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Abstract

Early-type galaxies (ellipticals and lenticulars) are observed to populate the relation
known as the Fundamental Plane that links their effective radius, Re, stellar velocity
dispersion, σ, and mean surface brightness, Ie. We have measured Fundamental
Plane parameters in the near-infrared J ,H andK passbands for∼104 of the brightest
early-type galaxies in the 6dF Galaxy Survey (6dFGS). We improve upon previous
regression techniques used to derive the Fundamental Plane by developing a robust
maximum likelihood algorithm for fitting the galaxy distribution in Fundamental
Plane space with a 3D Gaussian model.

We exploit this large near-infrared-selected sample of galaxies to investigate
trends in the Fundamental Plane with stellar population, morphology and environ-
ment. The 6dFGS galaxies exhibit clear stellar population trends in Fundamental
Plane space, with age varying most strongly orthogonal to the plane. Remarkably,
none of the stellar population parameters vary along the long axis of the plane,
which corresponds to luminosity density. The Fundamental Plane slopes show little
variation with either morphology or environment, but the Fundamental Plane size
zeropoint is systematically larger for galaxies in lower density environments and for
early-type spiral bulges. We speculate that age drives all the trends with residuals
about the plane through its correlation with environment, morphology and metallic-
ity.

Using the Fundamental Plane, we measure distances and peculiar velocities for
∼104 6dFGS galaxies to form the largest and most homogeneous peculiar veloc-
ity sample to date. Using a maximum-likelihood approach, we measure the overall
bulk galaxy motions from the 6dFGS velocity field for the local volume of the uni-
verse, finding broad agreement with the predicted velocity field constructed from the
2MASS Redshift Survey. The local volume out to 16 120 km s−1 is found to have
a bulk motion of 337 km s−1 in the direction (l, b) = (313◦±9◦,14◦±10◦), in good
agreement with the results of other recent studies. A comparison of the observed and
predicted fields is used to constrain parameters relating the distribution of galaxies
and matter. We obtain a redshift-space distortion parameter β = 0.29± 0.06 and a
bias parameter for the 6dFGS velocity sample of b = 1.69± 0.36.



ii

The 6dFGS velocity field provides an independent probe of cosmological param-
eters defining models of large-scale structure formation. Next steps include: (i) com-
bining the 6dFGS sample in the south with the SDSS sample in the north to obtain
an all-sky velocity field; (ii) deriving additional constraints on cosmological parame-
ters from the velocity power spectrum analysis; and (iii) comparing the Fundamental
Plane distances and velocities for early-type galaxies with the Tully-Fisher distances
and velocities for spiral galaxies that will be obtained with the WALLABY survey
on the Australian SKA Pathfinder.
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Preface

While the work presented herein is essentially my own, there are some elements that
are the result of collaboration or the work of others. Any such data or results are
acknowledged explicitly in the text, and are summarised here:

• Chapter 1 is a review of the literature of early-type galaxies, the Fundamental
Plane, galaxy distances and peculiar velocities and is my own work. References
are quoted in the text.

• Chapter 2 is my own work aside from the following exceptions where I have
summarised and reworded the contribution from collaborators in the following
sections. The derivation of spectroscopic (§2.3) and photometric (§2.4) mea-
surements for a sample of 6dFGS galaxies are the work of Lachlan Campbell
and are being prepared for journal submission in the near future. The morpho-
logical classification in §2.5 was undertaken by several experienced astronomers.
In §2.8.1 the 6dFGS group catalogue was provided by Alex Merson (which is
being prepared for journal submission) and the measurements of local envi-
ronment parameters by Sarah Brough. The stellar population measurements
in §2.8.2 are the work of Rob Proctor using the method of Proctor & Sansom
(2002) and are being prepared for journal submission.

• Chapter 3 is based very closely on the following publication of original research:

Magoulas C., Springob C. M., Colless M., Jones D. H., Campbell L. A., Lucey
J. R., Mould J., Jarrett T., 2012, The 6dF Galaxy Survey: The Near-Infrared
Fundamental Plane of Early-Type Galaxies, MNRAS, 427, 245

The development and testing of the maximum likelihood Fundamental Plane
fitting routine (including the modelling of several selection criteria and also
extensions to the 3D Gaussian model outlined in §3.7) is my own work. The
mock generation code used to create simulations of mock Fundamental Plane
galaxy samples is also my own work.
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• Chapter 4 is based very closely on the following publication of original research:

Magoulas C., Springob C. M., Colless M., Jones D. H., Campbell L. A., Lucey
J. R., Mould J., Jarrett T., 2012, The 6dF Galaxy Survey: The Near-Infrared
Fundamental Plane of Early-Type Galaxies, MNRAS, 427, 245

All Fundamental Plane fitting in Chapter 4 is entirely my work, and is used
to analyse the 6dFGS Fundamental Plane trends with waveband, environment
and morphology. The analysis of the Fundamental Plane in κ-space and the
dependence of Fundamental Plane scatter on velocity dispersion error is also
my own work. Supplementary data that is provided by collaborators is cited
accordingly in the text, as per Chapter 2.

• Chapter 5 is based very closely, in §5.2 and §5.3, on the following publication
of original research, which I have summarised and reworded:

Springob C. M., Magoulas C., Proctor R., Colless M., Jones D. H., Kobayashi
C., Campbell L., Lucey J. R., Mould J., 2012, The 6dF Galaxy Survey: stellar
population trends across and through the Fundamental Plane, MNRAS, 420,
2773

I provided the best-fit Fundamental Plane definition used in the analysis of the
stellar population trends in §5.2 and §5.3. §5.4 and §5.5 are my own work, for
which I have written the maximum likelihood Fundamental Plane fitting code
(including the extension of the 4D Gaussian age model), and have not been
published elsewhere.

• Chapter 6 is being prepared for journal submission in the near future. This is
my own original work, with the exception of the model of the 2MRS predicted
density and velocity fields, which is from Erdoğdu et al. (2012, submitted)
following the method of Erdoğdu et al. (2006).
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Chapter 1
Introduction
1.1 Overview

The rapid development in the late 1990s in our understanding of the origin of the
universe and the formation of structure on the largest scales was driven by major
advances in telescope technology. Observational cosmology emerged as a precision
science with the mapping of radiation from the cosmic microwave background (CMB)
of the universe by the COsmic Background Explorer (COBE) satellite. For the first
time, the anisotropy of the fluctuations in the CMB (i.e. the remnant from the Big
Bang) was measured by COBE (Smoot et al., 1992) to better than 1 part in 100,000
suggesting these fluctuations are the primordial seeds of structure formation.

The large-scale structure of the nearby universe was revealed in greater detail and
depth as a result of two major redshift surveys - the Two-degree Field Galaxy Redshift
Survey (2dFGRS; Colless et al., 2001a) and the Sloan Digital Sky Survey (SDSS; York
et al., 2000). Utilising technological developments in spectroscopy, these surveys
measured the position and redshift of hundreds of thousands of galaxies, improving
upon previous surveys by an order of magnitude and remaining the largest of their
kind still to this day. The filamentary structure evident in the detailed maps of the
distribution and clustering of galaxies from these surveys appeared to agree with a
cosmological model in which large-scale structure is formed from primordial density
fluctuations that collapse via gravitational instability in a dark-matter dominated
universe, known as the Λ-Cold Dark Matter model (ΛCDM).

In the last decade, observational evidence has mounted for ΛCDM as the stan-
dard model of cosmology describing the observable universe. The strongest and most
detailed support for this model comes from the measurements made with the Wilkin-
son Microwave Anisotropy Probe (WMAP; Bennett et al., 2003). As a successor to
COBE, WMAP mapped the CMB temperature fluctuations with even greater pre-
cision and on smaller scales. Together with supernova distance measurements from
the High-z Supernova Search Team (HIZ; Riess et al., 1998) and the Supernova Cos-
mology Project (SCP; Perlmutter et al., 1999) that provided the first evidence for
the accelerating expansion of the universe (as suggested by a non-zero cosmological
constant, Λ) and local large-scale structure redshift surveys (SDSS and 2dFGRS),
WMAP established ΛCDM as the dominant cosmological paradigm.
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However, further refinement of ΛCDM or other theoretical cosmological models
is limited by the precision of cosmological distance measures. The difficulty lies,
in part, in the fact that the associated error in these measurements typically grows
linearly with distance. This work presents a detailed study of one such measure – the
Fundamental Plane – which uses a tight correlation between the galaxy properties
of early-type galaxies to determine their distances using observations from the 6dF
Galaxy Survey.

In this chapter, Section 1.2 gives a description of the properties of early-type
galaxies and, in Section 1.3, a summary of the scaling relations they obey, such
as the Fundamental Plane. In Section 1.4 we discuss the physical origin of the
Fundamental Plane and its implications for the structure and formation of early-
type galaxies. We then focus, in Section 1.5, on how the Fundamental Plane can be
used to measure distances and hence peculiar velocities, and discuss how peculiar
velocities are a valuable probe of the matter distribution in the nearby universe.
Finally, in Section 1.6, we outline the structure of the thesis.

1.2 Structure of Early-Type Galaxies

There are four principal morphological classes of large galaxies: ellipticals, lenticu-
lars, spirals and irregulars. Elliptical galaxies are distinguished from other galaxies
by their featureless round or elliptical appearance and are comprised of a spheroidal
bulge of stars with predominantly old stellar populations and very little gas. Spiral
galaxies are characterised by a flat, rotating disk consisting of young, active stel-
lar populations and cold gas gathered in the spiral arms for which they are named.
Lenticular (or S0) galaxies are intermediate between ellipticals and spirals: they
contain a disk component (like spiral galaxies) but are not actively forming stars
and hence contain older stellar populations (like elliptical galaxies). Even though
lenticulars possess a disk component, they are structurally more similar to elliptical
galaxies and the two are often collectively referred to as ‘early-types’. Irregular galax-
ies are named for their peculiar shape or appearance as a result of galaxy mergers or
other violent interactions. Spiral and irregular galaxies are referred to as ‘late-types’.
The sequence from elliptical, lenticular, spiral, irregular is essentially related to the
galaxies’ disk-to-bulge ratio, with ellipticals being all bulge, lenticulars and ‘early-
type spirals’ having large bulges as well as disks, and ‘late-type spirals’ and the less
peculiar irregulars being (almost) all disk.1 Most galaxies in the universe can be
classified into one of these four common groups, although there do exist sub-groups
and individual galaxies that do not fit into this sequence.

1The early- and late-type nomenclature was first used in Hubble (1926) to refer to an evolution
in complexity between types (rather than galaxy evolution itself). Therefore these definitions are
used here with the understanding that the term early-type refers to ‘bulge-dominated’ galaxies only.
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Current theories of galaxy formation suggest elliptical galaxies are formed through
mergers of smaller galaxies (Kormendy et al., 2009, and references therein). Con-
sequently they are preferentially found in dense environments and are amongst the
most dynamically evolved systems in the universe. Elliptical galaxies can be recog-
nised by their smooth brightness profiles. Their homogeneity as a galaxy population
and seemingly simple structure (as compared to spiral galaxies) imply a similarity
in their formation mechanisms and evolution and a physical connection between the
galaxy properties.

The surface brightness profile of elliptical galaxies are well represented by a Sérsic
model (Sérsic, 1963)

I(R) = Ie exp

{
−bn

[(
R

Re

)1/n

− 1

]}
. (1.1)

Here Re is the half-light radius of the galaxy, Ie is the intensity at Re, the Sérsic
index n defines the profile shape, and bn is a constant that depends on n. For disks,
n ≈ 1 (the exponential case) while for bulges and ellipticals n ≈ 4 (referred to as a
de Vaucouleurs profile).

1.3 Galaxy Scaling Relations

Galaxies are observed to exhibit strong trends between their physical properties,
known as scaling relations. Scaling relations between the structural parameters of
galaxies are crucial tools that inform our understanding of the formation processes of
galaxies, and by extension the regularity among differing galaxy populations. They
are also important in providing the motivating observations that theories of galaxy
formation must explain and reproduce.

1.3.1 Faber-Jackson and Kormendy Relations

One of the first early-type galaxy scaling relations was recognised by Faber & Jackson
(1976), and connects galaxy luminosity, L, and stellar velocity dispersion, σ, as shown
in Figure 1.1. The stellar velocity dispersion is a measure of the kinematic motions of
the stars in a (pressure supported) elliptical galaxy and is analogous to the rotation
velocity for a (rotationally supported) disk galaxy. The Faber-Jackson (FJ) relation
has the form of a power law, L ∝ σγ , where γ is usually observed to be in the
range 3 to 5 (Bernardi et al., 2003a; Desroches et al., 2007; La Barbera et al., 2010a;
Falcón-Barroso et al., 2011). The FJ slope depends to some extent on luminosity
and, for the largest galaxy samples (La Barbera et al., 2010a; Bernardi et al., 2003a),
this appears as ‘curvature’ in the FJ relation towards low L and σ values, or as a
deviation from a strict power law at low masses.
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Figure 1.1: The Faber-Jackson relation; an empirical correlation between the stellar ve-
locity dispersion and absolute magnitude (or luminosity) of early-type galaxies. (Figure 16
from Faber & Jackson 1976).

A similar relation between galaxy luminosity (or absolute magnitude) and effec-
tive radius, Re, was derived around the same time (Kormendy, 1977). The Kormendy
relation also has power-law form, L ∝ Rεe, (although the relation of surface bright-
ness with size has also been referred to as the Kormendy relation) with ε usually
found to be in the range −1 to −2 (Bernardi et al., 2003a; Desroches et al., 2007; La
Barbera et al., 2010a; Falcón-Barroso et al., 2011). The recent study of La Barbera
et al. (2010a) observed that the slope of the Kormendy relation was steeper towards
longer wavelengths, suggesting that smaller early-type galaxies have a higher ratio
of optical-to-near-infrared radii compared to larger galaxies.

Both relations show a wide range of slopes depending on the properties of the
sample under consideration (e.g. absolute magnitude and morphological type) and
substantial intrinsic scatter, in the range 0.2–0.5 dex (e.g. Desroches et al., 2007;
Nigoche-Netro, Ruelas-Mayorga & Franco-Balderas, 2008; Nigoche-Netro et al., 2010;
La Barbera et al., 2010a).

1.4 The Fundamental Plane

1.4.1 History of the Fundamental Plane

The apparently large intrinsic scatter in the Faber-Jackson relation (after account-
ing for observational errors) prompted a search for a third ‘hidden’ parameter. Two
teams, Djorgovski & Davis (1987) and Dressler et al. (1987b, a team known as
the Seven Samurai or 7S) found simultaneously and independently that, in the
three-dimensional space of size, surface brightness and velocity dispersion, early-
type galaxies populate a more tightly correlated two-dimensional plane, called the
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Fundamental Plane (FP), that has significantly lower intrinsic scatter than the FJ re-
lation. The previously established Faber-Jackson and Kormendy relations could then
be understood as projections of the Fundamental Plane. The fact that the FP links
distance-independent quantities (velocity dispersion and surface brightness) with a
distance-dependent quantity (angular size), together with its relatively small intrin-
sic scatter, meant that it was immediately adopted as a new method for measuring
galaxy distances.

The FP was originally formulated as a two-dimensional correlation, the Dn–σ
relation (Burstein et al., 1986; Dressler et al., 1987b), between velocity dispersion
and the photometric parameter Dn, defined as the diameter enclosing a mean surface
brightness. Dn turns out to combine effective radius and surface brightness in such
a way that the Dn–σ relation is a reasonable approximation to the edge-on view of
the FP. However, it was realised that Dn–σ is in fact a tilted projection of the FP
(Lucey, Bower & Ellis, 1991; Jorgensen, Franx & Kjaergaard, 1993), which induces
a systematic error and increases the scatter, making Dn–σ a less reliable indicator
of distance. In consequence the FP has become widely accepted as the preferred
distance indicator.

The Fundamental Plane has the familiar power-law form of galaxy scaling rela-
tions, Re ∝ σa0〈Ie〉b, and connects the structural and kinematic properties of early-
type galaxies. In this relation, Re is the effective radius containing half the galaxy’s
light (also called the half-light radius); 〈Ie〉 is the mean surface brightness within Re
(in flux units), and σ0 is the central stellar velocity dispersion.

1.4.2 Fundamental Plane Theory

Since the original formulation of the FP relation, the size and quality of early-type
galaxy samples have been steadily improved (e.g. Bernardi et al., 2003b; D’Onofrio
et al., 2008; La Barbera et al., 2008; Hyde & Bernardi, 2009; Gargiulo et al., 2009;
La Barbera et al., 2010b; Graves, Faber & Schiavon, 2010) in an effort to explain
important properties such as the observed orientation (or tilt) of the FP and its
intrinsic scatter (or thickness).

The tilt of the FP is the difference between the observed coefficients of the plane,
a (for log σ0) and b (for log〈Ie〉), and the values a = 2 and b = −1 that would follow
if galaxies were dynamical systems that were all homologous (i.e. possessed the same
structural and kinematic distributions), virialised (i.e. dynamically relaxed), and had
the same fixed mass-to-light ratio.

These so-called ‘virial’ FP coefficients are derived by first assuming the virial
theorem applies, so that

2〈V 2〉
2

=
GM

〈R〉 . (1.2)
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The physical quantities of average velocity (〈V 〉), radius (〈R〉) and luminosity (L)
can be related to the observable FP parameters (logRe, log σ0 and log〈Ie〉) by the
relevant structure constants kR, kV and kL:

Re = kr〈R〉,
σ2 = kV 〈V 2〉,
L = kLIeR

2
e . (1.3)

Substituting equation 1.3 into equation 1.2 provides an expression for Re :

Re = c−1
0 (M/L)−1σ2I−1

e . (1.4)

where M/L is mass-to-light ratio and c0 = GkV kRkL. Assuming the galaxies are
homologous systems with constant mass-to-light ratio (so that the structure con-
stants and M/L are fixed), equation 1.4 reduces to the ‘virial’ Fundamental Plane,
Re ∝ σ2I−1

e .

The physical origin of the tilt of the observed FP (relative to the virial FP) is
usually interpreted as being due to some combination of systematic deviations from
either dynamical homology (i.e. differences in density profile or orbital structure) or
fixed mass-to-light ratio (i.e. differences in stellar population or the ratio of bary-
onic matter to dark matter); see, e.g., Ciotti, Lanzoni & Renzini (1996); Busarello
et al. (1997); Graham & Colless (1997); Trujillo, Burkert & Bell (2004); Cappellari
et al. (2006); Bolton et al. (2007). Variations in M/L from stellar population effects
usually contribute no more than 50% to the tilt of the FP (Pahre, de Carvalho &
Djorgovski, 1998; Prugniel & Simien, 1997; Proctor et al., 2008; Hyde & Bernardi,
2009). Similarly, departures from structural homology can enter the FP in differ-
ences in the light profiles (e.g. allowing n to vary in equation 1.1), but are not able
to explain the entirety of the observed tilt while also maintaining the thinness of the
FP (Ciotti, Lanzoni & Renzini, 1996; Graham & Colless, 1997; Prugniel & Simien,
1997; Bertin, Ciotti & Del Principe, 2002). The conclusion is that some combination
of these effects is required to explain the tilt of the FP.

FP samples are only now reaching the size and measurement quality required to
be able to measure (and hopefully disentangle) these effects more precisely, as with
the early-type galaxy study of Graves & Faber (2010). Using a sample of ∼16 000
quiescent galaxies from SDSS, Graves et al. observed that variations in both stellar
population and dark matter content (which rotate the FP in different axes in three-
dimensional space) are required to explain the observed tilt. Even so, a consistent
model is yet to emerge that explains the entirety of the observed FP tilt, leaving its
origin an open and much-debated question.
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Figure 1.2: The edge-on projection of the SDSS Fundamental Plane in the g, r, i and z
bands. The FP slope in velocity dispersion, a, is found to increase from the g to the z bands.
(Figure 3 from Hyde & Bernardi 2009).

1.4.3 Waveband Dependence and the FP

Several authors (Scodeggio et al., 1998; Bernardi et al., 2003b; Hyde & Bernardi,
2009; La Barbera et al., 2010a) have detected a slight steepening of the slope in
log σ0 (i.e. an increase in a) going from bluer to redder passbands. This wavelength
variation has also been extended to near-infrared (NIR) FP samples (e.g. Pahre,
Djorgovski & de Carvalho, 1998; Jun & Im, 2008). This trend suggests a variation
of stellar content (and M/L) along the FP. In contrast, the slope in log〈Ie〉, (i.e. b),
is found to be largely independent of wavelength (Bernardi et al., 2003b; Hyde &
Bernardi, 2009; La Barbera et al., 2010a).

The analysis of multi-wavelength SDSS data for a large sample of early-type
galaxies by Hyde & Bernardi (2009) identified this steepening across the optical to
near-infrared bands as shown in Figure 1.2. This suggests that the NIR Fundamental
Plane is closer to the virial plane, as the stellar population effects (responsible for
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the waveband dependence of the slopes) are negligible, assuming NIR-light traces the
stellar mass in galaxies closely (Pahre, Djorgovski & de Carvalho, 1998; Pahre, de
Carvalho & Djorgovski, 1998; Proctor et al., 2008). However, while optical FP data
for large (i.e. Ng > 10 000) galaxy samples is abundant, the NIR FP data, required
to detect these effects, is still limited to samples of ∼5000 galaxies.

1.4.4 Universality of the Fundamental Plane

The Fundamental Plane relation is often claimed to be ‘universal’, in the sense that
the coefficients are similar for galaxies across environments ranging from the low-
density field to high-density clusters (e.g. Jorgensen, Franx & Kjaergaard, 1996;
Pahre, de Carvalho & Djorgovski, 1998; Kochanek et al., 2000; Colless et al., 2001b;
Reda, Forbes & Hau, 2005). However there are also apparently contrary suggestions
in the literature that there are mild, but statistically significant, environmental vari-
ations (e.g. Lucey, Bower & Ellis, 1991; de Carvalho & Djorgovski, 1992; Bernardi
et al., 2003b; D’Onofrio et al., 2008; La Barbera et al., 2010c).

To address the questions of universality at low redshift, D’Onofrio et al. (2008)
used combined FP data for galaxies in and around massive nearby clusters to derive
the Fundamental Plane for galaxies in a wide range of environments. They found no
dependence in the FP coefficients for global cluster properties (such as cluster velocity
dispersion, cluster radius and cluster richness), but did find the FP coefficients were
correlated with proxies for local environment such as cluster-centric distance and
local density (D’Onofrio et al., 2008).

La Barbera et al. (2010c) analysed the environmental dependence of the FP using
a much larger sample of the local galaxy population than D’Onofrio et al. (2008)
(without the selection in clusters) and also studying the additional dependence with
waveband. La Barbera et al. (2010c) detect a systematic difference in the FP offset
and surface brightness slope b with global group properties (in particular parent
group mass), although they suggest the dependence is driven by a strong trend in
the FP offset with local density. This is consistent with D’Onofrio et al. (2008),
although their variation in b is stronger than in La Barbera et al. (2010c), which can
be attributed to the different mass range of the two samples.

Any variation in the FP between field and cluster galaxies, or between galaxies
in clusters of different richness, is interesting from the point of view of the formation
of early-type galaxies. However, any significant environmental variation in the FP
complicates the use of the FP as a distance indicator, as a global FP that is relevant
for all galaxies, whether in the field or in a cluster, could not be used to establish
consistent distance measurements.
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1.4.5 Galaxy Morphology and the Fundamental Plane

The structural similarity of elliptical (E) galaxies and the bulges of lenticular (S0)
and early-type spiral (Sp) galaxies suggests that the latter classes of object may also
populate the FP (Dressler et al., 1987b), and indeed Jorgensen, Franx & Kjaergaard
(1996) found that the FPs for E and S0 galaxies were consistent. In contrast, galaxies
with both bulge and disk components have been observed to be offset from ellipticals
on the FP (Bender, Burstein & Faber, 1992; Saglia, Bender & Dressler, 1993; Falcón-
Barroso, Peletier & Balcells, 2002).

However the FP is usually defined by measurements of a central velocity disper-
sion, σ0, that can be influenced by the presence of a disk component in a galaxy.
The effect of a disk component is lessened when using the effective velocity disper-
sion averaged within an effective radius (instead of σ0), which can only be measured
by integral-field spectroscopy (Falcón-Barroso et al., 2011). This could account for
the apparent offset of bulge-dominated galaxies, and confirm that bulges are indeed
structurally homologous with, and share a similar formation epoch to, ellipticals.

It is therefore important to examine whether there are morphological variations
in the observed FP, and (if so) whether these are due to intrinsic differences between
E’s and the bulges of S0’s and early-type Sp’s, or to observational contamination of
the bulge parameters by the disk for the latter classes of galaxy. If such morphological
variation exists, for either reason, it would result at some level in offsets and increased
scatter of the FP, and increase the systematic and random errors (respectively) in
the estimated distances and peculiar velocities.

1.4.6 Stellar Populations and the Fundamental Plane

The physical origins of the Fundamental Plane provide constraints on theories of
galaxy formation and evolution and are therefore intimately tied to the stellar pop-
ulation properties of early-type galaxies. The variation of stellar populations along
the sequence of early-type galaxies provides clues to the connection between galaxy
structure and mass assembly histories and galaxy star formation histories.

Most previous studies have only examined pairwise correlations between FP quan-
tities and stellar population parameters. For example, the pairwise correlations of
stellar population parameters (in particular age) with velocity dispersion are well
established (Nelan et al., 2005; Thomas et al., 2005; Smith, Lucey & Hudson, 2007).
And the correlation of the residuals of the Fundamental Plane with age (Forbes,
Ponman & Brown, 1998; Reda, Forbes & Hau, 2005; Gargiulo et al., 2009) has im-
portant implications for the origin of scatter about the plane, as it suggests the FP
thickness can be understood as an age sequence.

The study of Graves, Faber & Schiavon (2009a,b) was able to extend the analysis
of the variation of stellar populations throughout the Fundamental Plane by inves-
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tigating trends of age, metallicity and abundance ratios with all the FP parameters
in three dimensions. In Graves, Faber & Schiavon (2009b), the most striking trends
in the three-dimensional FP space were that all stellar population parameters were
found to increase with increasing velocity dispersion while little stellar population
variation was found with effective radius and surface brightness. However, the sur-
face brightness residuals of the Fundamental Plane were observed to correlate with
stellar populations, suggesting that the thickness of the plane is driven by age (con-
sistent with Forbes, Ponman & Brown 1998), in the expected sense that galaxies
above the plane (with higher surface brightness) are younger than those below the
plane (with lower surface brightness); see Graves, Faber & Schiavon (2009b).

1.5 Galaxy Distances and Peculiar Velocities

A notable property of the Fundamental Plane is its remarkably small intrinsic scatter
or thickness, which has enabled its use as a distance indicator for early-type galaxies.
The intrinsic scatter in the distance-dependent quantity, Re, is measured to be as
small as 10–15%, although the effective precision of the distance estimator, including
observational errors, is typically 20–30% (see summary in Table 5 of Colless et al.,
2001b) .

The Fundamental Plane relation of early-type galaxies is a tool with two pri-
mary uses—the first, understanding galaxy formation and evolution processes and
interpreting the physical origins of the FP (see above), and the second, measuring
galaxy distances. This second application is crucial in mapping large-scale motions
of galaxies in the local universe, as discussed below.

1.5.1 Fundamental Plane Distances

The substantial scatter in the Faber-Jackson relation meant it was not suitable for
determining accurate distances to galaxies in the local universe. However, with
the introduction of the Fundamental Plane (Dressler et al., 1987b; Djorgovski &
Davis, 1987), a relation now existed with the demonstrated ability to measure the
distance of early-type galaxies with an uncertainty of 20–30% and the potential to
do significantly better, since the apparent intrinsic scatter in the relation appears to
be as low as 10–15%.

The Fundamental Plane can be used as a measure of relative galaxy distance in
a similar manner to the Tully-Fisher (TF) relation for star-forming spiral galaxies
(Tully & Fisher, 1977), because of the distance dependence of galaxy size (i.e. the
effective radius of the galaxy). Through the Fundamental Plane (FP), effective radius
is linearly related to the two distance-independent quantities Ie and σ0:

logRe = a log σ0 + b log Ie + c . (1.5)
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Once the coefficients of the FP have been established, the logRe offset of a galaxy
from the plane in FP space can be used as a measure of that galaxy’s distance.

Given the large number of objects for which FP and TF parameters can be easily
observed, both relations have flourished as workhorses of distance (and hence peculiar
velocity) measurement for, respectively, early-type and spiral galaxies (see Strauss &
Willick 1995 and references therein). Other distance indicators with better precision
for individual measurements (<10%) are limited in various ways; for example, Type
Ia supernovae are limited (at least to date) by the relatively small numbers of objects
for which distances can be measured (Riess et al., 1997), while surface brightness
fluctuations are observationally expensive, limiting the volume over which they are
used (Blakeslee et al., 1999). The Fundamental Plane as a distance indicator has the
distinct advantage of sampling a relatively abundant population of distance tracers
(early-type galaxies) and being applicable over a relatively wide range in redshift
(albeit with decreasing absolute precision at greater distances).

1.5.2 Peculiar Velocities

The deviations from a smooth Hubble Flow that are present in the motions of galaxies
are known as peculiar velocities. These deviations are gravitationally induced by
inhomogeneities in the distribution of matter that result in the motion of galaxies
towards over-dense regions and away from under-dense regions in the large-scale
matter structure. The peculiar velocity, vp, of a galaxy is (at low redshifts) given
by the difference between its recession velocity due to the Hubble flow, cz, and
the distance, d, measured by a redshift-independent distance indicator (such as the
Fundamental Plane):

vp = cz −H0d . (1.6)

As peculiar velocities are regulated by the scale and amplitude of fluctuations in
the density field, they are a direct tracer of the underlying distribution of mass in the
universe. The peculiar velocity field of galaxies is therefore a powerful cosmological
probe that can provide independent constraints on the parameters defining models
of large-scale structure formation. It is sensitive to mass fluctuations on scales up to
∼100h−1 Mpc and remains the only such probe in the low-redshift universe.

The relationship between the peculiar velocity field and the density field can be
expressed in terms of gravitational instability theory. Defining the density fluctuation
field, δm, as

δm(r) =
ρ(r)− 〈ρ〉
〈ρ〉 , (1.7)

then in the regime where perturbations are linear (i.e. small mass density fluctuations
relative to the mean density of the universe, δm � 1) the velocity field, v(r), is given



12 Chapter 1: Introduction

(Peebles, 1993) by

v(r) =
f

4π

∫
d3r′

r′ − r
|r′ − r|3 δm(r′) , (1.8)

where f describes the rate of growth of structure and is approximately equal to Ω0.6
m

(Peebles, 1980) in a flat ΛCDM universe.
The galaxy distribution in redshift space is distorted from its real-space distribu-

tion by the peculiar velocity field. If we make the assumption that the galaxy density
and matter density fluctuations are related by a linear bias parameter, b, such that

b = δg/δm , (1.9)

then the form of this distortion can be characterised by the linear redshift distortion
parameter, β = Ω0.6

m /b. In the linear regime, therefore, Equation 1.8 becomes

v(r) =
β

4π

∫
d3r′

r′ − r
|r′ − r|3 δg(r

′) . (1.10)

This linear theory has been effective in generating predictive models linking ve-
locity and density fields that aid in our interpretation of the observed velocities and
the mass distributions responsible for them. Simple parametric models for the large-
scale structure were the first to be developed, and included infall onto one or more
‘Virgo-like’ overdensities (Lynden-Bell et al., 1988; Han & Mould, 1990), reflecting
the understanding of the nearby universe at the time. With the advent of redshift
surveys that covered most of the sky, it became plausible to predict peculiar veloci-
ties directly, by making an assumption about how matter traces the distribution of
galaxies (encompassed in the value for β). These so-called ‘non-parametric’ models
are able to reconstruct the three-dimensional density and velocity fields from galaxy
redshift catalogues, and allow comparison with the observed velocity data to estimate
the β parameter (Branchini et al., 1999; Erdoğdu et al., 2006).

1.5.3 The Local Peculiar Velocity Field

The discovery of the Fundamental Plane as a new method for estimating redshift-
independent distances by the 7S team (Dressler et al., 1987b) led to a surprising
result. Using the FP to determine distances and peculiar velocities for a sample of
400 elliptical galaxies, they discovered a large-scale coherent motion deviating from
Hubble flow with respect to the CMB rest frame (Dressler et al., 1987a). This motion
was found to be consistent with a flow model that allowed for a streaming motion
towards a ‘Great Attractor’ in the direction of, but beyond (cz ∼ 4500 km s−1), the
Hydra-Centaurus (HC) Supercluster (Lynden-Bell et al., 1988).

An accurate determination of the average streaming motion or ‘bulk flow’ in the
nearby universe then became a key focus of subsequent peculiar velocity surveys,
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along with accounting for the ∼600 km s−1 dipole motion of the Local Group with
respect to the CMB (Kogut et al., 1993). When averaged over a large enough vol-
ume, cosmological models predict that the bulk flow should approach the Hubble
flow, commonly measured as a convergence to the CMB rest frame. There is now
consensus in the direction of the bulk flow found by multiple studies, however some
inconsistencies in the observed amplitude and scale still remain.

For peculiar velocity studies within a redshift distance of 6000 km s−1 there is
general agreement between models of the velocity features and the direction and
magnitude of the dipole. The ENEAR survey measured FP distances and peculiar
velocities for 1145 early-type galaxies detecting a bulk flow of 220 ± 60 km s−1 out
to a depth cz < 6000 km s−1 (da Costa et al., 2000a). This is consistent with the
200± 65 km s−1 within 6500 km s−1 found in the I band Tully Fisher survey of field
spiral galaxies (SFI; Giovanelli et al., 1998). These results suggest most of the Local
Group motion is accounted for in mass concentrations within 6000 km s−1.

However, beyond 6000 km s−1, large-scale flows of different amplitude and di-
rection have been found. Large bulk motions (in excess of 600 km s−1) have been
claimed by Lauer & Postman (1994), using a photometric relation between bright-
est cluster galaxies in 119 Abell clusters, and, towards a different direction, by the
Streaming Motions of Abell Clusters (SMAC) survey of Hudson et al. (2004), using
the Fundamental Plane. In contrast, the EFAR Fundamental Plane survey found
flows consistent with zero at these same large distances (Colless et al., 2001b). The
large-scale results are naively inconsistent between surveys due to sparse sampling
of the complex peculiar velocity field, although the discrepancies are largely a result
of the significant random error in velocity measurements at these scales as well as
selection bias (Hudson et al., 2004).

The most recent peculiar velocity studies consist of samples containing a large
number of measurements (on the order of ∼5000) to reach a consensus on the scale
of these flows and also establish whether they are consistent with the predictions
of ΛCDM cosmology. The SFI++ survey is the largest of these, and is based on
a homogeneous catalogue of Tully-Fisher measurements for ∼5000 spiral galaxies
(Masters et al., 2006; Springob et al., 2007). The data from SFI++ makes up a large
part of the ∼5000 peculiar velocity measurements of the concatenated COMPOSITE
sample of Watkins, Feldman & Hudson (2009). The bulk flow, as measured by
Watkins, Feldman & Hudson (2009) in shells of radius RI , is shown in Figure 1.3.
The magnitude of the bulk flow from the COMPOSITE sample is 407 ± 81 km s−1

within a radius of 50h−1 Mpc, and is due to mass outside the sample (Watkins,
Feldman & Hudson, 2009). This result is inconsistent with ΛCDM and the Five-
Year WMAP constraints (Dunkley et al., 2009) at the 98% level, and may indicate a
possible departure from the standard cosmological paradigm. However, much of the
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Figure 1.3: The bulk flow (x, y and z Cartesian components and magnitude |V |) as a
function of survey volume radius RI of the COMPOSITE survey (red) as compared to
the bulk flow from the SFI++ sample (green) and the COMPOSITE sample divided into a
SHALLOW (dark blue) and DEEP (light blue) subsample. (Figure 5 fromWatkins, Feldman
& Hudson 2009).

same data was re-analysed by Nusser & Davis (2011) using a different method, who
found a bulk flow consistent with ΛCDM. Thus the question of the convergence of
the bulk flow currently remains open-ended.

1.5.4 Cosmological Constraints from Peculiar Velocities

On scales of 100h−1 Mpc the peculiar velocity field of galaxies is an effective probe
of mass fluctuations and hence is sensitive to the matter power spectrum. The
power spectrum is often expressed as a two-parameter model defined by the shape
of the spectrum, Γ, and the normalisation, σ8 (the amplitude of fluctuations on a
scale of 8h−1 Mpc). Sophisticated methods have been developed to constrain these
parameters, including likelihood analysis of the covariance matrix averaged in cells
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(Abate & Erdoğdu, 2009) and principal component analysis using optimal minimum-
variance weighting (Watkins, Feldman & Hudson, 2009).

The observed peculiar velocity and density fields in the local volume can also
be used to constrain cosmological parameters, and in particular the redshift-space
distortion parameter β and linear bias parameter b (e.g. Davis et al., 2011; Bilicki
et al., 2011; Turnbull et al., 2012).

Using a Fisher information matrix analysis, Burkey & Taylor (2004) found that a
data set that coupled redshift and peculiar velocity information can tightly constrain
a number of cosmological parameters such as the amplitude of galaxy power spec-
trum Ag and the shape parameter of the matter power spectrum Γ. In particular,
the redshift distortion parameter β and the correlation between luminous and dark
matter can be constrained to significantly better accuracy when peculiar velocity
information is combined with redshift measurements.

1.6 Thesis Motivation and Outline

This thesis uses new improved methods and the largest homogeneous sample to date
to determine the near-infrared Fundamental Plane. This Fundamental Plane survey
provides the means to derive individual galaxy motions, and forms the largest and
most far-reaching peculiar velocity sample to date. The specific objectives of this
thesis are:

1. to derive the most accurate near-infrared Fundamental Plane to date, using
the largest and most homogeneous near-infrared-selected sample of galaxies;

2. to develop a robust technique for fitting the FP, properly accounting for the
observational errors and selection biases in the sample;

3. to investigate the physical origins of the FP and its implications for galaxy
formation and evolution, by exploring the variations with a range of galaxy
and environmental properties;

4. to compile the largest peculiar velocity catalogue to date and recover the overall
bulk galaxy motions in the nearby universe from the 6dFGS velocity field; and

5. to compare the galaxy density and peculiar velocity fields to establish the
distribution of dark and luminous matter and better constrain key cosmological
parameters.

This thesis is organised as follows: Chapter 2 describes the properties of the 6dF
Galaxy Survey in detail and outlines the measurement of the Fundamental Plane
parameters. A key aspect of Chapter 2 is the specification of the selection criteria of
the final 6dFGS FP sample. The development of a maximum likelihood method for
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fitting the Fundamental Plane is presented in Chapter 3, together with comprehensive
simulations and tests of the methodology. Chapter 4 presents the results of fitting
the 6dFGS Fundamental Plane sample as a function of waveband, environment and
morphology, and examines the implications for the structure and formation of early-
type galaxies. Chapter 5 is devoted to exploration and discussion of the correlations
of stellar populations with Fundamental Plane parameters. Chapter 6 describes the
derivation of Bayesian FP distances and peculiar velocities for the 6dFGS galaxies,
presents a cosmographic description of the local peculiar velocity field, and uses
peculiar velocity measurements to put new constraints on the bulk flow and other
cosmological parameters. The thesis concludes with a final summary in Chapter 7
of the research presented in the preceding chapters, and with an indication of the
development of future work. In the digital version of this thesis, there are several
figures in these chapters that can be viewed as interactive 3D visualisations. In
Appendix A we outline the method used to create these 3D visualisation with custom
C-code and the S2PLOT graphics library (Barnes et al., 2006) using the approach
described in Barnes & Fluke 2008.



Chapter 2
6dFGS Fundamental Plane Data
2.1 Introduction

The Fundamental Plane is arguably the single most significant insight into the nature
of early-type galaxies made over the past three decades. Foremost, it provides a direct
link between the structural and kinematic properties of these galaxies over several
orders of magnitude in mass. However, this strength is also its chief difficulty: a
proper interpretation of the interdependencies between its parameters demands a
careful and systematic treatment of data selection, incompleteness and observational
errors, over multi-dimensional space. Without this attention to detail, conclusions
about the nature of the Fundamental Plane (and the galaxies populating it) can be
subtly misguided, or completely wrong.

The 6dFGS Fundamental Plane data used in this thesis are derived from two
sources: (i) measurements of high signal-to-noise spectra from the 6dF spectrograph
itself, and (ii) near-infrared photometry (and related size information) from the Two-
Micron All-Sky Survey. Additional tabulations of galaxy morphology and spectral
features were made by eye and included in the final sample, as well as used for further
trimming. The final selection (of what we will call The 6dF Galaxy Survey Velocity
Sample, 6dFGSv) was made by imposing limits in the following parameters:

(i) velocity dispersion (σ0),

(ii) redshift (cz),

(iii) morphology,

(iv) apparent magnitude (m), and

(v) selection probability (S) and χ2 (as defined by interim fits to the FP).

In this chapter we describe the nature and selection of the data that make up
the 6dFGS Fundamental Plane (FP) sample. In Sections 2.3 and 2.4 we focus on
the derivation of the chief parameters that define the FP, Re ∝ σa0〈Ie〉b, where σ0

is the velocity dispersion, Re is the effective radius and Ie is the surface brightness.
We adopt an abbreviated notation for these parameters where r ≡ logRe, s ≡ log σ0

and i ≡ log〈Ie〉. We derive FP parameters for approximately 104 of the brightest
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galaxies in 6dFGS that are representative of an early-type galaxy population. The
morphologies and spectra of all the galaxies in the FP sample were classified by eye,
as outlined in Section 2.5. These data were used for the dual purposes of galaxy
rejection as well galaxy classification. Those galaxies removed were rejected via
several criteria: non-early morphological type, contamination of their fibre spectrum
by an obvious disk, the real (or apparent) merger of their image with field stars or
galaxies, or the presence of strong emission line features in their spectra. We then
describe a selection function that accounts for the unavoidable censoring of some
observables (Section 2.6). We derive the uncertainties on the Fundamental Plane
parameters from measurement error in Section 2.7.

In Section 2.8 we further characterise the galaxies in the 6dFGSv sample accord-
ing to (i) local environment (in terms of both cluster richness and projected density),
and (ii) stellar content (including galaxy ages and metallicities). We conclude the
chapter with an overview of the final catalogue for the 6dFGS Fundamental Plane
sample, as employed throughout the remainder of the thesis.

2.2 The 6dF Galaxy Survey (6dFGS)

Galaxy redshift surveys have provided a greater understanding of the galaxy distri-
bution and large-scale structure in the universe. The Six-degree Field Galaxy Survey
(6dFGS) was devised to extend the existing knowledge of the local galaxy population
by combining measurements of both redshifts and peculiar velocities (Jones et al.,
2004, 2005, 2009). 6dFGS is a comprehensive census of galaxy spectroscopy and
redshifts in the southern hemisphere. Observations were undertaken with the Six
degree Field (6dF) multi-object spectrograph (Watson, Parker & Miziarski, 1998),
from which the survey name derives. The survey itself was carried out over six years
on the United Kingdom Schmidt Telescope (UKST) operated by the Australian As-
tronomical Observatory (AAO). The primary redshift survey contains measurements
of more than 125 000 redshifts and has a median redshift of 0.053 (czhelio ∼ 15 900 km
s−1). The redshift maps produced from this survey reveal detailed traces of the large-
scale structure, as shown in Jones et al. (2009) – see Figure 2.1.

Primary targets were selected from total K band magnitudes from the Two-
Micron All-Sky Survey (2MASS) Extended Source Catalog (XSC; Jarrett et al.,
2000), an imaging survey of the entire sky in the near-infrared J (1.2µm), H (1.6µm)
andKs (2.2µm) bands (Jarrett et al., 2000). The XSC consists of 1.6 million resolved
galaxies and covers >99% of the sky to limits of J = 15.5, H = 14.8 and Ks = 13.5.
2MASS provides the complementary near-infrared photometry and imaging for the
6dF spectroscopy of galaxies in the local universe. Secondary 6dFGS samples were
selected to approximately equivalent limits in the 2MASS J and H bands as well as
the SuperCOSMOS (Hambly et al., 2001) rF and bJ bands. The total apparent mag-
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with red arrows. (Figure 8 from Jones et al. 2009).

nitude limits of the 6dFGS are (K,H, J, rF, bJ) ≤ (12.65, 12.95, 13.75, 15.60, 16.75)

which are ∼1.5magnitudes brighter than the regime where 2MASS XSC begins to
suffer incompleteness.

The 6dFGS extends across 17 000 deg2 of the southern sky, avoiding a 10 degree-
strip either side of the Galactic Plane. In this way, its JHK near-infrared selection
ensures good coverage close to the Galactic Plane. In the case of the bJ and rF

samples, the survey reaches to within 20 degrees. Compared to the 2dF Galaxy
Redshift Survey (2dFGRS; Colless et al., 2001b) and Sloan Digital Sky Survey (SDSS
DR7; Abazajian et al., 2009) – two of the largest redshift surveys of their kind –
6dFGS is ten times the area of the 2dFGS and has twice that of SDSS. The fibre
aperture size of 6dFGS is 6.7 arcsec and so the projected distance of a galaxy at the
median redshift of the sample (zhelio = 0.053) is 4.8h−1 kpc. In terms of individual
galaxy coverage, 6dFGS covers a 40% greater aperture area across each galaxy than
does SDSS, and more than three times the area of 2dFGS (at their respective median
redshifts).

The 6dFGS spectra and redshifts, along with the 2MASS images and photometry
and a variety of associated parameters, can be accessed from the 6dFGS database at
www-wfau.roe.ac.uk/6dfgs. This near-infrared selection is a unique feature of the
6dF Galaxy Survey and is advantageous in many respects. Near-infrared passbands
are less sensitive to dust extinction, allowing measurements closer to the Galactic
Plane, and are also more strongly correlated with stellar mass than bluer passbands.
The consequent preference for redder, older stellar populations has the advantage of
favouring early-type galaxies over star-forming late-type galaxies, and is therefore
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ideal for Fundamental Plane studies.
The wide sky coverage of 6dFGS galaxies affords a detailed mapping of large-

scale galaxy structures across the southern sky. These distributions (projected in
Galactic coordinates) are shown for the southern (Figure 2.2) and northern galactic
skies (Figure 2.3) out to a redshift of zhelio ∼ 0.2. Galaxies are colour-coded by
redshift and large local structures such as the Horologium-Reticulum and Shapley
Supercluster are obvious.

The 6dFGS was designed as a combined redshift and peculiar velocity survey of
galaxies (Jones et al., 2004, 2005, 2009). The chief advantage of such a combined
survey is homogeneous sampling of the galaxy population over a large volume of
the local universe. The 6dFGS Fundamental Plane sample is selected from the
brightest (highest S/N) ellipticals, lenticulars and early-type spiral bulges in the
primary sample volume out to ∼16 500 km s−1. This sample forms the basis of the
6dFGS peculiar velocity survey (6dFGSv), which has the broad aims of mapping out
the large-scale velocity field in the nearby Universe and providing tighter constraints
on a range of cosmological parameters (Colless et al., 2005).

The 6dFGS peculiar velocity survey will provide the largest homogeneous peculiar
velocity sample to date, leading to improved measurements of the motions in the
local universe due to its wide coverage. Substantial improvement in the precision of
bulk flow measurements and cosmographic description of the nearby universe will be
gained from such densely distributed and deep surveys.

2.3 6dFGS Spectroscopy

2.3.1 Preselection of Spectra

We initially select galaxies for the 6dFGS Fundamental Plane sample by taking those
objects from the main redshift survey with reliable redshifts less than 16 500 km s−1

(i.e. zhelio < 0.055). By reliable, we mean those galaxies whose heliocentric redshifts
are beyond doubt, as reflected in their redshift quality value (Q = 3− 5, as defined
in Jones et al. 2004). The redshift limit occurs because the key spectral features
used to measure log σ0 are redshifted beyond the red wavelength cut-off of the high
resolution 6dF spectra used (Campbell, 2009). At higher redshifts crucial spectral
features such as Fe 5270Å, Mgb 5174Å and Hβ 4861Å begin to move out of the
V band spectra and into the lower resolution R band spectra.1 These criteria select
around 43 000 of the available ∼125 000 galaxies in the full 6dFGS redshift survey.

For the 6dFGS Fundamental Plane sample we in fact impose a stricter upper red-
shift limit (in the CMB frame) of cz ≤ czmax = 16 120 km s−1 (Figure 2.4, in red).

1The V band and R band terms that we refer to here are not related to the standard Johnson
VR broadband photometric bandpasses. Rather, they refer to visual- and red-wavelength regions
of the 6dF spectrograph.
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Figure 2.4: Redshift distribution of the 6dFGSv FP sample (red; Ng = 8901) with maxi-
mum redshift czmax = 16 120 km s−1 compared to the full 6dFGS redshift sample (grey; Ng

= 124 646).

This is used in order to avoid an asymmetry on the sky when redshifts are converted
from the heliocentric frame to the CMB frame (which we use for the peculiar ve-
locities), and excludes 750 galaxies. We also only include galaxies with CMB-frame
redshifts high enough (cz ≥ czmin = 3000 km s−1) that their peculiar velocities are
not significant relative to their recession velocities and so do not appreciably increase
the scatter about the FP. This removes a further 92 low-redshift galaxies from the
sample. However, unlike other selection criteria, galaxies excluded from the FP fit-
ting by these upper and lower redshift limits are re-instated in the sample when
deriving Fundamental Plane distances and peculiar velocities. The maximum red-
shift used for the FP sample (czmax = 16 120 km s−1) is around the median redshift
of the full 6dFGS redshift sample (Figure 2.4, in grey).

The spectra of these galaxies were then cross-correlated with a range of stellar and
galaxy spectral templates (see Zaritsky, Zabludoff & Willick 1995) to identify likely
early-type galaxies. Only those galaxy spectra matching the templates for early-type
galaxies or K-giant stars were retained as suitable spectra for the measurement of
velocity dispersion.

2.3.2 Velocity Dispersions

The stellar velocity dispersion of an early-type galaxy (or spiral bulge) measures the
spread in velocities of stars along a line of sight through its centre. The velocities of
the stars are isotropic and are in fact the fundamental mechanism supporting early-
types and spiral bulges against gravitational collapse. As such, the velocity dispersion
is a kinematic measure of the total stellar mass, since galaxies of larger mass can



24 Chapter 2: 6dFGS Fundamental Plane Data

support a larger range of stellar orbital velocities. In practice, velocity dispersion is
determined by measuring the broadening of absorption lines in the spectrum of the
galaxy, where this broadening is a consequence of random stellar motions and their
Doppler shift.

Central velocity dispersions were derived for the apparent early-type galaxies us-
ing the Fourier cross-correlation method of Tonry & Davis (1979). In this method,
each galaxy spectrum was convolved with a range of high signal-to-noise stellar tem-
plates (also observed with the 6dF spectrograph). Stars were used as templates
because of their higher-quality spectra and the fact that they have many absorp-
tion lines in common with those found in the selected galaxies. The stellar tem-
plates ranged from G8 to K3 giants. Each resultant cross-correlation spectrum had
a second-order polynomial fit to its strongest peak (approximating a Gaussian broad-
ening function). The velocity dispersion is then measured from the full width at half
maximum (FWHM) of the Gaussian function for each of the templates, weighted by
the magnitude of the cross-correlation.

The observed dispersions depend on the physical projected size of the measure-
ment aperture. This varies with distance to the galaxy and so needs to be corrected
on an individual galaxy basis. The velocity dispersion, σap, measured through an
aperture of size (in arcseconds), Rap, was corrected to a standard circular logRe/8
aperture, where Re is the R band effective radius of the galaxy. The effective (or
half-light) radius is the scale length of the r1/4 light profile that is found to be an
excellent fit to E/S0 galaxies (de Vaucouleurs, 1948). The formal derivation of Re is
described in Section 2.4.

We correct Rap to Re/8 following the empirically-derived formula of Jorgensen,
Franx & Kjaergaard (1995),

σe8
σap

=

(
Re/8

Rap

)0.04

. (2.1)

The size of the 6dF fibre is 6.7 arcseconds and so Rap = 6.7/2 = 3.35 arcseconds.
(see below) . Our measurements of effective radius in the JHK near-infrared bands
(also in units of arcseconds) are converted to R band radii according to

logRR = 1.029 logRJ + 0.140

logRR = 1.036 logRH + 0.150

logRR = 1.000 logRK + 0.190 . (2.2)

These were derived using a sample of 6dFGS galaxies with R band effective radii
measured from the ENEAR survey (da Costa et al., 2000b). Hereafter, we refer to the
aperture-corrected velocity dispersion, σe8, as simply the central velocity dispersion, σ0.
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The 6dFGS FP sample of 11 287 galaxies (Campbell, 2009) has a velocity disper-
sion limit (s ≥ 2.05) that is set by the instrumental resolution of the V band 6dFGS
spectra (as explained in Section 2.3.1). This limit is only achieved for galaxies with
observed redshifts czhelio < 16 500 km s−1,

This initial selection of galaxies furnishes a potential FP sample of galaxies with

1. early-type spectra (matched through the spectral templates),

2. sufficiently high signal-to-noise ratio (S/N > 5Å−1) for reliable velocity dis-
persion measurements, and

3. velocity dispersions greater than the instrumental resolution limit (σ0 > 112 km
s−1),

The velocity dispersion errors, εs, are based on the Tonry & Davis (1979) for-
mulation derived from their Fourier cross-correlation analysis. The errors depend on
the signal-to-noise measured in the cross-correlation peak but are validated by the
large number of repeat velocity dispersion measurements in the 6dFGS sample. The
reliability of the velocity dispersion measurements was tested through an external
comparison with other surveys (Campbell, 2009). The 6dFGS velocity dispersion
measurements of 744 galaxies in common with four other galaxy surveys had an
average external error of ∼10%, and were free of any systematic bias.

2.4 2MASS Imaging and Photometry

The two photometric parameters of the Fundamental Plane, effective radius (Re) and
surface brightness (〈µe〉), were derived from our own measurements of the 2MASS
XSC data. The relatively large point-spread function (PSF) of 2MASS (FWHM ∼
3.2 ′′) necessitated a PSF correction to be applied throughout. 2MASS extrapolated
magnitudes (i.e. j_m_ext, h_m_ext, k_m_ext) were used to determine the circular
apparent half-light radius (rAPP) of each galaxy.

2.4.1 Effective (Half-light) Radii

The half-light radius of a galaxy, Re, is defined as the scale length of the light
distribution modelled by an r1/4 profile (de Vaucouleurs, 1948). The r1/4 profile is
a special case (i.e. n = 4) of the generalised Sérsic model (Sérsic, 1963), which has
the intensity profile

I(R) = Ie exp

{
−bn

[(
R

Re

)1/n

− 1

]}
. (2.3)

Here, Ie is the intensity at Re, n defines the profile shape, and bn is a constant defined
by n. de Vaucouleurs (1948) has shown the r1/4 profile to be a good approximation
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of the light distribution of early-type galaxies and the bulges of spirals.
Effective radius is measured in angular units of arcseconds, Rθe, and subsequently

converted to physical units (h−1 kpc) using the angular diameter distance, DA, where

logRe = logRθe + logDA . (2.4)

For a flat cosmology (with Ωm = 0.3, ΩΛ = 0.7, and H0 = 100h km s−1 Mpc−1),
angular diameter distance is defined as

DA(z) =
c

1 + z

∫ z0

0

dz′

Ho

√
Ωm(1 + z′)3 + ΩΛ

. (2.5)

The galaxies in our FP sample are sufficiently small in apparent size that the
effect of atmospheric seeing must be taken into account in measurements of half-light
radius. The basis for this correction was a model 2D Gaussian PSF image derived
from stars in the original 2MASS images. GALFIT (Peng et al., 2002) was run with
both the galaxy image and model PSF image as inputs to find the best-fit 2D Sérsic
model to the galaxy. The half-light radius was determined both before and after
convolution with the PSF (rMODEL and rSMODEL). The difference rSMODEL−rMODEL

was then subtracted from rAPP to derive the desired PSF-corrected half-light radius
(i.e. the Re).

2.4.2 Surface Brightnesses

The effective surface brightness (〈µe〉) is the flux per unit area, averaged over the
central region of the galaxy. It relates to both apparent magnitude and effective
radius through the expression

〈µe〉 = m+ 2.5 log(2πR2
e) (2.6)

where m is any one of the 2MASS-derived apparent magnitudes (in JHK) and Re is
the effective radius (as defined above). Corrections to surface brightness are required
for Galactic extinction, and the cosmological effects of surface brightness dimming
and K-corrections. The correction for Galactic extinction, Aλ, is dependent on sky
position. We derive our values from the all-sky maps of infrared dust emission of
Schlegel, Finkbeiner & Davis (1998). Cosmological surface brightness dimming goes
as the inverse fourth power of redshift, a correction of 2.5 log[(1 + z)−4] magnitudes
from the equivalent surface brightness at zero redshift (z = 0). Cosmological K-
corrections account for the effect of redshift on galaxy colours as seen through fixed
passbands in the observer’s frame of rest. They depend on the shape of the galaxy
spectral energy distribution and so differ across galaxy type. The 2MASS galaxy
photometry uses the following K-corrections for early-type galaxies (based on the
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stellar population models of McLeod & Rieke 1995), kJ = 0.7z, kH = 0.2z, and
kK = −3.3z.

Adjusting for all three effects gives a fully-corrected surface brightness of

〈µe〉c = 〈µe〉 − 2.5 log(1 + z)4 − kcor(λ)−Aλ . (2.7)

Ultimately we want to use logarithmic units for all FP parameters. In the case of
surface brightness, this means converting from magnitudes (i.e. 〈µe〉 in mag arcsec−2)
to log-luminosity (i.e. log〈Ie〉 in L� pc−2), via

log〈Ie〉 = 0.4MJHK,� − 0.4〈µe〉+ 8.629 , (2.8)

where M� is the absolute magnitude of the Sun, (MJHK,� = 3.67, 3.33, and 3.29 in
JHK, respectively2).

There are 500 galaxies in the 6dFGS FP sample that are in common with three
surveys that can be used as an independent check on the logRe and log〈Ie〉 values
we have measured. If we define a parameter, XFP, defined in terms of both radius
and surface brightness,

XFP = logRe − b log〈Ie〉 , (2.9)

then we have convenient way of measuring of the robustness of the quantities de-
rived from our photometry. This is due to the fact that the combination of pho-
tometric quantities entering the XFP parameter serve to minimise the systematic
errors. Campbell (2009) compared XFP values from 6dFGS to literature values for
the galaxies in common and found no systemic bias, and an external error of 4−10%.
This comparison was done with photometry in the visible R band as a large sample
of homogenous NIR photometry was not available at that time, effectively offsetting
the radii due to galaxy colour gradients.

2.5 6dFGS Morphological Classification

Classifying galaxy morphological type in the 6dFGS Fundamental Plane sample is of
paramount importance to its integrity for two reasons. First, it allows us to confirm
that our spectral pre-selection has provided a sample of early-types appropriate to
the task, with problem galaxies removed. Problem galaxies might be those whose
photometry is compromised by a nearby object or whose spectroscopy is affected by
significant light from a disk. The second advantage of morphological classification
is that during eventual fitting of the FP, we can examine how that fit changes for
different galaxy types. The three types we consider in this context are ellipticals,
lenticulars and spiral bulges.

2http://mips.as.arizona.edu/~cnaw/sun.html
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Figure 2.5: Example output used for visual classification of galaxy morphology including
2MASS and SuperCOSMOS images (right) and 6dF spectra (left). Above: example elliptical
galaxy in 6dFGS; below: example spiral galaxy in 6dFGS.
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All 11 287 galaxies in the preliminary 6dFGS FP sample were visually inspected
to provide morphological classifications. Each galaxy was examined by up to four
experienced astronomers, and on average classified twice. This was done to determine
and flag any galaxies without dominant bulges that might bias, or add scatter to, the
FP fits, and also to allow us to test whether ellipticals, lenticulars and spiral bulges
have different FP distributions.

All of the galaxies were visually inspected using the 2MASS J , H and K band
images and also the higher-resolution SuperCOSMOS images in the bJ and rF (Fig-
ure 2.5). The galaxies were classified into the standard morphological types: elliptical
(E), lenticular (S0), spiral (Sp) and irregular or amorphous (Irr), plus the transition
cases E/S0, S0/Sp and Sp/Irr. Each classification was allocated a galaxy m-type
(integer ranging from −4 to +6) such that |m| preserved the basic morphological
typing of galaxies without regard for whether the system was edge-on. The m-type
scheme is summarised in Table 2.1.

The visual inspection process was also used to tag other galaxy attributes that
could potentially influence the use of the spectral data for the FP analysis. The
presence of dust lanes was flagged for this very reason. Furthermore, galaxy images
had 6.7 arcsec diameter circles superimposed in order to determine whether the 6dF
fibre enclosed only bulge light or whether there was significant contamination by
light from the disks of S0 and Sp galaxies. At the same time, the 6dFGS spectra
were scrutinised for any discernible emission features.

From this sample there were 429 galaxies excluded on the basis of one or more
of the criteria defined below. If any one of these criteria was flagged by two or more
classifiers, or flagged by the single classifier in cases where a galaxy was only classified
once, then the galaxy was excluded as not being bulge-dominated or as problematic
in some other respect. The exclusion criteria were defined as:

(i) galaxy morphology classified as irregular or amorphous;

(ii) galaxy identified as edge-on with a full dust lane;

(iii) significant fraction of light in fibre is from a disk;

(iv) light in fibre contaminated by nearby star, galaxy or defect.

We compared our classifications with 281 6dFGS galaxies in common with Galaxy
Zoo (Lintott et al., 2011). The Galaxy Zoo project employed countless thousands of
volunteers from the general public to inspect and assign basic galaxy types (elliptical
or spiral) to the nearest galaxies in the Sloan Digital Sky Survey. For this exercise,
we mapped the mean Galaxy Zoo types to a discrete scale matching our m-type
parameter, where E=0 and Sp=4 (and similar for the intermediate cases in between).
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Figure 2.6: Comparison of 6dFGS galaxy morphologies and Galaxy Zoo classifications.
Mean galaxy types are mapped to E=0 and Sp=4.

All problem cases (as defined above) and edge-on galaxies (which are uncertain by
their very nature) were excluded.

Figure 2.6 shows the results of this comparison. The morphologies are in good
agreement although Galaxy Zoo shows a tendency towards more early-type classifi-
cations. This is likely due to the gri composite images used by Galaxy Zoo, which
overemphasise the red light dominated by the longer-lived stars. The star-forming
regions that trace the arms of spiral galaxies are dominated by the light of the most
luminous (but short-lived) blue stars that emit most strongly in passbands blueward
of those employed by Galaxy Zoo.

2.6 Final Selection

The original 6dFGS sample was selected to apparent-magnitude limits (J,H,K) =

13.75, 12.95, 12.65) in the near-infrared. This means that any subsequent FP sub-
sample will carry the imprint of these cuts in both surface brightness and size. The
mean completeness of the original 6dFGS sample down to these limits is 90 percent,
with the majority of missing galaxies coming from those within ∼0.5mag of the sur-
vey limit. The usual practice adopted in any statistical analysis is to weight each
galaxy by the number of expected galaxies (sharing the same selection characteris-
tics) over those actually observed. The inverse of this ratio is called the selection
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probability. In a similar vein, we need to account for the shape of our sample in FP-
space due to apparent magnitude selection through appropriate selection weights, as
described below.

2.6.1 Incompleteness and Selection Probability

Our sample has slightly brighter flux limits than the original 6dFGS magnitude limits
(Jones et al., 2009), reflecting the changes in the 2MASS (and, consequently, 6dFGS)
magnitude limits that occurred after the 6dFGS sample was selected. To maintain
high completeness in each passband over the whole sample area, we impose our own
(slightly modified) magnitude limits of J ≤ 13.65, H ≤ 12.85 and K ≤ 12.55. At
fixed luminosity distance, the magnitude limit is a strict cut in the r–i plane; given
the distance range of the sample, this flux limit translates into a graduated selection
effect in the r–i plane. In fitting the FP distribution we can account for the galaxies
excluded by this selection effect by weighting the likelihood of each galaxy with a
selection probability as described in §3.5.

Finally, in order to reduce the impact on the fit from a small number of galaxies
with extremely low selection probabilities, we impose a minimum selection probabil-
ity requirement (S ≥ 0.05).

The selection probability requirement is the only sample selection criterion that
induces a significant residual bias, because it is the only one not accounted for in
the normalisation of the probability distribution when computing the likelihood. We
therefore correct for the (small) residual biases it produces by calibrating its impact
using mock FP samples, as described in Section 3.6.2.

We also remove outliers and blunders by requiring χ2 ≤ 12 (i.e. removing galaxies
that deviate by more than about 3.5σ from the fitted model; see equation 3.17 and
Section 3.5). This limit was chosen after analysing the χ2 distributions of the samples
in each passband with the following procedure.

We plot the χ2 distribution for each passband sample in Figure 2.7, showing the
distribution for the observed FP samples (black) and for mock galaxies samples (red).
A χ2 function was fit to each distribution with the number of degrees of freedom
(d.o.f.) as a free parameter. The d.o.f. recovered from fitting to the samples for each
passband, was a maximum value of ∼ 2.85 for the mock simulations and ∼ 2.87 for
the observed samples (after the extreme χ2 outlier were removed).

We expect that the χ2-d.o.f. for these samples is exactly three (rather than close
to it) given the three dimensions of the Fundamental Plane. However, the fitted d.o.f.
was always <3 and were a poor fit to the tail of the distribution, even after relaxing or
tightening the χ2 selection limit. We then investigated, using a mock galaxy sample,
the effect of removing our most severe limit i.e. from velocity dispersion, and found
that this was the dominant cause of the slightly reduced d.o.f.. The χ2 distribution
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Figure 2.7: The distribution of χ2 for the J (top left), H (top right) and K (bottom) band
observed FP samples (black) and for mock galaxies in a sample drawn from the best-fitting
3D Gaussian model (red). The smooth curve is an analytic χ2 distribution with 2.83 (J
band), 2.85 (H band), and 2.84 (K band) degrees of freedom, derived by fitting to the mock
samples (there are fewer than 3 degrees of freedom due to the censoring of the 3D Gaussian
by selection effects.)
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Figure 2.8: The distribution of χ2 for a J band mock FP simulation, where no velocity
dispersion limit has been applied to the sample. The fitted χ2-distribution is plotted in red
with the d.o.f. = 3.

for this mock sample is shown in Figure 2.8 with the fitted d.o.f. equal to three.

2.6.2 Fully-cleaned FP Sample

After applying all these selection criteria to obtain the samples to which we fit the
FP, the numbers of galaxies remaining in each of the passbands are 8901 (J band),
8568 (H band) and 8573 (K band). The numbers of galaxies for which we can derive
peculiar velocities are somewhat larger, since we can re-instate at least the galaxies
excluded by the lower redshift limit.

Table 2.2 summarises each stage of the selections following the initial pre-selection.

2.7 Measurement Errors

Each galaxy in the FP sample has an associated uncertainty from the measurement
errors in each of its FP observables: size, velocity dispersion and surface brightness.
The treatment of these errors is often simplified or approximated when fitting the FP;
e.g. La Barbera et al. (2010a) use mock galaxy samples to approximate errors and
correlations. Here we show how the maximum likelihood method that ultimately
becomes our tool for fitting, also allows us to to deal with the errors in all the
observables (and their correlations) in a straightforward manner.

For galaxy n, the measurement uncertainties are included through the error ma-
trix, En, given by

En =

 ε2rn + ε2rpn 0 ρriεrnεin

0 ε2sn 0

ρriεrnεin 0 ε2in

 . (2.10)
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Table 2.2: Summary of the 6dFGS Fundamental Plane sample selection criteria. The
criteria apply to central velocity dispersion s, redshift distance cz (upper and lower limits),
morphology, apparent magnitudem, selection probability S, and χ2. The column Nexc shows
the number of galaxies that would be removed by the specified selection cut alone. However,
the number in brackets for each subtotal (or total) is the actual number of galaxies excluded
when multiple selection limits are combined (i.e. without double-counting the galaxies that
are eliminated by more than one selection criterion).

Sample Selection Limit Ng Nexc Comments
6dFGSz 124 646 full redshift sample (good quality z)

6dFGSFP 11 287 galaxies with derived FP parameters

6dFGSv s ≥ 2.05 287 aperture-corrected s cut
cz ≥ 3000* 92 lower cz limit
cz ≤ 16 120* 750 upper cz limit
Morphology 429 flagged classification (§2.5)
SUBTOTAL: 9794 1558 (1493)

6dFGSvJ J ≤ 13.65 1024
S ≥ 0.05 32
χ2 ≤ 12 48
TOTAL: 8901 1104 (893) J band FP sample

6dFGSvH H ≤ 12.85 1427
S ≥ 0.05 41
χ2 ≤ 12 45
TOTAL: 8568 1513 (1226) H band FP sample

6dFGSvK K ≤ 12.55 1398
S ≥ 0.05 32
χ2 ≤ 12 46
TOTAL: 8573 1476 (1221) K band FP sample

*Note: these galaxies are excluded from the fitting of the FP, but are included when
deriving FP distances and peculiar velocities.
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The quantities εr, εs and εi are the observational errors on the FP parameters r,
s and i, and their estimation is discussed in Campbell (2009). The errors in the
velocity dispersions, εs, are based on the Tonry & Davis (1979) formula derived for
the Fourier cross-correlation technique, and are dependent on the measured signal-
to-noise in the cross-correlation peak. These error estimates are validated by the
large number of repeat velocity dispersion measurements in the 6dFGS sample. The
typical error on the velocity dispersions in the 6dFGS FP sample is around 0.054 dex
or 12%.

The photometric errors, εr and εi, were estimated by studying the scatter when
comparing the sizes and surface brightnesses obtained from the three independent
2MASS passbands. We assume that the surface brightness colours (i.e. the values of
iJ − iH , iJ − iK , and iH − iK) are very similar for every galaxy within each narrow
range of apparent magnitude, and that the dominant cause of variation from one
galaxy to the next is the error in the surface brightness measurements. We then
compute the mean square deviation in surface brightness colour for the J and H

bands, δ2
JH , over the N galaxies within a specified apparent magnitude bin, given by

δ2
JH = (Σn=1,N [(iJ,n − iH,n)− < iJ − iH >]2)/N . (2.11)

If we assume that δ2
JH is the sum of the mean square errors in iJ and iH , and that

δ2
JK and δ2

HK are likewise the sums of the mean square errors in iJ and iK , and iH
and iK , respectively, then we can solve for the error in iJ alone, obtaining

εi,J = [0.5(δ2
JH + δ2

JK − δ2
HK)]1/2 . (2.12)

This is the error on iJ , which we compute separately in apparent magnitude bins of
width 0.2mag. We similarly compute εi,H and εi,K , shifting the magnitude bins by
the mean color of the galaxies in the sample, to get the surface brightness errors in
each band as a function of apparent magnitude.

Figure 2.9 shows the J , H, and K band surface brightness errors as a function
of J , H, and K apparent magnitude. We approximate the errors using the following



§2.7 Measurement Errors 37

9 10 11 12 13 14
apparent magnitude [mag]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

ε i
[L
�

p
c−

2
]

J

H

K

Figure 2.9: The blue (green, red) points show the derived measurement error on iJ (iH ,
iK) as a function of mJ (mH , mK). The measurement errors, εi, are in units of L�/pc2.
We approximate these measurement error relations by the dashed lines of the corresponding
colours, which are specified by equation 2.13.

relations, which are shown as dashed lines in Figure 2.9:

εi =

0.024 mJ − 0.232 mJ ≥ 11.7

0.048 mJ < 11.7

εi =

0.028 mH − 0.248 mH ≥ 10.6

0.048 mH < 10.6
(2.13)

εi =

0.04 mK − 0.352 mK ≥ 10.3

0.060 mK < 10.3 .

Note that at bright apparent magnitudes we conservatively truncate the J and H

band errors at 0.048mag and the K band error at 0.060mag.

There is no correlation between the errors in s and those in r or i, but there is a
strong correlation between those in r and i. This is quantified by a correlation coef-
ficient that is determined empirically by studying the distribution of the differences
in r against the differences in i for pairs of independent passbands. The coefficient is
found to be ρri = −0.95 for all passbands. To preserve this correlation, the error in
r is calculated directly from the error in i using εr = 0.68εi. The typical error in the
J band on the effective radii is around 0.049 dex or 11% and on surface brightness
is around 0.073 dex or 17%. However in the correlated combination in which these
quantities appear in the FP, namely XFP = r − bi, the typical error on XFP is just
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0.016 dex or 4%.
There is an additional error term for effective radius, εrp, which allows for the

uncertainty in the conversion of angular to physical units under the assumption that
the galaxy is at its redshift distance (i.e. neglecting the unknown peculiar velocity).
This error term is approximated as εrpn = log(1 + 300 km s−1/czn), which assumes
a typical peculiar velocity of 300 km s−1 for the galaxies in the sample (Strauss &
Willick, 1995). Because we explicitly exclude galaxies at low redshifts, where the
peculiar velocities are potentially large relative to the recession velocities (see §2.6),
εrp is typically <3% and contributes less than 10% to the overall error in r.

We note that a similar error on surface brightness exists due to the use of ob-
served redshifts (uncorrected for peculiar velocities) in computing the cosmological
dimming. However, we do not include this in our measurement error matrix because
it is typically less than 0.4%, which is negligible when added in quadrature to the
photometric measurement errors.

2.8 Supplementary Parameters to the FP Catalogue

The final stage in our preparation of the 6dFGSv catalogue is the measurement of
supplementary information relevant to the Fundamental Plane and the way in which
galaxies fall upon it. Our parameters of interest are those that characterise the local
environment of each galaxy, as well as its integrated stellar population (in terms of
age and metallicity). We are motivated by the idea that the intrinsic scatter in the
Fundamental Plane is due to residuals in one or more of these secondary parameters
that reflect the formation history of the galaxy in some way.

2.8.1 Local Environment: Groups and Clusters

Groups and clusters in the the 6dFGS sample were identified using a friends-of-
friends group-finding algorithm (Merson et al., in prep.). The algorithm follows a
similar procedure to the group-finding method used to construct the 2dF Percolation-
Inferred Galaxy Groups (2PIGG) Catalogue of the 2dF Galaxy Redshift Survey (Eke
et al., 2004), but calibrated to the specifications (redshift depth and sample density)
of the 6dFGS.

This group catalogue is used to test the universality of the Fundamental Plane
(i.e. whether the FP coefficients vary with galaxy environment) and to derive mean
redshifts for groups and thus group distances and peculiar velocities (in addition to
distances and peculiar velocities for single galaxies). Combining galaxies into groups
is important to our future peculiar velocity analysis for two reasons: (i) it minimises
the ‘Finger-of-God’ distortions of distances and peculiar velocities produced by viri-
alised structures in redshift space; (ii) it allows us to correct any variations in the
FP with environment that might bias the distance and peculiar velocity estimates.
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Figure 2.10: Distribution of local environment parameters for 8258 FP galaxies. Left:
distance to the 5th nearest neighbour, log d5; right: surface density measured to the 5th

nearest neighbour, log Σ5.

From the initial 11 287 galaxies in the 6dFGS FP subsample, there were 3186
galaxies found in groups containing at least four members (and so deemed to have
reliable group membership status). The flux-limited nature of our survey meant that
the faintest members of a group might not have been observed, so the richness of
a group (which we use as proxy for global environment) is defined as the number,
NR, of observed galaxies in the group brighter than a specified absolute magnitude,
chosen so that galaxies brighter than this would be visible throughout the sample
volume. Any galaxy not in a group was given a richness NR = 0, signifying its status
as either a field galaxy or a bright member of a poor group.

In addition to this group catalogue, we also determine parameters that define
each galaxy’s local environment using the method described in Wijesinghe et al.
(2012). In this catalogue, local environment is represented by the projected comoving
distance, d5 (in Mpc) to the 5th nearest neighbour and the surface density, Σ5 (in
galaxiesMpc−2), is therefore defined as

Σ5 = 5/π · d2
5 . (2.14)

To exclude contamination from foreground and background galaxies these density
measurements are made within a velocity cylinder of ±1000 km s−1. In our final FP
sample, there are 8258 galaxies for which we can calculate reliable values of these
estimators of local environment (see Figure 2.10).

2.8.2 Stellar Population Parameters: Age and Metallicity

To analyse the stellar content of galaxy populations in our sample and their effect on
the 6dFGS Fundamental Plane, several stellar population parameters were measured
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Figure 2.11: Histograms of the four (log age, [Fe/H], [α/Fe] and [Z/H]) stellar popula-
tion parameters (left) and their statistical uncertainties (right) for the sub-sample of 7132
galaxies. (Figures 2 and 3 from Springob et al. 2012).

from the 6dF galaxy spectra. The quantities chosen to be representative of the
galaxy stellar populations were: the age of the galaxy (log age), the galaxy metallicity
(derived for both [Fe/H] and [Z/H]) and the abundance of α elements ([α/Fe] — a
parameter indicative of the formation timescale of the galaxy).

These four parameters are derived using the χ2 fitting procedure of Proctor &
Sansom (2002). This technique involves minimising the χ2 difference between Lick
index (absorption-line) measurements of the observed 6dF galaxy spectra and syn-
thetic spectra from the single stellar populations (SSP) models of Korn, Maraston
& Thomas (2005). The comparison uses as many Lick indices as possible and is
therefore largely insensitive to issues such as poor flux calibration (which is difficult
for a such a large sample of galaxy spectra), emission line contamination and error
in calibration to the Lick system. This fitting procedure is found to be more robust
compared to those that use only a few indices (Proctor, Forbes & Beasley, 2004).

The final sample of stellar population parameters were required to have a qual-
ity measurement, QSP (based on the reduced χ2 and number of indices fitted) of
QSP <= 10, and galaxy spectra with S/N per Å > 9. From our final FP sample,
this results in a sample of 7132 galaxies with reliable stellar population measure-
ments.

The distribution for each of the stellar population parameters log age, [Fe/H],
[α/Fe], and [Z/H], along with the distribution of their measurement errors is given
in Figure 2.11. The values for each parameter for each individual galaxy will be
presented in Proctor et. al., (in prep.)
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Table 2.3: Summary of the 6dFGS Fundamental Plane sample parameters. For each
parameter we list its name, unit and a short description.

Parameter Units Description

6dFGSid - Source name in the 6dFGS catalogue
R.A. degrees Right ascension
Dec. degrees Declination
zhelio km s−1 Heliocentric frame galaxy redshift
S/N Å−1 Signal-to-noise ratio of 6dF spectra
σraw km s−1 Raw measured velocity dispersion

2MASSid - Source name in the 2MASS XSC catalogue
m mag Total apparent JHK magnitude
logRSC0 arcsec Seeing corrected effective radius in the JHK band
µMSC
0 mag arcsec−2 Magnitude and seeing corrected surface brightness in the JHK band

m-type - Average morphological type classification
εm−type - Error in m-type
MFLAG - Flag of problem morphological classifications

GroupID - Group or cluster identification number
NR - Richness of galaxy group or cluster
zgroup km s−1 Group or cluster mean redshift
d5 Mpc Projected comoving distance to the 5th nearest neighbour
Σ5 galsMpc−2 Surface density measured to the 5th nearest neighbour

log age Gyr Logarithm of galaxy age
[Fe/H] - Fe abundance
[α/Fe] - α-element abundance ratio
[Z/H] - Overall galaxy metallicity
QSP - Quality of the stellar population parameter fits
εage dex Error in log age
ε[Fe/H] dex Error in [Fe/H]
ε[α/Fe] dex Error in [α/Fe]
ε[Z/H] dex Error in [Z/H]

M mag Absolute magnitude
logRe h−1 kpc Logarithm of effective radius in the JHK band (physical units)
log σ0 km s−1 Logarithm of aperture-corrected central velocity dispersion
log〈Ie〉 L� pc

−2 Logarithm of mean JHK band surface brightness at Re
εr dex Error in logRe
εrp dex Error in logRe unit conversion
εs dex Error in log σ0

εi dex Error in log〈Ie〉
S - Selection probability weighting
cz km s−1 CMB frame galaxy redshift
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2.9 Summary

In this chapter we present the catalogue of 6dFGS Fundamental Plane data used
in this thesis for ∼104 early-type galaxies reaching out to czhelio = 16 500 km s−1.
By combining the kinematic parameters derived from 6dF spectra (Section 2.3) and
photometric parameters from 2MASS JHK band images (Section 2.4) we obtain a
sample of 11 287 galaxies with measured Fundamental Plane parameters. To improve
the final samples for fitting the Fundamental Plane, we impose the selection criteria
outlined in Section 2.6. The final numbers of galaxies in each of the passbands are
8901 (J band), 8568 (H band) and 8573 (K band). The parameters derived for
each galaxy in these samples is summarised in Table 2.3. Table 2.3 also includes the
supplementary parameters required for our FP analysis of galaxy morphology (as
described in Section 2.5) and galaxy environment and stellar populations (outlined
in Section 2.8).

The final 6dFGS FP dataset comprises accurate FP parameters for a sample of
∼104 galaxies to determine the near-infrared Fundamental Plane. In this thesis will
also use these galaxies to measure FP distances and peculiar velocities in the 6dFGS
volume and hence compile the largest peculiar velocity survey to date – the 6dFGS
peculiar velocity survey (6dFGSv).



Chapter 3
Fitting the Fundamental Plane
3.1 Introduction

The Fundamental Plane relation is defined as

logRe = a log σ0 + b log〈Ie〉+ c (3.1)

where the coefficients a and b are the slopes of the plane and the constant c is the
offset of the plane. In this study we employ units of h−1 kpc for effective radius Re,
km s−1 for central velocity dispersion σ0, and L� pc−2 for mean surface brightness
〈Ie〉. We prefer to use log〈Ie〉 rather than 〈µe〉 (which is in units of mag arcsec−2), so
that all our FP parameters are unscaled logarithmic quantities; this means that the
relative errors and scatter are directly comparable in all axes. Throughout the rest
of this thesis we adopt an abbreviated notation for the FP parameters: r ≡ logRe,
s ≡ log σ0 and i ≡ log〈Ie〉. Hence we write the FP relation as

r = as+ bi+ c . (3.2)

The determination of a Fundamental Plane for a sample of early-type galaxies
therefore requires deriving the coefficients (i.e. a, b and c) that define equation 3.2.
The standard method for deriving these coefficients is to fit the FP by modelling
the distribution as a uniform plane with Gaussian scatter. These coefficients can be
equivalently defined with respect to s or i rather than in terms r, as in equation 3.2,
and we should note that this definition does not assume that we are necessarily using
a regression on r to determine the FP coefficients. However, there is little consensus
among the literature as to the best way to fit the FP, and several forms of linear
regression have been used to recover the best-fit FP.

Herein lies the difficulty in comparing the results of different FP studies, as
physical variations can be mimicked by biases resulting from the interaction of the
fitting method with the sample selection criteria or complicated error dependencies
in the data. The regression methods typically used to fit the FP broadly fall in the
category of linear least squares, minimising the residuals of one of the FP variables
or the residuals orthogonal to the plane. The type of least-squares regression chosen
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is often determined by the focus of the study (e.g. regression on logRe to estimate
distances or regression on log〈Ie〉 for a stellar population study), though it is well-
known that different regression methods do not necessarily converge on a unique (or
even consistent) best fit, particularly if selection effects or correlated measurement
errors are not fully accounted for (Saglia et al., 2001; Hogg, Bovy & Lang, 2010).
This tendency to use different regression techniques interchangeably has made it
challenging to compare the results of different FP studies, and in some cases has led
to conclusions that are either incorrect or misleading.

There is also the additional question of whether the traditional FP model of a
2D plane with Gaussian scatter is statistically robust or truly representative of the
distribution of galaxies in FP space. Saglia et al. (2001) have shown that a 3D
Gaussian model provides a more accurate (and therefore less biased) representation
of the galaxy distribution, at least for the large, bright, early-type galaxies in most FP
samples. A maximum likelihood Gaussian model is also more versatile in dealing with
complex sample selection criteria and correlated measurement errors, more robust
against outliers and blunders in the data, and provides unbiased and precise estimates
of the FP parameters and their uncertainties.

This chapter is concerned with revealing the inherent bias in linear regression
methods used to fit the FP, motivating the development of a new FP fitting pro-
cedure. This new method models the FP distribution as a 3D Gaussian that is fit
with maximum likelihood, in a similar manner to the procedure used by Saglia et al.
(2001) and also Bernardi et al. (2003b). We quantify how well this model fits our
6dFGS data set (as defined in Chapter 2) and describe how mock FP samples (that
are used for error analysis and model validation) are generated. The maximum like-
lihood fit to a 3D Gaussian will be used in subsequent chapters, as we explore the FP
as a function of galaxy properties (Chapter 4) and use the FP as a distance indicator
(Chapter 5).

3.2 Sources of Fundamental Plane Bias

The method of least-squares is used in FP fitting for its simplicity and relatively
fast numerical implementation. However, such regression techniques can be biased
by the choice of variable they minimise, the unacknowledged properties of the model
they assume, the selection effects they fail to model, and the (possibly correlated)
uncertainties they do not include in the fit. Simple regressions are thus likely to
result in unreliable and biased fits to the Fundamental Plane.

Specifically, we identify the dominant sources of bias in FP samples, in general,
as arising from: (i) the model for the FP distribution and its intrinsic scatter; (ii) se-
lection effects, in the form of both hard and soft censoring of the sample; and (iii) the
(often correlated) measurement errors on all three FP variables.
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(i) FP distribution model: A 3D Gaussian is a simple and convenient model that
is empirically found to be a better match to the (censored) observed FP distribution
of early-type galaxies (Saglia et al., 2001; Bernardi et al., 2003b) than the stan-
dard model of a 2D plane-surface with Gaussian scatter in one direction. The 3D
Gaussian naturally accounts not only for the scatter about the plane but also the
distribution within the plane—the usual standard model effectively assumes that
galaxies uniformly populate the whole plane.

(ii) Selection effects: Censoring of the intrinsic FP distribution is always present
for observed FP samples, in both obvious and not-so-obvious ways. If the fitting
technique is to avoid biased results due to censoring, it must account for all the
selection effects. These include both hard selection limits in FP variables (e.g. in
velocity dispersion due to the limiting instrumental resolution) or soft (i.e. graduated)
selection limits in any other observable (or combination of observables, e.g. the joint
selection on size and surface brightness due to the flux limit of a sample). By using
maximum likelihood fitting it is straightforward to incorporate these limits (see §3.5);
in comparison, for linear regressions it is significantly more difficult to account for
selection effects more complex than a hard limit in one variable.

(iii) Measurement errors: The modelling of measurement errors in a FP sample
is complicated by the fact that galaxies have different errors in all three of their FP
parameters, and some of these errors are significantly correlated (notably those in
r and i). Standard least-squares regression only accounts for uncorrelated measure-
ment errors (and in naive applications, only measurement errors in one parameter).
However, a maximum likelihood approach can account exactly for differing measure-
ments errors and their correlations in a straightforward way.

3.2.1 Least-Squares Regression Bias

As discussed above, a maximum likelihood method is clearly to be preferred in princi-
ple; however it does not necessarily follow in practice that the limitations of the linear
regression approach result in significant biases when fitting the FP. We therefore il-
lustrate the consequences of using linear regressions to fit mock samples simulated
by drawing galaxies from a 3D Gaussian intrinsic FP and applying realistic mea-
surement errors and selection effects. The process of creating these mock samples is
outlined in Section 3.6.1.

Three different types of mock samples were fit with each of the standard lin-
ear least-squares regressions (i.e. by minimising residuals in the distance-dependent
quantity, XFP ≡ r−bi, the distance-independent quantity, log σ0≡ s, or the residuals
orthogonal to the regression line) and compared to a maximum likelihood fit of a 3D
Gaussian. The lefthand panels of Figure 3.1 compare the fits to these mocks using the
observed effective radius versus the predicted effective radius (calculated from equa-
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tion 3.2). The simplest mock sample, panel (a) and panel (e), is just the intrinsic
distribution with no observational errors or selection effects applied to it; conse-
quently it is the tightest sample and the best fit has almost no method-dependent
bias.

However, when simulated observational error scatter is added to the mock FP
parameters, as illustrated by panel (b), the sample is significantly skewed away from
the one-to-one line as a result of the systematic variation in the observational errors
with velocity dispersion, size and surface brightness, as well as the correlation be-
tween the observational errors in size and surface brightness. The skewing effect is
exacerbated when censoring is also present in the mock sample; panel (c) shows the
situation where the censored data is absent, while panel (d) is the same but with the
censored data shown in red. This censoring is the result of observational selection
effects operating on both velocity dispersion (due to the instrumental spectral reso-
lution limit) and jointly on size and surface brightness (due to the sample apparent
magnitude limit). The consequences of this skewing of the sample distribution are
illustrated in panels (a)–(d) by the discrepancy between the 1-1 relation (black line)
and the best-fit orthogonal regression (grey line). The overall effect shown in panels
(c) and (d) is a sample with a best-fit slope of 0.84 rather than the true value of
unity.

This biasing is also seen in the frequently used 2D projection of the FP show-
ing the distance-dependent photometric parameter, XFP ≡ r − bi, and distance-
independent spectroscopic parameter, s ≡ log σ0. The righthand panels (e)–(h) in
Figure 3.1 show this projection for precisely the same mock FP samples as those in
the lefthand panels. The most obvious selection effect on the mock sample in the
righthand bottom panel is the velocity dispersion limit, which censors the red points
to the left of the vertical dashed line at s ≥ 2.05 (i.e. log σ0 ≥ 112 km s−1). Galaxies
(in red) to the right of this line are those eliminated by the joint selection effect on
r and i due to the apparent magnitude limit of the sample, which tends to censor
galaxies with smaller sizes and fainter surface brightnesses in a way that depends on
the galaxy’s redshift.

These simulations show that the combined effect from all the selection criteria
and measurement errors skews the best fit when not accounted for correctly (as is
the case for least-squares fitting), most noticeably for the regressions on XFP and s.
The orthogonal fit (dashed grey line) fits the data well in this projection, but this is
a consequence of fixing the value of b, a priori, to approximately the correct value.
In this case, b has been fixed to the canonical value of b = −0.75; because this differs
from the input value of b = −0.88 for the mock sample, the fit deviates from the
input plane (particularly at the low-σ end). Additionally, Figure 3.1 also illustrates
why the maximum likelihood best fit does not appear, by eye, to be a good fit to
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Figure 3.1: Panels (a)–(d): Comparison of the observed effective radius against predicted
effective radius (calculated from equation 3.2) for mock samples all with the same under-
lying FP (r = 1.52s − 0.89i − 0.33) and intrinsic scatter, but subject to differing levels of
measurement errors and sample censoring: (a) no measurement errors or censoring (Ng =
8901); (b) measurement errors but no censoring (Ng = 8901); (c) both measurement errors
and censoring (Ng = 5139); (d) as for (c) but with the censored data points shown in red
(Ng = 8901). Note that the sample is skewed from the one-to-one line (in black) by the
measurement errors and the censoring of the sample, as indicated by the best-fit orthogonal
regression lines for each sample (in grey). Panels (e)–(h): For the same mock samples as
in (a)–(d), the correlation between the distance-dependent quantity, XFP ≡ r − bi, and
the distance-independent quantity, s ≡ log σ0. The vertical dashed black line indicates the
hard cut in log σ0 (s ≥ 2.05) that is applied, along with other selection cuts, in censoring
the mock samples in panels (g) and (h). In each panel the solid black line indicates the
intrinsic FP that the mock samples were generated from; panel (h) also shows as grey lines
the standard least-squares regressions (in 2D) minimising with respect to XFP (dot-dash)
and s (short-dashed), and the orthogonal regression (dashed), while the solid magenta line
shows the maximum likelihood fit to a 3D Gaussian.
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Figure 3.2: Best-fit values for the FP slopes, a and b, for each of 1000 mock FP samples
(black dots) fit with least-squares regressions (in 3D) minimising the residuals in each of
the three FP variables (i.e. r, s, i) and orthogonal to the plane; also fit with the maximum
likelihood 3D Gaussian. The labels on each cluster of black points indicate the fitting method
used; the colours indicate whether intrinsic scatter, observational errors and selection effects
(censoring) are included in the mock samples, as follows: green indicates the mocks only
include the intrinsic scatter of the FP; blue indicates the mocks include intrinsic scatter
and censoring; red indicates the mocks include intrinsic scatter, observational scatter and
censoring. The mean values of the fitted slopes (coloured dots) and the 1σ, 2σ and 3σ
contours (coloured ellipses) are over-plotted in the colour corresponding to the type of mock
sample. The dashed lines indicate the input FP coefficients (a = 1.52 and b = −0.89) from
which all the mock samples were drawn.

the observed data—the observational errors and the selection effects systematically
skew the observed sample away from the underlying intrinsic distribution.

This exercise demonstrates that, for samples with realistic observational errors
and censoring, the input FP is best recovered with the maximum likelihood method.
Regressions on XFP or s lead to highly biased results, while the 2D orthogonal
regression gives a reasonable fit, at least for this particular combination of observable–
but only if b is fixed a priori or close to the true value. However, as shown below,
regressions on r, s, i and the orthogonal residuals all show significant biases when
fitting the FP parameters in 3D, and only the maximum likelihood method accurately
recovers the FP.

To illustrate the contrast resulting from different fitting methods in 3D and the
impact of various problems with the real data, we fit simulated samples with progres-



§3.2 Sources of Fundamental Plane Bias 49

sively more realistic properties (just as in Figure 3.1). Figure 3.2 shows the fitted FP
slope values (a and b) for 1000 mock samples of various types (each sample contain-
ing 8901 galaxies) using least-squares regression in 3D on each of the FP variables
(i.e. r, s, i) and orthogonal to the plane, as well as our 3D Gaussian model fitted
using a maximum likelihood method. The results, in green, are fits to mocks that
only include the intrinsic scatter of the FP; in blue are the fits to mocks with both
intrinsic scatter and sample censoring due to the selection criteria; and in red are
fully realistic mocks including all the effects of intrinsic scatter, selection criteria and
observational error.

The linear regressions on individual FP parameters give biased estimates of a and
b, even for the ‘ideal’ case (green), and become progressively more strongly biased as
censoring and observational errors are included (blue and red). The log σ0 slope, a,
is biased high, even for the ‘ideal’ case, when an FP sample is fit by minimising the
log σ0 residuals as compared to the other fitting techniques. This is consistent with
previous studies (Jorgensen, Franx & Kjaergaard, 1996; La Barbera et al., 2010a)
and is a result of the dominant selection limit in log σ0. The sense of the trends in
both a and b, for all regression methods, agrees with those found by Saglia et al.
(2001), as shown in their Figure 6.

Figure 3.2 also indicates that orthogonal regression (in 3D) is the least biased of
the regression methods; however, in the most realistic simulations (red), it nonethe-
less returns slopes that are biased by many times the nominal precision of the fits
(given by the 1σ contour). This is consistent with the fact that, for a sample with
no selection criteria, orthogonal regression of a model that accounts for the FP scat-
ter in all three axes is equivalent to a maximum likelihood fit of a Gaussian model.
However, this ‘ideal’ case is not realistic and, in most cases, the ML Gaussian model
coefficients a and b are not equivalent to the orthogonal plane-fit coefficients because
the ML fit also accounts for the selection effects in the sample. The maximum likeli-
hood fitting method clearly out-performs all the regression methods, recovering the
FP slopes without significant bias for all types of mock samples (see the inset, which
expands the region centred on the input values of the FP slopes).

As might be expected for all fitting methods the error contours on the fitted
slopes become larger when censoring and observational errors are applied to the
mock samples. Less obviously, the error contours for the most realistic mocks (red)
are largest for the maximum likelihood fit and the regression on s; the apparently
greater precision of the r, i and orthogonal regressions are obtained at the expense
of very substantial biases in the fitted slopes. These regression fits thus give a false
sense of precision while at the same time introducing biases that are many times
larger than the nominal errors on the fitted slopes.
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3.3 3D Gaussian FP Model

The Fundamental Plane is modelled as a three-dimensional Gaussian in a similar
fashion to the approach adopted by the EFAR survey (Saglia et al., 2001; Colless
et al., 2001b) and subsequently by Bernardi et al. (2003b). This choice of model is
justified by the good empirical match it provides to the distribution of galaxies in
FP space, at least for samples limited by their selection criteria to larger, brighter
galaxies; we discuss the choice of this model further in Section 4.7.

In one dimension, the Gaussian probability distribution for a given galaxy, n, is

P (xn) =
1√

2πσ2
exp−(xn − x̄)2

2σ2
(3.3)

for a variable, xn, with mean x̄ and standard deviation σ. Generalising this to
three dimensions, the probability density distribution P (xn), for a given galaxy, n,
occupying the position xn = (r− r̄, s− s̄, i− ī) in FP space with respect to the mean
values r̄, s̄ and ī is

P (xn) =
exp[−1

2x
T
n(Σ + En)−1xn]

(2π)
3
2 |Σ + En|

1
2 fn

(3.4)

where fn is the normalisation factor accounting for the fact that, due to selection
effects, the galaxies do not fully sample the entire Gaussian distribution. The total
3D scatter in FP space is given by the addition of the FP variance matrix, Σ (spec-
ifying the intrinsic scatter of the FP distribution in 3D) and the observational error
matrix En (specifying the observational errors in r, s and i and their correlations;
this is constructed in §2.7).

3.3.1 FP Variance Matrix

The FP variance matrix, Σ, is defined in the space of the FP distribution with
axes that are normal to the plane. Σ is a symmetric, positive-definite matrix, and
therefore can be calculated by transforming the variance matrix of the FP variables in
the native (r, s, i)-space, V, with the normalised eigenvectors of Σ (see Section 3.3.3),
T, using

Σ = TTVT (3.5)

where

T =


1√

1+a2+b2
b√

1+b2
−a√

(1+b2)(1+a2+b2)

−a√
1+a2+b2

0 −(1+b2)√
(1+b2)(1+a2+b2)

−b√
1+a2+b2

1√
1+b2

ab√
(1+b2)(1+a2+b2)
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and

V =

 σ2
1 0 0

0 σ2
2 0

0 0 σ2
3 .


The covariance matrix, Σ, is convolved with measurement errors to describe the

distribution of galaxies according to our 3D Gaussian model. However the covariance
matrix does not account for the effects of sample censoring/selection in FP space
and therefore does not fully describe the FP fit coefficients (unless one has a full
distribution of galaxies without censoring) when using a 3D Gaussian model. It is
possible to use other combinations of the covariance matrix elements to derive the
coefficients of FP fits with respect to other FP parameters (e.g. regression on r

compared to orthogonal about the plane); but again this assumes the full Gaussian
distribution is included in the sample, without censoring/selection. In the ML fit of
the 3D Gaussian model, the censoring and selection effects are accounted for in the
normalisation of the Gaussian probability distribution.

3.3.2 3D Gaussian Distribution Normalisation

The selection effects due to instrumental resolution of the velocity dispersion mea-
surements are accounted for in the normalisation, fn, of the distribution. The total
volume of the probability density function is normalised to that volume which is ac-
cessible after the selection cuts are imposed such that

∫
P (x)dx = 1. For a trivariate

Gaussian with lower selection limits of rcut, scut and icut, this normalisation integral
is

fn =

∫ ∞
rcut

∫ ∞
scut

∫ ∞
icut

exp[1
2(xT

n(Σ + En)−1xn)]√
(2π)3|Σ + En|

dx (3.6)

where xn = (rn, sn, in).
To determine fn equation 3.6 needs to be transformed to an integral that can be

evaluated numerically. That is, an integral for which the infinite integration limits
have been converted to finite terminals. Hence, we transform the original integral
to an integral over a unit hyper-cube using the following method outlined in Genz
(1992).

The first step is to use the Cholesky decomposition of the matrix sum Σ+En = C

to make the coordinate transform x = Cy. For a positive, definite matrix the
Cholesky decomposition is formed from the product of a unique lower triangular
matrix, L, and its conjugate transpose such that C = LLT.

Another transformation is then applied using the cumulative distribution function
of the standard normal distribution function, Φ(y), i.e.

Φ(y) =
1

2π

∫ y

−∞
exp−

1
2
θ2 dθ . (3.7)
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A last substitution was made to perform the integration over a unit hyper-cube,
resulting in the integral

fn =

[
1− Φ

(
rcut

C00

)]
×
∫ 1

0

[
1− Φ

{
scut

C11
− C10

C11
Φ−1

[
(1− w0)Φ

(
rcut

C00

)
+ w0

]}]
×
∫ 1

0

[
1− Φ

{
icut

C22
− C20

C22
Φ−1

[
(1− w0)Φ

(
rcut

C00

)
+ w0

]
− C21

C22
Φ−1

[
(1− w1)Φ

{
scut

C11

−C10

C11
Φ−1

[
(1− w0)Φ

(
rcut

C00

)
+ w0

]}
+ w1

]}]∫ 1

0
dw .

(3.8)

In practice, our model only includes an explicit selection cut in velocity dispersion
(i.e. σ ≥ σcut) and hence rcut = icut = −∞. Equation 3.8 then reduces to

fn =

∫ 1

0
1− Φ

[
scut

C11
− C10

C11
Φ−1(w0)

]
dw0 . (3.9)

3.3.3 3D Gaussian v-space Axes

The Fundamental Plane space can be described either in terms of the observational
parameters or in terms of the unit vectors along the principal axes of the 3D Gaussian
characterising the galaxy distribution (hereafter, v-space). The Fundamental Plane
itself is defined by its normal vector, which is the eigenvector of the intrinsic FP
variance matrix Σ with the smallest eigenvalue. A 3D representation of the v-space
axes (v1, v2, v3) with respect to the axes of the observational parameters (r, s, i) is
shown in Figure 3.3.

The resulting vectors that define the axes of the Gaussian are

v̂1 = (1/
√

1 + a2 + b2) · v1 ,

v̂2 = (b/
√

1 + b2) · v2 , (3.10)

v̂3 = (ab/
√

(1 + b2)(1 + a2 + b2)) · v3 ,

where

v1 = r̂ − aŝ − b̂i ,
v2 = r̂ + î/b , (3.11)

v3 = −r̂/b− (1 + b2)ŝ/(ab) + î ,

in terms of the FP slopes a and b. Equations 3.10 and 3.11 describe the same
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Figure 3.3: A 3D schematic of FP space, showing the vectors v1, v2, v3 (in dark blue) that
define the axes (see equation 3.10) of our Gaussian model (3σ Gaussian ellipsoid in cyan)
as they are oriented with respect to the three observational parameter axes r, s, i. We also
show (in red) the vectors corresponding to the physical quantities logM , logL, logM/L and
logL/R3 as defined in Section 3.3.3. We note that the angle between the vectors logM/L
and −v1 and also logL/R3 and −v2 are both within 5◦ of each other. (Readers viewing
the digital version of thesis using Acrobat Reader v8.0 or higher can enable interactive 3D
viewing of this schematic by mouse clicking on the figure; see Appendix A for more detailed
usage instructions.)
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axes defined by Colless et al. (2001b) for the EFAR FP study, with the exception
that the value of b quoted in this study is the coefficient of log〈Ie〉 (with units of
L� pc−2) rather than the coefficient of 〈µe〉 (with units of mag arcsec−2) used in
the EFAR study, so that b6dF = −2.5 bEFAR. In this definition, as in Colless et al.
(2001b), equations 3.10 and 3.11 also assume that the s-component of the v2 vector
is zero. We show this simplification does not effect the accuracy of this model in
Sections 3.7.1 and 4.2.3.

The direction of the short axis (v̂1), which runs through (i.e. normal to) the plane,
is fully determined by the fitted slopes a and b. The long axis (v̂2), which runs
along the plane, is fixed by being orthogonal to v̂1 and having no log σ0 component.
Although this is fixed by fiat, in fact (as we show in Section 3.7.1) this is very close
to the longest natural axis of the 3D Gaussian if no constraints are placed on its
direction. The advantage of this definition of v̂2 lies in its physical interpretation
as the direction within the FP that has no dynamical component, connecting only
the photometric parameters r and i . The third, intermediate axis (v̂3), which runs
across the plane, is orthogonal to both v̂1 and v̂2.

Figure 3.3 also shows the relation between the v-space axes and the physical
quantities of dynamical mass (M), luminosity (L), mass-to-light ratio (M/L) and
luminosity density (L/R3). The logarithm of these quantities can be expressed as a
function of the FP parameters, under the assumption of homology, as m = r + 2s

and l = 2r + i, where m ≡ logM and l ≡ log(L). The logarithm of mass-to-light
ratio is then simply m − l = −r + 2s − i and the logarithm of luminosity density
is l − 3r = −r + i. Therefore, in the case of the virial plane, where a = 2 and
b = −1, the principal axes are aligned with these quantities: m − l = −v1 and
l − 3r = −v2. Even for the actual tilted FP we find the angle between these vectors
is small, as our observed FP has v1 offset 5.0◦ from m − l and v2 offset 3.6◦ from
l − 3r. The fact that L/R3 very nearly matches the v2 direction is a point that we
revisit in Chapter 5, when we examine the physical interpretation of the distribution
of galaxies in FP space.

Finally, the likelihood function, L, is evaluated from the product of the proba-
bility density function (equation 3.4) for each galaxy, n, using

L =

Ng∏
n=1

P (xn)1/Sn . (3.12)

The probability density function is weighted by the fraction of the survey volume
in which the galaxy could have been observed, which is inversely proportional to the
selection probability, Sn, depending on the magnitude and redshift selection criteria
imposed on the FP sample (see §3.5). The probability is normalised, as described
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in Section 3.3.2, over the region of the FP space allowed by the selection criteria, so
that

∫
P (x) d3x = 1.

For convenience, the log-likelihood value (lnL) is used, so the product in equa-
tion 3.12 can be reduced to a summation, and then evaluated for our particular,
P(xn):

lnL =−
Ng∑
n=1

S−1
n

[
3

2
ln(2π) + ln(fn)

+
1

2
ln(|Σ + En|) +

1

2
xT
n(Σ + En)−1xn

]
.

(3.13)

The leading factor in the summation is the weight of the nth galaxy, given by the
inverse of its selection probability. Within the square brackets, the first three terms
are the normalisation of the probability, and the final term is half the χ2.

3.4 Maximum Likelihood Method

In Section 3.3 we outlined the features of our 3D Gaussian model for the Fundamental
Plane. To find the most probable set of parameters defining this model, Θ, given
our FP data, x, we apply Bayes’ Theorem

Pr(Θ|x) =
Pr(x|Θ) Pr(Θ)

Pr(x)
(3.14)

where Pr(Θ|x) is the conditional probability of the model given the evidence from
the data, i.e. the posterior probability distribution, Pr(x|Θ) is the probability of the
model parameters given the data (i.e. the likelihood function), Pr(Θ) is the prior
probability distribution before the data is taken into account and Pr(x) normalises
the probability distribution.

Specifically, in our maximum likelihood fitting procedure we assume a constant
(non-informative) prior i.e. Pr(Θ) = 1, Pr(x|Θ) is the likelihood function for a 3D
Gaussian distribution (as defined in the previous section) and the normalisation,
Pr(x), is encompassed by fn. Therefore, to estimate the best-fit parameters of our
FP model given the observed data, we maximise (or minimise the negative logarithm
of) the posterior probability distribution as defined by equation 3.13. In this thesis,
we in fact refer to this posterior probability distribution as the likelihood function to
reinforce the assumption of a constant prior.

The log-likelihood of equation 3.13 is maximised to simultaneously fit for the
eight FP parameters that define the 3D Gaussian model discussed in the preceding
section. The parameters that are derived from the fit are: the slopes of the plane (a
and b, which define the directions of the 3D Gaussian’s axes through equation 3.10);
the centre of the 3D Gaussian in FP space (r̄, s̄, ī), which can be used to calculate the
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Table 3.1: Input coefficients defining the simulated FP galaxy samples in Sections 3.4.1
and 3.4.2. Note: units are based on surface brightness in mag arcsec−2.

a b r̄ s̄ ū σ1 σ2 σ3

1.225 0.326 0.350 2.376 16.900 0.1755 1.8745 0.7255

offset of the FP (c = r̄ − as̄− b̄i); and the dispersion of the Gaussian in each of the
three axes (σ1, σ2, σ3). The set of parameters {a, b, r̄, s̄, ī, σ1, σ2, σ3} that maximise
the log-likelihood of the 3D Gaussian are therefore those that define the best-fit
model to the FP data. Note that the offset of the FP, c, is defined in terms of these
parameters as c = r̄ − as̄− b̄i.

3.4.1 Grid Search

Initially, the likelihood function was maximised using a brute-force grid search where
the likelihood was evaluated at each point within a grid of given size and resolution.
The size and resolution of the grid was defined by upper and lower bounds, as well
as the number of grid points within the specified (independent) search range for each
of the fitted parameters. The grid search method was chosen to test the algorithm,
as it is robust, straightforward in its implementation, and can be used to map the
likelihood surface and obtain error estimates in the fitted algorithm.

The efficiency and accuracy of the grid search algorithm was tested by recovering
the likelihood estimates first from a simulated mock galaxy sample. The observable
parameter distribution was sampled according to a Gaussian distribution with ad-
ditional Gaussian measurement noise (see procedure of Section 3.6.1) with a given
set of Fundamental Plane parameters chosen to be similar to previous survey fits
(Table 3.1). These values reflect the units of previous surveys i.e. surface brightness
in units of mag arcsec−2, and are only used in this analysis of minimisation methods
(within Section 3.4) - throughout the rest of this thesis, units of surface brightness
L� pc−2 are used exclusively.

Maximum likelihood fitting was applied to the simulated data with the grid
search algorithm to evaluate the extent of any bias inherent in the algorithm itself.
Initially, only five parameters {a, b, σ1, σ2, σ3} were fit and the rest were fixed (to
the values in Table 3.1), for efficiency in testing. The speed of the grid search was
mainly dependent on the size and resolution of the grid, the number of galaxies in
each sample (Ng) used to calculate the likelihood function, the number of multiple
likelihood fits (Nfits) and evaluation of the normalisation fn. The grid search algo-
rithm was therefore limited by the significant computational time associated with
increasing the size of the parameters, such as Ng and Nfits, to improve the accuracy
of the fitting. To resolve this issue, we implemented an optimisation algorithm to
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Figure 3.4: Histograms of the maximum likelihood best-fit FP coefficients, {a, b, r̄, s̄, ū}
from 200 simulations and Ng = 500 galaxies per simulation. The likelihood function is
normalised using Monte Carlo integration and the number of MC integration points is 102.
Each panel is labelled at the top with the name of the parameter, the input value of the
parameter for the 200 mock samples, and the mean and rms of the best-fit parameters
obtained from ML fits to these mocks; a Gaussian with this mean and rms is overplotted
on the histograms. The vertical dashed line shows the input value of the parameter and the
vertical solid line shows the mean of the best-fit values.

.

calculate the maximum of the likelihood instead (see Section 3.4.2). The numerical
integration of the normalisation function, fn, was also a CPU-intensive element of
the algorithm that was investigated in more detail.

In our maximum likelihood method, we account for the reduced volume due to
selection cuts in the FP axes through the normalisation, fn, defined in equation 3.6.
The first numerical integration method used to evaluate fn, was an adaptive Monte
Carlo method. To mimic the real data as closely as possible, only one selection
cut in the velocity dispersion (due to instrumental limitation) of scut < 2.0 was
implemented in the simulated mock sample. After this selection cut (and hence nor-
malisation integration) was included in the fitting routine, the maximum likelihood
estimates were found to be biased compared to those used to generate the sample
(see Figure 3.4). In these early test simulations, the ML method was used to fit
200 mock samples, with 500 galaxies in each sample. In order for the computational
time to be kept to a minimum, the Monte Carlo integration only used 100 points
to evaluate fn, which led to large errors in the derivation of fn. For this reason,
the input FP parameters were not well recovered, as can be see in Figure 3.4. Only
two (s̄ and ū) out of the five parameters were recovered accurately with a Gaussian
distribution.
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Figure 3.5: As for Figure 3.4 using 200 simulations and Ng = 500 galaxies per simulation
but the likelihood function is normalised using Monte Carlo integration and the number
of MC integration points is increased to 105. Each panel is labelled at the top with the
name of the parameter, the input value of the parameter for the 500 mock samples, and the
mean and rms of the best-fit parameters obtained from ML fits to these mocks; a Gaussian
with this mean and rms is overplotted on the histograms. The vertical dashed line shows
the input value of the parameter and the vertical solid line shows the mean of the best-fit
values.

The fitting algorithm recovered all the parameters correctly once the number of
Monte Carlo points was increased to 105, as shown in Figure 3.5. However, the
increase in accuracy was achieved at the expense of CPU time, and so alternative
integration methods were explored. The integration of the normalisation function,
fn, was found to be particularly suited to a numerical method based on adaptive
multidimensional integration. The algorithm could then be extended to include
all relevant selection cuts in the 6dFGS data sample, including the redshift and
magnitude cuts (see Section 3.5).

3.4.2 Simplex Method

Once the grid search algorithm was able to recover the maximum likelihood esti-
mates from a mock sample with sufficient accuracy, the algorithm was modified to
find the maximum likelihood using optimisation (rather than a grid search). The
method chosen was a general, optimisation algorithm that works efficiently in multi-
ple dimensions known as the Nelder-Mead downhill simplex method (Nelder & Mead,
1965). The so-called simplex, is a geometric object (defined by the dimensions of the
function being maximised) that is used to bound the minimum (or equivalently, in
our case, the maximum) through reflection, expansion and contraction of its vertices.

The simplex method offers a significant reduction in computational time (from



§3.4 Maximum Likelihood Method 59

1.10 1.15 1.20 1.25 1.30 1.35
a

0

10

20

30

40

50
a : 1.225→ 1.225± 0.040

0.30 0.31 0.32 0.33 0.34 0.35
b

0

10

20

30

40

50
b : 0.326→ 0.326± 0.008

−8.6 −8.4 −8.2 −8.0 −7.8 −7.6 −7.4
c

0

10

20

30

40

50
c : −8.061→ −8.062± 0.186

0.20 0.25 0.30 0.35 0.40 0.45 0.50
r̄

0

10

20

30

40

50
r̄ : 0.350→ 0.348± 0.039

2.30 2.35 2.40 2.45 2.50
s̄

0

10

20

30

40

50
s̄ : 2.376→ 2.372± 0.030

16.6 16.7 16.8 16.9 17.0 17.1 17.2
ū
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Figure 3.6: As for Figure 3.4 using 200 simulations and Ng = 500 galaxies per simulation
but the best-fit values are recovered using adaptive multidimensional integration and the
likelihood function is maximised using simplex optimisation. Each panel is labelled at the
top with the name of the parameter, the input value of the parameter for the 500 mock
samples, and the mean and rms of the best-fit parameters obtained from ML fits to these
mocks; a Gaussian with this mean and rms is overplotted on the histograms. The vertical
dashed line shows the input value of the parameter and the vertical solid line shows the
mean of the best-fit values.

hours to seconds), compared to a grid search as it samples fewer points (and hence
function evaluations) to find the maximum. This speed-up in computational time
was critical in being able to scale-up the mock simulations to more realistic sample
sizes (Ng ∼ 104), closer to that of our sample data. Figure 3.6 shows the results
from a simulation using both simplex optimisation and adaptive multidimensional
integration.

3.4.3 BOBYQA Optimisation Algorithm

The final optimisation method that was explored is a non-derivative multi-dimensional
optimisation algorithm called BOBYQA (Bound Optimisation BY Quadratic Ap-
proximation; Powell, 2006). BOBYQA is found to be more robust and efficient than
more generic optimisation algorithms such as the Nelder-Mead simplex algorithm.
It performs well under the FP fitting demands of high dimensionality (simultaneous
optimisation of eight parameters) and large sample size (∼104 galaxies). The param-
eters in the BOBYQA algorithm that can be tuned to suit the particular function
being optimised are the initial and final tolerance lengths, ρbeg and ρend, and the
number of interpolation points between each iteration, Nint.

The optimal value for these parameters is dependent on the complex interplay
between the function being minimised, the number of dimensions, the number of
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Table 3.2: Summary of BOBYQA simulation results. For each simulation we list the
BOBYQA parameters, Nint, ρbeg and ρend, as well as the CPU time, t, and average number
of function evaluations per simulation, 〈Nevals〉, for ten independent fits.

Nint ρbeg ρend t (h:m) 〈Nevals〉
10 10−1 10−6 2:15 1298±393
14 10−1 10−6 1:28 642±104
17 10−1 10−6 1:18 587±102
20 10−1 10−6 1:02 556±102
30 10−1 10−6 0:56 449±52
45 10−1 10−6 1:11 527±65
10 10−2 10−6 2:04 1193±156
10 10−1 10−5 2:08 1008±127
10 10−1 10−6 2:15 1298±393
10 10−1 10−7 2:34 1141±195

fitted variables, the required accuracy of the minimised parameters, and the compu-
tation time expended. As such, it is difficult to derive the exact values analytically
(Powell, 2006). Therefore these three parameters were chosen after considerable
numerical experimentation by fitting to a realistic mock FP sample and varying
the parameters independently. Table 3.2 summarises the results of applying our
FP fitting method to the same mock sample, generated with the input parameters
{a = 1.5, b = 0.3, r̄ = 0.19, s̄ = 2.16, ū = 17.28, σ1 = 0.058, σ2 = 0.655, σ3 = 0.199},
for different BOBYQA parameters.

ρbeg is the initial value of the trust region radius used in the iterative procedure of
the function minimisation. Initially we set ρbeg = 10−1 as a sensible tolerance value
and increase it to 10−2, finding that is does not significantly impact the accuracy or
speed of the BOBYQA optimisation (Table 3.2).

ρend is the final value of the trust region radius used in the iterative procedure
of the function minimisation which we initially set to ρend = 10−6 and vary from
10−5−10−7. The simulation using ρend = 10−5 gave sufficient final accuracy but not
at the expense of computational time (c.f. ρend = 10−7).

Nint is an integer in the interval [n + 2, 1
2(n + 1)(n + 2)] where n is the number

of number of fitted parameters (in this case, n = 8). The value of Nint = 2n + 1

is recommended in Powell (2006) but tested with more sophisticated functions and
problems of higher dimensionality. Therefore we tested values in the range [10, 45]

and including the recommended value of Nint = 17 for our case. In practise, we found
the case of Nint = 30 was the most favourable simulation in both computational time
and number of function evaluations.

In summary, the values of the optimisation parameters that were found to be
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both efficient and giving the required accuracy were ρbeg = 10−1, ρend = 10−5 and
Nint = 30. The BOBYQA algorithm with these parameters was used for all the
fitting presented in this work.

3.5 Selection Criteria in the FP Model

Fundamental Plane studies must employ some form of model to analyse censored or
truncated data resulting from observational selection effects. If these models fail to
account for statistical effects that are due to selection, they run the risk of biasing the
fitting method being used to recover the FP. We now describe the dominant selection
limits—both hard and graduated—that pertain to FP data and how a maximum
likelihood fitting method can account for this censoring in a straightforward and
transparent manner.

A central velocity dispersion lower limit is typical of FP surveys, which are unable
to measure dispersions accurately for galaxies below the instrumental resolution of
the spectrograph. Because this limit is applied to just one of the FP parameters
(i.e. s), the appropriate 3D Gaussian normalisation is calculated by integrating over
the volume of the distribution that remains after the velocity dispersion cut, as
outlined in Section 3.3.2. In this way the likelihood is appropriately normalised and
the maximum likelihood method correctly accounts for the truncation of the FP in
velocity dispersion by this hard selection limit.

Most FP samples are drawn from flux-limited surveys, excluding galaxies fainter
than some apparent magnitude limit. This selection effect can be accounted for, as
per equations 3.13 and 3.12, by weighting the individual log-likelihood of each galaxy
by the inverse of its selection probability S; this is analogous to a 1/Vmax weighting
(Schmidt, 1968).

For the case of a FP survey with explicit redshift limits, the selection probability
is proportional to the fraction of the survey volume between these limits over which a
particular galaxy can be observed given the survey’s apparent magnitude limit. This
is a function of the limiting distance Dlim

n (in h−1 Mpc) out to which the galaxy n,
with an absolute magnitude Mn, can be observed given the survey magnitude limit
mlim in a given passband, and can be calculated as

Dlim
n = 100.2(mlim−Mn−25) . (3.15)

If the redshift czlimn corresponding to this luminosity distance is larger (smaller)
than the high (low) redshift limit of the survey, czmax (czmin), then a galaxy with
that absolute magnitude will definitely have been observed (or not) and the selection
probability is S = 1 (0). However, if czlimn is between the minimum and maximum
survey redshifts, then the selection probability is given by the fractional comoving
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volume in which it could be observed given the apparent magnitude limit. Therefore
the selection probability function is

Sn =


1 czlimn ≥ czmax

V (czlimn )−V (czmin)
V (czmax)−V (czmin) czmin < czlimn < czmax

0 czlimn ≤ czmin

(3.16)

where V (cz) is the comoving volume of the survey out to redshift cz. This definition
of Sn is similar to the selection probability of the EFAR survey, although their
selection probability function was based on a size parameter rather than absolute
magnitude (Saglia et al., 2001).

In addition to these selection effects, an FP sample may contain spurious outliers
whose significance is best characterised by a χ2 value. The χ2 for a particular galaxy
n can be calculated as

χ2
n = xT

n(Σ + En)−1xn . (3.17)

Note that this is twice the exponent of the Gaussian probability distribution of
equation 3.4 and appears in the final term of equation 3.13. Thus, χ2 measures the
departure of a galaxy in FP-space from a given 3D Gaussian model, and outliers can
be identified and removed based on their extreme (and extremely unlikely) values
of χ2. The refined sample, excluding these high-χ2 outliers, can then be re-fitted to
achieve an improved fit that is not biased by outliers.

3.6 Mock Galaxy FP Samples

We now describe the process of generating mock catalogues from a model that re-
produces all of the main features of the observed data sample as closely as possible.
It is important that the mock samples are robust and well calibrated, as they serve
several functions. We use them: to perform comparisons of different fitting methods
(§3.2.1); to validate the ML fitting method and the assumption of a 3D Gaussian
model for the data (§3.6.1 and §4.2.2); to correct for residual bias effects (§3.6.2);
and to determine the accuracy and precision of the fits (§3.8).

3.6.1 Mock Sample Algorithm

We create mock samples from a given set of FP parameters {a, b, c, r̄, s̄, ī, σ1, σ2, σ3}
using the following steps to generate each mock galaxy:

1. Draw values for v1, v2 and v3 at random from a 3D Gaussian with corresponding
specified variances σ1, σ2 and σ3.

2. Transform these values from the v-space (principal axes) coordinate system to
the {r, s, i}-space (observed parameters) coordinate system using the inverse
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Figure 3.7: The distribution of the observed Fundamental Plane parameters logRe, log σ0

and log〈Ie〉 for the 6dFGS J band sample (black) and a mock sample (red) of the same size
(Ng = 8901) and the same selection criteria, with FP coefficients a = 1.52 and b = −0.89.

of the relations in equation 3.10 with the specified FP slopes (a and b) and FP
mean values (r̄, s̄ and ī).

3. Generate a comoving distance from a random uniform density distribution over
the volume out to czmax = 16 120 km s−1 using the assumed cosmology. This
comoving distance is converted to an angular diameter distance in order to
calculate an angular effective radius from a physical effective radius.

4. The redshift of each mock galaxy is also derived from this comoving distance;
it must be greater than the lower limit on cz to remain in the mock sample.

5. Derive an apparent magnitude from the surface brightness and effective ra-
dius (in angular units) of each galaxy which are obtained at step (2), using
m =〈µe〉−2.5 log[2π(Rθe)

2].

6. Estimate rms measurement uncertainties from this magnitude using equa-
tion 2.13, via the prescription given in §2.7, and use these uncertainties to
generate Gaussian measurement errors in {r, s, i} from the error matrix in
equation 2.10 (including the correlation between εr and εi).

7. Add these measurement errors to {r, s, i} to obtain the observed values of the
FP parameters; the velocity dispersion must be greater than the lower selection
limit to remain in the mock sample.

8. Compute the observed magnitude using the observed values of r and i (i.e.
including measurement errors); it must be brighter than the limiting magnitude
for the galaxy to remain in the sample.

9. Compute the selection probability from the observed magnitude and redshift
using equations 3.15 and 3.16; it must be greater than the minimum selection
probability for the galaxy to remain in the mock sample.
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Figure 3.8: The distribution of the natural Fundamental Plane parameters v1, v2 and v3

for the 6dFGS J band sample (black) and a mock sample (red) of the same size (Ng = 8901)
and the same selection criteria, with FP coefficients a = 1.52 and b = −0.89.

This process is repeated until the desired number of galaxies is generated for the
mock sample.

Figure 3.7 compares the distributions of effective radius, velocity dispersion and
surface brightness for the 6dFGS J band FP sample and a mock sample generated
from the best-fitting 3D Gaussian model (see below) having the same number of
galaxies, the same selection criteria and the same observational errors. The mock
sample accurately replicates the distribution of the galaxies in FP space, both for
the observed parameters (r, s and i) and the ‘natural’ parameters (v1, v2 and v3),
which are shown in Figure 3.8. This close match between the model and the data
justifies our use of a 3D Gaussian model for the distribution of galaxies in FP space.

3.6.2 Residual Bias Corrections

The only effect that is not explicitly corrected for in the maximum likelihood fit-
ting process, and which introduces a (small) bias, is the exclusion of low-selection-
probability (i.e. high-weight) galaxies. These galaxies are excluded because: (a) they
may be outliers; and (b) they enter the likelihood with high weights and may there-
fore distort the fits. They cannot be directly accounted for in the ML fit because we
do not have an explicit model for the distribution of outliers.

In practice this bias is small because only a small number of galaxies are excluded,
and may be quantified under the assumptions of our model using mock samples. By
applying the same selection criteria to the mocks as we do to the data, we can recover
the correction ∆y for the residual bias in parameter y as the difference between the
value yobs obtained from fitting the observed data and the value ymock recovered as
the average from ML fits to many mock samples:

∆y = yobs − ymock (3.18)

where y can be any of the parameters describing the 3D Gaussian model of the FP,
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Figure 3.9: Residual bias for each of the fitted FP coefficients {a, b, r̄, s̄, ī, σ1, σ2, σ3} for
mock FP samples ranging in sample size from 102 − 104. The median from 200 mock
simulations for each sample size is plotted along with error bars scaled according to Ng; a
constant fit to these points is shown as a solid line. The (blue) dashed line represents the
final bias correction derived from mock samples of the best-fit J band FP.

{a, b, c, r̄, s̄, ī, σ1, σ2, σ3}. To correct fits to the observed data for residual bias, these
corrections should be added to the best-fit FP parameter values to recover the ‘true’
parameters:

ycor = yobs + ∆y . (3.19)

These bias corrections were obtained by fitting mock samples of increasing sample
size, with Ng ranging from 1000 to 10 000 galaxies (see Figure 3.9). For each sample
size, 200 mock simulations were generated and fit with the maximum likelihood
fitting method. The trend in bias as a function of sample size was fit with linear
regression, which appears as a solid line in Figure 3.9. For all fitted parameters the
bias correction was found to be constant for all sample sizes.

It is possible that the fitted parameters are covariant with each other, which
could result in a correlated bias between different parameters. However the residual
bias corrections are very small, and any covariance between the fitted parameters
has a negligible effect (with the exception of c, as it is derived from the other fitted
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Table 3.3: Residual bias correction for the best-fit FP coefficients. These corrections are
added to the fitted parameters to remove the residual bias. Note that these corrections are
small for all parameters.

a b c r̄ s̄ ī σ1 σ2 σ3

0.022 -0.008 -0.027 -0.006 -0.001 0.004 0.0002 0.0026 0.0013

parameters).
Once it was established that the bias induced by selection effects was robust

against sample size, we derived the final bias corrections from 200 mock samples of
the best-fit J band Fundamental Plane. This value was therefore employed as a fixed
bias correction for all parameters regardless of sample size. This correction is plotted
as a dashed line in Figure 3.9 to demonstrate its consistency and independence of
sample size; corrections are listed for each fitted FP parameter in Table 3.3.

3.7 Extending the 3D Gaussian FP Model

In this section, we propose two alternate FP models that extend the existing model
(derived in this chapter), with the intent of testing their robustness and efficiency in
later chapters. In doing so, we will establish our 3D Gaussian model to be superior
in both respects.

3.7.1 Additional σ-component of 3D Gaussian Vectors

Our 3D Gaussian model of the FP assumes that the s-component of the v2 vector is
zero; i.e. that the vector representing the longest axis of the 3D Gaussian lies wholly
in the r–i plane. This is based in part on previous studies (Saglia et al., 2001; Colless
et al., 2001b), and is also assumed for convenience and simplicity.

We can test how accurate this assumption is by extending the vector definitions
of equation 3.10 to include this component, with coefficient k, defining the set of
axes

v1 = r̂ − aŝ − b̂i,
v2 = r̂ − kŝ + (1− ka)̂i/b, (3.20)

v3 = (ka2 − a+ kb2)r̂ + (ka− 1− b2)ŝ + (kb+ ab)̂i

and then including this extra parameter in our fitting algorithm.

3.7.2 Additional Age Component in FP Model

The Fundamental Plane possesses an intrinsic scatter that can not be explained
entirely by measurement errors, and the origin of which is still a source of debate in
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the literature (see D’Onofrio et al. 2006 for a review). Studies of the Fundamental
Plane usually investigate whether galaxy properties correlate with residuals from
the plane in order to explain this scatter (e.g. Jorgensen, Franx & Kjaergaard, 1996;
Pahre, de Carvalho & Djorgovski, 1998; Bernardi et al., 2003b; Gargiulo et al., 2009;
Graves, Faber & Schiavon, 2009b).

In this section we develop the method to incorporate a trend in the direction
of the plane with the smallest scatter (v1 in our Gaussian model), as a means to
motivate its use in Chapter 5. Here we ascertain whether a trend in stellar content
(in particular, we will focus on galaxy age) can be incorporated into the FP model
and used to reduce the overall scatter of the FP by exploring a very simple extension
of the model that includes a linear trend with age through the FP.

We include an age component in our existing FP model by adding log age as a
fourth dimension in FP space along with r, s and i. We assume that age varies
almost entirely in the v1 direction (normal to the plane) as suggested by the results
of Springob et al. (2012). We therefore assume the v2 and v3 vectors have no age
component, and derive a fourth v−space vector that is orthogonal to the other three
vectors. The resulting vector definition of this new 4D Gaussian model is

v1 = r̂ − aŝ − b̂i − kAÂ,
v2 = r̂ + î/b,

v3 = −r̂/b− (1 + b2)ŝ/(ab) + î

v4 = r̂ − aŝ − b̂i + (1 + a2 + b2)Â/kA (3.21)

where kA is the component of A = log age in the v1 direction. Additional parameters
that need to be fitted along with kA in this model are the centroid of 4D Gaussian
in A (Ā) and the intrinsic scatter in the v4 vector (σ4); this gives a total of 11 free
parameters to be fitted.

Both the intrinsic variance matrix, Σ, and observed measurement error matrix,
E are also extended to four dimensions to include σ4 and age measurement errors
εA, respectively. If we assume that the age error measurements, εA, are uncorrelated
with errors in the other FP parameters, then for each galaxy, n, the revised error
matrix, En is

En =


ε2rn + ε2rpn 0 ρriεrnεin 0

0 ε2sn 0 0

ρriεrnεin 0 ε2in 0

0 0 0 ε2An .

 (3.22)

Finally, the selection effects from galaxy age are incorporated into the normalised
probability density function of the 4D Gaussian model in a similar way to Sec-
tion 3.3.2. For a 4D Gaussian with lower selection limits of rcut, scut and icut and
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Acut, this normalisation integral is

fn =

∫ ∞
rcut

∫ ∞
scut

∫ ∞
icut

∫ Acut

−∞

exp[1
2(xT

n(Σ + En)−1xn)]√
(2π)4|Σ + En|

dx (3.23)

where xn = (rn, sn, in, An). This integral is transformed using the same procedure
from Section 3.3.2 and again, there are no explicit selection limits in the r and i

direction (so rcut = icut = −∞). Equation 3.23 then reduces to

fn =

∫ 1

0

{
1− Φ

[
scut

C11
− C10

C11
Φ−1(w0)

]}∫ 1

0

(
1 + Φ

[
Acut

C33
− C30

C33
Φ−1(w0)

−C31

C33
Φ−1

{
(1− w1)Φ

[
scut

C11
− C10

C11
Φ−1(w0)

]
+ w1

}
− C32

C33
Φ−1(w2)

])∫ 1

0
dw

(3.24)

3.8 Performance of the ML model

The distribution of the parameters derived from ML fits to 1000 mock samples (each
sample containing 8901 galaxies, as for the 6dFGS J band sample) are shown in
Figure 3.10. Note that the residual bias corrections (the differences between the
input parameters and the mean of the fitted parameters) are comparable to or less
than the rms scatter in the fits (i.e. comparable to or less than the random errors in
the fitted values). This highlights the accuracy with which the ML method recovers
the FP parameters even in the presence of significant observational errors and various
types of sample censoring.

3.9 Summary

We have demonstrated that significant biasing can occur when deriving a best-fit
FP using least-squares regression, the predominant fitting method used in previous
studies. Standard regression techniques implicitly assume models that fail to accu-
rately represent the underlying distribution of galaxies in FP space, and moreover
do not fully account for observational errors and selection effects that tend to bias
the best-fit plane.

We show that a 3D Gaussian provides an excellent empirical match to the dis-
tribution of galaxies in FP space for the 6dFGS sample, and we use a maximum
likelihood fitting technique to properly account for all the observational errors and
selection effects in our well-characterised sample.

After considerable testing of brute force grid-search methods and a generic sim-
plex routine, a more sophisticated optimisation algorithm, BOBYQA, was chosen to
maximise the likelihood function of the 3D Gaussian model to accurately recover the
best-fit of the FP galaxies.
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Figure 3.10: Histograms of the maximum-likelihood best-fit values of the J band FP
parameters {a, b, c, r̄, s̄, ī, σ1, σ2, σ3} from 1000 simulations. Each panel is labelled at the
top with the name of the parameter, the input value of the parameter for the 1000 mock
samples, and the mean and rms of the best-fit parameters obtained from ML fits to these
mocks; a Gaussian with this mean and rms is overplotted on the histograms. The vertical
dashed line shows the input value of the parameter and the vertical solid line shows the
mean of the best-fit values. The residual bias correction (see §3.6.2) is the offset between
the dashed line and the solid line; in all cases this is comparable to or smaller than the
modest rms scatter in the fitted parameter.
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Realistic mock FP samples are simulated which closely match the distribution
of the galaxies in Fundamental Plane space and exhibit all the dominant selection
effects of the actual data. The accuracy of these mock simulations allows us to use
them to derive small corrections for any residual bias effects that aren’t explicitly
modelled in the fitting method.

Finally, a Monte-Carlo analysis using mock simulations was used to confirm that
a 3D Gaussian model fit with maximum likelihood gives superior results to regression
techniques and to show that all the fitted FP coefficients in the model are consistently
recovered with a high level of precision. This accuracy is measured for samples that
are subject to censoring in multiple variables and correlated uncertainties in the
FP parameters (in a way that simulates the data), demonstrating that the derived
maximum likelihood fitting method performs well under these demands and is an
unbiased and robust technique for fitting the Fundamental Plane.



Chapter 4
The NIR Fundamental Plane
4.1 Introduction

In this chapter we present the best-fitting Fundamental Plane to the 6dFGS J band
sample - the largest homogeneous near-infrared FP sample of early-type galaxies to
date. This best-fit plane is an unbiased determination of the FP, as the censoring
effects and correlated uncertainties present in the data are accounted for with the
robust maximum likelihood fitting algorithm described in the previous chapter.

We discuss the properties of the near-infrared Fundamental Plane (such as tilt
in the FP slopes) as derived from the 6dFGS data and how it differs from the more
prevalent optical FP derivations. A comparison of the 6dFGS FP is made to other
FP studies, in general, to investigate whether a coherent understanding of the FP
emerges from different observational data sets and different fitting techniques.

Once the global FP for our full sample is established, we then investigate the
galaxy populations within the sample and the physical implications of their distri-
bution in FP space. This includes quantifying how the FP varies between the J , H
and K near-infrared bands and also with respect to other multi-waveband survey FP
results. We determine the environmental dependencies of the FP by using proxies
for both local (surface density) and global (richness) galaxy environment. By fitting
the FP to galaxies that span a range of environments, we test the universality of the
FP and its consistency across galaxies in the field and galaxies in clusters. We also
classify the morphological mix of galaxies in our sample and determine whether dif-
ferent types of elliptical and bulge-dominated galaxies lie on the same Fundamental
Plane. We also consider if morphological outliers are dominating the scatter in our
FP measurements.

Lastly, we analyse scatter about the plane, noting the subtleties in the interpre-
tation of where the most probable position of a galaxy is, with respect to its size, in
relation to the Fundamental Plane. This has ramifications for measuring the errors
in FP distances that will be derived in Chapter 6, where the errors will be discussed
in more detail.
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4.2 The 6dFGS J band Fundamental Plane

Fundamental Plane studies in optical passbands are relatively abundant, while stud-
ies in near-infrared passbands are less so. It is only recently that large, homogeneous
FP data sets across both optical and near-infrared wavelengths have become available
(Hyde & Bernardi, 2009; La Barbera et al., 2010b). Using near-infrared photome-
try in FP analyses is advantageous because in these passbands the lower extinction
reduces the variations due to dust and the dominance of older stellar populations
reduces the variations due to recent star-formation (at least in the absence of a
significant population of intermediate-age AGB stars—cf. Maraston 2005). Compar-
ing optical and near-infrared observations can reveal the effect of variations in the
mass-to-light (M/L) ratios on the Fundamental Plane.

4.2.1 Fundamental Plane Parameters and Uncertainties

Figure 4.1 is a 3D visualisation of the 6dFGS J band FP sample. It is important
to show the 3D view of the FP, rather than the 2D plots usually found in the
literature, because information is lost in projecting the FP onto two dimensions
from its native three dimensions, and the true properties of the 3D distribution of
the FP are disguised.

Using our maximum likelihood fitting routine we recover the best-fit FP in the J ,
H andK passbands for samples containing 8901, 8568 and 8573 galaxies respectively.
The full details of the FP fits in these bands are given in Table 4.1, including all
eight fitted parameters together with the constant of the fit (c), the offset of the
plane in the r-direction (r0; see below), the total rms scatter about the FP in the
r-direction (σr), and the total rms scatter in distance (σd); the difference between
these two scatters is discussed in Section 6.3.3.

The errors in the best-fit FP parameters that are given in Table 4.1 are esti-
mated as the rms scatter in fits to multiple mock samples (generated as described in
Section 3.6) using the parameters of the best-fit FP as discussed in Section 2.7.

Both the bias corrections and the random errors are small; the fractional errors
in the FP slopes (a and b) and dispersions (σ1, σ2 and σ3) are all less than 2%. For
the offset of the FP, c ≡ r̄ − as̄ − b̄i, the uncertainty is 0.054 dex or 12%. However
as a measure of the uncertainty in the relative sizes and distances of galaxies due
to the fit, this ‘intercept’ offset is misleading. A better measure is the uncertainty
in r̄, which is 0.9%; but even this is an over-estimate of the practical impact of the
uncertainty in the fit, as the point (r̄, s̄, ī) is at the edge of the observed distribution
(i.e. the observed distribution is well-fitted by a Gaussian centred close to the velocity
dispersion limit). The most realistic estimate of the uncertainty is the r-axis offset of
the fitted FP, as it affects size and distance estimates for 6dFGS galaxies, given by the
uncertainty in r0, the r-value of the fitted FP at a fiducial point in the middle of the
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Figure 4.1: 3D visualisation of the 6dFGS J band Fundamental Plane in r, s, i space. The
best fitting plane (in grey) has slopes a = 1.523 and b = −0.885, and an offset c = −0.330.
The galaxies are colour-coded according to whether they are above (blue) or below (black)
the best-fit plane. (Readers viewing the digital version of this thesis using Acrobat Reader
v8.0 or higher can enable interactive 3D viewing of this schematic by mouse clicking on the
figure; see Appendix A for more detailed usage instructions.)
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Figure 4.2: Distribution of likelihood values from 1000 mock samples. The FP coefficients
used to generate these mock simulations are the same values used to generate the mocks
in Figure 3.10. The likelihood values in the red histogram were calculated for each mock
sample using these identical input FP values, whereas the likelihood values in the black
histogram were calculated using the individual best fit for each mock. The mean likelihoods
from these mocks (red: lnL = 20 878 ± 225; black: lnL = 20 897 ± 224) are indicated by
the solid lines, and are comparable to but lower than the best-fit likelihood obtained for the
actual data (lnL = 21 126), shown by the dashed black line.

observed sample: s0 ≡ 2.3 and i0 ≡ 3.2. Using r0 reduces the covariance between
fitted coefficients, as is the case when using mean-subtracted values, although we
compare the fits at a fiducial point so that the comparison between different FP fits
is consistent. The rms scatter in r0 ≡ as0 + bi0 + c is just 0.5%.

4.2.2 Likelihood Model Validation

That our 3D Gaussian model is a good representation of the observed distribution
of galaxies in FP space is verified by the remarkable similarities between the mock
and data likelihoods. The histogram of log-likelihood values in Figure 4.2 gives the
distribution from the same 1000 mock simulations as Figure 3.10, derived in two
ways: first by calculating the likelihoods for all the mocks using the best-fit FP of
the data (red histogram), and second, by calculating the likelihoods using the best-fit
FP values from each individual mock (black histogram). It makes little difference
which method is used, as the distribution of likelihoods for these two situations are
very similar.

The mean of each histogram (red: lnL = 20 878±225; black: lnL = 20 897±224)
is plotted as a solid line. The likelihood of the best fit to the actual data (lnL =

21 126) is shown by the dashed vertical line, and is larger than the means of the two
mock distributions but still well within the range of likelihoods spanned by the mock
samples. The fact that the likelihood recovered from the data is higher than that
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from the mocks (i.e. lnL is more positive) is a result of excluding the χ2 outliers
from the data, which may also remove the extreme tail of the Gaussian distribution.
Genuine outliers do not exist in the mock samples and so no χ2 clipping is applied,
and the lower likelihoods of the mock samples in Figure 4.2 reflect this difference. In
summary, the similarity in likelihood values indicates that the fitting algorithm has
accurately recovered the input FP and also that the 3D Gaussian model is a suitable
representation of the observed FP distribution.

4.2.3 Additional σ-component of 3D Gaussian Vectors

Our 3D Gaussian model of the FP assumes that the s-component of the v2 vector
is zero, to simplify the vector definition. In Section 3.7.1 we provided the vector
definition of the Gaussian model that includes this extra parameter (k), which we
can now use to test the accuracy of this assumption. We perform a nine-parameter
maximum likelihood fit with the same J band sample of galaxies, finding a best-fit
value k = 0.09± 0.01 and a J band FP given by

r = (1.51± 0.03)s− (0.86± 0.01)i− (0.39± 0.06) . (4.1)

Therefore, when there are no constraints placed on the components of v2, the
s-component is close to—but slightly larger than—zero. The coefficient of s is much
smaller than the coefficients of any of the other vector components, the intrinsic
scatter about the plane (σ1 = 0.052) is the same to within 0.5%, and the error in
distances is 24.3%, slightly larger than for the standard 8-parameter model (due to
the additional dependency on s, which has the largest observational errors). Hence,
the addition of a ninth parameter provides no practical advantages, and we retain
the simplifying approximation of fixing k ≡ 0.

4.2.4 Bayesian Model Selection

To justify our choice of the standard 3D Gaussian model, as defined in Section 3.4,
over the alternative models we have considered in Sections 3.7.1 and 3.7.2, we com-
pare these models using the Bayes information criterion (Schwarz, 1978).

The Bayes information criterion, or BIC, can be used to objectively choose be-
tween different models and determine whether increasing the number of free param-
eters in the model will result in overfitting. It has the advantages of being easy to
compute and independent of the assumed priors for the models, and in the limit of
large sample size it approaches −2 ln(B), where B is the the Bayes factor that gives
the relative posterior odds of the models under comparison. The BIC depends on
the size of the sample (N), the log-likelihood of the best fit (lnL), and the number



§4.3 Fundamental Plane Differences between Passband 77

of free parameters in the model (k), and is given by

BIC = −2 ln(L) + k ln(N) . (4.2)

The model with the lowest BIC value is preferred.

For the standard 8-parameter model of Section 3.4, the BIC value is −42 075, as
compared to −42 287 for the 9-parameter model including an additional σ component
in the v2 vector (Section 3.7.1) and −31 833 for the 11-parameter model including
age as an additional parameter (Section 3.7.2). Therefore the BIC indicates that the
11-parameter model including age is not an improvement on the standard model; this
will be explored further in Chapter 5. However the 9-parameter model that includes
a σ-component in the v2 vector does have a lower BIC value than the standard 8-
parameter model, and so is the objectively preferred model. We nonetheless choose to
employ the standard 8-parameter 3D Gaussian model because of its simpler physical
interpretation, reduced computational burden, and marginally better precision in
estimating distances.

4.3 Fundamental Plane Differences between Passband

Table 4.1 gives the best-fit FP parameters for each of the J , H and K bands. The
FP slopes a and b are consistent between these passbands at about the joint 1σ and
2σ levels respectively. All three samples also have the same (small) intrinsic scatter
orthogonal to the FP, σ1 = 0.05 dex (12%). Figure 4.3 illustrates the variation with
wavelength of the fitted FP slopes a and b, and also the offset of the FP in the r
direction (the latter quantified by r0). The figure shows the results of fitting FPs to
1000 mock samples in each passband with input parameters given by the best-fit FP
for the corresponding observed sample (as per Table 4.1). It also shows the mean
values of the fitted parameters for the mock samples, and the 1σ and 2σ contours
of their distributions. As expected, the bias-corrected mean coefficients accurately
recover the input values; for reference, the coefficients of the best-fit FP for the
observed J band sample are marked in each plot as a pair of dashed black lines.

The marginally significant (2σ) difference in the slopes between the J and K

bands may be due to the fact that J band mass-to-light ratios are almost independent
of metallicity, whereas this is not the case in the K band (Worthey, 1994). In this
regard it is worth noting that the J band FP is (marginally) closer to the virial plane
than the K band FP.

In the central and right panels, there is a clear offset in r0 between passbands,
with r0 increasing at longer wavelengths. We expect the differences in r0 between
passbands should be consistent with the mean colours. To quantify the mean differ-
ence in r0 (i.e. ∆r0) as a function of mean colour and surface brightness, we assume
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Figure 4.3: Uncertainties on the FP parameters for the 6dFGS J (yellow; Ng = 8901), H
(orange; Ng = 8568) and K (red; Ng = 8573) samples. The points show the best-fit FP
parameters for each of 1000 mock samples that take as input the best-fit FP parameters
for the observed sample in each band. The mean values of the fitted FP parameters from
the mocks, and their 1σ and 2σ contours, are also plotted. For reference, the input FP
parameters used to generate the samples for the J band are indicated as dotted lines. Left:
b versus a, showing similar FP coefficients although with a very weak trend of decreasing a
and increasing b with increasing wavelength. Centre: b versus r0, showing significant offsets
between the FPs in the three passbands. Right: a versus r0, again showing the FP offsets.

that the FP slopes are consistent in each band (a good approximation given the sim-
ilarity of the coefficients in Table 4.1) and that the galaxies are homologous. These
approximations lead to the following relation:

∆r0 = b(∆i0 + 0.4〈J −H〉) (4.3)

where 〈J−H〉 is the mean colour in the J and H bands (or similarly 〈J−K〉 for the
J and K bands) and ∆i0 is the mean difference in i0, the surface brightness offset of
the FP at a fiducial point (here taken to be s0 = 2.3 and r0 = 0.35). For b = −0.88,
the mean offset in r0 between J and H bands (as calculated from equation 4.3) is
−0.14 as compared to the offset of −0.12 observed directly from the fits (see the r0

values in Table 4.1). Similarly, for the J and K bands, the predicted ∆r0 is −0.19,
as compared to the observed offset of −0.17 from the fits.

The predicted values are very close to the offsets observed, so we conclude that the
offsets in r0 between passbands are a consequence of the mean colours, as expected.
Equivalently, allowing for the mean colours the FP is consistent between the J , H
and K bands.

4.4 Comparison to Literature

A summary of previous FP slope determinations from the literature is given in Ta-
ble 4.2, along with the passband, sample size and fitting method of each study.
Where more than one regression method was employed, the slopes from the orthog-
onal regression fit are given. The coefficients of surface brightness, b, were converted
to the units used in this work (i.e. as the coefficient of i ≡ log〈Ie〉 rather than 〈µe〉,
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where the conversion is bi = −2.5bµ). In those studies where an orthogonal rms
scatter about the plane was quoted (based on an orthogonal regression or ML fit),
we have listed this value in the σ⊥ column and converted it to an rms scatter in
the r ≡ logRe direction using σr = σ⊥(1 + a2 + b2)1/2 (for reference, this scaling
factor is 2.0 for a = 1.5 and b = 0.88). Note that the rms scatter in r ≡ logRe in
dex, δr, is conventionally converted to a fractional scatter in Re in percent, σr, using
σr ≡ (10+δr − 10−δr)/2.

Table 4.2 shows the increase over time in the size of the samples being studied and
also the variety of fitting techniques employed, with the more recent studies generally
preferring orthogonal regression or ML fits. The fitted value of the FP coefficient
of velocity dispersion, a, is typically found to be 1.2–1.4 at optical wavelengths and
1.4–1.5 in the near-infrared, as found in the most recent FP studies analysing large
data sets across multiple passbands (Hyde & Bernardi, 2009; La Barbera et al.,
2010a). Within individual studies in the optical, a tends to be larger in redder
passbands; between studies the differences are at least as large as this trend. This
trend, however, is observed across optical to near-infrared wavelengths, but (as here)
not over the JHK passbands (see Table 4.2). This implies, as expected, that there
is relatively little variation with mass or size in the dominant stellar populations
(and hence the stellar M/L) across these near-infrared passbands. By contrast, b
is generally consistent with being constant across passbands within any individual
study, although it varies over the range −0.74 to −0.90 when comparing different
studies.

A direct comparison of the 6dFGS FP to the results of other studies is constrained
by the fact that only one study uses J andH band samples (La Barbera et al., 2010a),
and only two studies useK band samples (Pahre, Djorgovski & de Carvalho, 1998; La
Barbera et al., 2010a). Moreover, neither of these studies use a ML fitting technique,
so we have chosen to compare with orthogonal regressions, where available, as the
next-best fitting method. Our s ≡ log σ0 slope (a = 1.52) is consistent with the other
near-infrared FP fits in being steeper than is generally found in optical passbands.
Our i ≡ log〈Ie〉 slope (b = −0.89) is at the upper end of the range of previous results.
Due to the large sample and homogeneous data afforded by the 6dFGS, the fractional
errors on both slopes (for a less than 2% and for b less than 1%) are significantly
smaller than is the case for older FP samples, and comparable to those obtained for
the similarly large and homogeneous SDSS and UKIDSS samples (Hyde & Bernardi,
2009; La Barbera et al., 2010a).

The recent SPIDER FP study by La Barbera et al. (2010a) provides the closest
match to 6dFGS in both sample size and passbands: we can compare the J , H
and K ML Gaussian FP fits for more than 8500 6dGFS galaxies with orthogonal
regression FP fits in the same bands for 4589 SPIDER galaxies. The two studies
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obtain almost identical values of a in the J band (1.52 and 1.53), but 6dFGS finds a
to be significantly smaller in theH andK bands (1.47 and 1.46), while SPIDER finds
slightly larger values in these bands (1.56 and 1.55). The differences between the
two studies in the H and K band values of a are significant relative to the estimated
uncertainties (3.2σ). Within each of the 6dFGS and SPIDER studies the values of
b are consistent across the three bands; however 6dFGS finds b in the range −0.89

to −0.86, while SPIDER obtains a higher value, b = −0.79. This difference in b is
highly significant relative to the estimated uncertainties (>8σ), but may be at least
partly attributed to the fact that orthogonal regression tends to find systematically
higher values of b, as shown in Figure 3.2.

As well as comparing the slopes of the FP fits, it is interesting to consider the
scatter about the FP found in different studies. The rms scatter about the FP
relation projected in the logRe direction (σr in Table 4.2) is usually taken as an
estimate of the rms uncertainty in distances and peculiar velocities when the FP is
used as a distance estimator. This uncertainty is widely quoted as being 20% or
even smaller, a figure reflected in Table 4.2 for the older FP samples. However the
scatter in logRe calculated in this way for the most recent studies (La Barbera et al.,
2008; Hyde & Bernardi, 2009; La Barbera et al., 2010a), and for the 6dFGS sample,
is in fact almost 30%. This is somewhat surprising, given that these recent samples
are large and generally contain good-quality homogeneous measurements of the FP
parameters. In part the difference may be due to the fact that these larger samples
may contain a more heterogeneous mix of galaxy types than the older ‘hand-picked’
samples (see Section 4.6 below). However a major source of this discrepancy is that
it is not correct to interpret the rms scatter about an orthogonal regression or ML
fit, projected in logRe, as the uncertainty in distance. As discussed in detail in
Section 6.3.3, if one correctly accounts for the distribution of galaxies in the FP,
then the true distance error, σd, is significantly smaller than σr. For the 6dFGS
sample, while the rms scatter about the FP in the logRe direction is σr = 29%, the
rms scatter in the distance estimates is in fact σd = 23%. This difference is discussed
in detail in Section 6.3.3.

4.5 Environment and the Fundamental Plane

We investigate possible variations in the FP with group environment, characterised
by richness, and with local environment, characterised by a nearest-neighbour density
measure.

4.5.1 Galaxy Richness

First, we consider potential environmental effects that correlate with the scale of
the dark matter halos that galaxies inhabit, using the richness estimates from the
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group catalogue described in Section 2.8.1, as a proxy for halo mass. We define
four subsamples according to richness NR: galaxies in the field or very low richness
groups (NR ≤ 1), galaxies in low-richness groups (2 ≤ NR ≤ 5), galaxies in medium-
richness groups (6 ≤ NR ≤ 9), and those galaxies in high-richness groups and clusters
(NR ≥ 10). There are 6495 field galaxies, 1248 in low-richness groups, 546 in medium-
richness groups, and 612 in high-richness groups and clusters.

The distribution of these richness subsamples in FP space can be viewed in
the 3D visualisation of Figure 4.4, where the galaxies in the 6dFGS J band FP
sample are colour-coded by the richness of the group environment they inhabit.
From examination of these distributions it is apparent that these subsamples tend
to populate similar FPs. This is broadly confirmed by the best-fit FP parameters
for each of these richness subsamples given in Table 4.1. The FP slopes a and b

are similar within 1σ for all four richness subsamples and the full J band sample,
and the offset of the FP, given by r0, is similar for the three subsamples of galaxies
in groups. The one significant difference is between the offset for the field galaxy
subsample and the group subsamples.

These similarities and differences are clarified in Figure 4.5, which shows the
best-fitting parameters of each richness subsample, along with the 1σ and 2σ error
contours determined from 200 mock samples. The consistency of the FP slopes is
shown in the left panel of this figure, while the difference in FP offsets between the
field and group subsamples is shown in the centre and right panels. This offset is
∆r0 ≈ 0.02 dex, which is relatively small compared to the total scatter in r of the full
sample (σr = 0.127 dex). Nonetheless, it corresponds to a systematic size or distance
offset of about 4.5%, and is statistically significant at >3.7σ. Such an offset would
have an appreciable impact on estimates of the relative distances of field and group
galaxies if it were not accounted for.

4.5.2 Local Galaxy Density

We repeat the above analysis for the sample of 8258 galaxies for which we have local
environment estimates, as described in §2.8.1. This sample is divided by local surface
density (Σ5) into three approximately equal-sized subsamples: 2664 galaxies in low-
density environments (Σ5 ≤ 0.07), 2812 galaxies in medium-density environments
(0.07 < Σ5 ≤ 0.25) and 2782 galaxies in high-density environments (Σ5 > 0.25).
We fit FPs to each of these subsamples individually, deriving the best-fit parameters
given in Table 4.1. The coefficient of velocity dispersion, a, is similar across the three
subsamples and also with respect to the global sample. There is weak variation
(at the 2σ level), in the surface brightness coefficient, b, with galaxies in denser
environments tending to have an FP with a shallower b slope; galaxies in the low
surface density sample exhibit the largest variation in b from the global FP. However,
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Figure 4.4: 3D visualisation of the 6dFGS J band Fundamental Plane with individual
galaxies colour-coded by the richness of the group environment they inhabit: 6495 field
galaxies in black; 1248 galaxies in low-richness groups in blue; 546 galaxies in medium-
richness groups in green; and 612 galaxies in high-richness groups in red (these richness
classes are defined in the text). The best-fitting plane (in grey) for the entire sample (with
a = 1.523, b = −0.885 and c = −0.330) is shown for reference. (Readers viewing the digital
version of this thesis using Acrobat Reader v8.0 or higher can enable interactive 3D viewing
of this schematic by mouse clicking on the figure; see Appendix A for more detailed usage
instructions.)
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Figure 4.5: As for Figure 4.3, but comparing the FP fits to four richness samples spanning
field (grey; Ng = 6495), low richness (blue; Ng = 1248), medium richness (green; Ng = 546)
and high richness (red; Ng = 612) galaxy samples. The points in each panel are the fits to
200 mocks of each of these four subsamples; the large black circles show the means and the
ellipses the 1σ and 2σ contours of the distribution of fitted parameters. The dashed lines
show, for reference, the best-fit parameters for the full J band sample.
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Figure 4.6: As for Figure 4.3, but comparing the FP fits to three local surface density, Σ5,
samples spanning low Σ5 (blue; Ng = 2664), medium Σ5 (green; Ng = 2812) and high Σ5

(red; Ng = 2782) galaxy samples. The points in each panel are the fits to 200 mocks of each
of these three subsamples; the large black circles show the means and the ellipses the 1σ and
2σ contours of the distribution of fitted parameters. The dashed lines show, for reference,
the best-fit parameters for the full J band sample.

the strongest trend with local environment is in the offset of the FP, where r0 is
systematically smaller for galaxies with higher surface density. The significance of
this trend is clearly shown in the centre and right panels of Figure 4.6, where we plot
the best-fit FP slopes, a and b, and the r0 offset from 200 mock simulations of each
local surface density subsample.

Comparing the local density FP fits illustrated in Figure 4.6 to those for richness
shown in Figure 4.5, we find the same consistency in a and the same trend with
environment in r0. The general, although not monotonic, trend in b as a function of
local surface density is not seen for global environment, although this may possibly
be because our higher richness subsamples have too few galaxies to recover such a
weak trend.

4.5.3 Comparison to Literature

Suggestions of environmental dependence in the FP (or the Dn–σ relation) first
emerged in studies where a weak offset between galaxies in clusters (such as Coma
and Virgo) and the field was detected (Lucey, Bower & Ellis, 1991; de Carvalho &
Djorgovski, 1992). However it was later suggested that these differences could be
attributed to errors in measurement, as no such offset in the FP was subsequently
found between field and cluster galaxies in other similar studies (Burstein, Faber &
Dressler, 1990; Lucey et al., 1991; Jorgensen, Franx & Kjaergaard, 1996). As samples
of early-type galaxies increased, and the range covered in environment and mass was
extended, trends with environment were found for local density indicators such as
cluster-centric distance (Bernardi et al., 2003b) and local galaxy density (D’Onofrio
et al., 2008). The latter study also found a strong trend in the FP slopes a and b
with local galaxy density, but no trend with global environment parameters such as
richness, R200 and group velocity dispersion.
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More recently, La Barbera et al. (2010c) explored the role of environment in
the FP and found a strong trend with local galaxy density (and a weaker trend
with normalised cluster-centric distance), independent of passband. Evidence of this
trend is indicated by a lower offset of the FP for galaxies in high-density regions
compared to low-density regions, consistent with previous results (Bernardi et al.,
2003b; D’Onofrio et al., 2008). The slope a was found to decrease in high-density
regions (in all passbands), while b tended to weakly increase with local galaxy density
(a trend that disappears in the near-infrared). Similar trends in the FP parameters
were found for galaxies in groups and the field.

The results obtained for the 6dFGS sample are consistent with other recent stud-
ies, in that the variation of the FP is more pronounced for parameters that reflect
local density or environment than for those that are proxies for global environment.
Even though we compare the offset between FPs using r0 rather than c (as La Bar-
bera et al. 2010c do), the trend we find with surface density (i.e. lower r0 for galaxies
in higher-density environments), is at least qualitatively consistent with that of the
SPIDER study. However, to anticipate the discussion in Section 5.4, these variations
in the FP with environment are smaller than the variation found with age; if the age
of the stellar population is indeed the main driver of FP variations, then the environ-
mental variations may be primarily the result of correlations between environment
and stellar population.

4.6 Morphology and the Fundamental Plane

We examine the morphological variation of the Fundamental Plane using a visual
classification of each galaxy morphology from multiple experienced observers, as
described in Section 2.5. The J band FP sample was divided into two morphological
subsamples: 6956 elliptical and lenticular galaxies (those classified as E, E/S0 or S0)
and 1945 early-type spiral bulges (those classified as S0/Sp or Sp and having bulges
filling the 6dF fibre aperture). Note that the initial NIR selection criteria mean
there are relatively few of the latter class, and that these may have some degree of
bias towards larger logRe. We do not separate the E and S0 galaxies into separate
subsamples since there is significant overlap in our morphological classifications for
these two classes. We note that the FP is, in general, found to be consistent between
samples of E and S0 galaxies (Jorgensen, Franx & Kjaergaard, 1996; Colless et al.,
2001b), and that, in fitting the E and S0 galaxies as one morphological subsample,
we find the same scatter about the FP as for the full sample.

Figure 4.7 is a 3D visualisation of the J band FP sample colour-coded by mor-
phology, with the ellipticals and lenticulars in red and the early-type spiral bulges
in blue. This figure shows that the two morphological subsamples populate slightly
different locations within the FP, with the early-type spiral bulges more common at
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Figure 4.7: 3D visualisation of the 6dFGS J band Fundamental Plane in r,s,i space. The
best-fitting plane (in grey) for the J band (with a = 1.523, b = −0.885 and c = −0.330) is
plotted for reference. The galaxies are colour-coded according to morphology: 6956 early
types in red and 1945 late types in blue (these morphological classes are defined in the
text). The best-fitting plane (in grey) for the entire sample (with a = 1.523, b = −0.885
and c = −0.330) is shown for reference. (Readers viewing the digital version of this thesis
using Acrobat Reader v8.0 or higher can enable interactive 3D viewing of this schematic by
mouse clicking on the figure; see Appendix A for more detailed usage instructions.)

larger logRe.
The best-fit FP parameters for these two subsamples are given in Table 4.1, and

their relative values and errors are illustrated using mock samples in Figure 4.8. The
figure shows that the FP slopes, a and b, are consistent for the different morphologi-
cal classes but that the offset in logRe, while small (∆r0 = 0.045 dex) relative to the
overall scatter in logRe, is highly significant (7σ) and corresponds to a systematic
error of 10% in sizes and distances. An offset of this amplitude would have a sub-
stantial impact on estimates of the relative distances of E/S0 galaxies and Sp bulges
if it were not accounted for.

4.6.1 Morphological Dependence of Size Offset

In addition to the difference in FP offset, there is a large shift in the centroid of the
distribution within the FP, with the early-type spiral bulges having r̄ = 0.304 while
the ellipticals and lenticulars have r̄ = 0.155; i.e. the spiral bulges are typically 35%
larger. We speculate that this may be due to the selection criteria imposed, namely
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Figure 4.8: As for Figure 4.3 but comparing the FP fits to the two morphological subsam-
ples: 6956 elliptical and lenticular galaxies (E/S0) in red and 1945 early-type spiral bulges
(Sp bulges) in blue; the full J band sample of 8901 galaxies is shown in grey. The points
in each panel are the fits to 200 mocks of the two morphological subsamples and to 1000
mocks of the full sample; the large black circles show the means of the fitted parameters
and the ellipses show the 1σ and 2σ contours of the distribution. The dashed lines show,
for reference, the best-fit parameters for the full observed J band sample.

that the spiral bulges had to fill the 6dF fibre apertures.
In fact, this offset is evident in the distribution of apparent angular size (logR0)

for each of these subsamples (see Figure 4.9) where the mean and distribution of the
E/S0 galaxies (in red) is more similar to the global FP sample (in black). The spiral
bulges (in blue), however, have a mean apparent size that is on average larger than
the early-types and closer to that of the 6dF fibre aperture size (R0 = 6.7 arcsec).

We therefore re-sampled the elliptical/lenticular sample to have the same appar-
ent size distribution as the spiral bulges (distribution shown in green in Figure 4.9),
and re-fit the FP to this subsample; this did not induce an offset in r0 as observed in
the spiral bulges as seen in Figure 4.10. The size-selected subsample has FP slopes
and an r0 offset comparable to the E/S0 subsample. We conclude that this offset is
not primarily a selection effect, but rather a real difference between the FPs of the
ellipticals/lenticulars and the early-spiral bulges.

4.7 The Fundamental Plane as a 3D Gaussian

Although throughout this thesis we emphasise the value of fitting a 3D Gaussian
model to the FP, we emphasise that we are not saying that the intrinsic FP is
necessarily Gaussian. That may be the case in some axes, but in others (e.g. in
luminosity or velocity dispersion) the intrinsic distribution very likely takes some
other form (such as a Schechter function)—a form that is only approximated by a
Gaussian over the range of values in our sample (i.e. the bright/large/massive end
of the distribution).

We have chosen to use a Gaussian model because it is computationally easy and
because empirically it fits the data in our sample (as evidenced by Figure 3.8). In
practice the observed FP is consistent with (well modelled by) a Gaussian partly due
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Figure 4.9: Apparent size distribution (raw logR0 in units of arcseconds) for the full FP
sample (black; Ng = 8901), E/S0 subsample (red; Ng = 6956), spiral bulges subsample
(blue; Ng = 1945) and size-selected subsample (green; Ng = 1909). The 6dF fibre size, i.e.
R0 = 6.7 arcsec is plotted for comparison.
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Figure 4.10: As for Figure 4.3 but comparing the FP fits to the two morphological sub-
samples (same as for Figure 4.8: 6956 elliptical and lenticular galaxies (E/S0) in red and
1945 early-type spiral bulges (Sp bulges) in blue; the size-selected morphology subsample
(E+S0:sz) of 1945 galaxies in green; the full J band sample of 8901 galaxies is shown in grey.
The points in each panel are the fits to 200 mocks of the three morphological subsamples
and to 1000 mocks of the full sample; the large black circles show the means of the fitted
parameters and the ellipses show the 1σ and 2σ contours of the distribution. The dashed
lines show, for reference, the best-fit parameters for the full observed J band sample.
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Figure 4.11: The κ-space distribution of the 6dFGS J band FP sample (black) and the
galaxies excluded by our selection criteria from a corresponding mock sample (red). Left:
the κ3–κ1 projection of the FP showing the best-fit 6dFGS relation (κ3 ∝ 0.110κ1, solid
line) and the lower limit on M/L as a function of mass (2

√
3κ3−

√
2κ1 > −4.0; long-dashed

line). Centre: the κ2–κ1 projection showing the upper limit defining the ‘zone of exclusion’
for dissipation (κ1 +

√
3κ2 < 12.3; short-dashed line) corresponding to the Bender, Burstein

& Faber (1992) B band limit (κ1 + κ2 < 7.8); also the apparent lower limit on luminosity
density (

√
3κ2 − κ1 > 2.0; long-dashed line). Right: the κ3–κ2 projection.

to either (or both) the sample selection criteria and the observational errors. The
errors are approximately Gaussian and are relatively large in the raw quantities r,
s and i (although not in some combined quantities like r − bi). Convolved with the
intrinsic FP, they give the distribution a more Gaussian form.

This effect is compounded by the selection criteria. For example, the velocity
dispersion cut-off truncates the probable Schechter function of the intrinsic distri-
bution in such a way that the the truncated distribution can be fit by a truncated
Gaussian (the exponential part of a Schechter function is similar to a Gaussian that
is truncated near its peak). This truncated distribution is then blurred and made
more Gaussian by the observational errors.

In sum, although a Gaussian intrinsic distribution is statistically a sufficiently
good model for the data in the 6dFGS sample (as well as being computationally
convenient), the substantial effects due to the sample selection criteria and observa-
tional errors mean that we cannot conclude that the underlying physical distribution
is Gaussian. While the ML method successfully fits a Gaussian to the intrinsic FP
distribution, a more realistic distribution might fit as well or better.

4.7.1 The Fundamental Plane in κ-space

Bender, Burstein & Faber (1992) proposed studying the FP using κ-space, a co-
ordinate system related to key physical parameters such as galaxy mass (M) and
luminosity (L). Bender et al. took as their observed parameters log σ2

0, log Ie and
logRe (with σ0 in units of km s−1, Re in units of kpc and Ie in units of L� pc−2)
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and defined κ-space in terms of the orthogonal set of basis vectors given by

κ1 ≡ (log σ2
0 + logRe)/

√
2 = (2s+ r)/

√
2,

κ2 ≡ (log σ2
0 + 2 log Ie − logRe)/

√
6 = (2s+ 2i− r)/

√
6,

κ3 ≡ (log σ2
0 − log Ie − logRe)/

√
3 = (2s− i− r)/

√
3. (4.4)

In this coordinate system, κ1 is proportional to logM , κ2 is proportional to log(M/LI3
e )

and κ3 is proportional to log(M/L).

FP samples in κ-space (Bernardi et al., 2003b; Burstein et al., 1997; Kourkchi
et al., 2012) are often plotted in the κ3–κ1 projection (to show an almost edge-on
view of the FP) and the κ2–κ1 projection (to show an almost face-on view of the
FP). Figure 4.11 shows the κ-space distribution for the J band 6dFGS FP sample
(black points) in all three 2D projections of κ-space. The galaxies rejected from a
mock set of galaxies by the 6dFGS sample selection criteria are also shown (in red)
to illustrate the effects of censoring on the observed κ-space distribution.

We can compute the principal axes of the FP distribution in (r, s, i)-space,
(v1, v2, v3), in terms of (κ1, κ2, κ3) using the inverse of the transform defined by
equation 4.4 to map from κ-space to (r, s, i)-space followed by the transform defined
by equations 3.10 & 3.11 to then map to (v1, v2, v3). Inserting the values of a and b
for the best-fit J band FP given in Table 4.1, we obtain

v1 = +0.083κ1 + 0.002κ2 − 0.754κ3 ,

v2 = −0.469κ1 + 0.882κ2 − 0.050κ3 ,

v3 = −0.631κ1 − 0.312κ2 + 0.422κ3 . (4.5)

As expected, v1 (the direction normal to the FP) is very close to κ3, which is pro-
portional to logM/L. However, because the transformation from (r, s, i)-space to
κ-space is non-orthogonal, there is significant mixing in κ-space between v1 and v3,
with v1 · v3 = −0.6.

In κ-space the best-fit J band FP derived in (r, s, i)-space is given by

κ3 = 0.110κ1 + 0.002κ2 + 0.216 . (4.6)

This is significantly shallower than the relation found by Bender, Burstein & Faber
(1992), which was κ3 ∝ 0.15κ1 (although the difference is in part due to the fact that
Bender et al. were working in the B band and the 6dFGS result is for the J band).
Because the coefficient of κ2 is so small, equation 4.6 is essentially a relation between
κ3 ∝ logM/L and κ1 ∝ logM . Neglecting the κ2 term and using the definitions of
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κ1 and κ3 given in equation 4.4 yields

logM/L√
3

= 0.110
logM√

2
+ constant , (4.7)

which corresponds to M/L ∝M0.135.

It is illuminating to derive this same relationship starting from the assumption
that mass-to-light ratio has a simple power-law dependency on mass. Letting m =

log M and l = log L, and assuming that (ignoring constants) m = 2s + r and
l = 2r + i, if the mass-to-light ratio is a power of mass, m − l = αm, then we can
write the FP as

r = 2

(
1− α
1 + α

)
s−

(
1

1 + α

)
i+ constant . (4.8)

By equating FP coefficients with equation 3.2 we get two relations for α, namely
α = (2 − a)/(2 + a) and α = −(1 + b)/b. For an arbitrary FP relation there is
no requirement that these two relations give consistent values for α. However, as it
happens, for the particular values a ≈ 1.52 and b ≈ −0.88 that are very close to the
best-fit J band FP for the 6dFGS sample, these relations give consistent values of
α ≈ 0.136. Hence our best-fit FP is consistent with (but does not require) a simple
scenario in which mass-to-light ratio is a power of mass, namely M/L ∝M0.136 (or,
equivalently, M/L ∝ L0.157).

This relation (strictly, the relation given by equation 4.6) is shown as the solid
line in Figure 4.11. Because the transformation from (κ1, κ2, κ3) is, by definition,
orthogonal to (r, 2s, i) but not orthogonal to (r, s, i), the transformation from (r, s, i)-
space to κ-space does not preserve the shape of the 3D Gaussian and consequently
this relation is not a particularly compelling description of the κ-space distribution.

The 6dFGS galaxies respect the zone of exclusion in the κ1–κ2 plane noted by
Bender, Burstein & Faber (1992), corresponding to an upper limit on the amount of
dissipation that a hot stellar system of a given mass undergoes. This limit is indicated
by the short-dashed line in the centre panel of Figure 4.11, given by κ1+

√
3κ2 < 12.3.

The long-dashed line in the same panel provides another limit,
√

3κ2 − κ1 > 2.0,
corresponding to a lower bound on the luminosity density, L/R3 of an early-type
galaxy of a given mass. However this requires further investigation, as more compact
galaxies may be catalogued in the 2MASS database as stars and consequently would
be excluded from our study. The sharpest and most striking limit is that indicated
by the long-dashed line in the left panel of Figure 4.11, 2

√
3κ3−

√
2κ1 > −4.0. This

implies that for these early-type galaxies there is a minimum mass-to-light ratio that
increases with increasing mass as (M/L)min ∝ M1/2. Since these galaxies all have
similar stellar populations, this suggests that more massive galaxies have a maximum
stellar-to-total mass ratio that decreases as M−1/2.
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4.8 Fundamental Plane Scatter

In general, the total scatter in r that we recover for the 6dFGS FP (σr ≈ 29%)
is comparable to that found in other recent studies (Gargiulo et al., 2009; Hyde &
Bernardi, 2009; La Barbera et al., 2010a), but larger than the value typically quoted
as the FP distance error (σr ∼ 20%) found in earlier studies (see Table 4.2). However,
it is important to note that the larger value of σr found in recent studies (and here)
is the rms scatter, projected along the r-direction, about the best-fitting orthogonal
or maximum-likelihood FP. In §6.3.3, we show that this over-estimates the actual
FP distance errors.

Here we examine the individual components contributing to the overall scatter
about the FP. This scatter results from a combination of intrinsic scatter in the FP
relation (the physical origins of which are subject to investigation), observational
errors and contamination from outliers (such as non-early-type galaxies or merging
objects). To understand how each of these contribute to the total rms scatter in r,
we split σr into the quadrature sum of these components:

σ2
r = (aεs)

2 + ε2X + σ2
r,int . (4.9)

The first term represents the effect of the rms observational scatter in velocity dis-
persion, εs, on the overall scatter in r. Because εs is scaled by a, the FP coefficient
of s, this term is larger for samples with larger FP slopes. Since a tends to increase
with wavelength (a ≈ 1.2–1.4 in optical passbands and a ≈ 1.4–1.5 in near-infrared
passbands), this term is generally larger for near-infrared selected samples (such as
6dFGS) than for optically selected samples (such as SDSS). The rms velocity dis-
persion error of the 6dFGS sample is εs = 0.054 dex (i.e. 12%, comparable to other
large survey samples; see Campbell, 2009). So, given our J band slope of a = 1.52,
this term amounts to a contribution to the overall scatter of about 18%. To more
directly determine the effect of the errors in s on the FP fits, we have fitted subsam-
ples restricted to smaller εs values (see Table 4.3). While we find no change in the
FP slopes (at the 1σ level), there is a small but significant change in the offset, and a
modest reduction (at most 5%) in the overall scatter in logRe, consistent with that
expected from the smaller value of εs and the above formula for the total scatter.

The second term in equation 4.9 is the rms observational scatter in the combined
photometric quantity XFP ≡ r−bi, which accounts for the high degree of correlation
between the measurement errors in r and i (see §2.7). This correlation conspires to
make the value of this term negligible in comparison to the other terms; for all the
6dFGS passbands, εX ≤ 4%.

The final term represents the intrinsic scatter of the FP relation in the r direction.
For a pure 3D Gaussian distribution the intrinsic scatter in r would be given by
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Table 4.3: Best-fit FP dependence on velocity dispersion error, εs. As well as the εs selection
criteria for each subsample we list the number of galaxies, Ng, maximum likelihood fitted
FP slopes, a and b, r0 offset and rms scatter about the r-direction, σr (in dex).

εs Ng a b r0 σr

no limit 8901 1.523±0.026 -0.885±0.008 0.345±0.002 0.127 (30%)
≤0.07 7913 1.523±0.026 -0.896±0.009 0.346±0.002 0.124 (29%)
≤0.06 6694 1.529±0.029 -0.903±0.010 0.349±0.002 0.122 (28%)
≤0.05 4692 1.528±0.032 -0.909±0.011 0.356±0.003 0.118 (27%)
≤0.03 1855 1.558±0.053 -0.894±0.018 0.376±0.005 0.108 (25%)

σr = σ1(1 + a2 + b2)1/2, which, for our typical values of a = 1.5 and b = −0.88,
yields σr ≈ 2.0σ1. However, because our observed distribution is heavily censored
by our selection criteria, the actual distribution of galaxies in FP space is a truncated
3D Gaussian, and so we cannot apply this formula. Instead we must calculate σr
either from equation 4.9, taking the difference between the total scatter and the rms
measurement errors, or as the rms scatter in r − as − bi for mock samples drawn
from the same intrinsic 3D Gaussian and the same selection criteria, but with no
measurement errors. Both these approaches yield the same estimate for the intrinsic
scatter in r for our J band sample: σr,int≈ 23%. The intrinsic scatter is therefore
the single largest contributor to the overall scatter about the 6dFGS FP.

Thus we have our total scatter in r of 29% being the quadrature sum of 18%
scatter from the measurement errors in velocity dispersion, 4% scatter from the
measurement errors in the photometric quantities, and 23% scatter from the intrinsic
dispersion of the FP distribution.

4.9 Summary

With the maximum likelihood approach from Chapter 3 we obtain a best-fit FP
in the 2MASS J band of Re∝σ1.52±0.03

0 I−0.89±0.01
e . Fits in the H and K bands

are consistent with this at the 1σ level once allowance is made for differences in
mean colour, implying thatM/L variations along the FP are consistent among these
near-infrared passbands.

We investigate possible changes in the FP with environment, looking for varia-
tions with both global environment (quantified by group or cluster richness) and local
environment (quantified by the surface density to the fifth-nearest neighbour). We
find little variation of the 6dFGS FP slopes (i.e. the coefficients of velocity dispersion
and surface brightness) with either of these measures of environment. However there
is a statistically and physically significant offset of the FP with environment in the
sense that, at fixed velocity dispersion and surface brightness, galaxies in the field
and low-density regions are on average about 5% larger than those in groups and
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higher-density regions.
Morphological classification of our FP sample allows us to separate the galaxies

into two broad types: elliptical (E) and lenticular (S0) galaxies are combined into
one subsample and early-type spiral (Sp) galaxies define the other type. For the
latter, the construction of our sample means that we are effectively determining the
FP parameters for the bulges of these galaxies. We find that this sample of early-
type Sp bulges has FP slopes and scatter consistent with the E/S0 galaxy sample,
although the FPs are offset in the sense that, at fixed velocity dispersion and surface
brightness, early-type Sp bulges are on average about 10% larger than E/S0 galaxies.
Contrary to our expectations, this does not appear to be a selection effect. Since the
6dFGS FP sample is dominated by E/S0 galaxies (6956 E/S0’s and 1945 Sp bulges),
the additional scatter in the overall FP from the offset in the FPs of the two types
of galaxies is negligible.

Lastly, we deconstruct the scatter in r about the FP, σr, into contributions from
observational errors and intrinsic scatter, and find that the overall scatter of 29% is
the quadrature combination of an 18% observational contribution and a 23% intrinsic
contribution. The observational contribution is strongly dominated by the velocity
dispersion errors, and compounded by the fact that the FP slope is steeper in near-
infrared passbands than in optical passbands—the FP coefficient of σ0 is a ≈ 1.5 for
J , H and K and a ≈ 1.2–1.4 for B, V and R, so the same error on σ0 contributes
15–50% more scatter to σr for the near-infrared FP than the optical FP.

The overall scatter in Re about the 6dFGS FP is larger than the widely-quoted
value of 20%, but in fact is consistent with virtually all recent studies of large samples
of galaxies (see Table 4.2). Moreover, the actual scatter in distance estimates is
not the same as the scatter in Re about the best-fit maximum-likelihood FP; the
implications of which will be discussed later in Chapter 6.



Chapter 5

Stellar Populations and the
Fundamental Plane
5.1 Introduction

The Fundamental Plane is found to be tilted with respect to the FP that one would
expect if galaxies were homologous virialised systems with a constant mass-to-light
ratio. The observed tilt and finite thickness of the FP are usually attributed to
departures from the assumption of a constant M/L ratio which can be driven by
variations in stellar content within the plane (see, e.g., Ciotti, Lanzoni & Renzini,
1996; Busarello et al., 1997; Graham & Colless, 1997; Trujillo, Burkert & Bell, 2004;
D’Onofrio et al., 2006; Cappellari et al., 2006). By studying the stellar populations
of early-type galaxies and their correlations with FP parameters, we can understand
the galaxy formation and evolution processes that lead to the formulation of the
Fundamental Plane itself.

Variation due to different stellar populations in the Fundamental Plane can also
induce a source of scatter in the distances and peculiar velocities which are derived
from the FP. Hence, if the effects of stellar population variation can be quantified and
accounted for, they can potentially be used to reduce the scatter about the relation
and increase the accuracy of the measured FP distances.

In Section 5.2 we determine the global trends of stellar population parameters
with the Fundamental Plane in two ways; first using binned stellar population mea-
surements in FP space and then by deriving the partial derivatives of the stellar
population parameters (as well as physically relevant parameters such as mass, lu-
minosity and mass-to-light ratio). These results are compared to the most recent FP
studies (e.g. Graves, Faber & Schiavon, 2009a,b) in Section 5.3 where we postulate
a formation scenario to explain the observed trends.

We consider trends with the residuals orthogonal to the plane in Section 5.4,
establishing whether FP trends with stellar populations can be used to reduce the
scatter about the plane. Finally, in Section 5.5 we examine the implications of
using these trends to reduce the scatter in distance specifically, by developing a
Fundamental Plane model which accounts for the trend in an additional parameter
and then fitting the FP to subsamples segregated by stellar population parameters.
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5.2 Variation of Stellar Populations through the Fundamental Plane

We analyse the stellar population trends within the Fundamental Plane by binning
the 7132 galaxies (for which we have measured stellar population parameters) with
respect to the v-space axes defining the 3D Gaussian model of the Fundamental
Plane (see Section 3.3.3). The v-space vectors are defined by the global best-fit FP
in Table 4.1. We bin along each v-space vector with a width of 0.1 dex along the
v1 direction, and 0.2 dex in both the v2 and v3 direction, so that each direction
contains an approximately equal number of bins. We remove bins containing less
than 5 galaxies from further analysis, which results in a total of 92 bins in FP space.

The median value for all stellar population parameters is then measured for
each bin. Using these binned stellar population parameters, we analyse the FP
trends in two different ways. The first approach involves plotting individual stellar
population parameters against each FP parameter (§5.2.1) while the second utilises
partial derivatives and the full 3D distribution (§5.2.2).

5.2.1 Global Trends with Stellar Population Parameters

We quantify the global variation of the stellar population parameters in FP space by
examining their correlations with the Fundamental Plane parameters. In Figure 5.1,
we plot the median values for each bin (in v-space) of the stellar population param-
eters (i.e. log age, [Fe/H], [α/Fe] and [Z/H]) against the FP values (i.e. r ≡ logRe,
s ≡ log σ0 and i ≡ log〈Ie〉). The trends with each of these parameters are determined
by a least squares regression to the binned data, shown as a solid line in Figure 5.1,
which we compare with Graves, Faber & Schiavon (2009b). The linear regression on
velocity dispersion (centre panel) indicates that it is positively correlated with all
the stellar population parameters, a trend also found by Graves, Faber & Schiavon
(2009b). Effective radius (left panel) is found to be weakly correlated with [Fe/H]
and [Z/H] (equivalent to [Mg/H] measured by Graves et. al.) consistent with the
Graves, Faber & Schiavon (2009b) results. However the weak anti-correlation be-
tween r and galaxy age in Graves, Faber & Schiavon (2009b), is not apparent in our
sample and unlike Graves et. al., we do not observe any stellar population variation
with surface brightness (right panel).

However, the interpretation of these global correlations is obscured by the fact
that the Fundamental Plane parameters are correlated with each other. Hence, it
is difficult to disentangle the trends of stellar population and FP parameters with
those of the FP parameters themselves. An alternative approach outlined in the next
section, which does not suffer from this effect, is to calculate the partial derivatives
of these correlations.
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Figure 5.1: Global correlations between stellar population parameters (log age, [Fe/H],
[α/Fe] and [Z/H]) with FP space parameters (r ≡ logRe, s ≡ log σ0 and i ≡ log〈Ie〉).
Each point is the median value of one of the stellar population parameters in a bin in FP
space, plotted against the corresponding r, s or i value at the centre of that bin. We also
superimpose the best fit regression line to the plotted points (solid line) and a best-fitting
line to a set of directional derivatives for r, s and i (dashed line, see Section 5.2.2). The
R2 correlation coefficient is given in the upper left-hand corner of each plot. (Figure 4 from
Springob et al. 2012)
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5.2.2 Variations along the 3D Gaussian Axes

To visualise the extent and direction of the stellar population trends in the Funda-
mental Plane, we need to view the full 3D distribution of galaxies in Fundamental
Plane space, as in Figure 5.2. Figure 5.2 provides an unencumbered view of the
trends in log age, [Fe/H], [α/Fe] and [Z/H] where each point represents a bin in FP
space whose size is scaled by the number of galaxies in that bin. The points are also
coloured by the median value of the stellar population parameter for each of log age,
[Fe/H], [α/Fe] and [Z/H], in each bin.

To interpret these trends, we need to characterise the stellar population variation
for each Fundamental Plane parameter while keeping the other two FP parameters
fixed. This allows us to derive individual stellar population trends without introduc-
ing correlations between FP parameters in contrast to the simplistic global trends
calculated in Section 5.2.1. Therefore, this method requires the calculation of partial
derivatives, ∂S/∂F , for each of the four stellar population parameters (indicated
by S) with respect to each of the three FP parameters (indicated by F). Here we
summarise the details of the method as given in Springob et al. (2012).

The partial derivatives are calculated by performing a linear regression to the
median values in each bin along each of the v-space vectors (i.e. v1, v2 and v3) for
each stellar population parameter. The partial derivatives in this context, represent
the gradient of each stellar population parameter, i.e. ∇S, in the direction of the
v-space vectors. However, we can also generalise the derivation of partial derivatives
of the stellar population parameters to the FP space parameters (r, s and i) and also
the logarithm of physical quantities such as dynamical mass (m = logM), luminosity
(l = logL) and mass-to-light ratio (m−l = logM/L). Therefore, strictly speaking we
cannot refer to these as partial derivatives, instead they are directional derivatives.
For example, the directional derivative of ∇r̂[Fe/H] is the change in [Fe/H] per unit
r and ∇m̂[Fe/H] the change in [Fe/H] per unit m.

The directional derivatives (∇F̂S) for all four stellar population parameters
(log age, [Fe/H], [α/Fe] and [Z/H]) and their statistical error (ε) are summarised
in Table 5.1. We compare the significance of these derivatives (defined as χ) using
the ratio of the absolute value of each directional derivative to its statistical error,
i.e. χ = |∇S|/ε, highlighting the most significant trends (with χ > 3) in Table 5.1.

In v-space the stellar population parameters are found to vary with v1 and v3,
but not with v2. The physical interpretation of the complete lack of any stellar
population variation with v2 will be discussed further in Section 5.3. The strongest
trends observed in v-space are with age through the plane (i.e. in v1) and metallicity
(Z/H) across the plane (i.e. in v3) whilst [Fe/H] and [α/Fe] vary along a superposition
of both v1 and v3.

The stellar population trends with FP parameters in Table 5.1 vary between the
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Figure 5.2: 3D visualisation of stellar population variation across the 6dFGS J band
Fundamental Plane. Each sphere represents a bin in FP space, including 5 or more galaxies.
The sphere is placed at the midpoint of the bin’s (r, s, i) coordinates, colour-coded so that
redder colours represent (a) older ages, (b) higher values of [Fe/H], (c) higher values of
[α/Fe], and (d) higher values of [Z/H], as given by the colour scale on the right of each plot.
The size of the sphere scales with the logarithm of the number of galaxies in the bin, as given
by the scale established by the black spheres on the side of the plot. The number labelling
each of the black spheres is the logarithm of the number of galaxies in a bin represented by a
sphere of that size. (Readers viewing the digital version of this thesis using Acrobat Reader
v8.0 or higher can enable interactive 3D viewing of this schematic by mouse clicking on the
figure; see Appendix A for more detailed usage instructions.) Figures 5-8 from Springob
et al. (2012).
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different parameters. All the stellar population parameters are positively correlated
with velocity dispersion except [Fe/H], even though it does exhibit a global trend (as
found in Section 5.2.1). The trends with r and i differ between stellar population
parameters as follows: age increases with decreasing r and i, [Fe/H] and [Z/H]
increase with increasing r and i and [α/Fe] shows no correlation with r and i.

We have also determined the stellar population variation in FP space by com-
bining the directional derivatives of ∇r̂S, ∇ŝS and ∇îS to form global trends. The
best-fit linear regression of these ‘total’ observed trends are shown as dashed lines
in Figure 5.1. The total fits indicate agreement with the global trends even when
derived without assuming variation is along one axis.

We define the log quantities of dynamical mass, luminosity and mass-to-light,
under the assumption of homology, as a function of the FP parameters (in the same
way as for Section 3.3.3) such that m = r+2s, l = 2r+i and hence m− l = r+2s−i.
The vectors corresponding to the directions ofm, l andm−l are shown in Figure 3.3,
indicating close correspondence of m− l with −v1 and l − 3r or luminosity density
with −v2. From Table 5.1, we show the stellar population trends with m, l and m− l
are not as significant as those with the FP or v-space vectors.

In summary, we find that age varies most strongly with v1, [Fe/H] varies most
strongly with v1 and r, [α/Fe] most strongly with s, and [Z/H] most strongly with
v3.

5.3 Comparison to Graves et. al.

Previous studies, such as Nelan et al. (2005) and Thomas et al. (2005) focused on
studying stellar population trends in the context of a 1D mass sequence, in particular
the relations with velocity dispersion as a proxy for galaxy mass. Graves, Faber &
Schiavon (2009a), however, extend upon and improve this analysis by examining the
‘2D family of early-type galaxy stellar populations and their structural properties’
and in doing so include variations with residuals from the FP i.e. through the plane.
While the evolution of stellar populations i.e. mass-to-light variation through the
plane, does contribute to the thickness of the plane, Graves, Faber & Schiavon (2010)
speculate its origin could be due to genuine structural differences.

The correlations between stellar population and FP parameters that Graves,
Faber & Schiavon (2010) determine, are summarised in their Table 3. To compare
the trends in our dataset found in Table 5.1 to theirs, we note that their vector
definitions in FP space (which we call r′, s′ and ∆i) are not orthogonal and possess
the following differences to our v-space. r′ and s′ are the direction within the plane
along which r increases but s remains constant and the direction within the plane
along which s increases but r remains constant respectively. ∆i is the residual from
the plane along the i direction. They are related to our v-space in the following way;
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r′ is the same as v2, ∆i is equivalent to our v1 to within a scale factor (although it is
defined differently) and finally s′ is the vector defined most differently with respect
to v-space as it includes both a strong component in v3 and a v2 component. In the
absence of stellar population trends with v2 (as we find), s′ should be equivalent to
v3. If we replace ∆i for v1, r′ for v2, s′ for v3, [α/Fe] for [Mg/Fe] and [Z/H] for
[Mg/H] we find good agreement with Table 3 from Graves, Faber & Schiavon (2010).
We can also compare the least significant stellar population trends (less than 3σ) in
Table 5.1 with the observed ‘null’ trends of Graves, Faber & Schiavon (2010), and
find the only differences are that we do not observe a trend of age with v3, or [Z/H]
with v1. Therefore, we find very consistent trends with all the stellar population
parameters even though the methods of binning the data differ and Graves, Faber &
Schiavon (2010) measure stellar population parameters from stacked spectra in each
bin, whereas we measure individual stellar population parameters for each galaxy.

Other studies have also investigated stellar population trends with respect to the
residuals from the FP. Gargiulo et al. (2009) find an anti-correlation between the
FP residuals in the r-direction and age and also a stronger anti-correlation between
the residuals in r and [α/Fe]. These results are consistent with the same trends
we measure with residuals along the v1 direction, given that the residuals in v1 are
proportional to the residuals with r (i.e. an increase in v1 is proportional to an
increase in r). However, we find the correlation with age is more significant than
that in [α/Fe], unlike Gargiulo et al. (2009).

It remains that the most significant result from Table 5.1 is that there is no
stellar population variation along the v2 direction. This result is interesting because
there was no physical motivation for defining the v-space vectors, instead the axes
are determined by fitting the 3D Gaussian to our data. However, these vectors
are observed to align with stellar population parameters, suggesting some physical
motivation for their orientation in FP space; a possible hypothesis for the distribution
of galaxies along these axes in FP space is the subject of the next section.

5.3.1 v2 and Merging History

Graves, Faber & Schiavon (2009b) attempt to explain the variation of stellar pop-
ulation parameters with velocity dispersion but not effective radius, by postulating
that the variation is a consequence of galaxies following different merger histories.
They suggest velocity dispersion is independent of merger history as has been shown
through N-body simulations (Robertson et al., 2006) and that galaxies with different
merger histories (but similar mass and hence, velocity dispersion) have varying radii
and surface brightness, while keeping their velocity dispersion in tact.

In the context of our results from Sections 5.2.1 and 5.2.2 where we do observe
correlations between stellar population trends and r, we need only modify the above
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scenario from Graves, Faber & Schiavon (2009b) to explain these results; varying
merger histories could serve to induce more scatter in the relations between r and
the stellar population parameters while still retaining the overall trend. Correlations
between velocity dispersion and other galaxy parameters are found to be relatively
independent of merger history as shown in the simulations by Kobayashi (2005). The
variation of merger history, however, does have the effect of increasing the scatter
of, but still retaining, the correlations with effective radius.

If we apply the same reasoning to the stellar population variations with effective
radius, we offer the following explanation of our results. In terms of the Fundamental
Plane, along the v3 axis, galaxies with increasing r, s and i will also have increasing
m, l and [Z/H] consistent with increasing the total mass of the system or mass of the
dark matter halo. Along the v2 axis galaxies with increasing r will have a decreasing
i both of which depend upon the merger history of the galaxy. Therefore, as v2

is aligned closely with luminosity density (i.e. L/R3), we suggest that luminosity
density is significantly dependent upon merger history which is largely independent
of stellar population (as shown in Figure 14 of Springob et al. 2012). This hypothesis
would then infer that the distribution of galaxies in FP space are physically driven
by two different (and unrelated) processes along the v2 and v3 axes.

5.4 Fundamental Plane Residual Trends

In §4.5 and §4.6 we examined the dependence of the 6dFGS FP on environment
and morphology by comparing the FP fits for appropriate subsamples of galaxies.
Here we take an alternative approach by looking at the trends of the orthogonal
residuals (defined as r− (as+bi+c)/

√
1 + a2 + b2 ) from the FP with various galaxy

properties. As well as morphology, group richness (NR) and local density (Σ5), we
also consider three stellar population parameters discussed in the previous sections:
log age, metallicity ([Z/H]) and alpha-enhancement ([α/Fe]). For this particular
purpose we convert our morphological classifications to the discrete m-type scheme
(defined in Section 2.5) where E=0, S0=2, Sp=4 and 1, 3 and 5 are the respective
transition classes.

Figure 5.3 shows the mean residuals orthogonal to the best-fit global J band FP
(with a = 1.52 and b = −0.89) as a function of these properties. The mean orthogonal
residuals are computed in bins of log Σ5 (for 8258 galaxies), morphological type and
logNR (for 8901 galaxies), and log age, [Z/H] and [α/Fe] (for 6679 galaxies). A
weighted least-squares regression is performed to quantify the significance of the
linear trend in the binned data. The slope and offset of the linear fit for each galaxy
property (and associated error) are given at the top of each panel, along with the
reduced χ2 of the fit.

The strongest trend of the FP residuals is clearly with the age of the stellar popu-
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Figure 5.3: Correlation of orthogonal residuals relative to the best-fit FP (a = 1.52 and
b = −0.89) with various galaxy properties: local density (Σ5), morphological type (m-type)
and group richness (NR), and log age, [Z/H] and [α/Fe]. In each panel the best-fitting line
for the binned residuals is given along with the corresponding reduced χ2 value.

lation, and amounts to ∼0.08 dex over the full range in age; the next strongest trend
is with [α/Fe], amounting to ∼0.05 dex over the observed range. Both these trends
are highly statistically significant, although a line is not a good fit to the relation in
the case of [α/Fe]. The residuals from the FP show relatively weaker (although still
statistically significant) trends with morphological type, local density, group richness
and metallicity. These results are consistent with our fits to subsamples defined on
the basis of these properties, and confirm the equivalent analysis in the preceding
sections of this chapter.

5.4.1 Scatter in the FP Age Trend

We identify galaxy age as the stellar population parameter that will have the most
significant effect on FP distances as the direction it varies in most is through the
plane. We observe that v1 and log age are mildly anti-correlated (as expected from
Table 5.1) from the contour plot (Figure 5.4) of v1 vs log age for all galaxies with
reliable stellar populations parameters (Ng = 7132; left) and for galaxies in a narrow
slice of v2 (−0.05 < v2 < 0.05) and v3 (−0.05 < v3 < 0.05; right). The contours
correspond to the number of galaxies found within a single smoothing length (0.075
for log age and 0.025 in v1) with more galaxies found in the areas of redder colour.
In these plots, the trend in age is visible but with large scatter.

In the right panel, we superimpose error bars (in the lower left) that indicate the
average measurement error on both log age and v1 where the v1 measurement errors
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Figure 5.4: Contour plot of v1 vs log age for all galaxies with stellar population parameters
(Ng = 7143), showing the mild but statistically significant anti-correlation (See Table 5.1).
The colour scale given on the right shows the number of galaxies found within a single
smoothing length, which is 0.075 in log age (left) and 0.025 in v1 (right); redder colours
correspond to areas in v1-age space with more galaxies. In the right panel, we only include
galaxies along a narrow range of v2 and v3: −0.05 < v2 < 0.05, and −0.05 < v3 < 0.05. In
the lower left of this plot, we show the size of the error bars corresponding to the average
statistical error on log age (0.078 dex), and the average measurement error on v1 (0.044 dex)
in this subsample.

have been derived by projecting the measurement errors on r, s, and i along the v1

direction. Most of the total scatter in the v1 direction is due to these large measure-
ment errors, suggesting minimal gain in using individual galaxy ages to reduce the
scatter in the FP. However, if galaxy ages could be precisely determined, then these
results imply that it would be possible to reduce the intrinsic scatter about the FP
by a few percent.

5.5 Stellar Population Trends and FP Distances

We have now established that galaxy age is the parameter that varies most directly
through the FP. We find that the strongest trend with the FP residuals is with age,
and we therefore explore whether it is possible to reduce the intrinsic scatter about
the FP using this age variation.

To this end, we first outline a procedure for incorporating stellar population
effects in our Gaussian model of the Fundamental Plane and then fit the FP to
individual subsamples of age and metallicity to assess the impact these trends will
have on the scatter in the FP.

5.5.1 Adding Age to the Fundamental Plane Model

In the previous sections it was found that there is a clear trend of galaxy age through
the FP (i.e. along the v1 direction), as expected from models of the effect of stellar
populations on mass-to-light ratios (e.g. Bruzual & Charlot, 2003; Korn, Maraston
& Thomas, 2005). The variation of age through the FP is shown in Figure 5.5,
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a 3D visualisation of the FP-space distribution of the subsample of 6679 galaxies
with stellar population parameters, with colour encoding log age. Here we ascertain
whether this trend in age can be incorporated into the FP model and used to reduce
the overall scatter of the FP by exploring a very simple extension of the model that
includes a linear trend with age through the FP.

We include an age component in our existing FP model by adding log age as a
fourth dimension in FP space along with r, s, and i as described in Section 3.7.2.
The 4D Gaussian model including age is then fit to this subsample resulting in an
FP (after bias correction) of

r = (1.56± 0.03)s− (0.89± 0.01)i+ (0.13± 0.01)A− 0.43± 0.06 (5.1)

with σ1 = 0.048±0.001 and σ4 = 0.40±0.01. Although the intrinsic scatter through
the FP (σ1) is reduced from its value in the standard 3D Gaussian model (where
σ1 = 0.053), the large scatter in σ4 and steeper slope in log σ0 suggest that the
scatter in distance has not been reduced by including an age component. In fact, the
scatter in distance (see Section 6.3.3) is slightly larger, at σd = 0.100 dex (23.3%),
than for the standard 3D Gaussian model, where σd = 0.097 dex (22.5%).

5.5.2 Correcting the FP for Stellar Population Trends

In the previous section, the addition of age as a fourth parameter in our Gaussian FP
model did not significantly improve the scatter about the FP, due to the substantial
uncertainty in estimating ages of stellar populations. Therefore we attempt to reduce
the scatter instead by fitting to FP subsamples defined by age.

We divide the galaxies with reliable age measurements which are not excluded by
our FP redshift cuts (i.e. Ng = 6679 galaxies in total) into large age bins (to reduce
the scatter of individual galaxies), and use our maximum likelihood model to fit the
Fundamental Plane to each of the subsamples and determine any offsets between
them. From the full sample of 8901 J band galaxies, there are 2222 galaxies which
do not have stellar population measurements either due to poor S/N or a high χ2

value in Lick-index fitting; we refer to these galaxies as belonging to the unknown age
subsample. For the remaining 6679 galaxies we define three subsamples divided in
age: young galaxies (age ≤ 3Gyr), intermediate age galaxies (3 < age ≤ 8Gyr) and
old galaxies (age > 8Gyr). There are 1419 young galaxies, 3181 intermediate age
galaxies, and 2079 old galaxies. For comparison, for the same set of 6679 galaxies,
we also define three equal-sized subsamples according to metallicity, [Z/H]: galaxies
that are metal-poor ([Z/H] ≤ 0.05), galaxies of intermediate metallicity (0.05 <

[Z/H] ≤ 0.2), and those that are metal-rich ([Z/H] > 0.2). There are 2231 metal-
poor galaxies, 2144 intermediate metallicity galaxies and 2304 metal-rich galaxies.
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Figure 5.5: 3D visualisation of the 6dFGS J band Fundamental Plane with individual
galaxies colour-coded by log age. The best-fitting plane (in grey) for the entire sample (with
a = 1.523, b = −0.885 and c = −0.330) is shown for reference. (Readers viewing the digital
version of this thesis using Acrobat Reader v8.0 or higher can enable interactive 3D viewing
of this schematic by mouse clicking on the figure).
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Figure 5.6: As for Figure 4.3, but comparing the FP fits to three age samples spanning
young age (blue; Ng = 1419), medium age (green; Ng = 3181) and old age (red; Ng = 2079)
galaxy samples as well as those galaxies with unknown age (grey; Ng = 2222). The points
in each panel are the fits to 200 mocks of each of these four subsamples; the large black
circles show the means and the ellipses the 1σ and 2σ contours of the distribution of fitted
parameters. The dashed lines show, for reference, the best-fit parameters for the full J band
sample.

The best-fit FP values of the individual stellar population subsamples are sum-
marised in Table 5.2 using the same notation as in Section 4.2.1. The uncertainties
in Table 5.2 are estimated (in the same way as for Table 4.1) as the rms scatter in
each FP coefficient from fits to 200 mock simulations (or 1000 mock simulation in
the case of the full sample). The FP slopes, a and b, are similar to within 1–2σ for
all age subsamples (as well as the unknown subsample) and consistent with the full
FP sample. A statistically significant trend in r0, the FP offset at a fiducial point,
is observed such that younger galaxies tend to have a larger r0 and the r0 offset of
the intermediate age galaxies (i.e. r0 = 0.348± 0.003) is within 1σ of the full sample
r0 = 0.345 ± 0.002. The same trends are observed for the metallicity subsamples
such the FP slopes are consistent with each other and the full sample, and the r0

offset is smaller (r0 = 0.333± 0.003) for the metal-rich galaxies as compared to the
metal-poor galaxies (r0 = 0.368± 0.006).

These trends are clearly shown in Figure 5.6 (and also Figure 5.7 but for metallic-
ity) where we compare the best-fitting parameters of a, b and r0 against each other,
from 200 mock simulations of the three age (and unknown) subsamples. We plot the
best-fit values as well as the 1σ and 2σ error contours, highlighting the significance of
the r0 variation which is also consistent with the variation of effective radius found in
Table 5.1. This suggests that while the age subsamples share the same Fundamental
Plane (as they have consistent slope values), the individual planes for each stellar
population are in fact offset to one another.

In addition, the intrinsic thickness or scatter in the plane, as quantified by σ1, is
reduced from σ1 = 0.056 ± 0.002 dex (12.9%) for the young galaxies down to σ1 =

0.043± 0.002 dex (9.9%) for the oldest galaxies. However, because these subsamples
are smaller than the full sample and the observational error in the FP is large for all
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Figure 5.7: As for Figure 4.3 but comparing the FP fits to three metallicity sample spanning
metal-poor (blue; Ng = 2231), medium metallicity (green; Ng = 2144) and metal-rich (red;
Ng = 2304) galaxy samples. The points in each panel are the fits to 200 mocks of the three
metallicity subsamples the large black circles show the means of the fitted parameters and
the ellipses show the 1σ and 2σ contours of the distribution. The dashed lines show, for
reference, the best-fit parameters for the full observed J band sample.

the subsamples, the total scatter (including measurement error) about the plane is
decreased by <3% for the older age subsamples as compared to the full sample with
σr = 0.127 dex (29.7%). From Table 5.2, we estimate that segregating the galaxies
by age reduces the scatter in r by ∼2.5% for 60% of the sample (i.e. medium and
old age galaxies) but increases the scatter by ∼1.8% for the remaining 40% (i.e.
young and unknown age galaxies). If we divide by metallicity instead, we find a
larger reduction in scatter (∼3.9%) for the metal-rich galaxies but for only 26% of
the sample, leading to only a slight improvement to the overall scatter.

We find only a modest gain in the distance scatter when segregating our FP
sample by age but we defer further analysis of this approach until Chapter 6 where
we incorporate the age variation with FP distances and peculiar velocities.

5.6 Summary

Global stellar population trends within the Fundamental Plane were derived by bin-
ning individual galaxy measurements of the stellar population parameters in FP
space. We confirmed previous correlations of stellar population parameters with ve-
locity dispersion, and discovered new correlations with effective radius and surface
brightness.

Using our 3D Gaussian model of the FP we determined the vector directions
of the stellar population trends, finding the strongest variation to be age through
the plane (i.e. in the v1 direction) and no stellar parameters to vary along the v2

direction. We propose that the significant lack of stellar population variation with v2

(and close alignment with luminosity density) suggests that the v2 vector represents
a dependence on galaxy merger history and hence independent of stellar content.

We find that the strongest trend is with age, and we speculate that, of the galaxy
properties considered in this thesis, age is the most important systematic source of
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offsets from the FP, and drives (through the correlations of age with environment,
morphology and metallicity) most of the variations with the other galaxy properties.

Therefore, we investigated two different approaches using the strong age variation
to improve the scatter on FP distance measurements. First, we developed a FP
model that incorporates the age trend though the plane. From this analysis, we
conclude that: (i) there is a statistically significant contribution from age variations
to the scatter through the FP, which is slightly reduced by including age in the FP
model; and (ii) the combination of large measurement errors on individual galaxy
ages, intrinsic scatter in age about the FP, and the tilt of the FP (specifically, the
angle between v1 and r), means that—for the 6dFGS sample—including age in this
method does not significantly improve the distance estimates obtained from the FP.
This might change, however, if more precise age measurements were available.

The second method involved fitting the FP to subsamples divided by age, which
shows some marginal improvement in the scatter about the plane. However, we need
to perform this same segregation in the peculiar velocity analysis (Chapter 6) in order
to determine the actual gain in the distance (hence peculiar velocity) estimates.





Chapter 6
Peculiar Velocities
6.1 Introduction

The ‘cosmic web’ of large-scale structure in galaxies is formed through the gravita-
tional collapse of density fluctuations in the early-universe. The overdensities in the
distribution of matter induce peculiarmotions that arise from the gravitational effects
of neighbouring galaxies, in excess of the Hubble flow associated with the expansion
of the universe. The redshift of a galaxy, cz, alone recovers the total motion of a
galaxy, including the radial components from both the Hubble flow and its peculiar
velocity. Disentangling the peculiar velocity of a galaxy from its recessional veloc-
ity requires the measurement of a redshift-independent distance in addition to the
redshift. In this chapter we will measure galaxy peculiar velocities using distances
determined from the Fundamental Plane relation as derived in Chapter 4.

In the linear regime we can relate the peculiar velocity field, v(r), to the matter
density field, δm(r) via gravitational instability (Peebles, 1993), using

v(r) =
f

4π

∫
d3r′

r′ − r
|r′ − r|3 δm(r′) , (6.1)

where f describes the rate of growth of structure and is approximately equal to Ω0.6
m

(Peebles, 1980); Ωm is the matter density parameter. Therefore, peculiar veloci-
ties are a direct probe of the underlying matter distribution, providing additional
information to redshift surveys.

Peculiar velocities distort the galaxy distribution in redshift-space from the dis-
tribution in real-space, affecting the determination of distance estimates. On small
scales, random motions cause galaxy structure to be elongated along the line of sight,
an effect known as the ‘Finger of God’. On large scales, the clustering of matter is
amplified by the coherent infall of galaxies towards overdense regions. In linear the-
ory, the effects of the latter type of distortion can be characterised by the linear
redshift-space distortion parameter, β, defined by β = Ω0.55

m /b (using f ∼ Ω0.55
m ,

updated by Linder 2005) assuming galaxy fluctuations are biased with respect to
mass fluctuations by δg = bδm where b is the linear bias parameter. Equation 6.1
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can therefore be expressed as

v(r) =
β

4π

∫
d3r′

r′ − r
|r′ − r|3 δg(r

′) , (6.2)

We can derive β from the comparison of the matter and velocity fields from the
observed peculiar velocities (using distance indicators such as the FP) to those from
the predictions of redshift surveys. One of the largest and most detailed density
and velocity field reconstructions, from Erdoğdu et al. (2012, submitted; updated
from Erdoğdu et al. 2006), is derived from the Two-Micron All-Sky Redshift Survey
(2MRS; Huchra et al., 2012). We use the 2MRS velocity field model from this analysis
to compare with the measured peculiar velocities of the galaxies in the 6dFGS FP
sample.

Peculiar velocities are also used to study the coherent peculiar motion, or bulk
flow, in a volume with respect to the CMB rest frame. From the peculiar velocity field
derived from the 6dFGS FP sample, we will determine the total bulk flow motion,
utot, and the residual bulk flow (after subtracting the 2MRS prediction), ures.

The structure of this chapter is as follows: in Section 6.2 we outline the fea-
tures of the 2MRS reconstructed density and peculiar velocity field, the model used
throughout this chapter. We introduce the 6dFGSv sample of ∼9000 FP distances
and peculiar velocities in Section 6.3, where we also describe the implementation
of peculiar velocity probability distributions and calibration of the peculiar velocity
zeropoint.

In Section 6.4 we develop a maximum likelihood model for fitting parameters
defining the peculiar velocity field (such as β and u). This model incorporates the
2MRS model predictions and the 3D Gaussian FP model of Chapter 3. We use this
maximum likelihood method to fit three types of peculiar velocity (vp) models:

1. The vp field assuming that the matter follows the galaxy distribution of 2MRS,
with β as the free parameter.

2. The vp field assuming that the matter follows the galaxy distribution of 2MRS,
with β and a residual bulk flow ures as free parameters.

3. The vp field assuming that it can only be modelled by a total bulk flow utot.

In Section 6.5 we test the robustness of this new likelihood model using mock
simulations for a range of mock peculiar velocity distributions. We extend this model
to include a bulk flow in Section 6.6. The best-fit values of β and u are derived by
comparing the peculiar velocity model to the 6dFGSv data in Section 6.7. We then
investigate whether introducing an age trend into the peculiar velocity model can
achieve tighter constraints on these parameters (Section 6.8) and also quantify the
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additional uncertainty in the calibration of r̄ (Section 6.9). Finally we discuss the
implications of these results in Section 6.10.

6.2 The 2MRS Reconstructed Velocity Field

Density and velocity fields that are reconstructed from redshift surveys can provide a
cosmographic description of the universe and are also used to investigate the processes
that govern structure formation on the largest scales. By comparing the observed
peculiar velocity field to a reconstructed prediction of the velocity field, we can
determine β = Ω0.55/b, linking the total mass density and the bias in the distribution
of galaxies relative to the underlying distribution of mass.

One of the largest, most complete reconstructed velocity fields at present is de-
rived from galaxies in the Two-Micron All-Sky Redshift Survey (2MRS). In the final
data release (Huchra et al., 2012), the 2MRS consists of measured redshifts for 44 699
galaxies with a magnitude limit of Ks = 11.75. The dense, all-sky sampling of 2MRS
provides an ideal counterpart for comparison of the predicted velocity field with the
dense, homogenous sampling of the observed 6dFGS galaxies, given the significant
overlap in the southern hemisphere.

Hence, we choose the 2MRS reconstructed density and velocity fields of Er-
doğdu et al. (2012, submitted; updated from Erdoğdu et al. 2006) which uses the
2MRS redshift sample to recover the linear theory predictions for density and veloc-
ity. We summarise here the methods of reconstruction that are outlined in Erdoğdu
et al. (2006, which closely follows the method of Fisher et al. 1995), where it was
applied to a smaller 2MRS sample of Ng = 20 860 galaxies with a brighter magnitude
limit of Ks = 11.25 and a median redshift of z ' 0.02 or 6000 km s−1.

The first step in the reconstruction process is to make an assumption about how
the galaxy density in redshift-space (observed from a redshift survey) traces the
mass distribution such that on the largest scales the two are linearly related with
some constant of proportionality, b, called the linear bias parameter. The density
and velocity fields in redshift-space are decomposed into spherical harmonics and
Bessel functions (or Fourier-Bessel functions). In redshift-space, spherical harmonics
and Fourier-Bessel functions are a convenient representation of these fields as they
separate out the line-of-sight effects of redshift-space distortions from the transverse
distribution on the sky. The velocity field is similarly expanded using spherical har-
monics and Fourier-Bessel series and is defined by a transverse and radial component.
However, we can only observed peculiar velocities in the radial direction therefore we
only need to couple the radial modes to derive the velocity field from the real-space
density field.

Similarly, the redshift-space distortions induced by peculiar velocities are only
prevalent in the radial direction and couple only to the radial modes in the con-
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version from redshift to real-space. These linear redshift distortions are therefore
encompassed in the coupling matrix (defined in Fisher et al. 1995) given a value
for the β parameter (β ≡ Ω0.55/b), which is assumed by Erdoğdu et al. (2006, 2012
submitted) to be β=0.4.

To determine the real-space density field (from redshift space) the effects of Pois-
son ‘shot noise’ error due to the finite sampling of the observed galaxies needs to
be accounted for. The method employed in Erdoğdu et al. (2006) to minimise this
effect uses Wiener filtering to smooth the data. This type of filtering smooths the
field by using the ratio of the signal variance over the variance from both the signal
and noise, thereby using the distribution of the galaxies in the data as a prior to
minimise the overall statistical noise.

Finally the reconstructed peculiar velocity field is derived from the Wiener-
filtered real-space density field by relating the harmonics of the gravity field to those
of the density field (in linear theory). In Figure 6.1, we show the reconstructed den-
sity field (as smooth coloured contours) and predicted velocity field (as a vector field
in black) of 2MRS (Erdoğdu et al. 2012, submitted) in a slice through the Super-
galactic plane at SGZ = 4.0h−1 Mpc (i.e. closest to the plane at SGZ = 0h−1 Mpc
given the resolution of the reconstruction). The largest local structures are present as
overdensities in Figure 6.1 including the Shapley Concentration (upper left), Coma
Cluster (upper middle) and Hydra-Centaurus (centre left).

The final reconstruction we use assumes β = 0.4 and is arranged on a regular
grid in Supergalactic coordinates extending over ±196h−1 Mpc in all three Carte-
sian dimensions. The predicted density and peculiar velocity field is calculated for
gridpoints within 196h−1 Mpc of the origin, with spacing of 8h−1 Mpc in real-space.
This was resampled in redshift-space to achieve a higher resolution grid (using inter-
polation) with 4h−1 Mpc spacing. For this model, the conversion to redshift-space
does not generate any ‘triple-valued’ zones (where one redshift corresponds to three
different distances), as the grid-spacing in the model is sufficiently coarse to smooth
out the effects of ‘triple-valued’ regions. We make use of both these peculiar velocity
reconstructions to simulate mock peculiar velocities and assign predicted peculiar
velocities to the 6dFGSv sample of galaxies.

6.3 6dFGSv FP Distances and Peculiar Velocities

In this section, we introduce the 6dFGSv sample of galaxies which form the basis of
the 6dFGS local peculiar velocity field. For each galaxy we calculate a distribution of
distance/peculiar velocities rather than a single velocity value. We also outline the
correct Bayesian approach for measuring the error in distance for our 3D Gaussian FP
model and the procedure for calibrating the zeropoint of the 6dFGSv FP distances
and peculiar velocities.
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Figure 6.1: The reconstructed density and velocity fields from the 2MRS model of
Erdoğdu et al. (2012, submitted), in a slice through the Supergalactic plane (SGZ =
4.0h−1 Mpc). The contour levels of the density field, as denoted by the colour bar, have a
spacing of 0.1. The arrows overplotted in black, represent the predicted velocity field in the
CMB frame. The scale of the velocity vectors is indicated by the arrow with 500 km s−1

in the upper lefthand corner. The red, overdense features represent the largest structures
in the 2MRS volume including the Shapley Concentration at (SGX,SGY) = (−130,+70),
Coma at (SGX,SGY) = (+10,+70), Hydra-Centaurus at (SGX,SGY) = (−40,−10) and
Perseus-Pisces at (SGX,SGY) = (+50,−30).
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6.3.1 Bayesian Peculiar Velocities

The 6dFGS Fundamental Plane is modelled as a 3D Gaussian defined by a likelihood
function that is maximised to determine the best-fitting FP. It is therefore a natural
extension of this Bayesian formalism, to similarly treat the distances and peculiar ve-
locities, determined by this Fundamental Plane, as probability distribution of values
instead of point-like single measurements.

More precisely, for each galaxy we calculate P (vp|rθ, s, i, cz), the posterior prob-
ability of a peculiar velocity, vp, given the measured FP values of rθ, s, i and cz. The
angular size, rθ, is used in the expression for P (vp|rθ, s, i, cz), as it is the observable
quantity that is related to the distance of a galaxy, rather than the physical size, r,
which is calculated assuming the galaxy is at its redshift distance (without allow-
ing for peculiar velocities which is the parameter being measures). The posterior
probability distribution for a peculiar velocity, vp, is defined as

P (vp|rθ, s, i, cz) =
P (rθ, s, i, cz|vp)P (vp)

P (rθ, s, i, cz)
(6.3)

given P (rθ, s, i, cz|vp), the likelihood of observing a galaxy with rθ, s, i and cz

(according to the 3D Gaussian model of the FP) for a given vp and a prior P (vp),
which are both normalised by P (rθ, s, i, cz).

To compute the posterior probability distribution of vp from equation 6.3, the
FP parameters need to be specified. To calculate the likelihood, P (rθ, s, i, cz|vp) we
therefore use the best-fit FP values to the final J band FP sample from Table 4.1
where a = 1.52, b = −0.89, r̄ = 0.18, s̄ = 2.19, ī = 3.19, σ1 = 0.053, σ2 = 0.318,
σ3 = 0.170. We then consider a range of values for vp between −25 000 to +25 000 km
s−1, evenly sampled in intervals of 100 km s−1. This range is sufficiently large to
encompass the peculiar velocities that may be observed, including the large errors
(with an rms of ∼23% in distance, which at cz ∼ 16 000 km s−1 corresponds to
∼4000 km s−1 error in velocity). The likelihood corresponding to each vp value
is then evaluated and multiplied by a flat prior (for simplicity, although a more
complicated prior could be assumed) and then normalised to calculate the posterior
probability distribution. The subject of normalisation in this model will be discussed
in Section 6.4.2.

An example of the probability distribution of velocities for one galaxy is shown
in Figure 6.2. The asymmetry of this distribution is caused by that fact that galaxy
distance is derived as a logarithmic quantity in FP space (i.e. logRe) which is then
converted to a linear peculiar velocity resulting in a log-normal distribution. For
individual galaxies, the peak of the probability distributions tend to have an ampli-
tude of thousands of km s−1, as in this case. This is usually an over-estimate of the
typical amplitude of galaxy peculiar velocities, driven by the large distance errors.



§6.3 6dFGSv FP Distances and Peculiar Velocities 119

−20000 −10000 0 10000 20000

vp [km s−1]

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

P
(v
p
)

Figure 6.2: Posterior probability distribution of peculiar velocities for a typical galaxy in
the 6dFGSv sample, which is log-normal but is sampled evenly in linear units.

6.3.2 6dFGSv Sample

The 6dFGSv provides the largest sample of galaxy peculiar velocity measurements
to date and is also a more homogeneous sample than most previous large velocity
samples. It consists of the galaxies in 6dFGS for which we have Fundamental Plane
data, a sample of 11 287 galaxies. We impose the same selection criteria (in s, cz,
morphology, apparent magnitude, χ2) as the final J Band FP sample, with the
exception that we reinstate galaxies with low selection probability (i.e. S < 0.05)
and those below the lower redshift limit (i.e. cz < 3000 km s−1). These galaxies were
excluded from the sample used to fit the FP as potential sources of scatter, however
we can measure the peculiar velocity of these galaxies. Therefore, in total there are
8989 galaxies with peculiar velocity measurements that comprise the 6dFGSv.

Galaxy distance and peculiar velocity measurements are potentially affected by
several sources of bias, which therefore must be taken into account. In the case
of a magnitude-limited sample only the brightest galaxies at the largest distances
are observed, leading to homogeneous Malmquist bias. The bias induced by the
spatial distribution of galaxies is known as inhomogeneous Malmquist bias and can
be corrected for using the reconstructed density distribution from redshift surveys
as a prior. We discuss the Malmquist bias corrections we apply to this sample in
Section 6.4.

The distribution on the sky of the 6dFGSv galaxies is shown in Figure 6.3, illus-
trating the dense and homogeneous coverage of 6dFGS in the Southern Hemisphere.
Each point represents a galaxy in the 6dFGSv and is colour-coded by their predicted
peculiar velocities as derived from the 2MRS density field of Erdoğdu et al. (2012,
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Figure 6.3: Distribution of 6dFGSv galaxies (Ng = 8989) in Galactic latitude (l) and
longitude (b), shown in an equal-area Aitoff projection. Individual galaxies are colour-
coded by their predicted peculiar velocities (in km s−1) from the 2MRS density field of
Erdoğdu et al. (2012, submitted). The 6dFGSv galaxies are located in the central region
of this projection (with the absence around the edges due to the lack of 6dFGS galaxies
in the Northern Hemisphere). Some of the large structures in the 6dFGSv volume are also
indicated including the Shapley Supercluster and the Pavo-Indus Supercluster.

submitted), highlighting areas of positive (in red) and negative (in blue) peculiar
velocities.

Figures 6.4 and 6.5 show a comparison, on a galaxy-by-galaxy basis, for the
6dFGSv of the predicted (left) peculiar velocities from the 2MRS velocity field re-
construction, and the observed (right) peculiar velocities i.e. the expectation value
of the individual posterior probability distributions. Each set of plots shows the
SGX versus SGY coordinates of galaxies divided into four SGZ slices (in h−1 Mpc)
and colour-coded by peculiar velocity (defined as log[cz/H0D]). The four slices do
not span the same range in SGZ coordinates and are chosen so that they cover the
Southern Hemisphere to emphasise the sampling of the 6dFGSv galaxies. Galax-
ies are divided into the following SGZ ranges: SGZ < −70h−1 Mpc, −70 < SGZ
< −20h−1 Mpc, −20 < SGZ < +20h−1 Mpc and SGZ > +20h−1 Mpc.

There is some similarity between the global features in Figures 6.4 and 6.5, e.g.
a prominence of blue/red or negative/positive velocities in certain regions but any
visible correlations are obscured by the scatter in the individual peculiar velocity
measurements compared to the predicted one.

A direct comparison of the observed peculiar velocities of the 6dFGSv sample
with the 2MRS predicted velocities is given in Figure 6.6. Again, it is difficult to
see any correlation between them through the noise in the individual measurements,
although there is a weak trend (in red; from a weighted least-squares regression) with
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Figure 6.4: Comparison of predicted (left) peculiar velocities from the 2MRS velocity field
and observed (right) peculiar velocities from the expectation value of posterior probability
distributions in the 6dFGSv sample. Galaxies are plotted in Supergalactic coordinates SGX
versus SGY colour-coded by peculiar velocity (defined as log[cz/H0D]). Each plot represents
a subsample of galaxies divided by SGZ into the following slices: SGZ < −70h−1 Mpc (top
panel; 2224 galaxies) and −70 < SGZ < −20h−1 Mpc (bottom panel; 2062 galaxies)
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Figure 6.5: As for Figure 6.4, but for galaxies divided by SGZ into the following slices:
−20 < SGZ < +20h−1 Mpc (top panel; 2645 galaxies) and SGZ > +20h−1 Mpc (bottom
panel; 2059 galaxies).
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Figure 6.6: Observed (6dFGSv) versus predicted (2MRS model) peculiar velocities for all
the galaxies (Ng = 8989) in the 6dFGSv sample. A weighted least-squares regression is
shown (in red) with a slope of 0.37 ± 0.11, offset of 0.0 ± 0.01 and a correlation coefficient
of 0.04.

a slope of 0.37± 0.11 and a correlation coefficient of 0.04.

6.3.3 Distance Errors

In Chapter 4 we found that the scatter about the 6dFGS FP in r is 29%. However,
this does not mean that, when we use this FP fit to measure distances, we will only
measure them to this precision. To understand why this is the case, we must consider
the procedure used to measure distances and peculiar velocities from the FP.

In the most naive approach, one would convert the observed angular radius of a
galaxy to a physical radius assuming that the distance to the galaxy is given by its
redshift distance. The peculiar velocity of the galaxy would then be approximated by
the offset of this galaxy from the FP in r. Since the peculiar velocity is measured from
the offset along the r-direction, the average scatter from the FP in r then represents
the total error in galaxy distances and peculiar velocities (from the combination of
measurement errors and intrinsic scatter).

However there is a more general (and precise) way to estimate the peculiar ve-
locity. The peculiar velocity of a galaxy, n, is given by its offset along the r-direction
from a particular value, r∗n. This r∗n is the most likely radius for galaxy n, given a
particular set of observed values of the velocity dispersion and surface brightness,
sn and in. In the preceding paragraph, we assumed that r∗n is a point on the FP,
given by r∗n = asn + bin + c. This assumption is valid if the FP is best modelled
as an infinite plane with uniform scatter. However, the assumption is not valid if
the distribution of galaxies in FP space is best modelled by a 3D Gaussian, and the
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minor axis of this Gaussian is not aligned with the r-axis.

In equation 3.4, we show the expression for the probability density distribution
of a single galaxy n. In equation 3.13 , we give the sum of the log of such probability
densities for all galaxies in our sample. For a particular galaxy with known obser-
vational errors, each of the terms in equation 3.13, is fixed except the final χ2 term,
which is a quadratic function of the physical parameters r, s and i.

Since we directly observe s and i, we can fix them at the observed values sn and
in. We can then use this equation to give us the probability density distribution of
r for fixed s = sn and i = in (i.e. P (r|s, i)). This is a quadratic function of the form

ln(P (r|s, i)) = k0 + k1(r − r̄) + k2(r − r̄)2 (6.4)

where k0, k1 and k2 are functions of sn, in, the observational errors for the galaxy,
and the FP fit parameters (a, b, r̄, s̄, ī, σ1, σ2, and σ3). They can thus be obtained by
expanding the matrix multiplication terms in the preceding equations. The effective
expectation value for galaxy distances and peculiar velocities occurs at the maximum
likelihood—i.e. the maximum of this quadratic function,

r∗ − r̄ = −k1/(2k2) . (6.5)

This value varies from galaxy to galaxy, depending both on the galaxy’s position in
FP space and its observational errors. If we evaluate this in the case of no errors,
and insert the values of the FP fit parameters given in Table 4.1 for the J band
sample, we find that the effective expectation value for distances is given by the plane
r∗ = 1.18s − 0.80i + 0.152; this relation differs quite markedly from the underlying
Fundamental Plane. However, since we do in fact have observational errors, and they
vary from galaxy to galaxy, the peculiar velocity expectation values for individual
galaxies will not be confined to a plane. As noted in Section 3.2.1, it is for this
reason (as well as the censoring of the distribution) that a simple regression (whether
orthogonal or in the r-direction) of an infinite plane is not equivalent to our ML fit
of a 3D Gaussian model and therefore the above relation is, similar to, but not the
same as the coefficients derived from a direct fit of the plane about the r-direction.

We have evaluated this J band expectation value distance (i.e. the maximum
likelihood distance) for every galaxy in our sample, and find that the scatter about
this value is 23%. This, then, is the distance error in the J band assuming no
Malmquist bias corrections. If we include Malmquist bias corrections by simply cal-
culating the fn normalisation term in the likelihood (equation 3.13) of an individual
galaxy, for the magnitude limit that is appropriate for that galaxy’s distance, the
scatter increases to 27%.

This 23% scatter (before Malmquist bias correction) in distance is significantly
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smaller than the 29% that is naively obtained by calculating the scatter in r about the
best-fit FP. The difference is purely a consequence of the fact that, in our empirically
well-justified 3D Gaussian model for the distribution in FP space, galaxies are not
symmetrically distributed about the FP in the r direction. Thus, for fixed s and i,
the probability density of galaxies in r is not maximised on the FP, the expectation
value for the observed distance is not the redshift distance, the expectation value of
the peculiar velocity is not zero, and the scatter in distance and peculiar velocity
relative to this expectation value is less than the scatter relative to the FP.

6.3.4 Calibrating the FP Zeropoint

The relative galaxy distances and peculiar velocities measured from the Fundamental
Plane must be calibrated with respect to some zeropoint. Calibrations that are
commonly applied include forcing the sum of the peculiar velocities in the sample to
be zero or fixing the peculiar velocity of a well-know cluster (e.g. Coma) to be zero.

We derive peculiar velocity measurements for a 6dFGS galaxy sample that ex-
tends across the entire southern sky but includes very few galaxies in the Northern
Hemisphere. The lack of galaxies in the north means the measurement of the bulk
flow (and β) is therefore susceptible to a systematic deviation in the FP zeropoint
if calibrated by fixing the mean peculiar velocity in our sample to zero. If there is
a significant bulk flow towards the north (or south) celestial pole, this would result
in a average negative (or positive) peculiar velocity which would make the former
assumption invalid.

To avoid this potential problem, we instead calibrate the zeropoint using only
those galaxies near the celestial equator, roughly approximating a great circle region
in our hemispherical sample that will remain largely unaffected by a polar bulk flow.
We define this subsample as the Ng = 3828 galaxies north of δ = −20◦ and fit the r̄
value after fixing the other coefficients that define the FP (i.e. a, b, s̄, ī, σ1, σ2, σ3)
to the bias-corrected best fit values of the global plane. The best-fit value (after bias
correction) of the mean effective radius for this subsample is r̄ = 0.177±0.007 which
is consistent with, but slightly smaller than the global FP value of r̄ = 0.184±0.004.
Note that if this difference in r̄ were due to a real distance offset rather than a
statistical fluctuation, it would correspond to relative distance error of 1.6%, or a
velocity error of 160 km s−1 at a distance of 10 000 km s−1 (i.e. we would have under-
estimated the bulk flow in the direction of the south celestial pole by of order this
amount).

In order to use this r̄ value in our FP zeropoint calibration, we need to ensure
that this declination-limited subsample of galaxies has a similar FP (offset only in r̄)
to the global FP and is consistent within errors, given that we are using a reduced
number of galaxies. We generate 200 mock simulations (with Ng = 3828 galaxies
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Figure 6.7: Uncertainties on the FP parameters for subsamples selected with declination,
comparing subsamples with δ > −20◦ (red; Ng = 3828), and δ < −20 (blue; Ng = 5073)
and the full sample (green; Ng = 8901). The points show the best-fit FP parameters for
each of 200 mock samples of the declination-selected subsamples and 1000 mocks of the full
sample. The mean values of the fitted FP parameters from the mocks, and their 1σ and
2σ contours, are also plotted. For reference, the input FP parameters used to generate the
samples for the J band are indicated as dotted lines. Left: b versus a, showing similar FP
coefficients. Centre: b versus r0, showing weak trend of larger r0 with decreasing b. Right:
a versus r0, showing same weak trend but with increasing a.

per simulation) using the best-fit plane to the δ > −20◦ subsample (and also to
the δ < −20◦ subsample with Ng = 5073 galaxies, as a consistency check) and fit
the FP to each simulation using the maximum likelihood procedure of Chapter 3.
The resulting mean best-fit values (and their 1σ and 2σ error contours) are plotted
in Figure 6.7 and compared to 1000 mock simulations of the global J band FP (as
done in Chapter 4). Both declination-limited subsamples have FP slopes that are
consistent with each other and the global FP within the 1σ errors. They are slightly
offset in r0, corresponding to their offsets in r̄, although the differences are within
the 2σ joint errors.

6.4 Peculiar Velocity Likelihood Model

To measure the parameters defining the local peculiar velocity field including β and
the bulk flow motion of the sample, we develop and extend the maximum likelihood
method used to fit the Fundamental Plane coefficients to include galaxy peculiar
velocity measurements (as outlined in Section 6.2). The likelihood function of this
new velocity field model incorporates the probability distribution of the 3D Gaussian
model that defines the FP likelihood function (equation 3.13). The revised likelihood
function is defined as

lnL = −
Ng∑
n=1

3

2
ln(2π) + ln(xn) +

1

2
ln(|Σ + En|) +

1

2
xT
n(Σ + En)−1xn . (6.6)

in a similar manner to equation 3.13 but with two notable differences. The first is
that the likelihood function for the velocity model is not weighted by any selection
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probability because we can’t assume a galaxy is at its redshift distance in order to
account for the magnitude selection in our sample. Instead we make this correc-
tion in the likelihood normalisation (fn) which also accounts for Malmquist bias, as
described in Section 6.4.2. The second major difference is that the FP coefficients
are not free parameters in this case and are fixed to those of the global J band
bias-corrected best-fit plane (see Table 4.1) except for the FP offset in effective ra-
dius, r̄, which is derived from a declination-limited subsample in Section 6.3.4. In
this model, adopted throughout this chapter, we treat the galaxies as test particles
which are used as a measure of the peculiar velocity field at a given point in redshift-
space. Because the peculiar velocities in our model are exclusively in redshift-space,
inhomogeneous Malmquist bias is insignificant.

Additionally, the effective radius of each galaxy is now dependent on the redshift
distance modified by the galaxy peculiar velocity, based on the following procedure.
For a given galaxy with predicted peculiar velocity, vn, we define the components of
the model peculiar velocity, vmodel, as

vmodel = vn

(
β

βfid

)
+ u · r̂ (6.7)

where r̂ is the unit direction vector of the galaxy in Supergalactic coordinates (in
h−1 Mpc) and u is a dipole flow (to be fit) also with respect to Supergalactic coor-
dinates (in km s−1). In practice, we fit for the β parameter scaled by a fiducial β
parameter (i.e. βfid = 0.4) corresponding to the 2MRS field input value in the form
Mβ = β/0.4, which we hereafter refer to as the β multiplier. In equation 6.7 we
define a model where Mβ and u are fit simultaneously, however we can similarly
derive models where we fit for β only, i.e.

vmodel = vn

(
β

βfid

)
(6.8)

and also, fit for a dipole only
vmodel = u · r̂ . (6.9)

The best-fit values of Mβ and/or u are those for which the likelihood function of
equation 6.6 is maximised.

6.4.1 Hubble Redshift and Fundamental Plane Distance

Using the observed redshift (zobs) and the model peculiar velocity calculated by
equation 6.7 (or 6.8 or 6.9) for given values of Mβ and u, we calculate the Hubble
redshift (zH) for each galaxy, corresponding to its distance in the absence of any
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peculiar motions, from the redshift relation

(1 + zH) = (1 + zobs)/(1 + zp) (6.10)

where zp is the redshift corresponding to the peculiar velocity, which for this case is
vmodel = czp.

The observable quantity from the FP is actually the ratio of the log effective
radius at the Hubble redshift defined by equation 6.10 (logRH) and at the observed
redshift (logRobs), which are related to the corresponding angular diameter distances,
DA(zH) and DA(zobs) respectively, by

log
RH
Robs

= log
DA(zH)

DA(zobs)
. (6.11)

Hence we use equations 6.10 and 6.11 to map back and forth between peculiar ve-
locities and relative distances

6.4.2 Normalisation of the vp Likelihood Model

In our Fundamental Plane model, we multiply the FP likelihood function by a selec-
tion probability weighting to account for the effects of censoring in our magnitude-
limited sample and at the same time correct for Malmquist bias. This weighting
assumes that the redshift of each galaxy corresponds to its redshift distance neglect-
ing the effect of its peculiar velocity. This approximation may bias the likelihood
function for our peculiar velocity model (equation 6.6), as the galaxy distance is now
dependent on the value of the free parameters Mβ and u.

Instead the magnitude selection of our sample is accounted for in the new model
by including in the normalisation factor, fn of equation 6.6, an additional term
that corresponds to the magnitude limit appropriate for the distance of each galaxy
(inclusive of peculiar velocity).

There is no simple analytic expression for this correction factor, hence fn is
determined using a large (Ng = 100 000) Monte Carlo simulation of a FP galaxy
sample drawn from the best-fit J band FP values and a selection function that
mimics the data. The entire mock sample is used to calculate the value of fn for
distances out to 200h−1 Mpc (well past the limiting redshift of our sample). The
accuracy of fn derived in this way is sufficient given the large number of mock galaxies
in the sample and the close correspondence of the simulations to the data.

The fn normalisation is used to correct the individual likelihood (in the vp model)
for each galaxy given the survey magnitude limit and assuming a global (best-fit)
Fundamental Plane. Hence this method can’t be used in fitting the FP itself because
fn depends on the FP parameters. The new fn is evaluated for each galaxy depending
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on the comoving distance corresponding to its Hubble redshift given the trial values
for Mβ and/or the dipole flow u that is being maximised.

6.4.3 Mock Peculiar Velocity Distributions

The simulate a mock peculiar velocity field that closely matches the observed sample
of 6dFGS galaxy velocities, we use the predicted peculiar velocity field reconstructed
from the 2MRS density field of Erdoğdu et al. (2012, submitted). The predicted
peculiar velocity field is evaluated on a cubical grid in real-space, calculated for grid
points within ±196h−1 Mpc of the origin, with spacing of 8h−1 Mpc (as described in
Section 6.2). Mock peculiar velocities are generated using the following procedure:

1. Choose a sky position for each mock galaxy randomly from the set of (R.A.,
Dec.) positions that exist in the actual galaxy sample.

2. Generate a mock comoving distance uniformly distributed in volume.

3. Convert R.A. and Dec. (both in degrees) to Supergalactic (here and through-
out) Cartesian coordinates i.e. SGX, SGY and SGZ.

4. Calculate the peculiar velocity (in km s−1) for the mock galaxy at that position
by trilinear interpolation of the surrounding peculiar velocity grid points and
multiply by the input Mβ value.

To calculate the observed redshift, z0, of each mock galaxy, we use this mock
peculiar velocity to correct the galaxy’s Hubble redshift, zH , by inverting the redshift
relation of equation 6.10 (where zp is the redshift corresponding to the peculiar
velocity, i.e. vp = czp).

6.4.4 Adding a Bulk Flow to the Mock Galaxy Samples

To simulate mock peculiar velocities, vp, that include a bulk flow component, we use
the same procedure outlined in Section 6.4.3 to generate an initial mock peculiar
velocity, vmock but extend step 4 to include a bulk flow (uinput) given the mock
galaxy position in normalised Supergalactic coordinates (rmock)

vp = vmock + uinput · rmock . (6.12)

These input mock peculiar velocities are derived using the real-space comov-
ing distances but the final predicted peculiar velocities are calculated by a further
interpolation of the 2MRS reconstructed peculiar velocities with Supergalactic coor-
dinates given a redshift-space distance, as for the data.

The final stage in generating mock peculiar velocities involves replacing the red-
shift and peculiar velocity of the galaxies in the richest groups of the sample by the
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mean redshift and peculiar velocity of the groups they reside in. We perform this
grouping so that the mock simulations emulate the group structure in the data (as
described in Section 2.8.1 using the 6dFGS groups and clusters catalogue) as closely
as possible.

We assign group redshifts and velocities only to simulated galaxies whose mock
distance (in Supergalactic coordinates) is within 1h−1 Mpc of one the largest groups
in the 6dFGS group catalogue of Section 2.8.1, given that 1h−1 Mpc is approximately
the typical scale of the clusters in our sample. We then treat this mock galaxy as
a member of the nearest group, and replace the mock redshift and vp of this galaxy
by the mean redshift and peculiar velocity of the galaxies that are members of that
group.

6.5 Testing the Model Galaxy Sample Fits

In this section we test, using mock samples, the robustness of the linear flow model
defined by the beta parameter (corresponding to the model of equation 6.8) using
mock galaxy samples. We use mock galaxies that are perturbed by peculiar velocities
drawn from a range of distributions to quantify any systematic bias associated with
this model.

The peculiar velocity distribution models considered here include those based
directly on the 2MRS reconstructed velocity field (§6.5.1) which are compared to ve-
locities modelled from a random Gaussian distribution with the same scatter (§6.5.2).
We explore the impact of a positive or negative offset in the 2MRS peculiar velocity
distribution in §6.5.3 as well as the size of the scatter in the Gaussian distribution
in §6.5.4. For completeness we test mock simulations with variable (instead of fixed)
errors assigned to each mock galaxy (§6.5.5).

6.5.1 Fitting β to Mock vp from the 2MRS Velocity Field

The most physically realistic model for the peculiar velocity distribution of our mock
galaxies comes from the predicted peculiar velocities derived from the 2MRS density
field of Erdoğdu et al. (2012, submitted). For simplicity, we initially assign fixed
measurement errors to the FP parameters, using the same average error for each
mock galaxy (〈εr〉 = 0.049, 〈εs〉 = 0.053, 〈εi〉 = 0.073); this change is also reflected
in the normalisation of the FP. The effect of using individual measurement errors on
each mock galaxy sample will be explored in a later section.

An example of the distribution of peculiar velocities for a mock sample (with
Ng = 8989 galaxies) generated from the 2MRS predicted velocity field is shown in
the left panel of Figure 6.8. On average, a mock velocity distribution derived from
2MRS will have a small positive average velocity (v̄p ∼ 120 km s−1) which is the
mean motion in the predicted 2MRS velocity field at the positions of the galaxies in
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Figure 6.8: Left: Peculiar velocity distribution for a mock sample (Ng = 8989) where vp is
sampled from the 2MRS reconstructed peculiar velocity field. Right: Histogram of best-fit
Mβ for 200 mock simulations with this vp distribution. The mean Mβ and rms from 200 fits
is 〈Mβ〉 = 0.98± 0.10, indicated by the solid red line, compared to the input value used to
generate the mock simulations (i.e. Mβ = 1.0) shown by the dashed black line.

the 6dFGS sample. The mock distribution in Figure 6.8 shows this positive skew as
well as a scatter of σv ∼ 300 km s−1.

Using the maximum likelihood method of Section 6.4 and the model of equa-
tion 6.8, we can recover the β multiplier (Mβ) for 200 mock galaxy samples drawn
from this distribution. The distribution of best-fit values of Mβ is shown in the
right panel of Figure 6.8 with an a mean (indicated by the solid red line) and rms
of 〈Mβ〉 = 0.98 ± 0.10, which is consistent within the errors with the input value
of Mβ = 1.0 (indicated by the dashed black line). The best-fit Mβ values for the
mock simulations in this section are summarised in Table 6.1. Our likelihood model
for the peculiar velocity field therefore performs well when fitting to mock galaxy
samples with peculiar velocities simulated from the 2MRS reconstruction, recovering
the input value of Mβ with an accuracy of 10%.

6.5.2 Mock vp from 2MRS and Gaussian Distributions

We now compare the distribution of 2MRS predicted velocities to a more simplistic
model where the mock peculiar velocities are randomly drawn from a Gaussian of a
given width (σv). To match the distribution of 2MRS-sampled velocities, we simulate
peculiar velocities from a Gaussian of a given mean offset (voff) and width σv =

300 km s−1 which is offset by voff = +120 km s−1 (therefore the average vp for
each mock sample is also 120 km s−1). The Gaussian-distributed vp distribution is
not as sharply peaked and the negative tail is not as asymmetric as the velocities
sampled from 2MRS, as shown in left panel of Figure 6.9. However, as a toy model
distribution it is sufficiently representative of the physical distribution of velocities
to use for testing our fitting procedure.
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Table 6.1: Summary of the mean best-fit Mβ values for mock simulations generated with
different vp distributions. For each case 200 mock galaxy samples are fit using a maximum
likelihood procedure. We list the source of the mock peculiar velocities (either from 2MRS
reconstructed velocities or a Gaussian distribution), the input velocity offset (voff), the total
average velocity for each sample (v̄p), the input scatter of the distribution (σv), how the
observational FP errors were generated (either fixed or variable) the mean best-fit 〈Mβ〉 and
rms scatter, and standard error of the mean (σM ) of 200 fits to Mβ .

mock vp model voff v̄p σv obs. error 〈Mβ〉± RMS σM
[km s−1] [km s−1] [km s−1] [-]

(i) 2MRS - +120 - fixed 0.98±0.10 0.007
(ii) Gaussian +120 +120 300 fixed 0.99±0.08 0.006
(iii) 2MRS +120 +240 - fixed 1.00±0.08 0.006
(iv) 2MRS −120 0 - fixed 0.91±0.12 0.008
(v) Gaussian - 0 200 fixed 0.95±0.13 0.009
(vi) Gaussian - 0 300 fixed 0.95±0.09 0.006
(vii) Gaussian - 0 400 fixed 0.95±0.06 0.004
(viii) 2MRS - +120 - variable 1.02±0.10 0.007
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Figure 6.9: As for Figure 6.8, but comparing mock galaxy samples with vp sampled from
the 2MRS velocity field (red, the same as those in Figure 6.8) and a Gaussian distribution
of width σv = 300 km s−1, offset by voff = +120 km s−1 (in blue).
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In the right panel of Figure 6.9, we compare the best-fit values of Mβ for 200
simulations of mock samples with peculiar velocities sampled from the 2MRS recon-
structed velocities (red) and those sampled from a Gaussian distribution of width
σv = 300 km s−1 with an input offset of voff = +120 km s−1 (blue). For the 200 mock
simulations of Gaussian-sampled peculiar velocities, the best-fitting mean and rms
are 〈Mβ〉 = 0.99± 0.08. This is consistent with the corresponding mock simulations
of 2MRS-sampled velocities (i.e. 〈Mβ〉 = 0.98± 0.10) as shown in Table 6.1.

Our likelihood model is robust to both representations of the mock peculiar ve-
locities (i.e. sampled from the 2MRS peculiar velocity field or a Gaussian distribution
of matching width and mean) and for each type correctly fits the input value forMβ .

6.5.3 Mock vp from 2MRS Distributions with Differing Average
Offsets

We investigate the effect of different non-zero average velocity in the mock peculiar
velocity distributions. To this end, we generate mock galaxy samples to which we
add both a positive and negative offset (i.e. voff), of the same magnitude as the mock
vp distributions drawn from 2MRS predicted velocities. The velocity distributions
of each type of mock sample are given in the left panel of Figure 6.10 for the mock
samples where zero offset is applied (red; total average velocity for each sample is,
v̄p ∼ 120 km s−1), a positive offset of +120 km s−1 is applied (green; v̄p ∼ 240 km
s−1), and a negative offset of −120 km s−1 is applied (blue; v̄p ∼ 0 km s−1).

The right panel of Figure 6.10 shows the best-fit Mβ values for 200 mock simula-
tions of these three types of mocks. The histograms indicate that a tighter constraint
on Mβ is found when the distribution of peculiar velocities has a higher average pe-
culiar velocity i.e. when v̄p ∼ +240 km s−1. If the vp distribution has a high average
peculiar velocity, then by construction it will sample more galaxies with positive
peculiar velocities, hence those galaxies which are systematically closer to us than
implied by their redshift distance. Therefore, this effect can be understood as a result
of sampling more nearby galaxies which have smaller errors in distance (and hence
smaller errors in vp).

In summary, the broadening of the Mβ distribution for more negative v̄p is ac-
companied by a trend to lower mean values of 〈Mβ〉; e.g. 〈Mβ〉 = 1.00 ± 0.08 for
v̄p ∼ 240 km s−1 but 〈Mβ〉 = 0.91± 0.12 for v̄p ∼ 0 km s−1 (see Table 6.1).

6.5.4 Mock vp from Gaussian Distributions with Differing Widths

Thus far we have only fit mock vp distributions of a certain width (i.e. 300 km s−1).
However, to test how robust our fitting method is to the size of the scatter in the
velocity distribution, we can generate mock simulations where velocities are drawn
from a Gaussian with varying input widths of σv = 200, 300 and 400 km s−1 (and in
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Figure 6.10: As for Figure 6.8, but comparing mock galaxy samples with vp sampled from
the 2MRS velocity field but with a total average vp offset of 0 km s−1 (blue), +120 km s−1

(red, the same as those in Figure 6.8), and +240 km s−1 (green).

this case, zero mean vp).

The best-fit Mβ values for 200 simulations of each of these mock are given in
Figure 6.11 for mocks with vp distribution of width σv = 200 km s−1 (red), σv =

300 km s−1 (blue) and σv = 400 km s−1 (green). As expected, the mean best-fit 〈Mβ〉
values (see Table 6.1) are the same for all three types of mocks i.e. 〈Mβ〉 = 0.95,
but are recovered with better precision when the sample of peculiar velocities has a
larger scatter.

Therefore, the peculiar velocity model is sensitive to the scatter in the distribution
of mock velocities as reflected in the rms error in fitting to Mβ , but maintains the
correct best-fit value for Mβ regardless of the vp distribution width.

6.5.5 Mock vp Distributions with Variable FP Measurement Error

We add an additional layer of complexity to our mock galaxy samples in order to
emulate our data sample more closely, by simulating individual measurement errors
for the FP parameters of each galaxy (in the same procedure we use for the Funda-
mental Plane mock samples). Again we fit 200 mock simulations where the peculiar
velocities are selected from 2MRS and now include variable measurement errors for
r, s and i (and the normalisation of the Fundamental Plane is appropriately altered
to incorporate variable errors).

The fitting procedure is still able to recoverMβ accurately, as seen in Figure 6.12,
with a best fit (see Table 6.1) of 〈Mβ〉 = 1.02 ± 0.10 which compares favourably
with mock simulations using fixed measurement errors. We will include individual
measurement errors on all mock galaxies throughout the rest of this analysis.
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Figure 6.11: Histogram of best-fitMβ values for three types of mocks simulations with 200
samples per simulation (Ng = 8989 galaxies in each sample) where the input vp is sampled
from a Gaussian distribution of width σv = 200 km s−1 (red), σv = 300 km s−1 (blue) and
σv = 400 km s−1 (green).
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Figure 6.12: Histogram of best-fit Mβ value for 200 mock simulations (Ng = 8989 galax-
ies in each sample) in which the input vp is sampled from a 2MRS reconstructed velocity
distribution where measurement errors were fixed for all galaxies (red, the same as those in
Figure 6.8) as compared to the mock simulations where galaxies have individual measure-
ment errors (black).
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Table 6.2: Best-fit values to 1000 mock simulations (Ng = 8989 galaxies in each sample),
fitting (1) Mβ only to a model with input Mβ = 1 and u = 0, (2) utot only, to a model with
input Mβ = 0 and u = 0; and (3) both Mβ and ures, to a model with input Mβ = 1 and
u = 0. We list the input values as well as the mean best-fit values (and rms scatter) of Mβ

and u for each set of mock simulations.

Model Input Best-fit

Mβ u 〈Mβ〉 〈ux〉 〈uy〉 〈uz〉
[-] [km s−1] [-] [km s−1] [km s−1] [km s−1]

(1) Mβ 1.0 - 1.0±0.10 - - -
(2) utot - (0,0,0) - -42.7±41.2 -19.0±34.0 -16.8±38.6
(3) Mβ , ures 1.0 (0,0,0) 0.89±0.11 -70.2±48.4 -26.7±39.4 -34.0±42.1

6.6 Testing the Model Fits of β and u

In this section we extend the peculiar velocity model of the previous section, by
introducing a dipole term (i.e. u, in addition to Mβ) in the peculiar velocity field
model that we fit with our maximum likelihood fitting method. In the case where we
fit only a dipole term (i.e. fixMβ to zero - corresponding to the model of equation 6.9),
we refer to this as the total bulk flow (utot) in the sample.

We also extend this model and fit for both Mβ and u simultaneously (corre-
sponding to the model of equation 6.7); in this case the dipole term is the residual
bulk flow (ures) of motions unaccounted for by the 2MRS predicted velocity field
(notably the mass distribution outside the 2MRS volume). Henceforth we refer to
the Supergalactic Cartesian components (i.e. with respect to SGX, SGY and SGZ)
of the dipole vector, u, as simply ux, uy and uz, respectively.

6.6.1 Calibrating Bias Corrections of the Fitting Method

We determine the uncertainties and residual bias corrections on each of the param-
eters defining the three models using Monte Carlo simulations of galaxy samples
(including mock peculiar velocities generated using the method of Section 6.4.4), in
a similar manner to the Fundamental Plane coefficient errors in Chapter 4.

To quantify the residual bias in our maximum likelihood fitting, we generate 1000
mock simulations with an input value ofMβ = 1.0 and u = 0, and fit justMβ and no
induced dipole. Similarly, we generate 1000 simulations with Mβ = 0 and u, and fit
only the total dipole utot. Finally we generate 1000 mock simulations with Mβ = 1

and u = 0, and fit both Mβ and the residual dipole ures. Table 6.2 summarises the
mean best-fit values after fitting to these mock samples.

The distribution of the maximum-likelihood best-fit values to these mock samples
is shown in Figure 6.13. For each of the parameters in the three models, the mean
of the best-fit values (solid red line) is compared to the input value of the mock
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Figure 6.13: Histograms of the maximum-likelihood best-fit values to Mβ only (panel a),
components of the total dipole, utot, only in km s−1 (panel b) and Mβ and components of
the residual dipole ures in km s−1 (panel c). Each histogram is labelled at the top with the
name of the parameter, the input value of the parameter for 1000 mock simulations, and the
mean and rms of the best-fit parameters obtained from ML fits to these mocks; a Gaussian
with this mean and rms is overplotted on the histogram. The vertical dashed line shows the
input value of the parameter and the vertical solid line shows the mean of the best-fit values
(see Table 6.2). The residual bias correction is the offset between the dashed and solid line.

samples (dashed black line). The offset between the dashed line and the solid line is
the residual bias correction (see equations 6.13 and 6.14 below).

Fitting Mβ alone (equation 6.8) to 1000 mock simulations, we recover the input
value exactly with 10% rms error (〈Mβ〉 = 1.0 ± 0.10). In the model where we fit
for a dipole component only (equation 6.8), the best-fit values are systematically
lower than the input values of the dipole components. For the total dipole, utot we
therefore determine a bias correction for each component of

∆ux = +42.7, ∆uy = +19.0 and ∆uz = +16.8 . (6.13)

The best-fit values for 1000 mock simulations when fitting both Mβ and the
components of a residual velocity dipole (equation 6.7) are also given in Table 6.2.
In this model where Mβ and u are fit simultaneously, we find a slightly larger offset
between the input and mean best-fit parameters. From the mock simulations, we
derive a residual bias correction in this model of

∆Mβ = 0.11, ∆ux = +70.2, ∆uy = +26.7 and ∆uz = +34.0 . (6.14)
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Table 6.3: Best-fit values to the 6dFGSv sample (Ng = 8989 galaxies) after bias correction,
fitting (1) Mβ only, (2) utot only and (3) both Mβ and ures. We list the best-fit values and
rms scatter (derived from the mock simulations in Table 6.4) of Mβ and u for each model.

Model Mβ ux uy uz
[-] [km s−1] [km s−1] [km s−1]

(1) Mβ 0.73± 0.10 - - -
(2) utot - −331.1± 43.3 +82.5± 36.6 −19.2± 37.9
(3) Mβ , ures 0.72± 0.11 −205.7± 46.3 +162.4± 35.0 +45.8± 41.6

This larger offset and the slightly larger uncertainties are presumably due to
coupling (i.e. degeneracy) between Mβ and u in the fits. We speculate that this is
in part due to the limited sky coverage of the peculiar velocity measurements; we
address this issue in Section 6.7.2.

6.7 Fitting Mβ and u to the Data

We have determined the uncertainties and residual bias inherent in the fitting mod-
els of Section 6.4 using well-calibrated mock simulations. Therefore, we now use the
maximum-likelihood fitting routines of Section 6.4 to recover the best-fit beta mul-
tiplier, total and residual dipole values for the 6dFGSv data sample of Ng = 8989
galaxies (see Section 6.3).

The best-fitting values (after bias correction) for this sample are summarised in
Table 6.3, which includes the mean best-fit value for each parameters in our three
vp models as well as the rms scatter from 200 mock simulations generated using the
values from Table 6.3 as input.

6.7.1 Fitting to Mock Simulations Corrected for Bias

We confirm that the bias corrections derived for the fitting models are an accurate
representation of the residual bias in the fitting model by generating 200 mock simu-
lations with the bias-corrected values of the best-fit to the data (Table 6.3) as input
to the mocks. If the bias corrections are accurate, then the mean of the best-fit
values will match the best-fit to the data before bias correction, indicating that the
input to the mocks is in fact the true best-fit value.

The maximum likelihood models perform remarkably well in recovering the fitted
values with the appropriate bias as shown in Figure 6.14. Figure 6.14 includes the
distribution of best-fitting values for 200 mock simulations (in each case) when fitting
Mβ alone (panel a), utot only (panel b) and Mβ and ures (panel c). The difference
between the input and best-fit values and standard error of the mean for these mock
simulations are also given in Table 6.2. The best-fit Mβ value differs from the input
by δ〈Mβ〉 < 0.02 with a standard error of the mean as small as σM = 0.01 in both
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Table 6.4: Best-fit values to 200 mock simulations (Ng = 8989 galaxies in each sample),
fitting (1) Mβ only to a model with input Mβ = 0.73 and u = 0, (2) utot only, to a model
with input Mβ = 0 and u = (−331.1,+82.5,−19.2); and (3) both Mβ and ures, to a model
with input Mβ = 0.72 and u = (−205.7,+162.4,+45.8). We list the input values as well as
the difference mean best-fit and input values (and the standard error of the mean, σM ) of
Mβ and u for each set of mock simulations.

Model Input Difference between best-fit and input

Mβ u δ〈Mβ〉 δ〈ux〉 δ〈uy〉 δ〈uz〉
[-] [km s−1] [-] [km s−1] [km s−1] [km s−1]

(1) Mβ 0.73 - 0.0±0.01 - - -
(2) utot - (-331.1,+82.5,-19.2) - 11.8±3.1 3.8±2.6 1.3±2.7
(3) Mβ , ures 0.72 (-205.7,+162.4,+45.8) 0.02±0.01 10.8±3.3 2.9±2.5 5.8±2.9

models 1 and 2. For models 2 and 3, the difference in the x, y and z-components of
u (for both utot and ures) is at most ∼12 km s−1 for δ〈ux〉 but as small as ∼1 km
s−1 for δ〈uz〉, with a consistent, and small, standard error of the mean of ∼3 km s−1.

6.7.2 Fitting Mβ and u to All-Sky Simulations

In the previous sections, we discovered a systematic offset in the fitted values forMβ

and u (i.e. a residual bias), in the sense that the fitted values are lower compared to
the input values of the mock simulation. The origin of this offset may be due to the
fact that our galaxy sample is restricted to observations in the Southern Hemisphere
only. We calculate the size of this effect using 200 mock simulations for the simple
case where input Mβ = 1.0 and u = 0. We wish to simulate all-sky coverage with
these mocks, so we randomly select half of the mock galaxies, and invert the sign of
their declinations, while rotating their right ascension by 180 degrees. The best-fit
values of Mβ and the residual dipole term for these mocks are shown in Figure 6.15
indicating that the maximum likelihood fitting model recoversMβ exactly (rms error
of 11%) and a residual dipole consistent with zero (with an rms error < 47 km s−1).
Therefore, the source of the residual bias (and the degeneracy between Mβ and u)
is indeed due to having only hemispheric coverage in the 6dFGS, and hence can be
accounted for using the mock simulations as discussed above.

6.8 Correcting vp for Age Variation in the FP

In the previous chapter, the strongest trend in the Fundamental Plane was found to
be with galaxy age, predominantly in the v1 direction. Up to this point we have not
accounted for the effects of age on the FP in fitting the peculiar velocity field. Here
we investigate the result of incorporating age into the maximum likelihood vp models
developed in the previous sections, with the aim of achieving tighter constraints on
the beta multiplier and bulk flow.
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Figure 6.14: As for Figure 6.13 but mock samples are generated with input values of Mβ

and u derived from fits to data. In this plot, the dashed line is not the (bias-corrected) input
value of the mocks but instead the best-fit (solid red line) is compared to the input values
before bias correction (dashed black line). The small difference between the best-fit and
input (before bias correction) indicates that the initial bias corrections applied to the mock
simulations are appropriate for each of the models. The best-fit values for these simulations
are summarised in Table 6.4.
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Figure 6.15: As for panel (c) in Figure 6.13, but for 200 mock simulations with simulated
sky positions that span both northern and southern hemispheres. The input values of
Mβ = 1.0 and ures = 0.0 are recovered accurately and therefore no residual bias correction
is required in this case.
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Table 6.5: Best-fit values to 200 mock simulations (Ng = 8989 galaxies in each sample)
where each mock galaxy is corrected for the age trend in v1 through the Fundamental Plane,
fitting (1) Mβ only to a model with input Mβ = 1 and u = 0, (2) utot only, to a model with
input Mβ = 0 and u = 0; and (3) both Mβ and ures, to a model with input Mβ = 1 and
u = 0. We list the input values as well as the mean best-fit values (and rms scatter) of Mβ

and u for each set of mock simulations.

Model Input Best-fit

Mβ u 〈Mβ〉 〈ux〉 〈uy〉 〈uz〉
[-] [km s−1] [-] [km s−1] [km s−1] [km s−1]

(1) Mβ 1.0 - 1.0±0.09 - - -
(2) utot - (0,0,0) - -42.3±41.7 -23.5±36.8 -18.9±41.8
(3) Mβ , ures 1.0 (0,0,0) 0.90±0.11 -70.2±47.4 -26.6±36.5 -30.5±43.9

We couple the sample of galaxies with vp measurements (Ng = 8989), with the
relevant stellar population information by dividing the galaxies into the four age bins
defined in Chapter 5; young (age ≤ 3 Gyr ), intermediate (3 < age ≤ 8 Gyr), old
(age > 8 Gyr) and unknown (for those galaxies without an age measurement). To
simulate this same division in the mock galaxy samples, the mock ages are randomly
drawn from the actual observed galaxy ages, so that the ratio of galaxies in each age
bin (for a given sample) is preserved.

The maximum likelihood function of the vp models is then modified so that the
eight parameters defining the 3D Gaussian Fundamental Plane model are dependent
on which age bin each galaxy is in. The bias-corrected Fundamental Plane coefficients
used in this analysis for each of the four age bins are given in Table 5.2.

We follow the method of Section 6.6.1 by deriving bias corrections for each of
the three vp models (now correcting for age) using 200 mock simulations generated
from the following input values for model 1 (Mβ = 1.0), model 2 (utot = 0.0) and
model 3 (Mβ = 1.0 and ures = 0.0). The mean best-fit values from fitting the
200 mocks samples, as shown in Table 6.5, are similar to the corresponding best-fit
without correcting for age (in Table 6.2); there is no discernible improvement from
accounting for age.

We then apply the age-corrected models to the 6dFGSv sample of galaxies. The
best-fit values for each model are reported in Table 6.6 after bias correction, using
the residual bias derived from the mock simulations in Table 6.5.

Table 6.6 can be directly compared to the models where the age trend is not
accounted for in Table 6.3. In fitting Mβ , the age-corrected model finds a best-
fitting value of 〈Mβ〉 = 0.74± 0.10 similar to the value from the standard model of
〈Mβ〉 = 0.74 ± 0.10, and with the same error. The difference between the standard
and age-corrected model is larger when fitting utot only and Mβ and ures, however
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Table 6.6: Best-fit values to the 6dFGSv sample (Ng = 8989 galaxies) after bias correction,
where each galaxy is corrected for the age trend in v1 through the Fundamental Plane, fitting
(1) Mβ only, (2) utot only and (3) both Mβ and ures. We list the best-fit values and rms
scatter (derived from the mock simulations in Table 6.4) of Mβ and u for each model.

Model Mβ ux uy uz
[-] [km s−1] [km s−1] [km s−1]

(1) Mβ 0.74± 0.10 - - -
(2) utot - −357.3± 40.6 +101.6± 35.5 −25.4± 39.4
(3) Mβ , ures 0.70± 0.12 −233.1± 44.4 +176.1± 38.1 +29.2± 41.8

the scatter between both models remains the same to within 1-3 km s−1 at most.
Therefore the inclusion of age as a fourth parameters in our vp models does not
decrease the overall error in the peculiar velocities.

While in principle removing the age trend should reduce the scatter in the FP
and, by the same token, the errors in FP distances and peculiar velocities, in practice
the variation is not strong enough for individual galaxies trends to impact the fitting
of Mβ and u.

6.9 Additional Uncertainty in r̄

In calibrating the zeropoint of the Fundamental Plane (see Section 6.3.4), we derive
the offset of the plane in effective radius (i.e. r̄) from a subsample of galaxies around
the great circle close to the celestial equator to avoid spurious bulk motions along
the poles. The re-calibrated value for r̄ is then used when fixing the eight parameters
defining the global FP in the likelihood function that models the peculiar velocity
field. The subsample from which r̄ is measured has fewer galaxies in it than the full
sample of 8901 galaxies (used to fix the other best-fit FP parameters) which may
induce additional scatter when fitting the parameters associated with the peculiar
velocity model.

To measure the extent of this effect we use the same mock simulations as in
Sections 6.6.1 and 6.7.1. We model the uncertainty associated with deriving r̄ from
a small subsample as a random Gaussian distribution with a width of σr̄ = 0.003

(i.e. the rms error in r̄ from mock simulations of the subsample). Then we use values
drawn from this distribution (rather than a fixed r̄) to define the FP in the likelihood
function defining the vp model parameters.

To determine the bias corrections for the three vp models we use mocks with
input values of Mβ = 1.0, utot = 0.0 and Mβ = 1.0 and ures = 0.0. For the model
fitting Mβ only, there is no bias correction. For the total dipole, utot we assume a
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Table 6.7: Best-fit values to 200 mock simulations (Ng = 8989 galaxies in each sample)
using variable r̄, fitting (1) Mβ only to a model with input Mβ = 0.73 and u = 0, (2) utot

only, to a model with input Mβ = 0 and u = (−331.1,+82.5,−19.2); and (3) both Mβ and
ures, to a model with input Mβ = 0.72 and u = (−205.7,+162.1,+45.8). We list the input
values as well as the mean best-fit values (and rms scatter) of Mβ and u for each set of
mock simulations.

Model Input Best-fit

Mβ u 〈Mβ〉 ux uy uz
[-] [km s−1] [-] [km s−1] [km s−1] [km s−1]

(1) Mβ 0.73 - 0.74±0.16 - - -
(2) utot - (-331.1,+82.5,-19.2) - -368.3±74.2 +57.0±45.0 -37.5±46.5
(3) Mβ , ures 0.72 (-205.7,+162.1,+45.8) 0.64±0.12 -272.2±73.1 +128.1±45.4 +13.8±46.1

bias correction for each component of

∆ux = +49.7, ∆uy = +21.7 and ∆uz = +18.8 . (6.15)

From the mock simulations, we derive a residual bias correction for the model
fitting Mβ and ures of

∆Mβ = 0.10, ∆ux = +70.9, ∆uy = +26.9 and ∆uz = +34.1 . (6.16)

These corrections are very similar to those in equations 6.13 and 6.14 from the
model where r̄ is fixed, indicating that both methods have a similar amount of bias.

The rms scatter, resulting from a variable r̄ value, in the best-fitting parameters
of each fitting method is measured using the same mock samples in Section 6.7.1
which are generated from input values derived from the bias-corrected best-fit to the
data. These input values and recovered best-fit values (to 200 mock simulations)
are summarised in Table 6.7 and their distributions are plotted in Figure 6.16. The
mean best-fit value for all three vp models compare favourably with the values from
fitting the same mock simulations (but using fixed r̄) in Table 6.4 (and Figure 6.14).

However, the rms scatter in each of the best-fit parameters in this model is
larger (i.e. 〈Mβ〉 = 0.74 ± 0.16) than for the model where r̄ is fixed (i.e. 〈Mβ〉 =

0.73 ± 0.10). In particular, the rms scatter in ux in both the model for utot (i.e.
〈ux〉 = −368.3 ± 74.2 km s−1) and ures (i.e. 〈ux〉 = −272.2 ± 73.1 km s−1) is also
substantially larger than the rms scatter in the y- and z-components of the dipole (see
Table 6.7). Also it is almost 1.5 times larger than the rms error in the corresponding
best-fit values in the model where r̄ is fixed, in both utot (〈ux〉 = −362± 43.3) and
ures (〈ux〉 = −265.1 ± 46.3). We expect the dipole flow in the x-direction (ux) to
contain the largest scatter and hence be affected most strongly by changes in r̄, as
the x-component of the bulk flow is dominant in the polar region.

The magnitude of the bulk flow (|u|) is derived from the quadrature sum of
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Figure 6.16: As for Figure 6.14, for the same 200 mock simulations but fitted with variable
r̄ for each simulations, drawn from a Gaussian of width σr̄ = 0.003. The best-fit values for
these simulations are summarised in Table 6.7.

Table 6.8: Best-fit values to the 6dFGSv sample (Ng = 8989 galaxies) after bias correction,
using variable r̄, fitting (1) Mβ only, (2) utot only; and (3) both Mβ and ures. We list the
mean best-fit values and rms scatter (derived from mock simulations in Table 6.7) of Mβ

and u for each model. For the total and residual bulk flow we also include the calculated
values for the magnitude of the bulk flow (|u|) in km s−1 and the bulk flow direction in
Supergalactic (SGL, SGB) coordinates in degrees.

Model 〈Mβ〉 ux uy uz |u| SGL SGB

[-] [km s−1] [km s−1] [km s−1] [km s−1] ◦ ◦

(1) Mβ 0.73± 0.16 - - - - - -
(2) utot - −324.1± 77.3 +85.2± 45.5 −17.2± 45.7 336.7±66.3 164.9±10.1 -2.6±8.3
(3) Mβ , ures 0.71± 0.12 −205.0± 72.6 +162.3± 47.9 +45.9± 48.9 272.7±45.0 140.7±16.0 10.8±10.6
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the x, y and z dipole components. The direction of this dipole is calculated (in
Supergalactic coordinates) with the following relations for latitude, SGB:

SGB = arcsin

(
uz
|u|

)
(6.17)

and for longitude, SGL

SGL =

arccos
(

ux
|u| cos(SGB)

)
uy > 0.0

360◦ − arccos
(

ux
|u| cos(SGB)

)
uy < 0.0 .

(6.18)

For the 6dFGSv sample, we determine a best-fit β value (from β = Mβ × 0.4) of
0.29±0.06. We measure a total bulk flow amplitude of |utot| = 337±66 km s−1 in the
direction of (SGL, SGB) = (165◦±10◦,−3◦±8◦) and a residual bulk flow amplitude
of |ures| = 273± 45 km s−1 in the direction of (SGL, SGB) = (141◦±16◦, 11◦±11◦).

Therefore, our final best-fit values and rms scatter for the three vp models (fitting
Mβ and u) are given in Table 6.8 including the bias corrections of equation 6.15
and 6.16 aswell as the magnitude for the residual and total bulk flows (and their
(SGL, SGB) coordinates).

6.10 Discussion

6.10.1 Comparison of the β Parameter

By comparing the predicted 2MRS velocities with the observed peculiar velocities
from our 6dFGSv survey, we measured a best-fit value for the linear redshift-space
distortion parameter of β = 0.29± 0.06. This is in good agreement with Davis et al.
(2011) who find β = 0.33 ± 0.04 from a comparison of their own reconstruction of
the 2MRS survey with a subsample of ∼3000 measured peculiar velocities from the
SFI++ survey (Springob et al., 2007) based on Tully-Fisher distances. The error
on the measurement of β is highly dependent on the size of the samples and typical
uncertainties on the velocities used to constrain β. The error on β derived from
6dFGSv compares well with the value from Davis et al. (2011) if we account for the
fact our sample is approximately three times larger but the individual velocity errors
are twice as large, relative to theirs. We gain a factor of

√
3 in precision from the

sample size but lose a factor 2 from errors, and so expect this uncertainty to be larger
by a factor ∼2/

√
3 than the value of 0.04 obtained by Davis et. al. We thus might

predict an uncertainty of ∼0.05, whereas in fact our uncertainty is 0.06 due to the
additional error flowing from our zeropoint calibration (see Section 6.9).

Another recent measurement of β was made by studying the clustering dipole of
all galaxies in the 2MASS XSC (and therefore out to a large depth of ∼300h−1 Mpc;
Bilicki et al., 2011). They measured a value of β from a comparison of the observed
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and ΛCDM prediction of the growth of the clustering dipole as a function of the
limiting flux of the survey and found β = 0.38 ± 0.04 (Bilicki et al., 2011), within
∼1.5σ of our value.

A substantially larger value (∼2.8σ level) for β of 0.49 ± 0.04 was derived by
Pike & Hudson (2005) from a reconstruction of the 2MRS peculiar velocity field but
compared to a compilation of three surveys with observed velocities derived from
Tully-Fisher distances, surface brightness fluctuations and a compilation of Type
Ia Supernovae respectively. Lavaux et al. (2010) used a similar iterative technique
to generate a non-linear MAK reconstruction of the 2MRS velocity field which is
compared with another compiled catalogue of ∼2000 velocity measurements. Their
comparison yielded a value of β ∼ 0.52 from their estimate of Ωm = 0.31± 0.05.

However, such discrepancies between the comparison of β values may result from
their sensitivity to the assumed value of linear bias, b between distributions. The
process of Wiener filtering by construction smooths the density field in noisy regions
and consequently reduces the density contrast. It therefore tends to lower the esti-
mated value of β, as discussed by Zaroubi (2002). This bias will need to be accounted
for in developing this analysis further. Alternatively, it may result from details such
as the sample selection limits or differences in fitting methods. Even so, the 6dFGSv
value for β agrees, in general, with other recent determinations on similar scales.

Our measurement of β depends only on the 6dFGS and 2MRS datasets, but if we
combine our results with measurements of other cosmological parameters from the
literature, then we can estimate a value for the amplitude of mass fluctuations on a
scale of 8h−1 Mpc (known as σ8). First, we need to estimate a value for the linear
bias parameter, b, using the fact that b = Ω0.55/β. Assuming Ωm = 0.274 ± 0.027

from the latest WMAP7 constraints (Larson et al., 2011), we calculate a value of
b = 1.69 ± 0.36, in agreement with b = 1.52 ± 0.29 derived from the full 6dFGS
redshift (6dFGSz) sample (Beutler et al., 2012).

This value of b can in turn be used to infer a value of fσ8, given that the amplitude
of the mass (σ8) and galaxy (σ8,g) fluctuations on scales of 8h−1 Mpc are related by
σ8,g = bσ8. If we adopt a value of σ8,g = 0.97± 0.05 appropriate to the whole 2MRS
sample of galaxies (Westover, 2007), we obtain a value for fσ8 = βσ8,g = 0.28±0.06.
This value is comparable to fσ8 = 0.31 ± 0.05 from Davis et al. (2011) but smaller
than fσ8 = 0.42 ± 0.07 as found by Turnbull et al. (2012) and fσ8 = 0.42 ± 0.06

derived from the growth of structure in 6dFGSz (Beutler et al., 2012). Our slightly
lower value of fσ8 follows from the fact that our value for β is also lower. However,
if we use our value of b = 1.69±0.36 and the WMAP7 value of σ8 (=0.81±0.03), we
find σ8,g = 1.37± 0.30, rather higher than the 0.97 value based on Westover (2007).
Westover’s value reflects the bias corresponding to L ∼ L∗, since it applies to the
magnitude-limited 2MRS sample. Our σ8,g value, on the other hand, is relevant for
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the sample selection criteria of the 6dFGSv, and (according to Westover’s estimate
of the luminosity-dependent bias) corresponds to L ∼ 2.5L∗. This is larger than the
effective luminosity of L ∼ L∗ that we calculate by assuming galaxies in our sample
contribute to our estimate of β in proportion to the volume they independently
sample. Therefore the lower value of β derived for our sample does not appear to be
driven by the luminosity dependence of bias.

If we assume a value of f ∼ Ω0.55
m = 0.483 ± 0.026 then our estimate of σ8

is 0.58 ± 0.13. This value of σ8 agrees with that found by Davis et al. (2011) of
σ8 = 0.65 ± 0.11 and is also within 2σ of the WMAP7 result, σ8 = 0.81 ± 0.03

(Larson et al., 2011).

6.10.2 The Local Bulk Flow Motion

In Table 6.9, we provide a comparison of our best-fit total bulk flow for the 6dFGSv
sample with a selection of the most relevant bulk flow measurements in the literature.
Recently, there have been two conflicting measurements of the bulk flow in the local
volume within a radius of ∼50h−1 Mpc: a large bulk flow that disagrees with the
predictions of ΛCDM (Watkins, Feldman & Hudson, 2009; Feldman, Watkins &
Hudson, 2010) and a smaller bulk flow consistent with ΛCDM (Nusser & Davis,
2011, hereafter ND11).

In an effort to construct a large enough sample to measure the convergence of
the local dipole, Watkins, Feldman & Hudson (2009) combined peculiar velocity
measurements from multiple surveys, with distances from the Fundamental Plane,
Tully-Fisher relation, surface brightness fluctuations, and Type Ia supernovae. The
bulk flow was measured, using a minimum-variance weighting scheme, to each indi-
vidual peculiar velocity sample as well as the COMPOSITE survey including all the
samples (in total, 4481 peculiar velocity measurements). From the COMPOSITE
survey, a bulk flow of 407 ± 81 km s−1 towards l = 287◦±9◦ and b = 8◦±6◦ was
derived within a Gaussian sphere of radius 50h−1 Mpc, which disagrees with ΛCDM
predictions at the 98 per cent confidence level.

However, the bulk flow measurement from the largest survey in the COMPOSITE
sample, the Tully-Fisher sample of SFI++ (Springob et al., 2007), was reanalysed
using a different method by ND11. In contrast to Watkins et. al., ND11 recover a
bulk flow from this sample of 333±38 km s−1 in the direction of l = 276◦±3◦ and b =
14◦±3◦ out to 40h−1 Mpc. This value is not at odds with ΛCDM and cosmological
constraints from WMAP7 (Larson et al., 2011), and may be a consequence of the
differences in the way that ND11 account for the sampling in the volume in question
(as compared to Watkins, Feldman & Hudson 2009).

The characteristic depth, defined as the error-weighted mean redshift, of these two
samples is ∼33h−1 Mpc for COMPOSITE and ∼40h−1 Mpc for SFI++ (as analysed
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by ND11) whereas the characteristic depth of the 6dFGSv survey is ∼73h−1 Mpc.
Therefore we should also compare our bulk flow results with surveys that are deeper
(although limited in sample size) that use SNeIa as tracers of peculiar velocity (e.g.
Colin et al., 2011; Dai, Kinney & Stojkovic, 2011, and also Turnbull et al. 2012
with a characteristic depth of ∼58h−1 Mpc). However we note that as well as their
differing radial weighting, the differing sky coverage of the peculiar velocity surveys
(the 6dFGSv volume is confined to the Southern Hemisphere only) makes a direct
comparison of bulk flow results difficult.

To measure the bulk motion of the local volume, Colin et al. (2011, hereafter
CMSS11) analysed a sample of peculiar velocities from the Union2 catalogue of 557
Type Ia Supernovae (Amanullah et al., 2010). The SNe were binned in redshift,
and a bulk flow was fit with a maximum likelihood method in cumulative volumes
defined by these redshift slices. CMSS11 found that a bulk flow with an amplitude
of ∼260 km s−1 persisted out to z ∼ 0.06, which they claim is inconsistent at this
redshift with ΛCDM at the 1–2σ level.

Another bulk flow measurement was made from the Union2 catalogue using a
Bayesian Monte Carlo Markov Chain approach (Dai, Kinney & Stojkovic, 2011,
hereafter DKS11). Unlike CMSS11, DKS11 detected a small bulk flow within z <
0.05 of 188+199

−103 km s−1 towards l = 290+39
−31
◦ and b = 20+32

−32
◦ at the 68% confidence

level, in agreement with ΛCDM. For the sample beyond z > 0.05 they found a
bulk flow consistent with zero suggesting a convergence of the bulk flow at that
distance. However the sample of SNeIa is too sparse at these redshift to determine
this conclusively.

More recently, Turnbull et al. (2012) determined the bulk flow from a sample
based on 254 peculiar velocities from three different SNeIa surveys. The bulk flow
for the combined ‘First Amendment’ sample (hereafter ‘A1’) was recovered using
both a maximum likelihood (ML) and a minimum variance (MV) method (similar
to Watkins, Feldman & Hudson 2009). The results from their preferred method of
minimum variance weighting yield a bulk flow of 249 ± 76 km s−1 in the direction
l = 319◦±18◦, b = 7◦±14◦ and is not inconsistent with the predictions of ΛCDM
and WMAP7 results (Larson et al., 2011).

Turnbull et al. (2012) also perform a similar maximum likelihood analysis to ours
to determine the residual bulk flow of their sample compared to the reconstructed
density and peculiar field from the PSCz survey (Branchini et al., 1999). They
find a residual bulk flow of 150 ± 43 km s−1 in the direction of l = 345◦±20◦ and
b = 8◦±13◦. Even though the amplitude of the residual bulk flow is smaller than
the 6dFGSv residual dipole (273 ± 45 km s−1), both these results suggest there is
structure influencing the local dynamics which is either outside of the survey volume
or is under-sampled in the reconstructed density and velocity fields.
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Figure 6.17: Distribution of 6dFGSv galaxies (Ng = 8989) in Galactic longitude (b) and
latitude (l), shown in an equal-area Aitoff projection. Individual galaxies are colour-coded by
their CMB frame redshift (in km s−1). The 6dFGSv bulk flow measurements are indicated
in red for the total bulk flow of 337 ± 66 km s−1 (circle) towards (313◦±9◦,15◦±10◦) and
the residual bulk flow of 272± 45 km s−1 (square) in the direction of (326◦±13◦,37◦±14◦).
The bulk flow measurements from various studies (summarised in Table 6.9) are shown
for COMPOSITE (Watkins, Feldman & Hudson, 2009), A1 (Turnbull et al., 2012, including
measurements from the maximum likelihood and minimum variance method), CMS11 (Colin
et al., 2011), DKS11 (Dai, Kinney & Stojkovic, 2011) and ND11 (Nusser & Davis, 2011).
Each point is coloured according to the legend. For reference we also show the direction of
the Local Group motion with respect to the CMB (Kogut et al., 1993) in orange.
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Table 6.9: Summary of bulk flow measurements from previous studies in the literature.
For each study, we list the relevant distance indicator used (DI, with the exception of the
combined vp catalogue of Watkins, Feldman & Hudson 2009), the limiting radius (or the
error-weighted radius of a Gaussian sphere is provided, in parentheses, when appropriate) of
each sample (R in h−1 Mpc), the number of peculiar velocity measurements in the sample
(N), the magnitude of the measured total bulk flow, (|vtot| in km s−1) and the direction of
the bulk flow in Galactic longitude (l in degrees) and latitude (b in degrees).

DI R N |vtot| l b
h−1 Mpc [km s−1] [◦] [◦]

6dFGSv (this thesis) FP 160 8989 337±66 313±9 15±10
COMPOSITE1 - (50) 4481 407±81 287±9 8±6
ND112 TF (40) 2859 333±38 276±3 14±3
CMSS113 SNe 160 142 260±150 298+62

−48 8+34
−52

DKS114 SNe 150 132 188+199
−103 290+39

−31 20+32
−32

A15 SNe (50) 254 249±76 319±18 7±14
1 The COMPOSITE survey of Watkins, Feldman & Hudson (2009) is a compilation of vp
measurements from SBF, FP, SNe and TF surveys
2 Nusser & Davis (2011)
3 Colin et al. (2011)
4 Dai, Kinney & Stojkovic (2011)
5 Turnbull et al. (2012)

Our measured total bulk flow of 337 ± 66 km s−1 towards l = 313◦±9◦ and
b = 15◦±10◦ is therefore comparable with previous measurements and in marginal
agreement with each of these surveys. The magnitude is similar to the largest dipole
measurements (Watkins, Feldman & Hudson, 2009; Nusser & Davis, 2011), although
the 6dFGSv measurement is on a larger scale (∼160h−1 Mpc). The direction of the
6dFGSv bulk flow is also generally consistent with previous determinations.

Figure 6.17 is an all-sky projection of the 6dFGSv sample, colour-coded by the
CMB frame redshift of each galaxy. The bulk flow estimates of the most recent
surveys (summarised in Table 6.9) are overplotted in Figure 6.17 as large coloured
circles (or squares) indicated by the legend. The direction of the bulk flow derived in
each study is, in general, located in a narrow 10◦-wide strip in b parallel to the Zone of
Avoidance. However we would not expect the bulk flow measurement from different
surveys to be exactly the same, as they probe different volumes and hence sample
the local structures influencing the bulk motion in different ways. For example, we
expect the bulk flow from shallower surveys (such as ND11 and Watkins, Feldman &
Hudson 2009), indicated by the green and blue points in Figure 6.17 to be closer to
the Local Group motion with respect to the CMB. Conversely, we expect the bulk
flow of deeper surveys (such as 6dFGSv, CMSS11 and DKS11) to point towards the
most massive structures influencing the dynamics of the survey volume. In this case,
the bulk flow of 6dFGSv towards (l,b)=(313◦±9◦, 15◦±10◦) tends to point in the
direction of the Shapley supercluster at (312◦, 31◦), suggesting Shapley is playing
a dominant role in the motions of the 6dFGSv volume. The 6dFGSv residual bulk
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flow (red square) is also within 14◦ in l and 6◦ in b of the direction of Shapley and
is a significant proportion of the total bulk flow, suggesting the supercluster might
be underestimated in 2MRS volume, either because it is under-sampled at the edge
of the survey or because it extends further out. The dominant effect of Shapley on
the Local Group’s motion has also been established in the recent reconstruction of
the density field by Lavaux & Hudson (2011).

We compare the amplitude of the 6dFGSv bulk flow to other measurements at
different scales in Figure 6.18. The bulk flow measurement from previous studies are
shown at the effective scale of the samples from which they were derived (approxi-
mately at the limiting radius of the sample or the error-weighted radius of a Gaussian
window; although the comparison is complicated for the reasons discussed above).
The top panel of Figure 6.18 includes both the studies that appear in Figure 14
of Colless et al. (2001b) and Table 6.9, whilst the bottom panel has just the more
recent measurements of Table 6.9. The 6dFGSv bulk flow is represented by the red
shaded rectangle bounded by the effective sample limits (as described below). We
also plot the theoretical prediction of the rms bulk flow calculated in a flat ΛCDM
model defined by the WMAP7 results of Ωm = 0.274, h = 0.704 and σ8 = 0.811

(Larson et al., 2011), as a solid line for a top-hat window function (both panels)
and a dashed line for a Gaussian window function. The 90% error contours for the
theoretical prediction corresponding to cosmic variance are shown in light blue (for
the top-hat function) and light green (for the Gaussian function).

In general, the measured bulk motions of most studies, shown in in Figure 6.18,
are within the 90% range of theoretical expectations and are consistent with a general
trend of decreasing bulk flow amplitude at large radii. However, we point out that this
type of a comparison is limited by the fact the not all the observed samples are well-
described by a top-hat window function; for example, the COMPOSITE (Watkins,
Feldman & Hudson, 2009) and A1 (Turnbull et al., 2012) bulk flow measurements
are measured within a Gaussian sphere and are therefore best compared to the
dotted line and green error contours. Furthermore, the observational errors on each
measurement are estimated using different methods between studies and may under
(or over) estimate the true uncertainty.

The survey volume and sky coverage of peculiar velocity samples can also affect
the bulk flow estimate (as discussed in Section 6.7.2). Hence, we should also take into
account the fact that 6dFGSv only covers the Southern Hemisphere when comparing
to bulk flow measurements derived from all-sky surveys. The 6dFGSv samples the
Southern Hemisphere out to 161h−1 Mpc (16 120 km s−1), and has the same volume
as a sphere of radius 129h−1 Mpc (12 900 km s−1); these distances form the upper
and lower limit of the effective range, appropriate for the bulk flow measurement in
the 6dFGSv volume, as shown in Figure 6.18. The characteristic depth of 6dFGSv
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Figure 6.18: The bulk flow amplitude as a function of scale. The 6dFGSv bulk flow
measurement is indicated by a red rectangle whose height is the ±1σ uncertainty in the
fitted motion and whose width runs from the outer limit of the survey at 161h−1 Mpc to
129h−1 Mpc, which is the radius of a sphere having the same volume as the hemispherical
6dFGSv survey. The predicted rms bulk flow in a flat ΛCDM model (Ωm = 0.274, h = 0.704
and σ8 = 0.811) is shown as the solid black line for a top-hat window function (both panels)
and as the dashed black line for a Gaussian window function (lower panel). The light
blue and light green shadings around these lines are the 90% range of scatter from cosmic
variance. Top: Bulk flow measurements from the studies listed in Colless et al. (2001b) and
Table 6.9. Bottom: Bulk flow measurements from recent studies given in Table 6.9, coloured
according to the most appropriate window function (blue for top-hat, green for Gaussian).
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(∼73h−1 Mpc) is equivalent to a uniformly-sampled spherical (top-hat) volume of
radius ∼145h−1 Mpc (assuming fixed relative errors). This radius lies within our
defined effective range and is therefore an appropriate scale for comparison. However,
this is still an over-simplification, and to properly account for the radial distribution
of the sample and the variable errors in distance requires a more sophisticated radial
weighting scheme, such as that provided by Watkins, Feldman & Hudson (2009) and
Turnbull et al. (2012). The ΛCDM prediction for the rms bulk flow amplitude in a
sphere of radius 12 900 km s−1 is 185 km s−1, and 169 km s−1 in a sphere of radius
16 120 km s−1. Our value of |utot| = 337 km s−1 lies higher than the ΛCDM prediction
at the 2.3–2.5σ level; we discuss the significance of this result in the following section.

6.10.3 Cosmological Implications of a Large Bulk Flow

If the bulk flow of the local volume is observed to differ significantly from the theo-
retical expectations from ΛCDM cosmology and the latest WMAP7 constraints, this
could indicate a departure from standard cosmological models. Watkins, Feldman &
Hudson (2009) suggest that the WMAP7 value of σ8 is lower than observed in their
own analysis and some other studies (e.g. Pike & Hudson, 2005; Bond et al., 2005),
although the discrepancy in σ8 is not large enough to account for the amplitude
difference of the bulk flow. This is not supported by our 6dFGSv measurement of
β which is lower than that found by Pike & Hudson (2005), and indeed somewhat
lower than the WMAP7 estimate (albeit consistent at the 2σ level).

An alternative explanation for the divergence in the bulk flow is that the inter-
pretation of the origin of the CMB dipole motion may be incorrect. In a ‘tilted’
universe model (Turner, 1991; Kashlinsky et al., 2008), some fraction of the CMB
dipole is due to fluctuations from the pre-inflationary universe, rather than the Local
Group’s motion with respect to the background, resulting in an intrinsic bulk flow
that does not converge and continues beyond the local volume. A more extreme pro-
posal by Wiltshire et al. (2012) suggests that the CMB dipole is partially induced
by differential expansion histories in different directions on the sky, undermining
the assumption of a CMB rest frame. However, further observation and theoretical
investigation is required to establish the validity of both these models.

There also appears to be some inconsistency in the amplitude of the CMB dipole
predicted from reconstructions of the local density and velocity field. As shown
by Erdoğdu et al. (2006), the 2MRS velocity field reconstruction only accounts for
two-thirds of the ∼600 km s−1 CMB dipole motion assuming β = 0.4. The 6dFGSv-
derived value of β = 0.3 leads to a greater divergence in the dipole alignment, and
does not explain the CMB dipole vector. The Lavaux et al. (2010) reconstruction
of the 2MRS velocity field (out to 150h−1 Mpc) also makes a prediction at variance
with observation. Therefore more detailed analysis of these reconstructed models is
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needed to explain this mismatch and to generate models that can account for the
amplitude of the CMB dipole vector.

6.11 Summary

We have measured FP distances and peculiar velocities for ∼9000 galaxies in the
6dFGSv - the largest, and most homogeneous peculiar velocity survey to date. A
robust Bayesian procedure was developed to model the peculiar velocity field of this
sample, using a maximum likelihood approach and incorporating the 3D Gaussian
FP model of Chapter 3. This model was found to perform well under the demands
of fitting to multiple types of mock galaxy samples designed to emulate the selection
effects and distribution of the real 6dFGSv data. We explicitly model the effects
induced by the form of the peculiar velocity distribution (either from a Gaussian or
more realistic distribution derived from the 2MRS velocity field), the overall mean
offset in the velocity distribution and variation in the width of the distribution. A
comprehensive regime of testing with mock galaxy samples demonstrated that out
Bayesian fitting procedure was robust with respect to these effects.

We established the bias in the best-fit parameters defining the velocity field that
result from the fact that the 6dFGSv sample is restricted to the Southern Hemisphere.
We also determined that the addition of an age parameter in our peculiar velocity
model to account for the strong age trend in the Fundamental Plane did not tighten
the constraints fit by the model, as a result of the scatter in the individual errors in
the age measurements for this sample.

We measured a value of the β parameter from a comparison of the 6dFGSv
observed velocities to the predicted peculiar velocities of the 2MRS reconstructed
density and velocity field. The best-fit value for 6dFGSv was β = 0.29 ± 0.06,
slightly lower than the value found by other studies (although consistent at the 1.5σ

level). We recover a total bulk flow within ∼160h−1 Mpc of |utot| = 337± 66 km s−1

towards l = 313◦±9◦ and b = 15◦±10◦, suggesting coherent motion in the direction of
the Shapley Supercluster. If we account for the fact that our survey volume is limited
to the Southern Hemisphere we find the 6dFGSv bulk flow is not consistent with the
predictions of ΛCDM at greater than 2σ. The residual bulk flow (after subtracting
the 2MRS prediction) of 6dFGSv is |ures| = 273 ± 45 km s−1 accounting for most
of this motion and is in the direction of l = 326◦±13◦ and b = 37◦±14◦, very close
to Shapley. The large amplitude of the residual dipole suggests that the bulk flow
motion of 6dFGSv is dominated by mass distributions unaccounted for by the 2MRS
volume or that the contribution of the Shapley supercluster is underrepresented in
the 2MRS reconstruction.



Chapter 7
Conclusion
7.1 Summary of Conclusions

In this thesis we present the the largest homogeneous sample to date used to deter-
mine the NIR Fundamental Plane derived from the 6dF Galaxy Survey. This sample
comprises ∼104 early-type galaxies from the 6dFGS, extending across the southern
sky. We measure the Fundamental Plane distances and peculiar velocities of these
galaxies, which form the basis of 6dFGSv - the largest and most uniform galaxy
peculiar velocity sample to date. We map the velocity field in the local universe
and compare to the density field derived from redshift surveys. This leads to new
constraints on the beta parameter linking mass density and galaxy bias as well as
the cosmological bulk flow in the 6dFGSv volume.

7.1.1 The 6dFGS Fundamental Plane

We provide the Fundamental Plane parameters for the entire sample of galaxies in
the 6dFGS FP survey in Chapter 2. We report homogeneous spectroscopic measure-
ments from 6dF spectra as well as the robust near-infrared photometry (and size
information) from 2MASS images for a sample of 11 287 galaxies. Further selection
criteria, such as redshift and magnitude, were applied to this sample to remove out-
liers and improve the quality and usefulness of the final FP sample of ∼9000 galaxies
in each of the JHK bands. Additional galaxy properties used in the FP study were
derived pertaining to galaxy environment (group and clusters catalogue), morphol-
ogy (visual inspection and classification) and stellar populations (Lick index fitting
of galaxy spectra).

In Chapter 3, we demonstrate that the standard regression techniques commonly
used to derive a best-fit FP are inherently biased. We develop a robust maximum-
likelihood based fitting method which takes into account the selection effects, corre-
lated observational errors and other sources of potential bias present in a FP sample.
We show that a 3D Gaussian model of the FP is a less-biased representation (and
excellent empirical match) to the distribution of galaxies in FP space, as evidenced
through extensive testing with mock FP samples.

In Chapter 4 we apply the robust FP fitting method outlined in Chapter 3, and
determine the best-fit FP for the 6dFGS Fundamental Plane sample of early-type
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galaxies. We find the best-fit FP for the J band sample is Re∝σ1.52±0.03
0 I−0.89±0.01

e ,
which is similar to previous NIR FP fits in the literature; the passband variation in
the H and K bands is consistent with mean colour variation. The overall scatter in
Re of the 6dFGS FP (and indeed most recent FP studies) is larger than the 20%

usually quoted, and is a result of interpreting the rms scatter projected in Re as the
uncertainty in distance. However, for a 3D Gaussian distribution, the true distance
uncertainty (23%) is smaller than the scatter in Re (29%) once the distribution of
galaxies in FP space is accounted for.

Galaxies in the 6dFGS FP sample that reside in different environments are found
to have the same FP slopes. However the FP does exhibit an offset in size with
environment, in the sense that galaxies in high-density regions (or in groups and
clusters) have smaller sizes than galaxies in low-density (or in the field) regions.
A similar offset is found with morphology, where early-type spiral bulges are on
average about 10% larger than elliptical and lenticular galaxies with the same velocity
dispersion and surface brightness, even though the scatter in the FP for the two
morphological types is similar.

The Fundamental Plane results of Chapter 4 are supplemented by an investiga-
tion of the variation of the FP with stellar populations of the 6dFGS galaxies. In
Chapter 5, we measure the trends of stellar population parameters in the FP both
globally and as linear combinations of partial derivates. We find the strongest trend
normal to the FP (i.e. along the v1 axis) is with age, and that there is essentially no
stellar population variation along the long (v2) axis of the FP. As v2 is aligned with
luminosity density, we suggest that the distribution in this axis of the FP is related
to the history of dry mergers (which has no impact on stellar population). The nat-
ural axes of the FP are therefore driven by different physical processes. Finally, we
determine that age is also the strongest trend with residual orthogonal to the plane
and we speculate that this drives (through the correlations of age with environment,
morphology and metallicity) most of the variations with the other galaxy properties.
The results of Chapters 4 and 5, therefore provide a consistent picture of early-type
galaxy formation as observed in the near-infrared.

7.1.2 Peculiar Velocities and Cosmological Parameters

We derive peculiar velocities for the 6dFGS sample in Chapter 6 using our FP rela-
tion. We measure FP distances and peculiar velocities for ∼9000 galaxies reaching
out to 16 120 km s−1. As an innovation with regard to earlier work, we obtain
the Bayesian posterior probability distribution for each galaxy’s peculiar velocity.
To model the local peculiar velocity field, we apply a maximum likelihood method
to determine the parameters defining the velocity field (such as the redshift-space
distortion parameter β and the bulk flow utot). A variety of mock peculiar velocity
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samples are used to test the accuracy and determine the precision of the ML method,
showing that we can properly account for biases and obtain reliable uncertainties for
the parameters of the velocity field model.

Comparison of the observed 6dFGS peculiar velocity field and the predicted
2MRS velocity field yields β = 0.29 ± 0.06. We measure the bulk flow amplitude
within ∼160h−1 Mpc to be |utot| = 337 ± 66 km s−1 towards l = 313◦±9◦ and
b = 15◦±10◦, consistent with most of the recent peculiar velocity samples (e.g. Dai,
Kinney & Stojkovic, 2011; Colin et al., 2011; Turnbull et al., 2012) and larger than
predicted from ΛCDM expectations at the 2.5σ level.

Most of the bulk flow appears to be in the direction of the Shapley supercluster,
confirming that it is an important structure affecting the dynamics in our sample.
This is consistent with the fact that Shapley is at the edge of the volume probed
by 6dFGSv and, as the largest local structure in our sample, we might expect it
to be the dominant cause of the bulk motion within the 6dFGSv volume. However
there is also a component of the dipole flow, the external field, generated from the
matter distribution outside of the surveyed volume. To calculate the relative contri-
butions from the internal and external field in the 6dFGSv sample, we can compare
the observed field with the predictions from the reconstructed 2MRS density and
peculiar velocity fields. The 2MRS reconstructed velocity field is based on a density
distribution that is only slightly larger than the 6dFGSv volume, so it might be
expected to under-estimate the impact of external structures on the velocity field.
In fact for 6dFGSv we observe a residual bulk flow, after subtraction of the 2MRS
model prediction, with a large amplitude (|ures| = 273 ± 45) which suggests that
there are indeed contributions to the external field from mass distributions that are
unaccounted for by the 2MRS model.

7.2 Future Work

The 6dFGS peculiar velocity survey presented in this thesis, has a range of scientific
applications beyond those investigated here. This section explores a few suggestions
for future work including further analysis of the existing 6dFGSv sample, extending
the Fundamental Plane and peculiar velocity surveys with supplementary datasets
and the way forward with the next generation of peculiar velocity surveys.

7.2.1 The Fundamental Plane

Our stellar population analysis of the FP revealed a significant contribution from
age variations in the scatter through the Fundamental Plane, suggesting this scatter
could be reduced by accounting for this trend. The large individual errors on the age
measurements meant that any improvement in the total FP scatter (and also in the
distance errors) when correcting for the age trend was modest, at best. However, the
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observed errors associated with metallicity (∼16%) are noticeably smaller, compared
with the uncertainties in age (∼20%). These smaller errors, and the correlation
between metallicity and age, may mean that metallicity (or some combination of
age and metallicity) is a more effective parameter to use than age in reducing the
age-related FP scatter.

Furthermore, the results of Chapter 5 suggest a number of important observa-
tions with implications for the connection between the stellar population histories of
galaxies and their distribution in Fundamental Plane. The most intriguing sugges-
tion is that the v2 direction in the FP represents a variation in luminosity density
due to differences in merger history and is thus independent of stellar population ef-
fects. To investigate these observations further requires comparison with predictions
from the results of N-body simulations coupled with semi-analytic models (SAMs),
such as those in the recent analysis of Porter et al. (2012, submitted). These SAMs
aim to produce realistic simulations of galaxy formation to predict the structural
and stellar population properties of galaxies in the FP which are used to constrain
the origin of such observed trends.

The slope of the FP (in log σ0) is usually observed to be steeper in near-infrared
passbands as compared to optical passbands (e.g. B,V , or R). A steeper FP (as ob-
served in this research) contributes more scatter (by up to 50%) to the FP distance
measurements. One way to reduce this scatter would be to combine the 6dFGS ve-
locity dispersions with effective radius and surface brightness measurements derived
from optical photometry, for example in the r band, that has the same or better
precision as the 2MASS JHK photometry.

In terms of the photometric measurements, there are several digital photometric
surveys which will, between them, provide increasingly deep images of the entire sky
over the next five years; the Panoramic Survey Telescope & Rapid Response System
(Pan-STARRS1) survey in the Northern Hemisphere (Tonry et al., 2012) and the
SkyMapper2 survey in the Southern Hemisphere (Keller et al., 2007). In addition,
the AAVSO Photometric All-Sky Survey all-sky photometric survey (APASS3) will
provide accurate photometry for stars between 10th and 17th magnitude over the
whole sky (Henden et al., 2009). It should be possible to achieve a reduction in
the systematics in the 2MASS photometry by linking 2MASS to Pan-STARRS and
SkyMapper (and the stellar photometry from APASS) from the 0.04mag (i.e. ∼160
km s−1 at a distance of 10 000 km s−1) to the 0.01mag level.

The 6dFGS Fundamental Plane survey (as described in Chapter 2) presents a
significant increase in the number of galaxies and hence FP measurements in the

1http://pan-starrs.ifa.hawaii.edu/public
2http://www.mso.anu.edu.au/skymapper
3http://www.aavso.org/apass
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near-infrared. To reduce the overall scatter about the FP, one would need to improve
the precision of parameter estimates; this would lead to a better understanding of the
properties of early-type galaxies and their formation from the FP and also provide
tighter distance measurements. There are various ways in which the uncertainties
associated with velocity dispersion measurements can be improved. Recently, the
advantages of measuring velocity dispersion within an effective radius (i.e. in larger
apertures) rather than a central velocity dispersion have been studied using kinematic
information from IFU spectroscopy (Scott et al., 2012; Falcón-Barroso et al., 2011),
and it has been claimed that these yield tighter FP constraints. Further improvement
may be gained from IFU spectroscopy by measuring both velocity dispersion and ro-
tational velocity which can be combined to provide additional kinematic information.
These possibilities can be explored with the planned Sydney-AAO Multi-object IFU
(SAMI) survey4, which will include spatially resolved spectroscopy for hundreds of
early-type galaxies.

7.2.2 Cosmological Applications of the 6dFGS Peculiar Velocity
Field

The preliminary investigations of the 6dFGSv presented in this thesis can be devel-
oped further by studying the origin of the observed large bulk flow measured for our
sample towards the Shapley supercluster. To determine the range and influence of
this bulk flow we can measure the large-scale flow in concentric spherical shells within
our sample volume. In doing so, the relative contributions to this total bulk flow
from known structures in the local volume (such as the Great Attractor) can be bet-
ter understood and ultimately used to determine how much of this flow contributes
to the Local Group dipole motion.

The 6dFGSv is a unique probe of cosmology at the largest scales and is intended
to provide constraints on a number cosmological parameters. For example, the cos-
mological parameters relating to the velocity and galaxy power spectra can be derived
from the Fisher information matrix both independent of and in conjunction with the
6dFGS redshift survey. A prediction by Burkey & Taylor (2004) of the resulting cos-
mological constraints from such an analysis is shown in Figure 7.1. It shows the 1σ
contours on pairs of parameters including: the amplitude of galaxy power spectrum
Ag, the redshift-space distortion parameter β, the power spectrum shape parameter
Γ and the matter-galaxy correlation coefficient, rg (which encompasses the bias be-
tween the galaxy and matter fields). From the redshift data alone (black contours),
Burkey & Taylor (2004) found the constraints on these cosmological parameters are
accurate at the 5% level. However, the addition of peculiar velocity survey data (red
contours) allows the degeneracies between the galaxy and matter power spectra to

4http://sami-survey.org/
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Figure 7.1: 1σ likelihood contours for parameter pairs of {Ag, β,Γ, rg} for 6dFGS, using
a Fisher matrix analysis of the galaxy power spectrum alone (in black) and with both the
galaxy and peculiar velocity power spectrum (in red). (Figure 13 from Burkey & Taylor
2004).

be broken and yields the best constraints on these cosmological parameters. In par-
ticular, the strong degeneracy between β and rg found for the redshift survey data
is broken by the addition of the peculiar velocities, resulting in substantially smaller
joint errors (around 2%). We note these predictions are based on assumptions that
are optimistic compared to the actual observations.

A common limitation of peculiar velocity survey data is the sparse and some-
times inhomogeneous sampling of velocity measurements in the survey volume and
small-scale aliasing which can bias the measurement of the bulk flow. A more sophis-
ticated analysis of the bulk flow could therefore be applied to the 6dFGSv sample
which accounts for this sparse sampling following the method of Watkins, Feldman
& Hudson (2009). This minimum-variance weighting scheme determines the optimal
weights with respect to an ideal, densely sampled survey to estimate the bulk flow. It
can be used to test the convergence between different peculiar velocity samples and
also to improve the estimates of cosmological parameters (and their uncertainties).

The predicted peculiar velocity model of Erdoğdu et al. (2012, submitted), based
on the 2MRS, is well matched to the specifications of the observed 6dFGSv observed
field. However, it is useful to compare the Erdoğdu et al. (2012, submitted) model
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(derived from linear perturbation theory) to alternative reconstructions of the density
and peculiar velocity fields. One such model is the Monge–Ampère–Kantorovitch
(MAK) reconstruction of the peculiar velocity field based on the Lagrangian method
of reconstructing galaxy orbits (Lavaux, 2008; Lavaux et al., 2010). Kitaura et al.
(2012) provide a more complex peculiar velocity field model which includes non-
linear and non-local effects using second order Lagrangian perturbation theory. They
simulate an ensemble of reconstructed density and peculiar velocity fields using a
Bayesian Networks Machine Learning approach. Both the Lavaux et al. (2010) and
Kitaura et al. (2012) reconstructions are also derived from the 2MRS dataset and
therefore, the 6dFGSv is an ideal sample to test the predictions from all these models.
As it stands, there appears to be some unresolved disparity between the Lavaux
et al. (2010) and Erdoğdu et al. (2012, submitted) models (Lavaux, G. 2012, private
communication) which should be addressed in the near future.

7.2.3 Extending the 6dFGSv Sample with other Datasets

In Chapter 6 we note that our peculiar velocity field results contain a well-understood
bias caused by the fact that the peculiar velocities are derived from measurements
(albeit in large volume) mainly in the southern sky. The most obvious way to al-
leviate this bias is to couple the 6dFGSv data in the Southern Hemisphere with
velocity dispersion measurements from SDSS spectra and 2MASS photometry in the
Northern Hemisphere. The challenge with combining these datasets is to ensure the
systematics between the different samples were small or at least well-characterised;
one advantage of using 2MASS images is the all-sky coverage, thereby preserving the
homogeneity of the FP photometric measurements . This would create the largest
‘all-sky’ sample with quality FP distances and peculiar velocity measurements, cov-
ering 17 000 square degrees in the south and 8000 square degrees in the north, or
almost two thirds of the whole sky. This would provide the best dataset for studying
the bulk flow in the local universe and deriving even better cosmological constraints.

7.2.4 Current and Future Peculiar Velocity Surveys

The current status of galaxy peculiar velocity surveys will give us a detailed under-
standing of the density and velocity field in the local volume (in the region within
cz < 10 000 km s−1). The two main surveys similar in scope to 6dFGSv but us-
ing the Tully-Fisher relation as their distance indicator are the 2MASS Tully-Fisher
Survey (2MTF) which has measured TF distances for ∼5000 bright edge-on spirals
in 2MRS out to cz ∼ 10 000 km s−1 (Masters, Springob & Huchra, 2008) and the
‘Cosmic Flows’ project5 in the process of measuring TF distances of spiral galaxies

5http://ifa.hawaii.edu/cosmicflows/
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over the entire sky (out to cz < 12 000 km s−1) with the Green Bank Telescope and
Parkes radio telescope (Courtois et al., 2011).

In conjunction with these new datasets, there has been an advance in the compila-
tion of previous peculiar velocity datasets with the Extragalactic Distance Database6

(EDD). The EDD integrates archived datasets specifically for distances derived from
the Cepheid period-luminosity relation, surface brightness fluctuations, Type Ia su-
pernovae, the Fundamental Plane and Tully-Fisher relation and also new HI data
(of which ‘Cosmic Flows’ is a large contribution; Tully et al., 2009). 6dFGSv has
the advantage of greater depth and sample size than the current surveys discussed
here, however each survey is important as an independent measurement of the local
velocity field.

In the future, the survey depth of 6dFGSv could potentially be extended even
further as part of a proposed survey called TAIPAN i.e. Transforming Astronomi-
cal Imaging-surveys through Polychromatic Analysis of Nebulae, using an upgraded
version of the 6dF spectrograph. TAIPAN aims to provide an all southern sky sur-
vey of up to ∼500 000 galaxies extending out to a redshift of z ' 0.08. Using the
all-southern-sky imaging from SkyMapper, TAIPAN would offer a substantial im-
provement in the sampling and number of galaxies over 6dFGSv, leading to better
determinations of FP distances and peculiar velocity measurements.

Another exciting southern-sky survey on the horizon is the Wide-field ASKAP
L-band Legacy All-sky Blind surveY (WALLABY)7, a blind HI survey for the Aus-
tralian SKA Pathfinder telescope (ASKAP). WALLABY will comprise ∼500 000 to
600 000 galaxies with a mean redshift of z ' 0.04 from which Tully-Fisher distances
and peculiar velocities can be derived (see Duffy, Moss & Staveley-Smith, 2012).
The Northern Hemisphere counterpart to WALLABY is the Westerbork Northern
Sky HI Survey (WNSHS)8 - a prospective HI survey of the northern sky with the
Dutch Westerbork Radio Synthesis Telescope (WSRT).

7.3 Concluding Remarks

After the discovery in the late 80’s of the Fundamental Plane, it and the Tully-
Fisher relation provided a major improvement in measuring galaxy distances at larger
distances. Such studies initially provided new insights into the velocity field of the
local universe, but towards the end of the 1990s the field suffered stagnation due
to the limits of the observational samples. This was due in part to large errors
experienced at greater distances as well as the apparent disagreement with other
cosmological probes and their convergence on parameter constraints (most notably

6http://edd.ifa.hawaii.edu
7http://www.atnf.csiro.au/research/WALLABY
8http://www.astron.nl/~jozsa/wnshs/index.html
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with σ8). However, in recent years the field has experienced a resurgence due to the
arrival of large, homogeneous surveys and better quality measurements driven by
technological advances as well as a better understanding of the systematics provided
by more sophisticated predictions of the density and velocity field from theoretical
models.

With major developments in the field of galaxy peculiar velocities through sur-
veys such as 6dFGSv (enhanced by our greater understanding of galaxy formation
and evolution provided by relations such as the Fundamental Plane), we now enter
an exciting phase where our observations are reaching the requisite scale and preci-
sion to sharpen our understanding of the distribution and motions of matter in the
nearby universe, and so test aspects of cosmological models that are not readily ac-
cessible using other methods. Peculiar velocities remain one of most value probes of
cosmology in the nearby universe and will play a key role in answering the outstand-
ing cosmological questions posed in this thesis, with the wealth of data generated by
future surveys such WALLABY and TAIPAN.





Appendix A
3D Visualisation with S2PLOT
An important feature of the Fundamental Plane results within this thesis, is our
ability to visualise the 6dFGS FP distribution in its native three-dimensional r−s−i
space. As stated already, it is important to show the FP in 3D so as to have an
unrestricted view of all dimensions of FP space. Three-dimensional visualisation is
made possible due to advances in software, making it more accessible and easier to
generate and manipulate 3D plots. Specifically, all 3D plots in this thesis are created
using custom C-code and the S2PLOT graphics library (Barnes et al., 2006).

In the digital version of this thesis and in research papers associated with this
work (Magoulas et al., 2012; Springob et al., 2012), we are able to include interactive
3D figures, which can be accessed by viewing the PDF file of these papers in Adobe
Reader Version 8.0 or higher. Interactive 3D-PDF figures were directly embedded
using the approach described in Barnes & Fluke (2008) requiring only Adobe Acrobat
Professional with a 3D plugin. Therefore, the process of creating and embedding 3D-
PDF figures has been made readily accessible by the fact that it uses only open-source
programs and industry standard commercial software.

A.1 Interactive 3D Figures

Several of the figures presented here (namely Figures 3.3, 4.1, 4.4, 4.7 and Figure 5.5)
can be accessed as 3D interactive visualisations when viewing the digital version of
this thesis in Acrobat Reader v8.0 or higher. Once 3D viewing is enabled by clicking
on the figure, the 3D mode allows the reader to rotate, pan and zoom the view using
the mouse.

The toolbar on each 3D figure contains a host of interactive elements which can
help in exploring the 3D visualisation. We particularly direct the reader’s attention
to the following toolbar features: (i) you can restore the initial default view at any
time using the home button; (ii) you can rotate to any orientation you prefer and,
where relevant, to special, author-selected 3D views (e.g. the edge-on view of the
FP); these can be selected from the Views drop-down menu; (iii) you can toggle the
model tree, which allows individual plot elements (e.g. points, planes, vectors) of the
3D figure to be turned on and off, giving the viewer greater control of the interactive
figure.
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Suggested interactions with particular 3D figures include:
(a) In Figure 3.3, use the model tree to toggle the v-space vectors and mass/luminosity

vectors one at a time to see how they compare in our 3D Gaussian model. Also, rotate
the figure to view the small angle between v1 and m − l and also v2 and l − 3r

(b) Figure 4.1 not only contains the J band FP sample of galaxies, but also the
H band and K band samples. They can be enabled in the model tree by selecting ‘H
Band’ or ‘K Band’ respectively. For an unimpeded view of the individual galaxies,
toggle the best-fit plane (called ‘Fundamental Plane’ in the model tree); this also
applies to Figures 4.4 and 4.7. In the Views drop-down menu, select ‘Edge-on’ to
view the Fundamental Plane in the projection with the smallest scatter.

(c) In Figure 4.4, rotate and pan across the FP galaxies to explore where the
richness subsamples lie.

(d) In Figure 4.7, toggle the individual points of each morphology subsample to
see the differences in the way their distributions populate FP space.

(e) In Figure 5.2, view the direction of the stellar population trends in the full
three dimensional FP space; in 3D the complexity of these trends can be realised as
it is not limited to the 2D projection of Figure 5.1.
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