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a b s t r a c t

The efficient targeted delivery of nucleic acids in vivo provides some of the greatest challenges to the
development of genetic therapies. We aim to develop nanocomplex formulations that achieve targeted
transfection of neuroblastoma tumours that can be monitored simultaneously by MRI. Here, we have
compared nanocomplexes comprising self-assembling mixtures of liposomes, plasmid DNA and one of
three different peptide ligands derived from ApoE, neurotensin and tetanus toxin for targeted trans-
fection in vitro and in vivo. Neurotensin-targeted nanocomplexes produced the highest levels of trans-
fection and showed a 4.7-fold increase in transfected luciferase expression over non-targeted
nanocomplexes in Neuro-2A cells. Transfection of subcutaneous Neuro-2A tumours in vivo with
neurotensin-targeted nanocomplexes produced a 9.3-fold increase in gene expression over non-targeted
controls. Confocal microscopy analysis elucidated the time course of DNA delivery with fluorescently
labelled nanocomplex formulations in cells. It was confirmed that addition of a gadolinium lipid
conjugate contrast agent allowed real time in vivo monitoring of nanocomplex localisation in tumours by
MRI, which was maintained for at least 24 h. The peptide-targeted nanocomplexes developed here allow
for the specific enhancement of targeted gene therapy both in vitro and in vivo, whilst allowing real time
monitoring of delivery with MRI.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Gene therapy has great potential for the treatment of a wide
range of diseases, with one of the most studied areas being in
tumour therapy. However, the introduction of genes into tumour
cells in vivo is fraught with problems for naked plasmid DNA, such
as enzymatic degradation in the circulation and non-specific,
limited efficiency of cellular uptake [1]. Liposome-based nano-
complexes have been used increasingly as delivery vectors for
nucleic acid delivery both in vitro and in vivo [2,3]. This rise in the
use of nanocomplexes as delivery vectors is due to the protection
they afford the cargo when delivered in vivo, their wide ranging
packaging capacities from large DNA constructs to oligonucleotides,
their low level of immunogenicity allowing repeated effective
: þ44 2079052810.
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delivery and ease of preparation [4,5]. The versatility of the nano-
complex platform also allows the inclusion of contrast agents for
detection by magnetic resonance imaging (MRI) and fluorescence
microscopy to monitor biodistribution [6e9], as well as incorpo-
ration of targeting peptides to increase the specific uptake in cells
of interest [10e12].

We have previously described the efficient transfection of
cultured cells with a self-assembling liposome:peptide:DNA (LPD)
nanocomplex formulation comprising cationic DOTMA/DOPE
liposomes (L), integrin-targeting peptides (P) and plasmid DNA (D)
[13,14]. Similar formulations were subsequently developed for
systemic delivery of plasmid DNA to neuroblastoma tumours with
novel nanocomplex formulations that demonstrated the efficacy of
PEGylation and of biologically-cleavable linkers within nano-
complex formulations containing integrin-targeting peptides and
PEGylated lipids [15e18]. The aim of this new study was to further
develop LPD nanocomplex formulations by, i) comparing three new
candidate peptide ligands in nanocomplexes to enhance the
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receptor-targeted transfection of neuroblastoma cells in vitro and
in vivo, ii) by modifications of the liposome component of the LPD
nanocomplex with fluorescent reagents for microscopic imaging of
vector distribution at the cellular level, and iii) by modifying the
liposome component with contrast agents for real time imaging of
vector distribution by MRI.

The new peptide components comprised targeting ligands for
the receptors ApoE [19], neurotensin [20,21] and tetanus toxin
[22,23], which have been reported to be expressed on neuroblas-
toma cells. Each of the peptides contained, in addition to the tar-
geting sequence, a cationic oligolysine sequence (K16) to bind and
condense the plasmidDNA [13]. The targeting specificity of ApoE, Nt
and Tet peptides were compared in transfections in murine neuro-
blastoma cells and further compared and contrasted in a different
cell type, human bronchial epithelial cells. Transfections with
homologous nanocomplexes containing scrambled versions of the
targeting sequences,which shouldnotbind to the relevant receptors
and as an additional control, the peptide K16, which can condense
DNA, but lacks any targeting sequence, were also prepared.

Imaging formulations were prepared by incorporating a fluo-
rophore, rhodamine into the bilayer of the liposome component for
fluorescence microscopy and a high relaxivity gadolinium chelate
[24] as a MRI contrast agent. The biophysical characteristics,
transfection efficiencies, targeting properties and cellular uptake of
the nanocomplexes were assessed in vitro. Followed by in vivo
administration by direct injection to a subcutaneous, murine
neuroblastoma tumourmodel where gene expression and real time
MRI analysis were assessed at three time points up to 24 h with
targeted and non-targeted LPD nanocomplex formulations.

2. Materials and methods

2.1. Materials

The lipids (Table 1) 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP),
1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), 1,2-dioleoyl-sn-glycero-3-
phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) (DOPE-Rhodamine) and
1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N-diethylenetriaminepentaacetic
acid (gadoliniumsalt) (bis(14:0PE)-DTPA(Gd), referredtoasGAherein),werepurchased
fromAvanti Polar Lipids Inc., (Alabaster, USA). Diethylenetriaminepentaacetic acid a,u-
bis(8-stearoylamido-3,6-dioxaoctylamide) gadolinium salt (referred to herein as GS)
was purchased from SigmaeAldrich (Poole, UK). GdDOTA(GAC12)2 was synthesised as
described by Kielar et al. [24]. The plasmid pCI-Luc consists of the luciferase gene from
pGL3 (Invitrogen, Paisley, UK) subcloned into pCI (Promega, Southampton, UK). The
targeting peptides ApoE (ApoE), Neurotensin (Nt) and Tetanus (Tet), their scrambled,
non-targeting equivalents (ApoES, NtS and TetS) and the control peptide K16 (K16)
(Table 2) were synthesized on a MultiSynTech Syro peptide synthesizer using Fmoc
aminoacids (Novabiochem,Germany)usingmethodspreviouslydescribed[15]. TheK16

sequenceswere synthesisedat theN-terminusofeachpeptide,withtheexceptionof the
Nt andNtS peptides, inwhich the N-terminus is blocked by the pyroglutamic acid (Pyr)
residue. Details of the purification andmass spectrometryanalysis of these peptides are
given in the Supplementary Data.

2.2. Liposome formulation

Liposomes were formed with lipid mixtures at specific molar ratios (Table 3) to
produce the following; DOTAP:DOPE (DD), DOTAP:DOPE:GdDOTA(GAC12)2 (DDG),
DOTAP:DOPE:DOPE-Rhodamine (DDR) and DOTAP:DOPE:GdDOTA(GAC12)2:DOPE-
Rhodamine (DDGR). Liposomes were prepared by dissolving the individual lipids in
chloroform at 10 mg mL�1 and mixing them together, followed by rotary evapora-
tion to produce a thin lipid film. Lipids were then rehydrated with sterile water
whilst rotating overnight and then sonicated for an hour in a water bath to reduce
the size to unilamellar liposomes [25]. The liposomes (DDGSR) formulated from
DOTAP:DOPE:diethylenetriaminepentaacetic acid a,u-bis(8-stearoylamido-3,6-
dioxaoctylamide) gadolinium salt (Gs), and (DDGAR), formulated from DOTAP:DO-
PE:bis(14:0 PE)-DTPA (Gd) (GA), were prepared at the same molar ratio to the
liposome DDGR.

2.3. Liposome MRI relaxivity

DDGR, DDGSR and DDGAR liposomes were serially diluted in sterilewater to give
a range of concentrations of 1e0.06 mg mL�1 of the liposomes. MR imaging was
performed on a 9.4T VNMRS horizontal bore (Agilent, Palo Alto, USA) using a 59/33
quadrature volume coil (Rapid, Würzburg, Germany), with 200 mL of each of the
dilution series in PCR tubes placed into a Perspex holder within the RF coil. The
longitudinal relaxivity, r1, was determined from a linear fit of 1/T1 as a function of
gadolinium (III) concentration as described previously [7].

2.4. Nanocomplex formation and characterisation

LPD nanocomplex formulations were prepared by mixing aqueous solutions of
liposome (L,1mgmL�1), peptide (P,10mgmL�1) and plasmid DNA (D, 5mgmL�1) at
a weight ratio of 1:4:1 (L:P:D), diluted to 0.01 mg mL�1 (DNA) in OptiMEM (Invi-
trogen, Paisley, UK) for in vitro transfections, diluted to 0.005 mg mL�1 (DNA) in
sterile water for biophysical characterisation and diluted to 0.5 mg mL�1 (DNA) in
sterile water for in vivo experiments.

The hydrodynamic size and zeta potential of the nanocomplexes were measured
by dynamic light scattering (DLS) using a Malvern Nano ZS (Malvern Instruments,
Malvern,UK) ata temperatureof25 �C,viscosityof0.89cPanda refractive indexof1.33.

2.5. Cell transfections and viability

The murine neuroblastoma cell line Neuro-2A (ATCC, Manassas, VA, USA) was
maintained in Dulbecco’s Modified Eagle Medium, 1% non-essential amino acids,
1 mM sodium pyruvate and 10% FCS (Invitrogen, Paisley, UK) at 37 �C in a humidified
atmosphere in 5% CO2. The human bronchial epithelial cell line 16HBE14o- was
obtained from Dieter Gruenert [26] and maintained in Minimum Essential Medium
Eagle’s modification (SigmaeAldrich, Poole, UK),1% non-essential amino acids, 2mM

L-glutamine and 10% FCS (Invitrogen, Paisley, UK) at 37 �C in a humidified atmo-
sphere with 5% CO2.

Cells were seeded at 2 � 104 per well in 96-well plates in 175 mL of complete
media and reached 60e80%. The following day when they were transfected with
25 mL of LPD nanocomplexes in OptiMEM, containing 0.25 mg of plasmid DNA, added
directly to the cells in 175 mL of complete medium per well, in replicates of six. Plates
were centrifuged at 1500 rpm for 5 min (400� g) to promote sedimentation and
incubated for 24 h at 37 �C. Cells were then lysed and a chemiluminescence assay
performed to measure transfected luciferase activity (Promega, Southampton, UK)
and protein concentration determined using a Bio-Rad protein assay (Hemel
Hempstead, UK). Luciferase activity was expressed as RLU per milligram of protein.
Cell viability assays were performed with the CellTiter 96 Aqueous One Solution Cell
Proliferation Assay (Promega, Southampton, UK). Luciferase, protein concentration
and toxicity measurements were performed in an Optima Fluostar microplate
reader (BMG Labtech, Aylesbury, UK).

2.6. Confocal microscopy

Neuro-2A cells were seeded at 2 � 105 on FluoroDishes (World Precision
Instruments Inc., FL, USA) in 1.75 mL complete media. After 24 h cells were trans-
fected with nanocomplexes in OptiMEM formulated as described above. Briefly pCI-
Luc plasmid DNA labelled with Cy-5 (Kreatech, Amsterdam, Netherlands), Nt
peptide and the liposome DDGR were mixed to a 1:4:1 weight ratio so that 2.5 mg
DNA in 0.25 mL was added to the 1.75 mL complete media, per dish. After 5 min,
30 min and 2 h of nanocomplex transfection incubation with the cells at 37 �C in
a humidified atmosphere in 5% CO2, the cells were washed with PBS and fixed in 4%
formaldehyde, permeabilised with 0.2% Triton, blocked with 1% BSA and stained for
20 min with Alexa Fluor 488 phalloidin (4U mL�1, Invitrogen, Paisley, UK) and DAPI
(0.1 mg mL�1, SigmaeAldrich, Poole, UK). The wells were washed and sealed in
mounting media (Invitrogen, Paisley, UK) before visualising on a Carl Zeiss LSM710
laser scanning microscope system (Jena, Germany).

2.7. Animal model

Female A/J mice (Harlan Laboratories, Oxford, UK), 8e10 weeks old, were
injected subcutaneously (s.c.) in the right posterior flank with 1.5 � 106 Neuro-2A
cells. After 10 � 2 days, when tumours had reached 8e12 mm in size, 100 mL of
LPD nanocomplexes in 5% glucose containing 50 mg of pCI-Luc plasmidwere injected
intratumourally. Twenty-four hours after injection, mice were culled, and tumours,
livers and kidneys were resected, frozen on liquid nitrogen and stored at �80 �C. All
in vivo animal experiments were performed with licences issued in accordance with
the United Kingdom Animals (Scientific Procedures) Act 1986 (UK).

2.8. In vivo MR imaging

MRI measurements were performed on a 9.4T VNMRS horizontal bore (Agilent,
Palo Alto, USA) using a 59/33 quadrature volume coil (Rapid, Würzburg, Germany).
Mice were scanned pre-administration, 4-h and 24 h post administration using a T1
weighted fast spin echo sequence with the following parameters: TR ¼ 700 ms;
ESP ¼ 5.02 ms; ETL ¼ 4; Effective TE ¼ 5.02 ms; NSA ¼ 10; matrix ¼ 256 � 256;
FOV ¼ 40 � 40 mm; slc ¼ 1 mm, scan time 7 min 28 s. MR images were analysed
using ImageJ software (National Institutes of Health, US), with a manually drawn
region of interest (ROI) around the tumour. The signal intensity was measured and



Table 1
Structures of the lipids used to formulate the liposomes.

Lipid Chemical name Structure

DOPE 1,2-dioleoyl-sn-glycero-
3-phosphoethanolamine

DOTAP 1,2-dioleoyl-3-
trimethylammonium-propane

DOPE-Rhodamine 1,2-dioleoyl-sn-glycero-3-
phosphoethanolamine-
N-(lissamine rhodamine
B sulfonyl)

GdDOTA (GAC12)2

Gs Diethylenetriaminepentaacetic
acid a,u-bis(8-stearoylamido-3,
6-dioxaoctylamide) gadolinium salt

bis(14:0 PE)-DTPA (Gd) GA 1,2-dimyristoyl-sn-glycero-
3-phosphoethanolamine-N-
diethylenetriaminepentaacetic
acid (gadolinium salt)
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divided by the signal intensity of muscle to act as an internal reference and the
percentage change in signal intensities compared. In addition the volume of each
ROI was calculated and summed to give the tumour volume.

2.9. Luciferase assay on tumour and tissue extracts

Tumours, livers and kidneys were defrosted on ice, submerged in reporter gene
assay lysis buffer (Roche, Basel, Switzerland), homogenized with an IKA
Table 2
Amino acid sequence and net charge of the targeted and non-targeted peptides used
to formulate the LPD nanocomplexes. (Pyr ¼ pyroglutamic acid).

Peptide Amino acid sequence Net charge

K16 KKKKKKKKKKKKKKKK þ16
ApoE KKKKKKKKKKKKKKKK-GALRKLRKRLLRLRKLRKRLLRG þ28
ApoES KKKKKKKKKKKKKKKK-GARLKLRRLKLRLKRRLKRRLLG þ28
Nt Pyr-LYENKPRRPYILAG-KKKKKKKKKKKKKKKK þ18
NtS Pyr-YNPKRYLIELPRAG-KKKKKKKKKKKKKKKK þ18
Tet KKKKKKKKKKKKKKKK-GAHLNILSTLWKYRCG þ18
TetS KKKKKKKKKKKKKKKK-GARKLSILCYWTLNHG þ18
homogenizer (IKA, Staufen, Germany), and centrifuged at 13,000 rpm (10,000 � g)
for 10 min at 4 �C. The supernatant was removed and centrifuged at 13,000 rpm
(10,000� g) for a further 10 min at 4 �C. Luciferase activity in the tissue lysates was
measured using the Luciferase Assay System (Promega, Southampton, UK).

2.10. Statistical analysis

Data presented in this study are expressed as the mean � standard deviation
and were analysed using a two-tailed, unpaired Student t-test where applicable.

3. Results

3.1. Liposome MRI relaxivity

The relaxivity, r1, of the three liposomes formulatedwith DOTAP,
DOPE,DOPE-Rhodamine andwith threedifferent lipidic gadolinium
complexes, GdDOTA(GAC12)2 (DDGR), diethylenetriaminepenta-
acetic acid a,u-bis(8-stearoylamido-3,6-dioxaoctylamide) gadoli-
nium salt (DDGSR) and bis(14:0 PE)-DTPA (Gd) (DDGAR), was



Table 3
Lipid molar ratios for the liposome formulations used in the LPD nanocomplex and associated size and zeta potential, as measured by dynamic light scattering (n ¼ 3,
mean � standard deviation).

Liposome Lipid 1 (mol %) Lipid 2 (mol %) Lipid 3 (mol %) Lipid 4 (mol %) Size (nm) Zeta (mV)

DD DOTAP (50) DOPE (50) 167.6 (�3.8) 46.7 (�6.7)
DDG DOTAP (35) DOPE (50) GdDOTA(GAC12)2 (15) 164.4 (�1.8) 24.5 (�1.2)
DDR DOTAP (50) DOPE (49) DOPE-Rhodamine (1) 140.4 (�4.1) þ58.6 (�2.4)
DDGR DOTAP (35) DOPE (49) GdDOTA(GAC12)2 (15) DOPE-Rhodamine (1) 163.1 (�0.4) þ2.0 (�0.1)
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measured usingMRI to predict the ability of the LPDnanocomplexes
to act as a contrast agent for detection and monitoring in vivo. The
relaxivity of the DDGR liposomes was calculated to equal 6.2
(�0.2) mM�1s�1, the DDGSR liposomes was determined to be 2.8
(�0.1)mM�1s�1 and theDDGAR liposomes to be 1.5 (�0.1)mM�1s�1

(Fig. 1). Thus DDGR appeared to be the most sensitive gadolinium-
labelled liposome formulation and was used in subsequent
experiments.

3.2. Biophysical characterisation of liposomes and LPD
nanocomplexes

The biophysical properties of the LPD nanocomplexes were
determined to provide insights into the suitability of the nano-
complexes for in vivo use. The parent DOTAP:DOPE (DD) liposomes
were 167.6 � 3.8 nm in diameter (Table 3). This liposome was co-
formulated with peptides Nt, NtS and K16 and plasmid DNA to
produce LPD nanocomplexes in an optimised weight ratio of 1:4:1.
These nanocomplexes, ranged in size from 73.2 � 0.9 nm for DD
nanocomplexes with peptide NtS to 91.3 � 0.6 nm with peptide Nt
(Table 4). The DOTAP:DOPE:GdDOTA(GAC12)2 (DDG) liposomes
were164.4 � 1.8 nm in diameter and their subsequent LPD nano-
complexes ranged from 89.3 � 11.3 nm with K16 to 91.2 � 3.7 nm
with NtS (Table 4). DOTAP:DOPE:DOPE-Rhodamine (DDR) lipo-
somes were 140.4 � 4.1 nm and their nanocomplexes ranged from
79.3 � 2.3 nmwith peptide NtS to 102.3 � 2.0 nmwith peptide Nt.
Finally, the liposomes formed with the DOTAP:DOPE:GdDOTA(-
GAC12)2:DOPE-Rhodamine (DDGR) lipids were 163.1 � 0.4 nm and
produced the largest nanocomplexes ranging from 105.1 � 3.6 nm
with NtS to 136.8 � 7.5 nm with K16. All of the nanocomplexes
formed highly cationic particles ranging from þ20.2 � 1.8 mV for
DDRK16 nanocomplexes to þ68.9 � 3.1 mV for DDGK16 nano-
complexes (Table 4).

Overall, the DD nanocomplexes were smallest and the DDGR-
containing nanocomplexes were largest regardless of the peptide
Fig. 1. Relaxivity, r1, measurements of DDGR, DDGSR and DDGAR liposome formula-
tions at 9.4T.
co-formulated. However, there was no obvious trend in zeta
potential measurements of the nanocomplexes related to the
different liposome components (Table 4).

LPD nanocomplexes were also compared for the possible effects
of the peptide (ApoE, neurotensin and tetanus targeting sequences,
their non-targeting scrambled equivalents and the K16 peptide
lacking a targeting sequence) on particle size and zeta potential of
nanocomplexes formed with the DDGR liposome. The sizes of the
nanocomplexes ranged from 105.1 � 3.6 nm for DDGR/NtS
formulations to 136.8 � 7.5 nm for DDGR/K16 mixtures with no
obvious trend associated with specific peptides (Table 5).

The zeta potentials ranged from þ15.7 � 7.2 mV for DDGR/TetS
formulations to þ49.0 � 2.4 mV for DDGR/ApoES. ApoE and ApoES
peptide nanocomplexes had the highest charges (þ49.0 � 2.4
and þ42.7 � 5.6 mV), while the tetanus peptide nanocomplexes
had the lowest charge (þ15.7 � 7.2 and þ27.2 � 3.6 mV).

All of the nanocomplexes formed had a polydispersity index of
less than 0.3, indicating an acceptably homogenous population of
particles [27,28].

3.3. Cell transfections and viability

Assessment of cell transfection efficiency with the LPD nano-
complexes formulated with the liposome DDGR and containing
different targeting peptides was performed on two cell lines,
Neuro-2A and 16HBE14o-, using a luciferase gene reporter assay.
The transfection efficiency of LPD nanocomplexes formed with the
Nt peptide was significantly higher in the Neuro-2A cell line than
with ApoE or Tet targeting peptides (p < 0.01). LPD nanocomplexes
with Nt peptides were 1.6 fold higher than NtS, the scrambled
equivalent, and 4.7-fold higher than K16 nanocomplexes suggesting
Nt receptor-enhanced transfection. Similar transfections of the
16HBE14o- cell line showed a smaller, but significant (p < 0.05)
enhancement by the Nt peptide when compared to the non-
targeted nanocomplexes, but not to the level seen in Neuro-2A
cells (Fig. 2).
Table 4
Hydrodynamic size and zeta potential of LPD nanocomplexes formed at a 1:4:1
weight ratio L:P:D using DOTAP:DOPE (DD), DOTAP:DOPE:GdDOTA(GAC12)2 (DDG),
DOTAP:DOPE:DOPE-Rhodamine (DDR) and DOTAP:DOPE:GdDOTA(GAC12)2 :DOPE-
Rhodamine (DDGR) liposomes, targeted and non-targeted peptides and DNA, as
measured by dynamic light scattering (n ¼ 3, mean � standard deviation).

Nanocomplex Size (nm) Zeta potential (mV)

DD/Nt 91.3 � 0.6 41.5 � 1.5
DDG/Nt 90.4 � 2.0 31.1 � 1.0
DDR/Nt 102.3 � 2.0 26.1 � 2.2
DDGR/Nt 114.0 � 1.7 35.5 � 3.1
DD/NtS 73.2 � 0.9 25.9 � 2.9
DDG/NtS 91.2 � 3.7 30.6 � 7.6
DDR/NtS 79.3 � 2.3 33.8 � 2.2
DDGR/NtS 105.1 � 3.6 25.0 � 2.5
DD/K16 78.0 � 3.8 55.3 � 4.8
DDG/K16 89.3 � 11.3 68.9 � 3.1
DDR/K16 98.6 � 1.9 20.2 � 1.8
DDGR/K16 136.8 � 7.5 35.8 � 6.6



Fig. 3. Comparison of different liposomes in the nanocomplex formulation on cell
transfections and viability in Neuro-2A cells. Nanocomplexes formed with the lipo-
somes DD, DDG, DDR and DDGR, the targeting peptide neurotensin, the scrambled
equivalent NtS and the non-targeted peptide K16 and DNA plasmid pCI-Luc. Trans-
fection efficiency was measured by luciferase activity and expressed as relative light
units (RLU) per mg of protein (A). Cell viability was measured using the MTS assay and
normalised to that of untransfected cells (B). Values are the means of 6
replicates � standard deviation.

Table 5
Hydrodynamic size and zeta potential of LPD nanocomplexes formed at a 1:4:1
weight ratio L:P:D using the DDGR liposome, targeted and non-targeted peptides
and DNA, as measured by dynamic light scattering (n ¼ 3, mean � standard
deviation).

Nanocomplex Size (nm) Zeta potential (mV)

DDGR/K16 136.8 � 7.5 35.8 � 6.6
DDGR/ApoE 119.7 � 1.0 42.7 � 5.6
DDGR/ApoES 117.7 � 3.9 49.0 � 2.4
DDGR/Nt 114.0 � 1.7 35.5 � 3.1
DDGR/NtS 105.1 � 3.6 25.0 � 2.5
DDGR/Tet 128.4 � 5.6 27.2 � 3.6
DDGR/TetS 115.8 � 2.2 15.7 � 7.2

G.D. Kenny et al. / Biomaterials 33 (2012) 7241e7250 7245
The transfection activity of nanocomplexes formed with the
ApoE targeting peptide showed a small, but significant level of
enhancement compared to ApoES homologues in 16HBE14o- cells
(p < 0.05), whereas there was no significant difference in trans-
fection levels of these nanocomplexes in Neuro-2A cells (Fig. 2).
Nanocomplexes formed with the Tet targeting peptide had higher
levels of transfection than their non-targeted TetS homologues in
both Neuro-2A cell (2-fold, p < 0.01) and in 16HBE14o- cell (5-fold,
p < 0.001) lines, suggesting Tet peptide specificity, but interest-
ingly, Tet LPD nanocomplexes gave lower transfection than the
untargeted K16 nanocomplexes in both cell lines (Fig. 2).

Further cell transfections were performed to assess the effect of
the four liposomes, DD, DDG, DDR and DDGR, on the transfection
efficiency of LPD nanocomplex formulations with peptides Nt, NtS,
and K16 and DNA. Nanocomplexes formulated with the unlabelled
liposome DD had the highest transfection efficiency with the Nt,
NtS and K16 peptides in Neuro-2A cells when compared to nano-
complexes containing DDG, DDR and DDGR liposomes.

The replacement of the DD liposome with DDR liposomes into
the nanocomplexes with the Nt, NtS and K16 peptides (Fig. 3A),
decreased transfection efficiency uniformly by approximately 18%
for all peptide nanocomplexes. The inclusion of the gadolinium
lipid into the DDG bilayer reduced transfection efficiencies by 48.3%
for the Nt peptide, 65.5% for NtS and 85.6% for the K16 nano-
complexes. The transfection efficiency of nanocomplexes contain-
ing both the rhodamine and gadolinium lipids (DDGR) were
Fig. 2. Nanocomplex cell transfections in 16HBE14o- and Neuro-2A cell lines. Nano-
complexes formed with the liposome DDGR, the targeting peptides ApoE, Nt and Tet,
the scrambled equivalents ApoES, NtS and TetS and the non-targeted peptide K16 and
DNA plasmid pCI-Luc. Transfection efficiency was measured by luciferase activity and
expressed as relative light units (RLU) per mg of protein with values the means of 6
replicates � standard deviation. * ¼ p < 0.05, ** ¼ p < 0.01 and *** ¼ p < 0.001
compared to equivalent scrambled peptide.
reduced to 53.4%, 66.5% and 86.4% of the DD nanocomplexes for Nt,
NtS and K16 nanocomplexes, respectively. However, the trans-
fection efficiency of the targeted Nt nanocomplexes with all four
liposomes remained significantly higher than each of the NtS and
K16 nanocomplexes indicating that the substitution of liposomes
did not compromise receptor-enhanced transfection (Fig. 3A).
Neuro-2A cell viability, as measured by the MTS cytotoxicity assay,
was greater than 80% with all of the nanocomplex formulations
tested (Fig. 3B).
3.4. Confocal microscopy

The early stages of uptake kinetics of the nanocomplexes in
Neuro-2A cells were investigated by confocal microscopy with
images taken at 5 min, 30 min and 2 h after transfection. The cells
were analysed for localisation of the rhodamine-labelled lipid and
the Cy-5 labelled DNA. Cells were also stained with AlexaFluor488
on F-actin in the cytoplasm and DAPI for visualisation of the
nucleus. Fluorescent nanocomplexes were localised to cell
membranes after 5 min incubation with none internalised. Inter-
nalisation of the nanocomplexes was visualised as early as 30 min
with rhodamine and Cy-5 detected inside the cytoplasm of the
cells. The intensity of rhodamine and Cy-5 inside the cell increased
over time indicating progressive uptake and that internalisation of
nanocomplexes was greatest after 2 h of incubation with the
majority of the nanocomplexes found in perinuclear regions as
suggested by the close proximity of the rhodamine and Cy-5 signals
to the DAPI signal of the cell nucleus (Fig. 4).



Fig. 4. Confocal microscopy of Neuro-2A cells with DDGR/Nt nanocomplexes. Cells were incubated with nanocomplexes for 5 min, 30 min or 2 h before fixing and staining for
confocal microscopy. DAPI was used to visualise the nucleus of cells, Alexa Fluor 488 phalloidin to distinguish the cytoskeleton, the DOPE-Rhodamine from the lipid bilayer was used
to localise the liposomes and the DNA was labelled with Cy-5.
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3.5. In vivo MR imaging

Assessment of the ability of a gadolinium-labelled nanocomplex
to act as an MR contrast agent in vivo was performed in a mouse
tumour model. Signal intensities within the tumours were
measured pre-, 4 and 24 h after injection to detect nanocomplexes
containing the gadolinium-containing lipid within the liposome
bilayer. Nt-targeted DDGR nanocomplexes produced a signal
intensity enhancement of 21.6 � 3.1% at 4 h and 9.1 � 2.4% 24 h in
the tumour. Administration of the K16 non-targeted DDGR nano-
complexes led to a signal enhancement of 16.6� 1.2% and 8.2�1.6%
at 4 and 24 h after injection respectively. These MRI signal inten-
sities were significantly higher at both 4 h (p < 0.01) and 24 h
(p < 0.05) than tumours injected with the saline control (Fig. 5A
and B), but no differences were found between the targeted and
non-targeted formulations. Tumour volumes, calculated from the
images, increased by 43.7% between the 4 h scan and the 24 h scan.

3.6. Luciferase assay of tumour and tissue extracts

Luciferase gene reporter assays were performed on tumour and
tissue extracts to determine the targeted transfection efficiency
in vivo. The administration of the Nt-targeted nanocomplexes into
the tumour led to a significant 9.3-fold increase (p < 0.05) in
expression of the transfected luciferase reporter gene 24 h after
injection compared to the K16 nanocomplexes, suggesting targeted
transfection and a 160-fold increase compared to the saline control
group (Fig. 5C). There were only background levels of luciferase
activity in the liver and kidneys of mice injected with Nt and K16-
containing nanocomplexes and those injected with the saline
control, with no significant differences found between samples
(Fig. 5D and E).

4. Discussion

The targeted delivery of nucleic acids has great therapeutic
potential for a wide range of diseases including cancers [29e33].
However, there is still need for the development of targeted
synthetic nanoparticle vector formulations. Recently, the addition
of contrast agents, for MRI and fluorescence microscopy, into
nanocomplex formulations has shown real potential to enable
monitoring of therapeutic delivery and localisation in vivo
[7,34e36].

Previously we have demonstrated integrin-mediated targeted
nanocomplex delivery of plasmid DNA to tumours in vivo by
systemic administration [16,17]. In addition, several recent studies
have also shown the potential of utilising targeting peptides (NCAM
and RGD) for tumour delivery of nanocomplexes [37,38]. Here, we
have investigated nanocomplexes with alternative targeting
peptides to enhance tumour specificity and incorporation of MRI
contrast agents and fluorophores for multimodal imaging of the
nanocomplexes in transfected cells and tumours.

MRI relaxivity measurements showed that GdDOTA(GAC12)2
lipid had the highest r1 valuewhen compared to DDGSR and DDGAR
liposomes (Fig. 1). This supports previous findings that GdDOTA
(GAC12)2 is superior to the other complexes due to a more favour-
able water exchange rate and slower local rotation [24,39] and
compares favourably to standard clinically available contrast
agents, Gd-DOTA and Gd-DTPA, which have relaxivities on the
order of 4 mM�1s�1 [40,41]. In addition, the macrocyclic



Fig. 5. In vivo administration of DDGR nanocomplexes. Tumours were imaged pre-, 4 and 24 h post administration of Nt-targeted (top row) and K16 (bottom row) DDGR nano-
complexes, producing clearly visible signal enhancements, colour scale bar units are signal intensity and arbitrary units (A). Signal intensity measurements of tumours administered
with the targeting peptide Nt and non-targeted peptide K16 DDGR nanocomplexes produced a signal enhancement when compared to the saline control (B). Gene delivery was
measured by luciferase activity at the 24 h time point and expressed as relative light units (RLU) per mg of organ, with the targeting peptide neurotensin producing a significant
increase in expression over K16 and saline (C). Luciferase expression in the liver (D) and kidneys (E) was determined to be only background levels. * ¼ p < 0.05, ** ¼ p < 0.01
compared to saline control.
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gadolinium chelator, DOTA, used here is far more kinetically stable
than acyclic gadolinium chelators, such as DTPA, often used in
liposome formulations, as free Gd3þ ions decomplex from the
acyclic chelators more rapidly in vitro and in vivo [42e44]. The high
relaxivity and stability of liposomes containing GdDOTA(GAC12)2
suggests they should have greater potential for in vivo adminis-
tration than the other two liposomes.

All nanocomplexes, as expected, were monodisperse, highly
cationic and with a size of around 100 nm amenable to internali-
zation by endocytic processes [45]. The nanocomplexes were all
smaller than their parent liposomes (Table 3), due to the
condensing ability of the peptides (Tables 4 and 5). The DDGR
nanocomplexes were largest when compared to DD, DDG and DDR,
but still formed nanocomplexes of an acceptable size (Table 5).
Variations in nanocomplex sizes were most likely due to differ-
ences in lipid packaging due to the larger head groups of the
rhodamine and Gd-DOTA lipids in the lipid bilayer.

In vitro cell transfection studies in two different cell lines
(16HBE14o- and Neuro-2A) were performed to identify the optimal
targeting nanocomplexes for gene delivery using the ApoE, neu-
rotensin (Nt) and tetanus (Tet) targeting peptides (Fig. 2). Nano-
complexes containing the Nt peptide had the highest transfection
efficiency in Neuro-2A cells and expressionwas significantly higher
than the NtS scrambled equivalent and more than four-fold higher
than K16 nanocomplexes, suggesting that transfection was
enhanced by targeting of nanocomplexes to the neurotensin
receptor. The neurotensin-targeted transfection specificity for the
Neuro-2A cell line is in agreement with previous studies that have
shown neurotensin targets neuroblastoma tumours [46] and neu-
rotensin nanocomplexes targeted to nigral dopamine neurons [47].
The transfection efficiency of nanocomplexes in 16HBE14o- cells
with the Nt peptide was also significantly higher than with Nts
scrambled control peptide and approximately 2.5-fold higher than
the K16 control nanocomplexes, thus suggesting Nt-receptor-
enhanced transfection of 16HBE14o- cells, although not to the
same level as in the Neuro-2A cells. Consistent with this observa-
tion, it was reported previously that neurotensin receptors are
expressed on human bronchial epithelial cells [48]. The Nt peptide,
therefore offers significantly enhanced cell transfection efficiency
in specific cell lines and this may be dependent on the extent of
receptor expression although this requires further investigation.

Previous studies have shown uptake of nanocomplexes in
endothelial cell lines using ApoE derived peptides, with the aim of
crossing the blood brain barrier [49e51] and of ApoE itself for
targeted delivery of siRNA to hepatic cells in vitro and in vivo [52].
Here, nanocomplexes containing the ApoE derived targeting
peptide displayed a significant enhancement of transfection
compared to those containing the ApoES peptide in 16HBE14o-
cells. This is consistent with reports that lung epithelial cells display
the low density lipoprotein receptor (LDLR) for ApoE [53]. However,
although neuronal cells express receptors for ApoE [54], there was
no significant difference in nanocomplex transfections of Neuro-2A
cells between ApoE and ApoES peptide-containing nanocomplexes.
This may reflect the fact that the ApoE peptide targeting sequence
is itself highly cationic when formed as a nanocomplex, due to the
twelve additional positively charged lysine and arginine residues
present in the ApoE motif in addition to the sixteen lysines. This
allows ApoE to bind to ubiquitous heparan sulphate proteoglycan
(HSPG) receptors as well as LDLR [54]. As the ApoES peptide
contains the same amino acids, but scrambled, it is also highly
cationic when formed as a nanocomplex and therefore may retain
the capacity to bind to HSPG despite the sequence alterations. Thus,
although the experiments have shown that nanocomplexes with
the ApoE targeting peptide achieved significant levels of trans-
fection, we are unable from comparisons with the ApoES peptide to
demonstrate receptor-mediated enhancement of transfection.
Future studies will be required using alternative receptor-blocking
agents such as antibodies or receptor cleavage reagents, as
described previously [54] to clarify the receptor targeting proper-
ties of ApoE-targeted nanocomplexes in both cell lines.

Nanocomplexes containing the tetanus toxin-derived peptides
(Tet) had the lowest transfection efficiency of all three targeting
peptides across both cell lines, yet they displayed the highest degree
of receptor-mediated specificity of transfection. Tet nanocomplexes
displayed a significant enhancement of transfection in Neuro-2A
cells and a highly significant five-fold enhancement in 16HBE14o-
cells over nanocomplexes containing TetS. Previous data supports
the evidence for tetanus-targeted specificity as nanoparticles dis-
playing Tetanus toxin C fragment have also shown targeted trans-
fection of neuroblastoma cells [55] and the tetanus toxin receptor is
highly expressed in normal human bronchial epithelial cell lines
[56,57]. The nanocomplexes containing Tet, as well as those con-
taining TetS, both display lower transfection levels than K16 nano-
complexes. The zeta potential of the Tet and TetS nanocomplexes
was lower than that of K16DDGRnanocomplexes,whichmayhelp to
partially explain this difference, although this charge differencewas
not reflected in size measurements. K16 nanocomplex formulations
lack targeting ligands, but are highly cationic allowing electrostatic,
binding to anionic cell surface receptors leading to non-specific-
transfections in both cell lines. The Tet peptide may also have
higher binding affinity for the specific receptor although this has not
yet been analysed. Tet-targeted nanocomplexes may be particularly
useful in applications where higher degrees of receptor-mediated
specificity are required in delivery.

The addition of the rhodamine-containing and gadolinium-
containing lipids into the nanocomplexes with the Nt, NtS and
K16 peptides (Fig. 3A), decreased transfection efficiency for all
nanocomplexes relative to formulations containing DOTAP/DOPE.
However, despite the reduced transfection efficiency, regardless of
the liposomal component, LPD nanocomplexes retained their
receptor-mediated enhancement of transfection. Incorporation of
rhodamine increased the nanocomplex size due presumably to the
large hydrophobic rhodamine moiety. Incorporation of the gadoli-
nium lipid had no effect on size of the DD/Nt formulation, but
increased both DD/NtS and DD/K16. The gadolinium-containing
lipid may have had a greater effect than the rhodamine lipid on
size (except for DD/Nt) and transfection efficiency when incorpo-
rated into the liposomes, as it was present in greater amounts and
was accommodated at the expense of the cationic component,
DOTAP (Table 3). The nanocomplexes containing both rhodamine
and gadolinium lipids were correspondingly the largest formula-
tions for each peptide class (Table 4) as might be expected, but their
transfection efficiency and targeting specificity, comparing targeted
to non-targeted peptide formulations (Fig. 3A) appeared to remain
at acceptable levels. Cell viabilities after transfection with nano-
complexes formulated with all of the tested nanocomplexes were
found to be at a suitable level for further in vivo studies (Fig. 3B).

Confocal microscopy analysis of Neuro-2A cells with DDGR/Nt/
Cy5-labelled DNA nanocomplexes (Fig. 4), suggested that cell
binding and entry occurredwithin the first hour and disassembly of
the nanocomplexes occurred between half an hour and 2 h, in
agreement with other studies published [58e61].

Since the DDGR/Nt formulation had displayed neuroblastoma
cell targeted transfection in vitro, with transfections performed in
the presence of serum, it was selected for in vivo experiments. Proof
of principle for both targeted transfection and real time imaging of
vector distribution by MRI within a subcutaneous neuroblastoma
tumour was performed. To maximise the chances of detecting any
difference in targeting versus non-targeting transfection in vivo and
MRI contrast effect, the Nt peptide was compared to K16 peptide
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and saline, injected directly into the tumour. A significant increase
in signal intensity was visualised due to the presence of the
nanocomplexes 4 h post administration. The decrease in signal
intensity at 24 h compared to 4 h is most likely due to a combina-
tion of clearance of the nanocomplexes from the tumour and the
increase in tumour size, due to growth, leading to a dilution of the
gadolinium within the tumour (Fig. 5A and B). The MR signal
enhancement produced by the administration of the nano-
complexes is of the same order of magnitude as other paramagnetic
liposome-based tumour therapy delivery vectors [7,62]. However,
further optimisation of the nanocomplex composition could
increase the amount of gadolinium and hence further improve the
signal enhancement. In addition, the rhodamine lipid could be
utilised ex vivo to validate the MRI results by visualising the pres-
ence of the nanocomplexes within the tumour [7,62,63].

The targeted nanocomplexes, DDGR/Nt produced a large
increase in luciferase expression when compared to the non-
targeted DDGR/K16 nanocomplexes (Fig. 5C), despite the similar
amount of nanocomplex present in the tumour as suggested by the
MRI. This demonstrates that the targeting efficiency of the
neurotensin-targeted nanoparticles relative to the untargeted
nanocomplexes is retained in vivo, as previously seen in the in vitro
experiments. Only background levels of luciferase activity were
detected in the liver and kidneys (Fig. 5D and E), which suggests
that there was minimal shedding of nanocomplexes from the
tumour into the circulation, an essential feature for any potential
clinically translatable methodology.

The targeted specificity of transfection contrasted strongly with
the MRI data, which revealed no contrast enhancement with the
Nt-targeted relative to the untargeted K16 formulation. This
suggests that the MRI contrast was produced by accumulation of
the nanocomplex-associated gadolinium chelate within the
tumour, but was not influenced by cell uptake. Whereas transfected
luciferase gene expression requires cell uptake, nuclear transport,
transcription and translation. Transfection, in contrast to MRI,
appears to be a highly receptor-dependent process, due most likely
to improved cell binding and internalisation of the nanocomplex,
increasing the amount of internalised DNA per cell.

In vivo transfections were performed in this study by direct,
intratumoural administration rather than by systemic administra-
tion, as we have reported previously [16,17]. This approach was
adopted to maximise delivery of the nanocomplexes to the tumour
to assess the concept that gadolinium-labelling of nanocomplexes
enables them to be detected in vivo and to evaluate the tumour
targeting properties of the Nt peptide within the nanocomplex
formulation in vivo. This study has shown that real time imaging by
MRI can be used to track the distribution and persistence of
a gadolinium-labelled nanocomplex in vivo, but not necessarily the
nanocomplexes functionality. This could be assessed in future
studies by analysis of tumours by luminescence and fluorescence
imaging systems to monitor luciferase and GFP reporter gene
expression for comparison with MRI data. The tools developed in
this study will now enable such studies to be performed.

5. Conclusions

This study describes the development LPD nanocomplexes for
targeted tumour cell transfection and for monitoring of vector
distribution in real time by MRI. In addition fluorescence labelling
was incorporated for post transfection cellular analysis of vector
distribution. LPD nanocomplexes formulated with three different
targeting peptides, ApoE, neurotensin and tetanus, displayed tar-
geted transfection in both bronchial epithelial and neuroblastoma
cell lines in vitro. Neurotensin nanocomplexes demonstrated tar-
geted transfection in an in vivoneuroblastoma tumourmodel. These
highly versatile nanocomplexes have real potential as research tools
in the future development of nucleic acid therapies for cancers.
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