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ABSTRACT

A. numerical method is employed to obtain solutions

for laminar flow heat transferwith fully developed velocity

profiles and invariant fluid physical properties for rectan-

gular ducts of various aspect ratios with the thermal bounda-

ry conditions of constant wall temperature and constant heat

input per unit length of the duct. Since an analytical solu-

tion for the fully developed velocity profile in a reotangu-i

lar duct is available, the varying temperature profile

remains to be solved numerically from the energy equation

which is transformed into a finite difference form by means

of two finite difference operators in two dimensions. Numeri-

cal values of the initial and boundary temperatures are fixed

by choosing a suitable dimensionless temperature depending

upon the, thermal boundary condition. As computation involved

is very lengthy, a fast digital computer is required. Numeri-

cal results obtained from an I.C.T. Atlas computer are

presented as the variation of the Nusselt number with the

Graetz number.

The numerical method is extended to analyse heat

transfer with simultaneously aeveloping velocity and tempera-

ture profiles. To determine the development of the velocity

profile, some simplifications of the Navier-Stokes equation
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are made. Results are presented for various aspect ratios

with the Prandtl number of 0.72. The effect of Prandtl number

on heat transfer is also illustrated by numerical results.

The numerical method is also used to solve for heat

transfer in right-angled isosceles and equilateral triangular

ducts with the same hydraulic and thermal boundary conditions

as in the previous cases.

The predicted results are compared with experimental

data. For constant wall temperature, they agree well for

Graetz numbers under 70; for constant heat input per unit
length, closer agreement is shown over a much wider range of

the Graetz numbers. Accuracy of the numerical method is

confirmed by the facts that variations of the predicted

Nusselt numbers obtained here follow the same trends as

those for cii'cular ducts and parallel plates and at the

Graetz number of zero, they approach values of the limiting

Nusselt numbers obtained by other mpthcds.
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NOMNCLATURE

A Area

Ac Cross sectional area

As . Surface area

a	 Short side of rectangular cross section

a	 Short side of right-angled isosceles triangular

6	 cross sectionLoiig stde of aectatirlod C4010 Section.
• Constant

Specific heat at constant pressure

dh Hydraulic diameter (= 4Ac/P)

• Ratio of finite step to hydraulic diameter (=h/dh)

• Unspecified function

Ii	 Finite step in x and y directions

• Coefficient of heat transfer

H Partial Differential operator for square network

K Partial differential operator (= H+I )

3 Partial differential operator for triangular network

• C/JfficiJnt of thormal conductivity

• Length of duct

1	 Length

• Number of step

• Integer

P Perimeter of duct

• Pressure

4	 Rate of heat transfer
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• Temperature

• Velocity in x direction

3 Volumetric flow rate

• Velocity in y direction

• Velocity in z direction

X	 Partial differential operator for square network

x,y,z Cartesian coordinates

• Distance along duct

or. Thermal diffusivity (. k/Cpe)

• ' Aspect ratio of a rectangular duct (= b/a)
i3	 Dimensionless temperature for constant heat input per

unit length of duct

• Incremental sign

Laplacian operator

O Dimensionless temperature for constant wall temperature

joi, Dynamic viscosity

y Kinematic viscosity

Summation sign

e	 Density
pjaerkpiojes_g....groups

Gz Graetz number (= Re.Pr/(z/dh))

Nu Nusselt number (= hdh/kb)

Re Reynolds number (= ewbdh440

Pr Prandtl number (=AiCp/kb)
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w+ Dimensionless velocity in z direction

(. w/Onit. d,2)
dz'

gulagarints.

• Bulk, average value

o Centre, correction

• Final

• Value distant h from wall

1	 Logarithmic

• Mean

o Initial

• Peripheral

• Wall

• Local

or LimitiOng value
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CHArTLR 1

IMODUCTION

Heat transfer by forced convection occurs when a

fluid is induced by mechanical means such as a pump, fan

etc. through a duct with wall temperature differing from

fluid temperature. Since heat transfer occurs as a result

of interaction between the velocity and temperature

profiles of the fluid, the rate of heat transfer depends

upon the shapes of the two profiles.

For a duct with a hydraulically smooth entrance

such as a bell-shaped inlet for the circular duct, velocity

at the entry plane is uniform. As the fluid flows along the

duct, local velocities near the wall are retarded by fluid

viscosity and a boundary layer grows. When the boundary

layer reaches the central axis of the duct, the flow is

said to be fully developed. In a circular duct, the fully

developed velocity profile for a laminar flow is parabolic,

but in a non-circular duct, the shape of the profile

depends upon the shape of the duct.

The temperature profile also exhibits a similar

boundary layer growth depending upon the thermal boundary

condition. Most common ones encountered in practice are

constant wall temperature, constant heat flux and constant

wall telaperature gradient.
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Investigations of heat transfer by forced convec-

tion in circular ducts have been extensively conducted by

many research workers and their analytical and experimental

results may be found in various text books and journals on

heat and mass transfer. In most theoretical analyses,

physical properties of the fluid were assumed invariable

with respect to temperature.

Recently, the need for compact heat exchangers

in many fields such as air conditioning units, rocket power

plants etc. has accelerated the work dealing with foxced

convection heat transfer in non-circular ducts, but the

knowledge in this field is still incomplete. Most analyti-

cal solutions were obtained for fully developed flow and

very few experimental data are available. Recommendations

for further investigation have been made in an extensive

literature survey up to 1961 by Montgomery and Weiss (1)

for both laminar and turbulent flows.

In order to provide up-to-date informationl, a

brief survey of publications on laminar flow heat transfer

from 1961 onwards is given below.
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1.1 CIRCULAR DUCT.

Numerical solutions for laminar flow beat

transfer with simultaneously developing velocity-and

temperature profiles were obtained by Uirichson and

Schmitz (2) for the boundary conditions of constant wall

temperature and constant heat flux. The work is a refine-

ment of an earlier work of Kays (3) to include the radial
component of the velocity in the entrance region and it

shows a significant decrease in the local Nusselt number

from that obtained by Kays.

Hudson and Bankoff (4) solved a transient

problem wherein a new wall temperature is Suddenly

impressed upon an initially isothermal laminar flow by

double Laplace transformation. For small time or large

axial distance, the solution is found to be independent

of axial distance and for small distance, it.becomes

independent of time.

The effect of the variation of fluid physical

properties with temperature was investigated theoretically

by Bradley and Entwistle (5) for fully developed air flow

in a circular duct. Numerical solutions are presented for

a range of air temperature from 350 deg. K. to 2500 deg.

K. for the conditions of constant wall temperature and

constant axial temperature gradient. The solutions also

show that the effect of axial conduction on the tempera-
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ture profile becomes important at low Reynolds numbers and

the effect of axial momentum on the velocity profile owing

to different fluid densities is considerable for large

temperature differences between the wall and air.

For laminar flow heat transfer with variable

properties in the thermal entrance region, an analytical

method was used by Xoppel and Smith (6) for the thermal

boundary condition of constant heat flux, the radial velocity

being neglected. The method was applied to supercritical

carbon dioxide whose properties vary rapidly with temperature

The results show fluctuations of the heat transfer coefficien

for particular values of heat flux, fluid temperatures and

flow rates.

Experimental results were obtained by Kays and

Nicoll (7) for large temperature differences between the wall

and air for the cases of constant heat flux and constant wall

temperature over a narrow range of Reynolds numbers. Data was

found to agree well with analytical solutions baed on
constant fluid properties.
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1.2 INFINITE PARALLEL PLATES

A few theoretical papers were published recently on

simultaneously developing velocity and temperature profiles

in the entrance region of two infinite parallel plates.

Stefan (8) used an approximate series solution for the

thermal condition of constant wall temperature. The case of

constant heat input per unit length of the duct was solved

by Han (9). He assumed Langhaar's solution (10) for the

varying velocity profiles and derived an integral method to

solve for the variations of the wall and fluid temperatures

along the duct. Numerical solutions are given for Prandl

numbers of 3.2, 1.6, 0.8 and 0.4.

A more rigorous analysis of the simultaneously

developing flow was done by Hwang and Fan (11). They applied

the finite difference analysis to the Navier-Stokes equation

and the continuity equation to solve the developing velocity

profiles which are then substituted in the energy equation

to dertermine tea,.erature profiles. Nusselt numbers are given

for krandt1 numbers in the range of 0.01 to 50. For the

constant wall temperature case, their solutions agree very

well with those of Stefan (8); as for the constant heat flux,

their results differ appreciably from Hart's results (9), but

agree closely with an earlier work by Siegel and Sparrow (12)

who used Langhaar's velocity profiles.
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Solutions of heat transfer in the thermal entrance

region with an interesting thermal boundary condition of

unequal wall temperatures were obtained by Hatton and Turton

(13). They show that the Nusselt numbers for the two walls do

not reach the limiting value until the fluid temperature

gradient becomes linear after a very long entry length. The

entry length also depends on the magnitude of the fluid entry

temperature in comparison to the wall temperature.

A transient problem on heat transfer for an

incompressible laminar flow was theoretically analysed by

Perlmutter and Siegel (14). The transient is caused by sudden

changes of the fluid driving pressure and the wall temperature.

Solutions are given for both zero and finite wall thermal

resistances.
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1.3 R3CTANGULAR DUCTS.

Since laminar flow heat transfer in a rectangular

duct is strongly affected by the aspect ratio of the duct,

theoretical analysis is more complex than those for the

circular duet and parallel plates. Solutions for flows with

fully developed velocity and temperature profiles were

obtained by various authors and their worksttoru fully compiled

by Montgomery and Weiss (1).

Variations of wall temperature for fully developed

laminar flow in channels with the aspect ratios from 1 to oo

were investigated by Savino and Siegel (15). Solutions are

available for various ratios of heat fluxes between the short

sides and the broad sides from 0 to 1, while the total heat

flux per unit length of the channels is kept constant.

Results show that the peak temperatures occur at the corners

owing to low fluid velocities. When only the broad sides are

heated, the peak temperatures are lowest and decrease rapidly

as the aspect ratio increases.
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1.4 OTHER CROSS SBCTIONS.

Fully developed Nusselt numbers for isosceles

triangular, right triangular and circular sector ducts were

computed by Sparrow and Haji—Sheik (16) and results are

presented over a wide range of opening angle of the cross

sections for the boundary condition of constant heat flux.

For small opening angles, results for the sector and the

isosceles triangular ducts are very close to each other.

Among the triangular cross sections, the equilateral

triangular duct gives the highest Nusselt number. Nusselt

number for the circular sectors reaches a maximum value

when the opening angle approaches 180 deg., i.e. it

represents an infinite plate.

Analytical solution of heat transfer in a cone with

a small opening; ;Ingle was obtained by Cobble (17).

Variations of the Nusselt numbers with the Graetz numbers

for a finite cone angle of 0.1 radian are plotted with

various cone lengths as a parameter.
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1.5 SCOkAl OF MA kfUSAINT WORK.

As already mentioned in (1.3) and (1.4), analyti-

cal solutions are available only for fully developed flows

in a few types of non-circular ducts, but in practice, heat

transfer usually begins simultaneously with the development

of velocity profile, and in some ayplications, though the

velocity profile is fully developed when the heat transfer

process begins, the whole region where heat transfer occurs

must be taken into consideration. Since no theoretical and

very few experimental data exist for the stated conditions,

the present work attempts to provide them.

Theoretical analyses here are concerned with

laminar .flow heat transfer in rectangular ducts with

different aspect ratios and in triangular ducts of various

cross sections under the following boundary conditions :

(1) Fully developed velocity profile and develop-

ing temperature profile. This is also known as. the

' thermal entrance resion.' At the entrance of the duct,

the fluid temperature is uniform. The exact solutions for
the fully developed velocity profiles in rectangular and

triangular ducts can be found in a text book by Rouse (18).

(2) Simultaneouly developing velocity and

temperature profiles. Both of them are assumed uniform at

the entrance.
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Thermal boundary conditions of constant heat

input per unit length of the duct and of const4mt wall

temperature are considered. In all cases, fluid properties

are assumed invariable with respect to temperature.

Experimental results were obtained for a

rectangular duct of aspect ratio of 2.0 with constant heat

input per unit length and with constnnt wall temperature,

and for an equilateral triangular duct with constant heat

input per unit length.
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CHAPTER 2

APPARATUS

2.1 GANERAL IJE1CR11TION,

A general flow diagram of the apparatus is given in

fig.1, p.22. Before entering the test section, atmospheric

air was sucked through an unheated duet to produce a fully

developed velocity profile. Various test sections were

employed for the thermal boundary conditions of constant

heat input per unit length and constant wall temperature,

and their details will be described later on. On leaving the

test section, the heated air entered an insulated mixing

chamber, fig.2, p.23, which was a box containing a wire mesh

to even out the final temperature of the air. A rotameter

was provided for measuring the flow rate of the air which

could be controlled by varying the opening of a by-pass

chamber, fig.3, p.23, Circulation of the air was maintained

by a high speed centrifugal fan (21), the fluctuation of

which was damped by inserting a piece of wire wool in the

duct between the rotameter and the by-pass chamber.
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2.2 PRODUCTION OF A FULLY DEVALOtED VELOCITY PROFILE.

In order to produce a fully developed velocity

profile for laminar flow in a non-circular duct, a length

of about 100 hydraulic diameters uas required. However, if

air is allowed to flow through a divergent nozzle first and

then through a straight duct, the production of the fully

developed velocity profile can be greatly accelerated (22).

In the case of the rectangular duct used in the present

experiments, the cross sectional area of the nozzle varied

from 0.5 x 1.0 in to 1.0 x 2.0 in with a length of 30 in.

The air then entered a straight rectangular duct of 1.0 x 2.0
2in in cross sectional area and 3.0 ft. in length, fig.4„

p.23. The velocity profile of the air at the end of the

straight duct was determined by means of a pitot tube and a

micromanometer which gave an accuracy of about 14 % for the

worst measurement.

Fig.5 shows a comparison of the central line

velocities between the flow in the straight duct and the

flow in the same duct with an additional divergent nozzle

over a range of Reynolds numbers from 840 to 24-80 • The

central line velocity was appreciably increased by the

divergent nozzle.
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2.3 RJCTANGULAR TOST SECTION FOR CONSTANT BEAT INPUT.

To obtain a constant heat input per unit length of

the duct, alternating current was fed through a metal duct

made of an electrical resistance material called Ferry Metal

(23) of 0.006 in. thick. A vertical mounting of the duct was

chosen because, in a . horizontal position, the temperature

profile of the heated air is distorted owing to natural

convection.

The Ferry Metal was supplied in the form of a strip

2of 1.0 in. wide. To construct a rectangular duct of I x 2 in
ei

in cross sectional area, a wooden formkof the required cross

section was employed as a guide. Six metal strips were placed

around the wooden form and joined together with thermosetting

plastic tapes. To make sure that the cross section of the

duct would remain rectangular after the withdrawal of the

form, the outer surface of the duct was covered with a double

bond resin called Hermetal (24) which set hard afterwards.

A brass flange was soldered to each end of the duct to form

an electrical terminal, fig.6, p.28. The whole duct was

heavily insulated with glass wool to reduce heat lost to the

atmosphere to a minimum.

The heating circuit is shown in fig.9, p.29. The

main voltage was stepped down by a transformer from 240 V.

to a voltage under 2.5 V. The input power was controlled by
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a variable transformer and measured by an ammeter, (0-'0A),

and a voltmeter, (0-2.5V). By comparing the input power to

the total change of enthalpy of the heated air, heat lost to

surroundings could be estimated.

2.4 RBOTANGULAR UST SZCTION FOR CONSTANT WAL.LJ TI3MERATURE

To obtain a condition as close to a constant wall

temperature as possible, the test section was made of copper

which is a good heat conductor. Its dimensions were original-

ly 2 ft. in length and 2 x 1 in in cross section. For
rigidity, a wall of 1/8 in. in thickness was chosen. The

copper , duct was placed inside a jacket which was filled with

heating water at constant temperature, fig.?, p.28. A pump

heater was employed to circulate heating water the tempera-

ture of which was kept constant by a thermostat.

To cover a wide range of Graetz numbers, the test

section was later on shortened to 73 and 13 in. and the

same test procedure was repeated. The reason is explained in

(3.7.2).
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2.5 MEASUREMENT OF TEMPERATURE

Chromel-constantan thermocouples of 0.01 in. Cia.

were used for measuring initial and final temperatures of

the air and wall temperatures. As a large number of thermo-

couples were used, they were connected to a common reference

junction via a selector switch the terminals of which were

gold-plated to ensure good electrical contact. The ice point

was used as the reference temperature and its construction

is described in (25).

Fig.8, p.29 1 shows a null-typed thermocouple

circuit which consisted of a Tinsley two-dial precision

potentiometer (26), a moving mirror galvanometer, a Weston

standard cadmium cell and a series resistance box for

controlling the sensitivity of the galvanometer. Accuracy

of the measuring circuit was 1/AV and consequently, with

chromel-constantan thermocouples, could measure temperature

within about 0.05 deg. P.

For the thermal boundary of constant heat input

per unit length, measurement of wall temperature presented

some difficulties, Taermocouplescould not be attached

directly to the outside surface of the duct because it

carried an electric current. To form an electrical insulator,

a thin film of Hermetal was painted on the surface of the

metal where the measurement of temperature was required
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and then the thermocouple junction was attached on the

Hermetal film. As the film was very thin and. Hermetal is a

moderate heat conductor, the error in measurement of the wall

temperature owing to the presence of another medium was very

small and the measured temperature was assumed equal to that

of the wall.

For the constant heat input per unit length, the

wall temperature varies around as well as along the duct.

Though the variation around the duct is rather small when

the duct is made of a good heat conductor, at each distance

along the duct, five thermocouples were placed around the

perimeter in order to obtain a good average of the wall

temperature at that distance.

The final temperature of the heated air was measured

by four thermocouples at different points in the mixing

chamber and an average value was determined.
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2.6 EQUILANRAL TRIANGULAR TEST SECTION FOR CONSTANT HEAT

INPUT PER UNIT LENGTH OF Tffig DUCT

The unheated section for producing the fully

developed velocity profile consisted of a divergent nozzle

and a straight duct similar to the combination employed in

(2.2). The heated section was made of three strips of Ferry
1metal, each being 1 in. wide and 154 in. long. Along the

section, chromel-constantan thermocouples were placed at
13, 447 , 6 and 12 in. from the entry plane of the duct. At

each distance along the duct, four thermocouples were placed

around the perimeter in order that a small variation of the

wall temperature could be measured. An aluminium equilateral

triangular form was provided as a guide In construction of

the duct. Constructional details were similar to those of

the rectangular test section, (2.3).
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CHAPTER 3

BEAT TRANSFER IN THE TIORMAL ENTRANCE

REGIONS OF RECTANGULAR DUCTS

3.1 BASIC DIFFERENTIAL EQUATIONS

The Navier-StokesP equation for a laminar flow of

a fluid in the z direction is

z (f04 + d_ + 3 2 w
ay2 az2)

�.w+u—+v +w
az 3x 3y 8z

where u, v, w = velocities in the x, y, z directions,

P = pressure.

If the flow in a duct is hydraulically fully

developed, the velocity profile does not vary with the

axial distance, ze

	

aw/az 	 0,	 u, v	 0,

	

a2w/az2	 0,	 3p/3z	 constant,

Equation (1) is then reduced to

a2w a2w

()z
	 (1c.)

The energy equation for an incompressible fluid

with invariable physical properties is
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where
	

local temperature,

thermal diffusivity, kiepe

Since the conduction term in the axial direction,
d2tp

z 2o is negligible in comparison to those in the x and y

directions, and for a fully developed flow, the velocity

components u and v are zero, the energy equation is there-

fore reduced to

azt 82t

crj
(2a)

3.2 ANALYSIS OF PARABOLIC EQUATION

Equations (la) and (2a) are parabolic partial

differential equations. Their solution can be conveniently

obtained by numerical methods. The left hand sides of both

equations contain second derivatives in two dimensions and

these can be replaced by finite difference approximations.

For a duct of rectangular cross section, a square network is

most convenient for computations.

First, the following partial differential

operators are defined t-

Hf(x ly) ; f(x+h,y) + f(x-h ly) + f(x,y+h) + f(x,y-h)

- 4f(xly)

Xf(x ly) = 1 ( f(x+h,y+h) + f(x-h,y+h) + f(x-h,y-h)

+ f(x+h,y-h)*- 4f(x,y) )
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The two operators can be represented diagramma-

tically by

624.
fA relationship between	 +	 and the two

6x' ay'
operators, H and X, can be found (19), as follows :-

Let OC E h. a--	 andox f3	 h

The operators, H and. X, can be written in terms of

cc and. 13 as

H . 2 cosh cx + 2 coshp . 4

X . 2 cosh cx • cosh /3 - 2

Solving for cosh cc and coshfl and then substitu-

ting for these in terms of sinh2oli./2 and sinh213/2 gives

2 sinh c /2 . (i(H +Ale+ 8H - 8X) )-1	 = A

2 Binh p /2 . (i(H +1/4H2 + 8H - 81) )i

But cc . 2 sinh-1 A/2

2 2A4 2 22 A6	 n	 2 A 8
A- 4! '	 6.	 8.

and similarly,

Hence oc 2
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,32
2	 a2

h Tct r5,2)

B2 ) 442, (A4+ -4 ) I	 6 6+ go (A + B6) +

Replacing A and B in the above equation by their

values in terms of H and X

2 a2 a2	 I 2	 1 3	 2h (	 +	 ) H - 17(H + 4H - 4X ) + go(H + 6H
ax2 ay2 a

6HX)

. 2HX	 HX-3- + 3. + ay +	 +....

In the present work, the first order terms will

give sufficient accuracy so that

/4 2	 N2o f o f
--IT (411 + 2X) f(xa)

a7	 6h'

It is convenient to define a new operator, K,

where	 K	 E	 (4H 2X)

The operator K can be represented diagrammatically

as

'	 --

62f a2i.
K f(x,y)

g	 6h'

But cx 2 4.

(3)
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Finite dilIpmence eapliplico Simpson's Rule in two

dimensions. 

The average value of a quantity over an area such

as velocity or temperature, can be computed numerically by

means of Simpson's Rule in two dimonsions. For a function

f(x,y), the average value can be written in finite difference

form (20) as :

A

j
rf(x l y)dA = h2 2:( 4f(x+hty) + 4f(x-h l y) + 4f(x, y*h)

+ 4f(x,y-h) + f(x+h,y+h) + f(x+hly-h)

+ f(x-h,y+h) + f(x-h l y-h) + 16ffx,y) )

where N is the number of squares of side, h, into which the

area A is divided.

7
	 (71) (T)

1
rf(x,y)dA = h f(xly)
J
Di	

77-

	

II 	 .20,.

Diagrammatically,



3.3 EXACT SOLUTION TO THE FAVIER-STORE'S EQUATION

For fully deveLoped laminar flow in a rectahgular

duct, equation (la) can be solved exactly (18).

In a duct having dimensions a and b in the x- and

y-directions respectively, the velocity, w, at any point

(x,y) on the cross section is given by :

00

= C(x2-bx) +
m.1

[ mi-wc- ( A EF 	 B rilba )sin	 mcosh	 +	 msinh

ywhere C I dP •

Am 2b2C ( cos mn - I )/ m3n3

Bm	. -Am ( cosh mica Ff.I )/-	 sinh

It is convenient to define a number of dimension-

less parameters as follows :

aspect ratio,

velocity,

co-ordinates

cc = b/a,
la2 2w	 _waz

x+	 x/a, and y+	y/a.

coHence,
+	 ++	 i(mtxt.,	 MAXx+i) + L (cos mn - 1) sin --- . —3

2cr
2
—3.W mi

cr ;m n

X (cosh EMI	 sinh
cr

+ cosh	 - 1

sinh

MR

mn	 cc
ale))

+ ) (5)



39

To determine the average dimensionless velocity,

wb' the cross sectional area of the duct is divided into a

square network and velocities at nodal points are calculated

from the above equation.

The average velocity is defined as

j(fw
+ dx dywb

By applying the Simpson's rule in two dimensions,

equation (4), to the velocity distribution, the average

velocity can be computed.

3.4 NUMERICAL SOLUTION TO THE ENERGY EQUATION

By combining equations (2a) and (3), the energy

equation can be put into finite difference form as :

g_t....(1.3.c Mai 'm 	 w t(x.7.z+ Az) - t(x.1.,.z) 
6112

Rearranging this, the energy equation becomes

wt(x,y,z+4z) t(x,y,z) 	 -b 0c4z -.5 K t(x,y,z)
w w	 6

b h

(6)

where e	 ratio of the side of the square grid, h, to the

hydraulic diameter of the duct, dh.

Using this equation, the temperature distribution

at any cross section of the duct can be computed from the
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temperature distribution at the prectding finite step in

the z-direction, i.e. along the axis of the duct. The

computing procedure is as follows :

First, the cross sectional area is divided into

a square grid of side h.

ortizFrom equation (6),	 77 can be written as z/dh
w d"b h	 Re.Pr

ewbdh
where Re is the Reynolds number	 Pr is the Prandt1

number Cp/A/k and Re.Pr/(z/dh) is the Graetz number, Gz.

2Hence, ochi ziwbdh is a small increment of the reciprocal of

the Graetz number, and it must be chosen so that
tf

W + ccAz I-b	 -2 is small' than i in order that the solution to
w wbdh e

the equation (6) is in a steady state.

The ratio wb/w in the equation (6) at any nodal

point in the cross section of the rectangular duct can be

calculated from equation (5) since wb/vt =

To solve equation (6) numerically, initial and wall

values of temperature are also required, and they can be

obtained by using a suitable dimensionless temperature, the

form of which depends upon the thermal boundary condition.
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3.5 SOLUTION FOR CONSTANT WALL TEMPLRATURE

For a duct with constant wall temperature, a

dimensionless temperature, 0, is defined as

G = tw - t
f. - tw o

where t = local fluid temperature,

tw = wall temperature . constant,

to . fluid initial temperature = constant.

.	 n	
im 1	 and	 Q	 . w	.• °by()	 w,o	 O

The energy equation (2a) can be written as

0)20	 4) 28	 w

-a7	 .S;

and consequently, equation (6) becomes

G(x,y,z+ilz)	 G(x,y,z)	 ocAz .1!„ KG(x,y,z) 
	

(7)
w wbdh	 6

Temperature distributions along the duct can be

computed step by step by means of the above equation and

hence, the Nusselt numbers along the duct are deduced.

However, because the computation involved is very lengthy,

a fast digital computer is required.
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ITAturatZuralus Nix. 

By definition, the coefficient of convective heat

transfer, h	 4/ As (tw - tb)

where	 4 . heat transfer rate,

As . surface areafromwhich heat is transferred.

Consider an elementary length, dz, of the duct.

Heat transfer by convection, d4 h * dAs (tw - tb)

= h P (tw - tb) dz

where P is the perimeter of the duct.

• dtRate of change of enthalpy, dR = tzwbAcCp ab dz

where Ac is the cross sectional area of the duct.
•

By the first law of thermodynamics, d4 dH, since

no shaft work is done.
dtHence h P (tw tb )	 ewbAcCp

k	 d dtand	 h	 wb 411 b / (tw tb)

or in dimensionless form,

k dh	 w -h --b / 0or b 4 Az	 b

By definition, the peripheral Nusselt number,

Nu . h.dh / kb

IfigHence,	 Nup	 w bd2 h	 b (8)



A 2.
In the above equation, "b"h has already been

cca z
chosen in order to solve the energy equation as described

in (3.4). The bulk dimensionless temperature, Ob , at any

position along the duct can be determine by applying the

Simpson's rule in two dimension, equation (4), to the tem-

perature distribution at that position which has already
been computed numerically from equation (7).

For design purposes,a mean value of the Nusselt

number is more suitable than the local one. The mean Nusselt

number, Num , is defined as :

J NuO Pdz
Num

The mean Nusselt number can be computed numerical-

ly from the peripheral Nusselt numbers, Nup , determined at

small equal intervals along the duct.

Num =	 Nup/N
	

(9;

where N . number of intervals considered = z/tiz.

Experimentally, it is inconvenient to determine

the mean Nusselt number defined above, and the logarithmic

mean Nusselt number, which is based upon the logarithmic

mean temperature difference, is employed instead. This can

be calculated as follows:
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Consider a length z of the duct.

h P zat1 • . wbe Cp (tb - to ) Ac
where at1 = logarithmic temperature difference,

(t	 t )	 (t	 t )
w 

in (tw - to)

(tw tb)
= (tb - to )/ ln tw to

w b

. h.dh . c wbAc du	 ,____,in tw - to
-k—b	 b 'TT " tw - tb

"12

= 

w
b"h 1 in 1/Gb

 4aAz N

Nul

(10)

It has been found from the results that the mean

Nusselt numbers predicted by equations (9) and (10) agree

within 0.5 %.

Fas_aLn.p,le o±  Splamtatign

For the aspect ratio, e, of 2.0.

Let the dimensions of the duct be a x 2a.

Hydraulic diameter, dh	 4 x 6a
2a x a

Choose the finite step, h	 a/10 . 3dh/40.

Equation (7) becomes
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Wb 5Az	 1600
. 	 • KO(x,y,z)

"b h

	

ChoosealiSz	
9

—2 I'
	w b

dh	32000

wb 1246.11.E1-
w

8000 I°bFrom equation (8), Nup	 -3;
'b

8000 in 1/01)

With all the necessary variables obtained numeri-

cally above, a computer program can be written to solve for

the temperature distributions and the local and mean Nusselt

numbers along the rectangular duct. The flow diagram of a

computer program can be seen on p. 46 and 47. Computer

programs were written for aspect ratios from I to 6 and some

of the results obtained by using an I.C.T. Atlas computer

are shown in figs. 11 et 12. Because of similarity, only a

quarter of the rectangular cross sectional area had to be

considered during the computation.

and from equation (10),	 Nu =



calculate the exact bulk tempera-

ture from equation (12), p.53.
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FIG. 10 FLOW DIAGRAM OF COMPUTER PROGRAM

FOR HEAT TRANSFER IN THE ICAERMAL ENTRANCE

REGIONS OF RECTANGULAR DUCTS.

I

read in the chosen sizes of the

network and steps alongtheduct
,

set initial values of dimensionless

temperatures of the wall and fluid 

calculate distribution of fully developed

velocity ratios from the exact solution, equation(5)

proceed one step along the duct and compute

a new distribution of dimensionless

temperatures by means of equation (7)

apply the extended Simpson's rule in two

dimensions, equation (0, to determine
the dimensionless bulk temperature.

iconstant heat inputl

constant wal

temperature

1.



I

compare the predicted and exact

dimensionless bulk temperatures

if they are not equal, correct the

diptilbution of the predicted

temperature, see p.54 .

-1
 if they are equal, compute the wall

temperature from equation (13)

1

 eqautions (14), (15) &
(9) for const. heat
input per unit length

equations (8), (9) and (10)

for const. wall temperature

calculate the Graetz number, see p.40, local

mean and logarithmic Nusselt numbers from

print out number of the present step, Graetzl

number, bulk temperature and Nusselt numbers I1

i

if Graetz number z 10, print out the distribu

tion of dimensionless temperatures of last step
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3.5 SOLUTION FOR CONSTANT HEAT INPUT PER UNIT LENGTH

For this thermal boundary condition, it can be

shown that the bulk temperature of the fluid rises linearly

along the duct as follows :

From the first law of thermodynamics, heat input

per unit length of the duct . rate of change of enthalpy.

4	 w
b R CP Ac d:b . constant.

For a given flow rate of the fluid assumed incom-

pressible, wb , R , Cp and tic are constant.

dt . constant.aib

When the heat input per unit length of the duct

is constant, the wall temperature varies along and around

the duct. However, if the duct is made of a good heat

conductor, the wall temperature can be assumed constant

around the pOmeter at any cross section and to vary only

with distance along the duct. At each step of computation,

a new value of wall temperature has to be computed from the

boundary condition of constant heat input.

• •
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346.1 Determination of Fluid Temperatures 

For constant heat input per unit length of the

duct, it is convenient to define a dimensionless temperature

N	
t to 

dt d11b_ h b 
<is	 ct

where to	initial temperature of the fluid assumed

uniform.

At any cross section, the distribution of fluid

temperatures can be predicted numerically from the fluid

temperatures at the previous section by combining equations

(2a) and (3) and substituting for t in terms orig.

	

p (x,y,z+41z) —13 (x,y,z) = rib orAz	 1013(x,:v.z) 
(ii)

74- „,

"	 wb`411	 6

. An approximate bulk temperaturei5 b at the new

position can be evaluated from the distribution of tempera-

tures by means of equation (4).

However, by definition, the true bulk tempera-

ture is
t - t

)5 _
b	 dt w 4b bd h

dz
tb - to

T., 2dtb wbdh
dz cc
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dtbAs already shown,	 = constant for cons-

tant heat input per unit length, hence
dtb	tb - to
a-z-

p	
OC Z	 a Z Nb

	

w d'	 w d2

	

b h	 b h

(12)

where N = the number of step being considered.

2Since (wbdh )/a4lz has been chosen to have a

definite value when equation (11) is solved numerically, the

bulk temperature at any position can readily be calculated

from equation (12).

If the prediction of fluid temperatures by means

of equation (11) were accurate, the predicted bulk tempera-

ture,N, would be the same as/3b calculated from equation

(12). In computation, it will be found that p L differs from

AI) and a correction is needed for the predicted fluid

temperaturesp, such that IOL .)01).

Because of non-linea4ity of the temperature ana

velocity profiles, the correction will have to be varied

from point to point on the mesh with the maximum correction

at the centre. The following expression would be most suit-

able.
(/5 7)9)

Corrected temperature =13 + 	 :/3)
7/3b)



But the factor, - , cannot yet be deter-
(fiw -Pb)

(Pw

54-

mined since the wall temperature,pw , is still not known.

A good approximation can, however l be obtained by using the

velocity ratio, w/wb , for fully developed velocity profile

instead of 0? -/3)/(13w -Ab ). This is justifiable
w

. because the two terms differ only slightly, and moreover,

(.1.71) -[3) is quite small in comparison to/3 during any

step.

.*. corrected temperature 213 
wb 

(pb -pig))

A new value of the approximate bulk temperature,

p
b , is then computed from the new distribution of fluid

temperatures, and if it is still not equal to	 the

same procedure is repeated.

3.6.2 Determination of Wall Temperature

To predict the temperature at the wall,from the

values at other points inside the duct, it is necessary to

satisfy the energy equation. It is convenient to consider

a surface B at a constant distance h/2 inside the wall of

the duct and of axial length dzs fig. 13, p.55,
By the first law of thermodynamics, the heat tranb-

ferred across B must equal the change of enthalpy of the

fluid flowing inside B. The latter can be evaluated as the
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difference between the change of enthalpy for the entire

duct less that for the gap between the surface B and the

wall of the duct.

These quantities can be expressed in the finite

difference form. Across any section of B of area h.dz I the

temperature gradient is (tw th)/h, where th refers to the

fluid temperature at a distance h from the wall of the duct

and the corresponding heat transfer rate is

k.h.dz(tw th)/h

Similarly the rate of change of enthalpy throug:1

an element of area h.2. between the wall and surface B can

be expressed as
dth2 pw C	 dzp uz

Summing up round the perimeter, one can equate

the total heat transfer through B to the net change of

enthalpy inside B as
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dth2 	 dtYk(tw -th)dz =Wb Cp A aib dz - Z 2 e w Cp	dz

Certain assumptions must be made to solve this

equation. For a metal duct, the temperature variation around

the periphery is small and it is assumed that t is constant.

From experimental results, this is justifiable.

If the gap between the surface B and the duct wall

. is small compared to the duct dimension d h , the mean veloci-
ty in any element can be taken as wh/4 and the axial
temperature gradient as dth/dz.

20 Cdt h wh p dth. kntw 	 k
ith 	wb C A 1.--b -	 8	 a--z-pc uz

where n is the grid points on the duct wall.

This can be written in terms of the dimensionless

temperature /3 and solved for the wall temperature.

A2e2	 wh,h wh
. •	 /3w -	 -1- To: I-13h	 tri	 rvi; 4A

 (13)

In the first summation for,h  the values at th.3

four corners have to be included twice so that there are n

terms in the summation. In the second summation, each value

is included only once.
wb dhIn this equation, the values of e l n and azirz---

can be calculated as soon as h is fixed; the velocity

whin) has been obtained above, whilebph and lph can be
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determined from the figures found in (3.6.1) . Hence p(4,

can be determined at any point in the duct.

3.6.3 Nuspelt numbers

By the same approach as that for the condition of

constant wall temperature, the peripheral heat transfer

coefficient, hp , for constant heat input per unit length

is

kw d dtb 412 aib /(tw - tb)

or in terms of dimensionless temperature,i6

h 4-w

. . peripheral Nusselt number, Nup a 122kdh

4(13w	 -fib).
	 (14)

The logarithmic mean temperature difference,AN t1

(tw- tb ) - (tw 0- t0)
tw - tb in

7/41 fiwo w d2 dtb h	 b

b	 cr	 dz

wo

a



idw - bln---
and Nu . 1 	 17-_,0 (15)

4.	 w 73bw,o

5s

in /3w - /3
• •	 h

1 =
	

Aiwo 
j3w -Ab -.043w,o

The mean Nusselt number, Num , can be computed

by means of equation (9) like that for constant wall

temperature.

Example  of Computation.

For the aspect ratio, or + , of 2.0.

Let the dimensions of the cross section be a x 2a

. 4a/3

= a/16

=3/64

Hydraulic diameter, dh

Choose the finite step, h

Ratio, e = h/dh

Energy equation (11) becomes

)3(x ly,z+Az) 13(xly,z)	
1±k a6z '641N2

wv w
b

d
h 

1/4-3-

A
a4z	 (.64)

2 	 9 1	
- 8192uChoose the step

wbdh

/(.3 (i,y,z+Az) = -b	 1
w K

xasz)
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Equation(13) for the wall temperature becomes

ie w 	 23.6 pi
_

At the first step13 0 = 0, and/Iwo = 4.6

As the initial temperatures and finite steps now

have numerical values, a computer program can be written

for solving the temperature distributions and the Nusselt

numbers along the duct. Computer programs were written for

aspect ratios from 1 to 4 and results obtained from the

I.C.T. Atlas computer are plotted on p. 60 to 62, and

tabulated in Appendix(7.4). The flow diagram of such a

program can be seen on p.46 & 47. A comparison of the

Nusselt numbers between the thermal conditions of cons-

tant heat input per unit length and of constant wall

temperature is shown in fig.17, p.63.
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3.7 EXPERIMENTAL RESULTS

3.7.1 C9Agimt_yea.11_p_n ut Perjit LenKth

Tests were carried out over a range of Reynolds

numbers from 735 to 1960, which is well in the transition

regime for non-circular ducts. The wall temperatures were

measured at 7.5, 12.0 and 23.5 inches from the entry

plane of the duct. The initial and final temperatures of

the air were also recorded.

To determine the NUsselt number at a position

along the duct, the bulk temperature of the fluid at that

position must be known. In experiments, though intermediate

values of the bulk temperature could not he measured

conveniently and accurately, they could still be deduced

from the measured values of the initial and. final tempera-

tures of the air.

For constant heat

Input per unit length of

the duct, it has been shows.

in (3.6) that the bulk

temperature of the fluid

rises linearly along the

duct.

dtb
dz = constant

Fig. 18	 tf - to



= 2.0
2= 1.0 x 2.0 in

= 29.5	 in.

65

Hence the bulk temperature of the fluid at any

position along the duct can be obtained directly from a

linear relationship between the initial and final bulk

temperatures of the fluid and the total length of the

duct, see fig. 18, p.64.

Cal,ulatk

Data

Aspect ratio, a +

Cross sectional area Ad

Total length, L

Volumetric flow rate of air, V . 1.7
	

c.f.m.

Initial bulk temperature, t o	= 71.6
	

de6.x.

Final bulk temperature, tr	 . 94.0
	

deg.F.

Initial wall temperature, two = 84.0
	

deg.F.

Position along
the duct

inch.

Local wall
temperature

deg.F.

Average wall
temperature

deg.F.

Fluid bulk

temperature

deg.F.

115;0

7.5
113.8
114.0 114.5 76.6

115.2
124.3

12.0 125.1
125.6 125.6 80.0

127.3
136.4 319('

23.5 136.3
138.5 137.2 89.3
139.8
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Hydraulic diam6ter, dh	 4Ao/P = 4x2x1 = 1.333 in.

Mean velocity of the air, wb	60V/A.. E.OX74 

= 7.33x103 ft/h

Rate of heat transfer by convection per unit length of

the duct	 hp P (tw - tb) B.Th.U/h.ft.

Rate of change of enthalpy per unit length of the duct
dtCp t wb 	 b .Th.U/h.ft.

.*. by the first law of thermodynamics,

C e w, A (t. - to)
h	 a -P - °	 B.Th.U/h.ftP L (tw tb)

dh 	 0.24 x 0.075 x 60 x 1.7 (94.0 - 71.6)4Nu = laRkb =	 6

	

12. x	 (tw tb ) kb x 12

=	 3.73/k (tw tb)

Logarithmic mean temperature difference, (tw- tb)1

A tmax	 tmin 

in (iltmax./atmin)

tw tb - 84.0 + 71.6

ln (tw - tb) / 12.43

3.73 ln (tw tb)/12.4
b	 kb (tw tb - 12.4)

h1	d
k

h
Nil
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Reynolds number, Re = R wb ah

1385

Graetz number, Gz
	 Re.Pr = 1385:4030.231/

= 1330/z

ctDimensionless wall temperature /6  = w - to T ----2
tr - to wb db.

tw - 71.6 ,.h 6 0.82 x 122
g4-70.:7775 	 7.33 x 103x 1.3332

= 0.997 x 1O 	 - 71.6)

z	 Gz	 tw	tb 4t1 Nup Nui lew

in.	 deg.F deg.F deg.F	 x lo3

7.5 177.0 114.5 76.6 22.7 6.7 11.2 3.78

12.0 111.0 125.5 80.0 25.5 5.5 9.8 4.54

23.5 56.5 137.2 89.3 26.4 5.2 9.3 4.78

Fig.20 p.70 shows a rise of the measured

dimensionless wall temperature,/3, with the reciprocal

of the Graetz number, (z/dh)/Re.Pr. Variation of the

measured Nusselt numbers with the Graetz numbers
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is plotted in fig. 19, p.69 and tabulated in Appendix

(7.5).

3.7.2 Cmistant Wall Tern erature

Details of the test section were described in

Section(2.4). Tests were conducted over the same range

of Reynolds numbers as for constant heat input. Since

the rise of the bulk temperature along the duct was not

linear as in the previous case and it could not be

measured conveniently and accurately, the local heat

input could not be estimated. The initial and final bull:

temperatures of the air were, however, measured and

recorded, hence the total heat input and the logarith-

mic mean Nusselt number were deduced.

Because of the same reasons as above, ducts of

different lengths were employed in order to cover a

wide range of the Graetz numbers.

Results were computed by a similar procedure as

that in the preceding section(3.7.1). Variation of the
logarithmic mean Nusselt number with the Graetz number

is shown in fig.21, p.71 and tabulated results are

available in Appendix(7.6).
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CHAPTER L.

HEAT TRANSFER FOR SIMULTANEOUSLY DEVELOPING VELOCITY

AND TEMPERATURE PROFTL-FIS IN RECTANGULAR DUCTS4

4.1 THEORETICAL ANALYSIS.

In the previous chapter, fully developed velocity

profiles have been assumed and this condition exists in

practice only when a long duct is allowed for the flow to

become fully established before the heat transfer process

begins. In many cases, heat transfer takes place as soon

as the fluid enters the duct, so that both temperature and

velocity profiles are developing simultaneously.

The Navier-Stokes' equation (1) for the velocity

w, in the z-direction is

ew ewI Tx7	 v.& + wSw
ax ay 8z

Langhaar (10) obtained an approximate solution

for a flow between two parallel plates by using the

. following assumptions :

(i) The term 32w/h2 , which represents the ratA of

change of the viscous force in the z-direction with respect

to z may be neglected in comparison to those with respect

to x and y.
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(ii)The velocity components u and v are

negligible in comparison to the main stream velocity, w.

(iii)The pressure gradient, dp/dz„ is a

function of z alone.

. • .	 a2w a2w	 (IR +w aw

e dz	 az
(16)

The above assumptions will also be used for

solving the developments of velocity profiles in rectangu-

lar ducts.

The pressure term in equation (16) may be

eliminated by considering the flow at the central axis of

the duct.

1 + w
k	 )	 e dz	 c az

where the suffix 'c' refers to the central axis. Hence

	

d'Alk ( rw )2w )	 ( 32w ew aw

	

S"? )	 •Trc +	 5-;°	 w

The above equation can be put in a finite

difference form by means of the operator 'K' . defined on

p.36 .

dw
K w(x,y,z) - K w(x ly,z)c + %lc	 = w Aw

6ehr-	 'Llz	 6z



w	 w(x,y,z+4z) w(x,y,z)

ift, du 2 A4
6 1;4	 K w(x l y,z) - K w(xly,z)

ewbdh

+ we	 w(x,y,z+ b z)e w(x,y,z)e	 (17)

Equation (17) will be solved simultaneously with

the energy equation (2a) which can be written in the

finite difference form as

t(x,y,z+Az)-t(x,y,z) . 1 Clh)211% (c46 °) K t(x,y,z)6 h w	 2
"bA'h

As already mentioned in the previous analysis, the

2term (abz/wbdh), which represents the dimensionless

finite step in the z-direction will be given a suitable

value when the energy equation is solved numerically,

( see p.40 ). The same value can be applied to the term
2(/iAziewbdh) in equation (17) as follows :

"Az C AKZiz k 7)—
—7 -----

Qwbdh 	 wbdb. CI) k

( .52.1 ) pr

wb dh

Define the velocity ratio, w*
	

w/wb

Equation (17) can be written in terms of w* as :
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w*(x,y,z+/Az)	 i Pr f9A!.

	

)	 K w*(x,y,z)	 KW*(xly,z)03r17*-7
e wbdh

we
w	 w*(x l y,z+ilz) e w*(x,y,z)e

w*(x,y,z)
	

(18)

fluid at

the bulk

Boundary

(i)With

the entry

velocity,

(ii)The

conditions

a bell-shaped inlet, the velocity of the

plane is constant everywhere and equal to

wb , hene at z	 0, wit; . wt . 1.

fluid at the wall is stationary,

• w* = 0.• •

In the above equation, the value of 'e' is fixed
2from the size of the network chosen; (o(Aziwbdb) has been

given a value when the energy equation is solved in the

previous section; the Prandtl number, Pr, has to be given a

numerical value depending upon the type of fluid under consi-

deration, for example 0.72 for atmospheric air; lastly the

term w*(x,y,z+4Nz) can be approximated by the following

steps :

(i) Solve equation (18) numerically for all nodal

points in the network assuming that

w*(x l y,z+6z)e	w*(xl y,z)0	. 0.
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Hence, the first approximation of the velocity

distribution at (z+ANz).

(ii)Compute the dimensionless bulk velocity, wt,

from the first approximation. As the correct wt . 1, the

error of the velocity at each nodal point is (1 -wt).

(iii)Add (1 b-w*) to the term	 w*(x,y,z+Az)c-

w*(x l y,z)c	in (i) and resolve equation (18).

(iv)Repeat the same procedure until wt 	 N
When the velocity distribution at (z+Z1z) is known

the energy equation can now be solved by the same procedure

as in the previous analysis (3.4).

Computer programs were written for rectangular

ducts with aspect ratios from 1 to 4, for the thermal bounda-

ry conditions of constant wall temperature and constant heat

input per unit length of the duct. An example of a computer

program is shown in Appendix (7.7). Results obtained from th-

computer are plotted in fig. 22-25, p.78-81. A comparison of

the predicted Nusselt numbers between the hydraulic boundary

conditions of fully developed velocity profiles and simulta-

neously developing profiles for rectangular ducts of aspect

ratio of 2.0 with the two usual thermal boundary conditions

is shown in fig. 26.

Prom equation (18), it can be seen that the effect

of the Prandtl number on the development of the velocity
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profiles is quite significant. As a result, solutions of the

heat transfer for simultaneously developing profiles contain

the Prandtl number as a parameter. Fig.27 & 28, p.83 & 84,

show variations of the predicted peripheral and mean Nusselt

numbers with the Graetz numbers and the Prandt1 numbers of

0.72, 0.10, and 10 for rectangular ducts of aspect ratio

of 2.0 with constant heat input per unit length of the duct.

4.2 EXPERIMENTAL RESULTS.

Test equipments were the same as those in section

(3.7) but without the unheated inlet section so that the

velocity and temperature profiles could develop simulta-

neously. Tests were performed for the thermal boundary

condition of constant heat input per unit length over the

same range of Reynolds numbers as in section (3.7). Results

are shown in fig.29, p.85.
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CHAPTER 5

HEAT TRANSFER IN TRIANGULAR DUCTS.

5.1 RIGHT ANGLED ISOSCELES TRIANGULAR DUCT.

The exact solution of the Navier-Stokes equation

(2a) for a fully developed laminar flow in a right angled

isosceles triangular duct of sides x+y = 0, x = a Ind

y . a, is given in ref.(30) as :

co

K [a(x + y) 4-(x +7)2 - (a)	 (--)n N-3cosech(NA
n=0

sinh(Nx)cos(Ny) + sinh(Ny)cos(Nx)

where 2aN = (2a + 1).a

Put w+ a 2w/Ka2 ,0 x m xia and yt	y/a.

co

w+ (x++ y+ ) - i(x++ y+ )2- 16	 (-1)11 cosech(2n+1)n/2 
n=0	 (2n-0050

sinh(2n+l)n x. 	 (2n+l)n +2	 +cos	 2	 , y + sinh(2n2 1 )7t y+.

cos (2n+l)n x+	 (19
2

The network used In computations is shown in

fig.30, p.87. Velocity ratios at nodal points in the
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A a
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•
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0.
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1•n••

/1//f
x +	 0

x = a

V2h

Fig.30 Network for the Right-Angled Isosceles

Triangular Duct.
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network can be determined by calculating the dimensionless

velocittes from equation(19) and then computing the average

dimensionless velocity, 4,0 by means of the extended

Simpson's rule in two dimensions, equation(4).

Numerical solutions of heat transfer for the

hydraulic boundary conditions of uniform velocity profile,

fully developed velocity profile and simultaneously

developing profiles in the right angled isosceles triangular

ducts were obtained by the same procedure as those for the

rectangular ducts in sections (3.4), (3.5) and (3,6), with

the thermal boundary condition of constant wall temperature.

Results obtained from the Atlas computer are shown in fig.31&

32 and Appendix(7.9).

For constant heat input per unit length of the

duct, determination of the wall temperature presents some

difficulties. From fig.30, p.87, it can be seen that nodal

points adjacent the sides AB and BC are at a finite step, h

from the duct wall, hence the analysis in section (3.6) is

applicable, but the nodal points adjacent to AC are at a

distance h/V2 h' from the wall, thus a modified analysis

is required.

Consider a surface S at a constant distance h/2

from the sides AB and BC. By a similar reasoning as in

section (3.6), heat transfer by conduction through S is
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k (tw -th) dz

where n = number of nodal points on AB and BC.

Rate of change of enthalpy through the area

between S and the duct wall is

h2e wh c, tith dz
8	 EF

Now consider a surface S' at a distance h/2V2 from

the duct wall AC.

Temperature gradient at any nodal point on S'

(tw th,)/(h/V2)

Rate of heat transfer by conduction through S'
1

k V2h dz (tw - th t )/ (12/t/2)

n'y 2k (tw -th ,) dz

where n' = number of nodal points on AC.

Rate of change of enthalpy through n' elementary

areas, each being (1/2h.h/2i/2), between S' and the duct wall

n'
‘ ,2	 h2e whi cp dth, dz

From the first law of thermodynamics, rate of heat

transfer through S and S' = rate of change of enthalpy

inside S and S' in the absence of shaft work.
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n'yk (tw -th) +	 2k (tw -thi )	 e wb Ac Cp dtb
a-E

n'

h2.e wh Cp dth -e wh , Cpdth,

As inin section (3.6.2), the wall temperature, tw

is assumed constant around any perimeter. If the cross

sectional area, Act is substituted by 	 + lan')h.dh/4 1 and

the temperatures,t aro replaced by the dimensionless tempera-

tures,	 , defined on p.52, the above equation can be
'written as	 n

w A2 n	 n'
e2 	 "b	 2'.1.11. -13	 2. "h'=41 h +	 LA h*wbCu + 2n') 8criNz	 "b

(20)

Solutions for constant heat input can now be found

for the hydraulic bounclary conditions of uniform velocity

profile, fully developed velocity profile and simultaneously

developing profiles by the same procedures as those in

sections (3.6) and (4.1) and by using equation (20) instead

of equation (13) to solve for the wall temperature. Numerical

results obtained from the Atlas computer are plotted in fig.

33 & 34, p.93 & 94.

Pw
$17 4 4- 21! 11,

n + 2n')
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5.2. EQUILATERAL TRILULAR DUCT.

5.2.1 Exact Solution of the Fully Developed Velocity Profile.

The fully developed velocity profile for a laminar
flow in an equilateral triangular duct has been determined
exactly in ref.18. In fig.35, p.96, if the length of each

side of the equilateral triangular duct is 'b' and the
origin is at the centre of one of the sides which is on the
y axis, the velocity, w, at any point on the cross section
is given by

W	
."GV4 

X (x + V3Y-
	 b)	 V3y	 b)

Define the following parameters :

Pimensionle ps velocity, w+ z

Co-ordinates x+ 2 x/b and

The above equation becomes

w+ 	 x+(x4.+ 1/39+-	 )(x+- in7+-	 (21)



Fig.35 Network for the Equilateral Triangular

Duct.
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.2.2 Finite Difference Operator for Equilateral

Triangular Network.

To solve the energy equation numerically, for this

particular cross section, it is convenient to use a network

of equilateral trianglos. A new finite difference operator

K' is defined as :

K'f(x ly) = fi + f2 + £3 + f4 + f5 + f6 - 6f0

where fo , f11 f2 	 f6 are functions of x and y.

f	 f2 Jo

]Diagrammatically, K i f(x,y) =	 I	 i

f4„...O f6

5

A relationship between the operator K' and

2 	 which will be represented by V 2 , has

been obtained on p.23 of Southwell's book (31) as :

1 f 	 h2 (
Kir‘x,Y,	 372fO + sl (72

fi + 9 2f2 + ...cy2f6)

(22)

prom the above equation, it can be seen that a

direct evaluation of the term 17 2f(x,y)' at each nodal
point requires six neighbouring • C7 2f' terms which are also
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not known. However, this difficulty can be overcome by the

following steps of computations :

(1) For the first approximation, put

2
9'2fl 7 f2 	 +

2
f6	 6

2
fo

Equation (22) becomes

h2 172f (x 1Y) 	 Vf(x95)

The above equation is used to compute approximate

values of '11921" terms over the whole cross sectional area.

(2) Use the values of V 2f obtained in (1) in

equation (22) and recompute a new distribution of %72f.

(3) Repeat the computation of the distribution of

c7 2f by using equation (22) and the values of 2f obtaineE

previously until steady values are obtained.

5.2.3 Numerical Solution of the Energy Equation.

The energy equation (2a) in the finite difference

form is	 V2t(x,y,z)

Replace V 2t in the above equation by equation (22).

ZS t	 = t(x,y,z+Az) t(x,y,z)

d2
 V	 % h28 w ccASz

g h	 t(x,y,z) — Tic (i72,vi + C72t2

w wbdh
+ V 2t3 +	 + 47 2t6 )	 (23)
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Values of 72t1 c7 2t2 , •... and 7 2t6 are computed

by the method described in the preceding section, values of
2	 2other terms, i.e. wb/w, (o;Az/wbdh) and (dh/h), are deter-

mined by the same procedures as those in section (3.4).

Example,

For the triangular network shown in rig.35, p.96,

the finite step, h	 b/30

Hydraulic diameter, dh	4Ac/F	 b/11/3

b .161e g h/dh	I/I0A/3

It (Q41z)/(wbd121) is chosen to be 15000, oTaation

(23) is reduced to
h2

t(x,y,z+Ada)	 IC't(lcoriz) - 1-6 ( 0 2t1 +

2t2 +	 v 2t6)3 + t(x,y9z)

(24)

Initial and wall values of temperatures are required

to solve the above equation numerically and they can be deter-

mined by using the same dimensionless temperatures as those

in sections (3.5) 8G (3 .6)

Hence for constant wall temperature, the dimension-

less temperature 0 r (tw t)/(tw . to ), and the boundary

values are

0	 0w	0	 and 0b,o . 1.
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Numerical solutions for the hydraulic conditions of

uniform veloeity profile, fully developed velocity profile

and simultaneously developing profiles were obtained by

means of the Atlas computer and results are plotted on p.IO2

and 103, and tabulated in Appendix (7.11).

The thermal condition of constant heat input per'

unit length of the duct requires a slight modification for

the determination of the wall temperaturo, but the basic

approach remains the same as that of the rectangular ducts.

Since the nodal points adjacent to the duct wall

are at a distance 1/3h/2 from the latter, see fig.35, p.96,
a surface S at a distance V34014 from the duct wall has to

be considered instead of h/2 for the rectangular duets.

By using the first law of thermodynamics and tho

same approach as that in section (3.6.2), it can be shown

that
2	 2%/5 kntw - ‘7.5 k th

dtb
nC w Aa	 b

dthC h2Iwh .n-1 P

The above equation can be written in terms of

dimensionless temperature,, defined on p.52 and rearranged

into	
. 2 a2 n w

h"b'h
(25)/3w a 12..11A_ .Az v7- 413h

Numerical solutions were obtained for uniform velo-

city profile, fully developed velocity profile and simulta-
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neously developing profiles by the same computing methods as

those in sections (3.6) and (4.1) and by using equation (25)

to determine the wall temperature. Variations of the Nusselt

number with the Graetz number obtained from the computer

are plotted in fig.38 & 39, p.104 & 105 and tabulated in

- Appendix (7.12).

5.2.4 Enftrimental Results.

Details of the equilateral triangular test section

for constant heat input per unit length of the duct have

already been described in section (2.6), p.32. Tests were

carried out for the boundary conditions of fully developed

velocity profile, i.e. with the unheated inlet section, and

of simultaneously developing profiles. Results were computed

by the same method as those of the rectangular duct in

section (3.7.1) and they are presented in fig. 40 and 41, p.

106 and 107.
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CHAPTER 6

DISCUSSION AND CONCLUSION

6.1 PREDICTED NUMERICAL SOLUTIONS.

In the same manner as the exact solutions for the

circular ducts (26,28) and parallel plates (27,29), the

numerical solutions obtained in sections (3.5,3.6) for fully

developed velocity profiles in rectangular ducts with

different aspect ratios show that for a given aspect ratio,

the Nusselt number has a maximum value at the entry plane of

the duct and decreases as the Graetz number decreases. As

the Graetz number approaches zero, i.e. at large distances

from the entry plane or very small flow rates, the Nusselt

number approaches a limiting value which represents fully

developed velocity and temperature profiles. The NUsselt

number increases with increasing aspect ratio and has its

greatest and least values for parallel plates and square

ducts respectively.

The results also show a strong effect of the

thermal boundary conditions. The comparison of different

conditions in fig.17, p.63, shows that for the same aspect

ratio, constant heat input per unit length gives higher

Nusselt numbers than those of constant wall temperature, a
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result similar to that obtained for circular ducts.

Accuracy of the immerical method depends upon the

sizes ot the squares in the computing network and the finite

step along the duct. In computation, it has been found that

when comparing the numerical solution of the velocity profile

to its exact solution found from equation (9, an accuracy

within one per cent can be obtained if the size of squares

in the network is less than one tenth of the hydraulic dia-

meter of the duct. The same size of squares has been used

for predicting fluid temperatures, hence the same order of

accuracy may be expected. For the steps along the axis of

the duct, the dimensionless group, (wb/w)(q4z/dfiwb)(dh/h) 2

in equation (6) must be less than 1/2, otherwise the

solution becomes unsteady. On the other hand, if the sizes

of the network and the finite steps are too small, too much

time will be required for computation.

Predicted Nusselt numbers for simultaneously

developing velocity and temperature profiles in rectangular

ducts in fig . 22-25, p.78-81, exhibit variations with the

Graetz numbers similar to the solutions for fully developed

velocity profiles in fig. 11-17. Theoretical curves for

circular ducts (2 1 3) and parallel plates (8,11) are also
shown as a comparison and they show the same trends as the

predicted results obtained in this work. At a high Graetz
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number, the Nusselt number for the former is greater than

that of the latter and their difference decreases as the

Graetz number decreases until at the Graetz number of zero,

both solutions are as otic to the limiting Nusselt number,

fig.26, p.82.

As already mentioned on p.76-77, the Prandtl number
has a strong effect on the Ntsselt number for laminar flow

with simultaneously demeloping profiles. Fig.27 & 28, p.83 &

84, show that at the same Grsetz number, a small Prandtl

number gives a higher Nusselt number than a larger one. This

can be deduced from equation (18) that the velocity profile

of a fluid with a small Prandtl number develops more slowly

than that of a fluid with a larger Prandtl number. Hence,

the solution for the uniform velocity profile t or Pr = 0,

represents the upper limit and the solution for the fully

developed velocity profile, or Pr = co, corresponds to the

lower limit.

Predicted Nusselt numbers for the right-angled

isosceles triangular and equilateral triangular ducts in

fig.51-54 & 36-39 vary with Graetz numbers in the same

manner as those for rectangular ducts.

It may be noticed that all numerical solutions in

the present work are presented within a useful range of the

Graetz numbers from 0 to 200. For a Graetz number over 200,
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the duct is too short for any practical use, or else the

flow is too large for the laminar regime, for example, with

a flow of atmospheric air at Reynolds number of 1600 and

Graetz number of 200, the dimensionless length of the duct

(z/dh), is only 5.76.

6.2 COMPARISON WITH EXPERIMENTAL RESULTS.

Experimental data for fully developed velocity

profiles in circular ducts with constant wall temperature

(26) shows that at high Graett numbers, the measured Nusselt

numbers are greater than those predicted by Graetz. Experi-

mental results have been obtained for a rectangular duct

with the same boundary condition and they showed a similar

deviation, fig.21, p.71. For a Graetz number under 73,

experimental and predicted results agreed quite well, at

Graetz numbers of 100 and 150, the deviations were about 28
putty

and 51 % respectively. The discrepancy was due to an effect

of the variation of fluid thermal conductivity with tempera-

ture. At a high Graetz number, i.e. a short distance from

the entry plane, the wall temperature and fluid temperatures

close to the wall were much higher than the bulk temperature,

and as a result, thermal conductivities of the formers were

much larger than that of the latter. From equation (6), p.39,

it can be deduced that the fluid temperatures near the wall
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increased more rapidly than the predicted values obtained by

assuming constant properties at the bulk temperature. Though

the opposite effect occurred at the central part of the cross

section where fluid temperatures were lower than the bulk

temperature, their deviations were less than those of the

temperatures near the wall, and hence the overall effect

resulted in ahighermeasured value of the bulk temperature

than predicted value • At a low Graetz number, i.e. a large

distance from the entry plane, the temperature difference

between the wall and the fluid bulk was much less than that

at a high Graetz number, the effect of varying thermal

conductivity was therefore very small and a good agreement

between the measured and predicted results was obtained.

For ths thermal condition of constant heat input per

unit length of the duct, experimental data was obtained for

the rectangular and equilateral triangular ducts with fully

developed velocity profiles and simultaneously developing

profiles. Results in fig.19, 29, 40 and 41, p.69, 85, 106 and

107, show closer agreements over wider ranges of the Graetz

number than those for constant wall temperature. At a,low

Reynolds number, the measured NUsselt number is slightly

lower than the theoretical value. This appears to be due to

the opposing free convection effects which were present in

all the shown experimental results and became more apparent

at a low flow rate. By inverting the test section used in
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section (3.7.1), a few tests with additive free convection

were performed and it was found that at Reynolds numbers of

1060, 1400 and 1800, the mean Nusselt numbers increased by

about 17, 10 and 3 % respectively.
The effect of varying thermal conductivity, which

caused a deviation of the measured Nusselt number from its

predicted value, was apparent at a low Graetz number, i.e. a

long distance from the entry plane, where the temperature

difference between the wall and fluid bulk was much larger

than that at a short distance, ( c.f. constant wall '6mpera-

ture). The same result was also obtained in ref.(33) for

Graetz numbers up to 14.

In a test with constant heat input per unit

length, it was assumed that the presence of a thin film of

HerMetal between the duct wall and thermocouple junction

introduced a negligible error in the measurement of wall

temperature, section (2.5), p.30. This was confirmed by an

experiment in which a thermocouple was directly attached on

to the outside surface of a metal can containing boiling

water while a thin film of Hermetal was present between

another thermocouple and the surface of the can. Readings of

both thermocouples were taken with a circuit the accuracy of

which was + 0.2 deg.F. and no difference was observed betweer

the two readings which were subjected to a higher temperature

gradient than those of the ducts in the experiments.
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6.3 CONCLUSION.

In the present work, numerical solutions have been

obtained for laminar flow heat transfer with fully developed

velocity profiles and simultaneously developing velocity and

temperature profiles in rectangular ducts of various aspect

ratios and in right-atgled isosceles and equilateral triangu-

lar ducts for the thermal boundary conditions of constant

wall temperature and constant heat input per unit length of

the duct. The solutions give the limiting Nusselt numbers

which approach those calculated by other methods,(1) and

section (7.1), and moreover, their trends are compatible

with those of the corresponding theoretical solutions

obtained by various authors for circular ducts (26, 28, 2

and 3) and parallel plates (27, 29, 8 and 11). This
indicates that the numerical method employed here is reasona-

bly accurate for both square and triangular networks. Since

the method is straight forward and effective, it may be

extended to heat transfer in other cross sections such as

circular sectors, various triangular and elliptical cross

sections. Though suitable computing networks such as rectan-

gular ones for rectangular ducts with very large aspect

ratios have to be used and some modifications of the finite

difference operators and of the expression for the wall

temperature will be required, solutions can still be obtained
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without too much difficultire with a help of a fast digital

computer.

It can be finally concluded that

(1) for the same Graetz number and thermal boundary

condition, a rectangular duct with aspect ratio greater than -

2 gives a higher Nusselt number than a circular one, but all

triangular ducts give lower Nusselt numbers than circular and

rectangular ones;

(2) for the same Graetz number and thermal boundary

condition, a flow with simultaneously developing profiles

gives higher Nusselt number than that with fully developed

velocity profile;

(3) since most experimental values of the Nusselt

number are higher than the predicted ones, the latter can

ba used as a lower limit in design.

(4) a more compact heat exchanger can be designed 1.7

using a large number of short tubes rather than a few long

tubes.
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7.3 Predicted Nusselt numbers for fully developed velocity

profiles with constant wall temperature.

Peripheral Nusselt numbers, Nu
P

Gz

0

10
20
30
40
60
80
100
120
140
160
180
200

.	 1.0

2.65

2.,E-6
3.08
3.24
3.43
3.78
4.10
4.35
4.62
4.85
5.03
5.24
5.41

•

Aspect Ratio

2.0	 .	 3.0	 .

3.39	 3.96

3.43	 4.02
3.54	 4.17
3.70	 4.29
3.85	 4.42
4.16	 4.67
4.46	 4.94
4.72	 5.17
4.93	 5.42
5.15	 5.62
5.34	 5.80
5.54	 5.99
5.72	 6.18

4.0

4.51
4.53
4.65
4.76
4.87
5.08
5.32
5.55
5.77
5.98
6.18
6.37
6.57

• 5.0	 .

4.92
4.94
5.04
5.31
5.22
5.40
5.62
5.83

6.06
6.26
6.45
6,63
6.80

6.0

5.22
5.24
5.34
5.41
5,43
5.64
5.86
6.07
6.27
6.47
6.66
6.86
7.02
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Lean Nusselt numbers, Num

Aspect Ratio
Gz

0
10
20
30
40
60
80

100
120
140
160
180
200

.	 1.0

2.65
3.50
4.03
4.47
4.85
5.50
6.03
6.46
6.86
7.22
7.56
7.87
8.15

• 2.0	 .

3.39
3.95
4.46
4.86
5.24
5.85
6.37
6.84
7.24
7.62
7.97
8.29
8.58

3.0

3.96
4.54
5.00
5.39
5.74
6.35
6.89
7.33
7.74
8.11
8.45
8.77
9.07

• 4.0

4.51
54)0
5.44

5.0

4.92
5.36
5.77
6.13
6.45
7.03
7.53
7.99
8.39
8.77
9.14
9.46
9.79

.	 6.0

5.22
5.6E
6.04
6.37
6.70
7.26
7.77
8.17
8.63
9.00
9:35
9.67

10.01

5.81
6.16
6.73
7.24
7.71
8.13
8.50
8.86
9.17
9.47
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7.4 Predicted Nusselt numbers for fully developed velocity
profiles with constant heat Input per unit length.

Periperal Nusselt numbers, Nup.

Aspect Ratio

Gz
.

0

10

20

30

40

60

80

100

120

140

160

180

200

1.0

3.60

3.71

3.91

4.18

4.45

4.91

5.33
5.69
6.02

6.32

6.60

6.86

7.10

• 2.0

4.11

4.22

4.38
4.61
4.84

5.28

5.70
6.05

6.37
6.68

6.96

7.23
7.46

• 3.0

4.77
4.85

5.00

5.17

5.39
5.82

6.21

6.57

6.92

7.22
7.50
7.76
8.02

• 4.0

5.35
5.45

5.62

5.77
5.87

6.26

6.63
7.00

7.32
7.63

7.92

8.18

8.44
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Mean Nusselt numbers, Num

Gz

0

10

20

30

40

60

80
100

120

140

160

180

200

1.0

3.60
4.48

5.19

5.76

6.24

7.02

7.66

8.22

8.69
9.09

9.50

9.85

10.18

•

Aspect Ratio.

2.0	 .	 3.0

4.11	 4.77

4.94	 5.45

5.60	 6.06

6.16	 6.60

6.64	 7.09

7.45	 7.85

8.10	 8.48

8.66	 9.02
9.13	 9.52

9.57	 9.93

9.96	 10.31

10.31	 10.67

10.64	 10.97

.	 4.0

5.35

6.03

6.57
7.07

7.51
8.25

8.87

9.39
9.83

10.24

10.61

10.92

11.23
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7.5 Experimental results for heat transfer with fully

developed velocity profile in a rectangular duct of

aspect ratio of 2.0 with constant heat input per unit

length of the duct.

Re Gz	 • two .	 to 	.

deg.F, deg.F.

t

deg.F.

tw	tb	.

deg.F. deg.F.

u1

735 94 81.0 71.0 97.0 110.5 77.7 8.1
59 121.0 81.5 7.0
30 135.5 91.6 6.6

813 104 81.0 70.0 96.0 111.0 76.7 8.4
65 121.6 80.5 7.4
33 134.0 90.6 7.0

897 115 80.0 70.0 94.0 109.8 76.3 8.9
72 119.4 79.7 7.9
37 131.7 89.1 7.4

980 125 80.5 69.8 93,5 110.0 76.7 9.3
78.5 120.0 79.3 8.2

4n 131.5 88.3 7.8

1060 136 81.6 70.5 94.0 110.5 76.5 9.6
85 121.5 80.1 8.5

43 132.5 89.2 8.1
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Re •	 Gz	 • two •

deg.F.

to	.

deg.F.

tt.	 .

deg.F.

tw	 •	 tb	•

deg.F. deg.F.

Nui

1140 146 78.5 68.5 90.5 109.0 73.7 10.1

91 119.0 77.0 8.8

46.5 130.0 85.2 8.4

1220 156 82.5 70.7 93.5 111.5 76.7 10.5

97.5 122.5 80.0 9.3
50 133.4 83.8 8.8

1300 166 77.5 67.5 87.7 107.1 72.5 10.8
104 117.0 75.6 9.5

53 126.5 83.5 9."

1390 177 84.0 71.6 94.0 114.5 76.6 11.2
111 125.5 80.0 9.8
56.5 137.2 89.3 9.3

1470 188 84.0 71.6 94.0 115.3 77.6 11.6
117 126.0 80.6 10.1:

60 137.5 89.5 9.8

1560 199 83.5 71.0 93.0 114.0 76.6 12.1
125 125.0 80.0 10.3
63.5 136.5 88.5 10.2

1650 211 83.5 '70.5 93.0 115.0 76.2 12.8
132 125.5 79.5 11.5

67 137.5 88.5 10.8

1720 220 83.7 70.5 93.5 113.5 76.5 13.7

138 124.0 80.0 12.3

70.5 138.0 89.0 11.3
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7. 6 Experimental data for fully developed velocity profile

in a .Nactangular duct of aspect ratio of 2.0 with

constant wall temperature.

Z/dh . Re Gz	 • to .	 tf •

deg.F. deg.F.

tw
deg.F.

•	 ...ui

18.02 655 26 70.0 107.5 143.3 4.5
735 29 70.5 107.5 145.5 4.7
820 32,5 69.8 106.0 145.8 4.9

900 36 69.0 104,5 145.8 5.1
980 39 69.0 103.5 148.0 5.25

1060 42 69.0 102.5 149.2 5.4

1140 45 68.0 101.5 150.5 5.55
1220 48 69.0 100.5 149.8 5.7
1300 51.5 69.5 100.0 150.8 5.9
1390 55 69.0 100.0 151.3 6.2

1470 58 69.0 99.5 151.0 6.5
1555 62 69.5 100.0 148.0 6.8

9.76 655 48 70.5 102.5 155.0 5.3
735 54 70.5 100.1 151.5 5.6
820 59 71.0 99.1 152.5 5.9
900 65 71.0 98.5 153.0 6.3
980 71 71.0 97.8 153.0 6.17

1060 77 72.0 101.0 160.0 7.2
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zidh Re Gz to
deg.F.

tr
deg.F.

tw
dega.

Nu1

9.76 1140 82..5 72.0 101.0 160.0 7.7

88 71.0 99.0 159.0 8.1

94 70.0 98.5 159.0 8.6

100 69.5 97.5 158.5 9.0

1560 106 69.0 97.5 158.5 9.7

5.63 655 821. 66.0 93.5 150.5 7.9

95 66.0 93.0 150.7 8.5

105 66.5 92.8 150.5 9.3

900 116 67.0 93.0 151.5 10.1

128 66.5 92.5 151.5 10.8

1070 137 66.0 91.0 151.5 11,4

. 14-8 66.0 91.0 151.0 12.0

159 66.0 90.5 153.0 12.5

1320 169 65.5 89.5 153.0 13.0
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7.7 COMPUTER PROGRAM

JOB
LSM44EC1, WIBULSWAS RUN 40 APRIL 66
COMPUTING 20000 INSTRUCTIONS
OUTPUT
0 LINE PRINTER 500 LINES
STORE 32 BLOCKS
COMPILER EXCEL?

TITLE
SIMULTANEOUSLY DEVELOPING FLOW IN RECTANGUIAR DUCT
TITLE
CONSTANT HEAT INPUT ASPECT RATIO = 2.0

ROUTINE 1

BI=UCF'/AI+D'A152/AI+AI >>the Raider -Stokes equation in
RETURN	 >>finite difference form
CLOSE R

ROUTINE 2

*>method to compute velocities

C'=-20A152+8.4135+8A151+4A134 >>K W(x.yor) at the central axis
D'=B152 -A152	 >> W at the central axis

J=18(17) 120
K=J+14
I=J(1)X
C= -20AI+O(I -1)+4A(I+1)+4A(I -17)+A(I -16)+A(I -18) >> K W(x.y.E)
C=4A(I+17)+A(I+16)+A(I+18)+C -CI
JUMPDOWN(R1)
REPEAT
REPEAT

,)velocities at central lines
1=33(17)135
C= -20AI+4A(I -17)+0(1+17)+8MT -1)+2A(I -18)+2A(I+16)-C2
JUMPDOWN (R1)
REPEAT

1=137(1)151
C=-20AI+4A(I-1)+4A(I+1)+8A(I-17)+2A(I-16)+2A(I-18)-C'
JUMPDOWN (R1)
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REPEAT

>>to evaluate bulk velocity
V=0
J=18(34) 120 >>apply the Simpson's rule in two dimensions
E=J+14
I=J(2)K
W=16BI+4B(I-1)+4B(I+1)+48(I-17)+4B(I+17)+W
W=13(I-16)+B(I-16)+B(I+16)+B(I+16)+W
REPEAT
REPEAT

W=W/1152 >> bulk velocity
RETURN
CLOSE R

ROUTINE 3

DI=Ft C/BI+CI >> Fourier-Poisson energy equation in
RETURN	 >> finite difference form
CLOSE R

ROUTINE 4

NEWLINE 3
CAPTION

STEP N	 GZ	 BULK TEMP,	 WALL TEMP, NUP	 NUM
NEWLINE 2
RETURN
CLOSE R

ROUTINE 5

»to evaluate bulk temperature, V
V=0
J=18(34)120 >>the Simpson's rule in two dimensions
K=J+14
I=J(2)K
V=16BIDI+4B(I-1)D(1-1)+4B(I+1)D(I+1)+4B(I-17)D(I-17)+48(I+17)D(I+17)+V
V=13( 1-16) D( I-16)+B( I-16) D( 1 .46) +B ( I+16)D( I+16)+B( I+18) D( I+18)+V
REPEAT
REPEAT

V=V/1152
	

» predicted bulk temperature

RETURN

CIDSER
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ROUTINE 6

>>printout instructions

NEWLINE 3
CAPTION
DIMENSIONLESS VELOCITIES
NEWLIN3 2
J=0(1)16
K=J+136
MEWLINE
I=J(17)K
PRINT(AI)0,2 >> velocity distribution
REPEAT
REPEAT

NEWLINE
CAPTION
DIMENSIONLESS TEMPERATURES
NEWLINE 2
J=0(1)16
K=J+136
=MINE
I=J(17)K
PRINT(CI)0,2	 >> temperature distribution
REPEAT
REPEAT

JUMPDOWN(R4), NP

RETURN
CLOSER

CHAPTER 0
Arb300
B'300
0300
D>100

READ(E)	 >> 3dh/h
READ(F)	 » (wbdhdh)/(Q4z)
READ(P)	 >> number of steps required
READ(A)	 »	 accuracy
READ(u)	 >> Prandtl number

E=3/E	 >> e	 b/dh
Et =9DIVIDE(Y EE)



129

F' =6p
10 =1/10	" (01CAlz)/(6ee wbdhdh)

>>wall initial temperatures and velocities
1=0(1)16
Ai=0
BI=0
CI=E/4
REPEAT

1=0(17)136
Al=0
BI=0
CI=E/4
REPEAT

»initial velocities and temperatures
J=18(17) 137
K=J+15
I=J(1)K
AI=1
CI=0
REPEAT
REPEAT

R=1
H=4/E	 » Nu

JUMPDOWN(R4)
0152=1
M=0
N=1

>>to compute velocities

1)JUMPDOWN(R2)
2)M=M+1
C=1-W	 >>error in bulk velocity

D=l+A
JUMP 3, W>D

D.pmoD(c)
JUMP 4, A>D
JUMP 3, ip25
8152=8152+1.00= » correction of the central axis velocity
JUMPDOWN(R2)	 >> recompute velocity distribution

JUMP 2
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3)J=18(17)137
K=J+15
1=J(1)K
BI=B !+C
REPEAT
REPEAT

M=0

»to compute temperatures

4)N=N+1
J=18(17)120
K=J+14
I=J(1)K
C=-20CI+4C(I-1)+4C(I+1)+4C(I-17)+4C(I+17)
C=C(1-18)+C(I-16)+C(I+16)+C(I+18)+C
JUMPDOWN(R3)
REPEAT
REPEAT

>> K t(x,y,z)

»temperarures at central line
1=33(17)135
C=-20CI+4C(I-17)+4C(I+17)+8C(I-1)+2C(I-18)+2C(I+16)
JUMPDOWN(R3)
REPEAT

1=137(1)151
C= -20CI+4C(I -1)+4C(I+1)+8C(I -17)+2C(I -16)+2C(I -18)
JUMPDO7N(R3)
REPEAT

C=-20C152+8C135+8C151+4C134
D152=11"C/B152+C152

10=NEE/F	 >> actual bulk temperature, equation(12)
A/=0,001Aft

5)JUMPDOWN(B5)

c=40 —v

Eftwors(c)

JUMP 6, P>1)

3=18(17)137
K=J+15
1=J( 1)K
DI=1.001CBI+DI
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REPEAT
REPEAT

JUMP 5
>> computation of wall temperarure

6)C=0
1=18(17)120
C=DI+C
REPEAT

1=18(1)32
C=DI+C
REPEAT

c=0.9)33+0.9)137+c
C=C/23	 i3 h/n

D=0
1=18(1)32
D=BIDI-BICI+D
REPEAT

1=35(17)120
D=BIDI-BICI+D
REMAT

•

D.0.9333D33-0,5B33c33+0.513137D137-0.93137c13744)
r=u2/8 rwLi

b	
h

C= -D/22+C
C=E/4+C

1=0(1)16
DI=C
REPEAT

1=17(17)136

DI=C
REPEAT

>> wall temperature, equation(13'

>>Nusselt numbers, X,Y

X=C-Y,
X=0,25/X	 >> local NUp

H=H+X
Y=H/N
	

» mean NUin
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>>Graetz number
G=E' /N

»output

JUMP8,N=P
JUMP71p200>11
JUMP10,R#30
JUMP9
7)JUMP8,100>11
JUMP10,R#10
JUMP9
8)JUMP9,6>N
JUMP10,R#5
9)NEWLINE
PRINT(N)0,2
PRINT(G)0,3
PRINT(V)0,3
PRINT(C)0,3
PRINT(X)013
PRINT(Y)0,3

R=0
10)R=R+1

mincmN(R6), N=100
JWAPDOWN(R6), N=P

JUMP11, N=P

1=0(17)136	 >> transfer predicted velocities and temperatures
K=I+16	 >> to prepare for computations at the next step.,
J=I(1)K
AJ=BJ
CJ=DJ
REPEAT
REPEAT

JUMP4, B152>105
JUMP 1

11)END
CLOSE

64 20 995 0.0005 0.72
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7:8 Heat Transfer 'or Simultaneously Developing Velocity and

Temperature Profiles in Rectangular Ducts.

7.8.1 Predicted	 2ean NUsselt numbers for constant

wall temperature .and Prandtl number of 0.72.

Gz
1.0

Aspect Ratio

2.0	 3.0

10 3.75 4.20 4.67

20 4.39 4.79 5.17
30 4.88 5.23 5.60

40 5.27 5.61 5.96

50 5.63 5.95 6.28
60 5.95 6427 6460

80 6.57 6.88 7.17
100 7.10 7.42 7.70
120 7.61 7.91 8.18

140 8.06 8.37 8.66

160 8.50 8.80 9.10

180 8.91 9.20 9.50

200 9.30 9.60 9.91
220 9.70 10.00 10.30

4.0	 6.0

	

5.11	 5.72

	5.56	 6.13

	

5.93	 6.47

	6.27	 6.78

	

6.61	 7.07

	

6.90	 7.35

	

7.47	 7.90

	

7.98	 8.38

	

8.48	 8.85

	

8.93	 9.28

	

.9.36	 9.72

	

9.77	 10.12

	

10.18	 10.51

	

10.58	 10.90
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7.8.2 Predicted Nusselt numbers for the thermal condition or

constant heat input per unit length of the duct and

Prandtl number of 0.72.

Peripheral Nusselt number, Nup.

Gz
Aspect Ratio

1,0 2.0 3.0 4.0

10 4.18 4.60 5.18 5.66

20 4.66 5.01 5.50 5.92

30 5.07 5.40 5.82 6.17

40 5.47 5.75 6.13 6.43

50 5.83 6.09 6.44 6.70

60 6.14 6.42 6.74 7.00

80 6.80 7.02 7.32 7.55

100 7.38 7.59 7.86 8.08

120 7.90 8.11 8.37 8.58

140 8.38 8.61 8.84 9.05

160 8.84 9.05 9,38 9.59

- 180 9.28 9.47 9.70 9.87

200 9.69 9.88 10.06 10.24



13 5

Predicted mean Nusselt number 1 Num.

Aspect Ratio
Gz

1.0	 2.0	 3.0 4.0

5 4.60 5.00 5.57 6.06

10 5.43 5.77 6.27 6.65

20 6,60 6.94 7.31 7.58
30 7.52 7,83 8.13 8.37

40 8.25 8.54 8.85 9.07

50 8.90 9.17 9.48 9.70

60 9.49 9.77 10.07 10.32

80 10.53 10.83 ' 11.13 11.35

100 11.43 11.70 12.0 12.23

120 12.19 12,48 12.78 13.03

140 12.87 13.15 13.47 13.73

160 13.50 13.79 14.10	 - 14.48

180 14.05 14.35 14.70 14.95

200 14.55 14.88 15.21 15.49

220 lt.03 15.36 15,83 16.02
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7 .8.3 Effect of Prandtl numbers on predicted mean Nusselt

numbers, Num, for simultaneously developing profiles

in a rectangular duct of aspect ratio of 2.0 with

constant heat input per unit length of the duct.

Gz
co

Prandt1 Number, Pr.

10	 0.72 0.1 0

25 5.60 6.15 6.94 7090 8.65

40 6.64 7.50 8.54 9.75 10.40

60 7,45 8.40 9.77 11.10 11.65

80 8,10 9.20 10,83 12.15 12.65

100 8.66 9.90 11.70 13.05 13.50

140 9.57 11.05 13015 14.50 14.95

180 10.31 11.95 14.35 15.65 16.15

220 10.95 12,75 15.35 16.70 17.20

260 11.50 13,45 16.25 17.60 18.10

300 12.00 14.05 17,00 18.30 18.90

350 12.55 14.75 17.75 19.10 19.80

400 13.00 15.40 18.50 19.90 20.65
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7.8.4 Experimental data for simultaneously developing velocity
and temperature profiles in a rectangular duet of aspect
ratio of 2.0 with donstant heat input per unit length of
the duct.

Pa	 Gz	 t	 0w 
deg.F.

to1
tf tw

deg.F.
tb.

dega.

755	 94 76.5 70.3 100.3 110.6 78.2
59 122.0 82.6
30 136.6 94.5

820 104 77.2 71.0 97.8 108.7 711.1
65 118.8 80
33 132.8 92 \

900 115 72.7 65.7 94.6 107.8 73.0
72
37

119.5
1335..88

77.
8
5

980 125 73.3 66.3 94.0 106.5 73.3
78.5 117.7 77.6
40 132.0 88.3

1060 136 74.5 67.5 95.0 108.6 74.5
85 120.1 78.7
43 135.1 89.4

1140 146 77.5 71.4 95.6 109.0 77.8
91 120.0 81.3
46.5 134.5 90.6

Nu1

11.2
9.8
9.2

11.6
10.4
9.5

13.1
11.4
10.7

13.7
11.9
11.0

14.4
12.5
11.3
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Re w,o
deg.F.

too
deg.F.

tf
deg.F.

tw
deg.F.

tb
deg.F.

Nu

1220 156 77.2 71.0 94.5 108.5 77.1 14.9
97.5 119.5 80.5 12.8
50 134.4 89.9 11.7

1300 166 77.5 70.6 94.9 109.0 77.2 15.5
104 119.8 80.5 13.5

53 134.0 90.0 12.3

1390 178 77.5 70.7 94.0 107.5 76.7 16.1
111 118.5 80.2 14.1

56.5 132.5 89.3 12.6

1470 188 76.8 70,2 92.7 108.0 76.0 16.8
117 118.6 79.3 14.4

60 133.0 88.2 13.0

1560 199 76.3 69.5 92.2 107.5 75.3 17.4
125 118.6 78.8 15.0

132.5 87.8 13.7

1650 211 76.1 68.0 91.8 108.0 74.2 17.9
132 118,6 77.8 15.5

132.5 87.1 14.2
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.7.9 Predicted Nusselt numbers for right-angled isosceles
triangular ducts with constant wall temperature.

+At} cLmdLroulk Nagreiks	 FzieSI

lr E.

Peripheral Nusselt Number Mean Nusselt number

Fr co 0.72 0 co 0.72 0

Gz

10 2.40 2.52 3.75 2.87 3.12 4.81

20 2.53 2.76 4.41 3.33 3.73 5.85

30 2.70 2.98 4.82 3.70 4.20 6.48

40 2.90 3.18 5.17 4.01 4,58 6.97

50 3.05 3.37 5.48 4.28 4.90 7.38

60 3.20 3.54 5.77 4.52 5.17 7.73

80 3.50 3.85 6.30 4.91 5.69 8.31

100 3.77 4.15 6.75 5.23 6.10 8.80
120 4.01 4.43 7.13 5.52 6.50 9.18
140 4.21 4.70 7.51 5.78 6.82 9.47

160 4.40 4.96 7.84 6.00 7.10 9.70
180 4.57 5.22 8.10 6.17 7.33 9.94

200 4.74 5.49 8.38 6.33 7.57 10.13
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7.10 Predicted Nusselt numbers for right-angled isosceles

triangular ducts with constant heat input per unit

length of the duct.

4
14.0Ltt JJ2.0.12„)wort.NA Arao-cAl rka ftLe. Firt S

Peripheral Nusselt Number Mean Nusselt Number

Pr co 0.72 0 co 0.72 -0

Gz

10 3.29 4.00 501 4.22 5.36 6.86
20 3.58 4.73 6.27 3.98 6.51 7.97
30 3.84 5.23 6.85 .5.50 7.32 8.68

40 4.07 5.63 7.23 5.91 7.95 9.20

50 -	 4.28 5.97 7.55 6.25 8.50 9.67

60 4.47 6.30 7.85 6.57 8.99 10.07

80 4.84 6.92 8.37 7.14 9.80 10.75
100 5.17 7.45 8.85 7.60 10.42 11.32
120 5.46 7.95 9.22 8.03 10.90 11.77

140 5.71 8.39 9.58 8.40 11.31 12.14
160 5.95 8.80 9.90 8.73 11.67 12.47

180 6.16 9.14 10.17 9.04 12.00 12.75

200 6.36 9.50 10.43 9.33 12.29 13.04
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7.11 Predicted Nusselt numbers for equilateral triangular

ducts with constant wall temperature.

et41°T-LA 4)-*-)41reA 
Peripheral Nusselt Number 	 Mean Nusselt Number

0.•	 Pr co 0.72 0 co 0.72

Gz

10 2.57 2.80 3.27 3.10 3.52 4.65

20 2.73 3.11 3.93 3.66 4.27 5.79

30 2.90 3.40 4.46 4.07 4.88 6.64

40 3.08 3.67 4.89 4.43 5.35 7.32

50 3.26 3.93 5.25 4.75 5.73 7.89

60 3•44 4.15 5.56 5.02 6.08 8.36

80 3.73 4.50 6.10 5.49 6.68 9.23

100 4.00 4.76 6.60 5.93 7.21 9.98

120 4.24 4.98 7.03 6.29 7.68 10.59

140 4.47 5.20 7.47 6.61 8.09 11.14

160 4.67 5.40 7.88 6.92 8.50 11.66

180 4.85 5.60 8.20 7.18 8.88 12.10

200 5.03 5.80 8.54 7.42 9.21 12.50
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7.12 Predicted Nusselt numbers for equilateral triangular

ducts with constant heat input per unit length of

the duct.
4,911 A4whainaratsk ,wagre.JCI -prk-fAA	 Rts S a

Peripheral Nusselt Number Mean Nusselt Number

Pr co 0.72 0 CD 0.72 0

Gz

10 3.27 3.58 4.34 4.02 4.76 6.67

20 3.48 4.01 5.35 4.76 5.67 8.04

30 3.74 4.41 6.14 5.32 6.80 9.08

40 4.00 4.80 6.77 5.82 7.57 9.06

50 4.26 5.13 7.27 6.25 8.20 10.65

60 4.49 5.43 7.66 6.63 8.75 11.27
80 4,85 6.03 8.26 7.27 9.73 12.35

100 5.20 6.56 8.81 7,87 10.60 13.15

120 5.50 7.04 9.30 8.38 11.38 13.82

140 5.77 7.50 9.74 8.84 12.05 14.46

160 6.01 7.93 10.17 9.25 12.68 15.02

180 6.22 8.33 10.53 9.63 13.27 15.90

200 6.45 8.71 10.87 10.02 13.80 16.00
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7.13 Experimental data for heat transfer with fully developed
velocity profile in an equilateral triangular duct with

constant heat input per unit length of the duct. 	 c: ,eta- r 1 `T`'

Re Gz t wto
deg,F.

t o
deg.F.

t f

deg.F.

tw
deg.F.

tb
deg.F.

Nu1

650 90 79.6 66.3 106.5 138.0 74.0 5.5
64 149.6 77.3 5.0

45 156.7 82.0 4.8
22 183.4 97.5 4.3

•
810 112 75.2 64.2 101.5 133.1 70.3 6.9

80 144.3 73.0 6.3
56 151.7 76.7 6.0
28 177.5 89.1 5.3

970 134 74.5 62.5 98.8 129.7 69.4 7.8
96 141.0 72.3 7.3
67 149.5 76.7 6.9

33.5 175.2 90.5 6.1

1135 157 78.0 63.7 101.7 135.5 70.8 8.6

112 147.0 74.0 8,0

79 155.8 78.4 7.6

39 182.7 93.1 6.8

1300 180 80.0 66.5 103.0 141.8 73.6 9.4

128 153.5 76.5 8.7
90 163.2 80.8 8.2
45 190.3 95.0 7.3
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Re Gz towt

deg.F.

to
deg.F.

tf
deg.F.

tw
deg.F.

tb
deg.F.

Nu1

1460 202 79.0 65.2 101.4 143.0 72.1 10.0
144 155.0 75.0 9.3
101 165.2 79.2 8.8
50.5 192.2 93.2 7.9

1620 224 79.4 64.8 100.2 142.5 71.4 10.9
160 154.0 74.4 10.0
112 165.0 78.5 9.4

56 191.0 92.0 8.5

7.14 Experimental data for heat transfer with simultaneoua_Ly

developing velocity and temperature profiles in an

equilateral triangular duct with constant heat input

per unit length of the duct. 	 AAA_ F*1 4-1

Re Gz wto

deg.F.

to

deg.F.

tf

deg.F.

tw

deg.F.

tb

deg.F.

Nu

650 90 69.6 63.3 97.0 112.0 69.7 7.7
64 120.5 72.3 7.0
45 127.7 76.3 6.7

22 151.0 89.4 5.9

810 112 69.7 62.8 97.5 115.0 69.5 9.2
80 123.8 72.2 8.4

56 131.9 76.2 7.9
28 155.8 89.6 6.9
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Re Gz t,,,0

deg.F. deg.?.

t f
deg.F.

tw 	tb
deg.F. deg.F.

Nu1

970 134 69.8 62.1 97.2 115.2 68.2 10.5
96 123.7 71.0 9.7
67 132.2 75.2 9.0
33.5 156.2 89,1 8.0

1135 157 75.0 68.0 100.9 120.5 74.3 11.9
112 129.0 77.0 10.9
79 137.8 80.8 10.3
39 162.0 93.5 8.8

1300 180 72.7 65.7 97,5 117.0 71.7 13.2
128 125.6 74.3 12.2

90 135.7 78.0 11.2
45 158.7 90.2 9.9

1460 202 73.0 65.7 97.5 118.5 71.7 14.4
144 127.0 74.3 13.4
101 136.7 78.0 12.3
50.5 160.3 90.2 10.7

1620 224 73.0 64.8 96.6 117.4 70.8 15.6
160 125.5 73.5 14.5
112 134.7 77.2 13.4
56 156.7 89.3 11.8
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