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Abstract

As the amount of data captured in experimental and observational situa-
tions has grown, so too has the need for more sophisticated tools of analysis.
The broad area of functional data analysis (FDA) has received a great deal of
attention within the statistics community over the past decade, as a way of
dealing with the high dimensional data that is becoming more commonplace
in areas such as medical science and biology. High dimensional data has clas-
sically been analysed by treating the relevant data sets as multivariate data
sets. FDA seeks to analyse these data as if they are in fact functions, observed
at either sparse or dense sample points.

Motivated by problems in forest science and capture/recapture experi-
ments, this thesis explores some of the FDA methodology through modelling
data sets that contain functional responses or functional covariates.

We show that a nonparametric ‘whole of function’ approach to predicting
conditional probability density functions is a particularly useful alternative
to commonly used parametric approaches, especially when density functions
have ‘non–standard’ shapes. The functional prediction approach is further
extended by developing functional regression models for functional longitu-
dinal data. We show that these models allow prediction and extrapolation of
density functions with arbitrarily (smooth) changing shapes over time, con-
ditional on a functional growth covariate.

A semiparametric population size estimator for mark–recapture data with
continuous, time–varying covariates is developed from a functional data per-
spective. This method allows the full use of data resulting from such exper-
iments, circumventing the usual loss of information in current approaches.
We demonstrate that an iterative estimation approach in the form of an EM
algorithm outperforms methods that ignore the time variation in the covari-
ates.
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Chapter 1
Introduction and summary of
current approaches

Univariate and multivariate data, along with the associated tools to anal-
yse such data sets, have been well understood by statisticians and applied
scientists since early last century. With the increase in storage capabilities
and processing power of computers (especially personal computers) over the
last two to three decades, along with more sophisticated measurement tools,
functional data has become a strong research focus of both theoretical and
applied statisticians.

In this thesis, we will apply functional data techniques to analyse some
problems in the applied biological sciences. The modelling approaches for
each of the problems we will present rely on traditional univariate and mul-
tivariate parametric methods. We can place each problem within a functional
data setting, and it is this setting that is the major focus of this thesis. Further,
each of the methods that we describe and develop will essentially be model
free, in the sense that we will make use of nonparametric methods in combi-
nation with functional data analysis, leading to extremely flexible modelling
frameworks.

In Chapters 2 and 3, we will describe methods to model and predict func-
tional responses, in particular, probability density functions. Chapter 2 in-
troduces the functional regression tree method and demonstrates its appli-
cability to estimating size distributions in a forestry context. Chapter 3 will
extend the method and detail a result that allows efficient computation of the
method. Computational complexity of the resultant algorithm will also be
analysed.

1



2 Chapter 1. Introduction

In Chapter 4 a method for analysing functions that have a longitudinal as-
pect will be introduced. Here we model time–varying functions conditional
on growth curves, which we will demonstrate by application to a longitudi-
nal forestry data set.

Chapter 5 moves away from functional responses to functional predictors.
That is the case in which a measured covariate is in fact itself functional. In
this chapter, we investigate the problem in capture–recapture experiments of
missing covariate data (specifically where the covariate is functional) through
the use of nonparametric smoothing, functional data analysis, and the EM
algorithm.

The rest of this introductory chapter provides more detail on the topics to
be explored throughout this thesis, starting with a brief explanation of what
constitutes functional data, and moving on to explain the current approaches
to the problems just described. In the conclusion, we will discuss some future
directions that may be taken.

1.1 What is functional data?

Functional data can be quite simply described as data that varies smoothly
over some continuum, for example, curves and surfaces. In the current liter-
ature on functional data analysis, two main types of functional data receive
attention. The first is curve data that has been observed on a fine grid, result-
ing in a fully observed function. The second is data that is believed to have
resulted from some underlying curve that in its entirety is unobservable, yet
we have a finite (often quite small) number of observations of the curve over
its domain.

Figure 1.1 provides an example of the first type of functional data. Shown
in Figure 1.1(a) are nonparametric density estimates of tree diameters within
forest stands. There is little information in this figure to lead us to believe
that there is any relationship amongst these densities. However, looking at
Figure 1.1(b), it is clear that some relationship is apparent. In this figure, those
forest stands that have quadratic mean diameter (D.q) less than 18 have their
diameter densities coloured blue, whilst those having D.q ≥ 18 are coloured
green. How this relationship is estimated will be discussed in Chapters 2 and
3.

As an example of the second type of functional data, Figure 1.2 shows
the weights (in grams) of 54 Mountain Pygmy Possums captured over five
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Figure 1.1: Example of fully observed functional data. (a) Tree diameter den-
sity curves and (b) Tree diameter density curves conditional on quadratic
mean diameter.

nights. When an individual is not captured, there is clearly no way to mea-
sure the weight of that individual, so the resulting data are sparse observa-
tions from what we assume to be smoothly changing functional forms. In the
figure, those individuals that were caught more than once have their succes-
sive measured weights connected by lines. Smooth estimates of the weight
functions are a result of the methodology presented in Chapter 5, and can be
seen in Figure 5.3.

A combination of the two types of functional data is the focus of Chap-
ter 4.
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Figure 1.2: Example of sparsely observed functional data.

1.2 Estimating size distributions

This section outlines some current approaches to estimating size distributions
that are in common use within the forestry literature. In the context of for-
est management, a size distribution refers to the probability distribution of a
certain tree attribute, often conditional on a set of measured covariates. The
common feature of these methods is that in each approach, an underlying
parametric family is assumed to generate the distributions. We will further
break these methods into two separate sub–methods. The first, which we will
term fully–parametric, refers to both the estimation procedure and the form
of the size distribution. That is, the estimation is performed, for example, by
linear least squares, and that we assume that the distribution of trees within
a stand can be described by a known functional form, indexed by a number
of parameters. A commonly assumed functional form for size distributions
is the Weibull probability density function (PDF)

f(x) =
β

α

(
x− γ
α

)β−1

· exp

[
−
(
x− γ
α

)β]
(1.1)

where γ, α, β are the location, scale and shape parameters respectively. The
Weibull PDF was proposed by Bailey and Dell (1973) as a candidate for mod-
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elling size distributions due to its mathematical properties and its flexibility
in modelling variously shaped densities.

However, it is common when estimating size distributions, to try a num-
ber of different candidate PDFs to fit the data. As an example, Robinson
(2004) tested both two– and three–parameter Weibull distributions, Johnson’s
SB distribution, and the Chaudry–Ahmad distribution (Chaudry and Ah-
mad, 1993) before settling on the three–parameter Weibull as the distribution
providing the best fit to the data. With this in mind, the discussions in Sec-
tion 1.2.2 will focus particularly on the modelling framework.

The second stream of parametric estimation I will term partially paramet-
ric. Whilst the regression model itself will be parametric, as in the fully para-
metric case, the size distribution will no longer be assumed to follow a pre-
defined functional form. Section 1.2.3, will describe the percentile method,
which is also known as Borders’ method, named for the method introduced
by Borders et al. (1987).

1.2.1 Some attributes of forestry data

We will now introduce some typical data attributes arising from forest man-
agement and its associated studies. The most commonly measured attribute
of a tree is its diameter at breast height, where breast height is defined in most
countries as 1.3 m. Because it would be prohibitively expensive to measure
each tree in a stand, usually only a sample of trees is measured. Character-
istics of the whole stand may also be gathered, for example environmental
variables such as rainfall, and silvicultural decisions that were made, such as
thinning and fertiliser application.

The statistical distribution of the measured size (e.g. tree diameter, basal
area, volume) can then be estimated from the sample of trees, and condi-
tional on measured or observed stand covariates, a prediction model can be
formed. Size distributions for unmeasured stands can then be predicted by
measuring the relevant stand characteristics and plugging them into the pre-
dictive model, a simpler and less costly procedure than individual tree mea-
surements.

We now introduce some of the other attributes which we will use. We
focus on a particular data set that was made available through the Cooper-
ative Research Centre for Forestry (CRCF, http://www.crcforestry.com.au).
The data come from Eucalyptus globulus Labill. (Tasmanian Blue Gum) pulp-
wood plantations consisting of same–design replicated field experiments in

http://www.crcforestry.com.au
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south–western Australia, planted in 1994.
The experiments compare stocking (planting density) treatments rang-

ing from 625 to 2000 trees ha-1. As discussed above, only a sample of trees
(within each stand) are measured for diameter, and in this particular experi-
ment, three sample plots were established for each stocking treatment. These
sample plots ranged in area from 0.03 to 0.06 ha. All trees in the sample
plots were measured for diameter, and a subset of the trees were measured
for height (m, height is generally harder and more expensive to measure ac-
curately than diameter). It is from these sample plots we estimate the size
distributions; this is what will be called tree–level data.

Using the tree–level data, stand–level (summary) characteristics can be
calculated. For this particular data set, these calculations provide us with:
density, the number of stems (it is common to measure the number of stems,
rather than the number of trees, as some trees may have more than one stem)
per hectare; basal area (m2 ha-1) of the stand (the basal area of a tree is its
cross–sectional area at breast height); top height, as the mean height of the 100
largest diameter trees per hectare (m) and total underbark volume (m3 ha-1).

Trees have been re–measured at approximately two–yearly intervals, with
the first measurement at age 1.5 years. This measurement framework at the
individual level provides us with a rich longitudinal data set. It is the longitu-
dinal aspect that we ultimately wish to exploit in our predictions, providing
us with the capability to extrapolate or interpolate with age. As such, this
longitudinal aspect will be explored further in Chapter 4.

1.2.2 Fully–parametric prediction

Parameter prediction

We turn now to describing the approaches that are now in common usage
amongst forest biometricians. The parameter prediction method (e.g. Clutter
and Bennett, 1965; Hyink and Moser, 1983) of estimating a size distribution
proceeds by using the stand–level data as predictors for the parameters of a
PDF. This amounts to a set of regression equations

θij = f(βikxjk) + εijk (1.2)

where θij is the ith parameter of the jth stand, i = 1, . . . ,m and j = 1, . . . , n,
and xjk are the p stand–level covariates for the jth stand, k = 1, . . . , p; βik
are regression parameters to be estimated, and εijk are random error terms
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with mean 0. Note that the specification given by Equation (1.2) allows non–
linear models to be estimated (through the choice of f ), however this is not
common. The method proceeds in the following way:

1. The family of PDFs is chosen, for example, the Weibull PDF as given in
Equation (1.1);

2. The parameters of the PDF, θij are estimated for each sample plot using
the tree–level data. This step is usually performed through the use of
maximum likelihood estimates;

3. The regression parameters, βik are estimated through Equation (1.2),
using the values of θij obtained in the previous step;

4. The size distribution for the jth stand is then the PDF with parameters
θ̂ij = f(β̂ikxjk).

The estimation of the regression parameters βijk in Step 3 will depend
not only upon the form of the function f , and the assumptions placed on
the regression model, but also on the nature of the data itself. For example,
Robinson (2004) suggests that considerable hierarchical structure can often
be found in forestry data, and that mixed effects models (Laird and Ware,
1982) provide a suitable modelling framework for such data. In almost all
applications of the parameter prediction method for estimating size distri-
butions, the regression parameters βik are estimated using standard linear
models (with or without random effects).

It is likely that the PDF parameters themselves will be correlated, due to
the fact that we are estimating each parameter from the same sample. If we
estimate the regression parameters βik independently for each PDF parame-
ter θij , then the assumption of independence between these parameters may
not be met. A popular method for dealing with this situation when the as-
sumed model is linear, that is, f(βikxjk) = βikxjk, is seemingly–unrelated
regression (SUR, Zellner, 1962). SUR allows for correlations among the resid-
uals from each of the regression equations to be accounted for by relaxing
the independence assumption. Details regarding SUR may be found in Ap-
pendix A.3.

Parameter recovery

The parameter recovery method (see, for example, Hyink and Moser, 1983;
Burk and Newberry, 1984) of estimating size distributions is quite similar to
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the parameter prediction method, in that the size distribution is estimated
from a family of PDFs indexed by parameters θij . It is the process of how
these parameters are estimated that is the difference.

Parameter recovery methods rely on the estimation of percentiles or mo-
ments of the size distribution, and are thus applications of the method of
moments estimation technique. The procedure begins by estimating the tree–
level moments (or percentiles), and relating these to the stand–level charac-
teristics. The parameters of the size distribution are then estimated by match-
ing the predicted (sample) moments (percentiles) to their corresponding pop-
ulation parameters. Because of this matching procedure, the Weibull distri-
bution is the most commonly used size distribution in the forestry literature
due to its cumulative distribution function having a closed form expression
that makes moment–based methods analytically tractable.

Burk and Newberry (1984) provide an algorithm for recovering the pa-
rameters of a Weibull size distribution using sample moments as estimators.
Bailey et al. (1989) describe a parameter recovery approach that uses the sam-
ple percentiles to recover the population parameters of the Weibull distribu-
tion. In their approach, the minimum and median diameters, along with the
25th and 95th diameter percentiles are predicted from the stand–level charac-
teristics, along with quadratic mean diameter (a function of basal area and
stems per hectare) through a set of regression equations:

dqj = f(βqkxjk) + εqjk (1.3)

where dqj is the qth percentile (or quadratic mean diameter) of the the jth

stand, and βqk and xjk are as they were in Equation (1.2).

The process of recovering the PDF parameters then follows in a similar
vein to that described in the previous section for the parameter prediction
method. The first three steps are the same, with prediction of percentiles
replacing prediction of parameters. The fourth step becomes:

4. The PDF parameters for the jth stand are recovered from the predicted
percentiles. For the Weibull distribution (Equation 1.1), this amounts
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to:

γ̂j =
n

1/3
j d̂0j − d̂50j

n
1/3
j − 1

β̂j =
2.343088

log(d̂95j − γ̂j)− log(d̂25j − γ̂j)

α̂j = − γ̂jΓ1j

Γ2j
+

√(
γ̂j
Γ2j

)2

(Γ2
1j − Γ2j) +

d̂2
mj

Γ2j

where Γtj = Γ
(

1 + t/β̂j

)
, and Γ is the gamma function.

1.2.3 Partially–parametric prediction

Percentile Method

Introduced by Borders et al. (1987), the percentile method of estimating size
distributions proceeds by estimating a set of percentiles at the tree–level, and
relating these percentiles to the stand–level data. The predicted percentiles
form the basis of a nonparametric estimate of the size distribution. This leads
to the following set of regression equations:

qij = f(βikxjk) + εijk (1.4)

where qij is the ith percentile of the jth stand, i = 1, . . . ,m and j = 1, . . . , n

and xjk, βik and εijk are as they were in Equation (1.2). Borders et al. (1987)
proposed a set of 12 regression equations for the {0, 5, 15, . . . , 95, 100}th per-
centiles. Following their methodology, the 65th percentile is chosen as the
‘driver’ percentile. Differences between the percentiles are then calculated,
and the system of equations becomes

d65,j = β65,kxjk d∗q,j = Xjβqk (1.5)

where d∗q,j is the difference between two successive percentiles for the jth

stand (for example, d∗75,j = d75,j −d65,j), Xj are the observed stand character-
istics, andβqk are the model equation parameters. Again the equation param-
eters are estimated using seemingly unrelated regression (Appendix A.3).

To recreate the diameter distribution for a given plot, we first predict the
percentile differences from Equation (1.5), then recover the predicted per-
centiles (e.g.. d̂75,j = d̂65,j + d̂∗75,j). The percentiles are then smoothed (for
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example, using a constrained cubic spline) providing a CDF. The PDF is then
found by taking the derivative of the spline.

1.2.4 Problems with the current approaches

The methods that we have introduced thus far are certainly fine in theory, and
are excellent in practice if the data actually conform to the model that is being
proposed. There are, however, problems with a parametric approach to size
modelling. At the most basic level, problems will occur when the data do not
conform to a single parametric family. For example, diameter distributions
are often multi–modal, and in this case, single–family parametric distribu-
tions (such as the Weibull) will not provide a suitable fit. It is unclear what
steps should be taken when this situation occurs. For instance, Maltamo et al.
(2000) visually inspect empirical densities and remove those that are clearly
multi–modal before estimating the distribution parameters. This is clearly
an inefficient use of data, and ignores what is commonly seen in real–world
applications.

The percentile method (Section 1.2.3) in some ways overcomes the prob-
lems that occur with prescribing a parametric distribution family, but is not
without problems in itself. Firstly, the percentile method requires the estima-
tion of a large number of percentiles to provide an adequate description of
the distribution, all of which are estimated from the same set of stand–level
data. Estimating the covariance matrix Σ (Equation A.3) when using SUR
requires (on average) 2n/m observations for each element (where n is the
number of observations per equation, and m is the number of equations, see,
for example, Beck and Katz (1995)). This can be inefficient for low numbers of
observations, and whilst similar problems will occur for the fully–parametric
methods, they will not be as severe due to the much lower number of equa-
tions being estimated.

A further problem with the percentile method is that for any observa-
tion outside the predicted minimum (maximum) for a stand, this observation
will have probability 0, with no margin for error. This is in contrast to the
fully–parametric approaches which assume the PDF goes to 0 smoothly at
the boundaries.

Not only can the parametric family be misspecified, but just as serious a
problem is misspecification of the regression relationship (as in Equation 1.2).
This is in no way restricted to modelling in the forest science, but is problem-
atic across a wide range of statistical modelling applications.
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In Chapters 2-4, we will seek to overcome both misspecification of the
parametric family of the response distribution, and misspecification of the
regression model, by utilising functional data analysis and nonparametric
techniques.

1.3 Population size estimation in capture–recapture ex-
periments

In this section we introduce methods of estimating the population size of a
species in a sample area from capture–recapture experiments. A discrete time
capture–recapture (CR) study consists of a fixed number of capture occasions
where individuals from the population are uniquely marked or tagged upon
initial capture and previously captured individuals are noted before being
released back into the population. It is assumed that individuals do not lose
their marks and behave independently from each other. Individual capture
histories are then easily constructed and, under an appropriate model, can
be used to estimate population size. We further assume here, and in Chap-
ter 5, that the population is closed. This requires that we assume that the
population of interest does not change during sampling. That is, there are no
births and deaths among the population of interest, nor any immigration or
emigration.

Modelling heterogeneity in the form of individual covariates, such as
body weight or gender, is now commonly used in CR models (e.g. Otis et al.,
1978; Pollock et al., 1984; Huggins, 1989, 1991) where it is known to reduce
bias and increase precision for both model parameters and population esti-
mates (e.g. Pollock, 2002). To account for heterogeneity In these models, the
capture probabilities are estimated conditional on individual or environmen-
tal covariates such as weight and/or temperature.

The conditional likelihood of Huggins (1989) has been standard method-
ology for estimating the parameters of CR models and subsequently popu-
lation sizes since it and an applications paper by the same author (Huggins,
1991) were published. Suppose that we have data from a CR experiment in
the form of capture histories for individuals, and associated with an individ-
ual, a vector of covariates (e.g. weight). As an example of a capture history
for an individual, assume that the CR experiment was conducted over five
capture occasions, and that the individual was caught on occasions two and
four. This individuals capture history would be (0, 1, 0, 1, 0), where we let
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Ci(j) = 1 denote the fact that individual i was captured at time j, and 0

otherwise. Assume that for each individual i, the probability of capture at
occasion j is pij . Then for a population of individuals i = 1, . . . , N , and pos-
sible capture occasions j = 1, . . . , τ , the likelihood of the observed data is
proportional to

L =

N∏
i=1

τ∏
j=1

p
Ci(j)
ij (1− pij)(1−Ci(j)) (1.6)

Of course, the likelihood given by Equation (1.6) relies on us having cap-
tured each individual in the entire population, which is usually not the case,
and the population size N becomes the focus of estimation. There are num-
ber of further issues with the likelihood in Equation (1.6). The probabilities of
capture pij are most likely unknown and need to be estimated from the data.
Maximum likelihood estimates are possible, however in its current form, the
likelihood is saturated, that is, the number of parameters is the same as the
number of data points. This requires collapsing the number of parameters in
some way. As an example, one could set pij = p, so that the probability of
capture is the same for all individuals at all capture occasions. However in
doing so, we have lost the ability to capture individual heterogeneity.

To allow for heterogeneity between individuals and over time, we can
model the capture probabilities pij conditional on some measured vector of
covariates Xi = (Xi1, . . . , Xik). Then, letting β = (β1, . . . , βk)

′ be the param-
eters relating the covariates to capture probability, a possible model for the
capture probabilities is

pij = H(Xiβ) (1.7)

where the function H is chosen to ensure that 0 ≤ pij ≤ 1. The logistic
function H(u) = exp(u)/(1 + exp(u)) is common. Thus, we retain the ability
to model individual heterogeneity, yet have made the model parsimonious
by restricting the number of parameters that need estimating. Estimation of
parameters and related inference is now made via the conditional likelihood
(Huggins, 1989), which is proportional to

Lc =

D∏
i=1

π−1
i

τ∏
j=1

p
Ci(j)
ij (1− pij)(1−Ci(j)) (1.8)
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where D is the number of distinct individuals captured, and πi = 1−∏j(1−
pij) is the probability of individual i being captured at least once during the
CR experiment. Equation (1.8) is known as the conditional likelihood, as it
conditions on those individuals that are caught at least once, thus requiring
no information on the individuals that were never captured.

When an individual is not captured at a time j, then the parameters in
Equation (1.8) cannot be estimated, as the related covariate information Xij

will not have been measured. This is the focus of Chapter 5, where we will
give more details. We now describe some of the current approaches to han-
dling this situation of missing data.

1.3.1 The problem of missing data in CR experiments

Many researchers have commented on the need for methods in dealing with
the inherent missingness of covariates when an individual is not captured
(e.g. Pollock, 2002) and several approaches have been proposed. For example,
Wang (2005) used a Monte Carlo method in an EM algorithm for continuous–
time CR models with missing covariates, Zwane and der Heijden (2008) used
multiple imputation to substitute for unobserved values in log–linear CR
models and more recently, Xi et al. (2009) used the EM algorithm and the
conditional likelihood approach of Huggins (1989). A more straightforward
and traditional approach to dealing with missing values is to assume that the
covariate is constant across capture occasions. In this naive approach, the
measurement taken at the first capture of an individual is then fixed for all
capture periods.

Another approach for time–varying covariates is approximation by dis-
crete categories (Nichols et al., 1992). This has the advantage of not requiring
how the covariates change over capture occasions, but is disadvantaged by a
lack of precision, and ambiguity in the choice of discretisation.

A further possible approach is the use of full likelihood methods. How-
ever, these require the specification of the distribution of the covariate and
how it changes over time. Complicating the analysis of full likelihood meth-
ods is the need to integrate out any missing covariates, a task that is near on
impossible with many missing values and many capture occasions. A pos-
sible solution then is to use Bayesian methods, such as the approach taken
by Bonner and Schwarz (2006) and King et al. (2008). In these analyses,
the covariate at time t is assumed to be a realisation of a continuous time
Weiner process with time–dependent drift µ(t). The parameters of the ensu-



14 Chapter 1. Introduction

ing Markov chain model are estimated using a component–wise Metropolis–
Hastings algorithm. Whilst the problem of discretisation (in the Nichols et al.
(1992) model) is overcome here, restrictions are still placed on the distribution
and functional form of the covariate.

Time–varying individual covariates provide another interesting challenge
in CR models. By construction of the model, the probability of capture is
conditional on the covariate. However, because we can only measure the
covariate when an individual is captured, we see also that the missing data
mechanism is missing not at random (MNAR). That is, the probability that
we measure the covariate is conditional on the probability of capturing the
individual. Having these two processes intertwined in this way means that
traditional methods of imputing the missing data may be inefficient.

In Chapter 5 we describe an EM algorithm that accounts for the time–
variation of the covariate, and also the probability of missingness. The method
that we propose overcomes the problems just discussed by the use of non-
parametric smoothing and functional data analysis.

1.4 Chapter synopsis

Chapter 2 will introduce the functional regression tree (FRT) method (Nerini
and Ghattas, 2007). The FRT method uses recursive partitioning to estimate a
regression model between a functional response and multivariate predictors.
We can use such a model to predict functional responses without requiring
parametric assumptions about the functional form of both the function and
regression relationship. We apply the method to the E. globulus data intro-
duced in Section 1.2.1, and compare it to more common approaches in the
forest science literature. The results of this comparison show that as both a
predictive tool and informal inference tool, the FRT method outperforms the
more common parametric approaches. This chapter is based on Lane et al.
(2010).

Chapter 3 extends the work of Nerini and Ghattas (2007) by suggesting
an alternative criterion for fitting a functional regression tree model. The
original criterion of Nerini and Ghattas (2007) targeted node homogeneity,
that is, it minimised the deviance within each node of the regression tree. The
extension which we detail in Chapter 3 minimises the prediction error, and
as such, provides flexible predictions for functional responses conditional on
multivariate predictors. The extension of the work of Nerini and Ghattas
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(2007) also results in more stable and precise fitting of a functional regression
tree model. We will demonstrate this extension using measurements from
stands of Douglas–fir (P. menziesii) as well as an extensive simulation study.
This chapter is based on Lane and Robinson (2011).

Chapter 4 extends the work of Yao et al. (2005b) to the case where the
longitudinal response is now a series of functions. The method which we in-
troduce allows the prediction of functions at any time through nonparametric
modelling of a sequence of covariance functions. To the best of our knowl-
edge, this is the first time such a model has appeared in the literature to date.
We will apply this model to the full longitudinally observed E. globulus data.
This provides us with the means to predict the evolution of the diameter PDF
in stands that have not had diameters directly measured, but have functional
covariate information available. Comparing the results of this new approach
to a more traditional approach, we find that the prediction error is reduced
after allowing for the functional nature of the data. This chapter is currently
being edited for submission to the Journal of the American Statistical Associ-
ation.

Chapter 5 describes a novel use of functional data techniques in capture–
recapture (CR) experiments. In this chapter, we combine the work of Yao
et al. (2005a) with that of Huggins (1989) allowing the estimation of popu-
lation size from CR experiments with continuous, time–varying covariates.
We will demonstrate the method using data from a CR experiment involving
the Mountain Pygmy Possum (Burramys parvus) as well as through simula-
tion. The results demonstrate improved performance in terms of precision
and variability of both population size estimates and CR model parameters
when compared to more common approaches. This new methodology pro-
vides an exciting advancement on current techniques, and is currently being
edited for submission to Biometrics.



Chapter 2
The functional regression tree
method

This chapter introduces the functional regression tree (FRT) method (Nerini
and Ghattas, 2007). The FRT method uses recursive partitioning to estimate a
regression model between a functional response and multivariate predictors.
We can use such a model to predict functional responses without requiring
parametric assumptions about the functional form of both the function and
regression relationship.

We have already seen in Chapter 1 a number of methods for predicting
probability density functions (PDFs) from covariate information. There, we
discussed two broad approaches that are currently used within the forest sci-
ence literature, which we termed fully–parametric and partially–parametric.

Forest stand diameter distributions can adopt a wide variety of shapes,
not all of which can be easily matched by specific functional forms. Further,
diameter distributions within a single population can be too variable to be
matched by a single parametric family. Motivated by this observation, we ap-
ply the FRT method to model the diameter distribution of E. globulus stands
(that were introduced in Section 1.2.1).

We will first outline recursive partitioning and how it may be applied to
estimate probability density functions. Secondly, we use the E. globulus data
to compare the FRT method with parameter prediction and percentile meth-
ods. The results of this comparison show that as both a predictive tool and
informal inference tool, the FRT method outperforms the more common para-
metric approaches that are in current use within forest science. This chapter
is based on Lane et al. (2010).

16



2.1. Recursive partitioning 17

2.1 Recursive partitioning

2.1.1 Recursive partitioning for a univariate response

We first review the recursive partitioning procedure for a univariate response
(see, for example, Breiman et al., 1984; Hastie et al., 2009). Given observations
Y and covariates X , we seek an estimate of E(Y |X) by partitioning X , the
space of all possible observations, and estimating the conditional expectation
of Y using the mean response within each partition.

The resultant partitioning can be displayed graphically as a tree, an ex-
ample of which is shown in Figure 2.1. In this example, X has two partitions,
which allocate observations with xj < t to the left child node, and xj ≥ t to
the right child node. The estimate of E(Y |X) is then given by the mean in
each of these nodes.

Ŷ =

ȳl xj < t

ȳr xj ≥ t

Root Node
xj<t xj≥t

L
ȳl

R
ȳr

Figure 1: A graphical representation of the recursive partitioning procedure.
The root node is partitioned into two disjoint child nodes.

23

Figure 2.1: A graphical representation of the recursive partitioning proce-
dure. The root node is partitioned into two disjoint child nodes.

This is a simple example of the widely–used CART (Breiman et al., 1984)
algorithm for recursive partitioning, which uses binary splits to classify nodes.
More generally, starting with all observations (at the root node as in Fig-
ure 2.1), we choose a binary split s. The procedure for choosing the best
split is as follows. Define the deviance of a node r as

D(r) =
∑
i∈N(r)

(yi − ŷr)2 (2.1)

where ŷr is the fitted value in node r, and N(r) is the set of indices of obser-
vations in node r. Then, given a set of possible splits s ∈ S, each of which
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splits the node r into child nodes r1 and r2, the best split s∗ is defined as the
split s that satisfies the objective function

s∗ : s = argmax
s∈S

D(r)−D(r1)−D(r2) (2.2)

This objective translates to minimising the sum ofD(r1) andD(r2) during
the splitting procedure. The value that minimises the deviance (Equation 2.1)
is the mean value of the node, and so we set ŷr = ȳr, the mean of node r.
That is, the algorithm guides the splits of the observations into classes as well
as guiding the prediction for the class.

The procedure then repeats for both the left and right child nodes. That
is, a split s∗ is chosen to maximise Equation 2.2 for each child node, and
so on, until any further splits will result in a child node that contains less
than a pre–specified minimum number of observations. The minimum size
of nodes may have a large impact on the recursive partitioning algorithm.
For example, if the minimum is too small, the partition may be too sparse,
however if the minimum is too large, valuable features can be smoothed out.
Associated with minimum node size is computational cost, which we discuss
in more detail in Chapter 3.

Generally, the trees that result from repeatedly splitting until no possible
splits remain are overfit, that is, the space X is partitioned too finely on the
training data. Therefore, predictions that are made for independent data will
be less accurate. The established methodology for reducing this overfitting
is cost–complexity pruning (Breiman et al., 1984). The pruning procedure
introduces a penalty for the size (number of terminal nodes) of a tree, which
can be estimated by cross–validation.

2.1.2 Recursive partitioning for a functional response

Numerous recursive partitioning methods for multivariate data have been
proposed. A common theme is some form of dimension reduction prior to the
recursive partitioning procedure, and the choosing of an appropriate form
for the deviance function D. For example, Yu and Lambert (1999) analysed
time–of–day patterns for international phone calls using recursive partition-
ing in two ways, both of which involved dimension reduction prior to the
recursive partitioning scheme. They first fitted natural splines to the curves,
then used the coefficients of the basis function as the response variable for
recursive partitioning. The second method involved calculating the princi-
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pal components of the time–of–day curves and using the first six principal
components as the response variable. In both cases, the deviance function
was chosen to be the standardised squared–error loss function (Mahalanobis
distance). Cariou (2006) analysed electricity load curves in much the same
way by applying the partitioning procedure to the first principal component
of the electricity load curve, with deviance being measured by the sum of
absolute deviations. De’ath (2002) provides an example of using a regression
tree (with Euclidean deviance D) to model the distribution of 12 species of
hunting spiders in relation to various environmental characteristics.

Nerini and Ghattas (2007) proposed using the whole probability density
function (PDF), estimated non–parametrically, as the response variable. Their
procedure, which they called a functional regression tree model (FRT), did
not involve dimension reduction. They suggested that because interest lies in
the PDF as a whole, an appropriate deviance function would be one based on
f -divergence (Csiszár, 1967). The authors also provided a simulation study
that supported this choice of deviance as opposed to a deviance based on
Euclidean distance (such as that in Equation 2.1 for multivariate responses).
In general, let the functional response for observations i and j be Yi(t) and
Yj(t), defined over some range t ∈ T . Then if we can measure the dissimilar-
ity between Yi(t) and Yj(t) by Cij = g(Yi(t), Yj(t)), for some function g, the
deviance of a node r can now be written

D(r) =
∑
i∈N(r)

∑
j∈N(r)

Cij (2.3)

and the FRT procedure operates in exactly the same way as that described
previously for a univariate response, but now with deviance function (2.3)
used in the objective function (2.2). For PDFs, the natural candidate for the
function g is the Kullback–Leibler divergence as proposed by Nerini and
Ghattas (2007):

g(Yi(t), Yj(t)) =

∫
Yi(t) log

(
Yi(t)

Yj(t)

)
dt. (2.4)

Functions for fitting FRT models with the Euclidean distance deviance
criterion are provided in the R library mvpart (De’ath, 2007), which also
performs cross–validation to assess the out–of–sample prediction error. The
function g in the example above would then become g = ||Yi(t)−Yj(t)||2. Our
preliminary testing (on the simulated data set detailed in Nerini and Ghattas,
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2007) showed that using Euclidean distance as the deviance criterion pro-
duced results that were no less accurate than those based on Kullback–Leibler
divergence (however we investigate this further in Chapter 3). Therefore the
results in this chapter use Euclidean distance as the deviance criterion. Cross–
validation can yield highly variable outcomes for tree–based models (see, for
example, Merler and Furlanello, 1997), and so instead we estimate the size of
the FRT using a bootstrap scheme. In particular we use the .632+ version of
the bootstrap (Efron and Tibshirani, 1997), which we detail in Appendix B.1.2.

As an example of the way in which the predictions of the functional re-
sponse are made after the partitioning has occurred, Figure 2.2 displays the
probability density functions that were used as the functional responses in
the FRT method as applied in the next section. After two levels of partition-
ing have occurred, we see that the PDFs have been split into four different
sections. The PDFs within each partition are more similar to each other, than
any other partition. A further example of the partitioning is given in Ap-
pendix A.1.
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Figure 2.2: Example of PDFs after two levels of the recursive partitioning
scheme has been performed.
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2.2 Numerical comparisons

In this section we compare the FRT with a parameter prediction (PP) method
using the Weibull distribution (see Section 1.2.2 of Chapter 1), and with Bor-
ders’ (Borders et al., 1987) percentile method (PM, Section 1.2.3, Chapter 1)
for predicting diameter distributions. The data used for the comparisons is
that which was introduced in the introduction, and we will expand on this in
the next section.

All analyses were performed in the open source statistical environment
R (R Development Core Team, 2009). The FRT models were fitted using the
library mvpart (De’ath, 2007), and the parameter prediction and percentile
method models were fit using maximum likelihood and systemfit library
(Henningsen and Hamann, 2007).

2.2.1 Data

The E. globulus data are from same–design replicated field experiments (a, b,
c, d, e) in south–western Australia. The experiments compare stocking (plant-
ing density, N0) treatments of 625, 833, 1000, 1250, 1667, and 2000 trees ha-1.
Tree diameter (d, over–bark at 1.3 m height) and total height (h) measure-
ments at age (A) 8 years were used to calculate stand–level characteristics:
basal area (G, m2 ha-1); density, as stems ha-1 (N); top height, as the mean
height of the 100 largest diameter trees ha-1 (H, m) and total underbark vol-
ume (V, m3 ha-1). Quadratic mean diameter (Dq, cm) was calculated from G
and N. Table 2.1 gives summary statistics for the stand characteristics over all
sites.

Table 2.1: Summary statistics for E. globulus stand characteristics. The data
are based on 90 plots representing 5 sites × 6 planting densities.

Characteristic min – mean – max (sd)

Age (years) 7.81 – 7.84 – 7.90 (0.032)
Basal area (m2 ha-1) 12.63 – 24.91 – 39.53 (6.796)
Density (stems ha-1) 438 – 1023 – 1804 (381.2)
Top height (m) 12.98 – 22.00 – 29.23 (4.328)
Volume (m3 ha-1) 68.9 – 201.3 – 399.9 (85.73)
Quadratic mean diameter (cm) 12.31 – 18.24 – 27.27 (3.529)
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All characteristics given above for the data were initially included in the
model specifications for each of the FRT, PP and PM methods. Specifically,
the full model was

γi = αi + β0 ·N0,i + β1 ·Ai + β2 ·Gi + β3 ·Ni

+ β4 ·Hi + β5 · Vi + β6 ·Dq,i + εi

where αi is the field experiment coefficient, β are the coefficients for stand–
level characteristics, the errors εi are independent and identically distributed,
and γi denotes the response parameter of interest, that is the shape, scale or
location parameter of the Weibull distribution for the parameter prediction
method, the pth percentile for the percentile method, or the observed diam-
eter distribution for the FRT method. Details of the fitting methods for the
parametric models can be found in Appendix A.

We form the observed diameter distribution Yi(d) using a kernel density
estimate of the diameters for the plot. For each plot i = 1, . . . , 90, let Dij be
the jth diameter measurement for the ith sample plot, j = 1, . . . , ni (ni being
the number of measurements in plot i). Then the kernel density estimate of
the distribution of diameter d for plot i is

Yi(d) = (nihi)
−1

ni∑
j=1

K

(
d−Dij

hi

)

whereK is the kernel function, for example the standard normal density, and
we used the plug–in bandwidth hi of Silverman (1986).

2.2.2 Goodness–of–fit/lack–of–fit measures

The ability of parametric forms to match the shape of diameter distributions
will depend on the regularity of the underlying shape. For example, we
expect that the non–parametric methods (FRT and percentile methods) will
outperform the parametric method (Weibull parameter prediction method)
when sample plots exhibit bimodality. We can estimate the bimodality of the
underlying population using the dip statistic (Hartigan and Hartigan, 1985)
which provides a measure of unimodality. We would also expect varying re-
sults when the distributions exhibit excessive sample skew. To assess skew-
ness, we compare the sample skew with the theoretical values of skew using
the predicted parameters of the Weibull distribution. These two values of
skew should be approximately equal if little skew is apparent.
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To compare the performance of the FRT, PP and PM methods, we use two
goodness–of–fit statistics. The first is the root mean squared prediction error
between the predicted and observed diameter distribution, given as

RMSE(Y ) =

√√√√ 1

n

n∑
i=1

||Yi − Ŷi||2

where n is the number of observations in the sample, Yi is the observed (ker-
nel density) diameter distribution and Ŷi is the predicted density from each
method. This statistic measures the average discrepancy between each point
on the observed and predicted diameter distribution curves. A low value of
this statistic indicates that the predicted diameter distribution is close to the
observed diameter distribution, across all points.

The second goodness–of–fit statistic is the root mean squared prediction
error of volume (V, m3 ha-1). This statistic measures the discrepancy between
observed and predicted volume averaged over all sample stands. For this
statistic we use a two–stage process to estimate stand volume. A two–stage
process is required as the volume functions that we use are individual–tree
volume functions that use individual tree diameter and height as inputs.
Heights for some (but not all) trees were measured in the E. globulus study,
and so we estimated the missing heights using a generalised additive model
(mgcv library of R, see Wood, 2006) of height on diameter. We then predicted
stem heights for each diameter over the observed range of diameters. Indi-
vidual tree volume was then estimated using the volume function given in
Wong et al. (1999):

v̂(h, d) =
2.8737

100000
·
(
d

10

)2

· h+
4.0837

10000
· d

10
(2.5)

where d is diameter (mm) and h = h(d) is the height (m) of a tree with diam-
eter d predicted from the non–parametric height model.

Stand volume (m3 ha-1) for stand i was then calculated as

V̂i =
ni
ai

∫
fi(x)v̂(h, x)dx

where fi(x) is the diameter density function, v̂(h, x) is the individual tree vol-
ume function (Equation 2.5), and ni and ai are the number of stems measured
and the area of stand i respectively. Root mean squared prediction error of
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volume per hectare is then given by

RMSE(V ) =

√√√√ 1

n

n∑
i=1

(Vi − V̂i)2

2.2.3 Results

The FRT method provided the best fit as measured by our goodness–of–fit
statistics and graphical comparisons. Based on the goodness–of–fit statis-
tics, the percentile method performed better than the parameter prediction
method, however the percentile method resulted in unusual peaks in the di-
ameter distributions in some instances.

Table 2.2 provides a summary of the stand characteristics included in the
final model for all modelling procedures; Dq is included in each modelling
procedure. Figure 2.3 provides a graphical representation of the functional
regression tree fit and predicted diameter distributions for the E. globulus data
(as the final fit results in 30 terminal nodes, which is unwieldy to display
graphically, only a subset of the splits are shown). In this display, splits that
reduce deviance the most are shown first, which in this case occurs for Dq at
both first and second–level splits.

Table 2.3 gives the goodness–of–fit statistics for the final model specifi-
cations of each method. The FRT method is the clear leader based on these
statistics, followed by the percentile method and parameter prediction method.
A graphical summary of a subset of the model fits from each model is shown
in Figure 2.4. Shown in this figure are the observed kernel density estimates
used in the model fitting, overlaid on histograms of the true observed diame-
ters. A good overlap is shown between the observed and predicted densities.
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Table 2.2: Stand characteristics chosen for the final model specifications for
the functional regression tree (FRT), parameter prediction (PP) and percentile
methods (PM). For the PP and PM methods, a checkmark indicates the char-
acteristic was present in at least one model component.

Characteristic Characteristic included in final model?
FRT PP PM

Field Experiment
√ √

N0
√ √

A
√ √

G
√ √

N
√ √ √

H
√ √ √

V
√ √

Dq
√ √ √

D.q>=17.98

D.q>=21.09

Trial=ace

D.q>=14.83

D.q< 17.98

D.q< 21.09

Trial=bd

D.q< 14.83

Figure 2.3: Graphical representation of the functional regression tree fit to the
E. globulus data. Only the first four splits are shown. A graphical representa-
tion of the predicted diameter distribution is shown at each node.
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Table 2.3: Goodness–of–fit statistics for the functional regression tree (FRT),
parameter prediction (PP) and percentile methods (PM). RMSE(y), RMSEl(y)
and RMSEu(y) represent the average discrepancy between the observed and
predicted diameter distributions on a probability scale; RMSE(V ) represents
the discrepancy between observed and predicted stand volumes (m3 ha-1).

Statistic FRT PP PM

RMSE(y) 0.0138 0.0324 0.0262
RMSE(V ) 24.8 58.0 29.8
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Figure 2.4: Comparison of observed and predicted diameter distributions
overlaid on diameter histograms for a range of plots.

Figure 2.5 shows the empirical cumulative distribution function (ECDF)
for the p–values of the dip statistic, along with a scatterplot of the sample
skew versus the theoretical Weibull distribution skew calculated from the
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parameter prediction method estimates. From the ECDF, approximately 35%

of the sample plots have a p–value of less than 0.1, indicating that for the
other 65% of the plots, there is only modest evidence for unimodality. For the
Weibull distribution to provide a suitable fit to the data, we would expect to
see that the sample skew and theoretical skew be approximately equal (that
is, falling along a 1:1 line) which is not the case.
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Figure 2.5: Graphical summaries of selected sample characteristics for the
E. globulus data: (a) Empirical cumulative distribution function of p–values
from the dip test for unimodality and (b) scatterplot of sample skew v. the-
oretical Weibull distribution skew calculated from parameter prediction esti-
mates.

The evidence contained in Figure 2.5 suggests bimodality and excess skew-
ness are features of the data. Figure 2.6 shows the observed and predicted di-
ameter distributions for three sample plots that display these characteristics.
The predicted diameter distributions from (4 out of 30) terminal nodes are
shown in Figure 2.7, along with the grand mean. The predictions result from
the following rules: 23.67 ≤ Dq < 25.46; 21.92 ≤ Dq < 23.67 and G ≥ 27.53;
21.09 ≤ Dq < 23.67 and G < 27.53; and 14.83 ≤ Dq < 16.53, H ≥ 19.95 and
the plot is in field experiment a, b or c.
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Figure 2.6: Example comparisons of model predictions for three plots that
display a range of skewness and bi–modality.
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Figure 2.7: Graphical representation of the predictions from (4 out of 30)
terminal nodes from the functional regression tree fitted to the E. globu-
lus data. The predictions result from the following rules: i) Grand mean;
ii) 23.67 ≤ Dq < 25.46; iii) 21.92 ≤ Dq < 23.67 and G ≥ 27.53; iv)
21.09 ≤ Dq < 23.67 and G < 27.53; and v) 14.83 ≤ Dq < 16.53, H ≥ 19.95
and the plot is in field experiment a, b or c
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2.3 Discussion

The results of the goodness–of–fit statistics presented in the previous sec-
tion indicate that parametric methods which make strong assumptions about
the form of the densities may not perform as well as non–parametric meth-
ods, such as the FRT and percentile methods considered in this paper. How-
ever, basing the choice of method on goodness–of–fit statistics (e.g. Table 2.3)
would prove misleading at best. The goodness–of–fit statistics are averages
over the whole data set, and thus smooth individual errors. Examination
of the predicted diameter distributions (Figure 2.6) shows that (in this case)
the percentile method resulted in some predicted diameter distributions with
unusually large peaks — something not seen in the observed distributions.
The FRT method, however, was not only the clear leader in goodness–of–fit,
but examination of the predicted densities shows that the model more closely
conforms to the observed densities than the other two methods considered.

An advantage of the FRT method is that the graphical display of the FRT
structure (Figure 2.3) can provide an indication of the importance of covari-
ates in determining the shape of diameter distributions. Table 2.2 shows that
quadratic mean diameter appeared in the final model for all methods, and is
likely to play a vital role in determining the shape of the diameter distribu-
tion. Traditional regression models provide an indication of how important a
covariate is to the response (e.g. p–values), however do not provide an indica-
tion of importance relative to other covariates. The graphical display of a FRT
structure shows the hierarchy of splits, from the root node (all observations)
to the terminal nodes (which give the predictions). Figure 2.3 indicates that
the quadratic mean diameter is highly important in determining the shape of
the diameter distribution. However, this display should be taken as an indi-
cation only; there are many interactions at play over the whole FRT structure.

The versatility of the FRT method for fitting a wide variety of diameter
distribution shapes is made clear by examining Figure 2.6. This figure com-
pares model predictions for diameter distributions that have skewness and
bi–modality present; Figures 2.6(a) and 2.6(c) show diameter distributions
where the minor modes are on opposite sides of the major modes in compar-
ison to each other. These quite diverse diameter distribution shapes would be
extremely difficult to capture with a single parametric family. A model which
fits a mixture of parametric families to each diameter distribution would be
likely to capture this diversity, however the analysis of such a model would
be extremely complex.
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The FRT method, in conjunction with resampling methods, has a number
of advantages over traditional regression methods for prediction. As dis-
cussed in Section 2.1, the choice of covariate on which to split is made at
each stage of the partitioning procedure, and so more complex models, that
account for all important factors, can be fitted. The advantage is that these
models are chosen ‘automatically’ by the procedure, where the choice is made
by maximising the objective function (2.2) at each split. This means that the
FRT method can fit a much broader class of models, as illustrated in Fig-
ure 2.3, where the density shown in the 2nd node from the left, results from
the prediction rule that the ith plot has 17.98 ≤ Dq(i) < 21.09 and belongs to
field experiment a, c, or e. Traditional regression models cannot provide this
level of complexity automatically. As we will investigate in Chapter 3, the
choice of dissimilarity (in Equation 2.3) for the FRT method can change the
results.

As discussed in Section 2.1.1, minimum node size may impact on the FRT.
In the case study presented in Section 2.2, we used the default minimum
node size as given by the implementation of the FRT in the R library mvpart
(De’ath, 2007); this minimum node size is set to 2. To check the effect of
changing the minimum node size, we also fitted the FRT with minimum node
sizes 5 and 10, and investigated the error of the FRT (as measured by the
RMSE, see Section 2.2). These results indicated that RMSE increased quite
dramatically when minimum node size increased, from 0.0138 as in Table 2.3
for the default minimum node size 2, to 0.0185 and 0.0235 for minimum node
sizes of 5 and 10 respectively. Given the focus of the method was to predict
the PDF, we felt no need to deviate from the default setting.

The choice of how complex a model should be in the FRT method is
then made through resampling techniques which minimise a predictive er-
ror function (e.g. Hastie et al., 2009, Chapter 7). This step is performed after
the initial function fit, and is thus relatively quick to compute. In compari-
son, in order to select the best subset from a suite of models in the traditional
regression approach, we need to repeat the resampling process for each sub-
model to be tested, which can be computationally demanding if there are
a large number of covariates. For the parameter prediction and percentile
methods, this process is made even more complex by the need to fit equa-
tions for each parameter (parameter prediction) or each percentile (percentile
method) simultaneously for each model.

A potential disadvantage with percentile methods is that any diameter
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outside the predicted minimum (maximum) diameter (for a stand) has prob-
ability 0 whereas the FRT method assigns a (small) probability to these diam-
eters. Whilst we could choose between the methods based on what assump-
tions we wish to place about the errors in the tails, the FRT method outper-
forms the percentile method on all goodness–of–fit statistics (Table 2.3).

Further refinement to the FRT may be possible by introducing a weight-
ing scheme that could account for features of interest within the diameter
distributions, depending on the context of the analysis, or even to adjust for
possible functional outliers. Expert analysis by a forest scientist could iden-
tify ‘abnormal’ PDFs visually, prior to fitting the model. Weights could then
be attached to relevant observations, depending on the final goal of the anal-
ysis, for example, giving a higher weight to those diameter distributions that
may result in optimal volume of harvested timber. A further possibility could
be the application of functional depth (e.g. Hyndman and Shang, 2010) to
downweight possible outliers prior to fitting the FRT.

The E. globulus data used to demonstrate the FRT method comprises single–
species stands which adds a layer of uniformity to the expected shape of the
distributions. When the data includes mixed species, it is more likely that
the size distributions of the samples are non–standard, often displaying both
excess skew and multimodality. We would expect that under these circum-
stances, the FRT approach should provide a superior fit compared with tra-
ditional techniques.



Chapter 3
Improving the functional
regression tree method

This chapter extends the work of Nerini and Ghattas (2007) by suggesting
an alternative criterion for fitting a functional regression tree model. The
original criterion of Nerini and Ghattas (2007) targeted node homogeneity,
that is, it minimised the deviance within each node of the regression tree.
The extension we detail in this chapter minimises the prediction error, and
as such, provides flexible predictions for functional responses conditional on
multivariate predictors. The extension of the work of Nerini and Ghattas
(2007) also results in more stable and precise fitting of a functional regression
tree model.

In the previous chapter we found that there was no discernible differ-
ence between using Kullback-Leibler divergence and Euclidean distance in
the definition of node deviance (Equation 2.3). In this chapter we explore
the Kullback-Leibler divergence form of the deviance in more detail and pro-
pose an adjustment to the Nerini and Ghattas (2007) procedure that performs
considerably better under both simulation conditions and in the analysis of
a case–study data set. An efficient parameterisation that leads to a computa-
tionally inexpensive bootstrap scheme for model selection is also discussed.
Features commonly found in subject–matter data such as: low sample size
and low observation numbers; correlation between covariates; nuisance co-
variates; and non–standard distributions are investigated through a compre-
hensive simulation study. This chapter is based on Lane and Robinson (2011).

33
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3.1 Review of the FRT method

We will begin this chapter with a brief review of the FRT method that was
introduced in Chapter 2. Recall that we have observations (Xi, Yi(·)), i =

1, . . . , N independent and identically distributed as (X,Y (·)), where X ∈ Rd
and Y (·) is a functional response variable, d ∈ D which we are assuming is a
probability density function. We seek to estimate the conditional expectation
E(Y |X) by recursively partitioning X , the space of all possible observations
of X .

As described in Section 2.1.2, Nerini and Ghattas (2007) proposed us-
ing Kullback-Leibler divergence in the calculation of node deviance. As de-
scribed previously, let aij be an appropriately defined dissimilarity measure
between two functions, aij = g(Yi(·), Yj(·)). When we use Kullback-Leibler
divergence as the function g, aij is as in Equation (2.4). The deviance of a
given node r is then written as

D1(r) =
∑
i∈N(r)

∑
j∈N(r)

aij (3.1)

and we seek the best split s∗ that satisfies the objective function

s∗ = argmax
s∈S

D(r)−D(r1)−D(r2) (3.2)

Given that one of our main objectives is the prediction of a new PDF con-
ditional on a set of covariates, it would make sense to use an objective func-
tion that corresponds to this goal. Accordingly, we suggest a modification
of the deviance for this purpose which explicitly includes deviation from the
mean curve within a node

D2(r) =
∑
i∈N(r)

[
KL(Yi, Ȳr) + KL(Ȳr, Yi)

]
. (3.3)

Here, Ȳr is the mean of the densities Yi in node r, and both KL terms are
needed because KL–divergence is asymmetric. Given Ȳr is also a density, the
two KL terms in Equation (3.3) still satisfy the properties of KL–divergence,
that is that KL(Yi, Yj) ≥ 0, with equality only if i = j. Note that Nerini
and Ghattas (2007) also use the symmetric version of KL in their deviance
definition.

Adoption of the deviance in Equation (3.3) seems to go against the usual



3.2. Computational details 35

restriction on the objective function (Equation 3.2), in that D2(r) is not neces-
sarily greater than or equal to D2(r1) +D2(r2) for all partitions r1 and r2 of r.
This restriction is generally placed on the objective function in order to ensure
that splits do not decrease homogeneity. However, we justify the relaxation
of this restriction by noting that the deviance D2(r) measures the predictive
capability of the FRT. In contrast, the deviance given by Nerini and Ghattas
(2007) measures homogeneity of a node. Thus in essence, the two deviances
are seeking a different goal. Given this (and the fact that we seek to maximise
the objective function 3.2), any split that results in D2(r) < D2(r1) + D2(r2)

will just be ignored as providing an inadequate prediction. Conceptually, this
results in a modified objective function:

s∗ = argmax
s∈S

D(r)−min{D(r1) +D(r2), D(r)}

which then satisfies the preceding restriction. The pruning of a tree does use
this restriction, however it also relies on a tree having already been grown.

There are generally two steps in the pruning process: the first is recov-
ering the smallest minimising subtree from the maximal tree, the second is
pruning the resulting smallest minimising subtree. In either case, a tree has
already been grown. Thus if D(r) < D(r1) + D(r2) (which, whilst not in-
cluded in our results, closer inspection of the model fits using D2(r) in our
simulations showed that D2(r) > D2(r1) + D2(r2)) the split was not consid-
ered during the growing stage, resulting in all terminal nodes r1, r2 satisfying
the condition D(r) ≥ D(r1) +D(r2). Hence, finding the smallest minimising
subtree and further, pruning this subtree under the proposed deviance D2, is
accomplished in the usual way.

3.2 Computational details

Recursive partitioning is an exhaustive search method, that is, it looks at all
possible solutions in order to pick the best one. The computational demands
of the procedure, however, can be minimised by noting that the objective
function Equation (3.2) with deviance D2(r) (or indeed, D1(r)), is solely a
function of divergences between observations. Setting A to be a dissimilar-
ity matrix with entries aij = KL(Yi, Yj), each divergence can be calculated
before the partitioning procedure is run. Thus, the value of the objective
function at any split s requires only the summation of the appropriate en-
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tries from A. This is of course true for any deviance D that can be written as
the sum of dissimilarities, as in Equation (3.1). Deviances that have this prop-
erty include Euclidean distance, D1(r), and as we show below, D2(r); in fact,
D2(r) = D1(r)/nr (Result 1). Without the relationship between D1(r) and
D2(r), the value of the objective function (3.2) for any split s using deviance
D2(r) would need to be recalculated at each iteration.

Estimating the KL–divergence between two nonparametric PDFs is a much
more computationally demanding task than, for example, Euclidean distance,
so without making use of a global dissimilarity matrix A, the cost of calcula-
tion within the procedure itself can be prohibitive. For example, we show in
Section 3.2.2 that calculating KL–divergence within the recursive partitioning
procedure results inO(pN3) calculations (where p is the number of covariates
in the model), compared to O(N2) when calculated outside the procedure.
These computational savings are even more important when resampling is
used to estimate the tree–size penalty.

3.2.1 A Kullback–Leibler divergence relation

Consider the deviance definition (3.3), for a node r with mean density ȳr.
Then the following result holds

Result 1.∑
i∈N(r)

[KL(yi, ȳr) + KL(ȳr, yi)] =
1

nr

∑
i∈N(r)

∑
j∈N(r)

KL(yi, yj)

Proof of Result 1. Recognise that

KL(yi, ȳr) =

∫
yi(t) log

(
yi(t)

ȳr(t)

)
dt

= −
∫
yi(t) log

(
ȳr(t)

yi(t)

)
dt

then letting nr = |N(r)| be the number of observations in node r, and drop-
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ping the reference to the integration variable t for simplicity,

D2(r) =
∑
i∈N(r)

KL(yi, ȳr) + KL(ȳr, yi)

=
∑
i∈N(r)

{
−
∫
yi log

(
ȳr
yi

)
+

∫
ȳr log

(
ȳr
yi

)}

=
∑
i∈N(r)

−
∫
yi log

(
ȳr
yi

)
+

1

nr

∫ ∑
j∈N(r)

yj log

(
ȳr
yi

)
=
∑
i∈N(r)

−
∫
yi log

(
ȳr
yi

)
+

1

nr

∫
yi log

(
ȳr
yi

)
+

1

nr

∫ ∑
j∈N(r)\i

yj log

(
ȳr
yi

)
=

1

nr

∑
i∈N(r)

 ∑
j∈N(r)\i

∫
yj log

(
ȳr
yi

)
− (nr − 1)

∫
yi log

(
ȳr
yi

)
=

1

nr

∑
i∈N(r)

 ∑
j∈N(r)\i

∫
yi log

(
ȳr
yj

)
− (nr − 1)

∫
yi log

(
ȳr
yi

)
now noting that

∑
i∈N(r)

∑
j∈N(r)\i

∫
yi log

(
ȳr
yj

)
has (nr − 1) terms equal to∫

yi log
(
ȳr
yj

)
for j 6= i,

D2(r) =
1

nr

∑
i∈N(r)

 ∑
j∈N(r)\i

∫
yi log

(
ȳr
yj

)
− (nr − 1)

∫
yi log

(
ȳr
yi

)
=

1

nr

∑
i∈N(r)

 ∑
j∈N(r)\i

[∫
yi log

(
ȳr
yj

)
−
∫
yi log

(
ȳr
yi

)]
=

1

nr

∑
i∈N(r)

 ∑
j∈N(r)\i

∫
yi log

(
yi
yj

)
=

1

nr

∑
i∈N(r)

∑
j∈N(r)

KL(yi, yj)

=
1

nr
D1(r)
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3.2.2 Computational complexity

We now demonstrate the efficiency gains made by calculating KL(yi, yj) prior
to the recursive partitioning procedure compared with calculation within the
procedure. This result applies in general to any deviance which can be writ-
ten as a sum of dissimilarities between observations. With this in mind, it
is easy to see that in terms of dissimilarity calculations, with a total of M
observations there are (M − 1) operations for each observation, resulting in
M(M − 1) = O(M2) operations in total.

Consider now the case where the deviance D in the objective function
(3.2) needs to be calculated within the recursive partitioning procedure itself.
We discussed in Section 3.1 that while growing the tree, growth continues
until all nodes contain at least a minimum number of observations Nmin, and
any further split will result in nodes with less than Nmin observations. For
example, consider a node S with ns observations and a continuous split vari-
able X1 as shown in Figure 3.1. Then there are ns − 2Nmin + 1 possible splits
cj , such that x1 < cj and x1 ≥ cj , j = (Nmin + 1), . . . , (ns − Nmin + 1) where
cj is the jth order statistic x(j). Then letting nl be the number of observations
sent to the left child node L, (x1 < cj), and similarly nr the number of obser-
vations sent to the right child node R (where nl + nr = ns), the number of
deviance calculations in each node will be 2nl and 2nr respectively for nodes
L and R, giving 2(nl + nr) = 2ns calculations for the split cj . Thus for each
possible split cj there will be 2ns(ns − 2Nmin + 1) = O(n2

s) operations.

To derive the minimal number of operations needed, note that for any
node with Nmin ≤ ns < 2Nmin, that node will not be able to be split any
further as all possible splits will result in at least one child node with less
than Nmin observations. The minimally split tree is then the tree with splits
chosen such that 2Nmin − 1 observations are always sent to either the left (or
right) child node, as shown in Figure 3.2 until no further splits can be made.

Given that at each split we send 2Nmin−1 to either the left (or right) child24 Biometrics, 000 0000

S
nl

������� nr

�������

L R

Figure 2. Splitting a node S into nodes L and R. nl observations are sent to the left node
L whilst nr observations are sent to the right node R.

Figure 3.1: Splitting a node S into nodes L and R. nl observations are sent to
the left node L whilst nr observations are sent to the right node R.
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Figure 3. An example of a minimally split tree. At each step of the recursive partitioning
procedure, 2Nmin − 1 observations are sent to the left node.

Figure 3.2: An example of a minimally split tree. At each step of the recursive
partitioning procedure, 2Nmin − 1 observations are sent to the left node.

node, the minimum number of splits Kmin can be found as

Kmin = min
K

M −K(2Nmin − 1)

s.t. M −K(2Nmin − 1) > 0

⇒ K(2Nmin − 1) < M

K <
M

2Nmin − 1

⇒ Kmin = bKc

The minimum number of deviance calculations then required is

Kmin−1∑
k=0

2 · (M − k(2Nmin − 1)) · (M − (k + 1)(2Nmin − 1))

≈ 2

3

M(−4N2
min + 4Nmin +M2 − 1)

2Nmin − 1

with equality when Kmin = bKc = K. To derive the maximum number of
splits,Kmax, note that the maximal tree is the tree with splits chosen such that
Nmin observations are always sent to either the left (or right) child node, until
no further splits can be made. Given this, the maximum number of splits
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Kmax can be found as

Kmax = min
K

M − (K + 1)Nmin

s.t. M − (K + 1)Nmin > 0

⇒ (K + 1)Nmin < M

K <
M

Nmin
− 1

⇒ Kmax = bKc

The maximum number of deviance calculations then required is

Kmax−1∑
k=0

2 · (M − kNmin) · (M − (k + 1)Nmin)

≈ 2

3

M((Nmin ·M)2 − 3M2Nmin + 3M2 −N4
min + 2N3

min −N2
min)

(Nmin − 1)3

with equality when Kmax = bKc = K.

The above calculations are based on a single continuous split variable X1.
For p continuous variables, the number of KL–divergence calculations in-
creases toO(pM3), which does not represent a substantial penalty for p�M ,
however by calculating a ‘global’ dissimilarity matrixA (as described earlier),
the number of KL–divergence calculations does not change with including
extra variables.

3.2.3 Functional standard errors

Nerini and Ghattas (2007) used 20–fold cross–validation (Appendix B.1.1) to
estimate the optimally sized tree. Results in Merler and Furlanello (1997)
and our own experience indicated that cross–validation proved to be unsuit-
ably variable when used to estimate the tree–size penalty. We opted for the
0.632+ bootstrap (Efron and Tibshirani, 1997, see Appendix B.1.2 for details)
for which the reduction in variation of our fit statistics (Section 3.3) was quite
significant when compared with cross–validation. Table B.1 in Appendix B.2
provides a detailed comparison of the standard deviation of the number of
terminal nodes (for one of the models to be introduced in Section 3.3) when
using cross–validation and bootstrap 0.632+.

As a by–product of the bootstrap procedure that we used to estimate the
tree–size penalty, a point–wise estimate of the standard error curve for a pre-
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diction of the PDF can be made. Let this penalty estimate be α̂; we apply the
estimated penalty to each of the FRT models fit to the b = 1, . . . , B resamples,
resulting in a prediction model for each b: P̂α̂,b. Letting Ŷi,b be the predicted
PDF for the ith plot using model P̂α̂,b, the standard error can be estimated for
Ŷi by taking the point–wise standard errors of the B (resampled) predicted
PDFs, Ŷi,b.

3.3 Numerical results

3.3.1 Simulation study

We now describe a simulation study performed to compare the deviances
D1(r), D2(r) (Equations 3.1 and 3.3) with Euclidean distance, D3(r):

D3(r) =
∑
i∈N(r)

||Yi − Ȳr||2

where Ȳr = n−1
r

∑
i∈N(r)

Yi.

We expand on the previous work of Nerini and Ghattas (2007) to cover a
range of scenarios that may be experienced in practice. In their simulation,
Nerini and Ghattas (2007) draw PDF observations from one of four possible
distributions. The models in the simulations that we perform assume a spe-
cific functional form, however the parameters of these functions are allowed
to vary. This is very often the assumption made in practice; for example, the
parameter prediction method (e.g. Robinson, 2004; Vanclay, 1994) assumes an
underlying population distribution and attempts to estimate sample–specific
parameters for each observation.

Recall the setup of the response diameter PDFs in the previous chapter
(Section 2.2.1). Let ni be the number of measurements per observed sam-
ple stand. Then for a model G, generate ni independent and identically dis-
tributed samples, denoted Dij , j = 1, . . . , ni, from the distribution fG(·|xi). A
single observation is then given as (Yi,Xi), where Yi = Yi(d) is the nonpara-
metric kernel density estimate

Yi(d) = (nihi)
−1

ni∑
j=1

K

(
d−Dij

hi

)
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For a given ni (the number of samples per observation) and M (the num-
ber of observations), the simulation proceeds as described in Table 3.1. For
each model, the number of simulations was 100, and each simulation was run
for all combinations of observations and samples per observation:

M ∈ {50, 200}
ni ∈ {15, 25, 50, 75, 100, 150, 200, 250, 500, 1000}

Table 3.1: Description of simulation procedure.

1. Generate M observations (Yi,Xi) from model G,

2. Fit the FRT model to the observations using each version of deviance:
D1(r), D2(r) and D3(r),

3. Generate a further 100 observations (independent of the first M obser-
vations) to be used as a test set,

4. Using the FRT fit from step 2, predict Ŷt for each Xt in the test set

5. Calculate average Kullback–Leibler divergence (KLa) between the ob-
served and predicted densities from the training and testing data sets,
along with KLa between the actual and predicted densities from the test-
ing set

KLa =
1

M

M∑
t=1

[
KL(Yt, Ŷt) + KL(Ŷt, Yt)

]

The models G used in the simulations have been chosen so that they cover
a range of conditions that may be seen in practice such as: correlation be-
tween the covariates X, nuisance variables, and non–linear relationships in
the data generating process. Model 1 is the model that was investigated by
Nerini and Ghattas (2007), and Model 2 extends Model 1 with extra distri-
bution possibilities. Models 3 and 4 include four noise variables, with the
distribution parameters of Model 4 resulting from a non–linear regression;
correlation also exists between the variables. Figure B.1 displays the theoret-
ical distributions possible in Models 1 and 2. The models are described in
detail in Table 3.2.
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Table 3.2: Description of theoretical models used in simulations.

Model 1, Four terminal nodes This is the model that was investigated in
Nerini and Ghattas (2007). Covariates X1, . . . , X4 are drawn from
the U(−1, 1) distribution. Samples for each observation are drawn
from N(0, 1) if X1, X2 ≥ 0.5; N(0, 1.5) if X1 < 0.5 and X2 ≥ 0.5;
(2/5)N(1, 0.5) + (3/5)N(−1, 0.5) if X1 ≥ 0.5 and X2 < 0.5; and
(3/5)N(1, 0.5) + (2/5)N(−1, 0.5) if X1, X2 < 0.5.

Model 2, Nine terminal nodes Covariates X1, . . . , X4 are drawn from the
U(−1, 1) distribution. Samples for each observation are drawn from
Gam(3, 2) if X1, X2 ≤ 0.5 (where Gam(a, b) is the Gamma distribu-
tion with shape a and scale b; χ2

3 if −0.5 < X1 ≤ 0.5 and X2 ≤ −0.5
(where χ2

d is the Chi–squared distribution with d degrees of freedom);
Gam(4, 3) if X1 > 0.5 and X2 ≤ −0.5; χ2

4 if X1 ≤ −0.5 and −0.5 <
X2 ≤ 0.5; Weib(4, 8) if −0.5 < X1, X2 ≤ 0.5 (where Weib(a, b) is the
Weibull distribution with shape a and scale b); Weib(1.5, 3) if X1 > 0.5
and −0.5 < X2 ≤ 0.5; (1/5)Gam(4, 3) + (4/5)Gam(3, 2) if X1 ≤ −0.5
and X2 > 0.5; Weib(1.5, 4.5) if −0.5 < X1 ≤ 0.5 and X2 > 0.5; and
Gam(4, 4/3) if X1, X2 > 0.5.

Model 3, Weibull mixture regression model Covariates X1, . . . , X7

are drawn from the multivariate normal distribution with
Cor(Xi, Xj) = 0.5 for i 6= j and marginal distributions: X1 ∼ N(60, 10);
X2 ∼ N(1.5, 0.25); X3, X4 ∼ N(0, 0.5); X5 ∼ N(125, 10);
and X6, X7 ∼ N(0, 1). 75% of the samples are drawn from
f3,a(·|X) ∼ Weib(α1, β1) and 25% of the samples are drawn from
f3,b(·|X) ∼ 0.25Weib(α1, β2) + 0.75Weib(α2, β3). α1 = 2 + 0.5X2 + ε1;
α2 = 4 − 0.5X2 + ε1; β1 = 3X1 + 10X2 + ε2; β2 = 1.5X1 + 5X2 + ε3;
β3 = 3X1 + 0.5X5 + ε2. ε1 ∼ U(0, 1); ε2 ∼ N(0, 10); ε3 ∼ N(0, 5).

Model 4, Weibull mixture (nonlinear) regression model Covariates
X1, . . . , X7 are drawn from the multivariate normal distribu-
tion with Cor(Xi, Xj) = 0.5 for i 6= j and marginal distribu-
tions: X1 ∼ N(60, 10); X2 ∼ N(1.5, 0.25); X3, X4 ∼ N(0, 0.5);
X5 ∼ N(125, 10); and X6, X7 ∼ N(0, 1). 75% of the samples
are drawn from f4,a(·|X) ∼ Weib(α1, β1) and 25% of the samples
are drawn from f4,b(·|X) ∼ 0.25Weib(α1, β2) + 0.75Weib(α2, β3).
α1 = 2 + 0.5X2I(X2 < 1.65) − 0.25X2I(X2 ≥ 1.65) + ε1;
α2 = 4 − 0.5X2 + ε1; β1 = 3X1 + 10X2 + ε2; β2 = 1.5X1 + 5X2 + ε3;
β3 = 3X1 + 0.5X5 + ε2. ε1 ∼ U(0, 1); ε2 ∼ N(0, 10); ε3 ∼ N(0, 5).
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Average Kullback–Leibler divergence (KLa) was calculated for each run
of the simulation. We have chosen to compare KLa between the observed and
predicted densities using the training data in order to gauge if any overfitting
was occurring; comparing KLa between observed and predicted densities in
the testing data set provides an indication of how well the method under each
deviance extrapolates to independent data; and comparing KLa between the
actual and predicted densities in the testing set gives a measure of how close
the method under each deviance is to the ‘truth’.

Models 1 and 2 differ from the others in that we know how many terminal
nodes each fitted FRT should have: four for Model 1, and nine for Model 2.
We therefore measure the variability of the effect of each deviance by the root
mean squared error (RMSE) of the number of terminal nodes

RMSE =
[
(R− R̄d)2 + Var(Rd)

]1/2
whereR is the actual number of terminal nodes, andRd is a vector containing
the observed number of terminal nodes for deviance d = 1, 2, 3 in each run
of the simulation. Given that we know the number of terminal nodes for
Models 1 and 2, the RMSE is an important statistic for these simulations.
Whilst KLa provides us with an idea of the predictive power of the methods,
the RMSE provides us with an idea of how well the methods estimate the
known structure of Models 1 and 2.

3.3.2 Results

The adoption of devianceD2(r) (Equation 3.3) led to smaller mean (sd) KLa in
almost all simulation models in all KLa metrics (Table 3.1). Briefly, estimators
that were derived fromD2(r) out-performed the estimators that were derived
from other measures, in those circumstances in which a clear preference was
discernible.

We found no differences between the observed and predicted densities
for either training data and testing data for Model 1 (Figure 3.3(a)). How-
ever, with an increase in the number of possible distributions from which
an observation could be generated (Model 2), a clear difference can be seen
when the number of observations is low (M = 50, Figure 3.3(b)) and a less
discernible difference when M = 200. Increasing the complexity of the un-
derlying model (from Model 1 to Model 2) has a large effect on KLa between
the actual and predicted densities, with deviance D2(r) performing the best
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(Figure 3.4).
Table 3.3 provides a comparison of the RMSE for Models 1 and 2, where

M = 200. As described previously, Model 1 should have four terminal nodes,
and Model 2, nine. Deviance D2(r) generally outperforms the others in this
regard.

Table 3.3: Comparison of root mean squared error of the number of terminal
nodes for Models 1 and 2 using deviances D1(r), D2(r) and D3(r); M = 200.
ni is the number of samples generated per observation.

Model 1 Model 2
ni D1(r) D2(r) D3(r) D1(r) D2(r) D3(r)

15 1.40 2.06 1.61 7.35 1.10 1.37
25 2.84 1.05 0.83 8.02 1.11 1.13
50 3.81 0.58 0.63 8.45 1.52 2.08
75 4.09 0.39 0.56 9.06 1.47 2.32
100 4.63 0.14 0.36 8.80 1.82 2.56
150 6.17 0.00 0.10 9.51 1.82 2.72
200 6.99 0.00 0.10 9.29 1.71 2.54
250 6.71 0.00 0.00 11.46 2.24 2.91
500 5.87 0.00 0.00 11.45 2.00 3.56
1000 5.04 0.00 0.00 12.95 2.52 3.33

Allowing the parameters of the underlying distribution to vary via a re-
gression process (Models 3 and 4) has little impact on KLa between the ob-
served and predicted densities (Figure 3.5). The effect of a non–linear gen-
erating process (Model 4) however, has an impact on KLa between the ac-
tual and predicted densities, especially for low numbers of observations (Fig-
ure 3.6). As was observed in Table 3.3 for Models 1 and 2, deviance D2(r)

appears to result in much more stable fitting of the FRT for Models 3 and 4,
as evidenced by the low (and consistent) standard deviation of the number
of terminal nodes (Figure 3.7).
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Figure 3.3: Mean KLa between the observed and predicted densities for the
training and testing data; Models 1 and 2.
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Figure 3.4: Mean KLa between the actual and predicted densities for the test-
ing data; Models 1 and 2.
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Figure 3.5: Mean KLa between the observed and predicted densities for the
training and testing data; Models 3 and 4.
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Figure 3.6: Mean KLa between the actual and predicted densities for the test-
ing data; Models 3 and 4.
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Figure 3.7: Standard deviation of the number of terminal nodes from Mod-
els 3 and 4; M = 200.
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3.3.3 Case study

We applied the FRT method with each deviance to predict tree diameter dis-
tributions. The data for this example come from the Intermountain Forest
Tree Nutrition Cooperative (IFTNC) and are described in detail in Robinson
(2004). Briefly, the data comprise tree diameter measurements (d, over bark
at 1.3 m height) on stands of Douglas–fir (P. menziesii) in plots in single–aged
stands in six regions in north–western USA. Stand basal area (G, m2 ha−1),
density (SPH, stems ha−1), height (H, m) and volume (V, m3 ha−1) were calcu-
lated from the tree–level data. Plot–level characteristics that were measured
included soil nutrient levels for carbon, phosphorus, total nitrogen, and min-
eralised nitrogen; habitat class, soil type, and lithology were identified for
each plot. 60 sample plots (10 from each region) were set aside (at random)
to provide a test data set. Table 3.4 provides a descriptive summary of some
key variables in the training data set, along with a comparison of the same
variables in the testing set.

Table 3.4: Summary statistics for P. menziesii stand characteristics. The train-
ing data are based on 480 plots from 6 regions in north–western USA; the
testing data are based on 60 plots from the same regions.

Training data Testing data
Characteristic min mean max sd min mean max sd

G (m2 ha−1) 7.26 32.65 76.98 10.45 12.71 32.49 65.83 11.61
SPH (stems ha−1) 210 662 2002 310 222 708 1705 329
V (m3 ha−1) 28.18 262.70 753.00 117.75 60.16 254.30 580.80 116.70
H (m) 3.88 7.80 12.29 1.35 4.73 7.59 10.71 1.34

Each deviance was used to fit an FRT model to the IFTNC training data,
with the fitted models then used to validate the testing data. Deviance D2(r)

performed well in this example (Table 3.5), yet this was not decisive. De-
viance D3(r) performed the best on the training data set, however when val-
idated on the testing data, did not perform as well as deviance D2(r), sug-
gesting overfitting had occurred.

We described in Section 3.2.3 a method for estimating standard error curves
for predicted distributions. Figure 3.8 shows the predicted and observed di-
ameter distribution for a sample plot from the testing data set, along with an
estimate of the ±1 standard error bounds of the PDF under each deviance.
This figure confirms the results presented in Table 3.5, that deviance D1(r) is
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Table 3.5: Comparison of KLa between the training and testing data for P.
menziesii using deviances D1(r), D2(r) and D3(r).

Training data Testing data
D1(r) D2(r) D3(r) D1(r) D2(r) D3(r)

0.3316 0.3272 0.2798 0.4680 0.4128 0.4351

outperformed by deviances D2(r) and D3(r). The error bounds for D1(r) are
seen to be quite tight, however they fail to include a large proportion of the
actual density. To compare the order in which variables are split under each
deviance, the fitted FRT structure was produced (Figure 3.9). This showed
that under each deviance, height (H) is split first, at close to the same point in
each: 7.693, 7.599, and 8.216 m for each deviance respectively. Compare this
with the mean height H̄ = 7.80, and range H ∈ (3.88, 12.29) m; we see that
these split points partition the data into approximately equal cohorts of small
and large trees. However, it is to be noted that further splits occur on dif-
ferent variables, so that the interpretation of the fitted FRT structure is vastly
different under each deviance.



3.3. Numerical results 53

10 20 30 40 50 60

0.
00

0.
02

0.
04

0.
06

0.
08

Diameter (mm)

D
en

si
ty

Prediction
Prediction ± 1s.e.
Observed

(a) D1(r)

10 20 30 40 50 60

0.
00

0.
02

0.
04

0.
06

0.
08

Diameter (mm)

D
en

si
ty

(b) D2(r)

10 20 30 40 50 60

0.
00

0.
02

0.
04

0.
06

0.
08

Diameter (mm)

D
en

si
ty

(c) D3(r)
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Figure 3.9: Graphical representation of the FRT for each deviance. Only the
first three splits are shown.
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3.4 Discussion

Restricting the underlying distribution of an FRT model to come from one
of only four possible distributions has a large effect on the goodness–of–fit
of the model. Model 1 generated data from four possible distributions, and
the resulting mean KLa between the observed and predicted densities (Fig-
ure 3.3(a)) and actual and predicted densities (Figure 3.4(a)) shows virtually
no difference between the three deviances tested. However, increasing the
possible distributions to nine (Model 2) has a large effect on the goodness–
of–fit of the model. For a low number of observations (M = 50), deviance
D2(r) is clearly the best performer, having a much smaller mean KLa be-
tween both observed and predicted densities (Figure 3.3(b)) and actual and
predicted densities (Figure 3.4(b)). For M = 200, the results are much closer
for each deviance between observed and predicted densities, however D2(r)

still outperforms the other two deviances when looking at the actual and pre-
dicted densities.

Letting the underlying distribution vary in its parameters (i.e. Models 3
and 4) did not produce as stark a contrast between the deviances as the fixed
distributions (Model 1 and 2) when looking at the mean KLa between ob-
served and predicted densities: there is no way to pick a clear winner from
these statistics. Figure 3.6(a) shows that deviance D2(r) performs well for
M = 50 observations, yet there is virtually no difference for M = 200 ob-
servations. The non–linear parameter generating process within Model 4,
however has a considerable effect. The gap between deviances is very clear
for low numbers of observations (M = 50) with deviance D2(r) clearly the
best, and whilst for a larger number of observations (M = 200) the results are
closer, D2(r) still performs better than the other two deviances.

The good performance of D2(r) in these simulations is reinforced by the
results given Table 3.3 and Figure 3.7. Table 3.3 shows that for Models 1 and
2, deviance D2(r) generally has the lowest RMSE, suggesting that it is not
only better able to distinguish between the observed densities, but the size
of the resulting FRT model is closest to the expected size (4 terminal nodes
for Model 1; 9 terminal nodes for Model 2). The variation in the number of
terminal nodes for the other models showed the same patterns.

A bonus of using resampling schemes to estimate the tree–size penalty
(B.1), is that we can estimate (point–wise) standard errors for the predicted
distributions from a FRT model (Section 3.2.3). Figure 3.8 displays this for
one sample plot from the testing data set. Whilst deviance D1(r) has quite
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tight error limits, these fail to include a fair proportion of the actual density.
Deviances D2(r) and D3(r) do a much better job with most (if not all) the
actual distribution lying within the error bounds.

The standard error bands that we have calculated in this paper have been
calculated in a point–wise fashion, which does not take fully into account
the functional nature of the predicted distributions, however we believe that
they are sufficient for providing information about the predictive error of the
FRT model. Nerini and Ghattas (2007) use functional principal components
analysis (FPCA) on the observed values that make up each node in the FRT
to display information on the variation within a node. As mentioned in Sec-
tion 3.1, the deviance used by Nerini and Ghattas (2007) was focussed on
homogeneity, thus the FPCA is only focussed on variation between observed
curves. The standard error bands that we have calculated are based on boot-
strap resamples, thus they provide an indication of predictive variation for
an out–of–sample observation. We are not suggesting that either display of
variation is preferred, rather that they complement each other.

An advantage of the FRT model over other more commonly used meth-
ods for modelling diameter distributions is that the graphical display of a FRT
structure shows the hierarchy of splits, from the root node (all observations)
to the terminal nodes (which give the predictions), providing at least an in-
dication of variable importance. We found that the mean height (H) of trees
on a plot is highly important in determining the shape of the diameter distri-
bution, with each deviance splitting at almost the same level. Density (SPH),
and volume (V) also appear in the FRT models, however differences are ob-
vious at the lower level splits. This sort of variable importance is not readily
available in the methods that are mostly used, however it must be taken as
an indication only; there are many interactions at play over the whole FRT
structure.

We investigated calculation of the curves within the recursive partitioning
algorithm itself, i.e. calculating the predicted value for the node based on
all individual observations in that node (as opposed to averaging observed
curves), however this had no discernible effect on the structure of the FRT
and increased computation time immensely, so was not investigated further.

The deviance used in the objective function (Equation (3.2)), could pos-
sibly be refined even further to promote qualities of the function that would
be desirable in practice. As was discussed in Section 2.3, weighting could be
applied prior to the fitting of the FRT, so that ‘aberrant’ observations would
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have less impact on the results of the final FRT model. For the case study
presented here, forest researchers could graphically inspect the observations,
and those that didn’t conform with prior expectations could be penalised
when the dissimilarity matrix A (Section 3.2) is calculated. A procedure such
as this could become problematic however, as with a large number of obser-
vations all pairwise dissimilarities aij would need to be adjusted. A possi-
bility similar to the bagging approach discussed above, would be to combine
the results from FRT models that were fit using a variety of deviances. Such
an ensemble would then effectively ‘smooth out’ the effect of the choice of
deviance. This would remove problems associated with the pairwise adjust-
ments discussed previously, however would come with a computational cost.

In summary, the adjusted deviance that we have proposed (D2(r), Equa-
tion 3.3) provides an improvement over that suggested by Nerini and Ghattas
(2007) which we demonstrated using simulated data that covered a wide ar-
ray of situations that are commonly found in practice. The simulation results
were also confirmed when we applied each deviance to an example data set.
Nerini and Ghattas (2007) used functional PCA to identify variation around
the predicted distribution in each node; we have highlighted estimated stan-
dard error curves as an alternative to FPCA, that result from the fitting pro-
cedure itself, so that no extra work is needed beyond the model fitting proce-
dure.



Chapter 4
Longitudinal Functional Linear
Modelling

We turn now to including a longitudinal aspect into the modelling of the
diameter probability density functions (PDFs). This chapter extends the work
of Yao et al. (2005b) to the case where the longitudinal response is now a
series of functions. The method allows the prediction of functions at any time
through nonparametric modelling of a sequence of covariance functions. To
the best of our knowledge, this is the first time such a model has appeared
in the literature to date. We will apply this model to the full longitudinally
observed E. globulus data. This provides us with the means to predict the
evolution of the diameter PDF in stands that have not had diameters directly
measured, but have functional covariate information available. Comparing
the results of this new approach to a more traditional approach, we find that
the prediction error is reduced after allowing for the functional nature of the
data.

In deriving the model introduced in this chapter, we will make use of
basis decomposition techniques for sparse functional data (e.g. Yao et al.,
2005a,b) along with nonparametric estimation of functional responses (Car-
dot, 2007). The combination of these methods will allow us to model what
are basically short range time series of functions, conditional on longitudi-
nally observed covariates.

Figure 4.1 provides an example of a typical set of tree diameter measure-
ments within two sample stands from the E. globulus data introduced pre-
viously. In each of these stands, five sets of measurements have been taken
over approximately ten years. Displayed in the figure are the individual tree

58



59

0 2 4 6 8 10 12

0
10

0
20

0
30

0
40

0

Age (yrs)

D
ia

m
et

er
 (

m
m

)

●●

●

●
●●
●
●

●

●

●

●
●●●

●

●
●

●

●
●●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●●●●
●
●●●●

●●

●

●
●
●

●●

●
●

●
●●
●

●

●

●

●
●

●
●●●

●

●●

●●

●

●
●●
●

●

●

●
●
●

●

●
●
●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

Figure 4.1: Tree diameter measurements in two stands, over time. Kernel
density estimates (scaled) are overlaid, showing the change in shape and lo-
cation over time.

diameters at each measurement age (y–axis) and the age at measurement (x–
axis). Overlaid on the figure are kernel density estimates (which have been
scaled to fit into the figure, yet retain their individual characteristics) of the
diameter probability density functions at each measurement age. We can see
that one stand (solid lines/dots) shows changes in spread and location over
time, whilst the other (dashed lines/diamonds) also shows clear changes in
shape. Predicting this behaviour over time is the focus of this chapter.

The stand attributes that are used in forest growth models are essentially
growth curves within each stand, and thus have some unknown correlation
structure. Models to predict the diameter PDF from covariate information
will need to account for this correlation in the model. A common approach
to dealing with this issue in the forestry literature is to first model the stand
attribute using algebraic difference equations (ADE) (e.g. Wang and Baker,
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2007; Clutter et al., 1983). These model a stand attribute at a fixed time, con-
ditional on its value at a previous time, e.g. X2 = f(X1, T1, T2) for stand
attribute X measured at times T1 and T2. The function f is generally a para-
metric equation whose form is defined by expert opinion. As an example
of the functional nature of these attributes, Figure 4.2 shows the evolution
of basal area per hectare for each sample stand in the E. globulus data. The
method we introduce in Section 4.1 will take into account the functional na-
ture of such data in a nonparametric fashion, leading to an extremely flexible
modelling approach.

We call such a model as that just described a longitudinal functional linear
model (LFLM). This flexible approach will allow us to not only account for
longitudinal variation in the diameter densities, but will also allow us to fully
utilise the longitudinal information contained in the stand attribute, without
requiring a specific parametric form to be assumed.

4.1 Longitudinal functional linear model

4.1.1 Basis representation of the regression model

Let (Xi, Yi), i = 1, . . . , n denote the underlying (unobserved) sample pairs
of square integrable functions Xi and surfaces Yi. These pairs are realisa-
tions of smooth random functions X(t) and surfaces Y (d, t), with means
E [X(t)] = η(t) and E [Y (d, t)] = µ(d, t), where the arguments d and t are in
some closed intervalsD and T . With t referencing time on the closed interval
T , the longitudinal functional linear model for the conditional expectation of
Y is then

E [Y (d, t)|X] = α(d, t) +

∫
T
β(d, s, t)X(s) ds (4.1)

where the regression function β(d, s, t) is a smooth, square integrable func-
tion for fixed s, t. After centering X by η, and with E [Y (d, t)] = µ(d, t) =

α(d, t) +
∫
T β(d, s, t)η(s) ds (Yao et al., 2005b), Equation (4.1) becomes

E [Y (d, t)|X] = µ(d, t) +

∫
T
β(d, s, t) [X(s)− η(s)] ds (4.2)

Complicating the analysis is the problem that (Xi, Yi) are not observable
in the entirety; that is, we have sparse observations of the processes at times
Tij , j = 1, . . . , Ni. From here on, we assume that the observation times Tij
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are themselves iid random variables T , on the closed interval T . Thus, for
a fixed time Tij , observations are of the form (Xi(Tij), Yi(d, Tij)). Keeping in
line with the motivating example of predicting tree diameter density func-
tions, we assume from here on, that for any time T , Y (d, T ) is a probabil-
ity density function. That is, Y (d, T ) ≥ 0, ∀d ∈ D, and

∫
D Y (d, T ) dd = 1.

Further, assume that conditional on T = t, Y (d, t) is square integrable and
E(||Y (d, T )||2|T = t) < ∞, and that E [Y (d, T )|T = t] = µ(d, t) is itself a
probability density function. We can define the conditional covariance oper-
ator (Cardot, 2007), Γt as

ΓtY (d, t) =

∫
D
γ(t, e, d)Y (e, t) de (4.3)

where (d, e) ∈ D ×D and γ(t, e, d) = Cov [Y (d, T ), Y (e, T )|T = t].

Now denote by (λk(t), φk(d, t)) the kth eigenvalue/eigenfunction pair of
the conditional covariance operator Γt, where λ1(t) ≥ λ2(t) ≥ · · · ≥ 0 and the
eigenfunctions are orthonormal (Cardot, 2007), then the conditional covari-
ance function can be written as

γ(t, e, d) =
∞∑
k=1

λk(t)φk(e, t)φk(d, t). (4.4)

Then denoting the random principal coefficient functions by

bk(t) =

∫
D

[Y (d, t)− µ(d, t)]φk(d, t)

Y can be written as

Y (d, t) = µ(d, t) +

∞∑
k=1

bk(t)φk(d, t). (4.5)

The goal of this chapter is to predict an unknown response density surface
(i.e. Y ∗(d, t), where for any t, Y ∗ is a density) from sparse observations of a
new predictor process X∗. To do this, we propose a two–stage functional
principal components analysis in which β may be represented by a product
combination of basis representations of Y and X , similar to that of the func-
tional linear regression for longitudinal data proposed by Yao et al. (2005b).
Estimation of the regression function β will obviously be the key to a useful
model. The difficulty lies in the already noted problem that we have sparse
(and possibly noisy) observations (Xi(Tij), Yi(d, Tij)).
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Consider now, the regression function β(d, s, t) in (4.2), where for fixed
(s, t) ∈ T × T , β(d, s, t) is a square integrable function in L2(D). Dealing
as we are, in probability density functions, in the following we require that∫
D
∫
T β(d, s, t) [X(s)− η(s)] ds dd = 0, so that

∫
D E [Y (d, t)|X] = 1. Under

the assumption of square integrability for the responses, Y , the eigenfunc-
tion basis {φk(d, t)}k=1,...,∞ derived from the covariance operator, Γt (4.3), is
a complete orthonormal basis for L2(D). Then for a given (s, t) ∈ T × T

β(d, s, t) =
∞∑
k=1

βk(s, t)φk(d, t) (4.6)

for some coefficients βk(s, t). Then, after exchanging integration and summa-
tion (Lemma 1), the regression model (4.2) becomes

E [Y (d, t)|X] = µ(d, t) +
∞∑
k=1

{∫
T
βk(s, t) [X(s)− η(s)] ds

}
φk(d, t).

(4.7)

Alternatively, conditioning on X in Equation (4.5), we have the following
representation of E [Y (d, t)|X]:

E [Y (d, t)|X] = µ(d, t) +
∞∑
k=1

E [bk(t)|X]φk(d, t) (4.8)

4.1.2 Functional linear regression for fixed k

We will now fix k and investigate the coefficients of φk(d, t) in detail. Equat-
ing the coefficients of φk(d, t) in Equations (4.7) and (4.8), yields (for fixed k)
a functional linear regression for longitudinal data (Yao et al., 2005b):

E [bk(t)|X] =

∫
T
βk(s, t) [X(s)− η(s)] ds (4.9)

where E [bk(t)] ≡ 0,∀t ∈ T , and justification for the exchange of integration
and summation for Equation (4.9) is given by Lemma 1 and Appendix C.1.

Assume now that the principal coefficient functions bk(t) and the covari-
ate functionX(t) are square integrable functions with covariances Cov (bk(s), bk(t)) =

γk(s, t) and Cov (X(s), X(t)) = γX(s, t) respectively. Further, assume that
both γk(s, t) and γX(s, t) have expansions of the type in Equation (4.4), so
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that

γk(s, t) =
∞∑
l=1

θklϕkl(s)ϕkl(t) (4.10)

γX(s, t) =

∞∑
m=1

ρmψm(s)ψm(t) (4.11)

where (θkl, ϕkl(s)) are the lth eigenvalue/eigenfunction pair of the covariance
operator Γkbk(t) =

∫
γk(s, t)bk(s) ds, and θk1 ≥ λk2 ≥ · · · ≥ 0. Similarly for

the expansion of γX(s, t) (Equation 4.11).

The regression coefficient βk(s, t) is then given by (He et al., 2000):

βk(s, t) =

∞∑
l=1

∞∑
m=1

E [ζmξkl]

E [ζ2
m]

ψm(s)ϕkl(t) (4.12)

where ξkl and ζm are the principal coefficients ξkl =
∫
bk(s)ϕkl(s) ds and ζm =∫

[X(s)− η(s)]ψm(s) ds respectively.

Given a new functional predictor X∗(s), a prediction for the conditional
expectation E [Y ∗(d, t)|X∗] can be made by expanding X∗ in terms of its
eigenfunctions ψm(s), and substituting into Equations (4.9) and (4.8):

E [bk(t)|X∗] =

∫
T

∞∑
l=1

∞∑
m=1

E [ζmξkl]

E [ζ2
m]

ψm(s)ϕkl(t) [X∗(s)− η(s)] ds

=
∞∑
l=1

∞∑
m=1

E [ζmξkl]

ρm
ζ∗mϕkl(t)

E [Y ∗(d, t)|X∗] = µ(d, t) +
∞∑
k=1

∞∑
l=1

∞∑
m=1

E [ζmξkl]

ρm
ζ∗mϕkl(t)φk(d, t) (4.13)

where ζ∗m =
∫

[X∗(s)− η(s)]ψm(s) ds and E
[
ζ2
m

]
= ρm.

4.1.3 Estimating the components of the LFLM

We turn now to estimation of the relevant components of Equation (4.13).
Section 4.1.1 discussed that we do not have complete information on the re-
sponse density surface Y (d, t) (which is essentially what we are trying to re-
construct), nor the covariate function X(t). We do however, have observa-
tions of these functions at a small number of fixed time points for each i. For
example, let tij denote the time of the jth measurement of the ith individual,
j = 1, . . . , Ni. The observation at time tij is then (Yi(d, tij), Xi(tij)). We note
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that the measurement times tij do not need to be the same for each i, nor do
the number of measurements Ni.

The mean function µ(d, t) can be estimated by a functional kernel smoother
(Cardot, 2007) over the observations {Yi(d, tij), tij}:

µ̂(d, t) =

N∑
i=1

Ni∑
j=1

Wij(t)Yi(d, tij), where (4.14)

Wij(t) =
Khµ(t− tij)∑N

i=1

∑Ni
j=1Khµ(t− tij)

and Kh(u) = (1/h)K(u/h) for a positive kernel K with bandwidth hµ =

hµ(N)→ 0 as N →∞. The bandwidth hµ is selected via leave one group out
cross–validation to allow for within–group correlation (Appendix C.2).

We next need to estimate the conditional functional principal components
φk(d, t). Following Cardot (2007), let Yi ⊗ Zi(d, e) = Yi(d)Zi(e) for all (d, e) ∈
D × D. The conditional covariance function γ(t, e, d) (Equation 4.3) can then
be estimated by the bivariate functional kernel smoother

γ̂(t, e, d) =
N∑
i=1

Ni∑
j=1

Wij(t;h) {Yi(d, tij)− µ̂(d, t)} ⊗ {Yi(e, tij)− µ̂(e, t)}

(4.15)

where the weight function W depends on all the time points and a positive
bandwidth h (which may be selected by cross–validation, see Cardot, 2007).

For fixed t, the functional principal components basis can then be found
as the spectral decomposition of the estimated covariance operator Γ̂t (Equa-
tion 4.3), which results in the estimated eigenvalue/eigenfunction pairs (λ̂k(t), φ̂k(d, t)), k =

1, . . . ,∞. That is, the kth eigenvalue/eigenfunction pair satisfy

Γ̂tφ̂k(d, t) = λ̂k(t)φ̂k(d, t) (4.16)

The random coefficient functions bk(t) can now be estimated at times tij as

b̂k(tij) =

∫
D

[Yi(d, tij)− µ̂(d, tij)] φ̂k(d, tij)

We now treat the coefficient functions at times tij above as observations
from an unknown underlying function bk(t), and similarly the covariate func-
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tions X(s), and using the expansions in Equations (4.10) and (4.11) write

bk,ij =

∞∑
l=1

ξiklϕkl(tij)

Xij = η(tij) +

∞∑
m=1

ζimψm(tij) (4.17)

The estimation of the eigenvalues and eigenfunctions of the principal co-
efficient functions bk(t) and the covariate function X(t) are found by estimat-
ing the eigenvalues and eigenfunctions of their respective covariance opera-
tors Γkbk(t) and ΓXX(t) (as in Equation 4.16). Following Yao et al. (2005a) we
provide details for the estimation of E [X(t)] = η(t) and (ρm, ψm(t)), the mth

eigenvalue/eigenvalue pair of ΓXX(t). The components of bk(t) are found in
a similar way.

A locally–linear smoother (e.g. Fan and Gijbels, 1996) is used to estimate
η(t). Let

(β̂0, β̂1) = argmin
β0,β1

N∑
i=1

Ni∑
j=1

Khη(tij − t) [Xi(tij)− β0 − β1(t− tij)]2

for positive kernel K and bandwidth hη (as in Equation 4.14). Then η̂(t) =

β̂0(t) is the estimate of η(t). The bandwidth hη can again be chosen by leave
one group out cross–validation (Appendix C.2).

For the eigenvalues and eigenfunctions, we need an estimate of the co-
variance surface Cov [X(s), X(t)] = γX(s, t). Let the ‘observed’ covariance
be Ci(tij , tij′ ) = (Xi(tij)− η̂(tij)) (Xi(tij′ ) − η̂(tij′ )) for j 6= j

′
. Note that this

means that only those groups i that have at least two observations can be
used to estimate γX(s, t). Let

(
β̂0, β̂1, β̂2

)
= argmin

β0,β1,β2

N∑
i=1

∑
1≤j 6=j′≤Ni

KhX (tij − s, tij′ − t)

×
[
Ci(tij , tij′ )− β0 − β1(tij − s)− β2(tij′ − t)

]2

(4.18)

where KhX (s, t) is a positive two–dimensional kernel, for example, the prod-
uct kernel KhX (s, t) = (1/h2

X)K(s/hX)K(t/hX). Then γ̂X(s, t) = β̂0(s, t) is
an estimate of γX(s, t) and the estimates (ρ̂m, ψ̂m(t)) of (ρm, ψm(t)),m ≥ 1 are
found as in Equation (4.16).
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Following Yao et al. (2005b), the expectation E [ζmξkl] is again estimated
as a locally–linear surface smoother. Let Ci(tij , tij′ ) = (Xij − η̂(tij))(bk,ij′ ) be
the ‘observed’ covariance at times (tij , tij′ ). Then a smoother similar to that
in Equation (4.18) gives an estimate of the cross–covariance surface

C(s, t) =

∞∑
l=1

∞∑
m=1

E [ζmξkl]ψm(s)ϕkl(t)

which leads to an estimate of E [ζmξkl] as

σ̂klm =

∫
T

∫
T
ψ̂m(s)Ĉ(s, t)ϕ̂kl(t) ds dt

We are left now with estimating ζ∗m in Equation (4.13). Due to the sparse
nature of the observations Xij , numerical approximation of the integral esti-
mator ζ∗m =

∫
[X∗(s)− η(s)]ψm ds will perform poorly in practice. Yao et al.

(2005a) use a conditioning argument to come up with a best prediction for ζm
which they term Principal components Analysis through Conditional Expec-
tation (PACE). The PACE estimate for ζ∗m is the best linear predictor

ζ̂∗m = ρ̂mψ̂
∗T
m Σ̂−1

X∗ (X∗ − η̂) (4.19)

where X∗ = (X∗(t1), . . . , X∗(tj))T is the vector of observations of the new
covariate process X∗(s) at times t1, . . . , tj , ψ̂

∗
m = (ψ̂m(t1), . . . , ψ̂m(tj))

T , and
η̂ = (η̂(t1), . . . , η̂(tj))

T . The i, jth entry of the matrix Σ̂X∗ is the covariance
function for X evaluated times (ti, tj): γ̂X(ti, tj). The best predictor (4.19) as-
sumes normality of the principal component scores ζ∗m, however Yao et al.
(2005a) demonstrate its robustness against non–normality in a simulation
study.

4.1.4 Number of included basis functions

In practice, the number of basis functions included in Equation (4.13) will
require truncation at fixed values K,L,M . For a fixed k, the number of basis
functions included in the functional regression coefficient (Equation 4.12) is
chosen by an AIC type criterion (e.g Yao et al., 2005b,a) giving

β̂k(s, t) =
L∑
l=1

M∑
m=1

σ̂klm
ρ̂m

ψ̂m(s)ϕ̂kl(t) (4.20)
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For the number of components included in the regression coefficient (Equa-
tion 4.6), K, we suggest a regression sum of integrated squared errors ap-
proach. Assume that K is fixed and the respective basis functions and coef-
ficients have been estimated (Section 4.1.3). Then the predicted value of the
function Y (d, t) given a new observation X∗(s) is

ŶKLM (d, t) = µ̂(d, t) +

K∑
k=1

L∑
l=1

M∑
m=1

σ̂klm
ρ̂m

ζ̂∗mϕ̂kl(t)φ̂k(d, t) (4.21)

where ζ̂∗m is the conditional FPC score as in Equation (4.19).

For observations i = 1, . . . , N at times tij , j = 1, . . . , Ni we calculate the
regression sum of integrated squared errors, ISEK as

ISEK =

N∑
i=1

Ni∑
j=1

∫
D

[
Yi(d, tij)− Ŷi(d, tij)

]2
dd (4.22)

We choose the value of K which minimises ISEK .

This approach decouples the choice of K, from that of L and M . Estima-
tion of the bivariate functional kernel smoother for the conditional covariance
γ(t, e, d), depends on the bandwidth h in Equation (4.15), which is optimised
for a fixed basis dimension, K. Calculating the optimal bandwidth for the
bivariate functional kernel smoother (Cardot, 2007) is computationally ex-
pensive. Including the optimal choice of K within the whole LFLM would
result in a significant increase in computational time.

4.2 Inference

4.2.1 Significance testing

Section 4.1 describes the model and estimation of the relevant components
for predicting density functions at a fixed time t, but just as in standard mul-
tivariate analysis, we may question whether the functional predictor X(s)

actually has an effect on the response Y (d, t). In other words we wish to test
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the null hypothesis of no effect of X :

H0 : E [Y (d, t)|X] = µ(d, t)

vs.

H1 : E [Y (d, t)|X] = µ(d, t) +

∫
T
β(d, s, t) [X(s)− η(s)] ds

In order to test the no effect hypothesis, we will follow Cardot et al. (2007)
and define an F-statistic in the following way. Let µ̂(d, t) be the estimator of
the mean of Y (d, t) and Ŷ (d, t) be the predicted value of the density Y for a
given X , i.e. Ŷ (d, t) = Ê [Y (d, t)|X] (Equation 4.21). Define

RSS0 =
N∑
i=1

Ni∑
j=1

∫
D

[Yi(d, tij)− µ̂(d, tij)]
2 dd

RSS1 =

N∑
i=1

Ni∑
j=1

∫
D

[
Yi(d, tij)− Ŷ (d, tij)

]2
dd

then

F =
RSS0 − RSS1

RSS1
(4.23)

Because of complex form of F , the decision on whether to reject H0 will
be based on a permutation p-value. Denote Fobs and Fb to be the values of
the F -statistic (4.23) for the observed sample, and a sample with the predictor
functions randomly permuted, then the permutation p-value is defined to be

p =
1

B

B∑
b=1

I [Fb > Fobs] (4.24)

The null hypothesis of no effect is thus rejected for small values of p.

4.2.2 Asymptotic pointwise confidence intervals

Pointwise confidence intervals for fixed t can be calculated forE [Y ∗(d, t)|X∗]
by extending the arguments of Yao et al. (2005b). Conditional on the sparse
measurements ofX∗(t) (Xij in Equation 4.17), (ζ̃

∗
M−ζ∗M ) ∼ N(0,ΩM ), where

ζ̃
∗
M = (ζ̃∗1 , . . . , ζ̃

∗
M )T (Yao et al., 2005b). Now fix d, t and letϕkL = (ϕk1(t), . . . , ϕkL(t))T

for k ≥ 1. For l = 1, . . . , L and m = 1, . . . ,M , let PkLM be the L ×M ma-
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trix with (l,m) entry σklm/ρm and let ΛKM be the K ×M matrix with rows
ϕTkLPkLM , k = 1, . . . ,K. LetφdK = (φ1(d, t), . . . , φK(d, t))T . Theorem 3 estab-
lishes the asymptotic distribution of (Ŷ ∗KLM (d, t)−E [Y ∗(d, t)|X∗]) as a mean
0 normal distribution with variance φ̂

T
dKΛ̂KM Ω̂M Λ̂TKM φ̂dK . Thus, (1 − α)%

confidence intervals can be constructed by

Ŷ ∗KLM (d, t)± Φ−1(1− α/2)

√
φ̂
T
dKΛ̂KM Ω̂M Λ̂TKM φ̂dK (4.25)

4.3 Asymptotic properties

In this section we show that the regression function, Equation (4.20) is con-
sistent (Theorem 1), and that the prediction Ŷ ∗KLM (d, t) (from sparse mea-
surements of the new functional covariate X∗(s)) is consistent for Ỹ ∗(d, t)
(Theorem 2). Asymptotic normality of the prediction is established in The-
orem 3. Results in this section build on the results of Yao et al. (2005a), Yao
et al. (2005b) and Cardot (2007). In particular, we assume that the marginal
and joint densities of the measurement times and observations are square in-
tegrable, as are the functional response and observations, Y (d, T ) and X(s).
We refer to for Yao et al. (2005a), Yao et al. (2005b) and Cardot (2007) the more
technical assumptions needed in the proofs. Some extensions to the assump-
tions are also given in Appendix C.4. We begin by demonstrating the conver-
gence of the right hand side of Equation (4.6), required for the exchange of
integration and summation in Equation (4.7), and in Theorem 1. We require
the following:

A1
∑∞

k,l,m≥1 σ
2
klm/ρ

2
m <∞, where σklm = E [ζmξkl] and ρm = E

[
ζ2
m

]
.

A2 γ(d, s, t) =
∑∞

k,l,m≥1 |σklmψm(s)ϕkl(t)φk(d, t)| /ρm is continuous for d, s, t
and βKLM =

∑K
k=1

∑L
l=1

∑M
m=1 σklmψm(s)ϕkl(t)φk(d, t)/ρm absolutely

converges to β(d, s, t) for all d ∈ D and s, t ∈ T as K,L,M →∞

Lemma 1. (Yao et al., 2005a) Under (A1) the regression function (Equation 4.6)∑
k,l,m≥1 σklmψm(s)ϕkl(t)φk(d, t)/ρm converges to β(d, s, t). If, in addition,

(A2) holds, the convergence is uniform on D × T × T .

Proof. For the first part, let βKLM (d, s, t) =
∑K

k=1

∑L
l=1

∑M
m=1 σklmψm(s)ϕkl(t)φk(d, t)/ρm.

Observing the orthonormality of {ψm(s)}m≥1, {ϕkl(t)}l≥1, and {φk(d, t)}k≥1,∫
D
∫
T
∫
T βKLM (d, s, t)2 =

∑K
k=1

∑L
l=1

∑M
m=1 σ

2
klm/ρ

2
m. Then letting β = limK,L,M→∞ βKLM ,∫

D
∫
T
∫
T [βKLM (d, s, t)− β(d, s, t)]2 dtdsdd→ 0.
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For the second part, let γKLM (d, s, t) =
∑K

k=1

∑L
l=1

∑M
m=1 |σklmψm(s)ϕkl(t)φk(d, t)| /ρm.

Then from (A2), the sequence {γKLM (d, s, t)} is a non–decreasing sequence
converging to γ(d, s, t). Applying Dini’s theorem (e.g. Rudin, 1976) gives uni-
form convergence on D× T × T and thus βKLM (d, s, t) converges uniformly
to β(d, s, t).

Theorem 1. (Yao et al., 2005b)

lim
n→∞

∫
D

∫
T

∫
T

[
β̂(d, s, t)− β(d, s, t)

]2
dt ds dd = 0 in probability.

Proof. Observing the orthonormality of the eigenfunction bases in the follow-
ing we have,∫

D

∫
T

∫
T

[
β̂(d, s, t)− β(d, s, t)

]2
dt ds dd

=

∫
D

∫
T

∫
T

[
K∑
k=1

L∑
l=1

M∑
m=1

σ̂klm
ρ̂m

ψ̂m(s)ϕ̂kl(t)φ̂k(d, t)

−
∞∑
k=1

∞∑
l=1

∞∑
m=1

σklm
ρm

ψm(s)ϕkl(t)φk(d, t)

]2

dtds dd

=

∫
D

∫
T

∫
T

K∑
k=1

L∑
l=1

M∑
m=1

[
σ̂klm
ρ̂m

ψ̂m(s)ϕ̂kl(t)φ̂k(d, t)−

σklm
ρm

ψm(s)ϕkl(t)φk(d, t)

]2

dtds dd

+

∞∑
k=K+1

∞∑
l=L+1

∞∑
m=M+1

σ2
klm

ρ2
m

+

∫
D

∫
T

∫
T

[ ∞∑
k=K+1

∞∑
l=L+1

∞∑
m=M+1

σklm
ρm

ψm(s)ϕkl(t)φk(d, t)

]

×
{

K∑
k=1

L∑
l=1

M∑
m=1

[
σ̂klm
ρ̂m

ψ̂m(s)ϕ̂kl(t)φ̂k(d, t)

]}
dtds dd

= A(n) +B(n) + C(n).

Now by (A1), B(n)→ 0 as n→∞. Slutsky’s theorem, the results in Yao et al.
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(2005b), (Cardot, 2007) and Appendix C.4, imply that

A(n) = Op

 M∑
m=1

δXmAδXm√
nh2

X −AδXm
+

K∑
k=1

L∑
l=1

δbkklAδbkkl√
nh2

k −Aδbkkl

+

L∑
l=1

KM√
nhl1h2

+

[
hβY1 + hαY2 +

{
log n

nmin(hY1 , hY2)

}1/2
]

L∑
l=1

κl

)
p−→ 0

as n → ∞. For C(n), note that by application of the Cauchy–Schwarz in-
equality, C(n)2 ≤ A(n) × B(n), and thus C(n)

p−→ 0 as n → ∞. Combining
A(n), B(n) and C(n) completes the proof.

Recall Equation (4.13) for a new observation of X∗(t), and denote the tar-
get prediction (for sparsely observed X∗(t)) as Ỹ ∗(d, t). Now let the true
conditional FPC score be ζ̃∗m = ρmψ

∗T
m Σ−1

X∗(X
∗ − η) where the components

are as in Equation (4.19). Then

Ỹ ∗(d, t) = µ(d, t) +
∞∑
k=1

∞∑
l=1

∞∑
m=1

σklm
ρm

ζ̃∗mϕkl(t)φk(d, t).

Further, denote by Y ∗KLM (d, t) and Ỹ ∗KLM (d, t), finite versions ofE [Y ∗(d, t)|X∗]
and Ỹ ∗(d, t). We make the following assumptions

A3
∑∞

k=1

∑∞
l=1

∑∞
m=1 σ

2
klm/ (λk(t)ρm) <∞ for fixed t.

A4 The number and locations of the measurements of X∗(s) remain fixed as
n→∞

Then we have the following

Lemma 2. Under assumptions A3 and A4, and as K,L,M →∞

sup
d∈D

E [Y ∗KLM (d, t)− E [Y ∗(d, t)|X∗]]2 → 0 (4.26)

sup
d∈D

E
[
Ỹ ∗KLM (d, t)− Ỹ ∗(d, t)

]2
→ 0 (4.27)
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Proof. In Equation (4.26), note

E
[
Y ∗KLM (d, t)− E [Y ∗(d, t)|X∗]

]2
= E

[
K∑
k=1

L∑
l=1

M∑
m=1

σklm
ρm

ζ∗mϕkl(t)φk(d, t)

−
∞∑
k=1

∞∑
l=1

∞∑
m=1

σklm
ρm

ζ∗mϕkl(t)φk(d, t)

]2

=
∞∑

k=K+1

∞∑
l=L+1

∞∑
m=M+1

σ2
klm

ρ2
m

E(ζ∗2m ) [ϕkl(t)φk(d, t)]
2

=
∞∑

k=K+1

∞∑
l=L+1

∞∑
m=M+1

σ2
klm

ρm
[ϕkl(t)φk(d, t)]

2

Now, taking the supremum of the LHS of Equation (4.26) gives

sup
d∈D

E
[
Y ∗KLM (d, t)− E [Y ∗(d, t)|X∗]

]2
=

∞∑
k=K+1

∞∑
l=L+1

∞∑
m=M+1

σ2
klm

ρm
ϕ2
kl(t) sup

d
[φk(d, t)]

2

=
∞∑

k=K+1

∞∑
l=L+1

∞∑
m=M+1

σ2
klm

ρmλk(t)
ϕ2
kl(t) sup

d

{
λk(t)φ

2
k(d, t)

}

Now by the Karhunen-Loève theorem (Loève, 1977),
∑∞

k=1 λk(t)φk(d, t)φk(e, t)

converges uniformly in d, e ∈ D, and thus supd λk(t)φ
2
k(d, t) → 0 as k →

∞ and assuming A4 holds, Equation (4.26) follows. The proof for Equa-
tion (4.27) is similar.

Theorem 2. (Yao et al., 2005b).

Under the conditions of Yao et al. (2005b), Cardot (2007) and A1–A4

lim
n→∞

ŶKLM (d, t) = Ỹ ∗(d, t)

in probability.
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Proof. Note that

∣∣Ŷ ∗KLM (d, t)− Ỹ ∗(d, t)
∣∣ ≤ ∣∣Ŷ ∗KLM (d, t)− Ỹ ∗KLM (d, t)

∣∣+
∣∣Ỹ ∗KLM (d, t)− Ỹ ∗(d, t)

∣∣
(4.28)

= P1 + P2

Lemma 2 shows that for P2, Ỹ ∗KLM (d, t)
p−→ Ỹ ∗(d, t) asK,L,M, n→∞. From

Cardot (2007), we have

sup
d

∣∣µ̂(d, t)− µ(d, t)
∣∣ = Op(h

β
Y1

) +Op

[(
log n

nhY1

)1/2
]

as n→∞, and from Yao et al. (2005b), Lemma (A.1)

∣∣ζ̂∗m − ζ∗m∣∣ = Op

(
δXmAδXm√
nh2

X −AδXm

)

combining these results and by Slutsky’s theorem, for P1 we have

∣∣Ŷ ∗KLM (d, t)− Ỹ ∗KLM (d, t)
∣∣ p−→ 0

as n → ∞. A further application of Slutsky’s theorem for P1 + P2 gives the
required result.

For the next theorem, we make the following assumptions

A5 For all i = 1, . . . , n,m ≥ 1 and j = 1, . . . , Ni, the FPC scores ζim are jointly
Gaussian

A6 There exists a continuous, positive definite function ω(d, e, t) such that
ωKLM (d, e, t)→ ω(d, e, t) as K,L,M →∞

where ωKLM (d, e, t) = φTdKΛKMΩMΛTKMφdK (as defined in Section 4.2.2).
ωKLM (d, e, t) is a sequence of continuous positive definite functions, and
ω̂KLM (d, e, t) is an estimate of ωKLM (d, e, t).

Theorem 3. (Yao et al., 2005b).
Under assumptions A3–A6, Lemma (A.1) and assumption B5 of Yao et al.
(2005b), for t fixed and all d ∈ D, x ∈ R

lim
n→∞

P

{
Ŷ ∗KLM (d, t)− E [Y ∗(d, t)|X∗]√

ω̂KLM (d, d, t)
≤ x

}
= Φ(x)
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where Φ(x) is the CDF of the standard normal distribution.

Proof. Note that for fixed K,L,M

Ŷ ∗KLM (d, t)− Y ∗KLM (d, t) = Ŷ ∗KLM (d, t)− Ỹ ∗KLM (d, t)

+ Ỹ ∗KLM (d, t)− Y ∗KLM (d, t).

We have from the proof of Theorem 2 that Ŷ ∗KLM (d, t)
p−→ Ỹ ∗KLM (d, t) (P1 in

Equation 4.28). Then using the result that (ζ̃
∗
M − ζ∗M ) ∼ N(0,ΩM ) (Yao et al.,

2005b) we have that{
Ŷ ∗KLM (d, t)− Y ∗KLM (d, t)

}
D−→ ZKLM ∼ N(0, ωKLM (d, d, t))

Under A6, we have that ZKLM → Z ∼ N(0, ω(d, d, t)) as K,L,M → ∞.
Noting further that

Ŷ ∗KLM (d, t)− E [Y ∗(d, t)|X∗] = Ŷ ∗KLM (d, t)− Y ∗KLM (d, t)

+ Y ∗KLM (d, t)− E [Y ∗(d, t)|X∗]

and from the Karhunen-Loève theorem, |Y ∗KLM (d, t)−E [Y ∗(d, t)|X∗] | p−→ 0.
Thus

lim
K,L,M→∞

lim
n→∞

Ŷ ∗KLM (d, t)− E [Y ∗(d, t)|X∗] D= Z

Now, the convergence of each of the various parts of ω̂KLM (d, e, t) implies
that ω̂KLM (d, d, t)

p−→ ω(d, d, t). The result follows by application of Slutsky’s
theorem.

4.4 Application

4.4.1 Data and comparative methods

For this application section, we use the E. globulus data that was introduced
in Chapter 1. We briefly review the main aspects of the data as they pertain
to the LFLM. The experiment comprised of 90 treatment stands, and in each
stand, tree diameter was measured at approximately two–yearly intervals.
Not every stand was measured the same number of times: some stands were
measured four times, whilst others were measured at seven different times,
resulting in a total of 503 measurements. Table 4.1 provides a breakdown of



4.4. Application 75

this measurement schedule. In each stand, tree diameter was measured, and
from these, stand–level characteristics were calculated. Using basal area per
hectare (m2 ha-1) as the functional growth covariate, the method described
in Section 4.1 is used to predict the probability density function of diameters
within stands.

Denote the measured tree diameters in stand i = 1, . . . , N at time tij , j =

1, . . . , Ni by Dijp for p = 1, . . . , Pi where Pi is the number of trees measured
in stand i. As we do not have observations on the true densities, we take as
given the response densities Yi(d, tij) to be the kernel density estimates

Yi(d, tij) =
1

Pihij

Pi∑
p=1

K

(
d−Dijp

hij

)
(4.29)

for a positive kernelK and bandwidth hij , and assume that Pi is large enough
so that the preceding estimate is a good substitute for the true (unknown)
density. We denote basal area per hectare in the ith stand at time tij by Xij =

Xi(tij), and with these representations the LFLM follows Equation (4.2).

A comparative approach

We compare the LFLM with the parameter prediction method which was in-
troduced in Section 1.2.2. We briefly recap the method as it will apply to
this example. Assume that the underlying parametric distribution family is
from the two–parameter Weibull family, Pr(D ≤ d) = 1− exp

(
−αdβ

)
, d > 0.

Given the diameter measurements Dijp for the ith stand at time tij , the shape
and scale parameters of the Weibull density can be estimated by maximum
likelihood which we will denote by αij and βij . The Weibull parameter esti-
mates α and β may then used as responses in a regression model to relate the
parameters to the stand attributes.

In many forestry applications requiring longitudinal analyses such as the
example in this paper, regression functions for stand attributes are required as
inputs into models for the parameters α and β (e.g. Wang and Baker, 2007). In
this comparative section however, we have chosen not to specify the paramet-
ric form of stand attributes, but to take a more direct approach. Specifically,
we will estimate a nonparametric regression function relating the Weibull pa-
rameters α and β using as regressors the basal area of the stand and the time
of measurement. We will use generalised additive models (e.g. Wood, 2006)
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to fit these regressions which have been formulated as

αij = gα(Xij , tij) + εij

βij = gβ(Xij , tij) + εij

where gα(x, t) and gβ(x, t) are unknown, smooth bivariate functions to be
estimated from the data. If α̂(x, t) = ĝα(x, t) and β̂(x, t) = ĝβ(x, t) are the
predicted values of the Weibull parameters of a stand at time t with basal
area per hectare equal to x, then the predicted diameter density is just the
Weibull density with parameters α̂ and β̂.

Table 4.1: Number of stands measured in each site at each of a possible seven
measurement periods.

Measurement period
Site 1 2 3 4 5 6 7

A 18 18 18 18 18 18 18
B 18 18 18 18 18 0 0
C 18 18 18 18 18 0 0
D 18 18 18 18 18 18 0
E 18 18 18 17 0 18 0

Comparative measures

Cross–validation was used to compare the different approaches. The full data
set was randomly split into training and testing data sets, with 60 stands in
the training data set and 30 stands in the testing data set. Each model was fit
on the training data, and then used to predict the diameter densities of the
testing data; 20 such randomly selected cross–validation training/testing set
combinations were used.

As we are dealing with real data, the true density Y (d, t) is unknown,
which leaves the difficulty of comparison between the approaches. We will
use two comparative measures here. The first is the prediction integrated
squared error (as in Equation 4.22), the second is the empirical (negative) log-
likelihood. We compare both of the statistics using the training and testing
data sets.

As noted in Section 4.4.1 we have for each stand/time combination, tree
diameter measurementsD. Using the same notation as previously, for a stand
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Figure 4.2: Evolution of basal area (m2 ha-1) over time for each forest stand.
Highlighted are the basal area curves for the two stands given in Figure 4.1.
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i we have the basal area observations Xi1, . . . , XiNi at times ti1, . . . , tiNi along
with diameter measurements Dijp, p = 1, . . . , Pi. The diameter measure-
ments are used to create ‘true’ observations to compare each method: i) a
kernel density estimate to compare the LFLM and ii) a Weibull density (esti-
mated via maximum likelihood) to compare the parametric approach.

For both the LFLM and parametric approaches the predicted sum of squared
errors is taken between the ‘true’ density and the density predicted from the
models using the basal area and time information (Equation 4.22). The em-
pirical log-likelihood takes advantage of the fact our responses are densities.
For both LFLM and parametric methods, denote the predicted density at time
tij , as Ŷij(d, tij). The empirical (negative) log-likelihood `(D) is then

`(D) = −
N∑
i=1

Ni∑
j=1

Pi∑
p=1

log Ŷi(Dijp, tij)/Pi + 2K̂ (4.30)

where K̂ is the number of components chosen by Equation (4.22) for the ex-
pansion of Y (d, t) in the case of the LFLM, and K̂ = 2 for the parametric
approach. Note that we are only able to use this statistic in this application as
we do have the true diameter measurements Dijp.

4.4.2 Results

Figure 4.3 shows the distribution of `(D) across 50 cross-validation runs for
both approaches. The distribution for the training data is shown in Fig-
ure 4.3(a), whilst Figure 4.3(b) shows the distribution for the testing data.
Similarly, Figures 4.4(a) and 4.4(b) show the distribution of ISE over 50 cross-
validation runs for the training and testing data respectively. From Figure 4.3
we see that the LFLM outperforms the parametric approach in terms of neg-
ative log-likelihood, both on the training and testing data, however there is
increased variability in the testing data results. For the ISE, Figure 4.4 shows
that the LFLM outperforms the parametric approach on the training data, but
there is no separation between the two approaches for the testing data.

Visualising the regression function β(d, s, t) to determine the effect of basal
area on the diameter density is obviously impossible, however we can visu-
alise β(d, s, t) for fixed values of t. Figure 4.5 displays the estimated regres-
sion function β̂(d, s, t = 1.48). We can interpret Figure 4.5 as follows: for
prediction in early years, the effect of the functional covariate is strong over
the whole time domain, yet is restricted to the lower diameters as to be ex-
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Figure 4.3: Distribution of `(D) (Equation (4.30)) across 50 cross-validation
runs.
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Figure 4.4: Distribution of ISE (Equation (4.22)) across 50 cross-validation
runs.
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Figure 4.5: Estimated regression function β̂(d, s, t = 1.48).

pected.
Due to the heavy computational cost of the permutation test, we cal-

culated the permutation p–value (Equation 4.24) for only one of the cross–
validation data sets. Over 10000 permutations, the p–value was found to be
0, indicating that the effect of the functional basal area, X(t) on the diameter
density was highly significant. For reference, the 25, 50 and 75% quantiles
of the permutation F–statistic were found to be 0.1540, 0.1655 and 0.1790 re-
spectively, compared to the observed Fobs = 0.2938.

Predictions (dashed lines) for a stand at age 1.47 and 7.85 years from the
testing data set are shown in Figures 4.6(a) and 4.6(b). Also shown in these
figures are the ‘true’ densities (solid lines) and (Bonferroni adjusted) 95% con-
fidence bands using the formula given by Equation (4.25). We use a Bonfer-
roni adjustment so that whole–of–curve confidence can be assessed. Note
that the ‘true’ observation is unobserved as we are dealing with the testing
data set.
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Figure 4.6: 95% confidence intervals (shaded grey) for E [f(d, t)|X∗], when a)
t = 1.47 years, and b) t = 7.85 years. The solid line is the observed value, and
the dashed line is the predicted value.

4.5 Discussion

The results given in the previous section indicate that the proposed longitudi-
nal functional linear model is a suitable alternative to traditional parametric
models such as parameter prediction.

Drawing a parallel between the LFLM and parametric models, we see that
both seek to represent a curve by a finite number of parameters. In the func-
tional case, these are the functional principal coefficients, and in the paramet-
ric case, the parameters of the assumed distribution. This dimension reduc-
tion step can result in more flexible fits under the LFLM model as parameters
are not constrained by functional form.

In order to use the method that we have proposed on the forestry data set
(Section 4.4) we had to construct our response probability density functions
via kernel density estimates (Equation 4.29). We assumed there that the num-
ber of measurements per stand/time combination was large enough that the
kernel density estimate was indeed a good representation of the true density.
Obviously as the number of measurements increases, the estimates get better
and better, and this is the case for the parametric models as well, where the
MLE will become more precise. There may be room for improvement in mod-
els such as the one presented here, and indeed in more traditional forestry
models for weighting the regression models by how precise we believe our
estimates of the response densities to be. For instance, weighting each ob-
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servation (whether the functional response as in the LFLM, or the Weibull
parameter in the parametric case) by the number of diameter measurements
used in its calculation may provide better model fits in each case.

The permutation test that was performed in Cardot et al. (2007) is less in-
volved than it is in this situation, as interest there was in testing the effect of
a covariate on the mean function. They discuss the fact that the bandwidth
that is ‘optimal’ for the prediction of µ̂(d, t) is not necessarily optimal for sig-
nificance testing, and go on to recommend that a small grid of bandwidths
around the ‘optimal’ bandwidth be tried. However, due to the complexity of
the regression model proposed here, if we were to apply the same principles,
we would need to alter not only the mean bandwidth, but also the band-
widths in the covariance function (Equation 4.15), along with those involved
in estimation of the functional regression parameter, and also the number
of principal components to be used (Equation 4.21) in the prediction model.
For this chapter, we conditioned on these values in the permutation test for
significance.

A minor issue with the specific application of predicting probability den-
sity functions is that due to the truncation of the infinite series representation
of the functional coefficient (Equation 4.21) the resulting density predictions
may not integrate to one. In this case, all predictions were rescaled so that
they were a true probability distribution. For the general functional case, this
will not be an issue.

The methods developed in this chapter can also be applied more generally
to situations where general functions may be measured on individuals that
have a longitudinal nature. With the proliferation of large data sets and more
complex measurement schedules, we see methods such as that describe here
becoming more and more common.

Figure 4.5 showed the estimated regression function β̂(d, s, t = 1.48) for
fixed t. In an informal sense, what this figure shows aside from the level of
impact the functional covariate is having, is that the functional covariate is
having an impact across its whole domain. Thus, making use of the whole
time course of the functional growth covariate can have a significant impact.
This was also confirmed by the results from the permutation test already dis-
cussed.

The predictions in Figure 4.6, along with their confidence bands appear to
be extremely good estimates of the truth, especially as these are predictions
from the testing data set. However poor predictions do occur; Figure C.1
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in Appendix C.5 provides examples where the predictions and confidence
intervals perform poorly. It is highly likely that the poor performance in this
case is due Theorem 3 being an asymptotic result, that is relying on all of
K,L,M →∞ as n→∞. In the case study, n = 60 stands and the number of
components K,L,M chosen via cross–validation (Section 4.1.4) was always
less than 10, and averaged around 4.

A possible approach to improve the predictions could be to develop a
nonparametric approach to the modelling. An approach that has been used
for the regular functional linear model is to model the functional principal
component scores via an additive model (Müller, 2008). In this way, the pre-
dicted function has an additive, rather than linear structure. It is possible that
a similar method could be developed to extend the LFLM.

In summary, the longitudinal functional linear model developed in this
chapter provides an appealing alternative to current parametric methods of
predicting diameter densities due to its flexibility for modelling distributions
in situations where a single parametric family is not appropriate.



Chapter 5
Estimating population size from
capture–recapture experiments

In this chapter we describe a novel use of functional data techniques in capture–
recapture (CR) experiments. The methodology we will describe combines the
work of Yao et al. (2005a) with that of Huggins (1989) allowing the estima-
tion of population size from CR experiments with continuous, time varying
covariates. As was discussed in Chapter 1 (Section 1.3), there are few exist-
ing approaches for dealing with continuous time varying covariates in CR
experiments, and as such, this new methodology provides an exciting ad-
vancement on current techniques. The results of applying the new method
to both simulated and real data demonstrate improved performance in terms
of precision and variability of both population size estimates and CR model
parameters when compared to more common approaches.

The conditional likelihood of Huggins (1989) has been standard method-
ology for estimating the parameters of CR models and subsequently popu-
lation sizes for a number of decades now. When an individual is not caught
at a given time point during the experiments duration, it is clear that any in-
dividual specific covariates are not measured for that individual. Allowing
for heterogeneity in CR models has long been established (e.g. Pollock, 2002)
due to the reduction in bias and increased precision of model parameters it
affords. It should be clear that if a covariate has an effect on an individuals
probability of capture, and that the covariate is also changing over time, then
this should be allowed for in the model.

We show in this chapter, that in the case of continuous covariates in CR
experiments that a functional data approach within the E–step of an EM al-

84
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gorithm (Dempster et al., 1977) results in improved parameter estimation in
the CR model, importantly leading to improved population size estimates.

A difficulty with heterogeneous CR models and missing data methods
for parameter estimation is that missingness in covariates is informative by
assumption. We have that the probability of capture is conditional on the co-
variate, however the probability of the covariate being missing is conditional
on probability of capture. We demonstrate in Section 5.3 that this can allowed
for by weighting estimates of the covariates by their probability of capture.

Usual methods of estimatingE [Uij |Xij ] in missing data problems require
a parametric model for the joint distribution of the missing and observed
data. In this chapter, we employ a nonparametric, functional data approach
to estimate the missing data. In particular, the Principal component Analysis
through Conditional Expectation (PACE) approach for longitudinal data (Yao
et al., 2005a) that was introduced in the previous chapter will be utilised. Fur-
ther, the PACE method is extended to allow for the non–constant weighting
introduced by the capture process as discussed above.

5.1 Notation and preliminaries

Consider a closed population consisting of i = 1, . . . , N individuals where a
CR experiment has been conducted over t ∈ [1, τ ] capture occasions. In this
chapter we assume that the timing between each capture occasion is constant,
that is t = 1, . . . , τ . Associated with each individual i, we have (possibly time
varying) covariates Xit.

Now, denote by C(t) the indicator of capture of an individual at time t.
That is, if individual i is caught at occasion t, Ci(t) = 1, otherwise Ci(t) = 0.
Further, let C = maxtC(t) so that for individual i, Ci = 1 denotes that the
individual was captured at least once over the τ capture occasions. Then the
conditional probability of capture at time t for individual i is pit = Pr (Ci(t) = 1|Xit).
Letting πi = Pr (Ci = 1|Xi) = 1−∏τ

t=1 (1− pit) an unbiased estimator of the
population size is

N =

N∑
i=1

I {Ci = 1}
πi

(5.1)

N is generally unknown and is often the focus of CR experiments, as it is
in this chapter. Further, the pit are unknown and need to be estimated from
the data. Thus, given estimates p̂it of the probability that an individual i is
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caught at time t, an estimate of the population size is

N̂ =
N∑
i=1

I {Ci = 1}
π̂i

=
D∑
i=1

1

π̂i
(5.2)

where D =
∑

i≥1Ci is the number of distinct individuals captured.

To estimate πi, a model for the capture process C(t) is needed. In this
chapter, we assume that heterogeneity amongst individuals affects their cap-
ture probabilities pit, and that this heterogeneity is time varying. In particu-
lar, associated with each individual is one or more time varying covariates,
which we assume are smooth functions of time. For simplicity of explanation,
we give details of the model with one functional covariate Y (t), however ex-
tensions to multiple functional covariates are handled in a similar fashion.
Assume for the moment that for each individual i = 1, . . . , D, Xit = Yi(t),
the values of the covariate function at each capture time t are known, irre-
spective of whether the individual was actually captured. Further, denote by
Zi = (Zi1, Zi2, . . . , ZiQ) time invariant covariates of individual i, which once
individual i is captured, are known for all capture periods. Then a possible
model for the capture probabilities is

pit = Pr (Ci(t) = 1|Xit,Zi)

= H (β0 +Xitβ1 + Ziα) (5.3)

where H(u) = exp(u)/(1 + exp(u)) is the logistic function, and β0, β1 and α ∈
RQ are unknown parameters to be estimated. Note that in this formulation
the effect of the time varying covariate Y (t) is constant with respect to time of
capture. The conditional log–likelihood (Huggins, 1989) of Ci(t)|Xit,Zi, Ci =

1 is then

`i(θ) = − log(πi) +

τ∑
t=1

{
Ci(t) log

(
pit
qit

)
+ log(qit)

}
(5.4)

where qit = 1 − pit, and θ = (β0, β1,α)′. Maximising `(θ) =
∑

i `i(θ) over θ
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leads to the maximum likelihood estimate θ̂, and subsequently

N̂ = N̂(θ̂) =
D∑
i=1

πi(θ̂)−1 (5.5)

where πi(θ̂) is πi evaluated at θ̂.

5.2 Estimating the model parameters

It is clear that in Equation (5.3), Xit is unknown whenever individual i is
not captured that is, when Ci(t) = 0. It is thus not possible to estimate the
parameters θ nor the population size N using the complete data conditional
log–likelihood given in Equation (5.4).

To estimate θ, we propose the use of an EM algorithm. The E–step of the
algorithm uses functional principal components analysis (FPCA) to recon-
struct an individuals time varying covariate that is incomplete due to non–
capture of the individual at various times over the CR experiment. The M–
step calculates the maximum likelihood estimates of θ given expected value
of the covariate.

5.2.1 M–step

The M–step requires maximisation of the complete data conditional log–likelihood,
conditional on the observed data. Let Uit denote the missing data of in-
dividual i at time t, whenever Ci(t) = 0, and denote by Qi(θ;Uit) the ex-
pected complete data conditional log–likelihood of individual i, Qi(θ;Uit) =

E [`i(θ;Xit, Uit)|Xit,Zi, Ci = 1]. Then the maximum likelihood estimates θ̂
are

θ̂ = argmax
θ

D∑
i=1

Qi(θ;Uij) (5.6)

5.2.2 E–step

The E–step requires the expectation of the complete data conditional log–
likelihood,Qi(θ;Uit), used in the M–step (Equation (5.6). Let Xit = (1, Xit,Zi)

so that pit (Equation 5.3) can be written as pit = H(Xitθ). Then in Equa-
tion (5.4), log (pit/qit) = Xitθ. Noting that this term only adds to the like-
lihood when Ci(t) = 1, its expectation is not required for Qi(θ;Uit). The



88 Chapter 5. Estimating population size in CR experiments

expected value of the second term of Equation (5.4) cannot be found ex-
actly due to its complex form, so we approximate it by plugging in the ex-
pected values of the missing data, which we denote by E[Uit|Xi,pi], where
Xi = (Xij)

′
j=1,...,Ni

i.e. the observed covariate when captured at times tij , and
similarly pi. Putting this together, the expected log–likelihood is then

Q(θ) =

D∑
i=1

Qi(θ;Uit)

≈
D∑
i=1

[
− log(π̂i) +

{
τ∑
t=1

Ci(t)Xitθ + log(q̂it)

}]
(5.7)

where q̂it = 1− p̂it and π̂i = (1−∏τ
t=1 q̂it) as before, and where now

p̂it = H
(
I {Ci(t) = 1} ·Xitθ̂ + (1− I {Ci(t)}) ·Uitθ̂

)
(5.8)

where Uit = (1, E[Uit|Xi,pi],Zi), that is, p̂it is Equation (5.3) evaluated at
the observed data if individual i was captured (Ci(t) = 1), otherwise it is
evaluated at the expected value E[Uit|Xi,pi].

5.2.3 Computational details

To find the MLE θ̂, the EM algorithm iterates over alternate E and M steps un-
til convergence of θ̂. Denote θ̂q to be the value of the MLE after the qth itera-
tion of the algorithm, and similarlyEq[Uit|Xi,pi]. Also let p̂q,i = (p̂q,i1, . . . , p̂q,iτ )

be the vector of estimated capture probabilities of the ith individual on the qth

step.

We start with the E–step: Let p0,i = (1, . . . , 1), i.e. p0,it = 1 for all i and
t and estimate E0[Uit|Xi,p0,i] as in Section 5.3. Using E0[Uit|Xi,p0,i], in the
M–step calculate θ̂1 (Equation (5.6)) using Equation (5.8). Then for q = 1, . . .

1. E–step

(a) Calculate p̂q,it = H(Xitθ̂q−1)

(b) Estimate Eq[Uit|Xi, p̂q,i]

2. M–step

(a) Using Eq[Uit|Xi, p̂q,i] calculate the MLE θ̂q+1

(b) Repeat until convergence of the sequence
{
θ̂q

}
q=1,...

is reached
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5.3 Estimating E[Uit|Xi,pi] via FPCA

We turn now to the estimation of the individual specific time varying co-
variate E[Uit|Xi,pi], required for the EM algorithm described above. Con-
sidering a single individual i, let Yi(t) denote an (unobservable) continuous
time varying covariate that is assumed to affect that individuals probability
of capture. We observe Xij = Yi(tij) only when individual i is caught at time
tij , j = 1, . . . , Ni. We further assume that Y (t) is a smooth, random function
with mean E [Y (t)] = µ(t), square integrable over [1, τ ], and covariance func-
tion γ(s, t) = Cov [Y (s), Y (t)]. As in the previous chapter, we assume that
the covariance function can be expanded as an infinite sum of orthonormal
basis functions, taken to be the eigenvalue/eigenfunction pairs, (λk, φk(t)):
γ(s, t) =

∑
k≥1 λkφk(s)φk(t), where λ1 ≥ λ2 ≥ · · · ≥ 0. In this way, the

observation at time tij of Y (t) in individual i can be written

Xij = Yi(tij)

= µ(tij) +

∞∑
k=1

ξikφk(tij) (5.9)

for uncorrelated random coefficients ξik with E [ξik] = 0, Var [ξik] = λk.

Following Yao et al. (2005a), assume that the functional principal compo-
nent scores ξik are jointly Gaussian. Let Xi = (Xi1, . . . , XiNi)

′,µi = (µ(ti1), . . . , µ(tiNi))
′,

φik = (φk(ti1), . . . , φk(tiNi))
′ and Σi = Cov(Xi,Xi), where the (j, l)th entry of

Σi is γ(tij , til). The best predictor of ξik is then given by

E [ξik|Xi,pi] = λkφ
′
ikΣ
−1
i (Xi − µi) (5.10)

and we set E[Uit|Xi,pi] = Ỹi(t) where

Ỹi(t) = µ(t) +

∞∑
k=1

E [ξik|Xi,pi]φk(t) (5.11)

We turn now to the estimation of the components required for Ỹi(t). As
the missing data mechanism for heterogeneous CR experiments is non–random
by assumption, the methods in Yao et al. (2005a) need adjusting to allow for
the capture probabilities pit.
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5.3.1 Estimating µ(t)

Recall that Yi(t) is observed only when individual i is captured, that is, when
Ci(t) = 1. However, E [(Yi(t)− µ(t)) · Ci(t)] = E [pit · (Yi(t)− µ(t))], so that

E

[
(Yi(t)− µ(t)) · Ci(t)

pit

]
= E [Yi(t)− µ(t)] = 0 (5.12)

Assume that individuals are arranged, so that for i = 1, . . . , D,Ci = 1, then
for known weights wit, the estimating equation

N∑
i=1

τ∑
t=1

wit
pit

[Yi(t)− µ(t)]Ci(t) =
N∑
i=1

Ci

τ∑
t=1

wit
pit

[Yi(t)− µ(t)]Ci(t)

=
D∑
i=1

τ∑
t=1

wit
pit

[Yi(t)− µ(t)]Ci(t) (5.13)

has mean 0.
Clearly, knowledge of pit is required in Equation (5.13). Recalling that the

estimate of µ(t) is embedded in the E–step of the EM algorithm (Section 5.2.3),
we will substitute the current estimates p̂q,it for pit. We estimate µ(t) by a local
linear smoother, so that µ̂q(s) = β̂0(s), where

(β̂0, β̂1) = argmin
(β0,β1)

D∑
i=1

Ni∑
j=1

Kh(s− tij)
p̂q,ij

[Xij − β0 − β1(s− tij)]2 (5.14)

is the corresponding weighted least squares function of Equation (5.13), for
the qth E–step, where tij , j = 1, . . . , Ni is the time of the jth capture of in-
dividual i; Kh(u) = K(u/h)/h is positive, symmetric kernel, and h = h(n)

a bandwidth, such that h(n) → 0 as n → ∞, where n =
∑

iNi, the total
number of captures over the CR experiment. The choice of bandwidth h in
Equation (5.14) is made by leave one group out cross–validation (see Ap-
pendix C.2).

5.3.2 Estimating γ(s, t)

We again recall that Yi(t) is observed only when individual i is captured, that
is, when Ci(t) = 1. However,

E
[
{Yi(s)− µ(s)} · Ci(s)× {Yi(t)− µ(t)} · Ci(t)

]
= E [pis · {Yi(s)− µ(s)} × pit · {Yi(t)− µ(t)}]
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so that

E
[Ci(s)
pis

· {Yi(s)− µ(s)} × Ci(t)

pit
{Yi(t)− µ(t)}

]
= E

[
{Yi(s)− µ(s)} × {Yi(t)− µ(t)}

]
= γ(s, t)

Let the ‘observed’ covariance for individual i beGi(s, t) = [Yi(s)− µ(s)]×
[Yi(t)− µ(t)]. Then for weights wist, the estimating equation

N∑
i=1

∑
1≤s 6=t≤τ

wist
pitpis

[Gi(s, t)− γ(s, t)]Ci(s)Ci(t) (5.15)

has mean 0.

Substituting the qth iteration estimates of µ(s) and pis into Equation (5.15),
and we estimate γ(s, t) by a local linear smoother, so that γ̂q(s, t) = β̂0(s, t),
where

(β̂0,β̂1, β̂2) =

argmin
(β0,β1,β2)

N∑
i=1

∑
1≤j 6=l≤Ni

Kh(s− tij , t− til)
p̂q,ij p̂q,il

[Gq,i(tij , til)− fijl(β(s, t))]2

(5.16)

is the corresponding weighted least squares function of Equation (5.15); fijl(β(s, t)) =

β0− β1(s− tij)− β2(t− til), Gq,i(tij , til) = [Xij − µ̂q(tij)]× [Xil − µ̂q(til)], and
Kh(u, v) is a two dimensional positive kernel, for example the product kernel.

The eigenfunctions and eigenvalues (λk, φk(t))k=1,... are found as the spec-
tral decomposition of the covariance operator, ΓY (t) =

∫
γ(s, t)Y (s) ds. That

is, estimates for the kth eigenvalue/eigenfunction pair are the solutions λ̂k
and φ̂k(t) of the equations∫ τ

1
γ̂q(s, t)φ̂k(s) ds = λ̂kφ̂k(t) (5.17)

where the eigenfunctions are constrained to be orthonormal.

The expectation of the missing data Uit for use in the E–step of the EM
algorithm (Section 5.2.2) can now be found as the projection onto the function



92 Chapter 5. Estimating population size in CR experiments

space spanned by the first K eigenfunctions, φk(t):

Êq [Uit|Xi,pi] = µ̂q(t) +
K∑
k=1

Ê [ξik|Xi,pi] φ̂k(t) (5.18)

where Êq [ξik|Xi,pi] = λ̂kφ̂
′
ikΣ̂
−1
i (Xi − µ̂q,i)

We choose K in Equation (5.18) so that the fraction of variance explained
(FVE(K), Equation 5.19) is at least 99%.

FVE(K) =

∑K
k=1 λk∑∞
k=1 λk

(5.19)

5.4 Inference

The population estimate N̂ (Equation 5.5) can be written as

N̂ =
N∑
i=1

Ci
πi(θ)

+
N∑
i=1

[
Ci

πi(θ̂)
− Ci
πi(θ)

]
(5.20)

and an unbiased estimate of the variance of the first term in Equation (5.20)
is

Var

[
N∑
i=1

Ci
πi(θ)

]
=

D∑
i=1

1− πi(θ)

πi(θ)2
(5.21)

Letting g(u) =
∑D

i πi(u)−1, the second term in Equation (5.20) is equal to

N∑
i=1

[
Ci

πi(θ̂)
− Ci
πi(θ)

]
= g(θ̂)− g(θ)

≈ {∂g(θ)/∂θ}′
(
θ̂ − θ

)
(5.22)

so that

Var

(
N∑
i=1

[
Ci

πi(θ̂)
− Ci
πi(θ)

])
≈ Var

(
{∂g(θ)/∂θ}′

(
θ̂ − θ

))
= {∂g(θ)/∂θ}′Var(θ̂) {∂g(θ)/∂θ} (5.23)

The covariance of the two terms in Equation (5.20) is 0 (Huggins, 1989), so
that the variance of the population estimator N̂ is the sum of the two terms
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in Equations (5.21) and (5.23).

We require now an estimate of Var(θ̂). If there were no missing data, i.e.
Xit was known irrespective of individual i being captured at time t, then stan-
dard methods for the observed information matrix I(θ) = −∂2`(θ)/∂θ∂θ′

can be used, and the variance of θ̂i could be estimated as I−1(θ̂;X)ii.

However, due to the missing data, the observed information matrix is
analytically difficult to calculate, and in the case of the conditional likelihood
for CR experiments, its expectation even more so. We instead suggest that
a nonparametric bootstrap be used to estimate both the covariance matrix of
θ̂ and Var(N̂), and that the respective confidence intervals (CIs) be taken as
the bootstrap percentile CIs. In this way, inference about both θ and N is
achieved.

Due to the correlation within an individual’s functional covariate, resam-
pling for the bootstrap is performed at the individual level. Let Wi = (Ci,Xi)

be the observed capture and covariate data for individual i = 1, . . . , D, and
let F̂ be the empirical distribution of W. Then the bootstrap proceeds as
follows

Step 1 Generate a bootstrap sample W∗ from F̂ as

W∗
1, . . . ,W

∗
D

iid∼ F̂

Step 2 Using the EM algorithm (Section 5.2), estimate the MLE, giving θ̂∗,
and subsequently N̂∗

Step 3 The bootstrap covariance matrix of θ̂∗ is then given by

Cov∗(θ̂∗) = E∗
[
(θ̂ − E∗(θ̂))(θ̂∗ − E∗(θ̂∗))′

]
where E∗ denotes expectation of the distribution F̂ . The variance of N̂∗

is found similarly.

Steps 1 and 2 are repeated B times, giving B independent realisations of θ̂∗

and N̂∗, say θ̂∗1, . . . , θ̂
∗
B and N̂∗1 , . . . , N̂

∗
B respectively. Then the covariance of
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θ̂ and N̂ can be estimated by

Cov(θ̂) ≈ 1

B − 1

B∑
b=1

(θ̂∗b − θ̄∗)(θ̂∗b − θ̄∗)′ (5.24)

Var(N̂) ≈ 1

B − 1

B∑
b=1

(N̂∗b − N̄∗) (5.25)

where θ̄∗ = (1/B)
∑

b θ̂
∗
b and N̄∗ = (1/B)

∑
b N̂
∗
b .

(1−α)% confidence intervals can be estimated by the bootstrap percentile
intervals (t∗α/2, t

∗
1−α/2), where t∗α is the α percentile of the bootstrap statistic

t∗, estimated by the α × B order statistic t∗(α×B), where t∗(b) is the bth order
statistic of the bootstrap estimates t∗1, . . . , t

∗
B .

5.5 Numerical results

5.5.1 Simulation study

In this section, we explore the EM approach developed in the previous sec-
tion through simulation. The simulation explores various relationships be-
tween the functional covariate and capture probability, along with various
functional forms of the covariate. For each scenario in the simulation, the
basic procedure is as follows:

Step 1 Generate i = 1, . . . , N individual functional covariates, Xi(t)

Step 2 For each i, calculate the probability of capture at capture occasions j =

1, . . . , τ as pij = H(fG [Xi(j)]), where fG is a linear function, dependent
on the scenario (see Table 5.1) and H(u) is the inverse logistic function

Step 3 For each i, j, simulate capture of an individual by comparing pij to a
uniform random variable: if pij ≤ 0.5 then the individual is not cap-
tured, that is, we set Ci(j) = 0; otherwise if pij > 0.5, Ci(j) = 1

Step 4 Those individuals that are not captured at any capture occasion j,
i.e. Ci =

∑
j Ci(j) = 0 are removed from the data, leaving D unique

individuals. Individuals that are captured at least once, have their cap-
ture history recorded, along with the functional covariate when cap-
tured. For example, if there are 5 capture occasions, and individual
i was caught at capture occasions 2 and 4, then their capture history is
{0, 1, 0, 1, 0} and their corresponding functional covariate is {–, Xi(2), –, Xi(4), –}
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Step 5 The relevant models are fit to the D individuals that are caught at
least once.

The various scenarios for the simulation study are given in Table 5.1. The
number of simulations in each scenario was 100. For each scenario, we have
fit the functional model developed in this chapter, as well as two other mod-
els for comparison. The first, which we call the naive model, we assume
that the covariate X is not time varying, and take the value of Xi to be the
value of the covariate at the time of first capture. For example if individual
i was caught first at capture occasion 3, then we would set Xij = Xi3 for all
j = 1, . . . , τ . The conditional log–likelihood given by Equation (5.4) is used
to estimate the relevant parameters. The second model, which we call the
gold standard model, assumes the covariate X is time varying and that at
any capture occasion j, its value is known, irrespective of whether individ-
ual i was captured at that occasion. Again, parameters are estimated using
the conditional log–likelihood, Equation (5.4).

In each of the models, we take the relationship between covariate and
probability of capture to be of the same form as the data generation mecha-
nism (Table 5.1). That is, we use the log–likelihood to find the MLEs (α̂, β̂),
where

pij = H(α+ βXij)

Figure 5.1(a) displays the functional covariates Xi(t) from one run of Sce-
nario 2, whilst Figure 5.1(b) displays the corresponding probability of capture
for each individual at each capture occasion (note this is unknown, and what
we are in fact estimating). The blue points indicate observations when an in-
dividual was captured, whilst the grey points represent uncaptured individ-
uals. In this scenario, there is an inverse relationship between the functional
covariate and probability of capture.

Table 5.2 summarises the results from Scenarios 1 and 2. Shown in the ta-
ble are the mean (sd) over 100 simulations, and the results for the EM/FPCA
method are given at the converged parameter values. The results show that
parameter estimates using the EM/FPCA method are extremely close to those
of the gold standard. The naive approach results in parameter estimates that
are quite different from the true parameters, especially in Scenario 2. This bias
in the estimates resulted in population size estimates far from the true pop-
ulation sizes for the naive method, whilst the gold standard and EM/FPCA
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Table 5.1: CR simulation scenarios. In each of the following scenarios, the
functional covariate Xij is generated by Equation (5.9). Parameter values
have been chosen so that the percentage of captured individuals D/N is
between approximately 60% and 80%. All simulations are carried out over
τ = 5 capture occasions.

Scenario 1 Observations are generated with mean process µ(t) = 3 +
4 exp(−t/2), with covariance function derived from two eigenfunctions
φ1(t) = sin(πt/4)/

√
2 and φ2(t) = − cos(πt/4)/

√
2. The eigenvalues are

set at λ1 = 1, λ2 = 0.52, and λk = 0, k ≥ 3, and the functional principal
component scores, ξik ∼ N(0, λk), k = 1, 2. The linear relationship re-
lating X to capture probabilities (Step 3 of the simulation procedure) is
pij = H(−3.5 + 0.5Xij).

Scenario 2 Observations are generated with mean process µ(t) = 45.0 + 2t+
2 exp(−(t − 3)2), and the covariance function is as in Scenario 1. The
eigenvalues are set at λ1 = 2, λ2 = 1, and λk = 0, k ≥ 3, and the
functional principal component scores, ξik ∼ N(0, σ = λk), k = 1, 2.
The linear relationship relating X to capture probabilities (Step 3 of the
simulation procedure) is pij = H(1.5− 0.05Xij).

Scenario 3 Constant model. Here the true covariate is not functional, and
is generated as Xij = Xi ∼ N(3, 1). The linear relationship relating
X to capture probabilities (Step 3 of the simulation procedure) is pij =
H(−2.5 + 0.5Xi) for each capture occasion j = 1, . . . τ .

Scenario 4a Misspecified model. In this model, the functional covariate is
generated as in Scenario 1, but is not related to the probability of cap-
ture. A constant probability of capture is set for each individual at
pi = 0.2.

Scenario 4b Misspecified model as in Scenario 4a, but with covariate gener-
ated as in Scenario 2.

methods were extremely close to the truth.

Coverage of the parameter β1 is close to the nominal coverage of 95%

(Table 5.2) under Scenario 1 in all methods. However, due to the heavy bias
of the naive method parameter estimates as already discussed, coverage is
poor for the naive method under Scenario 2.

Figure 5.2 displays a comparison between the parameter estimates after
one iteration of the EM algorithm, and at convergence of the EM algorithm.
Figure 5.2(a) displays a boxplot of β̂1 from Scenario 1, whilst Figure 5.2(b)
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(b) Observed Xij vs. true capture probabil-
ities pij

Figure 5.1: Example data from simulation Scenario 2.

Table 5.2: Results of simulations under Scenario 1 and 2. Shown in the table
are the mean (sd) over 100 simulations. The nominal coverage of parameter
β1 is 95%.

N Method N̂ β̂0 β̂1 Coverage (β1)

50

Scenario 1
EM/FPCA 50.42 (9.2) -3.487 (0.88) 0.496 (0.20) 0.97
Naive 58.64 (16.1) -3.591 (1.29) 0.442 (0.25) 0.98
Gold 50.08 (9.0) -3.602 (0.74) 0.526 (0.17) 0.94

100
EM/FPCA 102.40 (13.0) -3.469 (0.64) 0.485 (0.14) 0.97
Naive 118.30 (21.9) -3.704 (1.07) 0.462 (0.20) 0.92
Gold 102.29 (13.0) -3.474 (0.60) 0.489 (0.13) 0.91

50

Scenario 2
EM/FPCA 50.92 (5.8) 1.199 (2.72) -0.045 (0.05) 0.95
Naive 60.20 (13.2) 7.412 (3.58) -0.173 (0.07) 0.56
Gold 50.91 (5.8) 1.395 (2.54) -0.049 (0.05) 0.90

100
EM/FPCA 101.48 (8.0) 1.388 (1.85) -0.048 (0.04) 0.94
Naive 117.26 (16.0) 7.324 (2.34) -0.171 (0.05) 0.19
Gold 101.46 (8.0) 1.565 (1.80) -0.052 (0.03) 0.90
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Figure 5.2: Comparison of β̂1 for the EM/FPCA method after 1 iteration and
convergence. (a) Scenario 1 and (b) Scenario 2.

Table 5.3: Results of simulations under Scenario 3. Shown in the table are
the mean (sd) over 100 simulations. The nominal coverage of parameter β1 is
95%.
N Method N̂ β̂0 β̂1 Coverage (β1)

50
EM/FPCA 51.78 (8.3) -2.447 (0.82) 0.464 (0.24) 0.96
Naive/Gold 53.38 (11.3) -2.549 (0.89) 0.492 (0.25) 0.91

100
EM/FPCA 100.40 (8.4) -2.433 (0.52) 0.478 (0.15) 0.98
Naive/Gold 101.29 (9.4) -2.481 (0.52) 0.491 (0.15) 0.94

displays a boxplot of β̂1 from Scenario 2. Both figures show that the weighted
estimators for µ(t) (Equation 5.14) and γ(t, s) (Equation 5.16) used in the EM
algorithm, result in convergence of the parameters to their true values.

Table 5.3 summarises the results from Scenario 3. Recall that under Sce-
nario 3, the covariate Xij = Xi for all capture periods, i.e. constant. The
EM/FPCA method performs as well as the naive/gold standard methods
in this scenario. Table 5.4 summarises the results from Scenarios 4a and 4b,
which are models that include a covariate that is truly time varying, how-
ever is not related to the probability of capture. In both of these scenarios,
the true β0 = −1.3863 and β1 = 0. The EM/FPCA performs as well as the
gold standard in these scenarios, both in terms of parameter estimation and
population estimation, however the naive method is seen to perform poorly.
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Table 5.4: Results of simulations under Scenario 4a and 4b. Shown in the table
are the mean (sd) over 100 simulations. The nominal coverage of parameter
β1 is 95%.

N Method N̂ β̂0 β̂1 Coverage (β1)

50

Scenario 4a
EM/FPCA 51.50 (12.2) -1.286 (0.96) -0.026 (0.22) 0.94
Naive 67.20 (48.8) -3.866 (1.62) 0.535 (0.32) 0.47
Gold 51.52 (12.1) -1.415 (0.80) 0.004 (0.18) 0.93

100
EM/FPCA 102.16 (10.2) -1.359 (0.67) -0.010 (0.16) 0.93
Naive 116.04 (18.3) -3.471 (0.90) 0.451 (0.18) 0.26
Gold 102.22 (10.3) -1.433 (0.49) 0.007 (0.11) 0.95

50

Scenario 5a
EM/FPCA 52.27 (9.4) -2.007 (2.69) 0.011 (0.05) 0.94
Naive 70.04 (25.0) 8.638 (4.57) -0.202 (0.09) 0.31
Gold 52.31 (9.5) -1.535 (2.40) 0.002 (0.05) 0.94

100
EM/FPCA 101.29 (12.3) -1.671 (2.36) 0.005 (0.05) 0.86
Naive 125.02 (26.4) 7.728 (3.03) -0.183 (0.06) 0.08
Gold 101.34 (12.3) -1.356 (2.01) -0.001 (0.04) 0.90

5.5.2 Case study: Mountain Pygmy Possum

We now demonstrate the use of the time varying EM/FPCA method to a
data set concerning the Mountain Pygmy Possum. This data set (Huggins
and Hwang, 2007) is from a CR experiment conducted at Mount Hotham,
Australia, over five nights in November, 2000. The animals of interest in this
experiment were the Mountain Pygmy Possum (Burramys parvus), which is
listed as an endangered species in Australia, and was actually thought to be
extinct, until rediscovered in 1966. At each capture, the weight of the individ-
ual possum was recorded, and in total, 54 unique possums were captured.
Figure 5.3 provides a graphical summary of the weight of individual pos-
sums as recorded when captured over the five night period. Also shown is
the overall mean weight, µ̂(t), as fit by the EM algorithm, and the individual
fitted weights Ŷi(t), also from the EM algorithm, for the fitted model.

Examining Figure 5.3, it appears that the weight of individual possums
may be time varying. There is a decrease in weight between capture occasions
one to four, and an increase between capture occasions four and five. Given
this, we expect the model based on first recorded weight (naive model) to not
perform as well as the EM/FPCA method. We fit both a linear model and
a quadratic model under each method, and also calculate the AIC for each
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Figure 5.3: Weight of Mountain Pygmy Possums over a five night period. The
blue curve is the estimated mean weight.
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method. The results are given in Table 5.5.
Using AIC (Table 5.5), the best model is chosen to be the quadratic EM/FPCA

model. Figure 5.4 plots the relationship between the weight of the Pygmy
Possums, and their probability of capture, as fitted by the quadratic EM/FPCA
model (shown in blue) and the linear naive model (shown in green). Overlaid
in the figure is a kernel density estimate of the weights of the possums (shown
in black). Also shown in the figure are 95% pointwise confidence intervals for
the probability of capture. Under the EM/FPCA method, the predicted pop-
ulation (95% CI) was 57.92 (55.8, 62.5) and for the naive method, predicted
population (95% CI) was 60.29 (56.6, 73.1).

Table 5.5: Results of fitting linear and quadratic models to the Pygmy Possum
data, using the naive and EM/FPCA methods. Bootstrap 95% confidence
intervals are given in parentheses.

Model Method α̂ β̂0Xij β̂1X
2
ij AIC

Constant — -0.29 (-0.66, 0.11) 368.17

Linear
Naive -4.34 (-8.60, -1.81) 0.09 (0.03, 0.20) 357.48
EM/FPCA -2.13 (-5.37, 1.20) 0.04 (-0.04, 0.12) 368.53

Quadratic
Naive -14.22 (-47.56, 8.61) 0.56 (-0.51, 2.05) -0.01 (-0.02, 0.01) 358.36
EM/FPCA 58.41 (5.99, 193.35) -2.87 (-9.28, -0.31) 0.03 (0.01, 0.11) 349.31
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Figure 5.4: Relationship between probability of capture and weight of Pygmy
Possums using the naive (green) and EM/FPCA (blue) methods.
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5.6 Discussion

We have demonstrated in this chapter that the use of a functional principal
components analysis within an EM algorithm provides a more than satis-
factory solution to the problem of time varying covariates within capture–
recapture experiments. Compared with Bayesian approaches such as that
presented by Bonner and Schwarz (2006), our EM/FPCA method does not
require parametric specification of the time varying function. As such, ar-
bitrary dependence on time in the functional covariate is possible. Further,
being essentially a random effects model, the EM/FPCA method adapts to
individual heterogeneity in a straightforward manner.

The simulation results presented in Section 5.5.1 clearly demonstrate the
robustness of the EM/FPCA method. Where the covariate was truly time
varying, the EM/FPCA outperformed the naive method considerably, with
excellent coverage of the fitted parameters providing confidence for subse-
quent inference in the case study. Population estimates were also extremely
good, and overall, the EM/FPCA was almost at a par with the gold standard
method. Where the true covariate was not time varying, but actually constant
over capture occasions (Scenario 3, Table 5.1) the EM/FPCA method again
performed just as well as the naive/gold standard method. Whilst this result
only comes from one simulation study, it gives confidence that the EM/FPCA
will still provide solid inference when the true covariate is constant.

It is perhaps not surprising that the EM/FPCA method performs well in
the constant case (Scenario 3). A constant can still be viewed as a function
over time, albeit non–varying. The advantage of the EM/FPCA is (as dis-
cussed earlier) its ability to adapt to individual heterogeneity, and so constant
models under the EM/FPCA method lead to the ‘filling in’ of missing data,
resulting in effectively the same inferential properties as that of the standard
conditional likelihood inference.

A somewhat surprising result was that in Scenarios 4 and 5. When a
time varying nuisance parameter existed, the naive method was completely
thrown off, and as a result, extremely poor coverage of the parameter esti-
mates would suggest that the power of the naive model was considerably
low in these situations. The EM/FPCA model performed well, with good
mean parameter estimates and coverage. This suggests that when a time
varying covariate is present, but does not influence the probability of cap-
ture, the EM/FPCA method would correctly fail to reject the null hypothesis
of no effect.
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The simulation results give us confidence in the models that are fit to the
Pygmy Possum data. The confidence intervals given in Table 5.5 lead us to re-
ject the null hypothesis of no effect, and further accept that there is a quadratic
relationship between (the logit of) capture probability and the weight of the
possum, which is taken to be time varying.

In summary, the EM/FPCA provides a worthy addition to the capture–
recapture statistician’s toolkit. Not only is it appropriate to use the informa-
tion inherent in a time varying covariate to its fullest through a method such
as that described, the EM/FPCA is also robust to model misspecification and
can handle non time varying covariates with similar ease.



Chapter 6
Possible future directions

Functional data analysis is an exciting area of statistics that is under contin-
uous development. In this thesis we have described a number of modelling
approaches and demonstrated how they may be applied to some common
problems in forest biometry and capture–recapture experiments. Of course,
the methodologies presented are not restricted to the applications described
in the preceding chapters. As an example, many longitudinal data sets in the
biological sciences in general are characterised by repeated measurements
on individuals within distinct groups. In situations where repeated observa-
tions on an individual over time are not possible (e.g. destructive sampling
methods may be required for measurements, or individuals within a sample
can alter rapidly), the method presented in Chapter 4 can still be applicable,
as there we are interested in the distribution of individuals over time, not
specific individuals.

The response variable of interest is likewise not restricted to be of a certain
form as were the examples in this thesis. The improved functional regression
tree method presented in Chapter 3 could be applied to more general func-
tions, with the appropriate choice of dissimilarity matrix, A. For example,
the spectra resulting from the analysis of a sample data by mass spectrome-
try may be considered as functional data, and analysed as such.

The methods presented in Chapters 2 to 4 could possibly be extended to
better account for experimental conditions. The E. globulus data introduced
in Section 1.2.1 were collected under a replicated block design. It may be
possible to extend those methods by allowing for correlation within blocks in
some manner, thus having a shrinkage effect on node deviance. One possible
approach for doing so would be to use an EM algorithm at each stage of
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the splitting procedure. However, adding to the computational complexity
within each node (e.g. Section 3.2.2) would quickly become unmanageable
computationally.

Further enhancements of the methodology of Chapters 2 and 3 were com-
mented on in the discussions of those chapters. We discussed the use of
expert opinion in adjusting the dissimilarity matrix, A, prior to fitting the
models. Whilst this could allow for a vast range of adjustments (we gave the
example of adjusting PDFs that are more favourable to harvesting for timber
volume), the burden on the analyst would increase rapidly with sample size,
as all pairwise dissimilarities aij would need to be adjusted. On top of the
burden to the analyst, the subjectivity of the process of adjusting the dissimi-
larities may also be questioned.

Objective methods of adjusting the dissimilarity matrix A in Chapters 2
and 3 provide possible future research directions. For example, dissimilari-
ties could be augmented by a measure of modality, such as the dip statistic
used in Section 2.2.3. Such a statistic could be combined with a standard dis-
similarity measure to provide a further discriminatory effect between func-
tional observations. A possibility in the cases described in Chapters 2 and
3 where the response functions are calculated as kernel density estimates,
could be weighting based on the number of observations used to calculate
the estimate. Such an adjustment would place more weight on functional
responses based on larger sample sizes, acting effectively as a certainty ad-
justment.

We discussed in Chapter 3 that choice of deviance itself in the calculation
of the dissimilarity matrix could have an impact on the results of the fitted
model. An ensemble method was proposed as one way of dealing with this
choice. In this approach, we would fit multiple models using different dis-
similarities, and combine the results. This would essentially have the effect
of smoothing out the choice of deviance, but would also require significant
increases in computational time. Computational time could however be min-
imised by implementing the approach in parallel. This would be interesting
area for future research.

The method described in Chapter 4 could possibly be further enhanced by
including time–invariant covariates into the model. Presenting a model state-
ment is quite simple in this scenario, for example by including a linear term,
e.g. Zb in the model statement, Equation (4.1), that accounts for covariates
that do not change over time. However, estimating the required parameters
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in such a model does not appear to have a natural solution at this stage.
Experimental design, and specifically the timing of measurements may

provide some interesting outcomes in terms of not only precision, but also
cost of operations when used in conjunction with the Longitudinal Func-
tional Linear Model (Chapter 4). The method in that chapter made use of
data pooling in order to overcome issues with low numbers of observations
over time, and sparseness. In the application presented, however, the mea-
surement schedule meant that although observations were sparse, pooling
was not used in its most optimal way, as the times of measurement were not
completely dense over the time domain of interest (e.g. Yao et al., 2005a, for
more details on pooling to overcome sparseness). Dense observations over
the time period of interest could be achieved if instead of fixed time obser-
vations, measurements of the trees within stands were designed to be taken
at staggered intervals. Such a measurement schedule could result in fewer
measurements being needed, yet also result in greater precision due to the
dense nature of the measurements.

The application of functional data analysis techniques to capture–recapture
data in Chapter 5 is the first of its type to the best of our knowledge. As such,
many extensions seem possible. For example, as the E–step of the algorithm
is essentially divorced from the capture process model, more sophisticated
capture process models could be used. An example is to use a nonparametric
method to model the effect of the functional covariate, however care would
need to be taken to ensure that model identifiability issues did not occur.

The EM/FPCA method of Chapter 5 may further be extended to anal-
yse open populations. Here, one generally has many more capture occasions
spread over a larger amount of time, and so time–varying covariates would
seem to occur quite naturally. However open populations models require the
modelling of not only the capture process, but also methods for dealing with
births, deaths and immigration/emigration and as such will likely be much
more complex than closed populations to analyse.
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Appendix A
FRT Appendix 1

A.1 A further FRT example

We provide here another demonstration of the way in which the FRT method
is fit using recursive partitioning. Recall that we have covariates X, which we
wish to use to estimate E(Y (d)|X) by partitioning the space X of all possible
observations. Assume that we have two covariates, X1 and X2. Then the
recursive partitioning of X defines a hypercube in R2. Figure A.1 displays a
possible partitioning of R2, from the FRT method. The first split is labelled
a, which splits the variable X1 into two regions, X1 < a and X1 ≥ a (as
in Figure 2.1). This split would have been the best split resulting from the
objective function, Equation (2.2). The next split is at b, which splits X2 and
defines two regions R1 and R2. The next split results in four defined regions.

The functional observations that are associated with each region, can then
be used to predict a new observation. For example, suppose we have a new
observation, X∗. We find from our partitioning that X∗ ∈ R2. Then the pre-
dicted function Ŷ ∗(d) will be that associated with region R2 from the parti-
tioning, as is displayed in Figure A.2.
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Figure A.1: Possible partitioning ofR2 from the FRT method. The three splits
a, b, c define four regions R1, R2, R3, R4.
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from Figure A.1.
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A.2 Prediction methods

We give here details of the process used to fit the parameter prediction and
percentile methods using the E. globulus data as an example. As given in
Section 2.2.1, the full model is written as

yi = αi + γi + β1 ·Ai + β2 ·Gi + β3 ·N
+ β4 ·Hi + β5 · Vi + β6 ·Dq,i

(A.1)

where αi and γi are coeffiecients for site and stocking treatment respectively
and yi denotes the response parameter of interest, that is the shape, scale or
location parameter of the Weibull distribution for the parameter prediction
method or the pth percentile for the percentile method.

For the parameter prediction method, the scale and shape parameters of
the Weibull density function (Equation 1.1, Section 1.2) are estimated for each
sample plot using maximum likelihood, with the location parameter being
defined as the minimum diameter in each plot.

The Weibull parameters are then related to the stand characteristics by
Equation (A.1), and the parameters are then estimated using seemingly un-
related regression (Zellner, 1962, Appendix A.3). The process is completed
by removing terms from the model equation for each parameter until all re-
maining terms are significant.

For the percentile method, the response parameter yi in the model equa-
tion (A.1) are the {0, 0.05, 0.15, . . . , 0.95, 1}th percentile differences for each
sample plot. Following Borders et al. (1987) methodology, the 65th percentile
is chosen as the ‘driver’ percentile. Differences between the percentiles are
then calculated, and the system of equations becomes

d65 = Xβ d∗q = Xβ

where d∗q is the difference between the qth and (q − 1)th percentile for the
sample plot (for example, d∗75 = d75 − d65), X are the observed sample char-
acteristics, and β are the model equation parameters. Again the equation
parameters are estimated using seemingly unrelated regression with terms
being removed (in turn from each equation) until all remaining terms are sig-
nificant.

To recreate the diameter distribution for a given plot using the parameter
prediction, we first predict the parameters using the final model, use these
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as the parameters for the Weibull PDF and calculate the densities over a fine
grid. For the percentile method, we first predict the percentile differences,
then recover the actual percentiles (eg. d75 = d65 + d∗75). A constrained cubic
spline is then used to interpolate the percentiles. The derivative of the spline
can then be found to calculate the densities.

A.3 Seemingly–unrelated regression

Seemingly–unrelated regression (SUR) is a method popular in econometrics
that allows the (efficient) estimation of multiple dependent variables from
the same data. This is the situation that occurs in Section 2.2.1 and detailed
above, where the parameter prediction, parameter recovery and percentile
methods relied on the one data set to estimate all parameters and percentiles
from a family of PDFs.

Consider the regression equation given in Equation (1.2) and in particular,
its linear formulation. Zellner (1962) describes a procedure that results in es-
timators of βijk that are more efficient than the case in which we were to treat
each of the i equations turn–by–turn. Following Zellner (1962), I will out-
line the SUR procedure in terms of the parameter prediction method detailed
above. First, write Equation (1.2) in matrix form as

θ1

θ2

...
θm

 =


X1 0 · · · 0

0 X2 · · · 0
...

...
. . .

...
0 0 · · · Xm



β1

β2
...
βm

+


ε1

ε2

...
εm

 (A.2)

where θi is an n × 1 vector containing the ‘observed’ values of the ith PDF
parameter, Xi is an n × p matrix of observed stand–level variables, βi is an
p×1 vector of regression coefficients and εi is an n×1 vector of random error
terms with mean 0. It is further assumed that the m × n error vector on the
RHS of Equation (A.2) has variance–covariance matrix Σ equal to

σ11 σ12 · · · σ1m

σ21 σ22 · · · σ2m

...
...

. . .
...

σm1 σm2 · · · σmm

⊗ In (A.3)

where In is an n×n identity matrix σii′ = E(εijεi′j), j = 1, . . . , n, i = 1, . . . ,m.
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Zellner (1962) show that by pre–multiplying both sides of Equation (A.2) by a
matrix H , such that E(Hεε′H ′) = HΣH ′ = I , the system can be transformed
into single equation regression model that is solvable by generalised least
squares (GLS).

It is generally the case that Σ is unknown and needs to be estimated. Zell-
ner (1962) suggest a two–stage estimator whereby σii′ in Equation (A.3) is
estimated by the residuals from the single equation, ordinary least squares
estimator. That is, σ̂ii′ = sii′ = (θi −Xiβ̂i)

′(θi −Xiβ̂i). With Σ̂ now in place,
the SUR estimator of β is the GLS estimator

b̂ = (X ′Σ̂X)−1X ′Σ̂−1θ

where θ = [θ′1θ
′
2 · · ·θ′m]′, and X is the block–diagonal matrix {Xi} in Equa-

tion (A.2). Details regarding the asymptotic distributions of b̂ and its cor-
responding variance–covariance matrix resulting from this two–stage proce-
dure can be found in Zellner (1962).
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B.1 Cost–complexity pruning

As mentioned in Section 3.1, the optimal sized tree is chosen by cost–complexity
pruning. Without reproducing the minutiae of the procedure (which may be
found in Breiman et al., 1984), a finite (nested) sequence of subtrees is found
by the procedure from which one can select the optimal sized tree through
resampling techniques. This sequence of subtrees is the set of trees Tα which
minimise the cost-complexity measure

Dα = D(T ) + α|T |

and can be indexed by a finite sequence α = α0, . . . , αS , where α0 = 0 gives
the maximal tree (for which there are no more possible splits), and αS = ∞
gives the root node. Here D(T ) is the deviance of the tree T (the sum of
the terminal node deviances), and |T | is the size (number of terminal nodes).
We then choose the tree which minimises some measure of the error, either
through cross–validation or bootstrap as explained next. Note, some authors
(e.g. Hastie et al., 2009) advocate using an adjustment for the standard error
of the loss function to choose the optimal tree, known as the 1-s.e. rule. We
have found this definition to over–prune the trees when the response is a PDF
and so instead we use the minimum error to prune the tree.

B.1.1 Cross–validation

For cross–validation, we first split the data into K subsets and proceed as
follows:
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• Remove the first subset and fit the full model to the remaining K − 1

subsets

• For each αs above, prune the full model, compute the predicted value
(f̂kαs(xi)) for the observations in the removed subset and calculate

Eαs(k) =
∑

i∈kth subset

L(yi, f̂
k
αs(xi))

the cross–validation error for the kth subset, and some loss function L

• Repeat for each of the remaining K − 1 subsets

The choice of the optimal sized tree is then the tree Tα corresponding to αs
which minimises the cross–validation error

Êrr
cv
αs =

K∑
k=1

Eαs(k)

Nerini and Ghattas (2007) use Euclidean distance as the loss function L. Our
simulations have shown that this can still be an appropriate choice for L,
however we advocate using the Kullback–Leibler divergence as used in the
splitting criterion. That is, we recommend

L = KL(yi, f̂
k
αs(xi)) + KL(f̂kαs(xi), yi) (B.1)

where KL(yi, yj) =

∫
yi(t) log

(
yi(t)

yj(t)

)
dt

B.1.2 Bootstrap 0.632+

Let oi = (yi,xi) ∼ F, i = 1, . . . , n be the observed data, where yi is the re-
sponse variable of interest (this paper assumes that yi is a probability density
function) and xi are the corresponding covariates. Then assuming F̂ to be the
epmirical distribution which places mass of 1/n on each oi, B bootstrap sam-
ples obi are drawn from F̂ , and the full model is fit to each of the B boostrap
replicates. Similar to cross–validation described above, for each αs we prune
the full model and define the leave–one–out bootstrap estimate of error, and
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apparent error rate respectively as

Êrr
(1)

αs =
1

N

N∑
i=1

1

|C−i|
∑
b∈C−i

L(yi, f̂
∗b
αs(xi))

errαs =
∑
r

L(yi, f̂αs(xi))

where f̂∗bαs(xi) is the predicted value for xi ∈ N(r) for the tree grown on the
bth bootstrap sample, C−i is the set of bootstrap replicates that do not contain
the ith observation, |C−i| is the number of bootstrap replicates that do not
contain the ith observation and f̂αs(xi) is the predicted value for tree grown
using the whole data set. Define as well, the no–information error rate as

γ̂αs =
1

N2

N∑
i=1

N∑
j=1

L(yi, f̂αs(xi))

and the relative overfitting rate as

R̂αs =

(Êrr
(1)

αs − errαs)/(γ̂αs − errαs) if Êrr
(1)

αs , errαs > γ̂αs

0 otherwise.

Letting Êrr
(1)′

αs = min(Êrr
(1)

αs , γ̂αs) the 0.632+ bootstrap estimate of error (Efron
and Tibshirani, 1997) for tree Tαs is given by

Êrr
(0.632+)

αs = Êrr
(0.632)

αs + (Êrr
(1)′

αs − errαs)
0.368 · 0.632 · R̂αs

1− 0.368 · R̂αs
(B.2)

where Êrr
(.632)

αs = 0.368errαs + 0.632Êrr
(1)

αs

We choose the optimal sized tree to be the tree Tα corresponding to αs

which minimises (B.2), again choosing loss functionL as that in Equation (B.1).

B.2 Further simulation results for FRT

In this appendix we include extra results from the simulation study (Sec-
tion 3.3.1). We noted in Section 3.2.3 that cross–validation proved to be too
variable to estimate the tree–size penalty and so we used the bootstrap 0.632+.
Table B.1 compares the standard deviation of the number of terminal nodes in
Model 3 for each deviance, when using both the bootstrap 0.632+ and cross–
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validation to estimate the tree–size penalty. Figure B.1 displays the theoretical
distributions used for Models 1 and 2 in the simulation study.

Table B.1: Comparison of root mean squared error of the number of terminal
nodes for Model 3 when using bootstrap 0.632+ (Appendix B.1.2) vs. cross–
validation (Appendix B.1.1); M = 200.

Bootstrap 0.632+ Cross–validation
mi D1(r) D2(r) D3(r) D1(r) D2(r) D3(r)

15 0.53 0.58 1.53 1.38 0.99 3.44
25 0.53 0.63 1.56 1.69 1.43 1.91
50 0.58 0.76 1.58 7.52 1.77 2.58
75 0.65 0.80 1.77 2.20 1.95 3.26
100 0.64 1.15 1.68 1.90 1.58 1.73
150 0.63 1.08 1.71 2.86 2.07 1.77
200 0.71 0.79 1.72 1.97 2.10 1.48
250 0.63 1.02 1.62 1.77 1.78 3.39
500 0.80 0.93 1.67 2.50 2.14 1.49
1000 0.76 1.20 1.70 2.22 1.87 1.71
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Figure B.1: Theoretical distributions used in the simulation study. Models 1
and 2 (see Table 3.2 for details).
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C.1 Conditional expectation of the FPC scores

Noting that φl(d, t), X(s) and η(s) are a smooth bounded functions in L2(D),
swapping integration and summation is not an issue. The integral form of
the conditional expectation of the FPC scores bk(t) in Equation (4.9) is given
by

E [bl(t)|X] =

∫
D
E {f(d, t)− µ(d, t)|X}φk(d, t) dd

=

∫
D

[ ∞∑
k=1

{∫
T
βk(t, s) (X(s)− η(s)) ds

}
φk(d, t)

]
φl(d, t) dd

=

∫
T

∞∑
k=1

βk(t, s) (X(s)− η(s))

{∫
D
φk(d, t)φl(d, t) dd

}
ds

=

∫
T
βl(t, s) (X(s)− η(s)) ds

C.2 Leave one group out cross–validation

To allow for any within–group correlation, we choose bandwidths for the
LFLM by leave one group out cross–validation. For the mean smoother,
µ̂(d, t) (Equation 4.14), let Ŷ−i(d, tij) be the predicted curve of the ith obser-
vation at time tij , made by removing all observations in group i from the
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smoother:

Ŷ−i(d, tij) =

N∑
k 6=i

Nk∑
j=1

Wkj(t)Yk(d, tkj), where

Wkj(t) =
Khµ(t− tkj)∑N

k 6=
∑Nk

j=1Khµ(t− tkj)

The cross-validation choice of the bandwidth hµ is then

ĥ = argmin
hµ

N∑
i=1

Ni∑
j=1

∣∣∣∣Yi(d, tij)− Ŷ−i(d, tij)∣∣∣∣2

C.3 Permutation testing

As described in Section 4.2.1, the significance of the functional predictor can
be tested via a permutation p–value. We describe the implementation of this
test briefly in this appendix. The ‘observed’ value of the F–statistic is found
directly by fitting the functional regression model (4.2) and calculating Fobs

using Equation (4.23).

Under the null hypothesis that the functional predictor X has no effect,
the permutation principle says that the pairing of any particular (X,Y (d, t))

is random. To hold with this principle, we define our permutations over the
group–level (stands in our application) so that a permutation of the func-
tional predictors is performed. Specifically, denote as in Section 4.1, the func-
tional response at time tij as Yi(d, tij) and the functional predictor as Xi(tij),
and further denote the whole–of–stand observation as

({Yi(d, ti1), . . . , Yi(d, tiNi)} , {Xi(ti1), . . . , Xi(tiNi)}) = (Yi,Xi)

for i = 1, . . . , N . Further, let χ = {X1, . . . ,XN} and let χb be a random per-
mutation of the setχwith elements {Xb,k(1), . . . ,Xb,k(N)}, where k(i) denotes
the index after permutation. The typical data pair after the bth random per-
mutation becomes

(
Yi,Xb,k(i)

)
, which are used to estimate β(d, s, t) in the

functional linear model (4.2). We make note here that it is not necessary that
Y (d, t) and X(t) are measured the same number of times (and indeed at the
same time), see Yao et al. (2005b) for details. This is important for the permu-
tation test, as it is likely that under permutation, the lengths of Y and X will
be different.
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Following Cardot et al. (2007), we will also condition on the bandwidths
used in the mean and covariance smoothers (Equations 4.14 and 4.15) as well
as the dimensions of the functional coefficient (Equation (4.21)). Using the
estimated values of these from fitting the ‘observed’ model, we then fit b =

1, . . . , B permutation models of the form

E [Y (d)|t,X] = µ(d, t) +

∫
T
βb(d, s, t) [Xb(s)− η(s)] ds (C.1)

where Xb and βb denote the fact that we have used permuted data in fitting
the model. Letting Ŷb(d, t) = Ê [Y (d, t)|Xb] be the predicted value of the
density Y (d, t) under the permutation model (C.1), RSS1 in Equation (4.23)
becomes

RSS1b =
N∑
i=1

Ni∑
j=1

∫
D

[
Yi(d, tij)− Ŷb(d, tij)

]2
dd

and

Fb =
RSS0 − RSS1b

RSS1b
.

The p–value (4.24) follows directly.

C.4 Further results

This appendix provides an extension to the results of Yao et al. (2005b) and

Cardot (2007) that are required for Theorem 1. The term
∑K

k=1

∑L
l=1 δ

bk
klAδbkkl

(√
nh2

k −Aδbkkl
)−1

in A(n) of Theorem 1 represents the convergence of the eigenfunctions of
the functional principal coefficients bk(t). Specifically, following Yao et al.
(2005b), ϕ̂kl(t) can be chosen such that

sup
t∈T
|ϕ̂kl(t)− ϕkl(t)| = Op

 δbkklAδbkkl√
nh2

k −Aδbkkl


and it follows from this and Equations (38) and (39) of Yao et al. (2005b) that

|σ̂klm − σklm| = Op

max

 δXmAδXm√
nh2

X −AδXm
,

δbkklAδbkkl√
nh2

k −Aδbkkl
,

1√
nhl1h2




From Cardot (2007) and Yao et al. (2005b), we have the following:
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Lemma 3.

sup
d

∣∣φ̂k(d, t)− φk(d, t)∣∣ = Op

[(
hβY1 + hαY2 +

{
log n

nmin(hY1 , hY2)

}1/2
)
κl

]

Proof. Note that from Cardot (2007), we have∣∣∣λ̂k(t)φ̂k(d, t)− λk(t)φk(d, t)∣∣∣
=

∣∣∣∣∫D γ̂(t, e, d)φ̂k(e, t) de−
∫
D
γ(t, e, d)φk(e, t) de

∣∣∣∣
≤
∫
D

∣∣∣γ̂(t, e, d)− γ(t, e, d)
∣∣∣ · ∣∣∣φ̂k(e, t)∣∣∣ de

+

∫
D

∣∣∣γk(t, e, d)
∣∣∣ · ∣∣∣φ̂k(e, t)− φk(e, t)∣∣∣ de

≤
{∫
D

[γ̂(t, e, d)− γ(t, e, d)]2 de

}1/2

+

{∫
D
γ2
k(t, e, d) de

}1/2

·
∣∣∣∣∣∣φ̂k(e, t)− φk(e, t)∣∣∣∣∣∣H

Now by Theorem 1 and Corollary 1 of Cardot (2007), and assuming, without
loss of generality, λk(t) > 0, and that κj = supt δj is a bounded sequence
where δj are as defined in Cardot (2007)∣∣∣∣∣ λ̂k(t)φ̂k(d, t)λk(t)

− φk(d, t)
∣∣∣∣∣ = Op

[(
hβY1 + hαY2 +

{
log n

nmin(hY1 , hY2)

}1/2
)
κl

]

uniformly in d, where hY1 and hY2 are the bandwidths used in the functional
mean smoother (Equation 4.14) and functional covariance smoother (Equa-
tion 4.15) respectively. Combined with Corollary 1 of Cardot (2007), the result
follows.
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C.5 Extra figures
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Figure C.1: 95% confidence intervals (shaded grey) for E [f(d, t)|X∗], when
a) t = 1.61 years, and b) t = 7.90 years. The solid line is the observed value,
and the dashed line is the predicted value.



Appendix D
Code Appendix

This appendix provides instructions on how to replicate the simulation re-
sults in Chapters 3 and 5. The code to perform the various calculations is in
the attached CD. The code relating to Chapter 5 makes use of the PACE
package (http://anson.ucdavis.edu/~ntyang/PACE/) and has been included
in the attached CD for ease of use. References to scripts etc. assume that the
user has saved the folder Code in the attached CD to their home directory on
a Mac/Unix-alike system.

D.1 Chapter 3 code

The code to run the simulations for this chapter is included in the Chapter_3
folder of the attached CD, and requires R (R Development Core Team, 2009)
to run. The following packages need to be installed on the machine used to
run the code

require(MASS)

require(mvpart)

require(nor1mix)

require(flexmix)

require(caTools)

Make sure that an R session is started within the same folder that the scripts
are located, or the working directory is changed to that folder, e.g.

setwd("~/Code/Chapter_3")
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then source the driver file (which includes all the necessary scripts and func-
tions)

source("Main.r")

To run the simulation for Model 1 (Table 3.2), with M = 50 observations
and ni = 25 samples per observation the following may be used (note that for
a large number of repetitions and/or bootstraps, this may take some time)

M <- 50

n.i <- 25

boots <- 50 # number of

# bootstraps

numreps <- 100 # number of

# simulation reps

sims <- run.sim(data.type = 1, n.i, M, B = boots,

numreps = numreps)

results <- compile.fun()

show(results)

D.2 Chapter 5 code

The code to run the simulations for this chapter is included in the Chapter_5
folder of the attached CD, and requires MATLAB (MATLAB, 2011) to run. In
the following code examples, we assume that the code has been saved in
the user’s home directory of a Mac/Unix-alike system. The scripts to run
each simulation are included in the Chapter_5 folder, with filenames corre-
sponding to the scenarios simulated (see Table 5.1). We describe the code for
Scenario 1a here. The first thing to do is to tell MATLAB where all relevant
code exists

addpath(genpath('~/Code/Chapter_5/PACE/'));

addpath(genpath('~/Code/Chapter_5/Func_Pred'));

We can then use the following to run the Scenario 1a simulation with 100
repetitions, true population N = 50 and 100 bootstrap replications (note that
this may take some time)
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% Scenario 1a

model = 'Mu1';

% Number of simulation reps

nreps = 100;

% Number actually in the population

ncohort = 50;

% Number of bootstraps

B = 100;

% Run the simulation

Sim_Data;

The next lot of code summarises the simulation results

% Viewing the results.

% Mean of N from EM/FPCA, gold standard and naive

% methods.

mean([N_2 N_3 N_4])

% Mean of beta1 from EM/FPCA, gold standard and

% naive methods.

mean([par2(:, 2) par3(:, 2) par4(:, 2)])

% 95% Bootstrap CI of beta1 from EM/FPCA, gold

% standard and naive methods.

mean(CI_par_fpca(:, 3:4))

mean(CI_par_gold(:, 3:4))

mean(CI_par_first(:, 3:4))
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