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ABSTRACT

A numerical method is employed to obtain solutions
for laminar flow heat transferwith fully developed velocity
profiles and invariant fluld physical properties for rectan-—
gular ducts of various aspect ratios with the thermal bounda-
ry conditions of constant wall temperature and constant heat
input per unit length of the duct. Since an analytical soluw
tion for the fully developed velocity profile in a rectangu-
lar duct is available, the varying temperature profile
remains to be solved numerically from the energy equation
which is transformed into a finite difference form by means
of two finite difference operators in two dimensions, Numeri-
cal values of the initial and boundary temperatures are fixed
by choosing a suitable dimensionless temperature depending
upon the. thermal boundary condition., As computation involved
is very lengthy, a fast digital computer is required, Numeri-
cal results obtained from an I.C.T. Atlas computer are
presented as the variation of the Nusselt number with the
Graetz number,

The numerical method is extended to analyse heat
transfer with simultaneously developing velocity and tempera-
ture profiles. To determine the development of the velocity
profile, some simplifications of the Navier-Stokes equation



are made. Results are presented for various aspect ratios
with the Prandtl number of 0.72. The effect of Prandtl number
on heat transfer is also illustrated by numerical results.

The numerical method is also used to solve for heat
transfer in right-angled isosceles and equilateral triangular
ducts with the same hydraulic and thermal boundary conditlions
as in the previous cases.

The predicted results are compared with experimental
data. For constant wail temperature, they agree well for
Graetz numbers under 70; for constant heat input per unit
length, closer agreement is shown over a much wider range of
the Graetz numbers. Accuracy of the numerical method 1s
confirmed by the facts that variations of the predicted
Nusselt numbers obtained here follow the same trends as
those for circular ducts and parallel plates and at the
Graetz number of zero, they approach values of the limiting

Nusselt numbers obtained by other me thecds.
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NOMENCLATURE

Area

Cross sectional area

Surface aresa

Short side of rectangular cross section

Short side of right-angled isosceles triangular
fzzsss‘dfei?i;l‘lt“"‘h‘ cioss seclion.

Constant

Specific heat at constant pressure

Hydraulic diameter (= 4Ac/P)

Ratio of finite step to hydraulic diameter (=h/dh)
Unspecified function

Finite step in x and y directions

Coefficient of heat transfer

Partial Differential operator for square network
Partial differential operator (= H+X )

Partial differential operator for triangular network
Crofficivnt of thermal conductivity

Length of duct

Length

Nunber of step

Integer

Perimeter of duct

Pressure

Rate of heat transfer



Temperature

Velocity in x direction
Volumetric flow rate
Veloclity in y direction
Velocity in z direction

M £ 4 g £ o

Partial differential operator for square network
X,yY,2 Cartesian coordinates

Z Distance along duct

Thermal diffusivity (= k/Cpg)
Aspect ratio of a rectangular duct (= b/a)

Dimensionless temperature for constant heat input per

™ R R

unit length of duct

Incremental sign

Laplacian operator

Dimensionless temperature for constant wall temperature
Dynamic viscosity

Kinematic viscosity

Summation sign

’°Me}°<xb

Density

Dimensionless Groups

Gz Graetz number (= Re.Pr/(z/dh))
Nu Nusselt number (= hdh/kﬁ)

Re  Reynolds number (= pw,d, /M
Pr Prandtl number ('/“cp/kb)



w?  Dimensionless velocity in 2z direction

(= w/oghat. 42

Subscripts

b Bulk, average value
c Centre, correction
b 4 Final

h Value distant h from wall
1 Logarithmic

m Mean

o Initial

P Peripheral

W Wall

z Local

o Limiti¥ng value

10
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CHarTER 1

INTRODUCTION

Heat transfer by forced convection occurs when &
fluid is induced by mechanical means such as a pump, fan
etc, through a duct with wall temperature differinig from
fluid temperature. Since heat transfer occurs as a result
9r interaction between the velocity and temperature
profiles of the fluid, the rate of heat transfer depends
upon the shapes of the two profileé.

For a duct with a hydraulically smooth entrance
such as a bell-shaped inlet for the circular duct, velocity
at the entry plane is uniform. As the fluid flows along the
duct, local velocities near the wall are retarded by fluid
viscosity and a boundary layer grows. When the boundary
layer reaches the central axis of the duct, the flow is
scid to be fully developed. In a circular duct, the fully
developed velocity profile for a laminar flow is parabolic,
but in a non-circular duct, the shape of the profile
depends upon the shape of the duct,

The temperature profile also exhibits a similar
boundary layer growth depending upon the thermal boundary
condition. Most common ones encountered in practice are
constant wall temperature, constant heat flux and constant

wall teuperature gradient,
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Investigations of heat transfer by forced convec-
tion in circular ducts have been extensively conducted by
many research workers and their analytical and experimental
results may be found in various text books and journals on
heat and mass transfer. In most theoretical analyses,
paysical properties of the fluld were assumed invariable
with respect to temperature.

Recently, the need for compact heat exchangers
in many fields such as air conditioning units, rocket powex
plants etc. has accelerated the work dealing with foxced
convection heat transfer in non-circular ducts, but the
knowledge in this field is still incomplete. Most analyti-
cal solutions were obtained for fully developed flow and
very few experinental data are available. Recommendations
for further investigation have been made in an extensive
literature survey up to 1951 by lMontgomery and Weiss (1)
for both laminar and turbuleant flows.

In order to provide up-to-date inrormationﬁ, a
brief survey of publications on laminar flow heat transfer

from 1961 onwards is given below.
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1,1 CIRCULAR DUCT,

Numerical solutions for laminar flow heat
transfer with simultaneously developing velocity and
temperature profiles were obtained by Ulrichson and
Schnitz (2) for the boundary conditions of constant wall
temperature and constant heat flux. The work is a refine-
nent of an earlier work of Kays (3) to include the radial
component of the velocity in the entrance region and it
shows a significant decrease in the local Nusselt number
from that obtained by Kays.

Hudson and Bankoff (4) solved a transient
problem wherein a new wall temperature is suddenly
impressed upon an initially isotherumal laminar flow by
double Laplace transformation. For small time or large
axial distance, the solution is found to be in&ependent
of axial distance and for small distance, it becoues
independent of time,

The effect of the variation of fluid physical
properties with temperature was investigated theoretically
by Bradley and Entwistle (5) for fully developed air flow
in a circular duct. Nuericel solutions are présented for
a range of air temperature from 350 deg. K. to 2500 deg.
K. for the conditions of constant wall teuperature and
constant axial tempersture gradient. The solutions also

show that the effect of axial conduction on the tempera-~
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ture profile becomes importent at low Reynolds numbers and
the effect of axial momentum on the velocity profile owing
to different fluid densities is considerable for large
temperature differences between the wall and air.

For laminar flow heat transfer with wvariable
properties in the thermal entrance region, an analytical
nethod was used by Koppel amd Smith (6) for the thermal
boundary condition of constant heat flux, the radial velocity
being neglected. The method was applied to supercritical
carbon dioxide whose properties vary rapidly with temperature
The results show fluctuations of the heat transfer coefficien
fér particular values of heat flux, fluid temperatures and
flow rates.

ﬁiperimental results were obtalned by Kays and
Nicoll (7) for large temperature differences between the wall
and air for the cases of constant heat flux and constant wall
temperature over a narrow range of Reynolds numbers. Data was
found to agree well with analytical solutions baded on
constant fluid properties.
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1.2 INFINITE PARALLEL PLATES

A few theoretical papers were published recently on
simultaneously developing velocity and temperature profiles
in the entrance region of two infinite parallel plates.
Stefan (8) used an approximate series solution for the
thermal condition of constant wall temperature. The case of
constant heat input per unit length of the duct was solved
by Han (S). He assumed Langhaar's solution (10) for the
varying velocity profiles and derived an integral method to
solve for the variations of the wall and fluid temperatures
along the duct. Numerical solutions are given for Prandl
numbers of 5.2, 1.6, 0.8 and 0.4.

& more rigorous analysis of the simultaneously
developing flow was done by Hwang and Fan (11). They applied
the finite difference analysis to the Navier-Stokes equation
and the continuity equation to solve the developing velocity
profiles which are then substituted in the energy equation
to dertermine Uen, ercture profiles., Nusselt numbers are given
for Prandtl numbers in the range of 0.01 to 50. For the
constant wall temperature case, their solutions agree very
well with those of Stefan (8); as for the constant heat flux,
their results differ appreciably from Han's results (9), but
agree closely with an earlier work by Siegel and Sparrow (12)

who used Langhaar's velocity profiles.
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Solutions of heat transfer in the thermal entrance
region with an interesting thermal boundary condition of
unequal wall temperatures were obtained by Hatton and Turton
(13). They show that the Nusselt numbers for the two walls do
not reach the limiting value until the fluid temperature
gradient becomes linear after a very long entry length. The
entry length also depends on the magnitude of the fluid entry
temperature in comparison to the wall temperature.

A transient problem on heat transfer for an
incompressible laminar flow was theoretically analysed by
Perlmutter and Siegel (14). The transient is caused by sudden
changes of the fluid driving pressure and the wall temperature.
Solutions are given for both zero and finite wall thermal

resistances.
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1.3 RECTANGULAR DUCTS,

Since laminar flow heat transfer in a rectangular
duct is strongly affected by the aspect ratio of the duct,
theoretical analysis is more complex than those for the
circular duct and parallel plates. Solutions for flows with
fully developed velocity and temperature profiles were
obtained by various authors and their works verc fully compiled
by Montgomery and Weiss (1).

Variations of wall temperature for fully developed
laminar flow in channels with the aspect ratios from 1 to oo
were investigated by Savino and Siegel (15). Solutions are
available for various ratios of heat fluxes between the short
sides and the broad sides from O to 1, while the total heat
flux per unit length of the channels is kept constant.
Results show that the peak temperatures occur at the corners
owing to low fluid velocities. When only the broad sides are
heated, the peak temperatures are lowest and decrease rapidly

a3 the aspect ratio increases,
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1.4 OTHSER CROSS SECTIONS,

Fully developed Nusselt numbers for isosceles
triangular, right triangular and circular sector ducts were
computed by Sparrow and Haji-Sheik (16) and results are
presented over a wide range of opening angle of the cross
sections for the boundary condition of constant heat flux.
For small opening angles, results for the sector and the
isosceles triangular ducts are very close to each other.
Among the triangular cross sections, the equilateral
triangular duct gives the highest Nusselt number. Nusselt
number for the circular sectors reaches a maximum value
when the opening angle approaches 4180 deg., i.e. it
represents an infinite plate.

Analytical solution of heat transfer in a cone with
a small opening- zngle was obtained by Cobble (17).
Variations of the Nusselt numbers with the Graetz numbers
for a finite cone angle of 0.1 radian are plotted with

various cone lengths as a parameter.
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1,5 SCOrS OF THiE rRISSNT WCRK,

As already mentioned in (1.3) and (1.4), analyti-
cal solutions are available only for fully developed flows
in a few types of non-circular ducts, but in practice, heat
transfer usually begins simultaneously with the developmént
of velocity profile, and in some applications, though the
velocity profile is fully developed when the heaf transfer
process begins, the whole region where heat transfer occurs
mnust be tvaken into consideration. Since no theoretical and
very few experimental data exist for the stated conditions,
the present work attempts to provide them.,

Theoretical analyses here are concerned with
laminar . .flow heat transfer in rectangular ducts with
different aspect ratios and in triangular ducts of various
cross sections under the following boundary conditions

(1) Fully developed velocity profile and develop-
ing temperature profile. This is zlso known as the
' thermal entrance region.' At the entrance of the duct,
the fluid temperature is uniform. The exact solutions for
the fully developed velocity profiles in rectangular and
triangular ducts can be found in a text book by Rouse (18).

(2) Simultaneouly developing velocity and
temperature profiles, Both of them are assumed uniform at

the entrance.
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Thermal boundary conditions of constant heat
input per unit length of the duct and of consicat wall
temperature are considered. In all cases, fluid properties
are assumed invariable with respect to temperature.

Experimental results were obtained for a
rectangular duct of aspect ratio of 2.0 with constant heat
input per unit length and with constant wall temperature,
and for an equilateral triangular duct with constant heat

input per unit length.
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CHAFTER 2
ArPARATUS
2.1 GANSRAL UESCRIPTION,

A general flow diagram of the apparatus is given in
fig.1, p.22. Before entering the test section, atmospheric
air was sucked through an unheated duct to produce a fully
developed velocity profile. Various test sections were
employed for the thermal boundary conditions of constant
heat input per unit length and constant wall temperature,
and their details will be described later on. On leaving the
test section, the heated air entered an insulated mixing
chamber, fig.2, p.23, which was a box containing a wire mesh
to even out the final temperature of the air. A rotameter
was provided for measuring the flow rate of the air which
could be controlled by varying the opening of a by-pass
chamber, figz.3, p.23, Circulation of the air was maintained
by a high speed centrifugal fan (21), the fluctuation of
which was damped by inserting a piece of wire wool in the

duct between the rotameter and the by-pass chamber.
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2.2 PRODUCTION OF A FULLY DAVSLOrED VELOCITY FROFILE,

In order to produce a fully developed velocity
pro}ile for laminar flow in a non-circular duct, a length
of about 100 hydraulic diameters vas required. However, if
air is allowed to flow through a divergent nozzle first and
then through a straight duct, the production of the fully
developed velocity profile can be greatly accelerated (22).
In the case of the rectangular duct used in the present
experiments, the cross sectional area of the nozzle varied
from 0.5 x 1.0 in to 1.0 x 2.0 in% with a length of 30 in.
The air then entered a straight rectangular duct of 1.0 x 2.0
in% in cross sectional area and 3.0 ft. in length, fig.4,
P.2%. The velocity profile of the air at the end of the
straight duct was determined by means of a pitot tube and a
micromanometer which gave an accuracy of about 14 % for the
worst measurement.

Fig.5 shows a comparison of the central line
velocities between the flow in the straight duct and the
flow in the same duct with an additional divergent nozzle
over a range of Reynolds numbers from 840 +to 2480 . The
central line velocity was appreciably increased by the

divergent nozzle.
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2.3 RICTANGULAR 1IBST SECTION FOR CONSTANT HEAT INPUT,

To obtain a constant heat input per unit length of
the duct, alternating current was fed through a metal duct
made of an electrical resistance material called Ferry Metal
(23) of 0,006 in, thick. A vertical mounting of the duct was
chosen because, in a horizontal position, the temperature
profile of the heated air is distorted owing to natural
convection.

The Ferry Metal was supplied in the form of a strip

of 1.0 in, wide. To construct a rectangular duct of 4 x 2 in2

in cross sectional area, a wooden foxﬂigf the required cross
section was employed as a guide. Six metal strips were placed
around the wooden form and joined together with thermosetting
plastic tapes. To make sure that the cross section of the
duct would remain rectangular after the withdrawal of the
form, the outer surface of the duct was covered with a double
bond resin called Hermetal (24) which set hard afterwards.
A brass flange was soldered to each end of the duct to form
an electrical terminal, fig.6, p.28. The whole duct was
heavily insulated with glass wool to reduce heat lost to the
atmosphere to a minimum.

The heating circuit is shown in fig.9, p.29. The
main voltage was stepped down by a transformer from 240 V.

to a voltage under 2.5 V. The input power was controlled by
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a variable transformer and measured by an ammeter, (0-504),
and a voltmeter, (0-2.5V). By comparing the input power to
the total change of enthalpy of the heated air, heat lost to

surroundings could be estimated.
2.4 RECTANGULAR TIST SECTION FOR CONSTANT WALL TEMPERATURD

To obtain a condition as close to a constant wall
temperature as possible, the test section was made of copper
which is a good heat conductor. Its dimensions were original-
ly 2 £t. in length and 2 x 1 ih% in cross section. For
rigidity, a wall of 1/8 in. in thickness was chosen. The
copper duct was placed inside a jacket which was filled with
heating water at constant temperature, fig.?, p.28. A pump
heater was employed to c¢irculate heating water the tempera-
ture of which was kept constant by a thermostat.

To cover a wide range of Graetz numbers, the test
section was later on shortened to 7% and 13 in. and the

same test procedure was repeated, The reason is explained in

(5 07 02) )
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2.5 MEASUREMENT OF TEMEERATURS

Chromel-congtantan thermocouples of 0.01 in, Cia.
were used for measuring initial and final temperatures of
the air and wall temperatures. As a large number of thermo-
couples were used, they were connected to a common reference
junction via a selector switch the terminals of which were
gold-plated to ensure good electrical contact. The ice point
was used as the reference temperature and its construction
is described in (25).

Fig.8, p.29, shows a null-typed thermocouple
circuit which consisted of a Tinsley two-dial precision
potentiometer (26), a moving mirror galvanometer, a Weston
standard cadmium cell and a series resistance box for
controlling the sensitivity of the galvanometer. Accuracy
of the measuring circuit was 1MV and consequently, with
chromel-constantan thermocouples, could measure temperature
within about 0.05 deg. F.

For the thermal boundary of constant heat inputb
per unit length, measurement of wall temperature presented
some difficulties, Taermocouplescould not be attached
directly to the outside surface of the duct because it
carried an electric current. To form an electrical insulator,
a thin film of Hermetal was painted on the surface of the

metal where the measurement of temperature was required



31

and then the thermocouple junction was attached on the
Hermetal film, As the film was very thin and Hermetal is a
moderate heat conductor, the error in measurement of the wall
temperature owing to the presence of another medium was very
small and the measured temperature was assumed equal to that
of the wall.

For the constant heat input per unit length, the
wall temperature varies around &s well as along the duct.
Though the variation around the duct is rather small when
the duct is made of a good heat conductor, at each distance
along the duct, five thermocouples were placed around the
perimeter in order to obtain a good average of the wall
temperature at that distance.

The final temperature of the heated air was measured
by four thermocouples at different points in the mixing

chamber and an average value was determined.
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2.6 EQUILATSERAL TRIANGULAR TEST SZCTION FOR CONSTANT HEAT
INPUT PER UNIT LSNGTH OF THi DUCT

The unheated section for producing the fully
developed velocity profile consisted of a divergent nozzle
and o straight duct similar to the combination employed in
(2.2). The heated section was made of three strips of Ferry
metal, each being 1 in., wide and 15} in., long. Along the
section, chromel-constantan thermocouples were placed at
3, 4;:;, 6 and 12 in. from the entry plane of the duct. At
each distance along the duct, four thermocouples were placed
around the perimeter in order that a small variation of the
wall temperature could be measured. An aluminium equilateral
triangular form was provided as a guide in comstruction of
the duct. Constructional details were similar to those of

the rectangular test section, (2.3).
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CHAPTER 3

HEAT TRANSFER IN THE THERMAL ENTRANCE
REGIONS OF RECTANGULAR DUCTS

%.,1 BASIC DIFFERENTIAL EQUATIONS
The Navier-Stoke*s’ equation for a laminar flow of
a fluid in the z direction is

62w 0w 52 1 dp W, 3w
R VAW R L €dz ox ay "3z o

where u, v, w = velocities in the x, y, z directions,

P = pressure.

If the flow in a duct is hydraulically fully
developed, the velocity profile does not vary with the
axial distance, z.

-.- AW/aZ z. O, u, v = O’

324 /522 = 0, dp/dz = constant,

Equation (1) is then reduced to

3w . 4w 1 1z
Pocigiw M3, (12)

The energy equation for an incompressible fluid

with invariable physical properties is
24 2 2
oc (a &t , ¢ £ 3t (2)

+ w—-

axa‘?é;?’ Ty T e
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where t = local temperature,

@ = thermal diffusivity, k/CPQ

Since the conduction term in the axial direction,
62t/6z2 is negligible in comparison to those in the x and y
directions, and for a fully developed flow, the velocity
components u and v are zero, the energy equation is there-

fore reduced to

3%t &% =  w
w oL 2
- € o (22)

3,2 ANALYSTS OF PARABOLIC EQUATION

Equations (1a) and (2a) are parabolic partial
differential equations., Their solution can be conveniently
obtained by numerical methods. The left hand sides of both
equations contain second derivatives in two dimensions and
these can be replaced by finite difference approximations.
For a duct of rectangular cross section, a square network is
most convenient for computations.

First, the following partial differential

operators are defined :-

Hf(x,y) = <£(x+h,y) + £(x-h,y) + £(x,y+h) + £f(x,y-h)
- 4f(x,y)
Xf(x,y) = 4 ( £(x+h,y+h) + £(x~h,y+h) + £(x-h,y-h)
+ f(x+h,y-h) -~ 4f(x,y) )
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The two operators can be represented dlagramma-

tically by P

D D, 3

. A '
oo - Lo
'.
o o—l -
¥r  §°r

A relationship between + and the two
=2 9y

operators, H and X, can be found (19), as follows :-

3 J
et o = % and ﬁ = h'é'i

The operators, H and X, can be written in terms of
o andﬁ as :
H = 2 cosh o +2cosh'[3-4
X = 2coshax , coshf,’»-2

Solving for cosh o« and cosh /3 and then substitu-
ting for these in terms of sinhzo. /2 and sinhzf:! /2 gives

2 sinh /2 = (3(H ~M/H2+ 8H - 8X) )’} = A

2sinh /2 = 3 +V B2 v 80 - &%) ) - B

But o = 2 sinh"'l A/2

4 2 ,6 2 22 ,8
Hence oc2 = A2 -%—%- + 24%1—'5- - 2‘28}5 A 4 ensoen
and similarly,

2 82 _

P =

op*  2.02.85  2.22.32 g8
FT + Tar !

+ e s00
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me (55 - el

< W) -ty at B« T (a8 8% 4 L.

Replacing A and B in the above equation by their
values in terms of H and X
2
112(a +é~)=H-ﬁ(H2+4H-4X)+9-G(H3+6H2

3x2 dy
-~ 6HL) = 4ovs

= %g + % + gg+-%§ Foeon

In the present work, the first order terms will

give sufficient accuracy so that

2 2

\ \
g;% + g—g = giz»(4ﬁ’* 2X) £(x,y)
J

It is convenient to define a new operator, K,

where K = (4H + 2X)

The operator K can be represented diagrammatically

T —® — @
5 i
B —a9—%

' t
L—B-— O

P4

S

2 2
.b....g. g_% = -é—:?Kf(x,y) (3)
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Finite difference applied to Simpson's Rule in two
dimensions.

The average value of a quantity over an area such
as velocity or temperature, can be computed numerically by
means of Simpson's Rule in two dimcnsions. For a function
£(x,y), the average value can be written in finite difference
form (20) as :

A
‘[f(x,y)dA = 12 2:( 4f(x+h,y) + 4£(x-h,y) + 4£(x, y+h)
H + 4f(x,y-h) + f£(x4+h,y+h) + £(x+h,y-h)
+ £(x-h,y+h) + £(x-h,y-h) + 16£{x,y) )
(%)
where N is the number of squares of side, h, into which the
area A is divided.

Diagrammatically,
O—BO——@
r
Jtx,y)an = _Bf @) Ge)——@® 2(x,7)
B8

c
Cé
S
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3.3 EXACT SOLUTION TO THE NAVIER-STOKE'S EQUATION

For fully devdoped laminar flow in a rectahgular
duct, equation (1a) can be solved exactly (18).

In a duet having dimensions a and b in the x- and
y-directions respe::tively, the velocity, w, at any point

(x,y) on the cross section is given by :

oo

2 Z s MMX m m
w = C(x“-bx) + [ sin ( A_cosh + B sinh )}
= 5 ( aycosh T + Bsink ST
1 dp -
ywhere C = J&&%

A, = 2b2¢ (cosmn -1 )/ non’

B, = -Am(coshg%g- ~1)/sinh‘3§-ai

It is convenient to define a number of dimension-

less parameters as follows :

aspect ratio, x* = b/a,
+ ad
velocity, who= -/ =
co-ordinates xt = x/a, and y* = y/a.
Hence, o 5
- + +
+ + + mmnx 2x
A -}(o?x-x%«»%%(cosmn-‘!)sin-———.
m=1 ot m31t3
+ cosh E—’-t;, -1 +
X (cosh ZEX - % sinh ZEL )g (5)
(e g <

miw
sinh ;_,.
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To determine the average dimensionless velocity,
w;, the cross sectional area of the duct is divided into a
square network and velocities at nodal points are calculated

from the above equation.

The average velocity is defined as
+
w; - ‘/Drw dx dy
Ac

By applying the Simpson's rule in two dimensions,
equation (4), to the velocity distribution, the average

velocity can be computed.

3.4 NUMERICAL SOLUTION TO THE ENERGY EQUATION

By combining equations (2a) and (3), the energy

equation can be put into finite difference form as :

Kt(x,y,2) = w t(x,y.,z+8z) - t(x.,v.2)
6n° oz Lz

Rearranging this, the energy equation becomes

t(x,7,2+ Az) - t(x,57,2) = 9—‘-5-5 "% K t(x,y.2)
w wbdh e 6

(6)
where e = ratio of the side of the square gttd, h, to the

hydraulic diameter of the duct, dh.
Using this equation, the temperature distribution

at any cross section of the duct can be computed from the
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temperature distribution at the preceéding finite step in
the z-direction, i.e, along the axis of the duct. The
computing procedure is as follows :

First, the cross sectional area is divided into
a square grid of side h.

From equation (6), 9‘—9-3 can be written as %/ d:g
d

Yb%h Re.Pr

w,.d
where Re is the Reynolds number QZETQ y FPr is the Prandtl
number Cpl“/k and Re.Pr/(z/dh) is the Graetz number, Gz.

Hence, czAz/wbdﬁ is a small increment of the reciprocal of

the Graetz number, and it must be chosen so that
+

er
L QEQ%. 12 is small!than 4 in order that the solution to
\ 4 wbdh e
the equation (6) is in a steady state.
The ratio w,/w 1in the equation (6) at any nodal
point in the ¢ross section of the rectangular duct can be

calculated from equation (5) since wy/w = wy/w'.

To solve equation (6) numerically, initial and wall
values of tempcerature are also required, and they can be
obtained by using a sultable dimensionless temperature, the
form of which depends upon the thermal boundary condition.
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3,5 SOLUTION FOR CONSTANT WALL TEMPERATURE

For a duct with constant wall temperature, a
dimensionless temperature, 0, is defined as

(2] = 1;w-t

E- E

w 0
where t = local fluid temperature,

t = wall temperature = constant,

w
to = fluid initial temperature = constant.
" Qb,o = 1 and gw,o = 6, =0.

The energy equation (2a) can be written as

¥ .3 _ wde
YRR « Oz

and consequently, equation (6) becomes

O(x,y,2+4z2) - 0(x,5,2) = ~b9‘—9—3 12- KQ(XG z (7)

wpdy

g |

Temperature distributions along the duct can be
computed step by step by means of the above equation and
hence, the Nusselt numbers along the duct are deduced.
However, because the computation involved is very lengthy,

a fast digital computer is required.
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NMusselt Numbers, Nu,

By definition, the coefficient of convective heat
transfer, h = §/ As(tw - tb)

where d = heat transfer rate,

As = surface area fromwhich heat is transferred.

Consider an elementary length, dz, of the duct.
Heat transfer by convection, d4 = h’ da_(t, = %)

=h?P (tw-tb) dz

where P is the perdmeter of the duct.

Cdt

Cp Tz 4z

Rate of change of enthalpy, c‘lﬁ = wa
where Ac is the cross sectional area of the duct.

By the first law of thermodynamics, d4 = dﬁ, since

no shaft work is done.
at

Hence h P (tw - tb) = ewacCp d70
k: d.

or in dimensionless form,

k Ao
hs-&wb4 b/g

By definition, the peripheral Nusselt number,

Nup = h.dh / ky

2
Hence, N% = 1} wpdy, AOl:» (8)
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2
In the above equation, ¥5dy  has already been

XAZ
chosen in order to solve the energy equation as described

in (3.4). The bulk dimensionless temperature, 6,, at any
position along the duct can be determine by applying the
Simpson‘'s rule in two dimension, equation (4), to the tem-
perature distribution at that position which has already
becn computed numerically from equation (7).

For design purposeg, 2 mean value of the Nusselt
number is more suitable than the local one. The mean Nusselt
nunber, Num, is defined as :

jﬂ% dz

Nu = °-°%?L—-

The mean Nusselt number can be computed numerical-
ly from the peripheral Nusselt numbers, Nup, determined at
small equal intervals along the duct.

N
Nu,@ = %; th/N 9>

where N = number of intervals considered = z2/A 2.

Experimentally, it is inconvenient to determine
the mean Nusselt number defined above, and the logarithmic
mean Nusselt number, which is based upon the logarithmic
mean temperature difference, is employed instead. This can
bé calculated as follows:



Consider a length z of the duct.

where Atl = Jlogarithmic temperature difference,

= (tw - tp) - (?g," tb)
1n (tw - to)
(tw“tb)
t - %
= (t,. -t )/ 1n “w o
b o)
Yo%
Ny, = h’dh = €% W d, In by, = %
b b—j? w_ 'D -
2
w. d.
= 28 1 4y 1/6,, (10)
4aAz N

It has been found from the results that the mean
Nusselt numbers predicted by equations (9) and (10) agree
within 0.5 %.

Example of Computation

For the aspect ratio, a+, of 2.0,
Let the dimensions of the duct be a x 2a.

Hydraulic diameter, d, = —XS2X2 . 4a/3,

Choose the finite step, h = 8/10 = 3dh/40.

Bquation (7) becomes
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W
Ao = % ;,-b- 3%—% . 169-0-9- . Ko(x,y,2)

b h
Az 9
Choose __?a =
wbdh 32000

W
b Ko(x 4

gooo D6,
From equation (8), N =
B, T
and from equation (10), Nu, = 82§0 ¥ b

wWith ali the necessary variables obtained numeri-
cally above, a computer program can be written to solve for
the temperature distributions and the local and mean Nusselt
numbers along the rectangular duct. The flow diagram of a
computer program can be seen on p. 46 and 47, Computer
programs were written for aspect ratios from 1 to 6 and some
of the results obtained by using an I.C.T. Atlas computer
are shown in figs. 11 & 12. Because of similarity, only a
quarter of the rectangular cross sectional area had to be

considered during the computation.
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FIG, 10 FLOW DIAGRAM OF COMPUTER PROGRAM
FOR HEAT TRANSFER IN THE THERMAL ENTRANCE
REGIONS OF RECTANGULAR DUCTS,

o

read 1n the chosen sizes of the

network and steps along the duct

Y

set initial values of dimensionless

temperatures of the wall and fluid

v

calailate distribution of fully developed

velocity ratios from the exact solution, equation(5)

}...;

" N 4
proceed one step along the duct and compute

a new distribution of dimensionless

temperatures by means of equation (7)

Y

apply the extended Simpson's rule in two

dimensions, equation (4), to determine

the dimensionless bulk temperature.

L
Y

. N\
[constant heat input;

+ A

constant wall]jcalculate the exact bulk tempera-!

temperature e from equation (12), p.53.

! !
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compare the predicted and exact

dimensionless bulk temperatures

pa
~

A4

if they are not equal, correct the

distribution of the predicted

Y

temperature, see p.5%

N/

if they are equal, compute the wall

temperature from equation (13)

NS Y

calculate the Graetz number, see p.40, local

mean and logarithmic Nusselt numbers from

&
J N
equations (8), (9) and (10) eqautions (14), (15) &
for const. wall temperature (9) for const. heat
l input per unit length
. )
e

print out number of the present step, Graetz

number, bulk temperature and Nusselt numbers
T

Z 4
<

1
.

rif Graetz number 4 10, print out the distribu —i

tion of dimensionless temperatures of last ste

\(

end
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3.5 SOLUTION FOR CONSTANT HEAT INPUT PER UNIT LENGTH

For this thermal boundary condition, 1t can be
shown that the bulk temperature of the fluid rises linearly
along the duct as follows :

From the first law of thermodynamics, heat input
per unit length of the duct = rate of change of enthalpy.

]
4 = Wy Q CP A, %gb = constant.
For a given flow rate of the fluid assumed incom-

pressible, Wps Q9 Cp and Ac are constant.

%Eb = constant.

When the heat input per unit length of the duct
is constant, the wall temperature varies along and around
the duct. However, if the duct is made of a good heat
conductor, the'wall temperature can be assumed constant
around the p&fi@eter at any cross section and to vary only
with distance along the duct. At each step of computation,
a new value of wall temperature has to be computed from the

boundary condition of constant heat input.
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3.6.,1 Determination of Fluid Temperatures

For constant heat input per mnit length of the

duct, it is convenient to define a dimensionless temperature

% t -5
ST TN
dz o
where to = 1dinitial temperature of the fluld assumed
uniform.

At any cross section, the distribution of fluid
temperatures can be predicted numerically from the fluid
temperatures at the previous section by combining equations

(2a) and (3) and substituting for t in terms o{/g.

+
P(x,y,z+dz) —F(x,y,z) = "p olz 1 ;_gpgx,z,zz (1)
wh wbdi e 6

An approximate bulk temperature’ﬁfé at the new
position can be evaluated from the distribution of tempera-
tures by means of equation (4).

However, by definition, the true bulk tempera-

ture is
t

R
-
dty, wydy

e

dz or
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dt
As already shown, a—-z—bi = constant for cons-

tant heat input per unit length, hence

dtb ) tb - to
dz z
ot F b = x z = obz N (12)
wbdh Wy dh
where N = +the number of step belng considered.

Since (wbdg)/o: Az has been chosen to have a
definite value when equation (11) is solved numerically, the
bulk temperature at any position can readily be calculated
from equation (12).

If the prediction of fluid temperatures by means
of equation (11) were accurate, the predicted bulk tempera-
ture,[.il'), would be the same es pb calculated from eguation
(12). In computation, it will be found that /B‘t; differs from
/Bb and a correction is needed for the predicted fluid
temperatures,/B, such thatﬁl') ”ﬁb‘

Because of non-linearZity of the temperature anu
velocity profiles, the correction will have to be varied
from point to point on the mesh with the maximum correction

at the centre. The following expression would be most suit-

able.
S, -A '
B P> TV

Corrected temperature = )B +
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. (3, -5
But the factor, -lilL-£§- s cannot yet be deter-
(/3w ffzb)
mined since the wall temperature,/bw, is still not known.
A good approximation can, however,be obtained by using the
velocity ratio, w/wb, for fully developed velocity profile
instead of ngw-tf3)/€ﬁ3w -/5p)- This is justifiable
. because the two terms differ only slightly, and moreover,

]
()@b - /3b) is quite small in comparison to Pb during any
step.

.*. corrected temperature 2’/3 + W (/31, -/5{))
W
b

A new value of the approximate bulk temperature,
]
/Sb’ is then computed from the new distribution of fluid
temperatures, and if it is still not equal to‘fsb, the

same procedure is repeated,

3.6.,2 Determination of Wall Temperature

To predict the temperature at the wall, from the
values at other points inside the duct, it is necessary to
satisfy the energy equation. It is convenient to consider
a surface B at a constant distance h/2 inside the wall of
the duct and of axial length dz, fig. 13, p.55.

By the first law of thermodynamics, the heat trans-
ferred across B must equal the change of enthalpy of the

fluid flowing inside B. The latter can be evaluated as the



5!.'.‘

,//‘ZMZZZZLMMZZLLL/
7T I /
;" h/2 ;
»; —Jh f/L
/\(___' ) B ';‘*J . 2
////////////////////////

Fig.13

difference between the change of enthalpy for the entire
duct less that for the gap between the surface B and the
wall of the duct.

These quantities can be expressed in the finite
difference form. Across any section of B of area h.dz, the
temperature gradient is (tw - th)/h, where ty refers to the
fluid temperatd}e at a distance h from the wall of the duct
and the corresponding heat transfer rate is

k.h.dz(tw - th)/h

Similarly the rate of change of enthalpy througu

an element of area h.% between the wall and surface B can

be expressed as

2 at
%QW Cpﬁ-dz

Summing up round the perimeter, one can equate
the total heat transfer through B to the net change of
enthalpy inside B as
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2
at h dt
Ji(t, ~tp)dz = pwy C, A, §ib 4z - z 3 p WO, §rdz

Certain assumptions must be made to solve this
equation, For a metal duct, the temperature variation around
the periphery is small and it is assumed that qﬂ is constant,
From experimental results, this is justifiable.

If the gap between the surface B and the duct wall
is small compared to the duct dimension dh, the mean veloci-
ty in any element can be taken as wh/4 and the axial

temperature gradient as dth/dz.

. s at zhzewhc
e kmby - 2ty = powy C AL gpb - -——3———-2
where n is the grid points on the duct wall,
This can be written in terms of the dimensionless

temperature ;3 and solved for the wall temperature.

2

2 d
. 1
. lew = I?F'*Hzlgh '%ﬂ cxazw Af;h (13)

In the first summation for n? the values at theo
four corners have to be included twice so that there are n
terms in the summation. In the second summation, each value

is included only once.

¥y 4h
<A Z
can be calculated as soon as h is fixed; the velocity

w,/w, has been obtained above, while A Fh and } ﬁh can be

In this equation, the values of e, n and
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determined from the figures found in (3.6.1) . Hence fﬂ,
can be determined at any point in the duct.

3.6.3 Nusselt numbers

By the same approach as that for the condition of
constant wall temperature, the peripheral heat transfer
coefficient, hp, for constant heat input per unit length
is

kw, 4, 4t
% © R ggd /(ty - ty)

or in terms of dimensionless temperature,)ﬁg

k 1
fp Hp S}Sw ffggj
+*+  peripheral Nusselt number, Fu, = EEEEQ

(14)

1
U

The logarithmic mean temperature difference, A ty

Gy ) = By - %)
1n _Pw - Yy
tw,o

2
ﬁ W "/_ '% "/3 W,0 wpdp 3%,
1n Bv ~ v a dz
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lnﬁ"/s

¢ e hy = Ec'f ﬁwL

/3w ﬁb /3wo
1 PP =By

and I‘Iul = /3wo (15)

/3w /3b ﬁwo

The mean Nusselt number, Nu , can be computed

by means of equation (9) like that for constant wall

temperature.

Example of Computation.

For the aspect ratio, o +, of 2.0.

Let the dimensions of the cross section be a x 2z

Hydresulic diameter, d, = 4a/3
Choose the finite step, h = a/16
o.. Ratio, e = h/dh = 3/64'

Energy equation (11) becomes
2
J3 3,2+ 82) P x3,2) = b «dsz 3 EBG.y.2)
Ypdp

Choose the step 39—% = (é;)a éqo = 371%21)

Wpdy
.. F (x,57,2+A 2)

g.‘b K_EI](%_‘ZU_Zl +ﬁ(x’y,z)
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Equation(13) for the wall temperature becomes
n
- - B z‘iabph +Zf.a
W 8n 128 n
At the first Btep,/GO -0, andﬁw,o . 22'6 .

As the initial temperatures and finite steps now
have numerical values, a computer program can be written
for solving the temperature distributions and the Nusselt
numbers along the duct. Computer programs were written for
aspect ratios from 1 to 4 and results obtained from the
I.C.T. Atlas computer are plotted on p. 60 to 62, and
tabulated in Appendix(7.4). The flow diagram of such a
program can be seen on p.46 & 47. A comparison of the
Nusselt numbers between the thermal conditions of cons-
tant heat input per unit length and of constant wall
temperature is shown in fig.1?7, p.63.
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3.7 EXPERIMENTAL RESULTS

371 Constant Heat Input Per Unit Length

Tests were carried out over a range of Reynolds
numbers from 735 to 1960, which is well im the transition
regime for non-circular ducts. The wall temperatures were
measured at 7.5, 12.0 and 23,5 inches from the entry
plane of the duct. The initial and final temperatures of
the air were also recorded.

To determine the Nusselt number at a position
along the duct, the bulk temperature of the fluid at that
position must be known., In experiments, though intermediale
values of the bulk temperature could not be measured
conveniently and accurately, they could still be deduced
from the measured values (;f the initial amnd final tempera-
tures of the air.

For constant heat
1‘ | tf input per unit length of
b the duct, it has been shown
in (3.6) that the bulk
o , temperature of the fluiad

rises linearly along the
0 z— L duct.

fo T 0= constant
Fig. 18 -

8 tt to
L
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Hence the bulk temperature of the fluid at any
position along the duct can be obtained directly from a
linear relationship between the initial and final bulk
temperatures of the fluid and the total length of the
duct, see fig. 18, p.o4.

Specimen }ij Calculation

Data

Aspect ratio, a * = 2,0

Cross sectional area, Ay = 1,0 x 2,0 ing
Total length, L = 29,5 in.
Volumetric flow rate of air, V = 1,7 c.f.m.
Initial bulk temperature, to = 71.6 deg.x .
Final bulk temperature, te = 94,0 deg.F.
Initial wall temperature, t = 84,0 deg.F.

W,0

Position along Local wall Average wall Fluid bulk

the duct temperature temperature temperature
inch. deg.F. deg.F. deg.F.
115.0 s
7.5 e 14,5 76.6

115.2 ’
124 ,3

12.0 :‘lggg 125.6 80,0
127 .3
136 .4 7 ‘0

23.5 1382 137.2 89.3

139.8
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Hydraulic diamcter, dy = 4A /P = &5551 = 1,333 in.
Mean velocity of the air, w = 60V/A = 60x1
b ( 27?Eﬁz

= 7.33x10° ft/h

Rate of heat transfer by convection per unit length of

the duct = hp P (tw - tb) B.Th.U/h.ft.

Rate of change of enthalpy per unit length of the duct
dt
= p g wb A.c a‘i‘b oThoU/hofto

«*» by the first law of thermodynamics,

gp Q Wy Ac (#2 - to)
o PL(tw-tb)

B.Th.U/h.£t2

d .
N = %P. = . 0.24 x 0,0 x 60 x 1.7 19""00 — 23.624
6 . 29,
“p b 1Ex—-?-22(tw-tb)kbx12

3.73/k  (t, - ty)

Logarithmic mean temperature difference, (tw- tb)l

A Ynax, "‘3'5ggg.

1n (IStmax./zstmin.)
tw - tp - 84,0 + 71,6
1n f(t:w - %) / 12.43

h, a, 3.7 1n $(t, - 523/12.53

Mo, = .
1 k) ky (b, =ty = 12.4)
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Reynolds number, Re = % b dp - Q,O%isz.ﬂx‘\&x’l,'ﬁ}
M 0442 x 1

= 1385
Re .Pr 1385 x0,72x1
Graetz number, Gz = = l—i——(-z——)——'lﬁ
’ 57'3.; z (in.
= 1330/z
t, -t o4
Dimensionless wall temperature, ﬁ"’ = W o 1,
2

.tf -t Wy

ty = 71,6 o ug 082 X 122
9% .0-71.6 7.3% x 10°% 1.333°

= 0,997 x 107F (t,, - 71.6)

z Gz tw tb Atl Nup Nu:L /8w

in. deg.F deg.F deg.F x ’Io5
7.5 177.0 14,5 76.6 22.7 6.7 11.2 3.78
2.0 1M11,0 125.5 80.0 25.5 5.5 9.8 4,54

23.5 56.5 137.2 89.3 26.4 5.2 9.5 4.78

Fig.20, p.70 shows a rise of the measured
dimensionless wall temperature, ﬁw* with the reciprocal
of the Graetz number, (z/dh)/Re JPr. Variation of the

measured Nusselt numbers with the Graetz numbers



is plotted in fig. 19, p.69 and tabulated in Appendix
(7.5).

3.7.2 Constant Wall Temperature

Details of the test section were described in
Section(2.4). Tests were conducted over the same range
of Reynolds numbers as for constant heat input. Since
the rise of the bulk temperature along the duct was not
linear as in the previous case and it could not be
measured conveniently and accurately, the local heat
input could not be estimated. The initial and final bull:
temperatures of the air were, however, measured and
recorded, hence the total heat input and the logarith-
mic mean Nusselt number were deduced.

Because of the same reasons as above, ducts of
different lengths were employed in order to cover a
wide range of the Graetz numbers.

Results were computed by a similar procedure as
that in the preceding section(3.7.1). Variation of the
logarithmic mean Nusselt number with the Graetz number
is shown in fig.21, p.?71 and tabulated results are
available in Appendix(7.6).
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CHAPTER &4

HEAT TRANSFER FOR SIMULTANEQUSLY DEVELOPING VELOCITY
AND TEMPERATURE PROFILES IN RECTANGULAR DUCTS,

4,1 THEORETICAL ANALYSIS,

In the previous chapter, fully developed velocity
profiles have been essumed and this condition exists in
practice only when a long duct is allowed for the flow to
become fully established before the heat transfer process
begins. In many cases, heat transfer takes place as soon
as the fluid enters the duct, so that both temperature and
veloclity profiles are developing simultaneously.

The Navier-Stokes' equation (1) for the velocity

w, in the z-direction is :

1&g+_+ A
e 5 % oyt Ve

62W a2w 82 )
P % a2 5y2 322

Langhaar (10) obtained an approximate solution
for a flow between two parallel plates by using the
following assumptions :

(1) The term 32w/322, vhich represents the rate of

change of the viscous force in the z-direction with respect
to z may be neglected in comparison to those with respect

to x and y.
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(i1) The velocity components u and v are
negligible in comparison to the main stream velocity, w.
(111) The pressure gradient, dp/dz, 1s a

function of z alone.

e MRy 1 dp dw
¢ g 32 * S;Z ; € az vy dz (16)

The above assumptions will also be used for
solving the developments of velocity profiles in rectangu-
lar Qucts.

The pressure term in equation (16) may be
eliminated by considering the flow at the central aﬁis of
the duct.

M Pw. . Fu 1 dp dw
TS T T Pty

where the suffix 'c' refers to the central axis. Hence

n (P Py APy R Moo
TSR TR R et vy

The above equation can be put in a finite

difference form by means of the operator 'K' defined on

P.36 .

ey Ow Dw
— K w(x z) - K w(x Zz + W ———C = W ——
GQheg ( A ) ( 1Y )c g OAZ 22
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AV = wx,y,2+8 ) - w(x,y,2)

1 Yy 2 M4
= 5w ( 2) (ewb Z) &KW(XJ,Z) - K w(x,5,2), ;
+ ‘-;-’9- E w(x,y,z+82z), - W(X;YQZ)G g (1?7)

Equation {17) will be solved simultaneously with
the energy equation (2a) which can be written in the
finite difference form as :

t(x,y,z+Az)-t(x;y,z) = 1 (%h)z‘-;-b (3-9-%) K t(x,5,2)
& wpdy

As already mentioned in the previous analysis, the
term (o:Az/wbdlal), which represents the dimensionless
finite step in the z-direction will be given a suitable
value when the energy equation is solved numerically,

( see p.40 ). The same value can be applied to the term
( /MAz./wad%) in equation (17) as follows :

c
MA . Azg x YpM - «AZ ) Pr
vin wpdp €Cp K ¥y 4y

Define the velocity ratio, w* = w/wb

Equation (17) can be written in terms of w* as
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w*(x,y,2+Az) = Giﬁ;fg (Siig) % K w*(x,7,2) - KM‘(X;Y;Z)cg

L '
+ = Ew*(x,y,z+Az)c - w*(x,5,2), g

+ w*(x,y,2) (18)

Boundary conditions :

(1) With a bell-shaped inlet, the velocity of the
fluid at the entry plane 1is constant everywhere and equal to
the bulk velocity, L hende at 2z = o, wg = wp =1

(i1) The fluid at the wall is stationary,

o o w& = Oo

In the above equation, the value of 'e' is fixed
from the size of the network chosen; (o(Az/wbdi) has been
given a value when the energy equation is solved in the
previous section; the Prandtl number, Pr, has to be given a
numerical value depending upon the type of fluid under consi-
deration, for example 0.72 for atmospheric air; lastly the
term w*(x,y,2+52z) can be approximated by the following
steps :

(1) Solve equation (18) numerically for all nodal

points in the network assuming that

w*(x,y,z+6z)c - w*(x,y,2), = O.
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Hence, the first approximation of the velocity
distribution at (z+4z).

(11) Compute the dimensionless bulk velocity, WE
from the first approximation. As the correct wg = 1, the
error of the velocity at each nodal point is (1-wg).

(1ii) Ada (1 -wg) to the term é w*(x,y,z+4 z)c-
w*(x,y,z)c ; in (i) and resolve equation (18).

(iv) Repeat the same procedure until Lo 11 )

When the velocity distribution at (z+&z) is known
the energy equation can now be solved by the same procedure
as in the previous analysis (3.4).

Computer programs were written for rectangular
ducts with aspect ratios from 1 to 4, for the thermal bounda-
ry conditions of constant wall temperature and constant heat
input per unit length of the duct. An example of a computer
program is shown in Appendix (7.7). Results obtained from th-
computer are plotted in fig. 22-25, p.78-81. A comparison of
the predicted Nusselt numbers between the hydraulic boundary
conditions of fully deveiﬁped velocity profiles and simulta-
neously developing profiles for rectangular ducts of aspect
ratio of 2.0 with the two usual thermal boundary conditions
is shown in fig. 26.

From equation (18), it can be seen that the effect

of the Prandtl number on the development of the velocity
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profiles is quite significant. As a result, solutions of the
heat transfer for simultaneously developing profiles contain
the Prandtl number as a parameter. Fig.27 & 28, p.83 & 84,
show variations of the predicted peripheral and mean Nusselt
numbers with the Graetz numbers and the Prandtl numbers of
0.72, 0,10, ' and 10 for rectangular ducts o¢f aspect ratio
of 2,0 with constant heat input per unit length of the duct.

4,2 EXPERIMENTAL RESULTS,.

Test equipments were the same as those in section
(3.7) but without the unheated inlet section so that the
velocity and temperature profiles could develop simulta-
neously, Tests were performed for the thermal boundary
condition of constant heat input per unit length over the
same range of Reynolds numbers as in section (3.7). Results

are shown in fig.29, p.85.
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CHAPTER S

HEAT TRANSFER IN TRIANGULAR DUCTS,

5,1 RIGHT ANGLED ISOSCELZS TRIANGULAR DUCT.

The exact solution of the Navier-Stokes equation
(2a) for a fully developed laminar flow in a right angled
isosceles triangular duct of sides x+y = 0, x = a and

y = a, 1s given in ref.(30) as :

[5+]
w o= 3K [a(x+y) - 1x+3)2 - )L (-1 N 2cosech (N>
n=0

§ sinh(Nx)cos(Ny) + sinh(Ny)cos(Nx) ;]

where 2aN = (2a+1)n

Put wt 2 2w/Ka®, x* = x/a and y* = y/a.

0
wh = (xte 3P - 2(xt+ )%~ 16 p (-1)2 cosech(Pn+1)n/2
n=0 (2n+1c)31t3

g sinphCot DT+, o (Pn+d)n 5t + sinn{2nt)m y*.
COSQE?_ZE x¥ g (19>

The network used in computations is shown in

f£ig.30, p.87 . Velocity ratios at nodal points in the
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Fig.30 Network for the Right-Angled Isosceles

Triangular Duct.
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network can be determined by calculating the dimensionless
velocities from equation(19) and then computing the average
dimensionless velocity, w;, by means of the extended
Simpson's rule in two dimensions, equation(4).

Numerical solutions of heat transfer for the
hydraulic boundary conditions of uniform velocity profile,
fully developed velocity profile and simultaneously
developing profiles in the right angled isosceles triangular
ducts were obtained by the same procedure as those for the
rectangular ducts in sections (3.4), (3.5) and (3,6), with
the thermal boundary condition of constant wall temperature.
Results obtained from the Atlas computer are shown in fig.31%&
32 and Appendix(7.9).

For constant heat input per unit length of the
duct, determination of the wall temperature presents some
difficulties. From fig.30, p.87, it can be seen that nodal
points adjacent the sides AB and BC are at a finite step, h
from the duct wall, hence the analysis in section (3.6) is
applicable, but the nodal points adjacent to AC are at a
distance h//z = h' from the wall, thus a modified analysis
is required.

Consider a surface S at a constant distance h/2
from the sides AB and BC. By a similar reasoning as in

section (3.6), heat transfer by conduction through S is
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% k (t,-t,) dz

where n = number of nodal points on AB and BC.

Rate of change of enthalpy through the area
between S and the duct wall is
o 2 .
j{ h.e Wy, (},0 &ty 4z
8 dz
Now consider a surface S' at a distance h/2y2 from
the duct wall AC.
Temperature gradient at any nodal point on S°'

= (5, - b,/ 0/V2)

Rate of heat transfer by conduction through S'
nl

z kv2h dz (¢t -t,.)/(b/V2)

nl
= E 2k (tw-th,) dz

where n' = number of nodal points on AC.

Rate of change of enthalpy through n' elementary
areas, each being (1/2h h/24/2), between S' and the duct wall
\- }E e e C dt,, dz
Ta'z'
From the first law of thermodynamics, rate of heat
transfer through S and 8' = rate of change of enthalpy
inside S and S' in the absence of shaft work.
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n n'
Zk (tw-th) + sz (tw-th.) = 0wy A cp at,

Z
n'

‘the Wy Op dty - Zh @ ¥nr Cpldty,
8 dz B dz
As in section (3.6.2), the wall temperature, ty,
is assumed constant around any perimeter. If the cross
sectional area, A,, is substituted by (n + ‘\/2n')h.dh/4, and
the temperatures,t arc replaced by the dimensionless tempera-

tures, /8 s defined on p.52, the above equation can be

written as - E p
e n + 2n' + 2
/E? = ( 5=2m) ’ n+an')

. 2 W d w
- 2 b _h hAﬁh + ——-—Aph'
(n + 2n') 8chz

(20)

Solutions fof constant heat input can now be found
for the hydraulic boundcory conditions of uniform velocity
profile, fully developed velocity profile and simultaneously
developing profiles by the same procedures as those in
sections (3.6) and (4.1) eand by using equation (20) instead
of equation (13) to solve for the wall temperature. Numerical

results obtained from the Atlas computer are plotted in fig.
33 & 34, p.93 & 9.
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N

5.2, EQUILATERAL TRI&&ULAR DuceT.

5.2.1 Bxact Solution of the Fully Developed Velocity Profile.

The fully developed veloclty profile for a laminar
flow in an equilateral triangular duct has been determined
exactly in ref.,18. In fig.35, p.96, if the length of each
side of the equilateral triangular duct is 'b' and the
origin is at the centre of one of the sides which is on the
y axis, the velocity, w, at any point on the cross section

is given by

W o= 'é‘% %Ex (x + V3y- -%zb) (x - V3y—-%2b)

Define the following parameters :

-+

mn

Dimensionlers velocity, w

Co-ordinates x* = x/b and y' = y/b.

The above equation becomes

Wt s vyt- B at- vart- 2) (1)
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Y

Fig.35 Network for the Equilateral Triangular

Nuct.
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’.2.2 Finite Difference Operator for Equilateral
Triangular Network.

To solve the energy equation numerically, for this
particular cross section, it is convenient to use a network

of equilateral triangles. A new finite difference operator

K' 1is defined as :

K'e(x,y) = £q 0+ £5 4+ f5'+ £, + f5 + £ - 6f,

where fo’ fq, f2 cocvs f6 are functions of x and y.
f2 h ¢

Diagrammatically, K'f(x,y) =

Cfi:cs,J:;fs
5

A relationship between the operator K' and
(32 /3x2+ 32 /Ayz), which will be represented by v‘?', has
been obtained on p.23 of Southwell's book (%1) as :

2
2
%K'f(x,y) = I’l% % 3‘72£°+% (Vef.‘.1 + V2f2 + ey fs);
(22)
From the above equation, it can be seen that a

direct evaluation of the term "72f(x,y)' at each nodal
point requires six neighbouring '§72f' terms which are also
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not known., However, this difficulty can be overcome by the

following steps of computations :

(1) For the first approximation, put

sz,, + \721’2 + seesecene +92f6 ¥ 6v21’°

Equation (22) becomes

RRoPex,y) * ZE(x,y)

The above equation is used to compute approximate
values of 'vgf' terms over the whole cross sectional area.

(2) Use the values of sz obtained in (1) in
equation (22) and recompute a new distribution of 921' .

(3) Repeat the computation of the distribution of
sz by using equation (22) and the values of ¢’ 2¢ obtaine”

previously until steady values are obtained.

5.2.3 Numerical Solution of the Energy Equation.

-

The energy equation (2a) in the finite difference
Dt
form is Vat(x,y,z) = g-‘ oy
Replace Vat in the above equation by equation (22).

At = t(x,y,z2+4A2) -~ t(x,y,2)

2 2
8w, xAz d . h 2(7 2
g,'b_-ghgxt(x’ysz)-q-g(v 7+ V",
wwbth

+V2t3 + eees + Vzte;) ; (23)
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Values of Vzt,], (721:2, sees and V2t6 are computed
by the method described in the preceding section, values of
other terms, i.e, wb/w, (o;Az/wbdﬁ) and (dh/h)g are deter-

mined by the same procedures as those in section (3.4).

Example

For the triangular network shown in fig.35, p.96,
the finite step, h = b/30

Hydraulic diameter, 4, = 4AC/P = b/V3

e = n/a, - 35.%2 - a0v3

It (xAz)/(wdS) is chosen to be 15000, cguation
(23) is reduced to
8 1 ne 2
t(x,y,z+Az) = 9'.50' % K‘t(x,y,z) - 73 ( v ‘b‘,] +
2

v A PUE BPTPR V2t6);+t(x,y,z)
(24)

Initial and wall values of temperatures are required
to solve the above equation numerically and they can be deter-
mined by using the same dimensionless temperatures as those
in sections (3.5) & (3.6).

Hence for constant wall temperature, the dimension-
less temperature O = (tw - t)/(tw - to), and the boundary
values are : ’

fa) = 0. = 0 and ©

W,0 W b0 ° 1.‘
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Numerical solutions for the hydraulic conditions of
uniform velocity profile, fully developed velocity profile
and simultaneously developing profiles were obtained by
means of the Atlas computer and results are plotted on p.7102
and 103, and tabulated in Appendix (7.11).

The thermal ¢ondition of constant heat input per-
unit length of the duct requires a slight modification for
the determination of the wall temperature, but the basic
approach remains the same as that of the rectangular ducts.

Since the nodal points adjacent to the duct wall
are at a distance v/3h/2 from the latter, see fig.35, p.96,
a surface 8 at a distance V{/3h/4 from the duct wall has to
be considered instead of h/2 for the rectangular ducts.

By using the first law of thermodynamics and tho
same approach as that in section (3.6.2), it can be shown

that
dth

n
at
2 2 b 2
y3 oty “y3 K zth = 0% A T "%?Cph zwh dz
The above equation can be written in terms of
dimensionless temperature, /G , defined on p.52 and rearranged
2 n

into o 2 w,d w
P - o 1NB- 5L O 2aB, @

Numerical solutions were obtained for uniform velo-

city profile, fully developed velocity profile and simulta-
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neously developing profiles by the same computing methods as
those in sections (3.6) and (4.1) and by using equation (25)
to determine the wall temperature, Variations of the Nusselt
number with the Graetz number obtained from the computer
are plotted in fig.38 & 39, p.104 & 105 and tabulated in
Appendix (7.12).

5.2.4 Experimental Results.

Details of the equilateral triangular test section
for constant heat input per unit length of the duct have
already been described in section (2.6), p.32, Tests were
carried out for the boundary conditions of fully developed
velocity profile, i.e. with the unheated inlet section; and
of simultaneously developing profiles. Results were computed
by the same method as those of the rectangular duct in
section (3.7.1) and they are presented in fig. 40 and 41, p.
106 and 107.
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CHAPTER 6

DISCUSSION AND CONCLUSION

6.1 PREDICTED NUMERICAL SOLUTIONS.

In the same manner as the exact solutions for the
circular ducts (26,28) and parallel plates (27,29), the
numerical solutions obtained in sections (3.5,3.6) for fully
developed velocity profiles in rectangular ducts with
different aspect ratios show that for a given aspect ratio,
the Nusselt number has a maximum valuo at the entry plane of
the duct and decreases as the Graetz number decreases. As
the Graetz number approaches zero, i.e. at large distances
from the entry plane or very small flow rates, the Nusselt
number approaches a limiting value which represents fully
developed velocity and temperature profiles. The Nusselt
number increeses with increasing aspect ratio and has its
greatest and least values for parallel plates and square
ducts respectivoly.

The results also show a strong effect of the
thermal boundary conditions., The comparison of different
conditions in fig.17, p.63, shows that for the same aspect
ratio, constant heat input per unit length gives higher

Nusselt numbers than those of constant wall temperature, a
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result similar to that obtained for circular ducts.

_ Accuracy of the numerical method depends upon the
slzes of the squares in the computing network and the finite
step along the duct. In computation, it has been found that
when comparing the num?rical solution of the velocity profile
to its éxact solution found from equation (5), an accuracy
within one per cent can be obtained if the size of squares
in the network is less than one tenth of the hydraulic dia-~
meter of the duct. The same size of squares has been used
for predicting fluid temperatures, hence the same order of
accuracy may be expected. For the steps along the axis of
the duct, the dimensionless group, (wb/w)(qllz/dgwb)(dh/h)2
in equation (6) must be less than 1/2, otherwise the
solution becomes unsteady. On the other hand, if the sizes
of the network and the finite steps are too small, too much
time will be required for computation.

Predicted Nusselt numbers for simultaneously
developing velocity and temperature profiles in rectangular
ducts in fig . 22-25, p.78-81, exhibit variations with the
Graetz numbers similar to the solutions for fully developed
velocity profiles in fig. 11-17., Theoretical curves for
circular ducts (2,3) and parallel plates (8,11) are also
shown as a comparison and they show the same trends as the

predicted results obtained in this work. At a high Graetz



110

number, the Nusselt number for the former is greater than
that of the latter and their difference decreases as the
Graetz number decreases until at the Graetz number of zero,
both solutions are asymfotic to the limiting Nusselt number,
£ig.26, p.82. P

As already mentioned on p.76-77, the Prandtl number
has a strong effect on the Nusselt number for laminar flow
with simultaneously devéloping profiles. Fig.27 & 28, p.83 &
84, show that at the same Graetz number, a small Prandtl
number gives a higher Nusselt number than a larger one. This
can be deduced from equation (18) that the velocity profile
of a fluid with a small Prandtl number develops more slowly
than that of a fluid with a larger Prandtl number. Hence,
the solution for the uniform velocity profile,or Pr = O,
represents the upper limit amd the solution for the fully
developed velocity profile, or Pr = w, corresponds to the
lower limit.

Predicted Nusselt numbers for the right-angled
isosceles triangular and equilateral triangular ducts in
fig.31=34 & 36-39 vary with Graetz numbers in the same
manner as those for rectangular ducts.

It may be noticed that all numerical solutions in
the present work are presented within a useful range of the

Graetz numbers from O to 200. For a Graetz number over 200,
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the duct is too short for any practical use, or else the
flow is too large for the laminar regime, for example, with
a flow of atmospheric air at Reynolds number of 1600 and
Graetz number of 200, the dimensionless length of the duct

(z/dh), is only 5.76.

6.2 COMPARISON WITH EXPERIMENTAL RESULTS.

Experimental data for fully developed velocity
profiles in circular ducts with constant wall temperature
(26) shows that at high Graetz numbers, the measured Nusselt
numbers are greater than those predicted by Graetz. Experi-~
mental results have been obtained for a rectangular duct
with the same boundary condition and they showed a similar
deviation, fig.21, p.71. For a Graetz number under 79,
experimental and predicted results agreed quite well, at
Graetz numbers of 100 and 150, the deviationstrere about 28
and 51 % respectively. The discrepancy was/due to an effect
of the variation of fluid thermal conductivity with tempera-
ture. At a high Graetz number, i.e. a short distance from
the entry plane, the wall temperature and fluid@ temperatures
close to the wall were much higher than the bulk temﬁerature,
and as a result, thermal conductivities of the formers were
much larger than that of the latter. From equation (6), p.39,
it can be deduced that the fluid temperatures near the wall
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increased more rapidly than the predicted values obtained by
assuming constant properties at the bulk temperature. Though
the opposite effect occurred at the central part of the crose
section where fluid temperatures were lower than the bulk
temperature, their deviations were less than those of the
temperatures near the wall, and hence the overall effect
resulted in a higher measured valve of the bulk temperature
than predicted value . At a low Graetz number, i.e. a large
distance from the entry plane, the temperature difference
between the wall and the fluid bulk was much less than that
at a high Graetz number, the effect of varying thermal
conductivity was therefore very small and a good agreement
between the measured and predicted results was obtained.

For th2 thermal condition of constant heat input per
unit length of the duct, experimental data was obtained for
the rectangular and equilateral triangular ducts with fully
developed velocity profiles and simultaneously developing
profiles, Results in fig.19, 29, 40 and 41, p.69, 85, 106 and
107, show closer‘agreements over wider ranges of the Graetz
number than those for constant wall temperature. At alow
Reynolds number, the measured Nusselt number is slightly
lower than the theoretical value. This appears to be due to
the opposing free convection effects which were present in
all the shown experimental results and became more apparent

at a low flow rate. By inverting the test section used in
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section (3.7.1), a few tests with additive free convection
were performed and it was found that at Reynolds numbers of
1060, 1400 and 1800, the mean Nusselt numbers increased by
about 17, 10 and 3 % respectively.

The effect of varying thermal conductivity, which
caused a deviation of the measured Nusselt number from its
predicted value, was apparent at a low Graetz number, i.e. a
long distance from the entry plane, where the temperature
difference between the wall and fluid bulk was much larger
than that at a short distance, ( c¢.f. constant wall fempera-
ture). The same result was also obtained in ref.(33) for
Graetz numbers up to 14.

In a test with constant heat input per unit
length, it was assumed that the presence of a thin film of
Hermetal between the duct wall and thermocouple junction
introduced a negligible error in the measurement of wall
temperature, section (2.5), p.30. This was confirmed by an
experiment in which a thermocouple was directly attached on
to the outside surface of a metal can containing boiling
water while a thin film of Hermetal was present between
another thermocouple and the surface of the can. Readings of
both thermocouples were taken with a circuit the accuracy of
which was + 0.2 deg.F. and no difference was observed betweer
the two readings which were subjected to a higher temperature

gradient than those of the ducts in the experiments.
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6.3 CONCLUSION,

In the present work, numerical solutions have been
obtained for laminar flow heat transfer with fully developed
velocity profiles and simultaneously developing velocity and
temperature profiles in rectangular ducts of various aspec?d
ratios and in right-angled isosceles and equilateral triangu-
lar ducts for the thermal boundary conditions of constant
wall temperature and constant heat input per unit length of
the duct. The sélutions give the limiting Nusselt numbers
which approach those calculated by other methods;(1) and
section (7.1), and moreover, their trends are compatible
with those of the corresponding theoretical solutions
obtained by various authors for circular ducts (26, 28, 2
and 3) and parallel plates (27, 29, 8 and 11),., This
indicates that the numerical method employed here is reasona-
bly accurate for both square and triangular networks. Since
the method is straight forward and effective, it may be
extended to heat transfer in other cross sections such as
circular sectors, various triangular and ell}ptical cross
sections. Though suitable computing networks such as rectan-
gular onesg for rectangular ducts with very large aspect
ratios have +to be used and some modifications of the finite
difference operators and of the expression for the wall

temperatufe will be required, solutions can still dbe obtained
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without too much difficultyes with a help of a fast digital
computer.

It can be finally concluded that

(1) for the same Graetz number and thermal boundary
condition, a rectangular duct with aspect ratio greater than
2 gives a higher Nusselt number than a circular one; but all
triangular ducts give lower Nusselt numbers than circular aund
rectangular ones;

(2) for the same Graetz number and thermal boundars;
condition, a flow with simultaneously developing profiles
gives higher Nusselt number than that with fully developed
velocity profile;

(3) since most experimental values of the Nusselt
number are higher than the predicted ones, the latter can
be used as a lower limit in design.

(4) a more compact heat exchanger can be designed b
using a large number of short tubes rather than a few long

tﬁbes.
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7.3 Predicted Nusselt numbers for fully developed velocity

profiles with constant wall temperature.

Peripheral Nusselt numbers, Nup

Aspect Ratio
. 10 , 2,0 . 3,0 , 4,0 . 5.0 . 6.0

Gz

0 2.65 3,39 3,96 4,51 4,92 5,22
10 2.66 343 4,02 4,55 4,9 5.24
20 3.08 3.54 4,17 4,65 5:04 5,34
20 3.24 3,720 4,29 4,76  5.31 5 41
40 3,43 3,85 4,42 4,837 5,22 5,43
60 3.78 4,16 4,67 5,08  5.40 5,64
80 4,10 4,46 4,9 5,32 5,62 5.86

100 4,35 4,72 5.17  5.55  5.8% 6.07
120 4,62 4,93 5.42 5.77  6.06  6.27
140 4,85 5.15 5,62 5.98  6.26 = 6.47
160 5.03 5.34 5.80 6.18  6.45 6.66
130 5.24 5.54 5.99 6.37  6.63 6.86
200 5.44 5,72 6.18 6.57 6.80  7.02



lean Nusselt numbers, Num

Gz

10
20
30
40
60
80
100
120
140
160
180
200

*

1.0

2.65
3.50
4.03
4,47
4.85
5.50
6.03
6.46
©.86
7.22
7 .56
7.87
8.15

.

2.0

3.39
3.95
4 .46
4.86
5.24
5.85
6.37
6.84
7.24

Aspect Ratio

7.62 -

7.97
8,29

8.58

3.0

3.96
4 .54
5.00
5.39
5.74%
6.35
6.89
7.33
7.74
8.11
8.45
8.77
2.07

4,0

4,51
5.00
S5.44
5.81
6.16
6.73
7 .24
7.71
8.13
8.50
8.86
2.17
9.47

*

5.0

4,92
5.56
5.77
6.13
6.45
7.05
7.53
7.99
8.39
8.77
9.14
9.46
9.79

119

6.0

5.22
5.6€
6.04
6.37
6.70
7.26
7.77
8.17
8.63
9.00
9.35
9.67
10.01
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7.4 Predicted Nusselt numbers for fully developed velocity
profiles with constant heat input per unit length.

Periperal Nusselt numbers, Nup.

Aspect Ratio

Gz
. ’lto ° 2.0 ° 3.0 [ ] 4.0

0 3.60 4,11 4,77 5.35
10 3,71 4,22 4,85 5.45
20 3.9 4,28 5.00 5.62
30 4,18 4,61 5.17 5.77
40 4 .45 4,84 5.39 5.87
60 4,91 5.28 5.82 6.26
80 5.33 5.70 6.21 6.63

100 5.69  6.05 6.57 ?.00
120 6.02 6.37 6.92 7 .32
140 6.32  6.68 7.22 7.63
160 6.60 6.96 7 .50 7.92
180 6.86  7.23 7.76 8.18

200 7.10 7.46 8,02 8.44



Mean Nusselt numbers, Num

Gz

10
20
30

60

80
100
120
140
160
180
200

1.0

3.60
4.48
5.19
5.76
6.24
7.02
7 .66
8.22
8.69
9.09
9.50
9.85
10.18

Aspect Ratio.

2'0

4.1
4.9
5.60
6.16
6.64
7.45
8.10
8 .66
9.13
9.57
9.96

10.31

10.64

*

3.0

4.77
5.45
6.06
6.60
7.09
7.85
8.48
9.02
9.52
9.9
10.31
10.67
10.97

5.35
6.03
6.57
7.07
751
8.25
8,87
9.39
9.83
10.24
10.61
10.92
11.23
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7.5 Experimental results for heat transfer with fully

developed velocity profile in a rectangular duct of

aspect ratio of 2.0 with constant heat input per unit

length of the duct.

Re

735

813

897

980

1060

59
30

104
65
33

115
72
37

125

78.5
4n

126

85
43

deg.F. deg.F.

81.0

81.0

80.0

80.5

81,6

&~

71.0

70.0

70.0

€9.8

70.5

deg.F.

97.0

96.0

94O0

93.5

9%.0

deg.F. deg.F.

110.5
121.0
135.5

111.0
121.6
134.0

109.8
119.4
131.7

110.0
120.0
131.5

110,5
121.5
132,5

77.7
81.5
91.6

76.7
80.5
90.6

?6.3
79.7
89.1

76.7
79.3
88.3

76.5
80.1
89.2

Nul

8.1

7.0
6.6

8.4
74
7.0

8.9
7.9
7.4

9.3
8.2
7.8

9.6
8.5
8.1



Re

1140

1220

1300

1390

1470

1560

1650

1720

Gz

146
91
46,5

156
975
50

166
104

53

177
111

56.5

188
117
60

199
125
63.5

211
132
67

220
138
70.5

w,0
deg.F.

785

82.5

77.5

84,0

84.0

8%2.5

83.5

83.7

%

deg.F.

68.5

70.7

67.5

71.6

71.6

71.0

70.5

70.5

tf .

deg.F.

0.5

93.5

87.7

94.0

9.0

93 00

93.0

93.5

Ty

deg.F. deg.F.

109.0
119.0
130.0

111.5
122.5
133 .4

107 .1
117 .0
126.5

114.5
125.5
137.2

115.3
126.0

137 .5

114..0
125.0
136.5

115.0
125.5
137 .5

113.5
124 .0
138.0

%y

73.7
77.0
85.2

76.7
80,0
88.8

72.5
75.6
83.5

76.6
80.0

89.3

77.6
80.6

89.5

76.6
80.0
88.5

76.2

79.5
88.5

76.5
80.0
89.0

123

Nu1

10.1
8.8
8.4

10.5

9.5
8.8

10.8
9.5

”

1M.2
9.8
9.3

11.6
10.%
9.8

12.1
10.3
10.2

12.8
1.5
40.8

13.7
12.3%
1.3
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7.6 Experimental data for fully developed velocity profile
in a .rectangular duct of aspect ratio of 2.0 with

constant wall {temperature.

Z/dh . Re - G‘z [ ato . tf . t ) Nul

deg.F. deg.F. deg.F.

18.02 655 26 70.0  107.5 43,3 4.5
735 29 70.5 107.5 145.5 4.7

820 32,5 69.8 106.0 145.8 4.9
900 36 69.0 104,5 145.8 51
980 39 69.0 103.5 148.0 5.25
1060 42 69.0 102,55 149.2 5.4
1140 45 68.0 101.5 150.5 5.55
1220 48 69.0 100,5 149.8 5.7
1300 5.5 69.5 100.0 150.8 5.9
1390 55 69,0 100.0 151.3 6.2
1470 58 €9.0 99.5 151.0 6.5
1555 62 69.5 100.0 148.0 6.8

9.76 655 48 70.5 102.5 155.0 5.3
735 54 70,5 100.,1 151.5 5.6

820 59 71.0  99.1 152.5 5.9

900 65 ?1.0  98.5 153.0 6.3

980 71 71,0  97.8 153.0 6.7

1060 77 72.0 101,0 160.0 7.2



z/dh

9.76

5.63

Re

1140

1560

655

900

1070

1320

Gz

82.5

88

4
100
106

95
105
116
128
137
148
159
169

%

deg.F.

72.0
71.0
70 .0
69.5
69.0

66.0
66.0
66.5
67.0
66.5
66.0
66.0
66,0
65.5

Ty

deg.F.

101.0
99.0
98.5
97.5
975

93.5
95.0
92.8
93.0
9245
91.0
91.0
90.5

89.5 -

Oy
deg.F.
160.0
159.0
159.0
158.5

158.5

150.5
150.7
150.5
151.5
151.5
151.5
151.0
153.0
153.0

125

Nul

7.7
8.1
8.6

9.0

9.7

7.9
8.5
9.3
10.1
10.8
11,4
12.0
12.5
13.0
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7.7 COMPUTER PROGRAM

JoB

LSK44EC1, WIBULSWAS RUN 40 APRIL 66
COMPUTING 20000 INSTRUCTIONS

CUTPUT

O LINE PRINTER 500 LINES

STORE 32 BLOCKS

COMPILER EXCHLF

TITLE

SIMULTANEQUSLY DEVELOPING FLOW IN RECTANGULAR DUCT
TITLE

CONSTANT HEAT INPUT ASPECT RATIO = 2,0

ROUTINE 1

BI=UCF'/AI+D'A152/AI+A1 >>the Navier-Stokes eduation in
RETURN >>finite difference form

CLOSE R

ROUTINE 2

>>method to compute velocities

C'=-204152+82135+8A151+4A134 >>K W(x,y,7r) at the central axis
D'=B152-A152 >> W at the central axis

J=18(17) 120
=J. +14
1=J(1)X
C=-20AI+4A(I-1)+4A(I+1) +4A(I-17)+A(I-16)+A(I-18) >> K W(x,y,z)
C=4A(I1+17) +A(I+16) +A(I+18)+C~C"
JUMPDOWN{R1)
REPCAT
REPEAT

>>velocities at central lines

1=33(17)135

C=-20A1+4A(I-17)+4A(1+17)+8A( 1-1)+2A(1-18)+2A(1+16) C*
JUMPDOWN (R1)

REPEAT

I1=137(1)151
C=-20AI+4A(1-1)+4A(I+1)+8A(1-17)+2A(1-16)+2A(1-18)~C'
JUMPDOYN (R1)
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REPEAT

>>to evaluate bulk velocity

W=0

J=18(34)120 >>apply the Simpson's rule in two dimensions
K=J+14

I=3(2)X

W=16B1+4B(1-1)+4B(1+1)+4B(1~17)+4B(1+17)+W
W=B(1~18)+B(I~16)+B(1+16)+B(I+18)+¥

REPEAT

REPEAT

Vi=W/1182 >> bulk velocity
RETURN
CIOSE R

ROUTINE 3

DI=F'C/BI+CI >> Fourier-Poisson energy equation in
RETURN >> finite difference form
CLOSE R

ROUTINE 4

NEWLINE 3
CAPTION
STEP N Gz BULK TEMP, WALL TEMP, NUP NUM
NEWLINE 2
RETURN
CLOSE R

ROUTINE §

>>to evaluate bulk temperature, V .

v=0

J=18(34)120 >>the Simpson's rule in two dimensions

K=J+14

1=J(2)X
V=16BIDI+4B(I~1)D(1~1)+4B(I+1)D(14+1)+4B(1-17)D(1=-17)+4B(1+17)D(1+17)+V
v=B(1-18)D(1-18)+B(1~16)D(1-16)+B(I+16)D( 1+16)+B(1+18) D(1+18)+V

REPEAT

REPEAT

vV=V/1152 >> predicted bulk temperature

RETURN
CLOSE R



ROUTINE 6
>>printout instructions

NEWLINE 3

CAPTICN

DIMENS IONLESS VELOCITIES
NEWLINZ 2

J=0(1)16

K=J+136

NEWLINE

I=J (1)K

PRINT(AI)0,2 >> velocity distribution
REPEAT

REPEAT

NEWLINE 3

CAPTION :
DIMENS IONLESS TEMPERATURES
NEVLINE 2

J=0(1)16

K=J+136

NEWLINE

I=J (17)K

PRINT(CI)0,2 >> temperature distribution
REPEAT

REPEAT

JUMPDOWN(R4), N#P

RETURN

CLOSE R

CHAPTER O

A»300

B»300

C»300

D»300

READ(E) >> 3dy/h

READ(F) >> (wpdpdp) /{x4z)
READ(P) >> number of steps required
READ(A) » accuracy
READ(U) >> Prandtl number

E=3/E >>e = hydy

E'=¢DIVIDE(P,EE)
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F'=6P

P'=1/F' >> (o Az)/(6ee vbdhdh)

>>wall initial temperatures and velocities

I1=0(1)16
Al=0
BI=0
CI=E/4
REPEAT

1=0(17)136
AI=0

BI=0
CI=E/4
REPEAT

>>initial velocities and temperatures

J=18(17)137
K=J+1§
I=3(1)K
Al=1

CI=0
REPEAT
REPEAT

R=1

H=4/B >> N

JUMPDOWN(R4)
B152=1

¥=0

N=1

>>to compute velocities

1) JUMPDOWN(R2)
2)M=M+1

C=1-¥ >>error in bulk velocity

D=1+A
JUMP 3, W>D

D=gMOD(C)

JUMP 4, A>D
JUMP 3, W28
B152=B152+1,001C
JUMPDOWN(R2)

JUMP 2

>> correction of the central axis velocity
>> recompute velocity distribution
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3)3=18(17)137
K=J+15
1=J(1)K
BI=BI4C
REPEAT
REPEAT

u=0
>>to compute temperatures

4)N=N+1

J=18(17)120

K=J+14

1=J(1)K

C=~20CI+4C(I-1)+4C(I+1)+4C(I~17)+4C(1+17) >> K t(x,y,z)
C=C(1-18)+C(1-16)+C(1+16)+C(1+18)+C

JUMPDOWN(R3)

REPEAT

REPEAT

>>temperarures at central line

1=33(17)135
C=~20CI+4C(1-17)+4C(I+17)+8C(1-1)+2C(1-18)+2C(1+16)
JUMPDOWN (R3)

REPEAT

1=137(1)151

C=~20C I+4C( I-1)+4C(1+1)+8C(1-17)+2C(1-16)+2C{ 1~18)
JUMPDOWN(R3)

REPEAT

C=-20C152+8C135+8C151+4C134
D152=F'C/B152+C152

V'=NEE/F >> actual bulk temperature, equation(12)
A'=0,001V'

5) JUMPDOWN (R5)

CaV'=v
D=gMOD(C)
JUMP 6, A'>D

J=18(17)137
K=J+15§

I1=J(1)K
DI=1,001CBI+DI
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REPEAT
REPEAT

JUMP 5
>> computation of wall temperarure

6)c=0
1=18(17)120
C=DI+C
REPEAT

=18(1)32
C=DI+C
REPEAT

€=0,5D33+0,5D137+C
c=C/23 >» 2 [3 n/®

D=0
1=18(1) 32
D=BIDI-BICI+D
REPEAT

1=35(17)120
D=BID1~-BICI+D
REPZAT

: w
D=0,5833033-0,5833C33+0,5B137D137-0,58137c43+D X B A ﬁh
D=DF/8 Yy

C=~D/22+4C
C=E/4+C >> wall tomperature, equation(13"

1=0(1)16
D1=C
REPEAT

I=17(17)136
DI=C
REPEAT

>>Husselt numbers, X,Y

X=C-v'
X=0425/X >> local NUp

=H4+X
Y=H/N >> mean NU .,



>>Grastz number
G=E'/N

>>output

JUMP8,N=P
JUMP7,200>N
JUMP10,R#30

JUMPG
2)JupP8, 100>N
JUMP10,R#10
JUMPQ

8) Jumpg,6>N
JUMP10, R#5
Q)NEWLINE
PRINT(N)O,2
PRINT(G)O,3
PRINT(V)0,3
PRINT(C)0,3
PRINT(X)0,3
PRINT(Y)O,3

R=0
10)R=R+1

JUMPDOWN(RG) , N=100
JUMPDOWN(R6) , N=P

JUMP].].' N=P
1=0(17)136
J=I(1)K
AJ=BJ

CJ=DJ

REPEAT
REPEAT

JUKP4, B152>1.95
JUMP 1

11)END
CLOSE

64 20

YTy A

>> transfer predicted velocitiss and temperatures
K=1+16 >> to prepare for computations at the next step,
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7.8 Heat Transfer ior Simultaneously Developing Velocity and

Temperalbure Profiles in Rectangular Ducts.

7.8.1 Predicted nean Nusselt numbers for constant

wall temperature .emd Prandtl number of 0.72.

Aspect Ratio

Gz
1.0 2.0 3.0 4,0 6.0

10 3.75 4,20 4,67 5411 5.72
20 4,39 4,79 5.17 5.56 6.13
30 4,88 5.23 5.60 5.93 6.47
40 5.27 5.61 5.96 6.27 6.78
50 5.63 5.95 6.28 6.61 7.07
60 5495 6427 660 6.90 735
80 6.57 6.88 7417 747 7.90
100 7.10 742 7.70 7.98 8.38
120 7 .61 7 .91 8.18 8.48 8.85
140 8.06 8,37 8.66 8,93 9.28
160 8.50 8.80 9,10 9.36 9.72
180 8.9 9.20 9.50 9,77 10.12
200 9.30 9.60 9.9 10.18  10.51

220 2.70 10.00 10,30 10.58 10.90
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7.8.2 Predicted Nusselt numbers for the thermal condition of
constant heat input per unit length of the duct and
Prandtl number of 0,72,

Peripheral Nusselt number, qu.

Aspect Ratio

Gz

1,0 2.0 3.0 4,0

10 4.18 4,60 5.18 5,66
20 4.66 5.01 5.50 5.92
30 5.07 5.40 5.82 T 6,17
40 547 5.75 6.13 6.43
50 5.83 6,09 6 44 6.70
60 6.14 6.42 6.74 7.00
80 6.80 7.02 7 .32 755
100 7.38 7 .59 7 .86 8.08
120 7.90 8.11 8.37 8.58
140 8.38 8.61 8,84 9.05
160 8.84 9.05 9,38 9.59
- 180 9.28 9.47 9,70 9.87

200 9.69 9.88 10.06 10,24



Predicted mean Nusselt number , Nu_ .

Gz

10
20
30
40
50
60
80
100
120
140
160
180
200
220

1.0

4,60
543
6,60
7.52
8.25
8.90
9.49

10,53

11.43

12.19

12.87

13.50

14,05

14,55

1t.03

Aspect Ratio

2.0

5.00
5.77
6,94
7.83
8,54
9.17
9.77
10.83
11.70
12,48
1315
13.79
14.35
14,88
15.36

3.0

5.57
6.27
7.31
8.13
8.85
9.48
10.07

" 11,13

12.0
12.78
13 .47

14.10 °

14,70
15,21
15.83

4,0

6.06
6.65
7.58
84,37
9.07
9.70
10.32
11.35
12.23
13.03
13.75
14 .48
14.95
15.49
16.02
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78.3 Effect of Prandtl numbers on predicted mean Nusselt

numbers, Num, for simultaneously developing profiles

in a rectangular duct of aspect ratio of 270 with

constant heat input per unit length of the duct.

Gz

100
140
180
220
260
300
350

5.60
6.64
7,45
8,10
8.66
9.57

10.31
10,95
11.50
12.00
12.55
13.00

Prandtl Number, Pr,

10

6.15
7.50
8.40
9.20
9.90
11.05
11.95
12,75
13,45
14.05
14.75
15.40

0,72

6.94

8.54

9.77
10,83
11,70
13.15
14,35
15.35
16,25
17,00
17.75
18.50

0.1

7.90

9.75
11,10
12,15
13.05
14,50
15.65
16,70
17.60
18.30
19.10
19.90

8.65
10.40
11.65
12.65
13 .50
14,95
16.15
17.20
18,10
18,90
19.80
20.65
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7.8.4 Experimental data for simultaneously developing velocity
and temperature profiles in a rectangular duct of aspect
ratio of 2.0 with constant heat input per unit length of
the duct.

Re Gz t t t t t Nu

W,0 o] £ W b.
deg.,F, deg.F: deg.F. deg.F. deg/F.

£

735 9% 76.5 70.3 100.3 110.6 78.2 1.2

59 122.0 82.6 9.8
30 136.6 9.5 9.2
820 104 77.2 71.0 97.8 108.7 7§;1 11.6
65 118.8 82\: 10.4
33 132.8 92N 9.5
900 115 72.7 65.7 9% .6 107 .8 73.0 12.1
37 133.5 88.8 1.0
980 125 73.3 66.3 o .0 106.5 73.3 137
78.5 117.7 77 .6 1.4
40 132.0 88.3 10.7
1060 136 74,5 67.5 95.0 108.6 74,5 13.7
85 120.1 78.7 1.9
43 135 .1 89.4 11.0
1140 146 77.5 71.4 95.6 109.0 77 .8 14 4
9 120.0 81.3 12.5

46.5 134.5 90.6 113



Re

1220

1300

1390

1470

1560

1650

Gz

156
97 .5
50

166
104
53

178
111
5645

188
117

199
125

211
132

w,0
deg.F.

77.2

775

775

76.8

76.3

76 1

%

deg F.

71.0

70.6

70,7

70.2

69.5

68.0

e
deg.F.

.5

%.0

22.7

92.2

.8

by

deg J,

108.5

119.5
134 .4

109.0
119.8
134.,0

107 .5
118.5

132.5

108.0
118.6
133.0

107.5
118.6

132.5

108.0
118'6
132.5

*y

deg.F.

77
80.5

89.9

77.2
80.5
90.0

76.7
80.2
89.3

76.0

79.3
88.2

75.3
73.8
87.8

4.2

77.8
871

138

Nul

14,9
12.8
11.7

15.5
15.5
12.3

16.4
14 .1
12.6

16.8
14 .4
13.0

17 .4
15.0

13.7

179
15.5
14,2
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‘7.9 Predicted Nusselt numbers for right-angled isosceles

triangular ducts with constant wall temperature.

10
20
30
40
50
60
80

100
120
140
160
180
200

Pr

el dwdepad wadouky orfle e Figdl

Peripheral Nusselt Number

@®

2.40
2.53
2,70
2,90
3.05
3.20
3.50
3.77
4,01
4 .21
4 .40
4,57
4,74

0.72

2.52

" 2.76

2.98
3.18
337
3 .54
3.85
4.15
4.43
4,70
4.96

5.02

5.49

0

3.75
4 .41
4.82
5.17
5.48
5.77
6.30
6.75
713
7.5
7.84
8.10
8.38

~22

Mean Nusselt number

@®

2.87
3.33
3,70
4.01
4,28
4.52
4,9
5.23
5.52
5.78
6.00
6.17
6.33

0.72

3.12
373
4,20
4,58
4,90
5.17
5.69
6.10
6.50
6.82
7 .10
7+33
7.57

0

4,84
5.85
6.48
6.97
7 .38
7.73
8.31
8.80
9.18
9.47
9.70
9.9

10.13
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710 Predicted Nusselt numbers for right-angled isosceles

Gz
10
20
30
40
50
60
80

100

120

140

160

180

200

triangular ducts with constant heat input per unit
length of the duct.

Py dzvadopsd vdoeiky pohda na R 33

Pr

Peripheral Nusselt Number

@

3.29
3.58
3 84
4,07

- 4.28

4 47
4 .84
5.17
5.46
5.71
5.95
6.16
6.36

0.72

4,00
4,75
5.23
5.63
5.97
6.30
6.92
7 .45
7.95
8.39
8.80
9.14
9.50

o

531
6.27
6.85
7.23
7 .55
7.85
8.37
8.85
9.22
9.58
9.90
10.17
10.43

L T8

Mean Nusselt Number

(¢ o)

4,22
3.98

5450

5.9
6.25
6.57
7 24
7.60
8.03
8.40
8.73
9.04

9.33

0,72

536
6.51
732
7.95
8.50
8.99
9.80
10.42
10,90
11.31
11.67
12.00
12.29

-0

6.86
7.97
8.68
9.20
9.67
10,07
10.75
11.32
11.77
12.14
12.47
12.75
13.04
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7411 Predicted Nusselt numbers for equilateral triangular

Py dedopd v heelgy proika nes Fae

Peripheral Nusselt Number

Gz

10
20
30
40
50

80
100
120
140
160
180
200

ducts with constant wall temperature.

Pr

(0]

2.57
2,73
2.90
3,08
3.26
3,44
3.73
4,00
4,24
4,47
4.67
4.85
5.03

0,72

2.80
3.11
3 .40
3.67
3.93
4,15
4,50
4,76
4,98
5.20
5.40
5.60
5.80

o)

327
3.93
4,46
4,89
5.25
5.56
6.10
6.60
7.03
7 .47
7 .88
8.20
8.54

b
-37

Mean Nusselt Number

@

3.10
3.66
4,07
4.43
4.75
5.02
549
5.93
6.29
6.61
6.92
7.18
7 .42

0.72

3.52
4,27
4.88
5.35
5.73
6.08
6.68
7.21

8.09
8.50
8.88
9.21

0

4.65
5.79
6.64
7.32
7.89
8.36
9.23
9.98
10.59
11 .14
11.66
12.10
12.50
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7.12 Predicted Nusselt numbers for equilateral triangular

ducts with constant heat input per unit length of

the ducte.
A“..)\‘mnp\ "’*M .—r\n—ka..t S TR F‘-ﬁr*ig

Mean Nusselt Number

P,

Gz
10
20
30
40
50
60
80
100
120
140
160
180
200

Pr

Peripheral Nusselt Number

Q

3.27
3.48
3.74
4,00
4.26
4 .49
4 B85
5.20
5.50
5.77
6,01
6.22
6.45

0.72

3.58
4.01
4 .41
4,80
5413
5.43
6.03
6.56
7 .04
7.50
7.93
8.33
8.71

0

4,34
5.35
6.14
6.77
7.27
7.66
8.26
8.81
9.30
9.74
10,17
10,53
10.87

@®

4.02
4.76
5.32
5.82
6.25
6.63
7.27
7,87
8.38
8.84
9.25
9.63
10.02

0.72

4,76
587
6.80
757
8.20
8.75
9.73
10.60
11.38
12.05
12,68
13.27
13.80

0

6.67
8.04
9.08
9.06
10.65
11.27
12.35
13.15
13.82
14 .46
15.02
15.50
16.00
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7.13 Experimental data for heat transfer with fully developed
velocity profile in an equilateral triangular duct with
constant heat input per unit length of the duct. F., 40

Re Gz ‘bw ,0 t, t £ ‘bw tb Nul

deg,F, deg.F, deg.F. deg.F. deg.F.

650 90 79,6 66.3 106.5 138,0 74,0 5.5
64 149.6 77.3 5.0

45 156.7 82.0 4.8

22 183 .4 97.5 4.3

810 112 5.2 64,2 101.5 133 .1 70.3 6.9
80 144 .3 73.0 6.3

56 151 .7 7647 6.0

28 , 177.5 89.1 5.3

970 134 4.5 62.5 08,8 129.7 69 .4 7.8
96 141.0 72.3 7.3

67 149.5 76.7 6.9

33.5 175.2 90.5 644

1135 157 78.0 63.7 101.7 135.5 70,8 8.6
112 147.0 74,0 8,0

79 155.8 78 .4 7.6

39 182,7 93 .1 6.8

1300 180 80,0 66.5 103.0 141.8 73.6 9.4
128 153 .5 76.5 8.7

90 163.2 80.8 8.2

45 . 190 03 95»0 703
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Re Gz tw,o to tf tw tb Nu1

deg.F. deg.F. deg.F. deg.F, deg.F.

1460 202 79.0 65.2 101.4 143.0 72 .1 10.0

144 155.0 75.0 9.3

101 165 .2 79.2 8.8

50.5 192.2 93.2 7.9

1620 224 79 A4 64.8 100.2 142.5 214 10.9
160 154 ,0 74 4 10,0

112 165.0 78.5 9.4

56 191.0 92.0 8.5

7 4 Expe;imental data for heat transfer with simultaneous.y
developing velocity and temperature profiles in an
equilateral triangular duct with constant heat input
per unit length of the duct. e Fig &\

deg.F. deg.F, deg.F. deg.F. deg.F.

650 90 69.6 63 .3 97.0 112.0 69.7 7.7

o4 120.5 72.3 7.0
45 127.7 76.3 6.7
22 151.0  89.4 5.9
810 112 69.7 62.8 97.5 115.0 69.5 9.2
80 123.8 72.2 8.4
56 131.9 76.2 7.9

28 155.8 89.6 6.9



Re

970

1135

1300

1460

1620

Gz

134
96
67
33.5

157
112
79
39

180
128
%
45

202
o
101

50.5

224
160
112

56

tw,o

deg.F.

€9.8

75.0

72.7

73.0

73.0

12

deg.F.

62 .1

68.0

65,7

65.7

64.8

tp
deg.F.

97.2

100.9

97.5

97.5

96.6

b

*y

deg.F. deg.F.

115,2
123 .7
132.2
156.2

’|20 05
129.0

137.8
162.0

117.0
125.6
135.7
158.7

118.5
127.0
136.7
160.3

117 4
125.5
134.7
156.7

68.2
71,0

75.2
89.1

7443
77.0
80.8

93.5

71.7
743
78 .0
90,2

717
74 .3
78.0
90.2

70.8
7345
77.2
89.3

145

Nul

10.5
9.7
9.0
8.0

11.9
10.9
10.3

8.8

13.2
12.2
1.2

9.9

4.4
13.4
12.3
10,7

15,6
14.5
13.4
11.8
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