal to the difference in the potential 0 across the crack, multiplied 
by Z,. The electric fields on the two faces are antisymmetric, so the arbitrary 
constant in the definition of 0 can most conveniently be chosen to give 0 

antisymmetric also. The value of 0 on the line z=0 will be denoted by 0o so, the 

cross-crack potential difference is 24)oZ,. 

The field on the faces, which obeys the two-dimensional Laplace equation, 
couples with the field outside the metal,, which obeys the three-dimensional 
Laplace equation. This coupling can be modelled by thinking of the crack as a 
line source. Begin by considering a small element of the thin-skin layer of area 
Axhy and centred on the point (x, y). The net flux leaving this region in the x 
direction is, from 3.2.25, 

AX) 1 
Ay[BX x+ -B x -T =k aýAxoy. 

(3.3.9) 

Similarly, the net flux leaving in the y direction is 

f&[B(Y 
+'&y - By y- 

2y 
=k &1 y. (3.3.10) 

ay 
The flux leaving in the z direction is 

µoä AxAy. (3.3.11) 

The total flux leaving a region of the surface away from the crack is the sum of 
3.3.9,3.3.10 and 3.3.11 

ate`+ `+ `are 
k aX2 DY) I 

äZ (3.3.12ý 

The effect of the crack can be included simply by adding to 3.3.12 the contribution 
of the flux from the two crack faces, which is 

-k B=(x, 0)ßr =-kH: (x, 0)Az (3.3.13) 
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where H, (x, z) is the field on the crack face. Therefore, conservation of flux implies 

that 

72 +µoAxAyO. (3.3.14) kY 
DZ. 

for all points on the test-piece surface except on the crack mouth where 
D2W ä7W+ 

+PO) OxOy-2kH. (x, 0)&x =0. (3.3.15) 
Ik( 

Y 
Let 

y= k/µ, (3.3.16) 

then, in the limit as Ay goes to zero, 
ä 

+ä! +'yä =2H=(x, 0)S(y), (3.3.17) 
Y 

where 6(y) is the Dirac delta function (not skin-depth in this equation). The 
perturbation due to the crack depends on the normal component of the field in 
the crack mouth or, equivalently, on the derivative parallel to the crack line of 
200, 

ä2+ä 
+yä =2 °8(Y). (3.3.18) 

y 
Equation 3.3.18 is the extended surface impedance boundary condition which 
can be used to find the flux coupling with a receiver coil in terms of the cross-crack 
potential difference. It constitutes a fundamental connection between the 

eddy-current and ACPD methods of NDT. An important feature of the analysis 
given above is that - the coupling between the two-dimensional and 
three-dimensional fields is independent of the angle at which the crack meets the 
surface. Consequently, thin-skin field methods give no information about crack 
inclination, as stated in the previous chapter: 

ý_,. ýý 
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3.4 The parameter m 
The relationship of the new model to the existing Born approximation and 

unfolding models can best be understood with reference to the parameter 

ma 
Jkla 

(3.4.1) 

In this equation, a is a parameter giving the length-scale of the crack and it can 
be given a more precise definition for a particular problem. For example, 2a will 
be used in sections 3.7 and 3.8 to mean the surface length of rectangular and 
semi-elliptical cracks respectively. In equation 3.3.18, the orders of magnitude 
of the terms on the left-hand side are 

a2Nf d2XV 
Y+ _V/a2, 

y 
(3.4.2) 

k dyr k 
yr/a. (3.4.3) 

µ, as g, 

The ratio of these two orders of magnitude is 11M. As explained in the previous 
section, 3.4.2 originates from the flux in the thin surface layer and 3.4.3 originates 
from the flux that leaves the surface layer and goes into the exterior space. The 

parameter m is therefore a measure of the ratio of the exterior flux to the interior 
flux. In the limit as m becomes infinite, the boundary condition 3.3.18 becomes 

ayr 
_ 

(1- Da ado 
az m ax S(y). (3.4.4) 

The perturbation part of the field caused by the line source is of order 1/m and 
may be neglected when solving for the potential on the crack face. This is exactly 
the algorithm of the Born approximation. Therefore, when m is very large the 
Born approximation is always valid. Conversely, when m is small 3.3.18 becomes 

a2V a2 ago 
axe + äy2 -2X s(Y) (3.4.5) 

which is exactly the equation that would have been obtained if the crack had been 

coupled to a field obeying the two-dimensional Laplace equation, as in the 

unfolding model. In non-magnetic metals, for any field of high enough frequency 

to be in the thin-skin limit, m is large and the Born approximation is valid. In 
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ferromagnetic metals, when the ' frequency is only just high, enough for the 
thin-skin condition 8 «a to be true, m is small and the unfolding theory is valid. 
At rather higher frequencies, when m is of order 1, the full three-dimensional 
model must be used and at still higher frequencies the Born approximation is 

applicable. 

_ 
An important feature of the unfolding limit is that the parameters µ and a 

do not appear in the boundary condition 3.4.5. - In a magnetic metal for which 
approximate values of these quantities are known, the operating frequency may 
be chosen so that m is small and one may then calculate the fields without knowing 

precise values for these material constants. It is therefore possible, in principle, 
to measure the crack depth without calibration. The practical implementation of 
this idea is described in chapter 5.1 

iv 

X' 

R 

Fig. 3.3 Detail of the fields near the crack mouth. 

To further clarify the significance' of 3.3.18, -it is helpful to examine the 
joining conditions linking the fields 'on the crack'faces, on the top suiface and in 

the exterior. Equation 3.2.11 implies that the H field integrated around the loop 
PQRS in fig. 3.3 should be zero, regardless of the value of m. If the loop is drawn 

very near to the crack mouth y=z=0 then the contributions to the integral around 
PQRS from the portions along QR and SP are small and the x component of the 

exterior magnetic field H must be, continuous with the x component. of the 
magnetic field inside the crack H. From the surface impedance equations (3.2.30 

and 3.2.31 on the top surface and the analogous expressions in x and z on the 
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crack face) this corresponds to saying that they component of the exterior electric 
field E and the z component of the electric field inside the crack E_; are 
continuous. Equivalently, continuity of E 

Y, and E2 may be inferred from the fact 

that the corresponding current densities jye and j, must be continuous because the 

conductivity is too high to allow charges to build up on the crack lip. 

However, the magnetic flux that comes out of the two thin-layers just behind 

the crack faces is, in general, channelled partly into the thin-layer just below the 
top surface and partly into the exterior space, so that HY, is not continuous with 
H. From 3.2.25, the flux that leaks into the exterior per unit transverse length is 

k (B11-Bye) =k (Hsi -Hye)" (3.4.6) 

The e. m. f. induced around the loop TUVW by this leaking flux is given by 
Faraday's Law 3.2.3 as 

-1kµ (Hi - Hy, ). (3.4.7) 

From 3.2.23,3.2.30 (and the analogous equation in x and z) and 3.2.32, this is 

exactly equal to the discontinuity in the x components of E. 
Z(Hs; -JI )=E, -E. ý;. 

(3.4.8) 

In the limit as m approaches zero, the term in 3.3.18 which originates from 

the flux that goes into the exterior space is negligible. Consequently, it may be 
inferred that all the flux that comes out of the crack is channelled into the top 

surface layer and that H 
Y, and H; are then continuous. To summarise, whilst 

continuity of H, u and H,; must always be imposed, continuity of Hy, and H; is 

only imposed in the small m limit when the unfolding model is valid. 

3.5 Modifications for Open Notches 
For the purpose of experimental testing and calibration, it is common 

practice to make measurements on narrow saw-cut or electric discharge machined 
(EDM) notches, which are used as simulated cracks. The theory developed above 
for cracks may be applied to this type of artificial flaw, providing that the notch 
opening h is small enough, as may be seen from the following argument. 
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"- The crack theory will only be applicable if the field distribution on the notch 
faces obeys the two-dimensional Laplace equation. From 3.3.1 and 3.3.2, a 
non-Laplacian field on the face implies a sharp change in they component across 
the notch,,, 

a 2[ =+0)-a (y --o: (3: 5. x) 
To 

DZ2 yy 

To first order, this difference is (ass&Mrny 1L' caries oa a Icn3i t scale of oder a) 

2a 
V' _ +0) -ä (y = -0) 

2 
h/2. (3.5.2) 

y 
However, since V obeys the three-dimensional form of Laplace's equation inside 

the gap between the faces, 

-ä= 
-Y 

ä 
(3.5.3) 

y 
so that, from 3.5.1,3.5.2 and 3.5.3 

a'Y+a V-- I W+ (3.5.4) aZ2 ax2 2 aZ2 ax2 

This relationship is self-consistent if the dimensionless ratio hy/2is of the order 

of 1. However, if hy/2 is much less than 1, then 3.5.4 is only self-consistent if yl 

obeys the two-dimensional Laplace equation. It is therefore reasonable to assume 
that if h is small enough to make hyl2 small, then open notches behave like cracks 
in the sense that the two-dimensional Laplace equation is obeyed over the flaw 
faces. In other circumstances, the notch opening will probably be wide enough 
to enable BIE methods to be applied over the whole of the test-piece surface, 
including the interior of the notch, as in the calculations of Beissner [66] and 
Ogilvy et al. [67] mentioned in chapter 2. 
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Notches also differ from cracks because the volume between the notch faces 

contains magnetic flux which contributes to the strength of the line source 

representing the flaw. Even when the notch is narrow enough for the crack model 
to be applicable, it is still necessary to include a correction factor to take account 
of this. Assuming that Hz is continuous across the notch mouth, the extra 
contribution to 3.3.13 is 

H, (x, 0)h µod&. (3.5.4) 

Consequently, 3.3.18 should be modified to 

C-N a++2 ado 
(l +h /2). (3.5.5) 

axe aye Yaz ax Y 

The correction term hy/2 is exactly the quantity required above to be small in 

order for the crack model to be valid. Therefore, in circumstances where the crack 

model is applicable, the correction for notch opening will always be small. 
The notch correction factor given here was originally derived by 

Mirshekar-Syakhal et al. [951 forACPD, but it is clearly applicable to eddy current 
testing as well. Finally, it must be emphasised that fatigue cracks may also behave 
differently from et h =`- -"-ý otact pc 

4 ioleallI narrow rloiches because, en faýl*gue irack, 

zj is p-o ssible f"r £1ie faces o be bn &lec6rec¢/ 

con ea c due to 

%ridi 1 eS 4/noton 

i he p--es en ce of s n, 4 Z( 

AS £iP? e conZac6 . 
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3.6 A Crack in a Thick Flat Plate with a Uniform Incident Field 
The new model is relatively easy to solve for the example of a crack in a 

half-space interrogated by a uniform field. This should be a good model of a crack 
in a flat plate that is much thicker than the skin-depth and much larger than the 
crack length, with an applied field that is uniform in the uncracked region. Since 

non-linear magnetic effects have been ignored, the field may be considered as a 
superposition of the unperturbed uniform field and a disturbance caused by the 
flaw. Similarly, the total incident field may be thought of as the sum of a uniform 
field in the x direction and a uniform field in the y direction. By symmetry, the 
component of the uniform electric field that is parallel to x causes no potential 
difference across the crack. The basic equation of the model, 3.3.18, then implies 

that there is no perturbation of this field by the crack. Therefore, there is no loss 

of generality in considering only the effect of a uniform electric field parallel to 
y, corresponding to a uniform magnetic field parallel to x. 

The total scalar potential is written 

W =W, Hox. (3.6.1) 

The unperturbed potential Hox trivially satisfies Laplace's equation 3.2.13, 

therefore the perturbed part yr, must also satisfy it. Consider the two-dimensional 
Fourier transform of yt, on a plane of constant z 

Wý(kx, ky, z) 
f -f -Vfc(X, 

y, z)e-ikis e 
-ik 

'y dzdy. (3.6.2) 

Consider also the transform of Laplace's equation 
F+ 

a2Ve + J 
2WC 

e-ý`se-ý'ydxdy=0. (3.6.3) 
-ý ax ay aZ 

By integrating twice by parts on both x and y one obtains 

ii{(_. k_k)1v + az2 e-iksxe-iu'ydxdy = 0. (3.6.5) 
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If the differentiation on z is taken outside the integral; 3.6.5 may be rewritten in 

terms of the transform as 

az2 
ký2 (3.6.6) 

where 
k; = k2 +k 2 (3.6.7) 

The general solution to this differential equation is a linear combination of 

growing and decaying exponentials but in this problem the growing solutions are 
forbidden, because the field must be bounded as z -' oo. In terms of the transform 

on z=0, the transform at arbitrary positive z is therefore 

ik(kx, k., z) = 1k(kY, ky, 0) exp(-I ksl z), (3.6.7) 

so, by the Fourier inversion theorem, the total scalar potential at any point in 

space is 

VJ(x. Y, z)= 
J-J-*, (k.,, ky, O)eik ; *Yeik ')e-iksý=dkdky+Hox . (3.6.8) 

4 

The equations 3.6.2-3.6.8 are true for any bounded quasistatic fields above 
a flat plate. The new boundary condition for a cracked flat plate may be 
incorporated by taking the transform of both sides of 3.3.18, 

f-f 

aX2 aye az 

) 

Y 

_. 
(y) e-'k s=e- yydxdy (3.6.9) J52? °6 

and the delta function may be integrated directly to give 

fJWc 
+eeyydxdy = 

ax ay 
f2 

axo e-ik"'dx. (3.6.10) 
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If the z derivative is taken outside the integral and both sides are integrated by 

part s, 3.6.10 becomes 
[-k, 

-ky +y 
aJf ~ 5Wee"dxdy 

= ik. 
ý 
524oeth. ' (3 . 6.11) 

From 3.6.5 and 3.6.2, the left-hand side may be written in terms of Nf, so that 

[-k., -ky -, yI k: )ly<< = ikx 2ýoe-ý`'; dx. (3.6.12) 

On rearranging 3.6.12, one obtains yr, in the form 

200 
ylý _ -ikX (3.6.13) 

k +y)k, 

where 

=J4oedx. 
(3.6.14) 

The formula 3.6.13 may then be substituted into 3.6.8 in order to find the magnetic 
scalar potential in terms of the cross-crack electric potential difference. The 

magnetic field can then be found by differentiation. Numerically, 3.6.8 may be 

evaluated using a Fast Fourier Transform (FFT) [108]. The whole field can be 

generated with a two-dimensional FFT or the field values on a line of constant x 
or y at a particular height z can be found using a one-dimensional FFT. 

Magnetic fields can be calculated for the limiting cases by using the Born 

approximation and the unfolding model to calculate 0o. In the general m case, the 
function 0o is determined by the crack shape and the requirement that H, 

r on the 
line y=z=0 be consistent with the three-dimensional solution. That is to say, a 
two-dimensional potential problem must be solved on the crack face subject to 
the condition that when 0o is substituted into 3.6.14 and used in 3.6.13 and 3.6.8, 

the same function Hx(x, 0,0) is given by the two-dimensional' and 
three-dimensional solutions. Without loss of generality, continuity of H, may be 

ensured by imposing continuity of the scalar potential yf. The presence of the 
exterior three-dimensional space can therefore be 'allowed for by imposing the 
following boundary condition on the potentials inside the'ciack: " '{ `'ý` 
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ENV 

(x, O) = 2n 'kj (ks)ý. (kx)e dk= + H0x (3.6.15) 

where 

F (kx) = -- 
fý ' (3.6.16) k= rl k: I 

In Appendix A this expression is integrated analytically. The function ikj(k; ) 

is plotted in fig. 3.4. 
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Fig. 3.4 Boundary condition function. 

To get a better understanding of 3.6.15 it may be rewritten using the convolution 
theorem as 

NJ(x, OM)= JH(x 
-x', O)F(x')dx'+H, r. (3.6.17) 

Equation 3.6.17 is a relationship between yf and its derivative H, on the crack lip 

which is a boundary condition for the two-dimensional problem. It has the unusual 
feature of being non-local, since it relates yj at a particular point to HZ at all points 
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on the lip. For numerical purposes, it is better to work with the potential 4o than 
the field H, because the latter is discontinuous at the crack ends. The boundary 

condition is then a relationship between the potentials 

I, aF(x') 
N! (x, U, 0)= f 

oo(x-x) az' dx +Hx. (3.6.18) 

For closed cracks, the magnetic fields on the two crack faces must be equal, 
as shown in figure 3.2, or 3.2.11 would be violated. Consequently, on the bottom 

edge of the crack, the component of flux normal to the edge must be zero or else 
there would a net divergence in flux density, which is forbidden by 3.2.2. In terms 

of the potentials, the normal derivative of yr and the tangential derivative of 0 are 
zero on the bottom edge. This means, in particular, that the bottom edge is a line 

of constant 4. In section 3.3 the arbitrary constant in the definition of 0 was chosen 
so that 0 was antisymmetric across the faces, which implies that, on the bottom 

edge, =0. 

,... ,ý.. 
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3.7 Series Solution for a Rectangular Crack 
Solutions already exist for the limiting cases when m is very small [83] or 

very large [38]. In this section, a series solution is presented for a rectangular 
crack shape, as shown in fig. 3.5, that is valid for general m. The more realistic 
example of a semi-elliptical crack is treated in the next section. 

Without loss of generality, the scalar potential v can be written as a Fourier 

series inside the crack. For a uniform incident field, yl is antisymmetric in x so 
the appropriate series is 

B. sin[(2n -1)ix/2a] cosh[(2n -1)n(z +b)/2a] 
W 

�ý1 (2n - 1) sinh[(2n -1)nb/2a] 
(3.7.1) 

and the conjugate potential is 
B� cos[(2n -1)nx/2a] sinh[(2n -1)n(z +b)l2a] 

�-i (2n - 1) sinh[(2n -1)nbl2a] 
(3.7.2) 

It is straightforward to verify that the Cauchy-Riemann equations and bottom 

edge boundary conditions are satisfied. The factors in the denominators have 

been included to make all of the coefficients B. of the same order of magnitude. 
If this precaution is not taken, small errors in the numerical evaluation of the 
lower order coefficients can cause large errors in the higher terms. 
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In order to apply the general m model, one must first take the Fourier 

transform 3.6.14 of the crack potential 0 on the line z=0. This function is given 
by the Fourier series 3.7.2 for I xI Sa but is zero by definition when I xI > a. The 

required transform is therefore 
BRInik 

$ýkx) 
n-i 2n-1 

where 
a 

IA(kj) =f cos[(2n -1)icx/2a] exp(-ik, x)dx 
ro 

_ 
(-1)"a (2n - I)nCOS(kXa) 

kxa2-(n -2)270 

=a 

(3.7.3) 

for kxa : P, - n-2 1t 

for ka =n-2n. 

(3.7.4) 

Substituting 3.7.3 and 3.7.1 into 3.6.15, one obtains 

B. sin[(2n -1)7rx/2a] coth[(2n -1)nb/2a] 
_1r 

Bý1�(If ). ; kam 

ýýi 2n -1 
N°x 

2n Jm-ý 2n -1 'ýF(k=)e 
dk, 

ý. 

(3.7.5) 

Multiplication by sin - 
24 
' and integration over [-a, a) gives 

(where -C= 1) 2,3 - ""') 
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wr-r 

ik, 
21 

B, 
1 coth[(21-1)nb/2a] +2- 

f 

AElB"I"(kiu! 
(k: )2n 

-1 
F(k: )dk, 

2a 2(-1)'H0 

(i)2' 

(3.7.6) 

where 
° (21-1)nz 1k 1', (k=) =f sin 2a e dx. (3.7.7) 

Integration of 3.7.7 shows that 

I 'l (kr) = I, (kr) (3.7.8) 
l-2 n 

so 3.7.6 can be rewritten in terms of the 1', alone as 

coth(v-l)d 
.. 

aB, 
21-12a i 4a J1 

#ý(kx)1'(ks)F(k, ) 
: 

Z(, 1) Hý" 

2ý 

(3.7.9) 

The coefficients B. are determined by the infinite set of linear simultaneous 

equations given in 3.7.9. In order to solve numerically for the B., the following 

approximations were made: 
B, = O for n>N, (3.7.10) 

rl(ks)1'(ks)F(k; )dkX if ý ýr ýý3.7.11) 
2aß-i " 4a 4a 4a 

That is to say, the linear set was truncated at n =N and the integral was discretized. 

The choice of kz = jn! (4a) is equivalent to imposing the condition yr =0 at x= 
4a and neglecting the influence of that part of the field that lies beyond this 
distance. 

In discrete form, the simultaneous equations are 
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aB, cöth M-'*b 
-2 

- 
it 

21-1 
B, Fr 11 

82 a] 

8N (1)1 +Aj2cos2 ä F( ) 
-2a2(-1)'Ho 

7t n1 
B" 

i=i [j 2_ (4n - 2)2I L12 - (41- 2)1 (1 
- 

2) 7r 
(3.7.12) 

where it is understood that the summation on j is taken for all j in the indicated 

range except 
j =4n-2 and j=41-2 (3.7.13) 

Because cos(jtcl4) = 0, these values of j give zero contribution to the sum except 

when n=1, when their contribution is taken account of by the inclusion of the 

second term on the left-hand side. 
One of the most time-consuming steps in evaluating the model is the 

calculation of the N2 summations on j. Fortunately, it is only actually necessary 
to calculate 2N independent sums because of the relationship 

j2c0s2ä F(4a) 
- 

(4n -2)2S. -(41-2)2S, 
i. lU2-(4n-2)1 U2-(41-2)11 (4n-2)2_(41_2)2 

(3.7.14) 

where 

-- I I 2jr- 
a l44 ) (3.7.15) Sr 

i=i j2-(4r-2)z 

which is true for all n#1. All the necessary sums can be found by evaluating the 

N sums S. and the N sums for which n=1. 
To get a good representation of the field outside the crack, it is necessary 

to consider values of k,, large enough to make the I'(kr) small. On examination of 
3.7.4, it is apparent that this happens when 

kxa>> - 

or in the discrete implementation when 
J»4N-, 

f2. 

(3.7.16) 

z.., 
(3.7.17) 
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A Microvax II computer takes less than 30 seconds to find the crack-lip potential 
4o with J=512 and N=64, using LU decomposition [ 108] to solve the simultaneous 
equations. The accuracy was assessed by comparing the general solution, 
evaluated at m=0, with a Schwarz-Christoffel solution of the unfolded 
two-dimensional Laplace equation problem. The two solutions agreed to within 
1%. A description of the method used to evaluate the Schwarz-Christoffel 

mapping is given in Appendix B together with a detailed comparison of the results. 
In the limit as m -p oo the model reduces to the Born approximation as expected 
because F(k,, ) is very small for all k, relevant to the problem and the integrals on 
the left-hand side of 3.7.9 vanish. 

Results from this evaluation of the general m model are shown in fig. 3.6 
for a rectangle with aspect ratio b/a=1 . The functional form of the crack-lip 
potential is essentially the same, regardless of the value of m, but its magnitude 
increases as m is varied between the two limits, the most rapid change occurring 
when m is of the order of 1. 
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Fig. 3.6 Potential 4o for a rectangle a=b=1. 
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When the model is evaluated at other aspect ratios, the dependence on m is 

seen to become weaker as b/a falls, so that when b/a=0 the one=dimensional 
solution 4o= Hob is recovered for all values of m. This limit can also be confirmed 
directly from 3.7.9 because as b/a falls to zero, the hyperbolic cotangents approach 

2a (3.7.18) 
(21-1)nb 

and the terms in F(kx) become negligible by comparison. The solution of 3.7.9 

is then 

B, = -(-1)'4b 
H0 

(3.7.19) 

and the series 3.7.2 becomes 

4 Hob ý(-1)" cos [(2n 
i 

l)nx/2a] (3.7.20) 
R -I 2n - 

which is just the standard Fourier series representation of 
4=Hob Ixt <a, 

=0 Ixt =a. 

(3.7.21) 

Values of the real part of 00 at x=0 for various aspect ratios are given in table 3.1, 

for the two limiting cases and form=1. The general trend is for 00 atx=0 to increase 

as the crack gets deeper, but the rate of increase falls off. 
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Table 3.1 Crack Lip Centre Potentials for a Rectangle 

b/a 4o at x=0 

m=0 

4o at x=0 

m=1 

4o at x=0 

m=10'o 

0.1 0.093168400 0.096218064 0.099975243 

0.2 0.1712335 0.1818736 0.1998494 

0.3 0.2339059 0.2539705 0.2973872 

0.4 0.2826807 0.3120656 0.3872032 

0.5 0.3198386 0.3574695 0.4650054 

0.6 0.3477511 0.3922271 0.5293525 

0.7 0.3685275 0.4184639 0.5808350 

0.8 0.3838997 0.4380792 0.6210479 

0.9 0.3952284 0.4526467 0.6519101 

1.0 0.4035550 0.4634146 0.6752898 

The m dependent behaviour described here has been observed experimentally, 
as will be described in chapter 4. 
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3.8 Series Solution for a Semi-Elliptical Crack 

-a -c ä=o c_a 
T- -T 71- 

ý1 =0 

411ýý--ýý 

/1 r1-n/2 

Fig. 3.7 Plane elliptical coordinate system. 

A semi-elliptical shape is a much better representation of a typical fatigue 

crack then a rectangular shape. Plane elliptical coordinates as shown in fig. 3.7 

x=c cosh cos il, (3.8.1) 

z=c sinh sin 11, (3.8.2) 

are used here to develop a series solution for this shape for arbitrary m. The foci 

of the ellipse are at the points 

x=±c; z=0 (3.8.3) 

which correspond to 
4=0; r1=-n, 0. (3.8.4) 

The semi-major and semi-minor axes are of lengths 

a=c cosh (x (3.8.5) 

and 
b=c Binh a (3.8.6) 

respectively and the bottom edge of the crack is at 

=a, -n<11 <0. (3.8.7) 
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Now if 4, V satisfy the Cauchy-Riemann equations in x, y coordinates then 

they must also satisfy them in 4,11 coordinates. In order to prove this, consider 
first 

=aßä +aßä (3.8.8) 
so that from 3.8.1 and 3.8.2 

c sinh 4 cos 
ä+ 

c cosh t sin i 
ä. 

(3.8.9) 

Similar relationships apply for the other derivatives, 

=-c cosh ýsin11 
ä+c 

sinh4cos71 
ä, 

(3.8.10) 

aý=csink4cosTL' 
+ccosh4sinTa--, (3.8.11) 

ax az 
ao 

=-c cosh ý sin ll 
äo 

+c sink ý cos 
äO 

. (3.8.12) 5 

By the Cauchy-Riemann equations in Cartesian coordinates, 3.3.7 and 3.3.8, it 

follows from 3.8.9-3.8.12 that 

aW 
, (3.8.13) 

(3.8.14) 
&r= a, 

which are the Cauchy-Riemann equations in elliptical coordinates. The general 

m problem can therefore be solved by finding solutions of 3.8.13 and 3.8.14 

which satisfy all the boundary conditions. 
Solutions of the form coshntsinnhl and sinhntcosnrl are forbidden in this 

problem because they give infinite fields at the foci, as may be seen from 

3.8.9-3.8.12, but solutions of the form sinhnýsinn1 and coshn4cosnfl are allowed. 
Since T lies in the interval [-n, 0] the solutions can be restricted to integer n without 
loss of generality. For a uniform incident field, 4 is symmetric about il=-7r/2 and 
tV is antisymmetric, so the correct series are 
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_~ 
cosh(2n - 2)ý cos(2n - 2)Tl 

_j Ba sinh(2n -1)ý sin(2n -1)i ý A. 
cosh(2n - 2)a it -I I sinh(2n -1)a 

(3.8.15) 

sinh(2n - 2)ý sin(2n - 2)r cosh(2n -1)ýcos(2n -1)11 A" + =B" 
R cosh(2n -2)a n1 sinh(2n -1)a 

(3.8.16) 

For the rectangle, the boundary condition 4=0 on the crack bottom edge was 
imposed by the choice of functions in the series expansion. Unfortunately, it is 

not possible to do this in the semi-elliptical case because some of the forbidden 

solutions mentioned above would have to be included. Instead, 
. the boundary 

condition is imposed by finding a relationship between the two sets of coefficients 
A� and B.. Substituting 4=0 on =a into 3.8.15, one obtains 

E A. cos(2n - 2)1 i B. sin(2n -1)1. (3.8.17) 
n-i n. i 

Multiplication by sin(21-1)i and integration over [-n, 0] yield the required 

relationship 

B' =s 
21-1 

i Bi . (3.8.18) 
=1 (2n-2)2-(21-1)2 " 

The remaining boundary condition has been written as a convolution on the x 
coordinate in equation 3.6.18 or as a relationship between Fourier transforms on 
x in equation 3.6.15, but in either form it is awkward to write in the plane elliptical 
coordinates. It is therefore appropriate to rewrite the series for the potentials in 

terms of x on the line z=0. In Appendix C it is shown that they become power 
series 

Pu-2(x)An (3.8.19) 

fir =E P2J (x)B,, . (3.8.20) 

where the Pare polynomial functions defined by 
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(x+ x2-c2)'+(x x2-c2)' (3.8.21) 
(a+b)'+(-1)'(a-b)' 

The formula 3.8.21 is valid for I xj ýc and also for ( xl <c where the square roots 

are imaginary. The boundary condition 3.6.18 becomes 

ýE 
Pu-1(x)B, =Hox+AE1 JP21.2(x 

- x7aäzXýA, dx'. (3.8.22) 

The coefficients A. and B. are determined by the simultaneous equations 3.8.18 

and 3.8.22. As in the rectangular case, the equations were solved by numerical 
approximation and truncation of the set at n=N. The polynomials were evaluated 
at the points 

where 

and 

x, =s0-4a (3.8.23) 

s 1,2,3 ........ S (3.8.24) 

S (3.8.25) 

The discrete form of 3.8.22 is therefore 
NN 

ýY, 
P2, 

- , 
(x, )B, = 

nII 
D,. A,, + HA. (3.8.26) 

where D., is a matrix of discrete convolutions defined by 

D= Ls 
fE 

Pxn 
-2(Xr -x. ) aX (X, ). (3.8.27) 

ß, 1 

Since the transform of F is already known, it is convenient to evaluate the 

convolutions by the Fast Fourier Transform (FFT) method [108] so that the 
boundary condition was, in effect, applied as a discrete form of 3.6.15. Combining 

3.8.18 and 3.8.26, one obtains the linear set 

An 1'2r-i(xs) 
21-1 

R=i r=in (2n-2)2_(21_1)a 
D, 

n = Hox, (3.8.28) 
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in which there is one equation for each point on the crack lip. By analogy with 
the rectangle, it was assumed that the fields were best represented by taking a 
much larger number of terms S in the discrete convolutions than the number of 
coefficients N, so that the simultaneous equations 3.8.28 form an overdetermined 
linear problem from which the coefficients A,, may be found; the potential 4 can 
then be obtained by direct evaluation of 3.8.15. For S=512, N=32 a Microvax II 

computer took about one minute to find the cross-crack potential. NAG routine 
C06FRF. was used for the FFT calculations and NAG routine F04JGF was used 
to solve the overdetermined linear problem by the least-squares 

, 
method [1091. 

Results for the semi-circle are shown in fig. 3.8... 
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In the limiting cases, the general m solution agreed with the existing Born 

approximation [89] and unfolding solutions [88] to order 1%; detailed figures 

are given in Appendix D. There is very little difference between the solutions for 

the rectangular and semi-elliptical cracks as can be seen in fig. 3.9 which shows 
the real and imaginary parts of the potentials for a=2b and m=1. The rectangle 
gives the larger signal, as might be expected from the fact that its area is greater, 
but the difference between the potentials for the two shapes is only of the order 
of 5% whilst the ratio of the areas is 4/7t, which suggests that the bottom corners 
of the rectangle have very little effect on the field (Muennemann et al. [38] drew 

the same conclusion, for non-uniform fields in the Born limit). 
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Fig 3.9 Crack lip potential calculated from series solutions form= 1. 
Rectangle a/b=2 (solid line) 

Semi-ellipse a/b=2 (broken line) 

The real part of 4a at x=0 is given in table 3.2 for the same aspect ratios and m 

values as in table 3.1. 

Real parts 

Imaginary parts 
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Table 3.2 Crack Lip Centre Potentials for a Semi-Ellipse ` 
.. 

b/a 4o at x=0 

m=0 

00 at x=0 

m=1 

00 at x=0 

m=101° 

0.1 0.090675339 0.093721680 0.099498749 

0.2 0.1641954 0.1741654 0.1959595 

0.3 0.2227121 0.2410264 0.2862321 

0.4 0.2684473 0.2950294. 0.3673674 

0.5 0.3036140 0.3376096 0.4374709 

0.6 0.3304173 0.3706823 0.4960952 

0.7 0.3507092 0.3960856 0.5439311 

0.8 0.3660512 0.4155043 0.5823002 

0.9 0.3774944 0.4301321 0.6127397 

1.0 0.3863492 0.4415018 0.6367425 
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3.9 Boundary Element Solution 
McIver [110] has also "solved the general -m problem for arbitrary crack 

shape by the boundary element method. The two-dimensional Green's function 

G= 1n[(x -x2+ (z -z') (3.9.1) 
21 

is used, which has the property 
DG 

. 9.2) -0 atz=0, z'=0. (3 TZ 

The boundary integral equation, 2.3.4, is applied to the potential 4 with this 
Green's function to give 

4(x', O) -J G(x, z, x', O) an'z)d , (3.9.3) 

which may be rewritten as 

4(X p1 0) =- 
fv(X, 

Z) 
aG(X. Z, X', O) 

as dS. 

A second Green's function 
Gl = G(x, z, x', z')-G(x, z, x', -z) 

is then constructed which has the property 
G, (x, O, x', z') = 0. 

The conjugate function to Gl is 

H_ 
ltd 

tan-z'-ltan lz+z' 
'n x-x' n x-x' 

(3.9.4) 

(3.9.5) 

(3.9.6) 

(3.9.7) 

so that Gl and Hl obey the Cauchy-Riemann equations in x and z. The boundary 
integral equation, applied to q and Gi takes the form, 

W(x', z) =fv 
än 

ds (3.9.8) 

and may be rewritten as 

v(x', z') _ 
Jyr a1 

ds. (3.9.9) 
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Equations 3.9.4 and 3.9.9 can be very conveniently discretized because, if the 

potentials are approximated with simple constants over each element, the integrals 
become finite series. Together with the convolution boundary condition 3.6.18, 

they give a complete set of linear algebraic equations from which the potentials 
can be found. This boundary element solution was tested against the 

semi-elliptical, and rectangular solutions and found to give very good agreement. 
Fig. 3.10 is a. reproduction of fig. 3.9, with data points from McIver's program 
superimposed. 
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Fig 3.10 Comparison of series and boundary element solutions for m=1. 
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Boundary element solution (crosses) 
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4, Experiments 
4.1 Introduction 

This chapter describes experimental work undertaken to verify the general 
m theory described in the last chapter. Thin-skin magnetic "fields near 
surface-breaking cracks and notches were investigated in different materials and 
over a wide range of frequencies using search coils. A computer-controlled x-y 
table, driven by stepping motors and lead-screws was used to scan over flat-plate 

specimens at fixed height. New computer programs were written to control the 
measuring instrument, to synchronise measurements with the movements of the 
x-y table and to acquire data. 

In order to compare the experimental results with the theoretical predictions 
of the previous chapter, it is necessary to know the value of the parameter m, 
which depends on the frequency, crack length and material properties. It is shown 
that the relevant material constant can be inferred from the ratio of the electric 
and magnetic fields on the test-piece surface. This ratio was measured over the 

required frequency range for a number of test-pieces, including the ones used for 

the detailed flaw-field investigations. 
The m-dependent behaviour predicted by the theory is quantitatively 

confirmed by the experiments described in this chapter. Not only are the principal 
features of the signal observed, but some quite subtle features of the signal shape 
are correctly predicted as well. The main limitation of the theory is that it assumes 
that the test-piece is of infinite extent. In practice, even when the test-piece is 
large compared with the flaw size, significant effects are observed because of the 

edges of the test-piece. Likewise, the signals are also sensitive to non-uniformities 
in the applied field. 

r. ý 
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4.2 Apparatus 

PIB stepper motor driver 
controller 
onverter 
RS232 

Q stepper 
otors 

o 
grin phase 
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o computer 
induction 

coils 

receiver coil 
test piece 

Fig. 4.1 Principal Experimental Apparatus. 

The basic experimental arrangement is shown in fig. 4.1; modifications for 

specific experiments are explained individually below. The system is based on 
a Hewlett-Packard 4194A Impedance/Gain-Phase Analyzer, used both to provide 
the exciting current and to measure the voltage across the search coils. In fig. 4.1, 

the receiver coil is shown as being connected to the test channel of the analyzer, 
marked "t", and one side of the dual output oscillator is connected to the reference 
channel, marked "r" ; the other side of the oscillator is connected to the induction 

coils. The analyzer was configured to measure the gain and phase between the 
° test and reference channels. A direct connection is also shown between the 
test-piece and the instrument case, this is a precaution against interference and 
is discussed below. The search coils were made very much smaller that the flaw 
lengths and were designed so that, as far as possible, 'they did not change the 
fields in which they were placed. The use of small coils eliminates the need to 

average the theoretical predictions over the sampling volume and gives spatially 
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detailed maps of the fields. However, the signals obtained from the coils are in 

proportion to their area and their number of turns, so the price of using small coils 
is that the voltages that need to be measured are also small and very careful 
precautions have to be taken to eliminate interference. The search coils were 
wound from very thin wire, in order to get as many turns as possible in a given 
volume. The signal strength could also have been increased by using ferrite-cored 

receiver coils, but the magnetic field distribution would have been altered by the 

presence of the ferromagnetic cores and the signals would not have been directly 

proportional to the theoretical field values as calculated in the previous chapter. 
For this reason, the coils were constructed with cores of nylon or perspex. The 

presence of a thick coaxial cable near the test-piece might also conceivably alter 
the field, so each coil was connected to its cable via a few centimetres of 
unscreened twisted wire pair. 

The theoretical models to be tested assume that the unperturbed field is 

uniform, so an important requirement of the apparatus is the production of such 
a field. It is well-known that a pair of Helmholtz Coils, coaxial circular coils 
separated by one radius length, give a highly uniform field in the free-space region 
near the centre. Unfortunately, no such simple arrangement is known that gives 
a uniform field in the presence of a metal test-piece at all frequencies. Therefore, 

an empirical approach was adopted in which two long rectangular coils were 
placed along the specimen sides and moved around until the field was reasonably 
uniform, in the absence of a flaw. 

Strictly speaking, the reference channel should be connected to a reading 
of the applied field strength, for example from a second search coil. It could be 

argued that movements of the x-y table would alter the impedance of the induction 

coils and thus change the applied field strength achieved for a given oscillator 

voltage. However, in practice the impedance of the coils was not measurably 
affected by table movement and the arrangement of fig. 4.1 was satisfactory. 

The coils were energized by connecting them directly to the analyzer's own 

oscillator, which is designed to supply up to 4.4V to a load matched with the 

oscillator's 5091 output impedance. The purpose of matching the impedance of 
the load to the impedance of the oscillator is to couple as much power as possible 
into the load, but this is not necessarily a critical factor in very low voltage 

measurement. It is much more important to ensure that the energizing currents 
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do not cause the instrument ground to deviate excessively as the oscillator output 
is changed [1111, because all the measured signals are referred to this ground. In 

the experiments described here, the typical signals were of the order of 20µV, or 
five orders of magnitude below the oscillator voltage, so very great care was 
needed to avoid interference. Fortunately, ground errors cause large 

common-mode interference which can be detected easily when using phase 
sensitive instruments because the signal does not reverse sign when the measuring 
coil is reversed. 

To overcome the ground fluctuation problem, it was necessary to find a way 
to couple a relatively high current into the test-piece whilst drawing as low a 
current as possible from the instrument. In order to do this, energizing coils with 
a large number of turns were used. (Another method would have been to use a 
buffer output stage, drawing current from a power supply with a separate ground, 
e. g. a battery). For the lower frequencies, below 150kHz, a set of coils with about 
400 turns each were found to give acceptable common-mode errors. In order to 

obtain a wide range of m values it was necessary to go to frequencies well above 
the resonant point of this coil set. At these frequencies, hardly any signal is coupled 
into the specimen by the 400 turn coils because stray capacitances short them 

out. A second set of coils with only 20 turns were made for the higher frequencies, 

up to about 1.5MHz. Ground errors did not'occur on these higher frequency 

measurements because'the inductive reactance of the 20 turn coils was sufficient 
to keep the output current low and the measured voltages across the search coils 

were higher. 
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Fig. 4.2 Correct and incorrect wiring of induction coils 

Another source of common-mode errors in low voltage measurements is the 
finite common-mode rejection ratio of the measuring amplifier. As mentioned 
above, the signals to be measured were much smaller than the oscillator output 
voltage so this type of common-mode error was a serious problem, especially 
when the probes made electrical contact with the test-piece. For the higher 
frequencies, where capacitive coupling between the search coils and the test-piece 

was large, common-mode errors occurred even without electrical contact. The 

energizing coil sets were originally made with both coils wound with the same 
chirality and connected in series. This arrangement was found to be unsatisfactory 
because the test-piece was then in a plane at about half the oscillator voltage. A 

much better arrangement was adopted (fig. 4.2) with the two coils wound with 
opposite chirality (one right-handed and one left-handed) and connected in 

parallel so that the test-piece was in a plane at about ground voltage, greatly 
decreasing the common-mode errors. In the experiments where only 

non-contacting probes were used, additional protection was obtained by 

connecting the test-piece directly to instrument ground. It was not possible to do 

this when a probe made contact with the test-piece because a ground-loop [111] 

would have been formed. 
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- At the time the experiments were began, in March 1989, a stepper motor 
driven x-y table was in existence in the Mechanical Engineering Department 

which had been set up by Dr Darius Mirshekar-Syahkal for the purpose of 
verifying ACPD models with a fixed frequency instrument. Computer control 
was effected using a PDP-1 1 computer and a digital to analogue converter which 
produced clock pulses to trigger the stepper motor drive circuitry. Some of the 

control programs were written in assembler code. It would have been possible to 
incorporate the HP-4194A analyzer into this system, but it was decided instead 

to modernize the computer control arrangement in order to eliminate the need 
for assembler programming, to guard against failure of the old hardware and to 

allow for the addition of other equipment in the future. 
The basis of the system is a GPIB interface across which both the x-y table 

and the analyzer are controlled and data is transmitted. Other instruments can be 

connected to the interface if necessary, without changes to the hardware. A 
Tastronics TAS016 GPIB to RS232 converter is used to connect the system to a 
computer with a standard RS232 serial port. An IBM PS/2 model 50 was used 
for the measurements reported here, because it happened to be available, but 

almost any personal computer would suffice. All the software was written in 
interpreted BASIC. The GPIB is a parallel bus which allows data to be transmitted 

at a higher rate than the serial line. However, in these low voltage measurements 
it is necessary to allow a fairly long time for the analyzer to acquire the primary 
data, in order to eliminate random noise, so the transmission speed on the serial 
line makes a negligible contribution to the total time taken. For example, a single 
complex number data point is typically measured in about 7s, stored as eight 
bytes of eight bits each and takes only 0.013s to transmit at 4800 baud. Use of 
the RS232 serial port to connect the system enables it to be controlled from many 
metres away if necessary, eliminates the need to install additional circuit boards 
in the computer and allows the computer to be replaced easily. However, by far 

the greatest advantage of the system is the simplicity of the control programs. 
The 4194A analyzer can measure up to 401 points in each sweep, which gives a 
data set that is small enough to be accommodated directly by the computer's 
input buffer without the need for handshaking, providing that the interpreter is 
invoked with a qualifier instructing the computer to enlarge the buffer. 
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The stepper motors are driven from a 24V supply by two Parker Digiplan 
LD2 drive boards via 441 current-limiting resistors. Manual controls are 
provided for initial positioning when setting up experiments. This part of the 
system is essentially unchanged from Mirshekar-Syahkal's original apparatus. 
In the new system, a Parker Digiplan 11 85A control board is used to connect the 
stepper drive boards to the GPIB. This circuit has the ability to control a third 
stepper motor if needed. The LD2 drive boards are operated in the half-step mode 
in which the currents are of full and half strengths alternately, giving 400 steps 
per revolution. Lead screws with a pitch of 4mm converted the rotations of the 
stepper motors into translational motion with a resolution of 0.01mm. No errors 
were detected when the table was instructed to move repeatedly through 

prescribed lengths alongside a rule. The speed of the x-y table was in the range 
8mms'1 to l2mms', but it was not a critical factor in maintaining precision. 

Movement of the probes in a vertical direction was not controlled 
automatically, so scans were restricted to constant lift-off. A non-conducting, 
non-magnetic Vernier caliper was screwed to the head of the x-y table and the 

receiver coil attached with putty, allowing the lift-off to be controlled with a 
resolution of 0.05mm. In the most careful series of experiments, described in 

section 4.5, the test-piece was ground flat and paper shims were used to level it 

so that the same lift-off was measured at all points over the surface. Lift-off was 
taken to be the distance from the plate surface to the centre of the receiver coil. 

H 
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4.3 Measurement of the Material Constants 

In order to test the model it is necessary know the value of m. From 3.4.1, 

m can be calculated given the crack length and the quantity µ, S, which, from 
2.1.2, depends on the material constant µ, /ß and the operating frequency. The 

surface tangential electric field E and magnetic field H, apart from at the crack 
line itself, obey the usual equations of the surface impedance boundary condition, 

Ey = +ZHH, (4.3.1) 

Ex = ZsH,,, (4.3.2) 

where x, y are the coordinates tangential to the metal surface and 

i+l TC Z, = as =(i+l) 
__ (4.3.3) 

is the surface impedance. Therefore, by measuring E and H on the surface for a 

given frequency it is possible to infer the value of the constant µ, lß. 

This technique has . the advantage that it may be used on any shape of 
test-piece, providing that it has a small flat area to which the necessary probes 
can be attached. It is important that the field strength is kept small, as in the flaw 

measurements themselves, so that the correct incremental permeability is 

measured. The values obtainedapply on the surface of the metal only and are not 
necessarily valid deep inside the test-piece. 

A field with a region of high uniformity was induced in the test piece with 

a pair of rectangular induction coils, as explained above. The analyzer was 
configured to measure the gain and phase between two input channels VE and 
VI;. The head of the x-y table was not moved during the material constant 
measurements, but it provided a convenient support for the probes. 
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Fig. 4.3 Experimental apparatus for material constant measurement. 

Two contacts placed a distance IE apart on the test-piece surface in the 

uniform-field region, well away from any flaws, were connected to the first 

channel as in fig. 4.3 so that 

VE =IFFY - 2nifµoHA (4.3.4) 

where A is the area of the loop formed by the probe leads and the test piece. No 

connection was made to instrument-ground, in order to avoid forming a 
ground-loop. The probe was designed to keep A as small as possible. A coil of 
width 111, height h with N turns, placed immediately adjacent to the contacting 

probe was connected to the second channel so that 

V, 1=-2nifµoN,, Nhlh. (4.3.5) 

From 4.3.1,4.3.4 and 4.3.5, the gain/phase measured between the two channels 
was therefore 

VEIV,, =A+ 
ilE Z, 

-A+ 
(i -1)lE µ. S. , (4.3.6) 1�hN 4, hN 2nfµo 1�hN 21�hN 

The coaxial cable connecting the probes to the analyzer was kept as short as 

possible ( about 300mm ) to reduce electrostatic interference. After one sweep 
through the desired frequency range, the induction coils were interchanged, to 

reverse the sign of the field with respect to the phase of the oscillator and the 
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sweep was then repeated. The final value for VENH was taken as the average of 
the two complex numbers representing the readings for the two senses, so that 
any remaining common-mode errors were eliminated. 

The real and imaginary parts of VEIVH were plotted against f'nover a range 

of frequencies in a variety of materials. If the permeability and conductivity are 
simple constants, independent of field strength, direction and frequency, the 
gradients should be equal and opposite and of magnitude 

IE IE ý-T. 

21, iNh 
µ'sý- 2l1Nh nµfla 

(4.3.7) 

In all the samples tested, the plots were close to straight lines as expected; some 
examples are shown in figs. 4.4-4.7. Values for the constant µ, lß were found from 

the data by least squares fitting. The line for the imaginary part was constrained 
to pass through the origin but the line for the real part was offset, in order to 

allow for the term in A. Probe dimensions are given in table 4.1. 

Table 4.1 Dimensions of probes 

111 19.15 f 0.02mm 
lE 20.0 t 0.5mm 
N 28 
h 2.89±0.01mm 

In the following figures, the solid lines are the experimental data and the broken 
lines are the least-squares straight line fits. 
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Fig. 4.7 VE/V� for Dural NS8 

The probe lengths lE and 1� were made nearly equal so that the two fields 

were being measured over the same region. Random noise, as indicated by the 

standard deviation associated with fitting the straight lines, was negligible. The 

gain/phase was measured with the exciting coils in both orientations and the mean 
values of the two senses, for each of the real and imaginary parts, were used for 
line fitting. A lower bound on the experimental accuracy is 2.5%, the error in the 
measurement of the probe length 1E. 

Results for several materials are shown in table 4.2. Structural steel 50D is 

a material used for making large welded-steel structures, such as oil-rigs. 
High-strength steel AISI-4145 is another material used in the oil industry, for 

making drilling equipment: Dural NS8 is an aluminium-based alloy of a type 

common in the aerospace industry. Austenitic stainless steel is a common metal, 
of interest because it is ferrous but not ferromagnetic. 

The values of 48 for the ferromagnetic metals 50D, mild-steel and 
AISI-4145 are much greater than for the other two materials, as one would expect. 
All the phase values are close to 135 which is the theoretical phase for isotropic, 
homogeneous and non-hysteretic materials. The value of µ, lß for the Dural is 
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effectively just the resistivity 1/ß because the material is non-magnetic. For 

comparison, the resistivity of pure Al is 2.55 x 10-80m [2]. The bandwidth over 
which measurements in Dural were practicable was low because the voltages on 
the contacting probe were very small. In general, the technique works better on 
ferromagnetic metals in which it is easier to induce a field. The low frequency 

pja of 50D is lower in the heat affected zone than in the parent material. This 

effect it probably caused by a reduction of the permeability by the heating process, 
since Thompson, Allen and Turner [112] found a similar reduction for the, d. c. 

permeability. However, the high frequency µ, /ß is higher in the heat affected 

zone than in the parent metal. 

A useful conclusion from these experiments is the 'approximate rule that 

µ, 6f"2 in ferromagnetic steels is typically about 2000mm Hz. For a given 

expected size of fatigue crack, it is therefore possible to pick an operating 
frequency such that the unfolding model applies. 
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Table 4.2 Results of Material Constant Measurements, 

Material f/kHz µ'$Ff 
phase µ/a 

Structural steel 50D 1-150 2181 131.1' 18.78 

100-1500 1859 134.2' 13.64 

High strength steel 1-150 2078 137.9' 17.05 
AISI-4145 

Heat affected zone of 1-150 1785 136.7' 12.58 

weld in 50D 
100-1500 2155 137.6' 18.33 

Dural NS8 1-70 97.29 131.8' 0.03737 

Austenitic stainless 1-150 378.6 135.8' 0.5659 
steel 

Mild steel plate 1-500 2124 134.6' 17.82 
(used in section 4.5) 

50-1500 2196 132.1' 19.04 
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4.4 Experiments to Verify the Asymptotic Limits 
Before the general m solutions had been found, experiments were conducted 

with Mirshekar-Syahkal's apparatus to verify the limiting cases. The measuring 

instrument was a "Crack Microgauge" (an ACPD device of the type developed 
by Dover et al. and mentioned in section 2.2) with a search coil substituted for 

the contacting probe. The Microgauge is designed to inject a'2A current directly 
into the test-piece, so it was not necessary to use induction coils. The phase control 
was adjusted to maximise the response to the upstream field. This means that the 

measured fields signals were proportional to the part of the fields in phase with 
the upstream field (the real part). Data were acquired by the PDP-1 1 computer 

with an analogue to digital converter connected to the analogue output of the 
Microgauge. No modifications were made to the original software at this stage. 
A mild steel plate with a fatigue crack was used as an example of a flaw in the 

small m limit and a Dural plate with a semi-circular spark eroded notch of 0.8mm 

opening was used as an example of a flaw in the large m limit. The fatigue crack 
length was measured by magnetic particle inspection and its depth by 

conventional ACPD, using the one-dimensional formula 2.4.4. 

Table 4.3 Flaws used in the Limiting Case Studies 

Material Block Size Crack Crack µ, S m 
(mm) length 2a depth b (mm) 

(mm) (mm) 

Mild steel 354x85x12.5 37 3.0 31.4 0.588 

Dural NS8 310x201x25.6 40.35 20.0 1.26 16.0 

(The value of m for the Dural block is based on the more accurate material 

constant measurements made with the new apparatus). Experimental 

measurements of H. for the two flawed blocks are shown as crosses in fig. 4.8 and 
4.9. The Born approximation model is shown as a broken line and the unfolding 
model is shown as a solid line. Clearly, the field over the steel block follows the 

unfolding model and the field over the Dural, block follows the Born 

approximation model, as expected. Fig. 4.10 and 4.11 show similar data for the 
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y component and, once again, the behaviour is as expected. Note that in all four 

plots the physically observed field corresponds to the model which gives the 
smaller perturbation. The theoretical data in the figures are more accurate than 
the theoretical data as published in reference [89] because these older calculations 
used the discontinuous function H, (x, 0) rather than the continuous function 4o to 
generate the fields. However, the essential features are unaffected. 
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4.5 Measurements of the Field Near a Rectangular Notch at 
General m 

Once the general m solutions of the previous chapter had been obtained, it 
became desirable to verify the predicted behaviour for intermediate values of m. 
A rectangular electric discharge machined notch of length 2a=30mm, depth 
b=15mm and opening h=0.75mm was made in a mild steel plate of dimensions 
152x202x19mm in the x, y and z directions respectively and the plate was ground 
flat. 

The material constant µ, /a was measured by the method of section 4.3, on 
part of the surface well removed from the notch. Using the average value for the 
two frequency ranges in table 4.2, µ, S=2160mm, frequencies were selected to 
give the values of m shown in table 4.4. 

Table 4.4 Test frequencies and m values 

f/kHz mI 
F 

Line style in figures 

5.184 0.5 solid 

20.736 1 broken 

82.944 
.2 dotted 

331.776 4 dot-dashed 

1327.104 8 dot-dot-dashed 

Search coils were wound on perspex formers with overall coil dimensions 
in mm shown in table 4.5. (They coil is just thex coil reorientated). Measurements 

of all three field components were made at the frequencies given in table 4.4, at 
a lift-off of 2.0mm, with the coils traversed through 120 steps of 0.5mm in the 
x direction. Similar scans were then conducted in the y direction. Once again, 
the final data are averages of readings conducted in both senses, to eliminate any 
residual common-mode errors. The theoretical predictions are given in terms of 
the applied field, so all the measurements were referred to the average field at 
y=2a, where the perturbation due to the flaw was small enough to be ignored. 
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Table 4.5 Dimensions of measuring coils 

orientation x dimension y dimension z dimension Number of turns 

x 3 2 2 200 

y 2 3 2 200 

z 4 2 1.5 100 

Plots of the real parts of the x, y and z components of the field as calculated 
from the theory are given in figs. 4.12a, 4.13a and 4.14a, for varying x at fixed 

y. The corresponding experimental measurements are shown in figs-4-12b, 4.13b 

and 4.14b. The line-styles for the various frequencies are listed in table 4.4. There 
is general agreement between theory and experiment to within about 5% of the 

applied field strength and the signals are correctly ranked with m. Fig. 4.15,4.16 

and 4.17 show the three components at fixed x, as y is varied. Once again, the 

observed field is as predicted by the theory. 
Some subtle features of the fields are also correctly predicted. In fig. 4.12a, 

the plot of H., against x, the signal is flatter in the centre for large m, where the 
Born approximation is valid, and the flattening is seen in the experimental plot 
4.12b. In fig. 4.13b, the gradient 3H, Iax is slightly smaller at x=0 than at x--0.5a, 
as expected from the theoretical signal 4.13a. A similar change is seen in fig. 

-4.14a and 4.14b. An important feature of the fields is the quadrupole symmetry 
of they component, that is to say, it is antisymmetric in both y andx, In particular, 
there is an abrupt change in sign on crossing the crack line near each of the crack 
ends, as shown in fig. 4.16a and 4.16b. 

The theoretical field values also have a small imaginary part, so there ought 
to be a signal in quadrature with the applied field. Although it was too small to 

measure accurately, the quadrature signal was observed and the readings are 
shown in fig. 4.18b, with theoretical values in fig. 4.18a. The order of magnitude 
is correct, and the maximum signal occurs for intermediate m, as predicted by 

theory. 
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The main departures from the calculated fields occur near the edges of the 
plots and may be attributed to non-uniformity in the applied field near the 
test-piece edges. These effects were found to be sensitive to the position of the 
induction coils. If the coils were brought up close to the sides of the test-piece, 
the non-uniformities were more severe. However, if the induction coils were 
moved too far away, the applied field strength became too weak to give an 
accurately measurable signal. Positioning the induction coils at about 25mm from 

the test-piece gave an acceptable compromise. In order to discriminate the flaw 

signal from the non-uniformity in the applied field, the exact quantity plotted in 
fig. 4.12b is 

I+ 
Hz(y =0)-Hr(y =2a) (4.5.1) 

and in fig. 4.13b it is 

<HH(y =2a)> 

H;, (y =O. la)-H, (y =-0.1a) (4.5.2) aH., (y = 2a, cic _ o) 

In figs. 4.12b and 4.15b, the HH signal from the crack at large m is less than 
that expected from the theory and examining fig. 4.15b in particular, one may 
discern a local perturbation in the signal at y=0. In section 3.5, it was shown that 
the first order correction for notch opening was valid providing that hy/2 is small. 
For the rectangular notch under consideration, the magnitude of this quantity is 

about 0.035m, so that is equal to 0.28 at m=8. It is therefore reasonable to expect 
some second-order perturbations to be observed and the discrepancies in 
figs. 4.12b and 4.15b are probably effects of this kind. 

In addition to the spatial scans plotted above, experiments were conducted 
in which the parameter m was varied, for fixed position, by varying the frequency. 
In fig. 4.19 experimental values of the real part of H, at x=0, y=0 for varying 
values of m are shown as circles and the corresponding theoretically predicted 
field is shown as a solid line. The imaginary part is shown in fig. 4.20. This 

experiment was conducted before computer control had been implemented, so 
there are fewer data points. The search coil was also rather less sensitive than 
those of table 4.5 and only the two lowest frequency measurements were 
conducted in both senses. For these reasons, the data are not quite as good as the 
data in figs. 4.12-4.18. 
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4.6 Parallel Currents 
One of the main predictions of chapter 3 is that a uniform field applied so 

that the currents are in the x direction (parallel to the crack) is not perturbed at 
all, providing the crack is tightly closed. This implies that for parallel currents 
interrogating a closed crack, the unfolding theorem does not apply, even when 
m is small. On the other hand, for notches that are sufficiently wide to allow 
different values of the magnetic scalar potential on the two faces, one would 
expect the unfolding theory to be valid in the small m limit. The equipotentials 
and streamlines are simply interchanged from their positions for the 

perpendicular interrogating current. In section 3.5, it was shown that the theory 
for closed cracks interrogated by a perpendicular current is only valid for open 
notches if the parameter hyl2 is small. In a similar fashion, it is possible to deduce 
how wide a notch must be to perturb parallel currents. 

From 3.2.11, we have 

aHs axy 
ay = ax 

For parallel currents, Hx should be antisymmetric in y so that 
DH,, 2Hx 
ay h 

(4.6.2) 

Therefore, from 4.6.1, 

2Hr H, 
h --a (4.6.3) 

Whatever the direction of the interrogating current, the surface impedance 

boundary condition applies on the faces of the crack, 
ä2V+ä2V±k 

Hy=0. (4.6.4) 
µ 

Considering the orders of magnitude of the terms in this equation, one may see 
that 

a: 
- 

k 
Hy. (4.6.5) 

If the field components Hx and Hy are -non-zero, 4.6.3 and 4.6.5 are only 

self-consistent if 
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h ka 
2a µ. ' 

(4.6.6) 

that is to say 
h 

-m.. (4.6.7) 

Forcracks, and narrow notches for which h -c a, criterion 4.6.7 cannot be satisfied 

unless m is much less than 1. The minimum possible value of m which can occur 
in practice is of the order of 0.01, because the relative permeability of a metal is 

never much greater than 1000 and m is only meaningful when Saa. For a crack 
longer than 10mm, equation 4.6.7 can only be satisfied if h is of the order of 
0. lmm, but fatigue cracks are usually closed much more tightly, especially if a 
compressive load is applied. Therefore, it is not possible for a closed crack to 
perturb parallel currents. To summarise, parallel currents are not perturbed by 

cracks and narrow notches in non-magnetic metals or by tightly closed cracks in 

magnetic metals but they may be perturbed by open cracks or notches in magnetic 
metals. 

This phenomenon was investigated experimentally with a 10mm contacting 
probe aligned along the x axis. Current was induced in the specimens from a 
second plate placed underneath the test-piece and insulated from it, energized by 
injection of 2A from a Crack Microgauge ACPD instrument. The HP-4194A 

analyzer and x-y table were used to plot the signal as before. This method of 
induction is more suitable for non-magnetic test-pieces where it is difficult to 
couple in a strong field from coils. The experiment was conducted on three 
test-pieces with flaw dimensions given in table 4.6. 

Table 4.6 Flaw dimensions for parallel current experiment 

Material Flaw type Length 
2a/mm 

Depth 
b/mm 

Opening 
h/mm 

2ma/mm 
(approx. ) 

Mild steel crack 50 3.3 <0.1 50 

Mild steel notch 50 5.0 0.71 50 

Dural notch 20 -3.0 0.27 160 
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In these scans it was particularly important to subtract the field away from the 

crack, because the aim was to detect whether there was any small perturbation 

of this field. Results are shown in figs. 4.21,4.22 and 4.23. Of the three flaws, 

the notch in the mild steel is the nearest to satisfying criterion 4.6.7 and it is the 

only one that appreciably perturbs the parallel currents, as expected from the 

theory. 
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Fig 4.21 Excaused by a parallel current interrogating a crack in mild steel 
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4.7 Accuracy and Precision 
For the purpose of this discussion, accuracy means the extent to which the 

measurements are free from systematic error and precision means the extent to 
which they are free from random error. 

Non-uniformity in the applied field is a cause of loss of accuracy. The field 

will be truly uniform if all the flux that enters the top surface of the block from 

one induction coil passes straight across and goes into the induction coil on the 
far side. In practice, some of the flux leaves the top surface and returns around 
the back of the first coil, so that the field is stronger at the edges of the block than 
in the centre. By careful positioning of the coils, it was possible to reduce this 

non-uniformity so that the field at x=0 was only about 15% lower than the field 

at x=2a, in an unflawed part of the test-piece. The departure of the flaw fields 
from theory at the edges of plots 4.12b-4.17b is typically about 3% of the applied 
field strength, so that it seems reasonable to interpret it as being caused by the 

edges as well. 
A second possible cause of loss of accuracy is non-linearity in the measuring 

instrument. The manufacturer's estimated accuracy (and precision) for the 
HP-4194A at 20µV is only about 45% in gain readings and 16' in phase. If taken 

at face value, these figures would imply that search coil measurements made at 
these signal levels are virtually meaningless. However, the manufacturer's figures 

are not necessarily a good estimate of the accuracy in the experiments described 

above, where careful precautions were taken to eliminate interference. Moreover, 

the apparent agreement between theory and experiment suggests that the actual 
instrument performance was much better. Clearly, it is essential to get a realistic 
estimate of the instrumental accuracy in order to know if the experiments 
constitute a valid verification of the theory. 

All the readings were referred to the upstream field value, so the absolute 
accuracy of the voltage measurements is immaterial, providing that the instrument 
is linear over the required range. An indication of the linearity was found by 

making a measurement of Brand varying the oscillator voltage V from 0.05V to 
the operating value. This procedure was performed for the minimum and 
maximum frequencies used: f -5184Hz with an operating voltage of 1.0V and 

, 
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, 
=1327104Hz with an operating voltage of 0.5V. If the instrument was perfectly 
linear, the gain g should be a constant. The non-linearity was estimated by fitting 

a quadratic 

9 =82V2+Siv+go (4.7.1) 

to the results, by the method of least-squares. Results are shown in table 4.7. 

Table 4.7 Linearity of measuring instrument 

f/kHz Part 82 IV2 g1N*l go 

5.184 Real -7.8946x10'° 1.1611x107 1.4550 x 10-5 

5.184 Imaginary -3.8724 x 10' 4.6677 x 10' 2.0536 x 10"5 
1327.104 Real 1.6328 x 10-6 2.2831 x 10-6 1.3299 x 10-3 
1327.104 Imaginary 2.1708 x 10'5 -1.9447 x 105 1.4321 x 10"3 

Note that the imaginary part is the part in quadrature with the oscillator voltage. 
It should not be confused with the part in quadrature with the applied field, plotted 
in figs. 4.18 and 4.20. The maximum error caused by the non-linearity over the 

range of the results will be of the order (g2+g1)lgo. For both frequencies, it is the 
imaginary part which is worst affected, the maximum error being 4.2% at the 
lower frequency and 2.9% at the higher frequency. 

In figs. 4.12b-4.18b, there appears to be some random noise on the low 
frequency data, but much less on the high frequency data. The low frequency 

noise is about 0.5% of the applied field. A measurement of B,, upstream was 
repeated 50 times without moving the probe and the standard deviation was found 

to be 0.066% of the mean, for the real part, and 0.039% of the mean, for the 
imaginary part, which is too small to explain the noise on the low frequency plots. 
The noise cannot be attributed to errors in the positioning system, because these 

would affect the high frequency data as well. Movement of the connecting cables 
did not seem to produce significant noise either. - A scan of the upstream field was 
performed twice, without otherwise altering the apparatus, in order to see if the 

apparently random variations on the signal were reproducible, which would 
indicate that they were due to variations in the test-piece. It was difficult to 
interpret the data, but most of the local variations were not reproduced. 
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To summarise, the accuracy of the measurements is limited to 3 or 4% by 

the linearity of the instrument at the low signal strengths used, and by the difficulty 

of obtaining a uniform field. The precision of the measurements at low frequencies 
is limited to about 0.5%, but the precise cause of the noise is not known. 
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5 Applications fi 
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5.1 Introduction 
The previous two chapters* described the calculation and measurement of 

the magnetic field near a crack in the presence of a uniform applied field. In this 

chapter, it is explained how the theoretical model has been used to develop an 
algorithm for the estimation of crack length and crack depth from the 
high-frequency magnetic field measurements. The technique is referred to as a. c. 
field measurement (ACFM), to distinguish it from the d. c. flux leakage method 
and from the contacting a. c. potential difference method., 

Two examples of the application of ACFM in the petroleum industry are 
given. The first example is a system to detect and size cracks in the screw-threaded 
joints of a "drill-string". This is the technical term for the train of strong steel 
pipes which are used to provide power to the drill-bit. The second example is a 
probe, for use underwater, to detect and size fatigue cracks at the welded joints 

of tubular steel off-shore structures. 

5.2 Drill-string threaded connections 
Fracture of drill-strings due to fatigue is a persistent and expensive problem 

in the oil industry. Drill-string failure increases equipment cost, wastes rig time 

and, in some circumstances, can even lead to the abandonment of a well. At 

present, magnetic particle inspection is used to 
, 
examine the drill pipe, but its 

performance has been disappointing. For example, Dale and Moyer [113] 

presented results of field evaluations of MPI for drill pipe in which the probability 
of detecting a 25mm long crack was as low as 50%. Fig. 5.1 is a diagram of a 
typical threaded connection, the outer diameter is typically about 150mm. 

yam, ,H 
.' 
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An extensive programme of work was undertaken by UCL in collaboration 
with several industrial companies to address the drill-string fatigue problem. In 

addition to fatigue crack growth studies and stress analysis studies; measurement 
of the a. c. magnetic field was proposed as a means of detecting and sizing cracks. 
A dedicated inspection machine was made by Hunting Offshore Services Ltd. - 

r- with a probe, containing search coils and an induction coil, which engages with 
the thread and is driven around the pipe by pneumatic actuators. The whole of 
the thread length is thus scanned and the tangential and radial magnetic field 

components measured using suitably orientated search coils (fig. 5.2). Separate 

machines were built to inspect both the "pin" or male part of the joint and the 
"box" or female part. The ACFM circuitry was originally made by Inspectorate 
Unit Inspection Ltd. and subsequently developed by Technical Software 
Consultants Ltd. using a crack sizing algorithm described in section 5.4. 

.. i 

ýrýý 
Fig. 5.2 Search coils measuring tangential and radial field components near a 

drill-string thread, 

Most drill pipe is manufactured from ferromagnetic high tensile-strength 

steel, such as the AISI-4145 material mentioned in the previous chapter. Special 

non-magnetic steel pipes are used at certain points on the drill-string where 
instruments have been placed to take readings of the earth's magnetic field for 

use in steering during directional drilling operations. (Oil wells are not always 
sunk vertically but are often made to follow oblique or even curved paths, in 

order to make best use of the field). The ACFM technique should be suitable for 

either magnetic or non-magnetic pipes; MPI is restricted to magnetic ones. An 
interesting feature of this application is that 

. 
both the high and low m limiting 

cases are likely to occur in practice. For the magnetic drill-pipe, it is best to operate 
in the low m limit so that no material constant measurements are necessary. For 

the non-magnetic drill-pipe, if the skin-depth is small, the values of m will always 
be high. 
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, 'The drill-string inspection instrument produces estimates of crack length 

and depth from the flaw signal using the flat plate model for a semi-elliptical 
crack as an approximate model of the fields near the cracked thread. The sizing 
algorithm may be used for either limiting case, details are given in section 5.4. 
At the time of writing, trials have only been conducted with magnetic drill-pipe 
but work on non-magnetic drill-pipe is planned. Details of the construction of 
the inspection system and examples of results may be found in reference [114]. 
Reliable detection has been achieved for cracks as small as 8mm long and 0.5mm 

deep. 

5.3 Welded steel tubular joints 
Since sea-water, by comparison with steel, is effectively an insulator, 

electromagnetic methods can also be applied under the sea. One important 

application is to the detection of fatigue cracks in off-shore structures made from 

welded steel tubes. In this case, the fatigue cracks grow because of the cyclic 
load caused by sea-waves. The usual site of crack formation is at the "toe" of a 
weld, that is, at the line joining the weld metal with the parent metal. As a rule, 
it is more common for the crack to propagate into the parent metal rather than 
into the weld. Fig. 5.3 shows some typical geometries of joint, named after the 
letters of the alphabet T, Y and K that they resemble. The tube diameter D is of 
the order of 0.5m or greater. 

IN 

fi Dý" 

Fig. 5.3 Some typical tubular joints. 

Conventional practice is to use a team of divers to inspect the weld toes 

using MPI. If a crack is found, it may be sized with contacting ACPD or by 

ultrasonic means. This sort of inspection is both laborious and expensive, since 
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oil-rigs may be very large indeed; for example, greater than 250m in height. It is 

necessary to remove marine growth and clean down to bare metal to obtain reliable 
MPI results and the divers may also have to spend a considerable amount of time 
in decompression, all of which adds to the expense. There is therefore a strong 
incentive to develop a faster inspection method and to eliminate tasks that can 
only be performed by hand, so that eventually the entire inspection can be carried 
out using a remotely operated vehicle. 

One serious problem in using ACFM for tubular joints is that the cracks 
encountered may be as long as 200mm. It is virtually impossible to design a probe 
to generate a near-uniform field over this length in a wide variety of tubular joint 

geometries. Furthermore, for reasonable operating frequencies, the cracks will 
tend to fall in the intermediate range of m values. 

It was initially decided to proceed in the same manner as for the drill-string 

project, in spite of these difficulties. A probe was constructed to fit onto the tubular 
joints in such a way that the coils were stationed just above the weld toe (fig. 5.4). 
The field was induced by a magnetising yoke of mild steel, carrying 2A from an 
ACPD Crack Microgauge. One receiver coil was orientated parallel to the weld 
line (referred to as the x coil) and one was orientated to be roughly normal to the 
weld metal surface (referred to as the z coil). The width of the inducing yoke is 

about 50mm. There is no reason to believe that the signal measured by the z coil 
will be proportional to the z component as calculated in the flat plate model. The 

probe was built so that the receiver coils could be removed and replaced. 

e., 

crack 
Fig. 5.4 Tubular joint inspection probe. .'- 
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The probe was used to inspect eight cracked tubular joints in the UCL 
"library" of specimens situated at The City University. The welds in question 
were not permanently labelled, in order to preserve the integrity of the library for 
blind inspection tests. Readings from both the z and x coils were taken at 10mm 
intervals using receiver coils of 2mm diameter. The measurements were then 

repeated with receiver coils of 3mm and 5mm diameters. The probe was 
insufficiently robust and had to be repaired and reinforced several times. The 
2mm diameter coil did not survive. 

A second set of readings was taken from five of the eight cracks, with 
measurements made at 5mm intervals with the 5mm diameter coil only. One extra 
set of readings was also taken with the 3mm coil. In these more detailed 

measurements, the region beyond the crack ends was also inspected, in order to 

assess how clearly the crack signal could be seen above the background noise. 
Finally, the ratio of the sensitivities of the z and x coils was measured, by 

comparing their responses to a roughly uniform field above a flat plate, when 

each coil was orientated to give its maximum signal. 
Fig. 5.5 shows the x signal and fig. 5.6 the_ z signal from one of the shorter 

cracks. The signals display the characteristic shapes expected from the flat plate 
theory (figs. 4.12 and 4.14) so that the presence of a crack can be inferred. Fig. 5.7 

and fig. 5.8 are plots of the same signals for one of the longer cracks and they 

show that the system is much less effective for such flaws. This may well be a 
serious disadvantage, because the longer flaws will, in general, be the most 
dangerous ones. 

Table 5.1 shows crack length and depth measurements by ACFM using the 

x coil, as compared with contacting ACPD, for the tubular joints. The ACFM 
figures were calculated by the method described in section 5.4, assuming the 
flaws were in the unfolding limit. The length measurements are all reasonably 
good and a useful estimate of depth is also obtained from the x signal. Table 5.2 

shows size estimates made with the z coil alone- the depths are all too small. On 

the basis of these results, a more robust version of the ACFM probe was built 

and is undergoing off-shore trials. 
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Table 5.1 Crack sizing in tubular joints by ACPD 

and by ACFM using Bx for depth and B, for length. 
(All dimensions in mm) 

Crack No. Coil 
diameter 

2a ACFM b ACFM 2a ACPD b ACPD 

4 5 60.7 4.4 65 5.2 

6 5 28.6 2.4 30 1.9 

7 5 34.1 3.1 50 4.4 

8 5 96.8 9.8 125 8.7 

5 5- 62.8 5.6 65 5.8 

7 3 33.9 3.2 50 4.4 

7 2 42.0 3.4 50 4.4 

8 3 100.8 10.2 125 8.7 

8 2 110 13.5 125 8.7 

Table 5.2 Crack sizing in tubular joints by ACPD 

and by ACFM using BZ for depth and length. 

(All dimensions in mm) 

Crack No. Coil 
diameter 

2a ACFM b ACFM 2a ACPD b ACPD 

4 5 60.7 2.3 65 5.2 

6 5 28.6 2.1 30 1.9 

7 5 34.1 2.6 50 4.4 

8 5 96.8 2.1 125 8.7 

7 3 33.9 2.0 50 4.4 

8 3 160.8 -2.6 125 8.7 
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5.4 Method of crack sizing --i.. -; 
Evaluation of the theoretical models for different depths of crack showed 

that the signals were always of the general forms plotted in figs. 4.12-4.18, but 

that the magnitude of the peaks and troughs increased monotonically with crack 
depth, without exception. This implies that the depth is uniquely determined by 

the signal magnitude, when all of the other parameters are fixed. Fatigue crack 
measurement is not, of course, only conducted in flat plates. It is important to 
know if the flat-plate model will give a reasonable approximation for the geometry 
of test-piece used in each application. As explained in chapter 3, in the unfolding 
limit the fields are independent of the material constants, so in magnetic metals 
it is highly desirable to select a frequency that puts the flaws in this limit. The 
data below are all evaluated for the unfolding limit, except where stated otherwise. 

It is not immediately obvious how to orientate the sense-coil in order to get 
the, most reliable estimate of crack depth and length or whether different 

orientations should be used for detection and for sizing. Since a measurement 
must be made of the applied field in the x direction, an advantage of using the 

magnitude of the x component is that the same coil may be used for readings in 
both the flawed and unflawed parts. There is then no need to measure the relative 
sensitivities of two separate coils. However, a -possible disadvantage of this 

method is that the crack signal is a small perturbation of a large signal, so the 

signal to noise ratio must be good if the measurement is to be reliable. The central 
trough of the plot of Bx againstx (fig. 4.12) spreads over most of the crack length, 

so that smoothing by the measuring coil should not significantly alter the reading. 
Moreover, because it consists mainly of contributions from the low spatial 
frequencies in the transform, the depth of the central trough varies only slowly 

with lift-off. The y component has the important feature of changing sign on 

crossing the crack. If the component geometry allows measurement on both side 

of the crack, it may be possible to take advantage of. this anti-symmetry by 

measuring the difference in they component across the crack, possibly reducing 
the effects of field non-uniformities. On the other hand, -, a small error in coil 

position might cause a gross error in the depth estimate, because the field strength 

changes rapidly with y. The perturbation magnitude öf the z component is larger 

than that for the other components. This suggests that the z component is the most 
suitable for detection purposes. 
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The first step in developing an inversion procedure was to run the theoretical 
model, for m=0, for a variety of relative lift-off values and aspect ratios. No simple 
equation could be found that accurately fitted the data, so it was decided instead 

to store the results and interpolate. A crude estimate of crack length can be 

obtained immediately by measuring the distance between peak and trough of Bs 

that occur at the crack ends. This distance will be referred to as 2a'. The crack-end 
peaks of the x signal could also be used for this purpose, but it was found 

experimentally that they tended to be less well-marked than the z signal crack-end 
features. The y component has not so-far been used for sizing, because both for 

the welded tubular joints and for the drill-string threads it was impractical to make 
measurements on either side of the crack. 

The crack depth is a function of peak magnitude, aspect ratio b/a and lift-off 

ratio z/a. However, initially all that is known is the peak magnitude and the ratio 
of the lift-off to the approximate crack length 2a*. In general, one would expect 
the interpolation to be quite complicated, because the ratio a/a' may be dependent 

on the aspect ratio, which is initially unknown. Fortunately, according to the 
theoretical model, a/a is almost independent of aspect ratio, varying by only 
about 3% over the whole range of aspect ratios from 0 to 1, so the interpolation 

process can be made relatively simple by ignoring this slight variation and 
working with the mean a/a' value. 

" The unfolding solution for a semi-elliptical crack was evaluated for 
b/a=0.05,0.1........ 1 and z/a=0.05,0.125........ 0.725. The peak value of BZ and the 

central trough value of Bx were calculated, giving 400 tabulated values overall. 
The position of the peak of BZ was selected as the clearest indication of the crack 
ends and 10 values of a/a were found for each aspect ratio. The 10 mean values 
of a/ä over the aspect ratios were tabulated against the measurable quantity z/a . 
The sizing algorithm begins by finding the half-length a from z/a , by using linear 
interpolation, and then infers the lift-off ratio z/a. Beginning from the smallest 
tabulated aspect-ratio, the predicted peak magnitude for the relevant field 

component is found by linear interpolation between the two z/a values that bound 

the one that has just been calculated. This process is repeated for increasing b/a 

until a peak magnitude is found that is greater than the observed peak magnitude. 
The correct aspect ratio b/a for the crack being measured is then found by a final 

linear interpolation. Fig. 5.9 shows plots of the perturbation part of B, normalised 
to the incident field strength, against b/a for the z/a values given above. The higher 
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field values correspond to smaller lift-offs, so that the sensitivity is better for 

smaller lift-offs, as one might expect. The dependence on aspect ratio b/a is close 
to linear for shallow cracks and becomes weaker as the aspect ratio rises. 

., _. 1 

BfBxo 

Z/a 0.3- 

0.25- 

, 0.2- 

0.15 
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

b/a 

Fig. 5.9 Variation of signal strength with aspect ratio 
for 10 values of lift-off ratio 
z/a = 0.05,0.125...... 0.725 
Unfolding limit 

A self-consistency test was conducted on this interpolation scheme in which 
peak values and positions predicted by the model were used as input data for the 

sizing program. The length estimates from the peaks of the z signal were found 

to be consistent with the input lengths to within 2.25% as shown in table 5.3. The 
depths from the central trough of the x signal were consistent with the input 

depths to within 1.5% (table 5.4). Depth estimates from the z signal were not 

quite as good, one value being in error by 5.2% (table 5.5), because of the greater 
sensitivity to lift-off. 
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Table 5.3 Self-consistency check on length estimate Iý °'` 

depth b length 2a 2a*. estimated 
length 

% error 

0.5 8 7.125 8.169 +2.11 

1.0 8 7.125 8.169 +2.11 

2.0 8 6.875 7.852 -1.85 

1.0 16 14.25 16.36 +2.25 

2.0 16 14.25 16.36 +2.25 

3.0 16 13.754 ' 15.81 -1.19 

1.0 24 21.375 24.10 +0.42 

2.0 24 21.375 24.10 +0.42 

3.0 24 21.375 24.10 +0.42 
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Table 5.4 Self consistency check on depth estimate by x component 

depth b length 2a Bx (peak) 2a estimated 
depth 

% error 

0.5 8 0.9630802 7.125 0.5014 +0.28 

1.0 8 0.9349023 7.125 0.9946 -0.54 

2.0 8 0.8988158 6.875 2.030 +1.5 

1.0 16 0.9403898 14.25 1.011 +1.1 

2.0 16 0.8944303 . 14.25 2.007 +0.35 

3.0 16 0.8599268 13.75 2.983 -0.57 

1.0 24 0.9508463 21.375 1.004 +0.424 

2.0 24 0.9092289 21.375 2.001 +0.05 

3.0 24 0.8742926 21.375 2.989 -0.37 
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Table 5.5 Self consistency check on depth estimate by z component 

depth b length 2a BZ (peak) 2ä estimated 
depth 

% errör 

0.5 8 0.043983899 7.125 0.4956 -0.88 

1.0 8 0.077089399 7.125 0.9813 -1.9 

2.0 8 0.1186514 6.875 2.050 +2.5 

1.0 16 0.094825536 14.25 0.9778 -2.2 

2.0 16 0.1659807 14.25 1.932 -3.4 

3.0 16 0.2178786 13.75 2.931 -2.3 

1.0 24 0.095024139 21.375 0.9614 -3.9 

2.0 24 0.1741818 21.375 1.904 -4.8 

3.0 24 0.2388117 21.375 2.843 -5.2 
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A robustness check was 7 carried out in which the peak' position ci was 
deliberately made 5% too big or too small, to see the effect on sizing. For both 
length and depth estimates, the error in sizing was first order in the error in input 
data, the z, signal being more sensitive than the x signal. Results are in table 5.6 

and 5.7. 
Table 5.6 Sensitivity of z size estimates to small errors 

depth b length 
2a 

2a` estimated 
depth 
(using 
1.05a) 

estimated 
length 
(using 
1.05a') 

estimated 
depth 
(using 
0.95a) 

estimated 
length 
(using 
0.95aß) 

0.5 8- 7.125 0.4824 8.600 0.5084 7.710 

1 8' 7.125 0.9455 8.600 1.058 7.395 

2 8. 
_ 

6.875 1.878 8.282 2.288. 7.395 

1 16 14.25 0.9726 17.14 1.017 15.57 

2 16 14.25. 1.909 17.14 
.. 
' 1.971 15.57 

3 16 13.75- 2.841 16.57 3.062 15.05 

1 24 21.375 0.9657 25.25 0.9607 22.95 

-2 24 21.375 -1.899, 25.25' 1.917 22.95 

3 24 21.375 2.830 25.25 2.868- 22.95 
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Table 5.7 Sensitivity of x depth estimates to small errors, 

depth b length 
2a 

2a estimated 
depth 

(using 1.05a) 

estimated 
depth 

(using 0.95a) 

0.5 8 7.125 0.4824 0.5084 

1 8 7.125 0.9455 1.058 

2 8 6.875 1.878 2.288 

1 16 14.25 0.9726 1.017 

2 16 14.25 1.909 1.971 

3 16 13.75 2.841 3.062 

1 24 21.375 0.9657 0.9607 

2 24 21.375 1.899 1.917 

3 24 21.375 2.830 2.868 

From all these tests, it was concluded that the sizing algorithm was 
self-consistent and robust to within the accuracy required for engineering 
purposes and that it was not necessary to use a higher order interpolation scheme. 
The first versions of the software for the ferromagnetic drill-strings and for the 
tubular joints used the algoritm exactly as described here. 
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An improved program was written for the second prototype tubular joint 

probe, incorporating a- correction for the finite size of the measuring coil (as 
discussed in section 6.5), so that small cracks can be sized with the 5mm diameter 

probe. Since the coil size defines an absolute length scale, it was necessary to 

evaluate the model for various absolute lengths, instead of working with the 
dimensionless ratio z/a. The x coil was taken to be approximately cuboidal and 
the coil-size correction factor was of the form 

sinc 
p2 s sinc 

p2' 
sinch 

p2 s' (5.4.1) 

for each spatial frequency kx, k,, where the coil dimensions are px py and p,. The 
function sinch is just the hyperbolic analogue of sinc. The correction factor for 

a cylindrical coil of diameter pd orientated in the z direction is 

2J'(Pdk, 
/2) 

sinch (p, k, 12). (5.4.2) 
pak, l2 

where Jl is the first order Bessel function. Note that both these coil-size correction 
factors reduce to 1 for an ideally small coil. The look-up table was generated by 

running the unfolding model for semi-elliptical cracks with aspect ratios 
b/a=0.02,0.04,.... 0.98 and lengths 2a=4,6,8,..... 100 mm giving 2401 values of 
B1(peak) and B1(peak), with 49 values of a. 

When the sizing algorithm is used in the Born limit, there is the slight 
additional complication that the predicted signal strength depends on the length 

i, S and also on the notch width, where applicable. It"is necessary to be more 
careful about defining the phase of the 'signals because the perturbation is not in 

phase with the applied field. Fig. 5.10 shows plots of the normalised perturbation 

part of B., against aspect ratio, for the same lift-off ratios as fig. 5.9. The normalised 
B.; which is always purely real, is calculated by dividing by the upstream Bx and 

also by a factor. 

(µ, ßk+hl2)la = 2a... ,'... 
(5.4.3) 

The'sizing program first infers a from the peak positions, as in the small m case. 
'Given the value of µr6, the normalised Bx (or B) is inferred from the real part of 
the signal using 5.4.3. The program then proceeds to size the crack by interpolation 

in the same way as the program for the small m limit. It is also possible to work 

with the imaginary part of the signal if desirred, providing the notch width h is 

known. In the large m limit, the real and imaginary parts of the field are -equal if 

the crack is closed, i. e. if h=0. 
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Fig. 5.10 Variation of signal strength with aspect ratio 
for 10 values of lift-off ratio 
z/a = 0.05,0.125,..... 0.725 
Born limit 

Finally, in the large m limit, if both real and imaginary parts of any component 
of the magnetic field are known it is possible to infer h using 5.4.3, 

h =R, 6[IRe(B)j/IIm(B)I -1]. (5.4.4) 

At the time of writing, no experimental data is available for the nonmagnetic 
materials. 

The main advantage of the interpolation method described in this chapter 
is that very little arithmetic is required to obtain the crack size once the data has 

been tabulated over the required range, so that a personal computer can give size 

estimates almost instantaneously. Calculation of the data tables usually requires 

several hours processing on a minicomputer. A general m depth inversion program 
based on the same method would need data tables, with an additional degree of 
freedom, which are likely to take -a prohibitive length of time to compute. 
However, it may be possible to devise a general m depth calculation, based on 

an iterative use of the rectangular solution of chapter, 3, which would take longer 

to run than the interpolation algorithm but which would not require a lengthy 

preliminary calculation. 

P 
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6 Impedance of a Circular Coil Near a Crack 

6.1 Introduction 
In chapter 3, solutions were presented for the field near a flat plate with a 

uniform incident field but the same concepts can also be used to model more 
conventional eddy-current tests. In this chapter, the new model is used to calculate 
the impedance change for a circular air-cored coil with its axis perpendicular to 
a flat plate, with a uniformly deep, infinitely long fatigue crack. The final 

expression for the impedance change is evaluated using numerical integration 
and the results are expressed in terms of the parameter m=rjµ, S where ro is the 

coil radius. The analysis for a single-coil "system is generalised to treat a two-coil 
system with an exciter coil and a receiver coil. " 

6.2 Solution for the Fourier transform of the scalar potential 

The Fourier transform method` wäs''used in chapter 3_'to solve the 

uniform-field problem for a flat plate but it is equally applicable to non-uniform 
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fields. Auld's student Riaziat [ 115] has discussed in detail how the behaviour of 
an arbitrary coil near a flat plate may be understood using spatial Fourier 

transforms and the analysis given here combines his method with the surface 
impedance method of chapter 3. 

Let the coil radius be ro, let the lift-off be zo, the horizontal offset be yo, let 

there be N turns and let the crack depth be b, as shown in fig. 6.1. It will be 

assumed that the coil wire is thin compared to the coil diameter. The impedance 

change for a coil with windings of finite cross-section can be found by integrating 

the field of the thin-coil over the cross-section. . 
The scalar potential yi may be considered in two parts: Nfl, the potential that 

would exist if the coil were situated in free space and Ni,, the perturbation caused 
by the cracked plate, 

V=Vp+vf . (6.2.1) 

As usual, each component of the two-dimensional Fourier transforms, tjrf 

and jr,, must decay exponentially, cap as the distance from the coil increases and 
yrp as the distance from the plate increases. At a height z, the potentials are 
therefore 

yrf(z) = gVf(zo) exp(-kI z- zol (6.2.2) 

1 VP(z) = yf, (0) exp(4, z), (6.2.3) 

where 
k, =k 2 +k y. 

(6.2.4) 

On the plane z=0, the extended surface impedance boundary condition, 3.3.17, 

applies to the total scalar potential, 
0127 

a 
4ý+Y'a'7 

=2H1(x, o)8(y), (6.2.5) y 
7= (i + (6.2.6) 

Writing this equation in terms of the transforms and remembering that y'j and iV, 

decay in opposite directions, one obtains 

( k: +(-ks +k: Y) r1=2Hs(ks, 0). =2 
f H, (x, 0)e-ik,: dx. (6.2.7) 

136 



In 6.2.7, fl=(k,,, 0) is the one-dimensional transform of the vertical component of 

magnetic field inside the crack. Equation 6.2.1 can be used to eliminate yr,, from 
6.2.7 so that the transform of the total potential is 

2Yk xVf- yr= 
2 

2H (kx'U). 
(6.2.8) 

ks + yks 

This equation can be usefully arranged in a slightly different form with the 

exponential factors made explicit, 

7- k2H(k, 0) 
VS(O) = (zo)exp(-k: zo)+, 

y+k, 
1 lf(z)exp(-k zo)- k2+ k. 

(6.2.9) 

The second term on the right-hand side of 6.2.9 has the typical form of a reflection 
coefficient and is the perturbation caused by the uncracked plate. The third term 
is the additional perturbation due to the crack. The potential at coil height can be 
inferred by multiplying each term in 6.2.9 by, its appropriate exponential factor, 

y- k, ; 2H, (ký, 0) 
W(zo) = Wf(zo) + 

k, yV1(z0) exp(-2k, iö) - k2 k exp(-k z0) . (6.2.10) 
. +7= 

6.3 Effect of the crack . 
On the crack faces, the conditions öf chapter 3 apply: the'potential yr must 

satisfy the two-dimensional Laplace equationjt must be continuous with the 

exterior potential on the line z=0 and it must have zero normal derivative on the 

crack bottom edge. A suitable form that satisfies these conditions is 

cosh[ki(z +b)] iA x ffý 
cosh(k,, b) ej dk=dky. t`W 4n2 

Differentiating with respect to z, on the line z=0, one obtains 

H, (x, 0) k,, *tanh(kxb)ei`"dkydkx, 

so that the one-dimensional transform on x of HZ(x, 0) is 
Y 

H, (k.,, 0) 
ýýýk! 

tanh(kýb )dky' 
2n f. �, 

{ý .. 

_, f .. s (6.3.1) 

(6.3.2) 

(6.3.3) 
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If 6.2.8 is substituted into 6.3.3, it may be seen that 
H, (k,,, 0) = k, tanh k,, b [I (k; ) +F (k, )H, (ks, 0)], . (6.3.4) 

where 

1(kx) 
!. 

J. e. 

2y Vfk p(k1z0) dky (6.3.5) 
i 

and 

F (kx) _-1f2' (6.3.6) 
2n -.. ks +Yk, 

is the boundary condition function of chapter 3, discussed in Appendix A. 

Equation 6.3.4 can be rearranged to give 
kk tanh(k,, b)1(kx) 

H'(k; '0) _ 1-F(kjk, tanh(kxb) {' - 
(6.3.7) 

In 6.2.9, the part of the scalar potential caused by the crack is proportional to 
HZ(x0) and the impedance change caused by the crack will therefore depend on 
HZ(x, 0) also. The free-space part of the potential yif drives the solution via the 

integral 1(ks) of equation 6.3.5. 

6.4 Free-space field of the coil 
The field of an air-cored coil of arbitrary shape can be expressed as an 

integral of elementary dipole fields. Each dipole corresponds to a infinitesimal 

current loop and the coil is built up by combining the loops edge to edge so that 

the currents cancel along all the edges except the outer edge of the coil. 
The scalar potential distance r from a unit dipole orientated in the z direction 

is 

z-z ° 6.4.1 ýd-4n[r2+(z-z°)2 
312 

() 

The transform of this potential is 
Mq 

z- zo 
e-ik=: e-ik, 

ydxd 
' Wd =Y (6.4.2) )i41r[r2+(z 

-zo)2]Y' 

which expressed in polar coordinates, centred on the point (x', y), is 
2- 

-= e-i(k; 
x'+kyyl (' fo z- zo 

e-; 
k mOrdrdO. (6.4.3) 

o 
41c[rZ+ (z - zo)2] 
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The integral on 0 is a definition of the Bessel function Jo and the integral on r is 
given in standard tables (formula 6.554.4 in reference [116]), 

1 
-I(k x'+kyy) 

(z -zo)Jo(ksr) 1 
-k, is-sd -Kk x +k, Yl 

yid =2ef rdr e (6.4.4) 
2- 

0 
[r+ (z - z0)2] 

The transform of the potential due to the whole coil is the integral of 6.4.4 over 
the area of the coil 

1 
NI eh 

i: -'d e-uksx'e-+� Y'dx dy', (6.4.5) =2 ýJ coilarea 

For the particular case of a circular coil of N turns, radius ro, centre (O, yo), carrying 
a current I,, the transform of the field is 

r0 2a 

yýf(z) 2NIce-ýyyo-kis 
sd ffe'°°rdrdO, Cos (6.4.6) 

00 

ro 

yi1(z) = nNle-ý'yo-k. 
I=-=d JrJo(k1r)dr(647) 

o 

which is another standard integral (5.52.2 in [116]), so that 

1j/f(z) =1trrNI e-ý'Y*; 
9" Ji(k=ro). 

(6.4.8) 
k=ro 

In optics textbooks, for example [ 1171, the same integral appears in the calculation 

of the diffraction pattern of a circular aperture, which is a related problem. 
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6.5 Voltage measured across the coil 
The measured voltage is given by Faraday's Law 

V= goNiw 
fä ds. 

coil area 

Each spatial frequency (kx, ky) makes a contribution 

V (kx, ky) = Ft0Niwk, y (z0) fe ik"e'k''dxdy, (6.5.2) 
coil area 

which is the complex conjugate of the integral that appears in 6.4.5, so that for 

a circular coil 

;k 2J (k r) V (kx, ky) = Nnrö iwµoe 'y" 'oki ! (zo). (6.5.6) k=ro 

The formal resemblance between the behaviour of the coil as an exciter and its 
behaviour as a receiver does not depend on the shape of the coil. For example, it 
is well-known that the mutual inductance of a transformer is the same regardless 
of which coil is regarded as the primary. Burrows [32] gave a derivation of this 
theorem, with initial assumptions applicable to eddy-current NDE, based on the 
Lorentz reciprocity relationship 

V" (E, xH2-E2xH, )=0. (6.5.7) 

Auld [38], [39] has shown that it is possible to use 6.5.7 to calculate the impedance 

change from the fields in the region of the flaw only, without working out 
explicitly how the magnetic field induces a voltage in the receiver coil. However, 
in the case under consideration here, the direct calculation was straightforward. 

Equation 6.5.6 can also be used to correct for the finite size of a cylindrical 
measuring coil, perpendicular to the test-piece surface, when the inducing field 
is uniform. This correction was incorporated into the tubular joint program 
described in the previous chapter. A correction factor for a coil with its axis 
perpendicular to the test-piece was also mentioned, which was derived in a similar 
way, except that the coil shape was assumed to be cuboidal to simplify the 
integration. 
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6.6 Impedance change due to the crack II>I/ý_,:. I 
To summarise the calculation so far, the general interaction of a coil with a 

cracked flat plate was modelled using the surface impedance boundary condition 

and Fourier transforms, the specific fields for a uniform crack and a circular 
inducing coil were calculated, finally the voltage measured across a circular 

receiver coil was calculated for each Fourier component. It is now possible to 
find the impedance change of the coil caused by the crack. 

In 6.2.9, the contribution to the transform of the scalar potential from the 

crack, which will be denoted y ... was 

., 2Hs(k,, O) 
V'PC= ks+Yks . (6.6.1) 

This formula applies to the potential on the test-piece surface. At measuring coil 
height, 

2H, (k,, 0)e 
WP ks+yks 

(6.6.2) 

Substitution of 6.6.2 into 6.5.6 gives the voltage VPS induced in the measuring 

coil by each component of the field due to the flaw, 

2J, (k. ro) 21?, (kx, 0)e-k'z°+ik'y° 
Vor = Nnroiwµo 

kro k=+y 
(6.6.3) 

, 
The mouth field N, (k0) is given by 6.3.7, so that 

2J, (k, ro) 2e I'O +ý` 
Vpc = Nnroio)N ' y-'o kz tanh(ksb )I (k=) 

ktro (k=+y) [1-k,, P(kz)tanh(k,, b)] 

(6.6.4) 

For a circular coil, the integral 1(k, ) is obtained by substituting 6.4.8 into 6.3.5 

to give 
"'tiro 

cosky0J, (k=ro) 
1(kx) = roN 7ef (ks +Y) ksro dky' (6.6.5) 
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The measured voltage across the coil is given by inverting 6.6.4, i. e. dividing it 
by 4n2 and integrating it over all (kx, ky). Because of the reciprocity relationship, 
the integral on k,, turns out to be exactly the same as the integral in 6.6.5. The 
impedance change in a single coil system is 

AZFC = V,, /I,, ' (6.6.6) 

so that in this case 

_ 
2iwµaj_! 2(k1)k t anh(kb) 

yl1-k; F(kr)tanh(k, b)dk; ' (6.6.7) 
0 

Similarly, for a system of two concentric coils, the mutual inductive reactance 
would be 

_ 
2io)po 1f1(k)! 

2(k)ktanh(kb) (6.6.8) 
'` 1-kXF(kF)tanh(ksb) 

ms' 
0 

where 11 and 12 are calculated from 6.6.5 for each of the two coils and for unit 

current. It is immediately clear that the mutual inductance is unaffected by 
interchanging the exciter and receiver coils, as expected from the reciprocity 
theorem. 

In order to show more clearly the dependence on the various different 

parameters it is helpful to write 6.6.7 and 6.6.8 in terms of the following 

dimensionless functions and variables 
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m= r0y/(i+ 1), (6.6.9) 

1= kro, (6.6.10) 

n= kyro, (6.6.11) 

p =kjro=(12+n2)'n, 
pý. (6.6.12) 

S =zdro, '" (6.6.13) 

t=b lro, (6.6.14) 

w= Ydrm (6.6.15) 

eý'P cos(nw) 2J, (p) 
m's'w) do (6 

i[p+(i+l)ml 
p . 6.16) 

f (m/l) = k, P(kk). (6.6.17) 

The expressions 6.6.7 and 6.6.8 for the impedance change, in terms of these 
dimensionless quantities, are 

2 j2(l, m, s, w)1 tanh(lt) AZPc=4(i-1)rJ Nmf 
1-f(m/l)tanh(lt) 

dl, 
0 

(6.6.18) 

IJ2I tanh(lt) 
AXPc =4(i-1)rofµo1V1N2rn 

f 
1-f(m/1)tanh(lt)di 

0 

(6.6.19) 

where 
Jý =1(1 r, /ro, mrl/ro, z, /rl, y, /r, ) (6.6.20) 

and 
j2 =j (l r2/ro) m r2/ro, zjr2, y2/r2) (6.6.20) 

In these equations r, and r2 are the radii of the two coils and N, and N2 are their 

numbers of turns. Any arbitrary length scale can be used for ro, providing that it 
is used consistently, but it is natural to pick one representative of the problem, 
such as the mean of the two coil radii, ' so that m has its usual significance. 
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In 6.6.7, the dependence on crack depth is expressed by the hyperbolic 

tangents. The sensitivity of the impedance to depth becomes weak as the crack 
depth becomes large compared with the coil size because tanh(k, b) asymptotically 
approaches 1. The variation of impedance change with crack depth for m=1, is 

shown in fig. 6.2, the form of the signal seen on crossing the crack is shown in 
fig. 6.3, and the variation with m is shown in fig. 6.4. These results were calculated 
by using Simpson's rule to evaluate 6.6.16 and 6.6.18 and are given in terms of 
Zo = 4froitcN2 with the real parts shown solid and the imaginary parts shown 
broken. 

On examination of 6.6.16-6.6.18, it is apparent that, in the large m limit, the 
crack signal becomes proportional to IN in the same way as it did in the uniform 
field problem. However, in contrast to the uniform field case, in the small m limit 

the signal becomes proportional tom instead of independent of it. The maximum 
impedance change occurs near m= 1. 
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6.7 Impedance change due to the uncracked plate 
For the sake of completeness, the calculation of the impedance change on 

bringing the coil from free-space up to the uncracked plate will now be explained. 
In equation 6.2.10, the relevant perturbation is 

z 
ý- k` 

z ex 2k z 6.7.1 

The measured voltage due to this perturbation is obtained by substituting 6.7.1 

into 6.5.6 to give 

7(k, ) = Nnra iwµo 
2Jk Ö o) k, e- . =. 

Y+ 
k *Po) 

. (6.7.2) 

As before, the free-space potential is substituted in from 6.4.8 to give 

za J1(k=ro) 2 
-zk. ý y- k= 

V(k, ) = 2Nrolýiwµo k=ro k=e 
y+k 

(6.7.3) 

The impedance change follows, by inversion 
rw 

AZ =iffV (k: )dk,, dk,, (6.7.4) 
4n lý 

,_ 

AZ 
2cfk, 

V (ks)dk. . 
(6.7.5) 

0 

Finally, substitution of 6.7.3 into 6.7.5 gives 

AZ =NznroicDJ. t 
S[Ji(kzro)I2e_0''"z 

+dks 
(6.7.6) 

0 

Cheng [118] derived an expression for the impedance change caused by a flat 

plate for arbitrary skin-depth, using the vector potential, and his formula becomes 

equal to 6.7.6 in the thin-skin limit, as expected. 
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7 Some extensions to other geometries 

7.1 Introduction 
All of the systems discussed so far had in common that there was only one 

crack in each test-piece, that the test-pieces were flat plates and that the receiver 
coils were air-cored. In this chapter, three examples are given where each of these 

restrictions is relaxed, without altering the basis of the modelling. , 
In the first 

example, the flaw is a pair of identical overlapping fatigue cracks in a flat plate. 
In the second example, the crack is situated in the interior corner of an angled 
test-piece. In the final example, a semi-empirical analysis is given for crack depth 

measurement in mild steel plates using a ferrite-cored measuring probe. 

7.2 Overlapping cracks 

*-wHox Y} 

crack YO 

x 

-x-a x, +a, 1 T.. . .1.. xe-a ;, a 

-yo 
Crack 

Fig. 7.1 t' offset Crac, f Para r, 0Eerc ý'or ouerlopptn, 

The crack separation is 2yo and the offset is 2xo, as shown in fig. 7.1. The same 

analysis applies for truly overlapping cracks (xo<a) and offset cracks (xo>a). For 

the sake of simplicity, it will be assumed that the applied field is uniform. The 

contributions of both the cross-crack potential differences, 241 and 242, must be 

included, so the surface impedance boundary condition is 

ä 
+22 y/+'y ä=2aý 

6(y + yo) +2 
ä-s 

8(y - yo). (7.2.1) 
y 
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If the two cracks have identical profiles then the flawed test-piece has rotational 
symmetry of order two about the z axis. The two potentials 241 and 242 can 
therefore be written in terms of a common potential 0, 

01 = 4(x +xo) (7.2.2) 

and 
12 = 4(-z +x0). (7.2.3) 

The boundary condition 7.2.1 becomes 

C)2V d2 

++ 2a4(x+x0)8(y+yo)+2a«( x+x0)8(y-yo). (7.2.4) 
axe aye az ax ax 

The Fourier transform solution of Laplace's equation, subject to this boundary 

condition, is 

-2ik e-kII 
XV(k.,, ky)= 

2e ((k)e Lx0+ iky0 +- L&Y0). (7.2.5) 

In the large m limit, the Born approximation remains valid because the 

perturbation of the uniform field by the two-crack system is of order 1/m, just as 
it is for the single crack. To generate the scalar potential it is simply necessary 
to solve the usual two-dimensional Born approximation problem and incorporate 

the additional complex exponentials of 7.2.5 before inverting the transform. 
In the small m limit, the unfolded plane does not have lines of symmetry 

along the crack bottom edges. Consequently, the unfolding algorithm predicts a 
discontinuity in the scalar potential across each crack. This is forbidden because 
it would imply non-zero divergence of the magnetic flux. The numerical solutions 
of the unfolded problem published by Haq et al. [90] must therefore be regarded 
as approximate only. 
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A solution for general m, including both limits, can be obtained by the 
method of chapter 3. The appropriate boundary condition for the two-dimensional 
problem is found by inversion of 7.2.5 along one of the crack mouths, 

v(X, Yo, 0)=2nf2 
; 
[$(ks)F(kx)+ý(-k: )L(ký)]ek'zdkz+Hox, (7.2.6) 

where 
jexp(2ik7y0) 

dk . 7.2.7) 
k= +yk, y 

Although this frequency domain boundary condition is slightly different from 
r 

the previous one, methods similar to those of chapter 3 could, in principle, be 

used to find the potential 0 and hence the whole field. The space domain form of 
7.2.7 is 

YN 

V(x, yo, 0) = Hox + 
fF(x 

-x') tp(x')dx'+ 
fL(x 

+x') «(x')dx'. (7.2.8) 

The first integral is the same convolution as before; the second integral is called 
a correlation and corresponds to the scattering of the field between the two cracks, 
i. e. the effect that the'presence of one crack has on the internal field of the other 
one. In the small m limit, L(k,, ) can be found analytically, ; ,ý 

L(kx) 
nJ 

exp(2k yo)dy 
_ -exp-12kyol )/ I k: I " (7.2.9) 

... 
k. ' 
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Fig. 7.2 Overlapping cracks in the large m limit 

Fig. 7.2 shows HZ, calculated by the Born approximation, for a pair of identical 

overlapping semi-elliptical fatigue cracks with m=100, a=1, b=0.5,2x0=0.5, 
2yo=0.1, y=0, z=0.1. 
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7.3 Crack in an interior corner 

0 

Fig. 7.3 Crack in an interior corner 

A serious practical limitation of the flat plate theory is that fatigue cracks 
usually grow in a region where the local stress is much higher than the global 
stress of the test-piece. The centre of a large flat plate is not a likely site for such 
a stress concentration. Unfortunately, the sort of irregular geometric features that 

are often the cause of high stress concentration factors are also the ones that may 
be expected to be least amenable to analytic solution. The best strategy for 

overcoming this problem may well be to combine the extended surface impedance 
boundary condition of chapter 3 with boundary element or finite element methods. 
However, limiting case solutions can be found analytically for one quite realistic 
case: the interior corner of an angled test-piece. 

The problem can be written, in cylindrical polar coordinates as shown in 
fig. 7.3. Laplace's equation in this coordinate system is, 

%Ia 
(r2j)+jC@; 

V, +0')2W, 0. (7.3.1) 
rar Dr r2 a02 axe 
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By the method of separation of variables, a solution for 7.3.1 that is symmetric 
in 0 as required may be shown to be 

yr = cos(n 9)e ik 'x[A�I4(k: r) +BlKR(k: r)], (7.3.2) 

where II and K,, are modified Bessel functions. To find the potential of the field 

near a crack it is necessary to combine solutions of this form, with coefficients 
A,, and B. chosen to satisfy the surface impedance boundary condition. 

In the small m limit, the external field does not influence the surface field 

at all, so the potential on 0= ±a is given by the same unfolding model that was 
used for the flat plate, but with z=0 and y replaced by r. A suitable Fourier 

transform solution can be found by putting m=0 in the general solution of chapter 
3, which gives 

fi -'kjºI ik x 
yý H°z 

2n Jk 
ý(kx)e e' dk=. (7.3.3) 

It may easily be verified that the two-dimensional Laplace equation 
a2W 

=0 (7.3.4) 
är2 axe 

is obeyed and the normal and tangential field components are continuous at the 

crack mouth, as required in the unfolding model. 

. 
Now the exponential decay function can be written as a sum of modified 

Bessel functions (equation 9.6.38 in reference [119]), 

eFý = Io(k; r)+2 I,, (k; r) (-1)". (7.3.5) 

A combination of solutions of the form 7.3.2 which reduces to 7.3.3 on 0= to 

is therefore 
ý 

H°x 
. 

rkz 

ý(kx) Io(Ikýrl)+2AEl! (I kxrl)(-1)' 
osna]eikxdk,. I 

s) -e. 

(7.3.6) 

The modified Bessel functions 1. (k; ) become infinite as kf becomes infinite and 
the series itself only decays to zero because the terms alternate. It would be very 
difficult to evaluate 7.3.6 because the results would tend to be dominated by 

rounding errors. 
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In the large m limit, the correct combination of solutions is determined from 

the behaviour of the magnetic flux. On the metal surfaces 0 =±a, the normal 
component of flux is zero so that He =0 for all r (at the crack itself, the flux 

T 1*r cendiýion eaº+ be cattsfýea', foý a« ýý 
coming out is dire ted radial]y) 

ýterrns-eft 
e4e bqt j" o« t, $ j wil. 

N a0 ti' 7.3.2 
he . The term in I0(kj) must be zero to keep the field 

bounded as r becomes infinite, so the solution is 

V =14r +f B0(kx)Ko(I ksrl )e lk "xdkx. (7.3.7) 

Note that this solution is independent of 0. The coefficient Bo may be inferred 

by conservation of flux. Since He=0 on 0 =±cx, no flux enters or leaves the 

test-piece except at the crack, so all the flux that leaves the crack mouth from one 

side of the plane x=xo must enter into the crack on the other side. As explained 
in chapter 3, the flux per unit length coming out of the crack is 2H, (x, 0)/y so that 

MM -Y 

2ioc 
ff Bo(k=)rk. Ko(l krl )e'ksdrdk; = 2/y 

f H: (x, 0)dx = 2$(xo)/y (7.3.8) 
-.. 0 -a 

Taking the Fourier transform on x gives 

2tticck., Bo(kx) 
f 

rKO(I k: rl )dr _ $(k: )ly (7.3.9) 

0 

and the integral on r is equal to 1/kj (standard form (5.52.2 in reference [116]) 

so that 
Bo(ký) Zý(kx) :.. i 

(7.3.10) 
nay 

The final form for the potential is therefore 

>: ' yf 'j = Hex - 2nay 
J 

ikÄ(kx)Ko(I kxrl )e dkr ' (7.3.11) 

The flat plate is a special case of the interior corner with a= Tt/2 so that the flat 

plate solution given in section 3.6 shduld reproduce formula 7.3.11 for this angle. 

The large m limit of 3.6.13 substituted into 3.6.8 is 'ý' 'ý '`` '" ''ý '` 'ý' 

W_ Hý _ 
12(ý(ýx$(kz) 

eiksý`eik're-k'`dkxdky. ; ý.... (7.3.12) 
,r., 2nJJtk=Y. 

.. ý. ýý 
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Another standard integral (3.961.2 in [116]) gives 

W =Hox -* 
f ikx (kx)ýkx y2+z2 e ýdkx, 

which corresponds to 7.3.11 for a= 7r/2, as expected. 

7.4 Ferrite-cored probe 

(7.3.13) 

Unlike a small air-cored search coil, a ferrite-cored coil changes the field 

that it is measuring. In general, to find the fields in the presence of a ferrite-core, 

a new three-dimensional solution is required, for example using finite element 
or volume integral methods. However, the unfolding model can still provide a 
useful approximation for the fields on the surface of a ferromagnetic test-piece 

with a ferrite-cored measuring probe. Fig. 7.4 shows a U-shaped ferrite-cored coil 

measuring the field on the surface of a uniformly deep crack. 
The flux coupling with the coil will be partly from the surface of the 

test-piece and partly from the surrounding air. If the probe is well shielded, then 
the flux comes from the test-piece only and this is, presumably, the optimum 
mode for inspection. In the small m limit it may be assumed, as before, that no 
flux leaves the metal surface except directly underneath the probe. The skin depth 
in a ferromagnetic metal at reasonable frequencies will typically be of the order 
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of 0.1mm so the cross-sectional area of the ferrite core is much greater than the 

cross-sectional area of the thin-skin near the crack. Therefore, since the 

permeabilities of the ferrite and the test-piece are comparable, the reluctance of 
the magnetic circuit shown in fig. 7.4 as a broken line is dominated by the 

reluctance of the thin-skin layer within the test-piece. That is to say, the magnetic 
field inside the test-piece is much higher than the field in the core, so'the line 
integral of H around the broken line is dominated by the section inside the 
test-piece. Let xV, be the potential under one end of the U core and yr2 be the 

potential under the other end then 
ýH' 

ds =Wi-W2. ' (7.4.1) 

If the coil current is 1, and there are N turns then, by Ampere's law, 

Vi - V2 = NIA. (7.4.2) 

In particular, if the current in the coil is zero, the scalar potentials under the two 

core ends are equal, that is to say, the ferrite core acts as a magnetic short circuit. 

WI =1Vr :, (7.4.3) 

The ferrite-cored coil can be used as a conventional eddy-current probe or 
it can be used as measuring coil with an externally applied uniform field. In both 

cases it should be possible to calculate the crack signal by using the unfolding 
model and imposing the condition 7.4.2 on the regions immediately under the 

core ends. The arbitrary constant in tqt is most conveniently chosen so that yl is 

antisymmetric in x. The unfolded problem fora uniform applied field is shown 
in fig. 7.5. 
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Fig. 7.6 Approximate model for the ferrite-cored probe 

As a general guide to the feasibility of this method, a semi-empirical model 
(fig. 7.6) was proposed in which one end of the core is considered to act like two 

point-sources of flux at points A(-s, q) and A'(-s, -q) on either side of the crack 
and the other end of the core to act like two corresponding sinks at points C(s, q) 
and C'(s; q) where s and q are empirically adjustable distances. Since the potential 
at each point source is infinite, the potential under the negative x core-end was 
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considered to be equal to the potential at the points B(-s, p) adjacent to A and 
B'(-s, -p) adjacent to A' where p was also chosen empirically. The corresponding 
points on the positive x side are D(s, p) and D'(s, -p). 

By symmetry, all four sources must be of equal strength cb so that the flux 

coupling with the coil is 2Nb. The magnetic scalar potential due to one of the 
point sources is 

yJ=21nr, (7.4.4) 

at distance r from the source. The voltage measured across the coil is 

V =-2iN. (7.4.5) 

Equation 7.4.2 becomes 

Wi-Wx=Wa-WD=We"-VD, NIE. (7.4.6) 

For symmetric problems, 7.4.6 implies that 
2yfB = 2xVB, = -2VD = -2xVD. = NIA. (7.4.7) 

In principle, the model can be applied either if the probe is used in the single-coil 
eddy-current mode or if there is a separate applied field. Consider first the case 
where there is a separate uniform applied field Ha and the coil current 1, is zero. 
The potential at the reference points B, B', D and D' consists of contributions 
from the four sources and from the uniform applied field. Equation 7.4.7 gives 

1V=H. s+2jln! q-p1 +ln(q+p+2b)-Iln[(p-q)2+4s2]-21n[(p+q+2b)2+4s2]}. 

(7.4.8). 

Let VV be the voltage with the probe placed evenly across the crack and V, be the 

voltage with the probe far from the crack, equivalent to b=0 then, from 7.4.5 

4j 2Vý `1nýL1+ 'JI+ 42 
J1 t4-Pý c9 +P+ (7.4.9) 

vý 
- In 1+ 42 1+ 4'1 

(q-Pt 
Tq 

+P)2 

The eddy-current case is very similar, ' except that the 'uniform field term Hos 

must be removed from 7.4.8 and the left-hand'side must havei term from the 
driving current. From 7.4.2 and 7.4.6 with yJ antisymmetric, - 

v=Nlc/2= 
{tnIq-pl 

+ln(q+p+2b)-21n[(p-q)2+4s2J--ln[(p+q+2b)2a+4sýj}. 

(7.4.10) 
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Formula 7.4.9 therefore applies equally well to the eddy current case if VV and V, 

are replaced with ZZ and Zr. An appealing feature of this simple model is that 
7.4.9 can be rearranged to give an explicit formula for the crack depth 

4j2 ýýýý 
s 

_z _ýýýý - (4 +P)/2. 

. V[1+ 
c9-v)2J 

11 
+c4+p)2 -1 

(7.4.11) 

The response to shallow cracks can be found from a Taylor expansion about b=0 
V, 

) 
-1= 

4b 
z, (7.4.12) j J[ 

q_p 
In 1+ '` 1+ 4` 

+, P? 

] [ v+1 +(Qäý2 ' (9P) 

which is equivalent to the response of an ACPD probe of length 
2 (q +p) 1+(452f In 1+ 

4s 
1+ 

4s 2 

(7.4.13) 
2 

1[ 

(q +P)ý (q -P)2 
As the crack depth increases the sensitivity becomes progressively weaker until 
no further increase in coil voltage is seen. The maximum coil voltage may easily 
be found by allowing b to become infinite in 7.4.9, 

42 
V, /V, -1=1 

1 +(Q+=ý 
(7.4.14) 

4 11 +(q-v)2 

Fig. 7.7 shows a least-squares fit of the theoretically predicted signal Vs/V, -1 to 

experimentally measured data on notches in mild steel plates with a uniform 
applied field at 1kHz. Shielding the probe with multiple layers of aluminium foil 
had only a very small effect on the signal. The best values for the adjustable 

constants are p=2.71mm, q=5.52mm and s=7.24mm, which are reasonable for 

the probe dimensions shown in figure 7.4. The equivalent ACPD probe length 
for shallow cracks is 25.7mm and the maximum signal as the crack depth becomes 
infinite is Vc/V, -. 1=0.425. The response of the ferrite-cored coil as a single-coil 

eddy-current probe was not well modelled by the approximate theory because it 

was found to be much more sensitive to notch opening than the response with a 
uniform applied field. A more theoretical model of the ferrite-cored probe could 
be based on a solution of the unfolded problem shown in fig 7.5, for example 
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using finite-difference, finite element or boundary element, methods. An 
important questions to investigate is the validity of the unfolding model for 

shielded and unshielded probes over a range of frequencies. 
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Fig. 7.7 Response of the ferrite-cored probe 
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8 Concluding remarks 
A variety of electromagnetic methods of non-destructive testing can be used 

to find and measure metal fatigue cracks. High frequency methods, where the 
skin-depth is small compared to the crack depth, have been examined in detail. The 
behaviour of the electromagnetic field can be modelled mathematically without a 
detailed analysis of the region inside the metal by using the surface impedance 

approximation. Although this method is not immediately applicable to a cracked 
test-piece it is possible to modify it to take account of the source of flux represented 
by the crack. In general this leads to a coupled system consisting of a potential which 
obeys the three-dimensional Laplace equation outside the test-piece and a potential 
which obeys the two-dimensional Laplace equation on the crack faces. 

For very high frequencies or non-magnetic test-pieces the flux from the crack 
has a small effect on the exterior field and the Born approximation, previously used 
by Auld and his co-workers, is valid. In ferromagnetic test-pieces, if the frequency 
is not too high, the flux in the exterior region is small compared with the flux inside 

the metal so that the two-dimensional potential on the crack face is effectively 
coupled with a two-dimensional potential on the unflawed surface of the test-piece. 
It is then possible to "unfold" the problem and find the fields by solving a standard 
two-dimensional potential problem, an algorithm previously used by Collins, 
Michael and co-workers. The transition between these two limiting cases is governed 
by a dimensionless parameter m=a1p76. When m is very small the unfolding theory 
is valid and when m is very large the Bom approximation is valid. 

For aflatplate test-piece a solution of the three-dimensional problem forgeneral 

m can be found using Fourier transforms and this solution has been used to develop 

models of the response of air-cored measuring coils to fatigue cracks for both uniform 
and non-uniform applied fields. It is possible to extend the models to cases where 
there is more than one crack. Crack depth can be calculated by tabulating results 
from the models for a range of parameters and interpolating. This method has already 

undergone trials for two petroleum industry applications: drill-string threaded 

connections and welded tubular joints. 
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The methods developed for flat plates and air-cored coils have limited scope 
'for extension to other geometries but it should still be possible to use the surface 
impedance boundary condition, modified to take account of the fatigue crack, for 
irregular test-pieces and ferrite-cored probes. For example, the finite element and 
boundary element methods could be applied if special elements were used to take 
account of the boundary conditions on the cracked test-piece, surface. The, flat-plate 

solutions are useful as tests of the accuracy of such numerical models. 
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Appendix A The Boundary Condition Function for a Flat Plate 

The boundary condition function is defined in equation 3.6.16 as 
M 

dkF(k: 

) = -1 
f2' 

(Al) 
7t kj + ky 

where 

k2 = k; + ky (A2) 

and the sign of k, is positive. It may be integrated using the substitution 
k, 2t 
kj 1 -r2 

(A3) 

which transforms the integral into an elementary arctangent form 

I 
__4f 

dt 
F(k") 

l-l +Y 
(A) 

no (IkIY)t2+Ikz 

-4tan' F(ký) =s- 
+7 

. (A5) 
k 

No difficulties are caused by the complex constant y because the definite integral is 

evaluated directly from the indefinite integral without the assumption that the 

constant is real. For the purpose of computation it is convenient to rewrite A5 in 
logarithmic form because complex arctangents are not supported by most compilers. 
Let the complex number w be defined so that 

sin w=2 (A6) 
J1-yI'kx' 

and 

1 +y/I kxI 
(Al) cos w=2 

then 

k,, Y (A8) tan w=I ksl +, ý . 
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From A6 and A7 

and 

so that 

sin 2w = 1= 

cos2w=y/Ik=I 

I' 

(A9) 

(A 10) 

2iw =1n(y/I kj + (y/k=)2-1 . (All) 

Therefore, the final form of the boundary condition function for a flat plate is 

2l4/I k=) 

kkl (y/kx)2-1 
It is possible to obtain this expression directly from A4 using the method of partial 
fractions. The asymptotic forms are 

In the Born limit PQ) -' 0 as I y/ksI -* co, 

as I y/k=I --* 0. (A13) In the Laplace limit F(k,, ) -4 -1/1 k. 1' 

Whilst the transform of F is useful in its own right, it is also possible to find 

an analytic form for the function itself by inverting 3.6.16 

1 
.~ ea"xdk=dy F(x) 

27i2f 
f 

k, 2+ yk, 
(A14) 

F(x) _-1 
-(ý 2(%ý cos(xkk cos A)dedks 

2JJk, +y 00 

F(x) _; 
_ 

1 Jo(xk, )dk, 
k, +y ._ 

2[Ho(Ylxl)-Yo(Ylxl)] 

(A15) 

(A16) 

" (A17) 

where J0 is the Bessel function of order! zero, Ho is the Struve function of örder zero 
and Yais the Neumann function of order zero. The integrals in A16 and A17 are 
given in reference [116] formulae 8.411.1 and 6.562.2 respectively. For numerical 
purposes, the function F may be'evaluated by numerical integration, e. g. of A16 or 
of the Fourier inversion integral. Finally, it should be pointed out that when the flaw 
is not tightly closed, F must be multiplied by the notch-opening correction factor 
described in section 3.5. 
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Appendix B Comparison between the general m model and the 
Schwarz-Christoffel model 

z plane w plane 

i 
i 

"a -1 01a 

Fig. B Schwarz-Christoffel transformation for a rectangular crack 

The Schwarz-Christoffel mapping [82] is defined by the complex differential 

equation 
dz 

....... (B1) dw=(w-w0)"°(w-w, )'(w-wi"a 

and has the effect of mapping the interior of a polygon onto a half plane. It may be 

understood as being built from the basic mapping 

aw=(w-w, 
) (B2) 

which is trivially analytic except at the pole w=w,, where an angle of -rippt in the z 
plane is mapped onto a straight line in the w plane. Repeated applications simply 
follow the chain rule of ordinary differentiation. The angles generated in previous 

applications are unaffected by repeating the transformation because of the 

angle-preserving or conformal property of analytic mappings. It is possible to map 

open polygonal shapes (those with corners at infinity) if the sum of then, is not equal 
to 2. 

The unfolded plane for a rectangular crack (fig. B) may be mapped onto a 
half-plane by the Schwarz-Christoffel transformation [87] 

'" w2-((2Y. 
z=Kf dw (B3) 

o w2-1` 

164 

"a 0a 



The constant K has been taken outside the integral in order to fix two of the poles 
at w= ±1. For a uniform incident field of unit strength, the potentials 4 and yt are 
the real and imaginary parts of Kw respectively. That is to say, i is used here with a 
different significance from its meaning in the general m problem, where imaginary 

numbers are used to represent quantities in quadrature with the applied field. 
However, in the m=0 limit all the fields are in phase, so no confusion arises. 

From B3, the lengths of the crack axes are 

a=Kf 1-U, 
du =K 

f 
(a2 - sine v)1dv, (B4) 

00 

C, (a 2_U2 

b =K 
f 

u2-1 
du =K f (a2-cos2v)dv: (B5) 

The unknown constant a is determined by the aspect ratio b/a and in this work it 

was found numerically using binary splitting and Romberg integration [108]. Once 

a was known, K was found from B4. 

The crack mouth potential 4o, corresponding to the imaginary part of Kw, was 
found by integrating numerically along the path indicated in the figure by the diagonal 
line in the w plane. Binary splitting was used to pick the correct upper limit so that 
Im(z)=b. The process was repeated for the range of angles 

0<6<2 (B6) 

to scan over one half of the crack mouth. A minor disadvantage of this method is 
that it produces values of 00 at irregular values of x, so that it is necessary to use 
linear interpolation when comparing with the results of the general m model, 
evaluated at m=0 (see Table B overleaf). 
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Table B Comparison of predicted 4o values 

b/a x/a General m 
(at m=0) 

Schwarz-Christoffel 

transformation 
percentage 
difference 

1 0 0.4035550 0.3995636 0.99 

1 0.25 0.3890130 0.3851734 0.99 

1 0.5 0.3420294 0.3386706 0.98 

1 0.75 0.2482318 0.2458875 0.94 

0.5 0 0.3198386 0.3172663 0.81 

0.5 0.25 0.3107702 0.3082848 0.80 

0.5 0.5 0.2787881 0.2775653 0.79 

0.5 0.75 0.2111717 0.2095802 0.75 

0.25 0 0.2044294 0.2033342 0.54 

0.25 0.25 0.2011250 0.2000567 0.53 

0.25 0.5 0.1886389 0.1876464 0.53 

0.25 0.75 0.1541072 0.1533639 0.48 
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Appendix C Conversion from Plane Elliptical' Coordinates to 
Plane Cartesian Coordinates 

When the harmonic functions are rewritten in Cartesian coordinates on the line 

z=0 they simply become polynomials. The basic formula is 

x= cosh 4 cos 11. (Cl) 

On the line segment 4=0, corresponding to the portion of the crack lip that lies 

between the foci, 3.8.15 and 3.8.16 give 

cos(2n -2 
"-ýA" cosh(2n -2)a' 

(C2) 

B" cos(2n -1)TI (C3) 
sinh(2n -1)a 

From Cl 

x=c cosll, (C4) 

so that 
Ic2 

-x2 =c sin il. (C5) 

Therefore 

xt x2-c2=c(cos11tisinT)=ce±"'. (C6) 

The terms in the numerator in 3.8.21 are therefore 

(x+ x2-c2) +(x- x2-c2) =2c'cosr11, (C7) 

which are equal to the terms in the numerators of C2 and C3, multiplied by c'. 
Between the positive focus and the positive end of the crack, r)=0 and 3.8.15 and 
3.8.16 become 

_~ Acosh(2n - 2) 

"ýý 
A. 

cosh(2n - 2)a' 
(C8) 

BA -1) W 
"ýisinh(2n -1)a' 

(C9) 

Equation Cl gives 

x=c cosh ý, (CIO) 

T2 
- c2 =c sinh 4, (C11) 

so the analogue of C7 is 

(x+ xc -c2)ß+(x- x -c2) =2c'coshr4, (C12) 
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which gives the correct numerators for C8 and C9. When C12 is evaluated at 4=a, 

it gives the correct denominators for C2 and C8 

(a+b)'+(a-b)'=2c'coshra. (C13) 

Similarly, C10 and C11 also imply that 

(a + b)' - (a -b )' = 2c'sinh ra (C14) 

which gives the correct denominators for C3 and C9 and completes the coordinate 

conversion. The formula in 3.8.21 is therefore valid on both sides of the positive 
focus. It is clear by inspection that 3.8.19,3.8.20 and 3.8.21 give symmetric 0 and 

antisymmetric yi as required. Although the polynomials P, are real, they require the 

use of complex numbers to be evaluated directly, for points between the foci. 

r, s 
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Appendix D Comparison of Semi-Elliptical Model with 
Born-and Unfolding Limits 
Table D1 Comparison of predicted 4o for m=0 

b/a x/a General m Unfolding Solution percentage 
difference' 

1 0 0.3863492 0.3850032 0.35 

1 0.25 0.3716095 0.3705495 0.29 

1 0.5 0.3244538 0.3244090 0.01 

1, 0.75 0.2315703 0.2342941 -1.2 

0.5, 0 0.3036140 0.3017056 0.63 

0.5 0.25 0.2927256 0.2909374 0.61 

0.5 0.5 0.2577421 0.2563680 0.53 

0.5 0.75 0.1882142 -0.1878694 0.18 

0.25 0 0.1951917 0.1942280 0.49 

0.25 0.25 0.1886791 0.1877479 0.49 

0.25 "0.5" ' 0.1676824 '4 0.1668580 ° 0.49 

0.25 0.75 0.1255118 0.1249190 0.47 

r 
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Table D2 Comparison of predicted 4o values for m =10'0 

b/a x/a General m Born 
Approximation 

percentage 
difference 

1 0 0.6367425 0.6366197 0.019 

1 0.25 0.6098922 0.6097532 0.023 

1 0.5 0.5247533 0.5245487 0.039 

1 0.75 0.3617571 0.3613181 0.12 

0.5 0.1. 0.4374709 0.4374566 _ 
0.0033. 

. 
0.5 0.25 0.4206926 0.4206730 0.0047 

-0.5 - 0.5 0.5 0.3668869 0.3668444 0.012 

0.5 0.75 0.2608730 0.2607368 0.052 

- 0.25 -0 
0.2420679 0.2420679 .0 

0.25 -0.25 
0.2338703 0.2338703- 0 

0.25 0.5 0.2073801 0.2073796. 0.00024. 

0.25 0.75 0.1538450 0.1538409 0.0027 
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