
Software Debugging Using Program

Spectra

by

Lee Hua Jie

Submitted in total fulfilment of

the requirements of the degree of

Doctor of Philosophy

September 2011

Department of Computer Science and Software Engineering

The University of Melbourne, Australia

To my parents, who support me in everything that I do.

Abstract

This thesis focuses on debugging using program spectra. Program spectra captures the

dynamic behaviour of a program indicating which program statements are executed by

respective test cases, which include pass and fail cases. By using this information, we use

functions to rank all statements to locate bugs. Statements ranked top of the ranking are

more likely to be buggy. We refer to these functions as spectra metrics. In a traditional

debugging task, the programmer often has to examine program execution step-by-step

within a block or function of program code that is most likely to be buggy. Using program

spectra information can help the programmer to narrow down to those program statements

that are most likely to be buggy.

The thesis contributes to the theoretical understanding of debugging single bug pro-

grams using program spectra. We propose several spectra metrics and also review other

metrics suggested for bug localization. Some of the metrics that have been previously

employed in other domain areas such as biological science have been adapted for the de-

bugging area and their effectiveness have been evaluated. We propose several methods

to help improve the precision of bug localization. We show by employing more informa-

tion such as frequency execution and coverage of test cases can improve bug localization

performance significantly.

Our extensive evaluation on several benchmarks, namely Siemens Test Suite, subset

of Unix Test Suite, Concordance, and Space indicate that our proposed spectra metrics

are effective in improving bug localization performance. This thesis work advances the

state-of-the-art of bug localization and consequently has great potential to improve the

effectiveness of debugging software.

v

Declaration

This is to certify that:

(i) the thesis comprises only my original work towards the PhD except where indicated
in the Preface,

(ii) due acknowledgement has been made in the text to all other material used,

(iii) the thesis is less than 100,000 words in length, exclusive of table, maps, bibliogra-
phies, appendices and footnotes.

Hua Jie Lee

vii

Preface

This thesis is mostly based on original work jointly conducted with my advisors, Dr. Lee
Naish and Prof. Kotagiri Ramamohanarao (Rao). The results of the research are presented
in the following five peer reviewed papers:

• Naish, L., Lee, H., and Ramamohanarao, K. A Model for Spectra-based Software

Diagnosis. In Volume 20 – Issue 3 of Transactions on Software Engineering and
Methodology (TOSEM). ACM [Naish et al., 2011].

– Most of the contents of this paper can be found in Chapter 5.

– Extensive evaluation on other benchmarks such as the subset of the Unix Test
Suite, Concordance, and Space using the proposed optimal metrics and other
spectra metrics are also detailed in the chapter.

• Lee, H., Naish, L., and Ramamohanarao, K. Study of the Relationship of Bug

Consistency with respect to Performance of Spectra Metrics. In Proceedings of the
2009 2nd International Conference on Computer Science and Information Technol-
ogy, pages 501–508. IEEE Computer Society [Lee et al., 2009a].

– The contents of this paper can be found in Chapter 6.

• Lee, H., Naish, L., and Ramamohanarao, K. The Effectiveness of Using Non

redundant Test Cases with Program Spectra for Bug Localization. In Proceedings
of the 2009 2nd International Conference on Computer Science and Information
Technology, pages 127–134. IEEE Computer Society [Lee et al., 2009b].

– The contents of this paper can be found in Chapter 7.

– We further investigate the effectiveness of bug localization using larger num-
ber of unique pass and fail test cases in the chapter.

• Naish, L., Lee, H., and Ramamohanarao, K. Spectral Debugging with Weights

and Incremental Ranking. In Proceedings of the 2009 16th Asia-Pacific Software
Engineering Conference, pages 168–175. IEEE Computer Society [Naish et al.,
2009].

– Most of the contents of this paper can be found in Chapter 8.

– The chapter includes analysis of the proposed incremental ranking approaches
on O and Op metrics using our model program [Naish et al., 2011].

ix

• Lee, H., Naish, L., and Ramamohanarao, K. Effective Software Bug Localization

Using Spectral Frequency Weighting Function. In Proceedings of the 2010 34th
Annual IEEE Computer Software and Applications Conference, pages 218–227.
IEEE Computer Society [Lee et al., 2010].

– Most of the contents of this paper can be found in Chapter 9.

– Further evaluation to validate the effectiveness of the proposed approach on
other single bug and multiple-bug programs, namely Concordance and Space,
can also be found in the chapter.

I have also co-authored the following paper with my advisors:

• Naish, L., Lee, H., and Ramamohanarao, K. Statements versus Predicates in

Spectral Bug Localization. In Proceedings of the 2010 17th Asia-Pacific Software
Engineering Conference, pages 375–384. IEEE Computer Society [Naish et al.,
2010].

– This paper describes the study of using predicate-based spectra metrics to lo-
cate bugs effectively. Due to the lack of space in this thesis, the contribution
of this paper is briefly described in Chapter 2.

x

Acknowledgements

First and foremost, I would like to thank my advisors, Dr Lee Naish and Professor Kotagiri
Ramamohanarao. They always provide me advice and guidance throughout these years.
Coming from the working background of software testing in the industry prior to this, I
gained different perspectives of research in this area. When I am facing research problems,
they never fail to give constructive suggestions which always lead me to think out of the
box. Along this research journey, I am grateful to them that they always give me the
flexibility to explore and pursue different angles to solve a particular research problem.
From the constant meetings and discussions with my advisors, they trained me to possess
the attributes of a researcher. Hence enabling me to discuss, present research ideas and
findings confidently.

I would also like to thank my Ph.D. advisory committee member, Dr Tim Miller for his
valuable feedback who has helped me tremendously to improve the quality of my thesis.
I would like to thank all the other academic staff of the Department of Computer Science
and Software Engineering, University of Melbourne. I have worked with all of them at
some point during the past three-and-a-half years. I would also like to acknowledge the
generous support of the University of Melbourne and the Department of Innovation, In-
dustry, Science and Research in providing Endeavour International Postgraduate Research
Scholarships (IPRS) for my research. I would like to extend my gratitude to Bernard Pope,
William Webber, and Alex Stivala for proofreading the earlier draft of my thesis.

Thanks to my fellow students and colleagues at the University of Melbourne, in partic-
ular my previous and current office-mates, Adel, Andreas Schutt, Hairo, Lei Ni, Martin,
Raj Gaire, Tanzima Hashem, and ZiYuan. To my friends Eunus, Fan, Jubaer Arif, Juni
Ong, Kapil, Michelle, Mukaddim, Parvin, Rafiul, SriDevi, Stephen Ng, and Sue Lynn. I
would also like to thank David Staples who never fail to help me whenever I face prob-
lems in computer and server configuration. He first introduced me to the world of Unix
and Bash in my early days of my Ph.D. Thank you all for making the research experience
at the University of Melbourne even more rewarding.

Last but not least, I would like to express my thanks to my family. My dad, mum,
brother and sister have always been there for me and supported me. They always encour-
age me to pursue what I like in my life and never to give up easily.

Lee Hua Jie

Melbourne, Australia

September 2011.

xi

Contents

1 Introduction 1
1.1 Contributions . 3
1.2 Structure of the thesis . 4

2 Background and Literature Review 7
2.1 Introduction . 7
2.2 Background . 8
2.3 Spectra Metrics . 9
2.4 Literature Review of Spectral Debugging Using Dynamic Analysis 15
2.5 Summary . 34

3 Survey of Software Fault Localization Techniques 35
3.1 Introduction . 35
3.2 Slicing and Dicing Approaches . 35
3.3 Statement-based, Block-based, and Predicate-based Spectra Coverage Ap-

proaches . 41
3.4 State-based Approaches . 49
3.5 Test Reduction Approaches . 54
3.6 Combining Spectra-based and Machine Learning Approaches 57
3.7 Summary . 67

4 Performance Measures 69
4.1 Introduction . 69
4.2 Principles of Performance Measures . 69
4.3 Existing Performance Measures . 75

4.3.1 Rank Percentages . 75
4.3.2 Successful Diagnosis of Bugs 77
4.3.3 Program Dependence Graphs (PDG) 78

4.4 Proposed Performance Measures . 79
4.4.1 Median Rank Percentages . 79
4.4.2 Top-rank-bug Score . 80
4.4.3 Relative Score . 80

4.5 Empirical Datasets and Validation . 82
4.6 Threats to Validity . 86
4.7 Summary . 87

xiii

5 A Model for Spectra-Based Software Fault Diagnosis 89
5.1 Introduction . 89
5.2 Spectra Metrics and Their Equivalences 90

5.2.1 Equivalence of the Spectra Metrics 90
5.3 Model Program . 94
5.4 Performance Evaluation using Multisets of Execution Paths 95

5.4.1 Generating Multisets of Execution Paths 96
5.4.2 Using Top-rank-bug Score to Evaluate Performance 98

5.5 Optimal Ranking . 99
5.5.1 Optimal Spectra Metric O . 100
5.5.2 Other Optimal Spectra Metrics 102

5.6 Insights of Spectra Metrics . 104
5.7 Results Using Model Program . 109

5.7.1 Test Suite Size . 110
5.7.2 Error Detection Accuracy . 113
5.7.3 The Number of Fail Tests . 115
5.7.4 Buggy Code Execution Frequency 117
5.7.5 Comparison of Metrics . 118
5.7.6 Other Models . 121

5.8 Results Using Empirical Benchmarks . 122
5.8.1 Average Rank Percentages . 123
5.8.2 Successful Diagnosis of Bugs, SucDiag 130

5.9 Multiple-bug Programs . 133
5.10 Discussion . 138
5.11 Other Performance Measures . 139

5.11.1 High, Mid, Low, and Median measures 139
5.11.2 Top-rank-bug Score . 142
5.11.3 Relative Score . 143

5.12 Summary . 146

6 Bug Consistency of Buggy Statement with respect to Bug Localization Per-
formance 147
6.1 Introduction . 147
6.2 Relationship of Bug Consistency, qe with respect to Bug Localization Per-

formance (Rank Percentages) . 148
6.3 Plot of the Relationship of Rank Percentages vs Bug Consistency, qe . . . 149

6.3.1 Siemens Test Suite . 150
6.3.2 Subset of the Unix Test Suite . 153
6.3.3 Insights on the Bug Consistency, qe with respect to the Rank Per-

centages . 155
6.3.4 Evaluating The Relationship of Rank Percentages vs Bug Consis-

tency, qe on the Multiple-bug Programs 159
6.4 Summary . 161

7 Bug Localization using Unique (Non-redundant) Test Cases 163
7.1 Introduction . 163
7.2 Concept of Unique (Non-redundant) Test Cases 164

7.2.1 Insights of Redundant Test Cases 165
7.3 Bug Localization Performance using Unique Test Cases 166

7.3.1 Single Bug Programs . 166
7.3.2 Multiple-bug Programs . 170

7.4 Study of Varying the Number of Unique Test Cases with respect to Bug
Localization Performance . 173

7.5 Summary . 181

8 Weighted Incremental Ranking Approaches 183
8.1 Introduction . 183
8.2 Varying Weights for Fail Tests . 183
8.3 Incremental Ranking Approaches . 186
8.4 Using Proposed Weighted and Incremental Ranking Approaches on Model

Program . 189
8.5 Empirical Evaluation of the Proposed Weighted and Incremental Ranking

Approaches . 191
8.5.1 Single Bug Programs . 191
8.5.2 Multiple-bug Programs . 195
8.5.3 Time Taken . 198

8.6 Summary . 200

9 Using Spectral Frequency Weighting Function in Bug Localization 201
9.1 Introduction . 201
9.2 Introduction to Spectral Frequency Weighting Function 201
9.3 Bug Localization Performance Using Spectral Frequency Weighting Func-

tion . 205
9.3.1 Single Bug Programs . 205
9.3.2 Multiple-bug Programs . 208
9.3.3 Statistical Significance . 212

9.4 Summary . 214

10 Conclusions 215
10.1 Summary . 215

10.1.1 Model Program . 216
10.1.2 Bug Consistency . 216
10.1.3 Equivalence of Spectra Metrics 216
10.1.4 Unique (Non-redundant) Test Cases 216
10.1.5 Varying Weights on Fail Tests 217
10.1.6 Frequency Weighting Function 218

10.2 Future Directions . 218

Bibliography 220

Appendices 237

A Reported Software Bug & Software Failure Incidents 239

B Spectra Metrics Surfaces 243

C Bug Localization Performance vs Bug Consistency, qe for Respective Spec-
tra Metrics 247
C.1 Single Bug Programs . 247

C.1.1 Siemens Test Suite . 247
C.1.2 Subset of the Unix Test Suite . 249
C.1.3 Concordance . 250
C.1.4 Space . 253

C.2 Multiple-bug Space Programs . 256

D Information of Unique (Non-redundant) and Redundant Test Cases 259
D.1 Single Bug Programs . 259
D.2 Multiple-bug Programs . 260

E Varying the Number of Unique Test Cases with respect to Bug Localization
Performance 261
E.1 Single Bug Programs . 261
E.2 Multiple-bug Programs . 265

F Empirical Evaluation of the Proposed Incremental Ranking Approaches
on Unique (Non-redundant) Test Cases 269
F.1 Single Bug Programs . 269
F.2 Multiple-bug Programs . 272

G Spectral Frequency Weighting Function on Concordance and Space pro-
grams 275

H Bug Information of Respective Datasets 279

List of Tables

2.1 Example of Test Coverage Information (frequency counts) with Tests T1 . . . T5 8
2.2 Example of Test Coverage Information (binary) and Program Spectra with

Tests T1 . . . T5 . 8
2.3 List of Spectra Metrics . 10
2.4 Mid Program from Jones et al. [2002] 18
2.5 Spectra Metrics used in the Predicate-based Spectra Coverage studies . . 29

4.1 Description of the Siemens Test Suite, the subset of the Unix Test Suite,
Space, and Concordance . 83

5.1 Influence of Test Suite Size and Group A metrics on Total Score (%) for
ITE28 . 111

5.2 Influence of Test Suite Size and Group B metrics on Total Score (%) for
ITE28 . 111

5.3 Influence of Error Detection Accuracy, qe, with 100 tests for ITE28 . . . 114
5.4 Influence of Proportion of Fail Tests with 100 tests for ITE28 115
5.5 Influence of Pass Tests with 5 Fail Tests for ITE28 116
5.6 Influence of Buggy Code Execution Frequency with 100 tests for ITE28 . 117
5.7 Equivalent Formulas for the Spectra Metrics used 120
5.8 Average Rank Percentages for programs of the Siemens Test Suite 123
5.9 Average Rank Percentages for programs of the subset of the Unix Test

Suite and Concordance . 124
5.10 Average Rank Percentages for all Single Bug Datasets 125
5.11 Average Rank Percentages for all Single Bug Datasets — executed lines

of code only (Group A metrics) . 127
5.12 Average Rank Percentages for all Single Bug Datasets — executed lines

of code only (Group B metrics) . 128
5.13 Percentage of Successful Diagnosis of Bugs, SucDiag for Single Bug

Siemens Test Suite, subset of the Unix Test Suite, Concordance, and Space
programs . 131

5.14 Percentage of Successful Diagnosis of Bugs, SucDiag for the Siemens
Test Suite . 132

5.15 Average Rank Percentages for the Two-bug Siemens Test Suite and the
subset of the Unix Test Suite — executed lines of code only 134

5.16 Average Rank Percentages for the Three-bug Siemens Test Suite and the
subset of the Unix Test Suite — executed lines of code only 136

5.17 Average Rank Percentages for the AllTests and Subset of Multiple-bug
Space Programs (average of 10 bins) . 138

xvii

5.18 Results of High, Mid, Low, Median, First Quartile, and Third Quartile
Rank Percentages for the Siemens Test Suite (Single Bug Programs) . . . 140

5.19 Results of the Top-rank-bug Score (%) for the Siemens Test Suite (Single
Bug Programs) . 142

5.20 Results of Average Relative Score for Single Bug Programs of the Siemens
Test Suite, the subset of Unix Test Suite, Concordance, and Space 143

5.21 Results of Average Relative Score for Multiple-bug Programs of the Siemens
Test Suite, the subset of Unix Test Suite, and Space 145

7.1 Code Fragment of Figure 1 from Yu et al. [2008] 164
7.2 Breakdown of Unique Test Cases (on average) for the Subset of the Single

Bug Programs . 165
7.3 Average Rank Percentages for Redundant and Unique Test Cases of the

Single Bug Siemens Test Suite and the subset of the Unix Test Suite . . . 166
7.4 Average Rank Percentages for Redundant and Unique Test Cases of the

Single Bug Concordance Programs . 167
7.5 Average Rank Percentages for Redundant and Unique Test Cases of the

Single Bug Space Programs (on average of 10 bins) 168
7.6 Average Rank Percentages for Redundant and Unique Test Cases of the

Two-bug Programs of the Siemens Test Suite and the subset of the Unix
Test Suite . 170

7.7 Average Rank Percentages for Redundant and Unique Test Cases of the
Three-bug Programs of the Siemens Test Suite and the subset of the Unix
Test Suite . 171

7.8 Average Rank Percentages for Redundant and Unique Test Cases of the
Multiple-bug Space Programs (on average of 10 bins) 171

7.9 Average Rank Percentages (on average) for the different Percentages Se-
lection of the Unique Pass Test Cases - Single Bug Siemens Test Suite and
the subset of the Unix Test Suite . 174

7.10 Average Rank Percentages (on average) for the different Percentages Se-
lection of the Unique Fail Test Cases - Single Bug Siemens Test Suite and
the subset of the Unix Test Suite . 176

7.11 Average Rank Percentages (on average) for the different Percentages Se-
lection of the Unique Pass and Fail Test Cases - Single Bug Siemens Test
Suite and the subset of the Unix Test Suite 178

8.1 Evaluation of Incremental Ranking Approaches on the Model Program
ITE28 . 189

8.2 Average Rank Percentages for the Single Bug Siemens Test Suite and the
subset of the Unix Test Suite . 191

8.3 Average Rank Percentages for the Single Bug Concordance Programs . . 192
8.4 Average Rank Percentages (on average of 10 bins) for the Single Bug

Space Programs . 193
8.5 Average Rank Percentages for the Two-bug Siemens Test Suite and the

subset of the Unix Test Suite . 195
8.6 Average Rank Percentages for the Three-bug Siemens Test Suite and the

subset of the Unix Test Suite . 196

8.7 Average Rank Percentages (on average of 10 bins) for the Multiple-bug
Space Programs . 197

8.8 Time Taken for the Siemens Test Suite and the subset of the Unix Test
Suite Programs (on average of one program) 199

8.9 Time Taken for the Single Bug Concordance and Space Programs (on
average of one program) . 199

8.10 Time Taken for the Multiple-bug Space Programs (on average of one pro-
gram) . 199

9.1 Example of Test Coverage Information (frequency counts) with Tests T1 . . . T5202
9.2 Example of Test Coverage Information (binary) and Program Spectra with

Tests T1 . . . T5 . 202
9.3 Example of Program Spectra with Frequency Information and Mapped

Program Spectra Properties . 204
9.4 Average Rank Percentages for the Single Bug Siemens Test Suite and the

subset of the Unix Test Suite with respect to the Different α values 206
9.5 Average Rank Percentages for the Two-bug Siemens Test Suite and the

subset of the Unix Test Suite with respect to the Different α values 208
9.6 Average Rank Percentages for the Three-bug Siemens Test Suite and the

subset of the Unix Test Suite with respect to the Different α values 209
9.7 Average Rank Percentages (on average of 10 bins) for the Multiple-bug

Space Programs with respect to the Different α values 210

A.1 Software Bug & Software Failure Incidents (partly taken from Charette
[2005]) . 239

D.1 Breakdown of Unique Test Cases (on average) for the Single Bug Siemens
Test Suite, the subset of the Unix Test Suite, Concordance, and Space
Programs . 259

D.2 Breakdown of Unique Test Cases (on average) for the Two-bug Siemens
Test Suite and the subset of the Unix Test Suite 260

D.3 Breakdown of Unique Test Cases (on average) for the Three-bug Siemens
Test Suite and the subset of the Unix Test Suite 260

D.4 Breakdown of Unique Test Cases (on average) for the Multiple-bug Space
Programs . 260

E.1 Average Rank Percentages (on average) for the different Percentages Se-
lection of the Unique Pass and Fail Test Cases - Single Bug Concordance
Programs . 261

E.2 Average Rank Percentages (on average) for the different Percentages Se-
lection of the Unique Pass and Fail Test Cases - Single Bug Space Programs263

E.3 Average Rank Percentages (on average) for the different Percentages Se-
lection of the Unique Pass and Fail Test Cases - Two-bug Programs Siemens
Test Suite and the subset of the Unix Test Suite 265

E.4 Average Rank Percentages (on average) for the different Percentages Se-
lection of the Unique Pass and Fail Test Cases - Three-bug Programs
Siemens Test Suite and the subset of the Unix Test Suite 265

F.1 Average Rank Percentages for the Single Bug Siemens Test Suite and the
subset of the Unix Test Suite (Unique) 269

F.2 Average Rank Percentages for the Single Bug Concordance (Unique) . . . 270
F.3 Average Rank Percentages (on average of 10 bins) for the Single Bug

Space (Unique) . 271
F.4 Average Rank Percentages for the Two-bug Siemens Test Suite and the

subset of the Unix Test Suite (Unique) 272
F.5 Average Rank Percentages for the Three-bug Siemens Test Suite and the

subset of the Unix Test Suite (Unique) 273
F.6 Average Rank Percentages (on average of 10 bins) for the Multiple-bug

Space (Unique) . 273

G.1 Average Rank Percentages for the Single Bug Concordance with respect
to the Different α values . 275

G.2 Average Rank Percentages (on average of 10 bins) for the Single Bug
Space with respect to the Different α values 276

H.1 Table of Print Tokens Bug Information 279
H.2 Table of Print Tokens2 Bug Information 280
H.3 Table of Replace Bug Information . 280
H.4 Table of Schedule Bug Information . 283
H.5 Table of Schedule2 Bug Information . 283
H.6 Table of Tcas Bug Information . 284
H.7 Table of Tot Info Bug Information . 288
H.8 Table of Cal Bug Information . 289
H.9 Table of Checkeq Bug Information . 290
H.10 Table of Col Bug Information . 291
H.11 Table of Spline Bug Information . 292
H.12 Table of Tr Bug Information . 293
H.13 Table of Uniq Bug Information . 294
H.14 Table of Concordance Bug Information 295
H.15 Table of Space Bug Information . 296

List of Figures

2.1 Excerpt of if-then-else Predicate . 29

5.1 Program Segment If-Then-Else-2 (ITE2) 94
5.2 Coding of S4 with Two Explicit Paths 96
5.3 C Macros for the ITE28 Model Program 97
5.4 Surface for O metric . 105
5.5 Surface for Op metric . 105
5.6 Surface for Zoltar metric . 106
5.7 Surface for Wong3 metric . 106
5.8 Surface for Wong4 metric . 107
5.9 Surface for Kulczynski2 metric . 108
5.10 Surface for Tarantula metric . 108
5.11 Surface for Rogers metric . 109
5.12 Average Rank Percentages with Error Bars evaluated using Op metric on

One-bug (Single Bug) Programs of Siemens Test Suite, subset of the Unix
Test Suite, and Concordance (Conc) . 129

5.13 Average Rank Percentages with Error Bars evaluated using Op metric on
One-bug (Single Bug) Programs of Space 130

5.14 Average Rank Percentages with Error Bars (Standard Deviation) evaluated
using Kulczynski2 metric on the Two-bug Programs of Siemens Test Suite
and the subset of the Unix Test Suite . 135

5.15 Average Rank Percentages with Error Bars (Standard Deviation) evaluated
using Kulczynski2 metric on the Three-bug Programs of Siemens Test
Suite and the subset of the Unix Test Suite 137

5.16 Average Rank Percentages with Error Bars (Standard Deviation) evaluated
using Zoltar metric on the Multiple-bug Space Programs 137

5.17 Median Rank Percentages of the Siemens Test Suite (Single Bug) Programs141

6.1 Relationship of Rank Percentages vs qe for Ideal Case 148
6.2 Rank Percentages vs qe for the Single Bug Siemens Test Suite with respect

to the Op metric . 150
6.3 Rank Percentages vs qe for the Single Bug Siemens Test Suite with respect

to the Rogers metric . 151
6.4 Trend line for the Rank Percentages vs qe for the Single Bug Siemens Test

Suite with respect to the Op and Rogers metrics 151
6.5 Rank Percentages vs qe for the Single Bug Siemens Test Suite with respect

to the Russell metric . 153

xxi

6.6 Rank Percentages vs qe for the Single Bug of subset of the Unix Test Suite
with respect to the Op metric . 153

6.7 Rank Percentages vs qe for the Single Bug of subset of the Unix Test Suite
with respect to the Rogers metric . 154

6.8 Rank Percentages vs qe for the Single Bug of subset of the Unix Test Suite
with respect to the Russell metric . 155

6.9 Number of Statements vs qe Range for the subset of the Unix Test Suite-
Colv29 using Op metric . 156

6.10 Number of Statements vs qe Range for the subset of the Unix Test Suite-
Checkeqv12 using Op metric . 157

6.11 Number of Statements vs qe Range for the subset of the Unix Test Suite-
Splinev14 using Op metric . 158

6.12 Number of Statements vs qe Range for Spacev4 using Op metric 158
6.13 Rank Percentages vs qe for the Two-bug Siemens Test Suite with respect

to the Kulczynski2 metric . 160
6.14 Rank Percentages vs qe for the Three-bug Siemens Test Suite with respect

to the Zoltar metric . 161

7.1 Average Rank Percentages (on average) for the Single Bug Siemens Test
Suite and the subset of the Unix Test Suite vs Percentages of the Unique
Pass Test Cases . 175

7.2 Average Rank Percentages (on average) for the Single Bug Siemens Test
Suite and the subset of the Unix Test Suite vs Percentages of the Unique
Fail Test Cases . 178

7.3 Average Rank Percentages (on average) for the Single Bug Siemens Test
Suite and the subset of the Unix Test Suite vs Percentages of the Unique
Pass and Fail Test Cases . 180

9.1 Mapped Value vs Frequency Counts . 203
9.2 Average Rank Percentages for the Different α values of the Single Bug

Siemens Test Suite and the subset of the Unix Test Suite 207
9.3 Average Rank Percentages for the Different α values of the Two-Bug

Siemens Test Suite and the subset of the Unix Test Suite 209
9.4 Average Rank Percentages for the Different α values of the Three-Bug

Siemens Test Suite and the subset of the Unix Test Suite 210
9.5 Average Rank Percentages for the Different α values of the Multiple-bug

Space Programs . 211

B.1 Surface for Ample metric . 243
B.2 Surface for Ample2 metric . 244
B.3 Surface for Jaccard metric . 244
B.4 Surface for McCon metric . 245
B.5 Surface for Ochiai metric . 245
B.6 Surface for Russell metric . 246

C.1 Rank Percentages vs qe for the Single Bug Siemens Test Suite with respect
to the Tarantula (Tar) metric . 247

C.2 Rank Percentages vs qe for the Single Bug Siemens Test Suite with respect
to the Wong3 metric . 248

C.3 Rank Percentages vs qe for the Single Bug Siemens Test Suite with respect
to the Wong4 metric . 248

C.4 Rank Percentages vs qe for the Single Bug of subset of the Unix Test Suite
with respect to the Tarantula (Tar) metric 249

C.5 Rank Percentages vs qe for the Single Bug of subset of the Unix Test Suite
with respect to the Wong3 metric . 249

C.6 Rank Percentages vs qe for the Single Bug of subset of the Unix Test Suite
with respect to the Wong4 metric . 250

C.7 Rank Percentages vs qe for the Concordance with respect to the Op metric 250
C.8 Rank Percentages vs qe for the Concordance with respect to the Rogers

metric . 251
C.9 Rank Percentages vs qe for the Concordance with respect to the Tarantula

(Tar) metric . 251
C.10 Rank Percentages vs qe for the Concordance with respect to the Russell

metric . 252
C.11 Rank Percentages vs qe for the Concordance with respect to the Wong3

metric . 252
C.12 Rank Percentages vs qe for the Concordance with respect to the Wong4

metric . 253
C.13 Rank Percentages vs qe for the Single Bug Space Programs with respect

to the Op metric . 253
C.14 Rank Percentages vs qe for the Single Bug Space Programs with respect

to the Rogers metric . 254
C.15 Rank Percentages vs qe for the Single Bug Space Programs with respect

to the Tarantula (Tar) metric . 254
C.16 Rank Percentages vs qe for the Single Bug Space Programs with respect

to the Russell metric . 255
C.17 Rank Percentages vs qe for the Single Bug Space Programs with respect

to the Wong3 metric . 255
C.18 Rank Percentages vs qe for the Single Bug Space Programs with respect

to the Wong4 metric . 256
C.19 Rank Percentages vs qe for the Multiple-bug Space Programs with respect

to the Zoltar metric . 257
C.20 Rank Percentages vs qe for the Multiple-bug Space Programs with respect

to the Tarantula (Tar) metric . 257

E.1 Average Rank Percentages (on average) for the Single Bug Concordance
Programs vs Percentages of the Unique Pass and Fail Test Cases 262

E.2 Average Rank Percentages (on average) for the Single Bug Space Pro-
grams vs Percentages of the Unique Pass and Fail Test Cases 264

E.3 Average Rank Percentages (on average) for the Two-bug Siemens Test
Suite and the subset of the Unix Test Suite vs Percentages of the Unique
Pass and Fail Test Cases . 267

E.4 Average Rank Percentages (on average) for the Three-bug Siemens Test
Suite and the subset of the Unix Test Suite vs Percentages of the Unique
Pass and Fail Test Cases . 267

G.1 Average Rank Percentages for the Different α values of the Single Bug
Concordance . 277

G.2 Average Rank Percentages for the Different α values of the Single Bug
Space . 277

List of Algorithms

1 Algorithm of Grouping-Based Strategy [Debroy et al., 2010] 22
2 Algorithm of Difference Spectra and Distance Spectra [Renieres and Reiss,

2003] . 23
3 Algorithm of Lightweight Bug Localization [Dallmeier et al., 2005] 25
4 Algorithm of RAPID [Hsu et al., 2008] 26
5 Algorithm of Statistical Bug Isolation [Liblit et al., 2005] 30
6 Algorithm of Holmes - Non-adaptive debugging [Chilimbi et al., 2009] . . 30
7 Algorithm of Holmes - Adaptive debugging [Chilimbi et al., 2009] 31
8 Algorithm of the Dynamic Dice Approach [Agrawal et al., 1995] 37
9 Augmentation Approach Algorithm . 39
10 Refining Approach Algorithm . 40
11 Algorithm of Bug Localization using Fuzzy Set Theory Approach [Hao

et al., 2008] . 41
12 Algorithm of Interactive Bug Localization using Fuzzy Set Theory Ap-

proach [Hao et al., 2006] . 43
13 Predicate Remote Sampling Algorithm [Liblit et al., 2003] 45
14 Algorithm of Bug Localization of Predicates using Fuzzy Set Theory Ap-

proach [Chung et al., 2008] . 47
15 Algorithm of Debugging Evaluation Sequences (DES) Approach [Zhang

et al., 2008] . 48
16 Algorithm of Isolating Program Input that Causes Failure to the Web Browser

[Zeller, 2000] . 50
17 Algorithm of Cause-Effect Chain [Zeller, 2002] 51
18 Algorithm of Locating Causes of Program Failure [Cleve and Zeller, 2005] 53
19 Cause-Transition Algorithm . 53
20 Algorithm to Generate Subset of the Unreduced Test Suites 55
21 Algorithm of Clustering based on Profiles and Bug Localization Results,

Cluster1 [Jones et al., 2007] . 58
22 Algorithm of Clustering based on Bug Localization Results, Cluster2 [Jones

et al., 2007] . 58
23 Algorithm of RUBAR using Category-Partition Approach [Briand et al.,

2007] . 60
24 Algorithm of Finding Failures by Cluster Analysis Approach [Dickinson

et al., 2001] . 61
25 Algorithm of Discriminative Patterns using Frequent Pattern Mining Ap-

proach [Di Fatta et al., 2006] . 63
26 Algorithm of Automatic Isolation of Cause-Effect Chains with Machine

Learning Approach [Jiang and Su, 2005] 65
27 Logistic Regression Algorithm [Liblit et al., 2003] 66
28 Algorithm of Simultaneous Identification of Multiple Bugs Approach [Zheng

et al., 2006] . 67
29 Algorithm of Relative Score . 82
30 Algorithm of Weighted Approach . 185
31 Algorithm of Top-down Incremental Ranking Approach (Incre.) 187

xxv

GLOSSARY OF TERMS

Binary information of execution count is defined as the binary form of program
spectra. The information is indicated by 1 and 0, for the statement being executed
and not executed by a particular test.

Black box testing is defined as testing activity on program code which is subjected
to inputs and its outputs are verified for conformance to specified behaviour [Beizer,
1995]. The software user is only concerned with functionalities and features. This
is also known as functional testing [IEEE, 2004c].

Block is defined as a set of program statements where if any program statement in
the set is executed, then all program statements contained in the respective set are
executed as well.

Bug refers to a program statement that, when executed by test cases, has unintended
behaviour. Fault refers to incorrect program statements defined in the program that
cause program failure. Failure refers to the deviation of the observed behaviour of
a program from its specification. For example, the output of a program returns the
value of 2 instead of expected output value of 1 [IEEE, 2004a].

Bug localization performance refers to the effectiveness of respective bug local-
ization approaches. Bug localization performance can be measured using different
performance measures (refer to the details in Chapter 4).

Clustering is commonly known as division of data into groups of similar objects
[Berkhin, 2006]. Previous studies attempted to use similarity measures [Tan et al.,
2004], namely Euclidean distance, as a measurement of how similar the data is in a
group.

Dynamic analysis defines the process of evaluating a system or component based
on its behaviour during execution.

KLOC refers to a thousand lines of code.

Metric refers to spectra metrics. It refers to a numeric function and serves as a
standard of measurement in terms of the likelihood of a program statement to be
buggy.

xxvii

Oracle refers to program code that is assumed not to contain bug. It is used to
determine the correctness of respective test cases. It is also known as base version
program code.

Performance Measure refers to a measure used to gauge the effectiveness of re-
spective bug localization approaches.

Predicate, Pred, refers to a logical function evaluated at a decision (if-then-else),
return values, and scalar pairs.

Program dependence graph (PDG) represents a program as a graph in which the
nodes are statements and predicate expressions (or operators and operands), and the
edges incident to a node represent both the data values on which the nodes oper-
ations depend and the control conditions on which the execution of the operations
depends [Ferrante et al., 1987].

Rank percentages refers to the percentages of the program code to be examined in
order to locate a bug in the program.

Single bug program refers to a program with one bug in it.

Spectra metrics refers to the formula used to predict which program statement is
most likely to be buggy.

Static analysis is the process of evaluating a system or component based on its
form, structure, content, or documentation [IEEE, 2004c].

System Dependence Graphs (SDG) is a collection of program dependence graphs
(PDGs) [Ferrante et al., 1987, Beck and Eichmann, 2002].

Test case is defined as documentation that specifies inputs, predicted results, and a
set of execution conditions for a test item [IEEE, 2004a].

White-box testing is testing that takes into account the internal mechanism of a
system or component [IEEE, 2004c]. White-box testing is also known as structural
testing, clear box testing, and glass box testing [Beizer, 1995]. It refers to the pro-
grammer having access to the internal workings of the software, especially the logic
and structure of the program code.

NOTATION

Symbol Definition
B number of bugs or faults in program
P correct version of a program
P′ a fault-seeded program
T total number of test cases
t test case
totP number of pass test cases
totF number of fail test cases
es,t test execution coverage of statement s for test t
aef number of fail test case(s) executing the particular statement
aep number of pass test case(s) executing the particular statement
anf number of fail test case(s) not executing the particular statement
anp number of pass test case(s) not executing the particular statement
aij spectra properties of aef , aep, anf , and anp, with i ∈ {n, e} and j ∈ {p, f}
MetV alue metric value of particular statements evaluated with a given spectra metrics
Sp set of statement(s)/block(s) executed by a pass test case
Sf set of statement(s)/block(s) executed by a fail test case

xxix

1
Introduction

Software is widely used in various areas including the public sector, financial services,
manufacturing, communications, retail, services, defence, and healthcare. Newman re-
ported that the total sales of software reached approximately USD$180 billion in the year
2000 [Newman, 2002]. In a recent study conducted by Gartner, it was estimated that
the end-users and worldwide enterprises spent USD$3372 billion and USD$225 billion
for software in the fiscal year 2008 respectively [Gartner, 2010]. In 2001, Microsoft sold
more than USD$5 billion worth of software in Europe, the Middle East, and Africa [Festa,
2001].

As the software evolves and the complexity of software grows, bugs 1 are introduced.
In this thesis, a bug refers to a program statement that has unintended behaviour when
executed by test cases. Several major incidents have occurred due to software bugs. In
Sydney, the 7-year-old M5 tunnel has been closed six times and most recently twice in
a month [ABC, 2008, Emerson, 2008]. The closure was due to a bug in the software
that controls the fire and air-circulation systems, which led to a 3-hour shutdown, causing
delays for motorists during peak hours. In Melbourne, Australia, Myki [myki, 2010]
has been introduced as a smartcard ticketing system for public transport, similar to the
Oyster [Oyster, 2010] in London. It has been reported that there was a software bug where
two Myki users were credited with more than A$150K of credit to their accounts [ABC,
2010]. The company admitted that this was due to a bug in the fare calculation algorithm
of the Myki system.

In October 2007, Tokyo’s railway stations encountered more than 4000 faulty auto-
matic gate machines [Williams, 2007]. These gates are meant for passengers accessing
the railway using a contactless smart card. The failure was due to a bug in the automatic

1Bug or error has been used as early as the 1880s [Shapiro, 1987]. The etymology of the bug has been
later claimed during the incident of a bug found in one of the circuits of the Harvard Mark II computer by
the late US Navy Captain Grace Murray Hopper. It occurred when she was trying to fix a blocked relay in
the computer in Harvard University in 1947. She found a two-inch moth which caused the relay to block
and ever since then, the “bug” term has been used [Dennette A. Harrod, 1996].

1

Chapter 1. INTRODUCTION

gate machine software that caused an overflow of stolen card data being sent to the gate
machines. This failure caused the gate machine system to crash and affected 2.6 million
passengers. It took the software vendor more than half a day to locate and fix the bug,
due to the high complexity of the program code. More details of other major software bug
incidents that have happened around the world are listed in Appendix A.

The severity of the software bug incidents mentioned above indicates that it is very
important to produce robust and reliable software. A typical software life cycle requires
a feasible plan, detailed analysis, good design of requirements, implementation, testing,
and maintenance [Everett and McLeod, 2007]. Testing is one of the most important tasks,
and the analyst firm Pierre Audoin Consultants (PAC) reports that the software testing
spending of worldwide organisations was e79 billion in the year 2010 [Nichols, 2010].

Software testing can be classified into two types; black box testing and white box
testing. A typical software testing task involves identifying any bug that exists in the pro-
gram [IEEE, 2004b]. The process of identifying and locating a bug is better known as
bug localization, and this term is used throughout the thesis. Traditionally, the program-
mer debugs the program code step-by-step to locate the bug. Upon identifying the bug,
the programmer fixes the program in order to ensure the software works according to the
defined requirements.

The traditional debugging approach is usually performed by examining the program
code in a debugger specific to the programming language. Experienced developers are
usually able to guess the buggy region of the program code and take appropriate actions
to fix the bug. However, this approach is not in general practical as software complexity
increases. Identifying the buggy region of code is difficult even for experienced program-
mers, and can cost a great deal of time and wasted effort to locate the bug in the program
code.

It has been estimated that debugging accounts for over 50 percent of the time spent in a
typical programming project [Hailpern and Santhanam, 2002]. According to a report from
the National Institute of Standards and Technology (NIST) [Newman, 2002], software
faults (i.e., bugs or errors) cost the U.S. economy an estimated USD$59.5 billion annually,
or approximately 0.6% of GDP in 2002.

Automated software debugging techniques have been proposed to substantially reduce
the time spent in debugging (locating the bug). There are primarily two automated debug-
ging approaches: static analysis, and dynamic analysis. Static analysis, originating in
1970, investigates properties of programs by analysing their source code alone, without
recourse to their dynamic execution. The effectiveness of static analysis depends on the
programming languages’ computational model and type of data structure the language
supports. However, static analysis has limited capability to capture bug behaviour; for

2

1.1. CONTRIBUTIONS

example, it cannot detect logical bugs. A concrete example is the application logic error
in a banking system. A bank system should ensure that there is an overdraft limit based on
each individual, which is applied when the customer withdraws money. If there is a bug in
checking the limit of the overdraft of an individual in the system, static analysis is unable
to detect such a bug. Dynamic analysis is the other debugging approach, which focuses
on the execution of software code with different test cases (test inputs) to reveal potential
software bugs. These test cases are often called test suites. Test suites have the common
purpose of verifying that the software exhibits intended behaviour when executed.

A recent form of dynamic analysis is to collect program spectra [Reps et al., 1997].
In this approach, the program is executed by the test suite to gather information on the
dynamic behaviour of the program. The information gathered indicates which program
statements are executed by test cases (both pass and fail test cases). Using this infor-
mation, we can apply the spectra metrics to locate bugs in the program. Zoeteweij et al.
applied the program spectra approach in the embedded software of a consumer electronics
product, namely teletext [Zoeteweij et al., 2007]. They showed that bugs can be located
effectively using this approach. Recent studies in this area have focused on applying
different spectra metrics for debugging [Abreu et al., 2006, Xie et al., 2010, Lucia et al.,
2010,Naish et al., 2011]. These methods have shown to be effective in bug localization. In
this thesis, we extensively study various spectra metrics, and propose several new spectra
metrics to improve bug localization performance.

1.1 Contributions

We make the following contributions:

1. Propose a simple model program based on the if-then-else statements containing a
single buggy statement to understand bug localization characteristics. Through this
understanding, we develop optimal spectra metrics for single bug programs. We
observe that the optimal spectra metrics of the simple model program in fact work
even for real programs.

2. Show that two spectra metrics are equivalent in ranking if and only if any one of
them can be made identical to the other using a monotonically increasing function
(Lemma 5.2.1). Using this property, we establish several spectra metrics are equiv-
alent.

3. Observe a significant number of test cases had identical test coverage in the existing
test suites. Investigate the effectiveness of bug localization performance using the

3

Chapter 1. INTRODUCTION

test cases in the entire test suites and unique test cases (that is considering only
one of the test cases from all the test cases that have identical test coverage). We
show no degradation of bug localization performance using unique test cases for
better performing metrics on most of our benchmarks. We also show that by using
a larger number of unique (non-redundant) pass and fail test cases improves bug
localization performance significantly.

4. Assign different weights to the respective fail test cases according to how informa-
tive the fail tests are. We compare the effectiveness of bug localization performance
using the proposed approach with that of not assigning any weights. We show sig-
nificant improvement in bug localization performance with our proposed top-down
incremental approach, especially on multiple-bug programs for better performing
metrics, with an improvement of average rank percentages ranging from 0.41% to
4.63%.

5. Existing bug localization approaches use the binary form of test coverage (whether
each statement is executed or not by each test case) to locate bugs. We propose
to use more information from test coverage by using frequency counts [Liu et al.,
2005], that is, the number of times each statement is executed. We propose using
a sigmoid function to map frequency counts to the respective spectra properties.
Using this approach, we show improvement in bug localization performance for
most of the better performing metrics as compared to using the binary approach
especially on multiple-bug programs. The latter improvement is in the range of
average rank percentages from 0.03% to 4.52%.

1.2 Structure of the thesis

Chapter 2 details the background and several software bug localization studies that are
closely related to the thesis. Chapter 3 presents a detailed survey of software fault lo-
calization techniques. Chapter 4 discusses some of the existing performance measures
used in debugging and propose several new performance measures. Chapter 5 describes
the approach of using a simple model program (if-then-else) to understand the behaviour
of single bug programs. We develop optimal spectra metrics which locate bugs in single
bug programs effectively. In Chapter 6, we describe the relationship between bug consis-
tency and bug localization performance. Chapter 7 details bug localization performance
of using unique (non-redundant) and redundant test cases. This chapter also describes
the importance of having a larger number of unique (non-redundant) test cases that can
improve bug localization performance. We describe different weights assigned according

4

1.2. STRUCTURE OF THE THESIS

to how informative respective fail tests are in Chapter 8. Chapter 9 describes the approach
of using frequency counts, which incorporates more information of test coverage in order
to locate bugs effectively. In this chapter, we describe how a sigmoid function can be used
to map the frequency coverage to respective spectra properties. Chapter 10 concludes the
thesis with some discussions of our proposed approaches and possible future directions.

5

2
Background and Literature Review

2.1 Introduction

In software bug localization, there are mainly two types of analysis: static analysis and
dynamic analysis. In the thesis, we are particularly interested in dynamic analysis.

Dynamic analysis is always performed through program execution. In practice, nu-
merous test cases will have been written to ensure program requirements have been met.
Test case failure leads to the discovery of bugs in the program code. Code coverage infor-
mation can be captured using dynamic analysis. The analysis indicates the extent of the
program code that has been executed by the test cases. Different types of code coverage
can be used in dynamic analysis to locate potential bugs in the program code. These types
are statements, blocks, functions, predicates, and paths of programs.

One of the advantages of using dynamic analysis, rather than static analysis for lo-
cating bugs is the ability to detect dependencies in the program code. Dynamic analysis
also deals with the runtime values of the program code. However, often it is difficult to
assure full test coverage for program code using dynamic analysis. Performance is also
compromised using dynamic analysis due to the instrumentation of the program code.

Several bug localization approaches using dynamic analysis have been proposed in the
literature. Program spectra is one such approach. Initially, we introduce the concept of
program spectra. We give a comprehensive list of the spectra metrics used in the thesis.
We also detail the literature review of spectral debugging. This includes spectra-based
approaches with respect to the different coverage types: statement-based spectra cover-
age, block-based spectra coverage, function-based spectra coverage, branch-based spectra
coverage, and predicate-based spectra coverage. These approaches have been studied ex-
tensively to locate potential bugs in the program code.

7

Chapter 2. BACKGROUND AND LITERATURE REVIEW

Table 2.1: Example of Test Coverage Information (frequency counts) with Tests T1 . . . T5

T1 T2 T3 T4 T5
S1 60 2 100 0 38
S2 70 65 90 0 45
S3 25 35 0 4 0
S4 80 30 0 42 0
S5 42 0 37 48 81
S6 0 59 0 0 17
Test Result Fail Fail Fail Pass Pass

Table 2.2: Example of Test Coverage Information (binary) and Program Spectra with Tests
T1 . . . T5

T1 T2 T3 T4 T5 anp anf aep aef
S1 1 1 1 0 1 1 0 1 3
S2 1 1 1 0 1 1 0 1 3
S3 1 1 0 1 0 1 1 1 2
S4 1 1 0 1 0 1 1 1 2
S5 1 0 1 1 1 0 1 2 2
S6 0 1 0 0 1 1 2 1 1

...
Test Result Fail Fail Fail Pass Pass

2.2 Background

Program spectra [Reps et al., 1997] is a typical approach in dynamic analysis. It consists
of information on the parts of a program that were executed during the test case execu-
tions. These parts could be individual statements, basic blocks, branches, or larger regions
such as functions. In our study, we use individual statements. Using statements is equiva-
lent to considering basic blocks, assuming normal termination (a statement within a basic
block is executed if and only if the whole basic block is executed). During the execution
of each test case, data is collected indicating statements that are executed. Additionally,
each test case is classified as a pass or a fail. As the program spectra is used for debugging
purposes, this method is also referred to as spectral debugging.

In program spectra, four numbers are ultimately produced for each statement, namely
the number of pass/fail test cases in which the statement was/wasn’t executed. We adopted
the notation of [Abreu et al., 2006] to compute the aij values, which refer to the notation
〈anp, anf , aep, aef〉. The first subscript indicates whether the statement was executed (e)

8

2.3. SPECTRA METRICS

or not (n), and the second subscript indicates whether the test passed (p) or failed (f). For
example, aep of a statement refers to the number of pass test cases which have executed
the statement. Note that statement s is implicit in anp, anf , aep, and aef throughout the
thesis.

Table 2.1 is the matrix of an example of raw program test coverage information es,t
with one row for each program statement s and one column for each test case, t. The
test coverage information of Table 2.1 consists of frequency counts. This table states the
number of times each program statement has been executed by the respective test cases.
Table 2.2 refers to the binary form of the program spectra of Table 2.1. The table states
whether each program statement has been executed or not by the respective test cases
(regardless of the number of times it has been executed). Each cell of this table indicates
whether a particular statement is executed (the value is 1) or not (the value is 0) for a
particular test case. We refer to the test coverage as spectra coverage. Additionally, there
is a vector with values indicating the Pass or Fail of each test case. In this example, both
tables contain six statements and a total of five tests. We use the term totP , totF , and T
to represent the total number of pass, fail test cases, and the total number of tests of the
program respectively. In this case, totP is 2, and totF is 3.

For each statement, we apply a function to map the four aij values to a single number.
We call such function spectra metric (distance). In the thesis, metric is not related to the
metric spaces where it defines the distance between any two points in the space. Metric
is loosely used as a numeric function and serves as a standard of measurement of the
likelihood of program statement being buggy. In Table 2.2, we observed the mapping of
all the statements to the respective aij values. As Statement 1 (S1) is executed by three
fail tests; T1, T2, and T3, therefore the aef of S1 is 3. The anf of S1 is simply 0 since
all the three fail tests have executed S1. The single number is known as the metric value,
MetV alue, which is evaluated with the respective spectra metrics for all the statements.
These statements are ranked in descending order according to the MetV alue, starting
from the statement that has the largest MetV alue. The higher the MetV alue a statement
has, the more likely the statement is to be buggy.

2.3 Spectra Metrics

A comprehensive list of spectra metrics is given in Table 2.3. To date, 16 spectra metrics
have been proposed in the debugging literature to predict the statements most likely to be
buggy. These metrics are shown in the top of the table; details of the debugging literature
can be found in Section 2.4. In the thesis, we contribute several new spectra metrics such

9

Chapter 2. BACKGROUND AND LITERATURE REVIEW

asO, Op, JacCube, Ample2, Binary, and Wong3′. We defer the discussion of these metrics
to Chapter 5.

Table 2.3: List of Spectra Metrics

Name Formula Name Formula
O −1 if anf > 0, otherwise anp Op aef − aep

totP+1

Jaccard aef
totF+aep

Ochiai aef√
totF (aef+aep)

Tarantula
aef
totF

aef
totF

+
aep
totP

Zoltar aef

totF+aep+
10000anfaep

aef

Ample
∣∣ aef
totF
− aep

totP

∣∣ Ample2 aef
totF
− aep

totP

Wong1 aef Wong2 aef − aep

Wong3 aef − h, where h =

aep if aep ≤ 2

2 + 0.1(aep − 2) if 2 < aep ≤ 10

2.8 + 0.001(aep − 10) if aep > 10

Wong3′ aef − h, where h =

{
−1000 if aep + aef = 0

Wong3 otherwise

CBI Inc aef
aef+aep

− totF
T

CBI Log 2
1

CBI Inc
+ log totF

log aef

CBI Sqrt 2
1

CBI Inc
+
√
totF√
aef

M1 aef+anp
anf+aep

M2 aef
aef+anp+2(anf+aep)

M3 2∗(aef+anp)
T

Sørensen-Dice 2aef
2aef+anf+aep

Kulczynski1 aef
anf+aep

Kulczynski2 1
2

(
aef
totF

+
aef

aef+aep

)
Russell and Rao aef

T
Lee aef + anp

Rogers & Tanimoto aef+anp
aef+anp+2(anf+aep)

Goodman 2aef−anf−aep
2aef+anf+aep

Simple Matching aef+anp
T

Hamann aef+anp−anf−aep
T

Hamming aef + anp Euclid
√
aef + anp

Ochiai2 aefanp√
(aef+aep)(anp+anf)(totF)(totP)

Ochiai3
a2ef

totF (aef+aep)

Platetsky-Shapiro aef + a2ef + totF − aepaef − aepanf
Collective Strength 1− aef+anp

(aef+aep)(totF)+(anf+anp)(totP)
∗ 1−(aef+aep)(totF)−(anf+anp)(totP)

1−aef−anp

Geometric Mean aefanp−anfaep√
(aef+aep)(anp+anf)(totF)(totP)

Harmonic Mean
(aefanp−anfaep)((aef+aep)(anp+anf)+(totF)(totP))

(aef+aep)(anp+anf)(totF)(totP)

Continued on next page

10

2.3. SPECTRA METRICS

Table 2.3 – continued from previous page
Name Formula Name Formula
Arithmetic Mean 2aefanp−2anfaep

(aef+aep)(anp+anf)+(totF)(totP)

Cohen 2aefanp−2anfaep
(aef+aep)(totP)+(anf+anp)(totF)

Scott 4(aefanp−anfaep)−(anf−aep)2
(2aef+anf+aep)(2anp+anf+aep)

Fleiss 4(aefanp−anfaep)−(anf−aep)2
(2aef+anf+aep)+(2anp+anf+aep)

Rogot1 1
2

(
aef

2aef+anf+aep
+ anp

2anp+anf+aep

)
Rogot2 1

4

(
aef

aef+aep
+

aef
totF +

anp
totP +

anp
anp+anf

)
Binary 0 if anf > 0, otherwise 1 Gower1 aef−(anf+aep)+anp

T

Gower2 aef+anp
aef+anp+0.5∗(anf+aep)

Gower3 aefanp−anfaep
aefanp+anfaep

Anderberg aef
aef+2(anf+aep)

AddedValue aef
max (aef+aep,totF)

Interest aef
(aef+aep)totF

Confidence max (
aef

aef+aep
,
aef
totF

)

Certainty max (
aef

aef+aep
− (aef + aep), 1− (aef + aep))

Sneath & Sokal 1 2(aef+anp)

T+aef+anp

Sneath & Sokal 2 aef
aef+2(anf+aep)

Phi aefanp−anfaep√
(totF)(aef+aep)(anf+anp)(totP)

Kappa 1− aef+anp−(aef+aep)(totF)−(anf+anp)(totP)

1−(aef+aep)(totF)−(anf+anp)(totP)

Conviction max (
(aef+aep)(totP)

aep
,
(anf+anp)(totF)

anf
)

Mountford 2aef
2(aef+aep)(totF)−(2aef+aep+anf)aef

Klosgen √
aef ∗max (

aef
aef+aep

− totF, aef
totF
− (aep + aef))

YuleQ aefanp−aepanf
aefanp+aepanf

YuleY
√
aefanp−

√
aepanf√

aefanp+
√
aepanf

YuleV aefanp−(aef+aep)(totF)

aefanp+(aef+aep)(totF)

Correlation |aefanp−(aef+aep)(totF)|−T2√
(2aef+aep)(totF+anp)(totF+aef)(totP+aef)

Manhattan 1− aep+anf
T

Braun aef
aef+aep

Baroni
√
aefanp+aef√

aefanp+totF+aep
Coef aef

aef+aep

Levandowsky aef
totF+aep

Watson 1− (anf+aep)

2aef+anf+aep

JacCube aef
3
√
totF+aep

NFD aef + anp

SokalDist
√

aef+anp
T

Overlap aef
min (aef ,anf ,aep)

CorRatio
a2ef

totF (aef+aep)
Forbes Taef

totF (aef+aep)

Fager aef√
totF (aef+aep)

− 1

2
√
aef+aep

Continued on next page

11

Chapter 2. BACKGROUND AND LITERATURE REVIEW

Table 2.3 – continued from previous page
Name Formula Name Formula

McConnaughey
a2ef−anfaep

(totF)(aef+aep)
Simpson aef

totF

AssocDice aef
min ((aef+aep),totF)

Dice 2aef
totF+aep

Fossum T (aef−0.5)2
(totF)(aef+aep)

Pearson aefanp−anfaep√
(totF)(aef+aep)(anf+anp)(totP)

Dennis aefanp−anfaep√
(T)(totF)(aef+aep)

Definition 1 (Spectra Metric J-Measure (J-Meas)). aef ∗ log(
aef

totF∗(aef+aep)
)+

max (aep ∗ log(aep
totP∗(aef+aep)

), anf ∗ log(
anf

totF∗(anf+anp)
))

Definition 2 (Spectra Metric Wong4). [(1.0)∗nF,1 +(0.1)∗nF,2 +(0.01)∗nF,3]− [(1.0)∗
nS,1 + (0.1) ∗ nS,2 + 0.0001 ∗ totF

totP
∗ nS,3]

where nF,1 =

0, for aef = 0

1, for aef = 1

2, for aef ≥ 2

nF,2 =

0, for aef ≤ 2

aef − 2, for 3 ≤ aef ≤ 6

4, for aef > 6

nF,3 =

{
0, for aef ≤ 6

aef − 6, for aef > 6

nS,1 =

{
0, for nF,1 = 0, 1

1, for nF,1 = 2 and aep ≥ 1

nS,2 =

0, for aep ≤ nS,1

aep − nS,1, for nS,1 < aep < nF,2 + nS,1

nF,2, for aep ≥ nF,2 + nS,1

nS,3 =

{
0, for aep < nS,1 + nS,2

aep − nS,1 − nS,2, for aep ≥ nS,1 + nS,2

Over eighty spectra metrics have been proposed in domains, such as botany, zoology,
biometrics, and data mining for the purpose of classification. As metrics are rapidly intro-
duced in different domains, some of these metrics are identical. For example, the Rogot2
metric has been proposed to classify two different methods (e.g different questionnaires)
to diagnose disease conditions. This metric is identical to the Sokal1 metric, which is
used in the numerical taxonomy [Sokal and Sneath, 1963].

12

2.3. SPECTRA METRICS

The oldest of the metrics is Jaccard, originally used for classification in the botany
domain [Jaccard, 1901]. It has been used in other areas such as data mining and machine
learning [Tan et al., 2002]. In the botany domain, several other metrics have also been
been used, such as Russell and Rao (Russell), Sørensen-Dice, Dice, and Rogers & Tan-
imoto (Rogers) [Russel and Rao, 1940, Sørensen, 1948, Duarte et al., 1999, Rogers and
Tanimoto, 1960]. In these studies, the metrics are used to classify species of plants. The
Sørensen-Dice metric is widely known as Czekanowski [Bloom, 1981]. Braun was also
originally used in the field of botany [Braun-Blanquet, 1932].

The other domain that uses spectra metrics is zoology. Mountford and Number of Fea-
tures of Difference (NFD) were originally used in zoology [Mountford, 1962,Stephenson
et al., 1968]. Ochiai is used [Ochiai, 1957] for analysing the ecological relationships
(clusters) of different species of fishes in Japan. Forbes and Simpson were also origi-
nally used in zoology [Forbes, 1933, Simpson, 1961]. Fager and McConnaughey (Mc-
Con) were used in the study of plankton [Fager and McGowan, 1963,McConnaughey and
Laut, 1964]. Coefficient differences (Coef) was originally used to study the distribution
of amphibians and reptiles [Peters, 1968, Savage, 1960].

CorRatio was used in the field of marine biology [Sorgenfrei, 1958]. Simple Matching
comes from the area of biology [Kaesler, 1966]. Baroni-Urbani has been used in the
study of ants [Urbani, 1976]. Levandowsky et al. proposed to use the inverse of the
Jaccard metric to measure the dissimilarity between two sets of data in the area of plant
biology [Levandowsky and Winter, 1971, Levandowsky, 1972].

Anderberg was originally proposed as a similarity measure in clustering objects [An-
derberg, 1973]. In the field of clustering using the Self-Organizing Maps (SOM) algo-
rithm [Kohonen, 2002], other similarity measures (metrics) have been introduced and
evaluated, namely Kulczynski1, Kulczynski2, Hamann, and Sokal [Lourenco et al., 2004].
Hamann was originally introduced in the study of botany [Hamann, 1961]. Jaccard and
Simple Matching have also been used in clustering, along with three unnamed metrics
that we refer to as M1, M2, and M3 respectively [Everitt, 1978]. Watson was originally
used as a similarity measure in the area of clustering data [Lance and Williams, 1966].

The Phi metric is used in statistics [Udny Yule and Kendall, 1948], specifically for
chi-square, χ2 [Greenwood and Nikulin, 1996]. The Kappa metric was originally used
to measure the agreement of pairs of variables [Cohen, 1960]. Hamming was originally
introduced for error detecting/correcting codes [Hamming, 1950]; for binary numbers it
is equivalent to Lee [Lee, 1958] and Manhattan [Krause, 1973]. The Lee metric is used
to compute the distance between two strings of same length. This metric is applied in
the area of phase modulation [Berlekamp, 1968]. Manhattan and Euclid have been used
in clustering [Krause, 1973]. Gower introduced the Gower1, Gower2, and Gower3 met-

13

Chapter 2. BACKGROUND AND LITERATURE REVIEW

rics based on the Euclidean properties [Gower, 1971, Gower and Legendre, 1986, Everitt
and Rabe-Hesketh, 1997]. Fossum was originally used in the study of similarity of the
chemical components [Holliday et al., 2003]. In the area of biometrics, various metrics
have been introduced: Goodman and Kruskal [Goodman and Kruskal, 1954], Scott [Scott,
1955], Fleiss [Fleiss, 1965], Cohen [Cohen, 1960], Geometric Mean (GMean) [Maxwell
and Pilliner, 1968] as well as Arithmetic Mean (AMean), Harmonic Mean (HMean), Ro-
got1, and Rogot2 [Rogot and Goldberg, 1966].

AddedValue [Sahar and Mansour, 1999], Certainty, CollectiveStrength (CollectiveS),
Platetsky-Shapiro, Confidence, Interest, and Conviction have been used in the data mining
communities [Tan et al., 2002]. There are other metrics used as association measures, such
as Klosgen, J-Measure (J-Meas), Kappa, YuleY, and YuleQ. Metrics such as YuleY and
YuleQ have been proposed in the data mining community to associate different attributes
of any two variables [Yule, 1900]. J-Measure (J-Meas) is an index to study the probability
of the distribution of variables (see Definition 1) [Smyth and Goodman, 1991]. Klosgen
was originally used in the knowledge discovery system, Explora [Klosgen, 1992].

Some of these metrics have been adapted in other domains such as information re-
trieval, molecular biology, and numerical taxonomy. Jaccard, Dice, Overlap, and Ochiai
(a more general version of the Ochiai metric called Cosine) have been used in the field
of information retrieval [Dunham, 2002]. Anderberg and Simple Matching metrics have
been used in molecular biology [Meyer et al., 2004] to study the different relationships
of maize species. Simple Matching and SokalDist (commonly known as Sokal Distance)
were originally introduced in numerical taxonomy [Sokal and Michener, 1975].

Even though all the above-mentioned metrics have been used in different domain ar-
eas, they share an identical goal, which is to associate or classify data of similar charac-
teristics. Such data is also known as clusters. In the debugging area, our goal is to find
clusters of correct statements (with low metric values) and buggy statements (with high
metric values). Here we give examples of the intuition behind some of these metrics. Jac-
card devised a way to measure the similarity of two sets. It is the size of their intersections
divided by the size of their union. We can apply this idea to spectral debugging by using
the set of test cases that fails and the set of test cases for which a particular statement is
executed. A second approach is to view a row of the matrix in Table 2.2 as a vector in
n-dimensional space. The cosine of the angle between this vector and the vector of test
results is another measure of similarity — this is what the Ochiai metric computes. A
third way is to think of the rows and results of the table as bit strings. The number of bits
that differ in two strings is a measure of dis-similarity (the Hamming distance). By first
taking the complement of one of the bit strings, we obtain a measure of similarity — this
is what our formula for the Hamming metric computes.

14

2.4. LITERATURE REVIEW OF SPECTRAL DEBUGGING USING DYNAMIC
ANALYSIS

Most of these proposed metrics are closely related to norms of the associated metric

space (our use of the term metric is not related to metric spaces in any precise technical
sense). A norm is a measure of the distance between two points: it must be positive for
distinct points, symmetric (dist(a, b) = dist(b, a)) and must satisfy the triangle inequality
(dist(a, c) ≤ dist(a, b) + dist(b, c)). Given a norm, statements (rows in the matrix) can
be ranked according to how similar or close they are to the result vector (whether each
test passes or fails). Some of the spectra metrics we use are referred to as norms in the
literature; others are called measures or distances. Some are defined in more general
cases, such as where we have a matrix and vector of arbitrary numbers. We restrict our
attention to the special case of binary numbers where the data is summarised by the four
aij values in Table 2.2. This introduces the equivalence of some spectra metrics that are
distinct in more general cases (see Subsection 5.2.1).

Some of these metrics use the properties of statements not executed by fail tests, anf
and statements executed by pass tests, aep. In debugging, the property of statements ex-
ecuted by fail tests is an important indication of the bug. More fail tests executing the
statement indicates the likelihood of the statement to be the bug. A statement that is exe-
cuted by more pass tests indicates that it is less likely the statement is the bug. Therefore,
we adapt some of these metrics to use aef and anp instead of anf and aep respectively. For
example, the NFD metric is originally anf +aep [Stephenson et al., 1968]. Having anf and
aep as the numerator of the metric cannot indicate statements that are likely to be buggy.
Therefore we adapt this metric by inversing the existing metric. Another example is the
Levandowsky metric [Levandowsky and Winter, 1971], which refers to the inverse of the
Jaccard metric. The inverse of the Jaccard metric uses anf and aep. Therefore, we adapt
Levandowsky to the Jaccard metric. Similar adaptation is made for other metrics, namely
CollectiveS, Kappa, Manhattan, Watson, and SokalDist.

2.4 Literature Review of Spectral Debugging Using Dy-
namic Analysis

There are several existing studies of spectral debugging which are closely related to
the thesis. They are Tarantula [Jones et al., 2001], Pinpoint [Chen et al., 2002], Near-
est Neighbour [Renieres and Reiss, 2003], Ample [Dallmeier et al., 2005], CBI [Liblit,
2004], SOBER [Liu et al., 2005] and other studies by Abreu et al. [2006], Wong et al.
[2007], and Wong et al. [2009]. Jones et al., Renieres et al., and Wong et al. use state-
ment coverage [Jones et al., 2001, Renieres and Reiss, 2003, Wong et al., 2007, Wong
et al., 2010], Abreu et al. use block coverage [Abreu et al., 2006], Ample uses func-

15

Chapter 2. BACKGROUND AND LITERATURE REVIEW

tion coverage [Dallmeier et al., 2005] while CBI [Liblit, 2004] and SOBER [Liu et al.,
2005] use predicates respectively. RAPID and HOLMES use branch and path coverage
respectively [Hsu et al., 2008, Chilimbi et al., 2009]. These studies use different spec-
tra information such as statement-based spectra coverage, block-based spectra coverage,
function-based spectra coverage, predicate-based spectra coverage, branch-based spec-
tra coverage, and path-based spectra coverage. These are all essentially program spectra
with respect to different types of code coverage. For example, statement-based spectra
coverage refers to the program spectra of statement coverage.

In this thesis, we report the bug localization performance of the above proposed ap-
proaches. The bug localization performance of an approach refers to the effectiveness of
the proposed approach in locating bugs. Different performance measures have been used
to compare the effectiveness of locating bugs using respective proposed bug localization
approaches. We defer the discussion to Chapter 4.

In dynamic analysis, the program code is instrumented with respect to the coverage
types (e.g statements, blocks, predicates, and functions, to name a few) before executing
test cases over the instrumented program code. Most studies instrumented the program
code using gcov [Renieres and Reiss, 2003, Jones and Harrold, 2005, Abreu et al., 2006,
Xie et al., 2010]. Wong et al. use the χSuds [Telcordia Technologies, Inc., 1998] to
instrument the program code [Wong et al., 2007, Wong et al., 2010]. These studies rely
on an oracle to determine the correctness (Pass or Fail) of the test cases. CBI [Liblit
et al., 2005] relies on program crashes to indicate Fail for the test case. Otherwise, the test
case is Pass. Most studies use a base version program code as the oracle. Base version
program code refers to program code that does not have any seeded fault and is assumed
to be correct. For each test input to the base version program code, the expected output
of the program is produced. Fault-seeded program code refers to program code that has
been deliberately seeded with a bug.

The output from the test case executions on the fault-seeded version of the program
code is compared with the output of the test case executions on the base version program
code. If there are differences in the output between the base version and the fault-seeded
version for a particular test case, the test case is labelled as Fail. Otherwise, the test case
is labelled as Pass.

Our benchmarks, such as the Siemens Test Suite, Space [Do et al., 2005], and a subset
of Unix Test Suite [Wong et al., 1998], have the base version program code. Benchmarks
such as Siemens Test Suite and Space programs are available in the Software-artifact
Infrastructure Repository (SIR) [SIR, 2010]. These programs are provided for the purpose
of evaluating the effectiveness of different approaches to locate bugs. In this repository,
most of the C program benchmarks have base version program code. In practice, the base

16

2.4. LITERATURE REVIEW OF SPECTRAL DEBUGGING USING DYNAMIC
ANALYSIS

version program code that serves as an oracle does not necessarily exist. There exists
only the program code with the bug. For each test input to the program code, there are
several approaches used to determine the expected output, such as program specifications
and documentation.

The output of dynamic analysis is the test coverage information labelled by test cases
(see Table 2.1 and Table 2.2). The matrices in these tables are known as the spectra

coverage, and this term is used throughout the thesis.

Program spectra was introduced by Reps et al. [1997] to resolve the problem of the
Y2K (year 2000) bug [Thomsett and Co, 1998]. Reps et al. [1997] proposed using the
path-based spectra coverage approach where the path spectrum for each test case execu-
tion is compared. They compared the test case executions on the program code before and
after the year 2000 respectively. The differences can be used to identify the path(s) that
caused the Y2K problem. In their study, they suggest several approaches to instrument
the paths of the program; these approaches are listed below:

1. At the source-code (program code) level

2. As part of compilation by using intermediate representations

3. As object-code-level transformation by modifying the object-code files

4. As post-loader transformation by modifying the executable files

Jones et al. pioneered the development of a software visualisation debugging tool,
Tarantula, to distinguish bugs in the program, particularly for imperative language [Jones
et al., 2001]. They instrumented the program code at the statement level. In order to gather
statement-based spectra coverage for the program code, they used test suites to execute
the program code.

Table 2.4, taken from [Jones et al., 2002], shows the example of a simple program seg-
ment executed by several pass and fail test cases. The Pass and Fail status of the test cases
are represented with P and F respectively. Jones et al. [2002] propose two approaches
to distinguish the statements likely to be buggy. The first, the discrete approach, uses a
three-colour system (Red, Green, and Yellow) to visualise statements. Statements that are
only executed by pass test case(s) are visualised as Green. Statements are visualised as
Red if they are only executed by fail test case(s). Statements executed by both pass and
fail test cases are visualised as Yellow. They found that this approach is not useful, as
bugs could not be distinguished if the particular statement is executed by both pass and
fail test cases.

17

Chapter 2. BACKGROUND AND LITERATURE REVIEW

Table 2.4: Mid Program from Jones et al. [2002]

Test Cases
t1 t2 t3 t4 t5 t6

mid() { int x,y,z,m; 3,
3,

5

1,
2,

3

3,
2,

1

5,
5,

5

5,
3,

4

2,
1,

3

1: read("Enter 3 numbers:",x,y,z); • • • • • •
2: m = z; • • • • • •
3: if (y < z) • • • • • •
4: if (x < y) •
5: m=y; •
6: else if (x < z) • • •
7: m=y; // *** bug *** • •
8: else • • •
9: if (x > y) •

10: m=y; •
11: else if (x > z)
12: m=x;
13: print("Middle number is:",m); • • • • • •

} Pass/Fail Status P P P P P F

Definition 3 (Colour Visualisation using the Continuous Approach for a statement s).

colour = low colour (red) + (
aep
totP
∗ 100%

aep
totP
∗ 100% +

aef
totF
∗ 100%

) ∗ colour range

Definition 4 (Brightness for a statement s).

bright = max(
aep
totP

∗ 100%,
aef
totF

∗ 100%)

The second approach, the continuous approach, is used to map the colour of respective
program statements using the following Definition 3. It defines the low colour, which is
red, as one end of the colour spectrum, and the colour range as the other higher end of
the colour spectrum. Jones et al. [2002] use a graphical program such as Gimp [gimp,
2010] to define the values of the colours. As the colour range ranges from 0 (red) to 100
(green), it is defined as 100. The colour for a particular statement s would be a single
number, representing a colour in the colour spectrum. In this definition, they calculated
the proportion of the number of pass test cases that executed each statement as a fraction
of the total number of pass and fail test cases executing that statement. These proportions
are represented in terms of percentages. This proportion forms the complement of one

18

2.4. LITERATURE REVIEW OF SPECTRAL DEBUGGING USING DYNAMIC
ANALYSIS

of the spectra metrics, Tarantula (see the metric in Table 2.3). We could possibly apply
any other spectra metrics (see the metrics in Table 2.3) in the visualisation debugging
tool. They also introduce a brightness component in the scale of 0 to 100 (Definition 4).
A statement that is executed frequently, whether by pass or fail test cases, is assigned a
brighter colour. Statement that is executed less frequently has a darker colour assigned.

If most pass test cases execute a program statement, the mapping colour shifts towards
GREEN. If most fail test cases execute a statement, the mapping colour shifts towards
RED. If a program statement has been executed by a similar amount of pass and fail test
cases, the colour is mapped towards YELLOW. The intuition of the proposed mapping
colour is to provide clear colour mixtures representing how often the program statement
is executed by pass and fail test cases respectively. This helps to indicate the likelihood
that each statement of the program is to be buggy.

Jones et al. [2002] use Space [Do et al., 2005] as their benchmark. This benchmark
contains 20 single bug versions of 1000 test suites. The test suites consist of randomly se-
lected test cases from the existing Space test suite. They also create multiple-bug versions
of Space. In order to do that, they randomly select more than one single bug versions of
Space and combine them as a multiple-bug program. The selected single bug program
versions must contain different bugs in order to form the multiple-bug versions of Space.
We use a similar approach to generate multiple-bug versions of our benchmarks (refer to
Section 4.5). Jones et al. [2002] observe the Tarantula tool cannot distinguish multiple
bugs in the program by using the colour spectrum. Therefore, this approach is only useful
to locate single bug programs.

Jones et al. [2005] extend the previous study of Jones et al. [2002] by proposing the
complement of Definition 3 (referred to as Suspiciousness in their study) as a metric to
locate bugs. We refer to this as the Tarantula metric (refer this metric to Table 2.3). They
use a similar statement-based spectra coverage to Jones et al. [2002]. Instead of using
colour to visualise bugs, they use the Tarantula metric to rank program statements likely
to be buggy. For a fair comparison of their proposed approach, they adapted other ap-
proaches, namely the Intersection model, the Union model, and the Nearest Neighbour
model [Renieres and Reiss, 2003], using statement-based spectra coverage. Jones et al.
[2005] also compare their proposed approach with the Cause Transition approach [Cleve
and Zeller, 2005]. They use the successful diagnosis of bugs, SucDiag measure (refer
to Subsection 4.3.2 in Chapter 4) to compare the effectiveness of bug localization perfor-
mance using their approach with the other proposed approaches. Within the 1% of code to
be examined by the programmer, they show that Tarantula metric is able to locate 13.93%
of the bugs as compared to 0%, 1.83%, 0%, and 4.65% of the bugs using the Intersec-

19

Chapter 2. BACKGROUND AND LITERATURE REVIEW

tion model, the Union model, the Nearest Neighbour model, and the Cause Transition
approaches respectively.

Wong et al. propose several spectra metrics based on pass and fail test cases [Wong
et al., 2007]. In their study, they emphasise giving less weight to pass test cases if a
particular statement is executed by many pass test cases. They do not adjust any weights
on the fail test cases, as they regard these test cases as important to indicate the likelihood
of a statement being buggy. They use their tool, χSuds [Telcordia Technologies, Inc.,
1998] to instrument and perform test executions of the program. They propose three
different metrics, which we name Wong1, Wong2, and Wong3.

For Wong1, the metric value of a statement solely depends on the number of fail test
cases. For Wong2, the metric value of a statement depends on both the number of pass
and of fail test cases. For Wong3, Wong et al. [2007] introduce a constant value (known
as α in their study) of 0.001 to adjust the weight of pass test cases. As there are more
pass test cases that execute the statement of a program than fail test cases, lesser weight
is assigned to the pass test cases. These metrics are shown in Table 2.3.

Wong et al. [2007] use the Siemens Test Suite as their benchmark in comparing the
effectiveness of bug localization between their approach and Tarantula [Jones and Harrold,
2005]. They empirically evaluate the Wong3 metric with different constant values (α
value). By using the Wong3 metric with the constant value of 0.001, they found the best
improvement of bug localization performance compared to the Tarantula metric. They
do not compare other metrics proposed by Renieres et al. and Abreu et al. [Renieres and
Reiss, 2003, Abreu et al., 2006].

Most recently, Wong et al. propose another metric [Wong et al., 2010], which is differ-
ent from their previous study [Wong et al., 2007]. In their study, the weight is adjusted on
pass and fail test cases [Wong et al., 2010]. They use similar statement-based spectra cov-
erage [Wong et al., 2007]. The only difference is that they use different spectra metrics to
evaluate the program statements. They also choose several constant values (α value) and
empirically observe that the smallest constant value of 0.0001 gives the best improvement
of bug localization performance as compared to using the Tarantula metric. We name this
metric as Wong4; the formula can be found as Definition 2.

Xie et al. recently propose to perform post-ranking of the program statements which
have been evaluated with several spectra metrics [Xie et al., 2010]. They use the input
of statement-based spectra coverage [Jones and Harrold, 2005, Wong et al., 2007, Wong
et al., 2010]. Xie et al. [2010] use spectra metrics found in Naish et al. [2011] to generate
a ranking of the program statements that are likely to be buggy. From the ranked pro-
gram statements, they propose to group statements into two groups, and apply different
heuristics to evaluate these groups of statements. We name this as a grouping-heuristic

20

2.4. LITERATURE REVIEW OF SPECTRAL DEBUGGING USING DYNAMIC
ANALYSIS

approach. They propose to group ranked statements into a suspicious group, GS and a
non-suspicious group, GU . If any statement has been executed by any fail test case (aef
> 0), it is grouped as GS . Otherwise, the statement is grouped as GU . They propose
heuristics for these groups. An additional metric value (MetV alue) of 1 is added to the
statements’ MetV alue in GS . Statements’ MetV alue in group GU are penalised by as-
signing a small metric value, which is the minimum metric value found in the group GS .

Xie et al. [2010] evaluate on the single bug programs of the Siemens Test Suite.
They investigate the improvement of bug localization performance using the existing ap-
proaches [Abreu et al., 2006, Naish et al., 2011] and their proposed grouping-heuristics
approach. They observe that the Wong2, Wong3, Scott, and M2 metrics (known as M
metric in their study) show improved bug localization performance after applying their
proposed grouping-heuristic approach. They observe the Op metric (optimal metric of
single bug programs [Naish et al., 2011]) shows improvement of bug localization perfor-
mance using their proposed grouping-heuristic approach on the schedule program of the
Siemens Test Suite. The latter observation is due to the inclusion of several programs in
their study in which the buggy statement is not executed by any fail test case, due to run-

time error (segmentation fault). As a result, the gcov tool fails to capture the coverage
of the buggy statement. Therefore, the buggy statement for each of these programs has an
aef of 0 and belongs to the non-suspicious group, GU .

Debroy et al. proposed another type of post-ranking of program statements that have
been evaluated with several spectra metrics [Debroy et al., 2010]. The basic idea of their
proposed approach is to group statements based on the number of fail test cases executed
for statements; that is, the aef (referred to as f in their study). Initially, the program
statements are evaluated with spectra metrics, similarly to the previous studies [Jones and
Harrold, 2005, Wong et al., 2007]. We define the pseudocode in Algorithm 1. The inputs
to this algorithm are the ranked statements of program (based on the metric values of state-
ments which have been evaluated with spectra metrics), along with the statement-based
spectra coverage. This is followed by grouping statements based on the same number of
fail test cases into groups of Gf , where f refers to f fail test cases. The groups Gf are
sorted by the descending order of f ; the group of statement(s) with the most fail test cases
is sorted at the top. Finally, in each group of Gf , the statements are sorted again based
on the metric values, and incorporated into a final ranking. Statements at the top of the
ranking list are those most likely to be buggy.

Debroy et al. [2010] use χSuds [Telcordia Technologies, Inc., 1998] to perform pro-
gram instrumentation and test suite execution, and gather statement-based spectra cov-
erage. They evaluate their approach on single bug programs of the Siemens Test Suite,
grep, and gzip datasets, using the Tarantula metric [Jones and Harrold, 2005] and the Ra-

21

Chapter 2. BACKGROUND AND LITERATURE REVIEW

Algorithm 1: Algorithm of Grouping-Based Strategy [Debroy et al., 2010]
Input: ranked statements of program evaluated with respective spectra metrics,

statement-based spectra coverage
Output: ranked statements of program that are likely to be buggy
Group statements (in descending order) based on number of fail test cases1
foreach statement s do2

if statement s is executed in f fail test cases then3
Group the statement s as part of group Gf ;4

end5
end6
Sort group Gf according to f fail test cases (in descending order);7
Sort again the statements based on their metric values within the sorted group Gf ;8

dial Basis function [Wong et al., 2008]. They handle ties, that is, statements with similar
MetV alue to the buggy statement, using High and Low measures (the details of these
measures can be found in Section 4.2 of Chapter 4). In their study, these measures are
known as Best case and Worst case measures. They report their evaluation result using
High and Low measures for different percentages of the program code to be examined by
the programmer. For 10% of the program code to be examined by the programmer, they
observe that their proposed grouping strategy is more effective than not using grouping
strategy for the Siemens Test Suite, grep, and gzip programs respectively.

By using the proposed grouping strategy of Debroy et al. [2010] on the 10% of the
program code to be examined by the programmer, the Tarantula metric (High measure)
is able to locate 80% of the bugs in the Siemens Test Suite. Without using the grouping
strategy, the Tarantula metric is only able to locate 55% of the bugs in the Siemens Test
Suite. For the grep program, the Tarantula metric with the High measure is able to locate
90% of bugs as compared to 60% of bugs, using the grouping strategy and without using
the grouping strategy respectively. On the gzip program, the Tarantula metric with the
High measure is able to locate 95% of bugs as compared to 78% of bugs, using the group-
ing strategy and without using the grouping strategy respectively. Debroy et al. [2010]
also show the same improvement on bug localization performance using their grouping
approach on these datasets with the Radial Basis function [Wong et al., 2008]. The fig-
ures for other percentages of program code to be examined by the programmer using their
proposed approach are detailed in their study [Debroy et al., 2010].

Renieres et al. propose the use of difference spectra (the differences between test
cases) and distance spectra (using the Nearest Neighbour model) in order to locate bugs
effectively [Renieres and Reiss, 2003]. They implement their proposed approaches in a
tool called WHITHER. The pseudocode of their proposed approach can be referred to in
Algorithm 2, where the input is the block-based spectra coverage. In their study, they use
one fail test case and all the pass test cases.

22

2.4. LITERATURE REVIEW OF SPECTRAL DEBUGGING USING DYNAMIC
ANALYSIS

Algorithm 2: Algorithm of Difference Spectra and Distance Spectra [Renieres and Reiss, 2003]
Input: block-based spectra coverage of a fail test case and all pass test cases
Output: Set of blocks of program likely to be buggy
Applying Different Pass and Fail Selection Strategies;1
Intersection Model2
∩Sp(similar blocks of program executed by ALL pass test cases)− Sf ;3
Union Model4
Sf − ∪Sp(any blocks of program executed by the pass test cases);5
Nearest Neighbour Model6
foreach pass test case do7

Coverage Type: Apply Hamming distance on the binary execution counts of Sp and Sf ;8
Permutation Type: Sort blocks of program in Sp and Sf based on frequency execution9
counts before apply Hamming distance on both test cases;

end10
Choose the pair of pass and fail test case with the least Hamming distance;11
Set of blocks of program likely to be buggy is returned;12

Difference spectra consists of two different models, namely the Intersection model and
the Union model. The Intersection model refers to the differences in the set of program
blocks executed in all the pass test cases, Sp, and the set of program blocks executed in
the selected fail test case, Sf . The Union model refers to the differences between the set of
program blocks executed in the selected fail test case, Sf , and the union of all the program
blocks executed in all the pass test cases, Sp. The output of these models is the set of
program blocks that are likely to be buggy.

Instead of using all the pass test cases to help locate the bug for distance spectra,
only one of the pass test cases is selected for the Nearest Neighbour model. Using this
model, only the pass test case that is most similar to the selected fail test case is chosen.
In order to do that, Renieres et al. [2003] introduce two strategies, namely Coverage Type

and Permutation Type. The former applies the Hamming distance [Hamming, 1950] on
the binary execution counts of block-based spectra coverage of the pass test cases, Sp,
and fail test case, Sf . These binary counts refer to whether each block of the program
has been executed (1) or not (0). For the Permutation Type, Renieres et al. [2003] use
the frequency counts of block-based spectra coverage. The frequency count considers the
number of times each block of the program has been executed by each test case. They
sort the program blocks by Sp and Sf before applying the Hamming distance. Finally, the
pair of pass and fail test cases with the least Hamming distance is chosen. The set of the
program blocks executed in the chosen pass test case, Sp, is subtracted from the set of the
program blocks executed in the fail test case, Sf . The set of program blocks likely to be
buggy is returned to the programmer.

From the set of program blocks produced by each model, Renieres et al. [2003] map
the statements of the blocks using a program dependence graph (PDG) [Horwitz and
Reps, 1992]. The program dependence graph represents the dependency and relationship

23

Chapter 2. BACKGROUND AND LITERATURE REVIEW

of the nodes of the program, which are represented with directed edges. Definition 12 in
Subsection 4.3.3 is used to measure the effectiveness of their approach in bug localization
performance. This measure refers to the amount of the program nodes (blocks) not needed
to be examined in the program code (PDG) in order to locate the bugs. We defer the details
of this performance measure to Subsection 4.3.3 in Chapter 4.

Renieres et al. [2003] evaluate 109 single bug programs from the Siemens Test Suite.
They report that their proposed Nearest Neighbour using Permutation Type approach is
able to locate more bugs than the Intersection model, Union model, and Nearest Neigh-

bour using Coverage Type approaches. When not needing to examine 90% of the program
nodes (that is, blocks of program) in the PDG, their proposed Nearest Neighbour using

Permutation Type approach is able to locate 18 bugs in the test suite as compared to 1,
6, and 5 bugs using the Intersection model, Union model, and Nearest Neighbour using

Coverage Type approaches respectively.

Abreu et al. propose to use block-based spectra coverage in order to locate program
bugs [Abreu et al., 2006]. Their study is mainly motivated by Reps et al. [1997] and
Abreu et al. [2006] are particularly interested to capture the block-based spectra coverage
(referred to as block hit spectra). In their study, if a particular block of the program is
executed, it increments the block hit spectra count. A comparison of the similarity of the
blocks is made by applying different spectra metrics. They propose to use the Ochiai and
Jaccard metrics (refer to the metrics in Table 2.3) in their evaluation.

In their study, Abreu et al. [2006] use diagnosis quality, qd, to evaluate bug localization
performance of their proposed approach. The diagnosis quality, qd, is very similar to the
rank percentages (see Definition 11). The block with the largest MetV alue indicates the
block most likely to be buggy. If one or more blocks share similar metric values to the
buggy block metric value, they use the Low measure. This measure is detailed in Section
4.2 of Chapter 4.

Abreu et al. [2006] evaluate using 118 (out of 132) programs of the Siemens Test
Suite. Using diagnosis quality, qd, they observe that the Ochiai and Jaccard to be more
effective in locating bugs than Tarantula. They also observe that the Ample metric shows
the worst bug localization performance.

Dallmeier et al. propose a development plugin known as Analysing Method Patterns
to Locate Errors (AMPLE) for Java IDE Eclipse [Dallmeier et al., 2005]. They use the
Byte Code Engineering Library (BCEL) [Dahm et al., 2002] for byte-code instrumen-
tation of the program. In their study, program functions or methods belonging to the
respective classes of the program are better known as method sequences. The pseudocode
of their proposed approach is given in Algorithm 3. The inputs to this algorithm are the
instrumented functions (methods) of program code and test cases (one pass test case and

24

2.4. LITERATURE REVIEW OF SPECTRAL DEBUGGING USING DYNAMIC
ANALYSIS

Algorithm 3: Algorithm of Lightweight Bug Localization [Dallmeier et al., 2005]
Input: instrumented methods/functions of program code, a pass test case and all fail test cases
Output: classes of the program code ranked according to the weights of method sequences
foreach pair of a pass and fail test case not selected before do1

Execute the pair of test cases on the program code;2
Gather the coverage of respective method sequences invoked by object of classes of3
program for the pair of pass and fail test case;
Identify the originating class that calls the respective method sequences;4
Compare differences of method sequences of the respective classes for the pair of pass and5
fail test case;
More weight is assigned and aggregated to the originating class of the method sequences6
that appear in fail test case but not in pass test case;

end7
Rank all classes of the program code according to the aggregated weights of method sequences;8

all fail test cases). Initially, a pair of pass and fail test cases is executed to gather coverage
of the sequences of methods invoked by objects of the respective classes of the program.
This is followed by identifying the originating classes of the method sequences. A com-
parison is made between the method sequence(s) of pass and fail test cases for each class
in the program. Originating classes of method sequences that only occur in fail test cases
are assigned more weight. This step is repeated for all the pairs of pass and fail test cases.
The weights of the originating classes of each method sequence are aggregated. Finally,
each class of the program is ranked based on the aggregated weights of the method se-
quences. The program class with the highest aggregated weights of method sequences is
the class most likely to hold the bug in the program code. In their plugin tool, Dallmeier
et al. [2005] also propose the flexibility to adjust the number of methods in a method se-
quence if the programmer cannot locate the bug. They evaluate their proposed approach
using the AspectJ compiler as their test subject. They observe that using seven methods in
a method sequence, the programmer is able to locate the buggy class by inspecting only
1.98 classes of the program code. The study of Dallmeier et al. [2005] is later generalised
by Abreu et al. [2006] and is known as the Ample metric (refer to the metric in Table
2.3) [Abreu et al., 2006, Abreu et al., 2007].

Hsu et al. propose a tool to rank more than one statement at a time; this tool is called
Ranking, Analysis, and Pattern Identification for Debugging (RAPID) [Hsu et al., 2008].
RAPID is used to instrument branches of the program. The pseudocode of this approach is
presented in Algorithm 4. The inputs to this algorithm are instrumented program branches
and branch-based spectra coverage. By using the branch-based spectra coverage, each
instrumented branch of the program that has been executed by the test cases is mapped to
the program spectra properties aef , aep, anf , and anp. These branches are then evaluated
using the Tarantula metric (refer to the metric in Table 2.3). The metric value, MetV alue,
is assigned to each branch of the program. Hsu et al. [2008] also gather the branch-based

25

Chapter 2. BACKGROUND AND LITERATURE REVIEW

Algorithm 4: Algorithm of RAPID [Hsu et al., 2008]
Input: instrumented branches of program, branch-based spectra coverage
Output: Sequential branches that are most likely to be buggy
Evaluate instrumented branch of program executed by the test cases using Tarantula metric;1
Each branch executed in the program assigned MetV alue from Tarantula metric;2
Gather branch-based spectra coverage of all fail test cases;3
Map any branch MetV alue to the matching program branch executed in branch-based spectra4
coverage of fail test cases;
Identifying sequences of buggy branches;5
foreach branch-based spectra coverage of fail test case do6

if MetV alue of all the mapped program branches in the test case < 0.6 (threshold value)7
then

Eliminate the fail test case;8
end9
else10

Keep the branch-based spectra coverage of the fail test case in a new list, L;11
end12

end13
Identify common patterns of the remaining branch-based spectra coverage in L using14
BI-Directional Extension (BIDE) [Wang and Han, 2004];
Present the longest sequential branches (consist of statements) as the most likely branch to be15
buggy;
if the programmer locates and understands the bugs from the sequential branches then16

Exit;17
end18
else19

Append the previously presented branches to the next longest substring(s) of sequential20
branches found in list L;
Repeat Steps 16–22 until bug is found by the programmer;21

end22

spectra coverage for all the fail test cases. In the subsequent step, they map each branch
of the program (which has been assigned with metric value, MetV alue) to the matching
branch that has been executed in the branch-based spectra coverage of fail test cases. A
typical fail test case can have more than one branch mapped with the assignedMetV alue.
They introduce a threshold value of 0.6 to remove any insignificant fail test cases. If all of
the mapped branches of a particular fail test case have MetV alue of less than 0.6, the fail
test case is not considered. Otherwise, the fail test case is mapped to a new list, L. The fail
test cases, mapped in the list L, are used to identify common branch patterns using a data
mining approach (BI-Directional Extension (BIDE)) [Wang and Han, 2004]. Eventually,
the longest substring(s) of sequential branches that fulfil the threshold value of 0.6 and
occur in all the fail test cases are chosen.

The following step is performed in an interactive mode. The sequential branches (usu-
ally consist of statements) are presented to the programmer as the most likely branches to
be buggy. If the programmer is able to recognise the bug from the sequential branches, the
algorithm stops. If the programmer still cannot understand and locate the bugs, the previ-

26

2.4. LITERATURE REVIEW OF SPECTRAL DEBUGGING USING DYNAMIC
ANALYSIS

ously presented sequential branches are appended to the next longest sequential branches
in the list, L. The latter branches are presented to the programmer. This step is repeated
until the bug has been found by the programmer. Alternatively, Hsu et al. [2008] also
suggest to lower the threshold value of 0.6 if the programmer still cannot locate the bugs
from the presented sequential branches. They evaluate the Siemens Test Suite and indi-
cate the effectiveness of their proposed approach by examining one of the examples in the
Siemens Test Suite, which is replace program.

Santelices et al. [2009] investigate three different types of spectra coverage, namely
statement-based spectra coverage, branch-based spectra coverage, and du-pair spectra
coverage (those having data dependencies) [Offutt et al., 1996] with respect to the effec-
tiveness of bug localization performance. Du-pair refers to associating the definition of a
variable in a statement with the use of the same variable in the subsequent statement(s).
An example of du-pair from Table 2.4 is Statement 2 and Statement 13 with variable m.
Statement 2 defines the variable m, and it is subsequently used in Statement 13. Santelices
et al. [2009] use a tool known as DUA-FORENSICS [Santelices and Harrold, 2007] to
instrument Java programs. Some of the test programs in C are converted to Java before
instrumentation is performed using DUA-FORENSICS.

Santelices et al. [2009] use Ochiai metric [Abreu et al., 2006] to rank the statements,
branches, and du-pairs. For branches and du-pairs, they use similar approach as Hsu
et al. [2008]. Initially, program code is instrumented with respect to statements, branches,
and du-pairs. The test suite is executed over the instrumented program code to gather
spectra coverage. In order to make a fair comparison with the statement-based spectra
coverage approach, they use several rules to map the branches and du-pairs to statements.
In their evaluation, they report the best bug localization performance among the different
spectra coverage (statement-based, branch-based, and du-pairs). In their study, Santelices
et al. [2009] show that overall, bug localization performance is the best by using du-pairs
spectra coverage.

The disadvantage of using du-pairs spectra coverage is the time to instrument du-pairs
as compared to statement-based and branch-based spectra coverage. Therefore, Santelices
et al. [2009] also propose a technique to infer du-pairs spectra coverage from branch-
based spectra coverage. More details of the latter technique can be referred to Santelices
et al. [2007]. Santelices et al. [2009] investigate whether using the inferred du-pairs spec-
tra coverage (which has less instrumentation overhead) shows any better bug localization
performance than using statement-based and branch-based spectra coverage. In their eval-
uation, they show that the inferred du-pairs spectra coverage shows better bug localization
performance than using the branch-based spectra coverage.

27

Chapter 2. BACKGROUND AND LITERATURE REVIEW

The Pinpoint framework has been proposed to determine and locate faulty components
in large Internet services in the J2EE platform [Chen et al., 2002]. Dynamic analysis is
used to gather web client request traces. Information of components that caused any
failures (namely, caught exceptions) in the client requests are gathered. This information
takes into account components often used and not often used in client requests. The
Jaccard metric (refer to the metric in Table 2.3) has been used in the framework to relate
the similarity of these components with failures.

The Zoltar metric (refer to the metric in Table 2.3) has been developed in the Embed-
ded Software Lab of the Delft University of Technology as a modification of the Jaccard
metric [A.Gonzalez, 2007]. A new term that includes a constant of 10 000 is introduced
as the denominator of this metric to distinguish non-buggy and buggy blocks of program.
In their study, the metric has been used to compare bug localization performance with
Tarantula, Ochiai, and Jaccard metrics.

There is another bug localization domain that locates bugs based on predicates [Liblit
et al., 2005, Liu et al., 2005]. We refer to it as predicate-based spectra coverage. A
predicate is defined as a part of program properties; for example, branches, return values,
and scalar pairs. An example of branches would be conditional statements such as if-then-
else. The return statement is used to return control to the calling function. Example
of return predicates are return values of greater than zero, less than zero, and equal to
zero. Scalar pairs refers to the boundary when a variable assignment occurs. For example,
whether the left side of the assignment is less than/greater than/equal to the right side of
the assignment.

Liblit et al. develop a system known as Co-operative Bug Isolation (CBI) [Liblit et al.,
2005]. The system gathers information of the user executions automatically when the pro-
gram crashes. Similar systems have been deployed by Microsoft, GNOME, and KDE in
order to gather the automated crash reporting information from the user executions. Ini-
tially, program code is instrumented with respect to selected predicates, namely branches,
return values, or scalar pairs. Instead of gathering information of predicates of the pro-
gram for every user execution, a representation of the predicates of the program from the
user executions are gathered. Liblit et al. perform sparse random sampling on the respec-
tive predicates using geometrically distributed random numbers [Liblit et al., 2003]. The
details of the sampling approach can be referred to in Algorithm 13 in page 45. These
predicates consist of counter variables to determine the next predicates to be sampled.
In their study, each predicate Pred is assigned with F(Pred), S(Pred), F(Pred observed),
and S(Pred observed) respectively. F(Pred) refers to the number of fail tests that the Pred
was executed and True. S(Pred) refers to the number of pass tests that the Pred was ex-
ecuted and True. F(Pred observed) refers to the number of fail tests where the Pred was

28

2.4. LITERATURE REVIEW OF SPECTRAL DEBUGGING USING DYNAMIC
ANALYSIS

Table 2.5: Spectra Metrics used in the Predicate-based Spectra Coverage studies

Name Formula
Failure(Pred) F (Pred)

S(Pred)+F (Pred)

Context(Pred) F (Pred observed)
S(Pred observed)+F (Pred observed)

CBI Inc(Pred) Failure(Pred)-Context(Pred)
CBI Log(Pred) 2

1
CBI Inc

+ log totF
logF (Pred)

CBI Sqrt(Pred) 2
1

CBI Inc
+

√
totF√

F (Pred)

FPC(Pred) Failure(Pred)+Context(Pred)
OFPC(Pred) 3*F(Pred)+FPC(Pred)
O8FPC(Pred) 10*F(Pred)+8*Failure(Pred)+Context(Pred)

observed (reached). S(Pred observed) refers to the number of pass tests where the Pred
was observed (reached). The term of observed is also known as reach. We showed a sim-
ple example of if-then-else to demonstrate the differences between True and reach. The
following excerpt in Figure 2.1 shows that if the predicate on Statement 1 (S1) is True, it
will cause the program to crash. The predicate on Statement 1 (S1) and its negation (S4)
is reach if and only if S1 is executed. The negation of the predicate on S1 is True if and
only if Statement 4 (S4) is executed.

S1: if (f == NULL){
S2: x=0;
S3: *f;
S4: }else x=1;

Figure 2.1: Excerpt of if-then-else Predicate

Using the notation of F(Pred), S(Pred), F(Pred observed), and S(Pred observed), Lib-
lit et al. [2005] compute Failure(Pred) and Context(Pred). Failure(Pred) is defined as the
number of fail tests where Predwas True divided by the total number of tests where Pred
was True. Context(Pred) is defined as the number of fail tests where Pred was observed

(reached) divided by the total number of tests where Pred was observed (reached). These
metrics are summarised in Table 2.5.

A brief pseudocode is defined in Algorithm 5. The input is the instrumented predicates
either in branches, return values, or scalar-pairs schemes. Another input of this algorithm
is the user execution information, represented as feedback report, R. This report indicates
whether the program is Pass or Fail. It also contains the information of whether each
Pred is observed True or otherwise. Liblit et al. [2005] perform sparse random sampling
[Liblit et al., 2003], using geometrically distributed random numbers, and use predicate

29

Chapter 2. BACKGROUND AND LITERATURE REVIEW

Algorithm 5: Algorithm of Statistical Bug Isolation [Liblit et al., 2005]
Input: instrumented predicates (if-then-else, return values, or scalar-pairs scheme), user

executions represented as feedback report R
Output: Predicates ranked according to Importance(Pred) based on F(Pred), Increase

(Pred), and CBI Log (Pred)
Perform sparse random sampling approach [Liblit et al., 2003] on instrumented predicates1
which are contained in R and gather the predicate-based spectra coverage for the sampled
predicates;
Compute Failure and Context for each instrumented predicate, Pred;2
Rank the Importance of all the Pred based on F, CBI Inc, and CBI Log (see the metrics in3
Table 2.5);

counters to record how often each predicate, Pred, is executed in each user execution.
This information forms the predicate-based spectra coverage. Failure and Context are
computed for the respective sampled Pred. Liblit et al. [2005] propose several metrics to
rank the predicates of the program that are likely to be buggy. One of them is Increase
(later renamed as CBI Inc). There are also two variations, which attempt to combine
Increase with another simple metric, namely the proportion of fail tests in which Pred
is True using the harmonic mean. One variation uses logarithms [Liblit et al., 2005]; we
name this variation as CBI Log. The other variation uses square roots; we name this CBI

Sqrt. These metrics can be found in Table 2.5. In their study, F , CBI Inc, and the CBI Log

harmonic mean variations are used to rank the likelihood of each predicate, Pred, to be
buggy. Liblit et al. [2005] refer to this likelihood as Importance. For all these metrics in
Table 2.5, we use a similar notation to their study except with the notation Pred (termed
P in their study).

Liblit et al. [2005] evaluate their proposed approach on the MOSS, CCRYPT, BC,
EXIF, and RHYTHMBOX datasets [Rhythm, nd]. By using their proposed predicate-
based metrics, they analyse the predicates that are ranked top on these datasets. They show
that these predicates are the bugs in the programs. They do not make any comparison with
the Tarantula metric [Jones and Harrold, 2005] or with other metrics previously proposed
by Renieres et al. [2003].

Chilimbi et al. recently use path-based spectra coverage to improve bug localization
performance [Chilimbi et al., 2009]. They develop a tool known as HOLMES and propose
two debugging approaches known as Non-adaptive and Adaptive debugging.

Algorithm 6: Algorithm of Holmes - Non-adaptive debugging [Chilimbi et al., 2009]
Input: instrumented program code (path-based) Path, path-based spectra coverage
Output: paths ranked according to Importance of Path (likely to be buggy) based on

Failure, CBI Inc, and Sensitivity
Failure and Context are computed for each instrumented path of the program code,1
Path;
Rank the Importance based on Failure, CBI Inc, and Sensitivity of all the Path;2

30

2.4. LITERATURE REVIEW OF SPECTRAL DEBUGGING USING DYNAMIC
ANALYSIS

In the non-adaptive debugging approach, Chilimbi et al. [2009] use framework sim-
ilar to the CBI system [Liblit et al., 2005], by gathering user execution information rep-
resented in reports, R. From the reports, they gather the path-based spectra coverage for
each path of the program. A brief pseudocode is described in Algorithm 6 (Non-adaptive
debugging). The inputs to this algorithm are the path-based instrumented program Path,
as well as the path-based spectra coverage of each path of the program. Chilimbi et al.
[2009] adapt the Failure and Increase metrics [Liblit et al., 2005] in order to rank the
paths most likely to be buggy. Sensitivity is used in their study to rank the importance of
the paths likely to be buggy. It refers to the proportion of each path being executed by fail
test cases with respect to the number of fail test cases in the program.

Algorithm 7: Algorithm of Holmes - Adaptive debugging [Chilimbi et al., 2009]
Input: program code, user executions information of a program
Output: Paths likely to be buggy returned to the programmer
Monitor each program execution for failures and gather reports;1
Perform static analysis based on the reports;2
Compute set of functions appear in fail stack traces (most likely root cause of the program3
failure);
Instrumented program code especially on the selected set of functions;4
Monitor several program execution for failures, and gather reports and profiles for the5
selected set of functions;
Use static analysis component again to analyse and model sets of buggy functions with6
Importance;
while strong bug predictors not obtained or all failures not explainable to the programmer7
do

Invoke the static analysis component again to identify other fragments of code (weak8
bug predictors), which are related to the previous predictors;

end9
Bug is found and stop;10

In order to gather path-based spectra coverage for the non-adaptive approach (Algo-
rithm 6), this method needs to gather user execution information before sparse random
sampling of program paths can be performed on the paths of the program. This causes
some instrumentation overhead (similar to that of the study in Liblit et al. [2005]) to main-
tain the path counters and sample the paths of the program. Therefore, Chilimbi et al.
[2009] propose an adaptive debugging approach in Algorithm 7 to locate bugs without
compromising the overhead of instrumentation. The inputs to this algorithm are the pro-
gram code and user executions information of a program. Initially, they monitor several
user executions that cause the program to fail, and gather the same reports used in Liblit
et al. [2005]. These reports are generated automatically whenever the program crashes or
fails. Once they have sufficient reports, they use the static analysis component embedded
in the HOLMES tool to analyse the bug reports. In this step, they extract set of program
code functions that appear in the fail stack traces from the reports. These functions ulti-

31

Chapter 2. BACKGROUND AND LITERATURE REVIEW

mately form paths likely to be buggy. This is followed by instrumenting the program code
particularly on the set of functions extracted previously. The program code is executed by
all the user executions again, except that only the coverage information of the extracted set
of functions is gathered. This information is analysed again using the tool’s static analysis
component. The set of functions likely to be buggy are computed using Importance based
on Failure, CBI Inc, and Sensitivity for each Path of the program. Finally, functions that
are ranked highest (known as strong bug predictors) are presented to the programmer. If
they are explainable as the bug to the programmer, the algorithm stops immediately. Oth-
erwise, the static analysis component is invoked to identify new sets of functions in the
fail set traces which are likely to cause the program to fail. These sets of functions are
known as weak bug predictors in their study as they are not chosen in the first iteration.
Steps 7–9 of Algorithm 7 are repeated continuously until the bug is found and explainable
to the programmer. Chilimbi et al. [2009] evaluate their proposed approach on 6 out of 7
programs of the Siemens Test Suite [Do et al., 2005] using the Microsoft Phoenix com-
piler [Hall et al., 2009]. They also evaluate on other programs such as gcc, translate, and
edg.

Chilimbi et al. [2009] evaluate their performance using the program dependence graph
(PDG), similar to the previous studies [Renieres and Reiss, 2003,Cleve and Zeller, 2005].
The details of this performance measure are given in Subsection 4.3.3 of Chapter 4. By
examining 10% of the program nodes in the PDG of the Siemens Test Suite, 24, 14, and 0
bugs can be located using the path-based, predicate-based, and branch-based spectra cov-
erage respectively. Therefore, they conclude that path-based spectra coverage performs
best in locating bugs as compared to using the predicate-based and branch-based spectra
coverage.

Recently, we have investigated the relationship of statement-based spectra coverage
and predicate-based spectra coverage [Naish et al., 2010]. We propose several heuristics to
reconstruct predicate-based spectra coverage (if-then-else) using statement-based spectra
coverage. We observe that by using the predicate-based spectra coverage gives additional
information that helps improve bug localization performance as compared to using the
statement-based spectra coverage. Initially, we determine whether each statement is at
the start of a then block or at the end of an else block of the program. Once the statements
have been identified to be in the then or else block, statements not in the then or else

block are identified next. The statement-based spectra coverage is propagated forward
and backward for the then and else block.

We evaluate our proposed approach on a model program which has more statements
than the model program ITE28 (the details of this model program are given in Chapter 5).
The predicate-based spectra coverage are reconstructed from the statement-based spectra

32

2.4. LITERATURE REVIEW OF SPECTRAL DEBUGGING USING DYNAMIC
ANALYSIS

coverage of the model program. We evaluate on several spectra metrics, including the
CBI Log and CBI Sqrt originally used for statement-based spectra coverage [Naish et al.,
2011]. We also propose several new spectra metrics, namely FPC, OFPC, and O8FPC, for
predicate-based spectra coverage (these metrics are listed in Table 2.5). The FPC metric
refers to the addition of the Failure and Context metrics. The OFPC and O8FPC metrics
are variants of OFPC based on an understanding of the single bug optimal metric, Op,
proposed by Naish et al. [2011]. We conclude by using the model program on several
number of tests, the O8FPC metric outperforms other metrics, including the CBI Inc, CBI
Log, and CBI Sqrt metrics [Liblit et al., 2005]. We also use these metrics to evaluate the
predicate-based spectra coverage of the Siemens Test Suite [Do et al., 2005], the subset of
Unix Test Suite [Wong et al., 1998], and the Concordance [Ali et al., 2009]. We observe
that the O8FPC metric has the average rank percentages of 9.95% as compared to 10.11%
using Op metric in single bug Concordance programs. Other predicate-based metrics of
CBI Inc, CBI Log, and CBI Sqrt yield average rank percentages of 50.04%, 49.05%,
and 51.18% respectively on the single bug Concordance programs. We also observe that
the O8FPC performs better than other spectra metrics, which were originally used in
statement-based spectra coverage.

Statistical model-based bug localization (better known as SOBER) [Liu et al., 2005]
also uses the predicate-based spectra coverage. In their study, Liu et al. [2005] instru-
mented predicates with branches and returns. The difference between their study and
Liblit et al. [2005] is that the information of execution counts (frequency counts) is used
instead of binary execution information in the CBI system [Liblit et al., 2005]. SOBER
captures the number of times a particular predicate, Pred, has been executed in pass and
fail test cases respectively. Another difference of SOBER and the CBI system [Liblit
et al., 2005] is that the former does not rely on the user execution information and sparse
random sampling proposed by Liblit et al. [2003]. Liu et al. [2005] use the existing test
cases of the benchmarks to instrument and gather the predicate-based spectra coverage.

In SOBER, Liu et al. [2005] define the probability of Pred which has been executed
and True for each test case. This is referred to as the evaluation bias of Pred, E(Pred).
They model the distribution of the probability of E(Pred) with respect to pass and fail
test cases, which is E(Pred)pass and E(Pred)fail respectively. Finally, they consider the
differences of E(Pred)pass and E(Pred)fail as to indicate the likelihood of predicate,
Pred, of the program being buggy. The higher the difference for a predicate, Pred, the
more likely the predicate, Pred, is to be buggy.

Liu et al. [2005] also use statistical measures, such as the mean and variance to develop
a ranking score, s(Pred), to rank the predicate, Pred, accurately. A predicate conformity,
p(Z), is measured according to the standard normal distribution (see Definition 5). They

33

Chapter 2. BACKGROUND AND LITERATURE REVIEW

evaluate their approach on the Siemens Test Suite and the BC1.06 datasets. Their study
also reports the performance measure of their proposed approach using the program de-
pendence graph (PDG). They use the complement of the performance measure proposed
by Renieres et al. [2003] (see Definition 12 in page 78). This refers to the number of
program nodes needed to be examined in the program code (PDG) in order to locate bugs.
We defer the details of this performance measure to Subsection 4.3.3 in Chapter 4.

Definition 5. Ranking score, s(Pred)

s(Pred) = log(
σPred√
µp(Z)

)

Liu et al. [2005] observe that within the 10% of the program code being examined by
the programmer, they are able to locate 68, 52, and 34 bugs in the 130 programs of the
Siemens Test Suite, using their proposed approach of SOBER, the proposed approaches
of Liblit et al., and Cleve et al. [Liu et al., 2005, Liblit et al., 2005, Cleve and Zeller,
2005] respectively. They evaluate their proposed approach on BC1.06 and observe that
the predicates ranked most likely to be buggy are very close to the bug that causes the
program to crash.

The proposed approach of Liu et al. [2005] uses more information of predicates than
that of Liblit et al. [2005]. They consider multiple evaluations of predicates (frequency
counts) for each test case. Liblit et al. only assume each predicate is observed once, even
if it is executed multiple times in each test case [Liblit et al., 2005]. Another advantage of
SOBER is less overhead in the program instrumentation, since only branches and return
values are instrumented as predicates.

2.5 Summary

In this chapter, we introduced the notion of program spectra and spectral debugging ap-
proach to locate bugs. We gave a comprehensive list of various spectra metrics used in
the thesis. We also briefly detailed the origin of these spectra metrics. Several studies that
introduced spectra metrics to locate bugs have been described in this chapter. We also
surveyed several studies of spectral debugging which are closely related to the thesis.

34

3
Survey of Software Fault Localization

Techniques

3.1 Introduction

In Chapter 2, we have briefly introduced several approaches based on software fault lo-
calization techniques which are closely related to the contributions of this thesis. In this
chapter, we consolidate a survey of detailed studies on software debugging, particularly
dynamic analysis. These studies show that there are several different approaches to bug lo-
calization, namely: slicing and dicing; statement-based, block-based, and predicate-based
spectra coverage; state-based; test reduction; and combining spectra-based and machine
learning approaches.

3.2 Slicing and Dicing Approaches

We discuss several studies that analyse the slicing approach [Lyle, 1985,Weiser and Lyle,
1986,Agrawal and Horgan, 1990]. This has been one of the earliest approaches proposed
in the area of debugging. Slicing refers to identifying the parts of a program (a set of state-
ments or program blocks) that affect the value of a particular program variable. There are
two types of slicing approaches, namely static slice and dynamic slice. Static slice uses
the information in a control flow graph (CFG) of a program to locate the parts of the
program that affect the value of a particular variable within it [Weiser and Lyle, 1986].
Dynamic slice relies on the information of the test suites, which is the test coverage gath-
ered through dynamic analysis to determine the parts of a program that affect the value
of a particular program variable [Korel and Laski, 1990]. In this section, we refer to a
dynamic slice as an execution slice.

We also discuss dicing approach and how it improves upon that of slicing approach.

35

Chapter 3. SURVEY OF SOFTWARE FAULT LOCALIZATION TECHNIQUES

Dicing refers to the parts of a program that appear in one slice but not in another slice [Lyle
and Weiser, 1987]. Dicing can be further divided into static dice and dynamic dice. These
approaches use similar information to that of static and dynamic slice to identify the parts
of a program that affect the value of a particular program variable. Neither slicing nor
dicing considers applying any spectra metrics to rank program statements that are likely
to be buggy. Instead, these approaches narrow down the parts of a program (statements
or program blocks) that are likely to be buggy in order to help the programmer debug the
program code.

Chen et al. propose to narrow down the search of a bug in the dynamic slice approach
[Chen and Cheung, 1993]. There are two types of dynamic slice, namely successful
execution slice and failure execution slice. Different terminologies are used to refer to
the types of dynamic slices in several studies [Chen and Cheung, 1993, Agrawal et al.,
1995,Wong and Qi, 2004]. We adopt the terms used in Agrawal et al. [1995] – successful
execution slice and failure execution slice – throughout this chapter. In their study, Chen
et al. [1993] use test inputs of dynamic slices to determine the successful and failure
execution slice. Multiple test inputs can have an identical dynamic slice. An execution
slice is considered successful, if the output value of its slicing variable is correct when
applied with all the associated set of test inputs of the dynamic slice. Otherwise, the
execution slice is considered as a failure execution slice. They propose several strategies
to construct a dynamic dice by using successful and failure execution slices of a program.
They are listed as below:

1. Removing program statements in a failure execution slice which have been executed
in a successful execution slice.

2. Removing program statements in a failure execution slice which have been executed
at least once in the successful execution slices.

3. Removing program statements in a failure execution slice which have been executed
in all of the successful execution slices.

4. Removing program statements which have been executed in all of the failure exe-
cution slices from the successful execution slices.

5. Removing program statements which have been executed in all of the successful
and failure execution slices.

The first strategy involves a successful and a failure execution slice. This strategy
retains at least one of the bugs in the dynamic dice. The first strategy is better than the
second strategy if the bugs of the program are in different failure execution slices. Chen

36

3.2. SLICING AND DICING APPROACHES

et al. [1993] observe that the third strategy ensures less bugs are missed when compared
to the first strategy. They observe that using the dynamic dice has more advantages than
using the static dice [Lyle and Weiser, 1987].

Agrawal et al. investigate the effectiveness of using the dynamic dice approach to nar-
row down the search of a bug [Agrawal et al., 1995]. Their study is referred to as a dicing
approach in several studies [Hao et al., 2005, Hao et al., 2006, Hao et al., 2008]. Agrawal
et al. [1995] use base version program code as the oracle of a program in order to deter-
mine the correctness of its slices (successful and failure execution slices). In their study, a
successful execution slice is the slice of the fault-seeded program code version for which
the output of test executions on the slice of the program code is similar to the output of the
test executions on the slice of the base version program code. A failure execution slice is
the slice of the fault-seeded program code version for which the output of test executions
on the slice of the program code is different from the output of the test executions on
the slice of the base version program code. They use the χSlice [Telcordia Technologies,
Inc., 1998] tool to perform the slicing and dicing of the program. The χSlice tool allows
the programmer to visualise the execution slices and dices of a program. Pseudocode
representing the search for a bug in the dynamic dice is described in Algorithm 8.

Algorithm 8: Algorithm of the Dynamic Dice Approach [Agrawal et al., 1995]
Input: successful execution slices, failure execution slices
Output: present the dices to the programmer to debug the program code
Form all possible dices by subtracting the respective successful execution slices from the1
failure execution slices;
Compute the number of statement(s) in the dice, average size;2
Compute the number of buggy statement(s) in the dice, good dices;3
Present one of the dices randomly to the programmer to debug the program code;4

The inputs to this algorithm are the set of successful execution slices and failure exe-

cution slices of the program. Initially, these execution slices are obtained with respect to
the block-based coverage type granularity using the χSlice tool [Telcordia Technologies,
Inc., 1998]. This is followed by obtaining the dice for each pair of successful and failure
execution slices. The maximum number of the dices that can be formed (pairwise com-
bination) is the multiplication of the total number of the successful and failure execution
slices. In order to measure the effectiveness of the dynamic dice approach, Agrawal et al.
[1995] determine the average size and the good dice for each dice. The average size refers
to the number of statements (including the bug) in each dice. The good dice refers to the
number of the buggy statements in the dice. Finally, the programmer is presented with
one of the dices randomly to debug the program code. They observe that the good dice is
an important condition to locate the bugs. The GNU Unix Sort program is used to study
the effectiveness of their proposed approach. This program consists of 914 lines of code

37

Chapter 3. SURVEY OF SOFTWARE FAULT LOCALIZATION TECHNIQUES

and 56 test cases. It contains 25 versions of the program with various single seeded bugs.
The advantage of using this approach is that the programmer is able to focus on a smaller
portion of the program code, its dices, to narrow down the search of its bugs.

Pan et al. build a debugging tool known as Spyder [Pan and Spafford, 1992] to deter-
mine the dynamic slices of a program. Their study relies on the oracle of the program
to determine the correctness of the dynamic slices (the successful and failure execution
slices). They introduce two metrics known as the inclusion frequency and the influence

frequency. The inclusion frequency of a program statement s refers to the number of dis-
tinct dynamic slices that contain the statement s. The influence frequency of a program
statement s refers to the number of times the statement s is executed in the dynamic slices.
Based on these metrics, they introduce several heuristics to narrow down the statements
that are likely to be buggy in the dynamic slices. One of the heuristics is choosing the
statements that have been executed in all the failure execution slices of the program. The
fine details of the other heuristics can be found in their study [Pan and Spafford, 1992].
For each of the heuristics, the Spyder tool produces a set of statements of the program
suggested to be the bug from the dynamic slices. They evaluate the effectiveness of their
proposed heuristic approaches by considering the ratio of the number of program state-
ments that are related to the bugs with respect to the number of statements suggested to
be the bug using the heuristics. A higher ratio for a particular heuristic indicates that it is
more effective in narrowing down the search of the bugs. They apply their heuristics on
11 different programs. They conclude that using heuristics with the inclusion frequency

metric is more effective in narrowing down the search of the bugs in these programs.

Korel et al. extend the dynamic slice approach [Korel, 1988] using a tool known as
Programming Error Locating Assistant System (PELAS) [Korel and Rilling, 1997] to
help the programmer understand program executions in the Pascal language. The tool
is used to execute the program code (dynamic analysis) and to display the sections of
program executions that belong to a dynamic slice. A list of all the related variables of the
program likely to be buggy are presented to the programmer. They also propose the use
of partial dynamic slice when the programmer chooses to analyse portions of a program,
for example, the executions of specific loops and procedures.

Wong et al. propose an improved dynamic slice approach [Wong and Qi, 2004] to lo-
cate the bugs in a program. Their study incorporates the relationship of data dependencies
between the blocks of a program to locate its bugs. By using their proposed approach,
bugs that are in both successful and failure execution slices can be located. They pro-
pose two approaches, namely the augmentation approach and the refining approach. The
augmentation approach is only used if the bug is not found in the dynamic dice. This
is an iterative approach of including additional block(s) of a program to be examined in

38

3.2. SLICING AND DICING APPROACHES

the dynamic dice until the bug is found. The refining approach is an iterative approach to
remove block(s) of the program that do(es) not contain the bug in the dynamic dice. Us-
ing the latter approach helps the programmer to examine lesser program code in the dice
to locate the bugs. They develop a tool known as Debugging Tool Based on Execution
Slice and Interblock data Dependency (DESiD). For both augmentation and refining ap-
proaches, dice D1 is initially defined by taking the difference of a failure execution slice,
Ef , from the successful execution slice, Es: that is, dice D1 contains the sets of blocks
of a program that are executed in the failure execution slice, Ef , but not in the successful
execution slice, Es.

Algorithm 9: Augmentation Approach Algorithm

Input: dice D1 and failure execution slice, Ef

Output: code segment containing bug(s)
k=1;1
Set θ: Ef -D1;2

Augment code segment, Ak : (β ∈ θ) ∧ (β 4 D1);3

if bug is in code segment Ak then4
Stop;5

end6
else7

Set iteration, k++;8

Augment code segment, Ak=Ak−1 ∪ (β ∈ θ ∧ β 4 Ak−1);9
end10

if Ak is similar to Ak−1 then11
Reach final augmented code segment and no further code segment is needed to be12
constructed;
Stop and return Ef to the programmer to examine the bug;13

end14
else15

Go to Step 4;16
end17

The pseudocode of the augmentation approach is described in Algorithm 9. This
algorithm is executed if the bug is not found in D1. We define several notations in this
algorithm. θ is defined as the blocks of the program being debugged that only appear in Ef
but not in D1. The blocks of the program in θ are potentially non-buggy blocks. Initially,
the code segment, Ak, is augmented by identifying a block β that is an element in θ and
has a data dependent relationship (represented with 4) with D1. An example of a data
dependency relationship: if β uses variable x which has been defined in D1. The code
segment that has been augmented, Ak, is presented to the programmer. The programmer
examines whether any bug is contained in the augmented code segment. If a bug is found
in the augmented code segment, Ak, the algorithm stops immediately. Otherwise, the
iteration of k is incremented. The next augmented code segment Ak will be based on the
code segment Ak−1. In the augmented code segment, Ak, a block of the program, β that is

39

Chapter 3. SURVEY OF SOFTWARE FAULT LOCALIZATION TECHNIQUES

part of θ and has a data dependent relationship with Ak−1 is identified. Ak−1 is essentially
a subset of Ak. The augmented code segment, Ak, is also checked against the previous
augmented code segment, Ak−1, to determine if they are identical. The code cannot be
augmented if they are identical and the programmer is then presented with the failure
execution slice, Ef , to locate the bug. Otherwise, the augmentation approach is repeated
until the bug is found or it reaches the final augmented code segment.

Pseudocode of the refining approach is presented in Algorithm 10. This approach as-
sumes that the bug has been found in the existing dice, represented byD1. The motivation
of this approach is to refine and remove the additional code in the dice D1 that must be
examined by the programmer to locate the bug. The inputs to this algorithm are dice D1,
the successful execution slices, and one failure execution slice. Initially, k successful exe-
cution slices are selected. A new dice is constructed based on the existing dice D1 (which
contains the bug) and the union of the additional k successful execution slices. The dice is
presented to the programmer to examine whether the bug is contained in the dice. If there
is a bug in the refined dice Dk+1, the algorithm stops and return the refined dice to the
programmer. If there is no bug in the dice, the k counter decrements and Steps 2–15 will
be repeated to construct and refine a new dice. These steps are repeated unless the bug
is found. If the minimum number of k successful execution slices has reached 0 (k==0),
this indicates that the bug has not been found in any of the refined dices. Therefore, the
programmer will use the existing dice D1 to examine the bug.

Algorithm 10: Refining Approach Algorithm

Input: dice D1, successful execution slices and failure execution slice
Output: Dice containing bug(s)
Randomly select k successful execution slices;1

Construct new dice Dk+1:D1-∪ (kth successful execution slices);2

if bug is found in dice Dk+1 then3
Stop and present dice to programmer;4

end5
else6

Set k −−;7
if k==0 then8

Stop;9
Examine code in dice D1;10

end11
else12

Repeat Steps 2–15;13
end14

end15

In their study, Wong et al. [2004] evaluate and show the robustness of their proposed
approaches on the set of Space programs [Do et al., 2005] using the DESiD tool. The
details of the Space programs are described in Section 4.5. Wong et al. [2004] observe

40

3.3. STATEMENT-BASED, BLOCK-BASED, AND PREDICATE-BASED SPECTRA
COVERAGE APPROACHES

that the augmentation approach is effective in locating bugs, especially when the bugs do
not exist in the dice. For the refining approach, they also observe that the programmer
can examine less program code in order to locate the bugs. In practice, the programmer
often does not know the exact location of the bugs in a program. They suggest using the
refining approach before using the augmentation approach to locate the bugs.

3.3 Statement-based, Block-based, and Predicate-based
Spectra Coverage Approaches

We discuss several studies using the statement-based, block-based, and predicate-based
spectra coverage approaches in this section. The details of these approaches can be found
in Chapter 2. These approaches instrument a program with respect to the statements,
blocks, and predicates of the program to capture its respective execution coverage infor-
mation. Test case information is used to rank the instrumented statements, blocks, or
predicates of the program according to the likelihood of them being buggy.

Hao et al. propose a fuzzy set theory approach to help locate bugs (referred to as
testing-based fault localization (TBFL) in their study) [Hao et al., 2008]. In a fuzzy set
theory approach, each program statement is assigned a membership grade. This mem-
bership grade eventually determines the statements that are likely to be buggy. The fine
details of the fuzzy set theory approach can be found in Zadeh [1965].

Algorithm 11: Algorithm of Bug Localization using Fuzzy Set Theory Approach [Hao
et al., 2008]

Input: statement-based spectra coverage
Output: ranked program statements likely to be buggy
Find the membership grade of each test case;1
foreach statement s in program do2

Find the set of test cases that execute statement s, Appears;3
Find the set of test cases that execute statement s and fail, Fails;4

end5
foreach statement s in program do6

Calculate As, the maximum of the membership grade for statement s in Appears;7
Calculate Fs, the maximum of the membership grade for statement s in Fails;8

Calculate suspiciousness of statement, s as P (s) = |Fs|
|As| ;9

end10
Rank statements based on suspiciousness P (s) in decreasing order;11

The pseudocode of the proposed approach of Hao et al. [2008] is described in Al-
gorithm 11. The input to this algorithm is the statement-based spectra coverage (binary
form) shown in Table 2.2. Initially, a membership grade is computed for each test case
to normalise the test coverage information. In the next step, conditional probability is ap-

41

Chapter 3. SURVEY OF SOFTWARE FAULT LOCALIZATION TECHNIQUES

plied to the program statements [Newmark, 1988]. For each statement s, a set of test cases
that execute the statement s, Appears, is determined. A set of test cases that execute the
statement s and fail, Fails, is also determined. For each statement s, the maximum mem-
bership grade of test t that executes the statements of the program for both Appears and
Fails is computed. Finally, the suspiciousness value for the statement s is computed us-
ing the P (s) function (Step 9 of Algorithm 11). Hao et al. [2008] evaluate their proposed
approach on the Siemens Test Suite [Do et al., 2005], Tiny C Compiler (TCC) [Bellard,
2010], desk calculator (DC) [Morris and Cherry, 1983], and Counter of directory sizes
(CNT) [CNT, 2010] benchmarks. They evaluate their proposed fuzzy set theory approach
on the test suites of redundant test cases and non-redundant test cases (the details of non-
redundant test cases can be found in Chapter 7).

For a fair comparison with other proposed approaches, Hao et al. [2008] report bug
localization performance using the successful diagnosis of bugs, SucDiag measure (see
Subsection 4.3.2). They compare the effectiveness of their proposed approach with other
approaches such as Nearest Neighbour [Renieres and Reiss, 2003], Cause Transition
[Zeller, 2002], Tarantula [Jones and Harrold, 2005], SOBER [Liu et al., 2005], and
CBI [Liblit, 2004]. Hao et al. [2008] observe that their proposed approach outperforms the
Nearest Neighbour approach. By examining up to 1% of the program code in the Siemens
Test Suite, they successfully locate 0%, 2.48%, and 13.93% of the bugs using the Nearest
Neighbour, their proposed fuzzy set theory approach, and the Tarantula approach respec-
tively. Hao et al. [2008] also compare their proposed approach with the Dicing [Agrawal
et al., 1995] and Tarantula [Jones and Harrold, 2005] approaches. They observe that their
proposed approach has similar effectiveness (in terms of bug localization performance) as
the Dicing approach [Agrawal et al., 1995] regardless of the test suites used (redundant
test cases and non-redundant test cases).

Hao et al. extend their previous fuzzy set theory approach using an interactive bug
localization method [Hao et al., 2006]. The pseudocode of this method is shown in Al-
gorithm 12. This algorithm is almost similar to the previous approach [Hao et al., 2008]
except it provides extra interactions for the programmer to locate a bug. The input to
this algorithm is the statement-based spectra coverage. Initially, the fuzzy set theory ap-
proach is applied to the statement-based spectra coverage to produce a list of statements
most likely to be buggy using the suspicious function P (s) [Hao et al., 2008]. Using
this function, these statements are ranked in the descending order before presented to the
programmer.

The highest ranked statement s in this list is initially set as the check point for the
programmer to debug the program code. The programmer determines whether the check
point (statement s) is the bug. If the check point is determined to be the bug by the pro-

42

3.3. STATEMENT-BASED, BLOCK-BASED, AND PREDICATE-BASED SPECTRA
COVERAGE APPROACHES

Algorithm 12: Algorithm of Interactive Bug Localization using Fuzzy Set Theory Ap-
proach [Hao et al., 2006]

Input: statement-based spectra coverage
Output: buggy statement is found by the programmer, number of check points before the

bug is found
Use fuzzy set theory approach and P (s) [Hao et al., 2008] on the statement-based spectra1
coverage to generate ranked program statements;
Statement s ranked top based on the P (s) is set as a check point;2
if the programmer determines the statement s is buggy then3

Stop and bug localization task accomplished;4
end5
else6

One of the fail tests that executes the statement s is chosen to determine the7
correctness of the check point;
Monitor the values of the variables before and after executing the check point8
variables CPV1 and CPV2;
Remove statement(s) that are not relevant to the bug from the statement-based spectra9
coverage;
Repeat Steps 1–11 until bug is found;10

end11

grammer, the algorithm stops. Otherwise, the programmer sets two other check points:
before (CPV1) and after (CPV2) the check point of the statement s. A fail test that exe-
cutes the check point of the statement s is randomly chosen. This test is used to determine
all the related variables of the program that are related to the check point of the statement
s. The correctness of the values of these variables are determined in CPV1 and CPV2 by
the programmer. If the values of the variables are incorrect in CPV1, the bug is likely to be
located before the check point CPV1 of the statement s. If the values of the variables are
incorrect in CPV2, the bug is likely to be located after the check point CPV1 of the state-
ment s. If both of the values of the variables in CPV1 and CPV2 are incorrect, the bug is
likely located before the first check point of the statement s, CPV1. Based on these check
points, statements which are not relevant to the bug are removed from the statement-based
spectra coverage and will not be considered as part of the statement-based spectra cover-
age in the next iteration. The fuzzy set theory approach is then applied on the modified
statement-based spectra coverage to generate a new ranking of statements [Hao et al.,
2008]. Steps 1–11 are repeated until the programmer recognises that the statement s is
the bug.

In their study, Hao et al. [2006] use the Siemens Test Suite to compare their proposed
approach with the Dicing and Tarantula approaches [Agrawal et al., 1995, Jones and Har-
rold, 2005]. Hao et al. [2006] measure the effectiveness of their proposed approach by
considering the number of check points needed to be examined by the programmer be-
fore the bug is found. As the check points are examined with respect to the program
statements, this measure is comparable to the rank percentages measure (see Subsection

43

Chapter 3. SURVEY OF SOFTWARE FAULT LOCALIZATION TECHNIQUES

4.3.1). Their approach is able to locate 8.26% of the bugs in the Siemens Test Suite by
examining less than 1% of the program code.

Ali et al. perform an investigation on the accuracy of bug localization performance
[Ali et al., 2009] on Siemens Test Suite [SIR, 2010] and Space [Frankl and Iakounenko,
1998] where the bugs are hand-seeded by researchers and generated by an automated
tool respectively. They claim that by using these fault-seeded datasets can be inaccurate
in the study of bug localization approaches. They propose to evaluate bug localization
performance on a benchmark known as Concordance which has naturally-occurring bugs
(the details of this benchmark can be found in Section 4.5). They also use a mutant
generator tool mutgen [Andrews et al., 2005] to generate mutants. A mutant results from
making small changes in the source code of a program such as the removal of a statement,
negating the logic of a conditional statement, and a logic-based error. These mutants are
viewed as the bugs of the program. They evaluate the Concordance programs with both
the naturally-occurring bugs and the seeded bugs (mutants) by the mutant generator.

Ali et al. [2009] use the performance measure of successful diagnosis of bugs, SucDiag
(see Subsection 4.3.2) to evaluate the effectiveness of bug localization performance. They
observe that bug localization performance using the Tarantula metric on different types of
bugs (naturally-occurring bugs and mutants) are quite similar. By examining less than 1%
of the program code of the Concordance program, the programmer is able to locate 21%
and 28% of the naturally-occurring bugs and the bugs generated using the mutant genera-
tor, respectively, in the Concordance program. They also apply a rule-based classification
algorithm [Cohen, 1995] to locate bugs. They encounter the problem of class imbalance
in their study, where most of the programs have more pass test cases than fail test cases.
They propose a solution to this problem by applying a cost sensitive classification [Domin-
gos, 1999] on the test cases using Weka [eibe, 2010]. Ali et al. [2009] observe an average
of 1.40 for the accuracy of locating bugs in Concordance using the PART classification
algorithm [Frank and Witten, 1998] with the cost sensitive classification.

Zoeteweij et al. propose an application of program spectra on real-world embedded
software systems such as high-volume consumer electronic products [Zoeteweij et al.,
2007]. They propose using the Jaccard metric [Chen et al., 2002] (refer to the metric in
Table 2.3) to locate bugs in a program. They gather the block-based spectra coverage
specifically on the load and lock-up problem of analog television set software. In the
load problem, the CPU load is higher than usual after teletext viewing. In the lock-up
problem, when the user searches in teletext pages (without visible content), the teletext
system is locked up. The program code of 450K lines contains Koala software compo-
nents [Van Ommering et al., 2000]. The load and lock-up problem only occur in a partic-
ular software version. They show that using the block-based spectra coverage approach

44

3.3. STATEMENT-BASED, BLOCK-BASED, AND PREDICATE-BASED SPECTRA
COVERAGE APPROACHES

with the Jaccard metric helps to locate bugs in program code. However, there is a per-
formance overhead on the block instrumentation as a result of using Front parser [Abreu
et al., 2006].

Liblit et al. propose an approach that remotely sample predicates from user executions
of program code [Liblit et al., 2003]. Typically, the user execution information is gathered
in the form of bug reports before feeding them into a central database. This approach has
been used in other software vendors such as Mozilla. In Mozilla, a typical bug report is
gathered automatically from the user execution of the browser whenever the web browser
crashes. The programmer can analyse and fix the bug using the information contained
within these bug reports. In their study, Liblit et al. [2003] propose a sparse random sam-
pling strategy to sample necessary predicates of the program code, instead of analysing all
predicates of the program code from the user executions. The studies that consider the use
of predicates to locate bugs can be found in Section 2.4. Pseudocode for their proposed
approach is described in Algorithm 13.

Algorithm 13: Predicate Remote Sampling Algorithm [Liblit et al., 2003]
Input: predicate-based instrumented program code, sampled predicate countdown

indicating next predicate to be sampled, current countdown
Output: sampled predicate(s)
Predicate Sampling;1
foreach user execution of the program code do2

if (next sampled predicate countdown > current countdown) then3
Fast Path;4
Decrement the value of the sampled predicate countdown from the current5
countdown;
Go to the next sampled predicate countdown and perform sampling;6

end7
else8

Slow Path;9
Decrement the value of the sampled predicate countdown;10
if next sampled predicate countdown reached zero then11

Perform sampling on the predicate;12
Reset and retrieve the next sampled predicate countdown;13

end14
end15

end16

Initially, the input to this algorithm is the predicate-based instrumented program code.
Each predicate of the program code is assigned sampled predicate countdown and current

countdown counters. The sampled predicate countdown indicates the next predicate to
be sampled and the current countdown counter refers to the number of predicates to be
sampled in the blocks of the program. If the next sampled predicate countdown counter
is greater than the current countdown counter, this indicates that the current predicate
should not be sampled. The current predicate is skipped, and the algorithm then hops

45

Chapter 3. SURVEY OF SOFTWARE FAULT LOCALIZATION TECHNIQUES

onto the Fast Path to reach to the next predicate to be sampled. The sampled predicate

countdown counter is decremented. If the next sampled predicate countdown counter is
not greater than the current countdown counter, the predicate will proceed to the Slow

Path. As the next sampled predicate countdown reaches zero, sampling will be performed
on the predicate. These steps are repeated for each user execution of the program code.
Finally, the sampled predicates are returned to the programmer to analyse and locate the
bugs. Liblit et al. [2003] observe that the sampled predicates generated using their pro-
posed sparse random sampling algorithm are sufficient representation of the information
to locate bugs. This approach does not affect the accuracy of locating bugs and has been
used as the framework for the Liblit system [Liblit et al., 2005].

Liblit et al. [2003] propose several strategies to eliminate predicates deemed not to
be buggy especially for the return-value predicate. This predicate has three possible re-
turn values; negative, zero, or positive values. A counter for each of the possible values
for each predicate are tracked throughout the user executions. The predicate elimination
strategies are detailed as the following:

1. Eliminate predicates whose counter is zero for any of the three return values in all
user executions.

2. Eliminate predicates whose counter is zero for all of the three possible return values
in all user executions that cause the program to fail.

3. Eliminate predicates whose counter is zero for any of the three return values in all
user executions that cause the program to fail.

4. Eliminate predicates with a non-zero counter for the return values in the user exe-
cutions which do not cause the program to fail.

Liblit et al. [2003] also propose to locate predicates using a machine learning ap-
proach: logistic regression (this is discussed further, along with other machine learning
approaches, in Section 3.6). They use the CCRYPT [selinger, 2010] as their benchmark
and found two predicates of the CCRYPT program are the potential bugs. They make an
assumption that the bug is expected to be found in the predicates of the program. Bugs
related to preprocessor directives or missing lines of code cannot be located using their
approach.

Chung et al. [2008] propose a similar fuzzy set theory approach as Hao et al. [2008],
using predicate-based spectra coverage instead of statement-based spectra coverage. Pseu-
docode of their proposed approach is presented in Algorithm 14. The input to this algo-
rithm is the predicate-based spectra coverage. The coverage is the test coverage informa-
tion (in binary form) of the predicates of a program which are True (represented in the

46

3.3. STATEMENT-BASED, BLOCK-BASED, AND PREDICATE-BASED SPECTRA
COVERAGE APPROACHES

matrix E) and the predicates of a program which are executed (represented in the matrix
E′). The details of predicates where they are True and being executed have been described
by Liblit et al. [2005]. We have shown an example of these predicates in Figure 2.1. Ini-
tially, Chung et al. [2008] apply the fuzzy set theory approach [Hao et al., 2008] on the
matrices E and E′. The computed membership grade matrices from the matrices E and E′

are represented by the new matrices M and M′ respectively. This is followed by finding
the influence of each predicate. The corresponding mst element (computed membership
grade of the element) in the matrix M is subtracted from the m’st element in the matrix
M′ using Definition 6. Predicates such as if, while, and for have more influence due to
the differences in membership grades contained within M and M′. The computed influ-
ence matrix is denoted by matrix T. Several heuristics are defined to refine the selection
of predicates in the matrix T. The fine details of these heuristics can be found in their
study [Chung et al., 2008]. This refinement step ensures that predicates are ranked accu-
rately. The refined matrix is mapped to the matrix D, and the predicates are ranked using
the similar suspicious probability function, P (s) [Hao et al., 2008].

Algorithm 14: Algorithm of Bug Localization of Predicates using Fuzzy Set Theory Ap-
proach [Chung et al., 2008]

Input: Matrix E of predicate-based spectra coverage where predicate is True, matrix E′ of
predicate-based spectra coverage where predicate is executed

Output: ranked predicates of the program based on suspicious probability function, P (s)
Compute membership grade matrix;1
Fuzzy set theory [Hao et al., 2008] is applied on matrix E and E’ respectively to obtain2
matrix M and M’ respectively;
Calculate the influence of each predicate using the matrix M and M’ (T←M−M’);3
// mst and m’st refers to the statement s of test case t in

matrix M and M′ respectively
foreach mst ∈ M ∧ m’st ∈ M’ do4

Apply Definition 6;5
end6
Refine the existing influence of each predicate;7
D←T using several heuristics;8
Compute importance value of each predicate;9
Suspicious probability function, P (s) [Hao et al., 2008] is performed on the new matrix, D;10
Rank predicates according to the suspicious probability function;11

Definition 6 (Influence).

T =

|mst −m′st| if mst 6= m′st

−1 (mst = m′st) ∧ (mst > 0)

0 otherwise

Chung et al. [2008] evaluate their proposed approach on five small-size C programs,
namely: f sum.c; nre fib.c; checkID.c; big sum.c; and sdes.c. They measure the effec-

47

Chapter 3. SURVEY OF SOFTWARE FAULT LOCALIZATION TECHNIQUES

tiveness of their proposed approach on the basis of the number of predicates examined
before a bug is found divided by the total number of predicates in the program. In order
to make a fair comparison with other approaches, such as the fuzzy set theory approach
on the statements of the program [Hao et al., 2008] and the Dicing approach [Agrawal
et al., 1995], Chung et al. [2008] propose to measure the effectiveness of their approach
by computing the number of program statements needed to be examined before the bug
is found. By using their approach, the programmer only needs to examine in the range
from 7.35% to 42.11% of the program code to locate the bugs as compared to the range
from 10.29% to 57.89% of the program code using the fuzzy set theory approach on the
statements of the program [Hao et al., 2008].

Zhang et al. propose to use short circuit evaluation within the predicates of a program
to locate bugs [Zhang et al., 2008]. They represent these short circuit evaluation sequences
using Boolean expressions. An example of a short circuit evaluation is *j <= 1 || src
[* i+1] == '\0' . This approach is known as Debugging Evaluation Sequences (DES).
Different evaluation sequences can be formed from the short circuit evaluation and are
represented as Boolean expressions. The pseudocode of their proposed approach is pre-
sented in Algorithm 15. The input to this algorithm is the predicate-based instrumented
program code. Initially, all possible evaluation sequences of the program are identified.
Each evaluation sequence is treated as a distinct predicate. Zhang et al. [2008] apply the
CBI and SOBER systems to assign values to these predicates. The studies of the CBI [Li-
blit et al., 2005] and SOBER [Liu et al., 2005] systems have been described in Chapter 2.
Finally, predicates are ranked on the basis of the values assigned to them. The application
of their proposed evaluation sequence method (DES) on the CBI and SOBER approaches
forms DES-CBI and DES-SOBER approaches respectively.

Algorithm 15: Algorithm of Debugging Evaluation Sequences (DES) Approach [Zhang
et al., 2008]

Input: predicate-based instrumented program code
Output: ranking of respective predicates
foreach instrumented predicate do1

Identify all possible short circuit evaluation sequences for respective predicates;2
for each evaluation sequence do3

Treat every evaluation sequence as a distinct predicate;4
Use CBI [Liblit et al., 2005] and SOBER [Liu et al., 2005] to assign value to the5
predicate;

end6
end7
Rank predicates in descending order according to predicates likely to be buggy;8

Zhang et al. [2008] also evaluate the CBI [Liblit et al., 2005] and SOBER [Liu et al.,
2005] approaches. In order to compare their proposed approach with the latter predicate-
based approaches, they only consider the first five distinct predicates of the evaluation

48

3.4. STATE-BASED APPROACHES

sequences that are ranked top as the predicates likely to be buggy. Zhang et al. [2008]
also consider the first five predicates that are ranked highest of the CBI [Liblit et al.,
2005] and SOBER [Liu et al., 2005] approaches. They evaluate their proposed approach
on the Siemens Test Suite and observe that their approach is able to locate more bugs
when compared to the CBI and SOBER approaches. In their study, Zhang et al. [2008]
determine the relative effectiveness of their approach with the former studies with respect
to the percentages of bugs located in the test suite. They compare the percentages of
bugs that are able to be located using SOBER or CBI when compared to DES-SOBER
or DES-CBI approaches, respectively. By examining 10% of the program code, 20% of
the bugs are able to be located as compared to 10% of the bugs in the Siemens Test Suite
when using the DES-SOBER and SOBER approaches respectively. By examining the
same percentage of program code, 24% of the bugs are able to be located as compared to
14% of the bugs in the Siemens Test Suite when using the DES-CBI and CBI approaches
respectively. The latter findings indicate that evaluation sequences, which are treated as
predicates of a program, is a useful approach to locate bugs effectively.

3.4 State-based Approaches

In this section, we describe several state-based approaches in which the states of the pro-
gram being debugged are used to locate its bugs. In the traditional debugging approach,
the programmer often needs to use a specific debugger, with respect to the compiler, in or-
der to locate the bugs in a program. The programmer has to traverse each statement of the
program code (buggy region) to observe the states of the program in order to understand
and locate its bugs. There are several studies that propose to automate the steps involved
in the traditional debugging approach in order to locate the bugs in a program.

Zeller has proposed an automation of the debugging approach, the resulting technique
is known as automated debugging or Delta Debugging [Zeller, 2000]. The goal of the
automated debugging approach is to isolate failure inducing circumstances. Failure in-
ducing circumstances refer to the test case inputs that cause a program to fail (crash).
These circumstances are as follows:

1. Program input e.g input of webpage causing the web browser to fail (crash).

2. User interaction e.g keystrokes of the user causing the program to fail (crash).

3. Changes to the program code e.g failure inducing code changes in regression test-
ing.

49

Chapter 3. SURVEY OF SOFTWARE FAULT LOCALIZATION TECHNIQUES

Algorithm 16 presents the pseudocode for isolating the failure inducing circumstance of
the program input. In this failure inducing circumstance, the test case input refers to the
HTML code that causes a web browser to fail (crash). For example, the HTML code
of <SELECT NAME=''priority'' MULTIPLE SIZE=7> that causes a web browser to fail
(crash). The test case input (HTML code) needs to be simplified one at a time and rerun
with the web browser to check whether the web browser fails (crashes). The algorithm
starts to remove a large chunk of the test case input (HTML input) before narrowing
down to remove a few more characters of the test case input. If the web browser does
not fail (crash), the algorithm stops immediately and returns to the programmer the test
case input that previously caused the web browser to fail (crash). If the web browser
still fails (crashes), the test case input is further simplified and the test is rerun to check
whether the web browser fails (crashes). This step is repeated until the simplified test case
input does not cause the web browser to fail (crash). Zeller [2000] evaluates Mozilla as
the benchmark in his study and it takes about 21 minutes on average to isolate a failure
inducing circumstance of program input in a web page.

Algorithm 16: Algorithm of Isolating Program Input that Causes Failure to the Web
Browser [Zeller, 2000]

Input: a test case input that causes failure to the web browser
Output: test case input that last causes failure to the web browser
while test case input can be further simplified do1

Load web browser using the simplified test case input;2
if the simplified test case input causes failure (crash) to the web browser then3

Simplify the test case input;4
end5
else6

Stop and go to Step 11;7
end8

end9
Test case input could not be further simplified (input is minimum);10
Return the last test case input as the root cause of the failure (crash) of the web browser;11
Exit;12

The approach of simplifying test case input is used to debug the failure inducing cir-
cumstance of user interaction. In the failure inducing circumstance of changes to the

program code, Zeller [2000] proposes using test case input that does not cause a program
to fail (pass test input) and test case input that causes the program to fail (fail test in-
put). These test case inputs are used to isolate the bug of the program simultaneously. He
observe that his algorithm requires extensive computation in order to isolate the failure
inducing circumstances.

Zeller extends his study by proposing another automated debugging approach, better
known as cause-effect chain [Zeller, 2002]. Instead of narrowing down the test case input
that causes program failure, he proposes the use of memory graphs [Zimmermann and

50

3.4. STATE-BASED APPROACHES

Zeller, 2002] to narrow down the states (variables and values) of the program being de-
bugged that cause program failure. In this approach, he uses two different versions of the
program code (one that does not cause program failure, P, and one that causes program
failure, P′). Memory graphs represent the states of a program in graphical form – consist
of all the values and variables of the program (e.g pointer referencing). A memory graph
extractor is used to generate the memory graphs of a program, the details of which can be
found in Zimmermann et al. [2002].

Algorithm 17: Algorithm of Cause-Effect Chain [Zeller, 2002]
Input: program code version that does not cause program failure P, program code version

that causes program failure P′

Output: cause-effect chain of failure-induced states that are relevant to the failure
Isolate relevant failure inducing state;1
Use GDB [GCC, 2010b] to extract all the states of the program code P and P′;2
foreach state do3

Extract the memory graphs of the states of both P and P′;4
Make comparison of the vertices and edges from the memory graphs;5
Variables of the state that causes failure are treated as inputs for Step 7;6
Apply these inputs to P′ using Delta Debugging approach (see Algorithm 16);7
Obtain the last input (variables of the state) that causes failure to P′;8

end9
Gather all the last input (variables of the states) as part of the cause-effect chain;10

The pseudocode of the proposed approach by Zeller [2002] is described in Algorithm
17. The input to this algorithm is the two different versions, P and P′ of a program, as
described previously. Initially, GNU GDB debugger [GCC, 2010b] is used to extract the
relevant states of both versions of the program code. In each of the states, the mem-
ory graphs of both versions of the program code are extracted using the memory graph
extractor of Zimmermann et al. [2002]. The vertices and edges within these graphs are
compared. The differences in these vertices and edges, consisting of variables and values,
form the inputs of the Delta Debugging approach [Zeller, 2000] (see Algorithm 16). This
approach is applied to isolate the failure-induced input (variables of the states) that are rel-
evant in causing the program to crash. The variables of the states that last caused failure
(crash) to the program code are obtained. These variables are gathered for each state of
the program, and are returned as the cause-effect chain of the failure of the program. The
states (variables and values) in the cause-effect chain are presented to the programmer as
the root cause of the program failure.

Zeller [2002] uses programs in GNU GCC [GCC, 2010a] to evaluate and demonstrate
the effectiveness of his proposed approach. His proposed cause-effect chain approach
does not need complete information of the program code. The entire framework has been
made public in the AskIgor server [Zeller, 2010]. However, this server has been closed
recently to the public due to the high maintenance costs of the framework.

51

Chapter 3. SURVEY OF SOFTWARE FAULT LOCALIZATION TECHNIQUES

Zeller [2002] proposes using the cause-effect chain approach in order to discover the
state of a program that causes its failure [Zeller, 2002]. The resulting approach is known
as searching in space. Cleve and Zeller propose a state-based approach by identifying the
transition time between the point at which a variable of the program stops causing failure
and another variable of the program is causing failure [Cleve and Zeller, 2005]. They are
interested to find the causes of a failure in the cause-effect chain by searching in time

instead of searching in space. The time or moment where the variables of the program
change and cause program to fail indicates the variables are the bug.

Algorithm 18 describes the algorithm, designed by Cleve et al. [2005] to isolate cause
transitions of the states that cause the program to fail. The algorithm consists of three
major phases: the first is isolating failure inducing states, followed by finding cause tran-
sitions in the states, and finally searching in time to isolate the cause transitions of each
state. Initially, they use GDB [GCC, 2010b] to extract all the states of the program code
on both pass and fail test cases. Then, they apply Delta Debugging [Zeller, 2000] in order
to isolate the failure-inducing (state) differences between the test cases that are relevant to
the program failure. The output of this phase is the cause and effect chain (see Algorithm
17) [Zeller, 2002].

This cause and effect chain contains the first and the last state that cause the program
to fail. From these chains of states, the search for any direct cause transitions between
these two relevant states can be narrowed down. The direct cause transition can be a
function, a variable, or a program statement where the moment or the time where the
bug is detected. Cleve et al. [2005] propose to monitor the time where variables of a
particular state change and cause program failure (detailed in Algorithm 19). Finally, the
divide and conquer algorithm is applied to locate the exact time when the initial and the
corresponding state of the program (variable) changes and causes program failure. For
each cause transition, the first and final state of the program are examined to identify
more cause-transitions between these states. This phase is performed iteratively until all
the cause-transitions among the subsets of the states have been examined.

In their study, Cleve et al. [2005] evaluate GNU GCC and the Siemens Test Suite in
order to measure and compare the effectiveness of their proposed approach with Renieres
et al. [2003] by using the program dependence graphs (PDG). Cleve et al. [2005] use
the same measure as Renieres et al. [2003] (see Definition 12 in page 78). It refers to
the number of nodes (statements) not needed to be examined before the buggy node is
found. By examining less than 1% of the program nodes, their proposed approach is able
to locate 4.65% of the bugs as compared to none of the bugs in the Siemens Test Suite
when using the approach of Renieres et al. [2003]. The proposed approach by Cleve et al.
[2005] is able to locate more bugs than the latter for all the ranges of node percentages –

52

3.4. STATE-BASED APPROACHES

Algorithm 18: Algorithm of Locating Causes of Program Failure [Cleve and Zeller, 2005]
Input: pass test case, fail test case, memory graph of the pass test case, memory graph of

the fail test case
Output: Subset of program states that have cause transitions
Isolating Failure-Inducing States;1
Use GDB [GCC, 2010b] to extract all the states of the program code on both pass and fail2
test cases;
Isolate failure-induced states on both of the test cases using Delta Debugging3
approach [Zeller, 2000];
Finding Cause Transition in States;4
foreach state of the program do5

Apply Cause-Transition in Algorithm 19 to find the direct cause transition from one6
state to the other state of the program;

end7
Isolating Cause Transitions;8
foreach cause transition found in Steps 4–7 do9

Using divide and conquer algorithm;10
Obtain the first state and final state (fail state) where cause transition is found;11
Examine the state at middle of the interval between the two states;12
Examine whether cause transition has occurred already in first or second part of the13
states;
if Cause Transition found in either first part or second part of the states then14

Gather the intermediate state as the new state;15
Repeat Steps 4–7 to find more cause-transitions in the subset of states;16

end17
end18

Algorithm 19: Cause-Transition Algorithm
Input: variables and values of subset of states found in Algorithm 18
Output: the variables and values from the subset of states that cause program failure
foreach moment of time,tf and tl do1

// tf as the time where first state is found, tl as the
time where final state is found

Apply the first and last variables on the current state of the program code;2
Monitor the outcome of the variables during the time period;3
if outcome of the variables cause program failure then4

Cause-Transition occur;5
end6
else7

No Cause-Transition found between the variables of these states;8
end9

end10

53

Chapter 3. SURVEY OF SOFTWARE FAULT LOCALIZATION TECHNIQUES

the percentages of nodes that need to be examined by the programmer to locate the buggy
node (statement).

3.5 Test Reduction Approaches

We describe, in this section, several studies that use test reduction approaches with respect
to bug localization performance. In this thesis, we also study the use of test suite reduction
(using unique test cases) which can be found in Chapter 7.

Wong et al. perform a study on the effectiveness of bug localization performance by
removing redundant test cases [Wong et al., 1994]. An implicit enumeration algorithm
[Etcheberry, 1977] is used in their study to find the optimal set covering of non-redundant
test cases (reduced test suite) without compromising the test coverage of the entire test
suite (unreduced test suite). Wong et al. [1994] use the ATACMIN tool [Horgan and
London, 1992] to obtain the reduced test suite.

Wong et al. [1994] evaluate their proposed approach on the Unix Test Suite, which
consists of 10 programs. Initially, they generate test suites of the programs with different
block coverage ranging from 50%-55%, 60%-65%, 70%-75%, and 80%-85%. They apply
their proposed reduced test suite approach on these test suites of the 10 programs. They
evaluate and compare bug localization performance of the programs using the unreduced
test suite and reduced test suite. A slight improvement in the bug localization performance
is observed when using the reduced test suite. They refer to the bug localization perfor-
mance as the ratio of the number of programs that successfully detect the bugs divided
by the total number of programs evaluated. A program is considered to have successfully
detected the bugs if one of the test cases in the program executes the bugs. They observe
no clear relationship between the size of the reduced test suite and bug localization per-
formance on the reduced test suite. They extend this study on different datasets and case
studies [Wong et al., 1998].

Yu et al. perform an empirical study of the test suite reduction with respect to bug lo-
calization performance [Yu et al., 2008]. They evaluate two types of reduction approaches,
namely: the statement-based and vector-based reduction. The statement-based reduction
classifies a test case as redundant if its test coverage is the subset of another test case.
Vector-based reduction classifies a test case as redundant in the event that another test
case has identical coverage. We show an example of both statement-based and vector-
based reduction approaches in Table 7.1. Yu et al. [2008] introduce different reduction
approaches for pass and fail test cases on the Siemens Test Suite and Space programs [Do
et al., 2005]. The details of the different reduction approaches can be found in their
study [Yu et al., 2008].

54

3.5. TEST REDUCTION APPROACHES

Algorithm 20: Algorithm to Generate Subset of the Unreduced Test Suites
Input: statement-based spectra coverage labelled with Pass and Fail
Output: statement-based spectra coverage that forms the subset of unreduced test suite of

size M
Randomly select one fail test case from statement-based spectra coverage labelled with1
Fail;
while M ≤ 500 do2

M ←M+50 // M as number of test cases set to 0, N as3
counter variable set to 1

foreach test case, t to be selected and counter N <M do4
Randomly select one test case from existing test cases regardless of Pass/Fail;5
Mark the selected test case so as not to select again in next iteration;6
N ← N + 1;7

end8
Return the unreduced test suite of respective size M ;9

end10
Repeat Steps 2–10 for 100 times to generate 100 different test suites with respect to11
unreduced test suite of size M ;

In Chapter 7, we propose to evaluate unique test cases with respect to bug localization
performance. We use the entire test suite (unreduced test suite) before removing the re-
dundant test cases in order to obtain the unique test cases. Yu et al. [2008] also performed
the study of using reduced test suite with respect to bug localization performance. How-
ever, they use the subset of the unreduced test suite before removing the redundant test
cases to obtain the unique test cases. They generate subset of the unreduced test suites of
different sizes ranging from 50 test cases to 500 test cases. The algorithm used to gener-
ate the subset of the unreduced test suite is presented in Algorithm 20. The input to this
algorithm is the statement-based spectra coverage for the entire test suite of the program.
A fail test case is randomly selected from the entire test suite of the program to ensure
the bug can be located by at least one fail test case. This is followed by selecting test
cases randomly from the entire test suite of the program regardless of the test being a pass
or a fail test. This selection of test cases is performed for different sizes of unreduced
test suite, size M , ranging from 50 test cases up to 500 test cases. The selected test case
subsets form the unreduced test suite of sizeM . Steps 2–10 are repeated 100 times for the
unreduced test suite of size M to reduce any bias incurred during test case selection. Yu
et al. [2008] evaluate the two types of reduction approaches, namely the statement-based
reduction and vector-based reduction methods.

In their study, Yu et al. [2008] use the Tarantula [Jones and Harrold, 2005], CBI [Li-
blit, 2004], Jaccard, and Ochiai metrics [Abreu et al., 2006] to evaluate the effectiveness
of their proposed approach in terms of bug localization performance. They use the rank
percentages measure (Definition 11) to evaluate their approach using both unreduced and
reduced test suites of the 169 programs in the Siemens Test Suite and Space. They com-

55

Chapter 3. SURVEY OF SOFTWARE FAULT LOCALIZATION TECHNIQUES

pare the percentages of the program code needed to be examined by the programmer
before the bug of the program is found.

Definition 7.

Reduction = (1− number of test cases in reduced test suite
number of test cases in unreduced test suite

) ∗ 100%

Yu et al. [2008] also introduce the Reduction metric (see Definition 7) to observe the
ratio of the number of the test cases in the reduced and unreduced test suites. By using
this metric, they observe that more test cases are reduced using the vector-based reduction
approach than the statement-based reduction approach. Larger Reduction indicates that
more redundant test cases are in the test suites.

Some programs of the Siemens Test Suite and Space show improved bug localiza-
tion performance on all the spectra metrics by using the vector-based reduction approach.
The statement-based reduction approach shows more variation in bug localization per-
formance across the different programs of the Siemens Test Suite and Space when com-
pared to the vector-based reduction approach. Yu et al. [2008] conclude that by using the
Tarantula metric, the bug localization performance of the vector-based reduction approach
outperforms that of the statement-based reduction approach. The programmer needs to
examine more program code in order to locate bugs in the program using the statement-
based reduction approach when compared to using the vector-based reduction approach.
The improvement in bug localization performance using the vector-based reduction ap-
proach relative to the unreduced test suite for 169 programs, for different test suite sizes
and reduction variants, ranges from 0.06% to 0.11%. By using the statement-based re-
duction approach on these programs, Yu et al. [2008] observe drop in bug localization
performance compared to using the unreduced test suite, in the range of 0.58% to 8.32%.

Hao et al. conduct an experimental study of vector-based reduction approach with
respect to the bug localization performance [Hao et al., 2005]. They apply the Dic-
ing [Agrawal et al., 1995] and the Tarantula [Jones et al., 2002] approaches to evaluate the
bug localization performance obtained when using the unreduced and reduced test suites.
In their study, Hao et al. [1995] use the Desk Calculator (DC) [Morris and Cherry, 1983]
and Tiny C Compiler (TCC) [Bellard, 2010] programs. They show that bug localization
performance improves when using the Dicing and Tarantula approaches on the reduced
test suites (non-redundant test cases) for the DC program. The average improvement in
bug localization performance on the reduced test suite, when compared to using the unre-
duced test suite of the DC is 1.22% and 2.08% for the Dicing and Tarantula approaches
respectively. However, the Tarantula metric does not result in an improvement in bug lo-
calization performance when using the reduced test suite relative to using the unreduced

56

3.6. COMBINING SPECTRA-BASED AND MACHINE LEARNING APPROACHES

test suite on the TCC program. There is a slight drop of 0.23% on average, in bug lo-
calization performance using the Tarantula metric on the reduced test suite of the TCC
program when compared to using the unreduced test suite.

3.6 Combining Spectra-based and Machine Learning Ap-
proaches

Recently, several data mining and machine learning approaches have been proposed with
the spectra-based approach to locate bugs in the program code effectively. In this section,
we describe several studies that use these approaches.

Jones et al. propose a parallel debugging technique to locate bugs in multiple-bug pro-
grams [Jones et al., 2007]. Fail test cases that are responsible for respective bugs can
be distributed to multiple programmers – each programmer debug the program simul-
taneously. This approach can improve the time taken to locate the bugs in a program.
However, most of the time, a bug is caused by more than one fail test case. Therefore,
Jones et al. propose to cluster fail test cases that are responsible for a particular bug. They
propose two techniques to generate clusters for the fail test cases:

1. Clustering based on the profiles and bug localization results, Cluster1.

2. Clustering based on the bug localization results, Cluster2.

Initially, the program code is instrumented with program statements. Pseudocode
for the first technique is presented in Algorithm 21. The input to this algorithm is the
statement-based spectra coverage of the fail test cases, represented in a binary form (sim-
ilar to Table 2.2). The sequences of the branches of the program (consisting of state-
ments) executed in the fail test cases are represented in discrete-time Markov chains
(DTMC) [Romanovskiı̆, 1970] – better known as behaviour models. This is followed
by applying the hierarchical clustering algorithm [Murtagh, 1983] on the DTMC of the
fail test cases. The output of the hierarchical clustering algorithm is usually represented
in a graphical diagram known as dendogram [van Rijsbergen, 1979]. For each level of the
dendogram, a new cluster is formed by comparing the similarity of the DTMC (sequences
of the branch profiles) of the fail test cases. The similarity of any two DTMCs are consid-
ered in terms of the sum of the absolute difference of the branch profiles in these DTMCs.
This step is repeated until only one cluster is formed in the dendogram.

Based on the clusters formed, Jones et al. [2007] use the bug localization results to stop
clustering and refine the clusters of fail test cases. The clusters on the different levels of the
dendogram may belong to each other and can be merged. For each level of the dendogram,

57

Chapter 3. SURVEY OF SOFTWARE FAULT LOCALIZATION TECHNIQUES

Algorithm 21: Algorithm of Clustering based on Profiles and Bug Localization Results,
Cluster1 [Jones et al., 2007]

Input: a set of instrumented statement-based spectra coverage of the fail test cases
Output: cluster(s) of fail test cases responsible for the respective bug(s)
Identify and gather sequences of branch profiles (consist of statements) executed in fail test1
cases and represent in discrete-time Markov chains (DTMCs);
Apply hierarchical clustering algorithm on the DTMC for respective fail test cases;2
foreach level of the dendogram do3

Choose the smallest absolute differences of the branch profiles in each pair of DTMC;4
Treat these fail test cases as one cluster;5
if only one cluster formed for the level then6

Stop;7
end8

end9

specialised test suites are formed for the clusters of fail test cases. A typical specialised

test suite consists of the fail test cases and the set of all pass test cases. The test suite
contains the statement-based spectra coverage of the fail test cases and the set of all pass
test cases. They evaluate the specialised test suite using the Tarantula metric and produce
the bug localization result (similar to Jones et al. [2005]). The ranking of the program
statements for the specialised test suite is then generated. Jaccard metric is then used to
compare the similarity of the bug localization result (the ranking of program statements)
of pairs of the specialised test suite in the dendogram. They also set a threshold in the
comparison of the specialised test suite. If the similarity of the pairs of any two clusters
of the specialised test suite is within the threshold, these clusters are merged.

Algorithm 22: Algorithm of Clustering based on Bug Localization Results, Cluster2 [Jones
et al., 2007]

Input: fail test cases, specialised test suite
Output: cluster(s) of fail test cases responsible for respective bug(s)
Use Tarantula metric to evaluate and rank all the statements for each specialised test suite;1
Use Jaccard metric to perform pairwise similarity on the ranking statements between the2
specialised test suites;

The second clustering technique (see Algorithm 22) is a much simpler and straightfor-
ward approach where fail test cases are clustered based on bug localization results. The
inputs to this algorithm are the set of fail test cases and the specialised test suite. Each
specialised test suite contains the statement-based spectra coverage of a fail test case and
all the pass test cases. The specialised test suite is evaluated using the Tarantula metric
and the statements of the program that are likely to be buggy are ranked. The Jaccard
metric is used to compare the ranked statements between all the pairs of the specialised

test suites. Jones et al. [2007] use a threshold in order to cluster the fail test cases that are
similar and responsible for a particular bug of the program.

Jones et al. [2007] evaluate the effectiveness of their proposed bug localization ap-

58

3.6. COMBINING SPECTRA-BASED AND MACHINE LEARNING APPROACHES

proaches using the rank percentages measure (Definition 11). They compare the cost of
debugging using the sequential and parallel modes. The sequential mode requires the
programmer to examine the program code from the top of the ranked list, assuming there
is only one bug is being searched for at a time [Jones and Harrold, 2005, Abreu et al.,
2006, Wong et al., 2007]. In the parallel mode, the two clustering approaches defined
in the Algorithm 21 and Algorithm 22 are used. They conduct their evaluation using
the Space program [Do et al., 2005] and create 100 8-bug versions of the Space programs.
They observe that using the sequential mode takes more time, relative to the parallel mode,
to locate bugs. They consider the relative effectiveness of locating bugs for multiple-bug
programs using the proposed clustering approaches in parallel mode and the sequential
mode. In their study, the average rank percentages of locating bugs in the sequential
mode, parallel mode (Cluster1), and parallel mode (Cluster2) for 90 multiple-bug Space
programs using the Tarantula metric is 36.63%, 31.50%, and 26.43% respectively.

Denmat et al. [2005] reinterpret the Tarantula metric [Jones and Harrold, 2005] using
the association rule measures in data mining such as Confidence and Support [Brin et al.,
1997]. Denmat et al. [2005] relate the term transaction used in the data mining community
to test cases. They define X as the buggy statement that causes the program to fail and Y
as the fail test case. They define Confidence as the probability of having the program fail
given that the buggy statement has been executed by the fail test cases. They also define
Support as the probability of the test cases that cause program to fail. Denmat et al. [2005]
define Lift metric (Definition 8) as the ratio of Confidence and Support. They formally
prove that Lift is equivalent to the Tarantula metric (see the metric in Table 2.3).

Definition 8.
Lift(X → Y) =

Confidence(X → Y)

Support(Y)

Denmat et al. [2005] discuss the following limitations of using the Tarantula metric to
locate a buggy statement:

1. The Tarantula metric is unable to locate a bug effectively if the buggy statement is
a missing statement or a missing case in a switch statement.

2. The bug can be located more precisely if the program is instrumented with program
blocks instead of program statements.

3. Buggy statements in the program code cannot be located using the Tarantula metric
if they belong to the statement initialisation (always executed by all the test cases).

4. Program code with multiple bugs cannot be located effectively using the Tarantula
metric.

59

Chapter 3. SURVEY OF SOFTWARE FAULT LOCALIZATION TECHNIQUES

Briand et al. propose a machine learning technique, the C4.5 algorithm, to generate de-
cision trees as a means of identifying multiple-bugs of program code [Briand et al., 2007].
They propose RUle-BAsed statement Ranking algorithm (better known as RUBAR). Pseu-
docode for this algorithm is presented in Algorithm 23. The inputs to this algorithm are
test specifications, pass and fail test cases, and the program code.

Algorithm 23: Algorithm of RUBAR using Category-Partition Approach [Briand et al.,
2007]

Input: test specifications, pass and fail test cases, program code
Output: program statements with respective weights assigned
Use Category-Partition method to generate transformed test cases from the test1
specifications;
Classification;2
Generate rules from the transformed test cases using the C4.5 algorithm;3
Classify rules to Pass and Fail rules;4
Compute weights for Pass and Fail rules;5
foreach rule do6

if Pass rule then7
Statements related to the rule are assigned positive weight;8

end9
else10

Statements related to the rule are assigned negative weight;11
end12

end13
Weights aggregated for statement and presented to the programmer;14

Briand et al. [2007] claim that by using test cases, the bugs of a program code cannot
be identified accurately. They propose the use of a category partition method in order
to transform test cases using the test specifications of the program [Ostrand and Balcer,
1988]. The details of this transformation of test cases can be found in the Ostrand and
Balcer [1988]. Using this method, test specifications are decomposed and transformed
into test cases. These test cases contain more information about the conditions that could
potentially be the program bug. An example of conditions in the transformed test case
is the size of an array and whether this array is empty. The C4.5 classification algo-
rithm [Quinlan, 1993] is applied on the transformed test cases to generate rules, which are
represented as decision trees. Each rule consists of a set of statements of the program and
is classified as Pass or Fail. In each rule, the classification is performed using pass and fail
test cases that execute the set of the statements of the rule. A rule is denoted as Fail rule
if the majority of Fail tests execute the set of statements of the rule. A rule is denoted as
Pass rule if the majority of Pass tests execute the set of statements of the rule. Statements
related to the Pass and Fail rules are assigned positive and negative weights respectively.
The weight of each statement s is then aggregated across all the rules, R and is computed
using Definition 9. In this definition, for each statement s, the ratio of the number of pass
and fail test cases executing the statement s is aggregated across all the rules. Statement

60

3.6. COMBINING SPECTRA-BASED AND MACHINE LEARNING APPROACHES

s with the lowest weight value is deemed likely to be buggy as it is usually only found in
the Fail rules but not in the Pass rules.

Definition 9.

Weights =
∑
rule∈R

number of pass tests executing s− number of fail tests executing s
number of test cases executing s

Briand et al. [2007] evaluate the Space program [Do et al., 2005] and combine the
bugs in all Space program versions into a single program with these bugs. There are 34
buggy statements in the Space program. Briand et al. [2005] use the precision and recall
measures of Olson et al. [2008] to determine the effectiveness of their proposed approach.
Using the C4.5 decision tree algorithm (RUBAR approach), the fail test cases are able to
yield precision and recall of 91.7% and 94.7% respectively. They compare their proposed
C4.5 algorithm (RUBAR) and the Tarantula approaches [Jones and Harrold, 2005]. By
only examining 10% of the program statements in the Space program, 15% and 25%
of the bugs can be located in the Space using the Tarantula and their proposed RUBAR
approach respectively. This shows that their proposed C4.5 algorithm (RUBAR approach)
is able to locate multiple-bug programs effectively compared to using Tarantula approach.

Algorithm 24: Algorithm of Finding Failures by Cluster Analysis Approach [Dickin-
son et al., 2001]

Input: Instrumented function caller/callee of the fault-seeded program code version,
test cases

Output: clustered test cases
Execute test cases on the fault-seeded program code to gather function caller and1
callee of the execution coverage;
Using hierarchical clustering algorithm [Murtagh, 1983];2
foreach iteration or level of dendogram do3

Apply similarity measures on the function caller and callee execution coverage of4
test cases;
Execution coverage of test cases that are similar and fulfill the minimal5
dissimilarity threshold forms a cluster;

end6

Dickinson et al. propose to cluster test cases based on the similarity of test execution
coverage [Dickinson et al., 2001]. In this study, the percentages of failure in the clusters
is evaluated. The percentages of failure in the clusters refers to the percentage of fail test
cases that are found in each cluster. If fail test cases are in each of the clusters, an as-
sumption is made that the bugs of the program can be located in these clusters. Dickinson
et al. instrument the fault-seeded version of the program code with respect to function-
based spectra coverage. A brief pseudocode of their proposed approach is described in
Algorithm 24. The inputs to this algorithm are the function-based instrumented program
code and the test cases. Initially, test cases are executed with the program code to gather

61

Chapter 3. SURVEY OF SOFTWARE FAULT LOCALIZATION TECHNIQUES

the execution coverage of functions such as function caller and callee. This execution
coverage is generated using the SunTM Java virtual machine.

This is followed by clustering similar test cases using the hierarchical clustering algo-
rithm [Murtagh, 1983]. For each level of the dendogram generated using the hierarchical
clustering algorithm, there are several different types of similarity measures which can be
applied on the function caller and callee of the test execution coverage to form test case
clusters. An example of a similarity measure is Euclidean distance. A minimal dissimilar-
ity threshold is set in order to limit the number of iterations to obtain the relevant number
of clusters. Test cases which exhibit similar Euclidean distance and fulfill the minimal
dissimilarity threshold, form a cluster. The details of other similarity measures can be
found in Dickinson et al. [2001].

After the clusters are formed, sampling is performed on the clusters to observe the
effectiveness of finding failures within them. There are three types of sampling strategies,
namely the one-per-cluster sampling, adaptive sampling, and random sampling. By using
the one-per-cluster sampling approach, a test case is selected for each cluster. The total
number of test cases selected using this approach is equivalent to the number of clusters.
The adaptive sampling approach is similar to the one-per-cluster sampling with the ex-
ception that the selected test case of the cluster is checked to determine if it causes the
program to fail. If the selected test case causes the program to fail, all of the other test
cases in the cluster are selected regardless of being classified as pass or fail. The random

sampling approach is used to compare the two sampling approaches just described. In the
random sampling approach, a specified number of test cases are chosen randomly. Dick-
inson et al. [2001] report the effectiveness of finding failures using all the three sampling
approaches with respect to the size of the clusters. For each cluster size, they report the
average percentages of the fail test cases in the cluster divided by the total number of fail
test cases of the program.

Dickinson et al. [2001] evaluate their approaches on several Java programs and GNU
GCC version 2.95.2. In their evaluation, they observe that bugs are not distributed in a
random fashion. More than 50% of the bugs can be found in the smallest cluster. On
average, in the smallest cluster for the Java and GCC programs, 40.26% and 5.55% of the
failures can be located as compared to 4.30% and 1.12% of the failures using the adaptive

sampling and the one-per-cluster sampling approaches, respectively.

Di Fatta et al. propose using a frequent pattern mining algorithm in order to locate
buggy functions in a program [Di Fatta et al., 2006]. Pseudocode for this approach is pre-
sented in Algorithm 25. The input to this algorithm is the function-based spectra coverage.
The pass and fail test cases in the function-based spectra coverage are then represented

62

3.6. COMBINING SPECTRA-BASED AND MACHINE LEARNING APPROACHES

in function call tree. A function call tree refers to the set of functions (represented by
vertices and edges) that are executed in the test cases.

The algorithm is divided into three major phases. Initially, abstraction is performed on
the function call trees. Function call trees can cause performance and memory overhead
due to many loops and iterations being present in functions of the program. Therefore,
zero-one-many abstraction has been proposed in order to reduce the number of function
call trees of the program. Take, for example, if there is a function tree of the program loop
that has been executed more than once, the function call tree of the loop are abstracted
twice. This can substantially reduce the memory overhead of storing the function call
trees of the program.

Algorithm 25: Algorithm of Discriminative Patterns using Frequent Pattern Mining
Approach [Di Fatta et al., 2006]

Input: function-based spectra coverage represented in function call trees
Output: functions ranked according to how likely they are buggy
Abstraction phase;1
Function call trees are analysed using zero-one-many abstraction;2
Filtering phase;3
Define neighbourhood size N ;4
Use Frequent Pattern Mining algorithm [Goethals, 2003] to extract discriminative5
patterns according to neighbourhood size N ;
Identify functions in the subtree that are executed more frequently in fail test cases6
than pass test cases;
Analysis phase;7
Apply ranking function, f of the neighbourhood size N using8

P (f) =
support of f in all fail test cases

support of f in all test cases

The next phase is the Filtering phase. In this phase, the frequent pattern mining al-
gorithm of Goethals [2003] is used to identify the subtrees that are frequently executed
in the pass and fail test cases (discriminative patterns). The input to this phase is the
neighbourhood size N parameter. The neighbourhood size N refers to the N number of
neighbour functions connected to a particular function in a subtree. The neighbourhood
size N connected to a function in the subtree might be related to the bug if the function
in the subtree is not the bug. Based on this parameter, functions in the subtrees that are
executed most of the time in the fail test cases but not in the pass test cases are obtained.

Finally, in the Analysis phase, functions are ranked according to their likelihood of
being buggy. P (f) refers to the probability of the support of the buggy function that
appears in the fail test cases divided by the support of the buggy function that appears
in all the test cases (Step 8 of Algorithm 25). A list of the functions of the program are
ranked and presented to the programmer to locate the buggy functions of the program.

Di Fatta et al. [2006] measure the effectiveness of their approach using the percentages

63

Chapter 3. SURVEY OF SOFTWARE FAULT LOCALIZATION TECHNIQUES

of the program code (functions) that the programmer does not need to examine in order
to locate the buggy function divided by the number of functions in the program. By us-
ing Siemens Test Suite, their approach outperforms other approaches such as the nearest
neighbour [Renieres and Reiss, 2003], cause-transition [Zeller, 2002], and SOBER [Liu
et al., 2005] approaches. Di Fatta et al. [2006] are able to locate 22% of the buggy func-
tions in the Siemens Test Suite with the frequent patterns of neighbourhood size 2.

Jiang et al. [2005] propose using one of the machine learning techniques – Sup-
port Vector Machine (SVM) [Steinwart and Christmann, 2008] – to locate bugs using
predicate-based spectra coverage. They combine the latter technique with the cause-effect
chain approach [Zeller, 2002] to narrow down the search for the predicates of a program
that cause the bug. Initially, they use the CBI system [Liblit et al., 2005] in order to in-
strument and gather the predicate-based spectra coverage of the program. They rely on
the oracle of the program code to determine the correctness of the test cases [Jones and
Harrold, 2005, Abreu et al., 2006, Wong et al., 2007].

Pseudocode of the method just described is presented in Algorithm 26. The inputs to
the program are the predicate-based instrumented program code and the predicate-based
spectra coverage (in a binary form, which is similar to the Table 2.2). There are three
phases involved in this algorithm. The initial phase is Classification, where the Support
Vector Machine (SVM) [Steinwart and Christmann, 2008] technique is applied to classify
the predicates that are likely to be the bug. Jiang et al. [2005] use both linear and radial
basis functions [Walczak and Massart, 1996] to determine the hyperplanes of the SVM.
The predicates that are likely to be buggy are extracted from the hyperplanes. Scores of the
predicates are then internally assigned using a random forest algorithm [Breiman, 2001].
The predicate with the highest score is chosen as the bug-related predicate. This process
of predicate selections is known as feature selection in the machine learning community,
in which only the predicates (features) deemed important are selected.

In the second phase (Clustering), the selected predicates are clustered according to
the distribution of the predicates in the test execution coverage. The latter approach has
been used in Liu et al. [2005]. The differences in the distribution of predicates in the
test execution coverage are computed for all pairs of predicates. A small threshold value,
ε, has to be specified by the programmer. If the difference in the distribution of a pair
of predicates in the test execution coverage is less than the ε, the pair of predicates are
deemed similar. Otherwise, they do not belong to the similar cluster. Clusters consist of
similar distributions of predicates in the test execution coverage.

In the final phase (Cause-effect chain), the relationships between predicates in each
cluster are examined using the approach of Zeller [2002]. In each cluster, it is determined
whether the predicates are bug-related. Control flow graph (CFG) of the program is gen-

64

3.6. COMBINING SPECTRA-BASED AND MACHINE LEARNING APPROACHES

Algorithm 26: Algorithm of Automatic Isolation of Cause-Effect Chains with Machine
Learning Approach [Jiang and Su, 2005]

Input: predicate-based instrumented program, predicate-based spectra coverage of the
program

Output: chain of predicates that are likely to be buggy
Classification;1
Apply predicate-based spectra coverage as the input for SVM algorithm [Steinwart2
and Christmann, 2008];
Assign score to the predicates of the program using random forest [Breiman, 2001];3
Perform feature selection to choose top predicates that are most likely the bug;4
Clustering;5
foreach pair of predicates chosen in feature selection do6

Gather the differences of the distribution of pairs of predicates in all test execution7
coverage [Liu et al., 2005];
if differences of distribution of the predicates in the test execution coverage < ε8
then

Predicates belong to the similar cluster;9
end10

end11
Cause-effect chain;12
foreach cluster do13

if any predicates in the cluster related to the bug then14
Use Control Flow graph (CFG) to find paths that are related to the predicate;15
Form a chain of predicates;16

end17
end18
Present the chain of predicates for all the clusters to the programmer;19

erated to relate the predicates in the cluster with other predicates of the program. A chain
of bug-related predicates are formed in each cluster.

Finally, the chain of predicates for each cluster are presented to the programmer for the
purpose of bug localization. Jiang et al. [2005] are able to locate 74 bugs of the Siemens
Test Suite by examining not more than 10% of the program code. For the Rhythmbox
v0.6.4 dataset, they are able to locate 5 bugs after examining 1000 lines out of 56 484 lines
of code. This study is the first attempt at combining machine learning approaches with
the chain-effect approach [Zeller, 2002] to discover the relationship between bug-related
predicates. Jiang et al. [2005] observe that this approach causes performance overhead on
larger size programs such as the Rhythmbox dataset.

Liblit et al. introduce sparse random sampling on predicates to locate the likely bugs in
a program [Liblit et al., 2003]. The details of their study can be found in Section 3.3. They
also propose using machine learning concepts to locate bugs using a regression model,
known as Logistic Regression. Pseudocode of this approach is presented in Algorithm 27.
The input to this algorithm is the predicate-based spectra coverage (with test cases labelled
as Pass or Fail). Predicates are trained using the logistic regression model [Friedman
et al., 2001]. A logistic function is produced with β coefficients for each predicate of

65

Chapter 3. SURVEY OF SOFTWARE FAULT LOCALIZATION TECHNIQUES

the program. The β coefficient of a predicate that is different from other predicates’ β
coefficient indicates that the predicate is more likely to be buggy.

Algorithm 27: Logistic Regression Algorithm [Liblit et al., 2003]
Input: predicate-based spectra coverage labelled with Pass or Fail
Output: predicates likely to be the bug
Classification;1
Predicates are trained using logistic regression model to produce logistic function;2
Generate the β coefficients of the logistic function for each predicate;3
Predicate with the different β coefficients as compared to the other β coefficients of4
predicates is the possible bug;

Zheng et al. previously propose the use of classification and feature selection ap-
proaches to narrow down the search for predicates that are likely to be buggy [Zheng
et al., 2003]. They use the sampling framework of Liblit et al. [2003] to sample the pred-
icates of the program. However, Zheng et al. [2003] observe that these predicates are not
useful indications of the bug of the program. Therefore, they propose to use a clustering
approach – a bi-clustering scheme on the predicate-based spectra coverage [Zheng et al.,
2006]. They want to cluster and distinguish predicates of the program that are responsible
for a particular bug in the program.

Pseudocode of the clustering approach of Zheng et al. [2006] is presented in Algo-
rithm 28. The input to this algorithm is the predicate-based spectra coverage of sampled
predicates (frequency counts, which is similarly shown in Table 2.1). This refers to the
frequency (number of times) of a particular sampled predicate executed by the pass and
fail tests cases. In the first phase, Inferring Truth Probabilities, they propose to use a
graphical model [Lauritzen, 1996] to infer the truth probability of predicate, Pred, in the
test executions. For each predicate, they estimate the probability of the predicate being
executed and True in the respective test cases. The truth probabilities of the predicates are
used as the input to the spectral clustering algorithm [Ng et al., 2001]. Using this algo-
rithm, predicates are clustered based on the distances of the truth probabilities between
the predicates. In the next phase, votes are assigned to the predicates in each cluster. By
assigning votes to the predicates, Zheng et al. [2006] want to determine the particular
predicate, Pred, that is most likely to be the bug in each cluster. QPred, which is the qual-
ity of a predicate is defined in the algorithm. Weight is assigned to each predicate of the
program using QPred. More weights is assigned to a predicate if the predicate is executed
in more fail test cases than the pass test cases. The contribution of the predicate, Pred,
is computed by taking account of the probability of the predicate, Pred, being executed
in the test cases. Based on the above properties, a vote is assigned to predicate, Pred, for
each test case. The vote of predicate, Pred, in each cluster is then aggregated across all
the test cases. The fine details of these formulas can be found in the study of Zheng et al.

66

3.7. SUMMARY

[2006]. Predicate, Pred, with the highest total votes in each cluster is identified as one of
the bugs of the program.

Algorithm 28: Algorithm of Simultaneous Identification of Multiple Bugs Approach
[Zheng et al., 2006]

Input: predicate-based spectra coverage of sampled predicates
Output: predicate with the highest votes for each cluster
// QPred as quality of each predicate, Pred
Inferring Truth Probabilities;1
Sampled predicates are inferred with truth probabilities using graphical model;2
Generate clusters of predicates using spectral clustering algorithm [Ng et al., 2001];3
Collective Voting approach using bi-clustering scheme;4
foreach cluster of predicates formed do5

foreach predicate, Pred, in the cluster do6
foreach test case do7

Compute the QPred;8
Contribution of predicate, Pred to respective test case is computed;9
Aggregate vote assigned by the test case for predicate, Pred;10

end11
end12
Predicate, Pred with the highest number of total votes is chosen as the most13
likely bug in the cluster;

end14

Zheng et al. [2006] evaluate the effectiveness of their proposed approach on the Siemens
Test Suite using PDG [Renieres and Reiss, 2003, Cleve and Zeller, 2005] (see Subsection
4.3.3). They observe that their proposed approach is able to locate an additional 70 and 65
bugs of the SOBER [Liu et al., 2005] and CBI [Liblit et al., 2003] approaches respectively
by examining more than 7% of the program code.

3.7 Summary

In this chapter, a survey on software fault localization techniques has been presented.
These techniques are broadly divided into several studies that use different approaches
to locate the bug(s) of a program, namely: slicing and dicing, spectra-based, state-based,
test reduction, and combining the spectra-based and machine learning approaches. We
have discussed how these approaches are able to locate bugs in a program and have also
empirically described the performance of these approaches.

67

4
Performance Measures

4.1 Introduction

In this chapter, we introduce general principles of performance measures for bug local-
ization; in particular we consider issues such as the granularity of the program (e.g which
statements of program to consider), ties between statements having similar metric val-
ues, undefined metric values due to division by zero in the evaluation of spectra metrics,
and rounding errors in determining the rank of buggy statements. We discuss several
performance measures commonly used in the debugging area, and propose several new
performance measures. We also detail the benchmarks and the statistical validation used
in the thesis.

4.2 Principles of Performance Measures

We have discussed different granularities, for example, statement-based, block-based,
predicate-based, function-based, and et al.in Chapter 2. We refer to these granularities
as a coverage type. Several issues are to be considered in the performance measure for
bug localization. In this section, we briefly discuss these issues and show how they can
influence performance measures. Statement-based is used as the context throughout the
thesis.

Granularity

One of the principles to consider in evaluating performance measures is the granularities
involved with respect to the coverage types.

For statement coverage, there are different lines of code to be considered for the eval-
uation of respective performance measures. One can consider all the lines of code in the

69

Chapter 4. PERFORMANCE MEASURES

program. Alternatively, one also consider only the lines of code executed by at least one
test case in the test suite.

In several previous studies [Jones and Harrold, 2005, Abreu et al., 2006, Wong et al.,
2010], gcov (part of the gcc compiler suite) has been used for program instrumentation.
gcov reports execution statistics for each line of source code, including lines that are
empty or contain only preprocessor directives such as #define, comments, braces, and
etc. In our study, we remove all the lines of code (statements) which are not executed
by any test cases. These removed statements are the commented and blank lines. Jones
et al. remove blank lines, comments, function and variable declarations, and function pro-
totypes from the program code [Jones and Harrold, 2005]. They also treat statements
(usually conditional expressions) that span more than one line of code (multi-line state-
ments) as one line of code. In a recent study, Wong et al. also consider only the lines
of code executed at least by a test case [Wong et al., 2010]. In Chapter 5, we report the
performance measure figures of our proposed bug localization approach using all the lines
of code and using only the lines of code which are executed.

Other related studies that report the performance measure figures do not explicitly
mention which lines of code they consider [Renieres and Reiss, 2003, Liblit et al., 2005].
This suggests that they may have considered all the lines of code. For example, Renieres
et al. use program dependence graphs (PDG) as a performance measure to evaluate their
proposed approach [Renieres and Reiss, 2003]. The PDG is generated statically (static
analysis), and the selected set of nodes might include nodes of program code that is not
executed (the details of this measure are presented in Subsection 4.3.3).

The number of lines of code considered influences the bug localization performance
for any performance measure used. Assume we are considering two programs; a program
that consists of 10 lines of code which are executed at least once by a test case, and a
program that consists of 1 million lines of code, whether or not they are executed by
test cases. We make an assumption that we use a particular spectra metric, and that the
buggy statement is located at the third position for both programs. Using the performance
measure of rank percentages (detailed in Subsection 4.3.1), the program with 1 million
lines of code will yield extremely good performance (very small rank percentages) as
compared to the program with 10 lines of code.

Apart from program statements, other studies use basic blocks (block-based spectra
coverage) to evaluate their proposed approach to improve bug localization performance
[Abreu et al., 2006, Abreu et al., 2007]. One of the advantages of using block-based
spectra coverage is that a particular basic block coverage of a program represents the
set of statements covered by the block. Using program statements may cause ties of
MetV alue among statements within the same block of a program. The latter case would

70

4.2. PRINCIPLES OF PERFORMANCE MEASURES

not occur using block-based spectra coverage. The current version of gcov supports
block coverage. However, it also produces other information e.g description of branch
coverage at the end of each block that needs to be filtered. For this reason, some previous
studies develop their own tools, such as ATAC [Horgan and London, 1992] and Front
parser [Abreu et al., 2006, Abreu et al., 2007]. Lucia et al. have manually instrumented
the block coverage of programs in their recent study [Lucia et al., 2010].

Several studies have proposed to use predicates in the program code for bug local-
ization [Liblit et al., 2005, Liu et al., 2005, Jiang and Su, 2005, Chilimbi et al., 2009].
Each predicate is associated with a single program point. Examples of useful predicates
are conditions of if statements, and whether the return expressions of functions are
positive, negative, or zero. During the execution of a test case, data can be gathered on
the predicates that are observed (execution has reached that program point) and of those
which are the ones that were True (at least once). The details can be referred to Figure 2.1
of Chapter 2. Liblit et al. developed the Cooperative Bug Isolation (CBI) system [Liblit,
2004, Liblit et al., 2005] to instrument the predicates of program code. The advantage
of the predicate-based system is that predicates unrelated to control flow can also be in-
troduced; for example, the return value of a function. Return values often indicate
whether a function has exited successfully. A bug in the function could potentially ter-
minate the program without returning values. The bug can be located using this type of
predicate.

The above principles are important when using performance measures to evaluate pro-
posed approaches to locate bugs. For the thesis, we are particularly interested in the
statement-based coverage type. In our evaluation of performance measures, we consider
only the lines of code or statements that are executed.

Ties

In the ranking of program statements with spectra metrics, there are possibilities of having
a similar metric value (MetV alue) for more than one statement of the program. There are
several approaches that have been proposed to handle ties in the ranking of program state-
ments. These approaches are known as High, Low, and Mid measures. Some previous
studies have used these different measures to report the effectiveness of their proposed
bug localization approaches. High refers to the top most position of the statement that
shares the same metric value as the other statement(s). The Low measure refers to the
bottom most position of the statement that shares the same metric value as the other state-
ment(s). Several studies use the Low measure [Jones and Harrold, 2005, Abreu et al.,
2006, Santelices et al., 2009]. The High and Low measures are also known as Best case

and Worst case respectively [Wong et al., 2007, Wong et al., 2010]. The Mid measure

71

Chapter 4. PERFORMANCE MEASURES

refers to the average of the position of the statements that share the same metric value.
Some of the earlier studies use the Mid measure [Abreu et al., 2007, Ali et al., 2009] to
report the performance of their proposed bug localization approaches. The Mid measure
is also referred to as the middle line measure by Ali et al. [2009].

We illustrate these approaches with a simple program used by Jones et al. [2002].
Using the program shown in Table 2.4, we observe the mid program which consists of 13
statements. Assuming that the bug is located in Statement 2, we observe that the aep and
aef for Statements 1, 2, 3, and 13 are the same (aep=5 and aef=1). If we evaluate with any
of the better performing spectra metrics found in Chapter 5 (Op, Jaccard, and Tarantula
metrics, to name a few), Statement 7 and Statement 6 are ranked the first and the second
position respectively. By using any spectra metrics, we observe that Statements 1, 2, 3,
and 13 have the same MetV alue. For the High measure, the ranking position of the bug
would be 3 since Statement 2 (which contains the bug) could optimistically be ranked right
after Statement 7 and Statement 6 in the list, separately from the other three statements.
For the Low measure, the ranking position of the bug would be 6, since Statement 2
could be ranked bottom in the list, right after Statements 7, 6, 1, 3, and 13. For the Mid

measure, the ranking position would be 4.5, since there are 4 statements that share the
same MetV alue in the ranking. The average position among the four statements is taken
in this case.

In the case of having ties in multiple-bug programs, we only consider the ties of the
highest ranked buggy statement found by the programmer. Any tie that exists between the
highest ranked buggy statement and other non-buggy statement(s) are considered as part
of the ranking for the High, Low, and Mid measures.

Reporting both High and Low measures for bug localization performance is not so
useful because it does not give a single number, and makes the comparison between spec-
tra metrics harder. Using the High or Low measure itself is misleading for some metrics
(for example, the Russell metric). We defer an explanation of this to Subsection 5.11.1 of
Chapter 5 where we evaluate these different measures on the Siemens Test Suite bench-
mark. It is more rational to use the Mid measure, as it takes into account the average of all
the possible positions of the statements having the same MetV alue in the ranking. The
Mid measure does not give any extreme bug localization performance figures, as com-
pared to using the High and Low measures. This measure is therefore more realistic when
compared to using the High and Low measures. Reporting a single number such as the
Mid measure also helps to compare the bug localization performance between different
spectra metrics.

72

4.2. PRINCIPLES OF PERFORMANCE MEASURES

Undefined Metric Values due to Division by Zero

We also have to consider ways to handle the issue of having undefined metric values
caused by division by zero, in the ranking of program statements. Previous studies have
not addressed this issue [Abreu et al., 2006, Wong et al., 2007, Wong et al., 2010, Debroy
et al., 2010].

When it comes to ranking program statements, there is a possibility of the denominator
of respective spectra metrics having zero. We could handle this scenario in three different
ways.

1. Return a large metric value

2. Assign zero to the statement

3. Use ε on the denominator

The first solution when the denominator has zero is to return a suitably large metric
value. For example, when using the Tarantula metric to evaluate the metric value of
program statements, if the denominator of a statement is zero, rather than returning an
undefined value, we could use a larger value such as the number of tests plus 1, which is
larger than any value which can be returned with a non-zero denominator.

Another possibility to handle undefined metric values (due to the division by 0) is to
assign zero to a statement when the denominator of that statement is zero. For example,
take CBI Log (refer to the metric in Table 2.3). The log in the CBI Log metric will
give undefined value when the denominator is 0. Liblit et al. [2005] assigned zero to the
predicates when the denominator is zero in the CBI Log and CBI Sqrt metrics. We handle
the similar way for both of these metrics in this thesis.

Definition 10 (Ample metric).

Ample =
∣∣∣ aef
totF

− aep
totP

∣∣∣

The third solution proposed to handle the denominator being zero is to add a suitably
small ε to the denominator. There is no issue when applying ε on the denominator for most
of the spectra metrics with the exception of the Ample metric. We observe differences in
bug localization performance when we apply ε on the denominator for the Ample metric.
The Ample metric (Definition 10) consists of two terms, the proportion of fail test cases
and the proportion of pass test cases. Of the two terms, the smaller term is subtracted
from the larger term.

73

Chapter 4. PERFORMANCE MEASURES

In Table 5.1 of Chapter 5, using the top-rank-bug score detailed in Subsection 4.4.2 on
the ITE28 model program, we observe that the Ample metric (without ε) yields a score of
46.36% for 100 tests. Using the same number of tests, Ample metric with ε yields a score
of 6.39%. The reason for this different observation is due to having ties for statements S3
and S4 of the ITE28 model program when using the Ample metric without ε.

We illustrate the above observation with a simple example. Assume we have a state-
ment, S1, with aef=1, aep=0, anf=0, and anp=4. Another statement, S2, has aef=0, aep=4,
anf=1, and anp=0. If we use the Ample metric with the ε value, S1 and S2 would be
| 1
1+ε

- 0
4+ε
| and | 0

1+ε
- 4
4+ε
| respectively. S2 would have a higher MetV alue since S2 has a

numerator of 4, whereas S1 has a 1 as the numerator. By using the Ample metric without
the ε value, S1 and S2 would have |1

1
− 0

4
| and |0

1
− 4

4
| respectively. In this case, S1 and S2

would have the same MetV alue of 1. This example shows that using the Ample metric
without the ε value introduces ties for statements. This affects the buggy statement posi-
tion in the ranking especially for small size programs such as the ITE28 model program.
We can observe the bug localization performance for the Ample metric is at the bottom of
the Table 5.1. However, the bug localization performance is not affected by introducing
the ε in the denominator in the metric on larger program size of the benchmarks (Siemens
Test Suite, the subset of the Unix Test Suite, Space, and Concordance).

In the thesis, we consider both cases; assigning zero for some metrics, namely CBI
Log and CBI Sqrt, when the denominator is zero, and assigning ε to most of the metrics.
We do not assign any ε for the Ample metric.

For metrics that are found to be equivalent in the ranking using a monotonically in-
creasing function (Lemma 5.2.1), there are slight differences in the metric values when we
apply ε to these metrics. These metrics are detailed in Subsection 5.2.1. Take for example,
the Simple Matching and Manhattan metrics (refer to Table 2.3). When we evaluate these
metrics on a program statement, a rounding error is observed in the metric value of this
statement on both metrics. However, the rounding error does not affect the ranking of the
buggy statement for most of these metrics.

Rounding Errors

We also observe rounding errors in determining the ranking of the buggy statement(s). In
the ranking of program statements, the metric value MetV alue of each statement (evalu-
ated with most of the spectra metrics) is always a real number. Floating point values are
just an approximation of the real numbers in this case.

For the rank percentages measure (refer to this performance measure in Subsection
4.3.1), we use a small ε value as the relative error to compare the MetV alue of the pro-
gram statements. For example, using a spectra metric, there is a possibility of having a

74

4.3. EXISTING PERFORMANCE MEASURES

group of statements with a MetV alue of 0.5 and another group of statements in the pro-
gram with a MetV alue of 0.49999. We make an assumption that the buggy statement is
part of the group of statements with a MetV alue of 0.5. If we use a slightly larger ε value
than 0.00001 for the relative error in the comparison of program statements’ MetV alue,
the group of statements with MetV alue of 0.49999 will be rounded to 0.5 (rounding er-
ror). All of these statements in both groups will have a similar MetV alue. Using the
Mid measure, the ranking of the buggy statement would be the average bug position of
all of the statements in both of the groups. If we use a smaller ε value than 0.00001 for
the relative error in the comparison of program statements’ MetV alue, the ranking of
the buggy statement would be different. The group of statements with a MetV alue of
0.49999 will not be rounded to 0.5. Using the Mid measure, the ranking of the buggy
statements would be the average bug position of all the statements in the group of state-
ments with a MetV alue of 0.5. Regardless of the ε value that we choose for the relative
error, there is a possibility that the ranking of the buggy statement might be slightly dif-
ferent due to the ε value. A tiny difference in the metric value, MetV alue, affects the
ranking of potentially buggy statements and the reported bug localization performance in
our evaluation.

4.3 Existing Performance Measures

Several approaches have been proposed in previous studies to improve bug localiza-
tion performance [Renieres and Reiss, 2003, Cleve and Zeller, 2005, Jones and Harrold,
2005, Abreu et al., 2006, Wong et al., 2007, Wong et al., 2010]. These studies use perfor-
mance measures to report and compare the effectiveness of their proposed bug localization
approaches. Usually, these performance measures normalise with respect to the program
size and the types of coverage deployed. We compare the performance of bug localization
approaches based on the relative metric ordering of the spectra metrics. We discuss three
of the most common performance measures used by most of the existing studies. There are
rank percentages, successful diagnosis of bugs, and program dependence graphs (PDG).

4.3.1 Rank Percentages

Jones et al. propose to measure the proportion of the ranked program statements of the
program code that the programmer need not examine before the bug is found [Jones and
Harrold, 2005], whereas Abreu et al. propose to measure the proportion of the ranked
program blocks of the program code (block-based spectra coverage) that the programmer
needs to examine before the buggy block of the program is found [Abreu et al., 2006].

75

Chapter 4. PERFORMANCE MEASURES

In their study, the position of the buggy block of the program is known as qd. We use
similar performance measure to the latter except that it is statement-based. We refer to
this performance measure as rank percentages (Definition 11). We introduce the term rank
percentages because the figures are generated from the rank of program statements and
represented in percentages. It is essentially similar to the measure proposed in previous
studies such as Yu et al., Wong et al., and Xie et al. [Yu et al., 2008, Wong et al., 2010,
Xie et al., 2010]. They have introduced different namings but still refer to the same
performance measure. For example, Yu et al. [Yu et al., 2008] considers Expense to
measure the proportion of the ranked program statements of the program code that the
programmer needs to examine before the buggy statement of the program is found. Wong
et al. [Wong et al., 2010] and Xie et al. [Xie et al., 2010] have also introduced similar
measures to Expense, and they are known as EXAM and pr respectively.

Definition 11 (Definition of rank percentages).

Number of statement(s) to be examined in order to find the bug
total number of statements

∗ 100

Definition 11 refers to the percentage of the program code (program statements) that
have to be examined in order to find the bug. Note that in this definition, the total number
of statements can be considered differently (discussed in Section 4.2). Using different
total number of statements affects the figures reported for rank percentages. In the thesis,
we particularly consider the number of program statements that are executed at least once
in the test cases which are similar to the previous studies [Abreu et al., 2006, Yu et al.,
2008, Wong et al., 2010, Xie et al., 2010].

Rank percentages are calculated with reference to a complete ranking of all the state-
ments in the program. Smaller rank percentages indicate that the programmer examines
a smaller portion of the program code before the bug is found. Bug localization perfor-
mance is deemed good when we have smaller rank percentages. Other studies propose
slightly different variants from our definition of rank percentages [Jones and Harrold,
2005, Abreu et al., 2007]. One of the variants proposed in the existing studies is the
complement of rank percentages, which is denoted as qd. This refers to the number of
statement(s) or block(s) not needed to be examined in the program code before the bug is
found. The higher the qd [Abreu et al., 2007], the better the bug localization performance,
since the programmer needs to examine lesser program code to locate the bug.

In practice, the number of bugs in a program is not known to the programmer. The
programmer examines the bug which has been found first and fixes that bug before pro-
ceeding to examine the next bug in the program. Therefore, for multiple-bug programs,
we only consider the highest ranked buggy statement found by the programmer as the bug

76

4.3. EXISTING PERFORMANCE MEASURES

for the rank percentages. Across multiple programs in a test suite, we report the average
rank percentages. Abreu et al. also consider the latter when they report bug localiza-
tion performance for programs in the Siemens Test Suite [Abreu et al., 2006]. Average
rank percentages is used throughout the thesis to report the performance of proposed bug
localization approaches.

4.3.2 Successful Diagnosis of Bugs

Several studies measure the effectiveness of their proposed bug localization approaches
based on the successful diagnosis of bugs [Renieres and Reiss, 2003, Jones and Harrold,
2005, Hao et al., 2005, Jiang and Su, 2005, Liblit et al., 2005, Liu et al., 2005]. These
studies report the percentage of programs where the bug has been successfully found for
a given percentile of the program code examined by the programmer. Similarly, Cleve
et al. measure the percentage of bugs successfully found within different percentages of
nodes in the PDG examined by the programmer [Cleve and Zeller, 2005]. We name the
successful diagnosis of bugs measure as SucDiag, and use this term throughout the thesis.
The SucDiag measure considers a complete ranking of all the statements of the program.

Due to possible ties in the ranking of buggy program statements (discussed in Section
4.2), different steps have to be applied to compute the SucDiag measure. We handle the
SucDiag measure for two cases; the case where the buggy statement does not has any
ties with other non-buggy statement(s) and the case where the buggy statement has ties
with other non-buggy statement(s). In the first case, if we choose to examine at most
10% of the statements in a program and the top ranked 10% of the statements include
the bug, we assign a value of 1. This indicates the bug is successfully found when the
programmer examines at most 10% of the statements in the program. For example, if
we have 70 of the 120 programs in the test suite with the above condition, that would be
70/120× 100 = 58.34%.

For the second case, when the buggy statement is tied in the ranking with other non-
buggy statement(s) (having a similar metric value), we assume the bug can be found any-
where in that range with uniform probability. Suppose the top 10% of statements are all
ranked equally including the bug. Successful diagnosis, SucDiag, is assured by exam-
ining 10% of the program. However, if only 8% of the program is examined, successful
diagnosis is likely but not assured. We give a value of 0.8 to indicate the probability. In
this case, the SucDiag of a typical test suite for the range of 10% would be the sum of
these probabilities, divided by the number of programs, times 100%.

Instead of having only 10% of statements to be examined to locate the bug, multi-
ple percentile ranges (percentages of program code to be examined) can be defined. For
example, we define seven percentile ranges (see Table 5.13 and Table 5.14) in order to

77

Chapter 4. PERFORMANCE MEASURES

make a fair comparison of our proposed bug localization approach with previous stud-
ies [Cleve and Zeller, 2005, Jiang and Su, 2005, Liblit et al., 2005, Liu et al., 2005]. A
higher SucDiag for given percentile ranges indicates more programs where the bug is
found within the percentile ranges in the program. For comparing bug localization per-
formance between spectra metrics, we are particularly interested in smaller percentiles
as the programmer could examine smaller percentages of the program code to locate the
bug. However, the disadvantage of using this performance measure is having multiple per-
centile ranges. Using multiple percentile ranges is hard to compare SucDiag for different
spectra metrics.

4.3.3 Program Dependence Graphs (PDG)

Renieres et al. propose the use of program dependence graphs (PDG) in order to measure
the bug localization performance of their nearest neighbour approach [Renieres and Reiss,
2003]. The details of the nearest neighbour approach can be referred to in Chapter 2.
Cleve et al. and Liu et al. have also used PDG as the performance measure of the bug
localization performance of their proposed approach [Cleve and Zeller, 2005, Liu et al.,
2005].

To use this measure, the PDG for the program code has to be generated [Renieres and
Reiss, 2003] using a tool such as CodeSurfer [Teitelbaum et al., 2001]. Every expression
of the program code (for instance, every statement or block of the program) is treated as
one of the nodes of the PDG. Using the respective proposed bug localization approaches
[Renieres and Reiss, 2003,Cleve and Zeller, 2005,Liu et al., 2005], a set consists of nodes
(statements or blocks) likely to be buggy is produced. The PDG of the program code is
traversed to examine any dependency neighbourhoods of each node in the set until the
programmer recognises a buggy node. The traversal of these nodes is performed using
breadth-first search [Horowitz et al., 1995]. Each set of nodes that has a directed path
from the node to the buggy node is computed. Nodes that have been traversed from the
respective node in the set to the buggy node are gathered; this is known as the node set. A
measure (known as Score in their study) is established [Renieres and Reiss, 2003] and is
represented by the following definition (Definition 12).

Definition 12 (Definition of measure using PDG defined by [Renieres and Reiss, 2003]).

1− number of node(s) in the smallest node set
total nodes in overall PDG

Definition 12 refers to the proportion of the number of nodes not needed to be exam-
ined in the PDG before reaching the buggy node, divided by the total number of nodes in
the overall PDG. The number of nodes refers to the nodes in the smallest node set. If the

78

4.4. PROPOSED PERFORMANCE MEASURES

node in the smallest node set is the buggy node, and this is the only node in the node set,
the search will stop immediately; the measure returned would be 1. The measure returned
is smaller and closer to 0, the more nodes there are in the smallest node set.

Liu et al. propose a similar methodology for measuring performance by traversing the
PDG in a breadth-first-search until the buggy node is found [Liu et al., 2005]. However,
they propose the complement of Definition 12, which is referred to as T − score in their
study. The T − score measure refers to the proportion of nodes (statements or blocks)
that need to be examined in the PDG before reaching the buggy node, with respect to the
total number of nodes in the overall PDG.

By using this measure, the program dependence graph (PDG) of the program code
has to be generated. The node set for each node that is likely to be buggy in the PDG
has to be determined. Unlike previous performance measures such as rank percentages
and SucDiag, this measure does not assume a complete ranking of all the statements
in the program. It only considers the smallest node set that reaches the buggy node.
Therefore, this measure is not comparable to the other performance measures such as
rank percentages and SucDiag.

4.4 Proposed Performance Measures

We propose several new performance measures, and evaluate these performance measures
on our benchmarks (see Section 5.11 of Chapter 5). These measures are listed as below.

1. Median rank percentages.

2. Top-rank-bug score.

3. Relative score.

4.4.1 Median Rank Percentages

By using the average rank percentages measure in Subsection 4.3.1, the bug localization
performance for one program might be very different from that for other programs. We
propose the use of median rank percentages to avoid the case of a program that performs
very differently (an outlier) from other programs. We also use the First Quartile (25th per-
centile) and Third Quartile (75th percentile) [Dodd, 1938]. This enables us to understand
the spread of the bug localization performance of the test suite programs evaluated with
each spectra metric.

The median rank percentages measure is essentially the inverse of the SucDiag. In-
stead of analysing different percentages of the program code (up to 50% of the program

79

Chapter 4. PERFORMANCE MEASURES

code to be examined) using SucDiag, the programmer can gain an insight into bug local-
ization performance by just analysing the median (50th percentile).

Some of the metrics might show a wide spread due to different bug localization per-
formances among the different versions of each program. Since the median is a single
number, it is easy to compare different spectra metrics. The median rank percentages is a
useful and robust measure as it does not consider the bug localization performance for a
program which is very different from that of other programs.

4.4.2 Top-rank-bug Score

We propose another measure known as the top-rank-bug score. This measure examines
the proportion of programs having their bug ranked top, and treats equally ranked state-
ments in a reasonable way. The top-rank-bug score for a program evaluated with a metric
is 100% if the buggy statement is ranked highest and no tie exists with the other program
statements. If the buggy statement is ranked equal-highest with k other statements, the
top-rank-bug score is 1

k
∗ 100%. If the bug is not located at the top of the ranking list, the

top-rank-bug score is 0%.

This performance measure is extremely simple and might not be sensible if the pro-
gram is large and has more than one bug. We use this measure to evaluate and analyse
the simple model program (ITE28), which consists of only four statements, in Chapter
5. Top-rank-bug score is a useful measure to indicate the proportion of the programs in
which the bug is ranked top.

4.4.3 Relative Score

The more fail test cases (aef) and the fewer pass test cases (aep) that execute a statement,
the more likely the statement is buggy. Any sensible metric would rank a statement higher
than the other statement in the ranking list if the statement has larger aef and anp values
than the other statement (a larger anp is equivalent to having a smaller aep). Regardless
of any spectra metric used, it is possible for non-buggy statements that rank higher than a
buggy statement to have a larger aef and anp than the buggy statement. It is also possible
for non-buggy statements to share identical aij values with the buggy statement. These
statements would have similar metric values and cause bug localization to perform poorly
regardless of the metric used. Therefore, no sensible spectra metric could rank the pro-
gram bug on top in these cases.

We propose the relative score measure to evaluate the best possible bug localization
performance a spectra metric could achieve, if such cases were ignored. Based on the
ignored cases, we examine two conditions on non-buggy statements that rank higher than

80

4.4. PROPOSED PERFORMANCE MEASURES

the buggy statement in the ranking list. For the first condition, we examine whether the aef
values of these non-buggy statements are less than the aef value of the buggy statement. In
the second condition, we examine whether the aep values of these non-buggy statements
are larger than the aep value of the buggy statement. These conditions allow us to observe
how closely a metric can achieve best bug localization performance as compared to other
metrics.

We describe the pseudocode for relative score in Algorithm 29. The inputs to this
algorithm are the program statements evaluated with the given spectra metric (sorted in
descending order) and buggy statement S. Initially, the buggy statement position has to
be identified from the ranked program statements. In the ranking of the buggy statement,
there is a possibility of other non-buggy statements sharing the same metric value with the
buggy statement. Therefore, we have two inputs, fp and lp in Algorithm 29 which refer
to the first and the last position of the statements sharing the same metric value with the
buggy statement respectively. The fp and lp are identical if there is no other non-buggy
statement(s) sharing the same metric value with the buggy statement. In this algorithm,
if the buggy statement is tied with other non-buggy statements, the first and last position
(fp and lp) in the ranking have to be examined. For multiple-bug programs, we always
consider the position of the bug that is first found in the ranking.

If the bug is ranked at the top, and no ties exist with non-buggy statements, the al-
gorithm skips the two while() loops and returns the relative score of 1 (Definition 13).
Otherwise, the first while loop is used to examine the program statements that rank higher
than the buggy statement (first position, fp). The two conditions mentioned are used in
this loop to determine the nonbug counter variable (which is part of the relative score).
This step is repeated until the first position, fp, has been reached.

Once the algorithm has reached the first position, fp, it examines any tie (that is,
identical metric value of the first position, fp, with other statements) in the ranking. If
there is a tie, the algorithm needs to examine the second while loop. This second while
loop works similarly to the first while loop. The two conditions in Step 7 are used to
determine part of the relative score using the nonbugties counter variable. The second
while loop will be skipped if a tie does not exist between the first position, fp, and the
consecutive statements in the ranking.

Definition 13 (Relative Score, Relp).

RelP = (1−
nonbug + nonbugties

2

of statements in the program
) ∗ 100

81

Chapter 4. PERFORMANCE MEASURES

Algorithm 29: Algorithm of Relative Score
Input: ranked program statement s according to MetV alue (in descending order),

buggy statement S, first position, fp and last position, lp of the program
Output: relative score of the program, Relp
while top ranked statement s has not reached fp do1

if (aef (s) < aef (S) || aep(s) > aep(S)) then2
nonbug++ // nonbug as variable counter3

end4
end5
while (MetValue(s) == MetValue(S) && the statement s has not reached lp) do6

if (aef (s) < aef (S) || aep(s) > aep(S)) then7
nonbugties++ // nonbugties as variable counter8

end9
end10
Return relative score Relp (Definition 13) ;11

The relative score, Relp, defines the best possible bug localization performance that
a metric can achieve for a typical program (Definition 13). This score is quite similar to
the rank percentages (Subsection 4.3.1). The ties (nonbugties) with the buggy statement
handled in this score is similar to that obtained using Mid measure. However, the relative
score is the reverse of the rank percentages. A larger relative score indicates that the
metric could achieve better bug localization performance; that is, the buggy statement of
the program can be located faster. By using this measure, we can observe the best possible
bug localization performance a spectra metric can achieve.

4.5 Empirical Datasets and Validation

We evaluate several performance measures on benchmarks in the thesis. Table 4.1 de-
scribes the breakdown of the programs in the benchmarks with the number of programs
of different number of bugs. The table also details the number of lines of code (LOC),
total number of test cases, and the number of pass and fail test cases of the programs. In
this table, most of the programs belong to either Siemens Test Suite or Unix Test Suite.
We use the term test suite to refer to Siemens and Unix datasets as previous studies have
been using this terminology [Renieres and Reiss, 2003, Tallam and Gupta, 2005].

The first seven programs in Table 4.1 are from the Siemens Test Suite [Do et al.,
2005]. This test suite is a widely used benchmark for bug localization [Renieres and
Reiss, 2003, Pytlik et al., 2003, Jones and Harrold, 2005, Liu et al., 2005, Abreu et al.,
2006, Abreu et al., 2007, Wong et al., 2007]. print tokens and print tokens2 denote
lexical analyser program code. tot info and replace are information measure and pattern

82

4.5. EMPIRICAL DATASETS AND VALIDATION

Table 4.1: Description of the Siemens Test Suite, the subset of the Unix Test Suite, Space, and
Concordance

Program 1 Bug 2 Bugs 3 Bugs LOC # Test Cases # Pass # Fail
print tokens 6 — — 563 4130 4050 80
print tokens2 10 10 44 508 4115 3891 224
replace 29 34 16 563 5542 5440 102
schedule 8 — — 410 2650 2555 95
schedule2 9 28 131 307 2710 2677 33
tcas 37 604 — 173 1608 1570 38
tot info 23 245 782 406 1052 969 83

Cal 18 115 1475 202 162 90 72
Checkeq 18 56 502 102 332 79 253
Col 28 147 2030 308 156 92 64
Spline 13 20 174 338 700 648 52
Tr 11 17 90 137 870 707 163
Uniq 14 14 114 143 431 273 158

Space 15 5 1 9059 13585 11631 1954

Concordance 11 — — 1492 372 353 19

recognition program code. schedule and schedule2 denote code for a priority sched-
uler. tcas is program code for altitude separation. The next six programs in the table are
a subset of the Unix Test Suite [Wong et al., 1998]. These programs are various Unix
utility programs. Cal is a calendar utility that prints a calendar for a specific year or
month. Checkeq reports missing or unbalanced delimiters and .EQ/.EN pairs. Col is a
program used to filter reverse paper motions from nroff output for display on a terminal.
Spline is a program used to interpolate smooth curves on the basis of given data. Tr

is a program to translate characters. Uniq is a utility to report or remove adjacent du-
plicate lines. The third dataset we use is the Space [Frankl and Iakounenko, 1998, Do
et al., 2005] program which provides a user interface to configure an array of anten-
nas. We also use Concordance as a benchmark [Ali et al., 2009] and is a utility for
making concordances (word indices) of documents, written by Ralph L. Meyer (http:
//hpux.connect.org.uk/hppd/hpux/Misc/conc-0.5/man.html). This
dataset is different from the Siemens Test Suite, the Unix Test Suite subset, and the Space
datasets, as the bugs of the program code are not seeded using any tool. Ali et al. iden-
tify 13 different types of bugs in the Concordance program code [Ali et al., 2009]. In
their study, these bugs are known as naturally occurring bugs and we name it as buggy
versions of Concordance. Once they have identified these bugs, Ali et al. [2009] fix the
bugs by using preprocessor directives (e.g #if ... #endif). We name the fixed versions of
the program code as correct versions of Concordance. The output of the test cases on the

83

Chapter 4. PERFORMANCE MEASURES

correct versions and the buggy versions of the Concordance program code are compared
to determine the correctness of the test cases. The details of the bugs of our benchmarks
can be referred to in Appendix H.

These datasets have different program sizes as measured by lines of code (column
LOC of Table 4.1). We observe that the Siemens Test Suite and the subset of the Unix Test
Suite have the least lines of code executed (on average of 320 lines of code). Therefore,
we refer to them as small-size programs. We refer to Concordance as a medium-size
program, as it has more lines of code executed (1492 lines of code). We refer to the Space
program as a larger-size program, as it has more lines of code executed (9059 lines of
code) than the other datasets in Table 4.1. However, the programs in these benchmarks
are small in comparison to the size of real-world programs, such as GCC [GCC, 2010a].

In this thesis, program spectra are extracted using gcov (part of the gcc compiler
suite) and Bash scripts. There are six Siemens test suite programs that have runtime errors
(segmentation faults) for some tests and gcov fails to produce any execution counts; we
have obtained data from other researchers for these cases. We encountered four Unix Test
Suite subset programs that have runtime errors (segmentation faults). There are also six
(of an original 38) Space programs of which we failed to obtain data. We have excluded
these programs from the benchmark set.

We distinguish between the number of bugs of each program that we evaluate. In
the thesis, we define a single bug as a program with one bug. Not all of the benchmark
programs have a single bug that shows unintended behaviour when executed. For ex-
ample, some programs in the benchmarks have a (single) #define that is wrong. The
#define is never executed; it is only when a statement that uses the macro is executed
that unintended behaviour occurs. There are typically several such statements. The terms
two-bug and three-bug refer to programs that have two bugs and three bugs respectively.
In the thesis, we only consider programs that fail for at least one test case. If the program
does not contain any fail test cases, it is not appropriate for dynamic diagnosis as there
are no symptoms to diagnose. We define the number of programs that we evaluate in
the thesis according to the number of bugs (see Table 4.1), namely, 1 Bug, 2 Bugs, and
3 Bugs columns which refer to one-bug (single bug), two-bug, and three-bug programs
respectively.

To create two-bug programs, we picked all the possible single bug (one-bug) versions
of the same program of the dataset and combined them as two-bug programs. We did not
consider pairs of single bug programs which have identical bugs. The same approach is
used to generate three-bug programs, namely by picking all the possible single bug pro-
grams and combining them with all the possible two-bug programs. This approach has
been used in the previous study of Jones et al. [2007]. We only generated two-bug and

84

4.5. EMPIRICAL DATASETS AND VALIDATION

three-bug programs for the Siemens Test Suite and the subset of the Unix Test Suite, as
they contain more program versions than the Concordance and Space datasets. Space con-
tains seven versions with more than three bugs. Therefore, we call all the Space versions
with more than one bug (13 of them) as multiple-bug of Space programs.

For the larger-size program such as Space, we evaluate two different sets of the dataset.
In the first set, we use all of the test cases provided in the test suite [Do et al., 2005], which
we name as AllTests. As the Space test suite consists of a large number of test cases (close
to 13 600 test cases), we choose to use a subset of the entire test suite as the second set.
A previous study has also instrumented the Space program by choosing to use a subset
of the entire test suite [Jones et al., 2007]. For the second set of the Space dataset, we
randomly select 10% of the pass and fail test cases of the entire test suite of Space. In
order to avoid any bias of specific test selections, we repeat the random test selection 10
times. For each selection, we gather the test cases into a particular bin. Therefore, we
have 10 bins, each contains a subset of test cases of the Space programs, which we name
as Subset.

Making the distinction between the number of bugs in a program in our evaluation
allows us to gain a better understanding especially for single bug programs. The Siemens
Test Suite [Do et al., 2005], which is widely used in the debugging area [Jones and Har-
rold, 2005, Abreu et al., 2006, Wong et al., 2007], is strongly biased towards single bug
programs. Previous studies [Renieres and Reiss, 2003,Wong et al., 2007] report the effec-
tiveness of their bug localization approaches using the entire benchmark, without making
any distinction between programs with different numbers of bugs. We observe different
bug localization performances on single bug programs and multiple-bug programs in this
thesis.

We propose several bug localization approaches that help improve the performance of
bug localization in this thesis. We validate the effectiveness of the proposed approaches
using a one-sided Wilcoxon rank sum test [Hollander and Wolfe, 1973]. We establish
the hypothesis of improved bug localization performance using our proposed bug local-
ization approach. We observe the significance of our hypothesis, known as the p-value.
We choose the commonly used p-value of 0.05 [Bross, 1977] and report the confidence
interval [Neyman, 1937] of our hypothesis. A p-value less than 0.05 indicates that the
hypothesis of the improved bug localization performance using our proposed bug local-
ization approach is true with the confidence greater than 95%.

85

Chapter 4. PERFORMANCE MEASURES

4.6 Threats to Validity

In the earlier sections, we discussed several existing performance measures used in de-
bugging, particularly rank percentages (Subsection 4.3.1). The latter is a reasonable per-
formance measure as it helps indicate the programmers’ effort to locate bugs on different
spectra metrics. In the thesis, most of the figures we reported consider the average of
rank percentages for respective programs in each test suite. There might be other possi-
ble performance measures which could be used to compare bug localization performance
on several spectra metrics, and potentially yield different results (as to which metric pro-
grammers should use to locate bugs). One possible performance measure to consider is
by taking the pairwise comparison of the rank percentages among two metrics. We illus-
trate both average rank percentages and pairwise comparison measures in the following
example.

Given three programs of 100 lines of code evaluated respectively on two spectra met-
rics, A and B. The rank percentages for these programs evaluated on metrics A and B are
A={2,6,10} and B={1,5,21} respectively. By considering the average rank percentages
measure, it would be 6% and 9% on metrics A and B respectively. It has been explained
in Subsection 4.3.1 that lesser rank percentages refers to the programmers having less
program code to examine in order to locate bugs of the program. As the metric A has
smaller average rank percentages than metric B, the former metric would be chosen by
the programmers to locate bugs of the program. If we perform pairwise comparison on the
rank percentages for each program evaluated with metricA andB, there are two programs
where metric B has smaller rank percentages than metric A (1 versus 2, and 5 versus 6).
From these pair comparisons, one could conclude that metric B is a better choice for pro-
grammer to use to locate bugs as compared to metric A. Pairwise comparison measure
could be possibly used in the thesis to provide different perspective to the programmers
when choosing metrics to locate bugs. However, there are over 80 spectra metrics in the
thesis and it is not feasible to make comparison among the different combinations of pairs
of metrics.

We also propose other performance measures in Section 4.4, particularly, median rank
percentages. This measure can handle outliers, for example using the previous example,
Metric A and Metric B will yield median value of 6 and 5 respectively. We evaluate our
metrics using median rank percentages in Table 5.18 (on page 140) and show that the
ordering of the metrics, especially the top five metrics in Median column is similar to the
ordering of the metrics in Mid column (average rank percentages).

We validate our empirical evaluation of our proposed bug localization approaches
using statistical test, t-test [Hollander and Wolfe, 1973]. We validate the significance

86

4.7. SUMMARY

of the improvement of bug localization performance using our proposed approaches by
comparing the ranking of the buggy statement for each program evaluated. More details
of t-test can be referred to Section 4.5.

Another concern is the datasets used (detailed in Section 4.5). Bugs in the Siemens
Test Suite are manually seeded by Siemens researchers [SIR, 2010]. For the Unix Test
Suite, the bugs are seeded using automated tool [Wong et al., 2010]. The empirical results
on these datasets (metrics perform better than the others in bug localization performance)
could not be necessarily generalized to real programs. We evaluate Concordance dataset,
where the bugs in this program are not seeded by any tool [Ali et al., 2009]. By using
this dataset, we show similar ordering of metrics in terms of the effectiveness of bug
localization, with the other test suites such as Siemens Test Suite and subset of Unix test
suite. However, Concordance has only 11 programs and having more real programs will
be future work.

4.7 Summary

In this chapter, we have discussed several general principles to consider when evaluat-
ing performance measures. These principles are: the granularity of the program (which
statements to consider); ties of statements having the same metric value; undefined met-
ric values due to division by zero; and rounding errors that occur when evaluating with
spectra metrics. We detailed the existing performance measures (using rank percentages,
successful diagnosis of bugs (SucDiag), and program dependence graphs (PDG)) and
their disadvantages. This has led us to propose several new performance measures. By
using median rank percentages, the problem of having different bug localization perfor-
mances in the programs (where one particular program gives high rank percentages, but
not other programs) can be avoided. Using First Quartile and Third Quartile also help us
to gain more insight on the spread of the bug localization performance of the respective
programs. The top-rank-bug score is a simple measure that examines the proportion of
programs having the bug ranked top. Relative score is a useful measure to determine the
best bug localization performance a metric can achieve.

We have evaluated these performance measures on the single bug programs of the
Siemens Test Suite benchmark to gain insights on these measures. For a fair comparison
with previous studies, we evaluate our proposed bug localization approaches using rank
percentages and report the bug localization performance using the average rank percent-
ages throughout the thesis. We also discussed issues related to empirical evaluation and
performance measures, for example, performance measures may be unreliable if datasets
are not chosen properly.

87

5
A Model for Spectra-Based Software Fault

Diagnosis

5.1 Introduction

We have discussed in earlier chapters, various methods based on spectra metrics for bug
localization. Unfortunately, we cannot determine whether there exist an optimal metric
that outperforms all the proposed metrics. In this chapter, we present a simple model pro-
gram to capture the insights of software fault diagnosis. The motivation of this approach
is to understand the behaviour of single bug programs and develop an optimal spectra
metric. A large number of metrics have been proposed and we observe some of these
metrics give identical performance results to some other metrics. In order to study the
equivalence of these metrics, we develop the notion of equivalence for two different met-
rics that produce similar ranking. Using this principle, we detail the equivalence of the
spectra metrics, which are listed in Table 2.3. We describe our model program and detail
our methodology for considering multisets of execution paths of the model program. We
also describe how we evaluate the performance of spectra metrics in this model program.
We discuss optimal ranking and give some insights into several of the spectra metrics used
in our evaluation. This is followed by the evaluation of all the spectra metrics using the
proposed model program and the empirical benchmarks (the Siemens Test Suite, subset
of the Unix Test Suite, Concordance and Space programs). We also evaluate multiple-bug
programs from the benchmarks and detail some discussions of using model program for
multiple-bug programs. Finally, we evaluate single bug programs of the Siemens Test
Suite using other performance measures, which we have detailed in Chapter 4.

89

Chapter 5. A MODEL FOR SPECTRA-BASED SOFTWARE FAULT DIAGNOSIS

5.2 Spectra Metrics and Their Equivalences

Spectra-based ranking has been applied to software fault diagnosis by various researchers.
We have presented a comprehensive list of spectra metrics in Table 2.3. The predicate-
based spectra metrics [Liblit et al., 2005] can be found in Table 2.5. In this thesis, we
adapt the predicate-based metrics introduced by Liblit et al. in the CBI system [Liblit
et al., 2005] to statement-based metrics. Instrumented statement execution provides the
same information as the instrumented predicates if they are related to a control flow. For
example, in the program segment S1; if B then S2, we know B is observed (reach) if and
only if S1 is executed, and B is True if and only if S2 is executed. Note that although the
information about B is available, it is spread across two different statements. The pro-
gram spectra methods we consider, which never combine the aij values from the different
statements may not always be able to reproduce the predicate-based ranking.

The ITE28 model program we introduce in Section 5.3 is very simple: For a given set
of tests, the Context (one of the predicate-based spectra metrics in Table 2.5) is the same
for all control flow predicates; they are always observed. This allows the predicate-based
spectra metrics used in the CBI system to be translated into the statement-based spectra
formalism and compared fairly with other metrics; there is a bijection between statements
and predicates and our translation of the formulas preserves the ranking in all cases. The
definitions of these metrics are given in Table 2.3. We use the same formulas in our
empirical experiments. However, for the test suite programs, Context can vary between
different predicates. This means our translation of the CBI predicate-based metric to
statement-based metric does not preserve ranking, so the empirical performance we report
for these metrics (Section 5.8) may not reflect that of the CBI system. Recently, study of
ours addressed this concern by proposing several heuristics to reconstruct predicate-based
spectra coverage from statement-based spectra coverage [Naish et al., 2010].

5.2.1 Equivalence of the Spectra Metrics

When we evaluate spectra metrics on our benchmarks in Section 5.8, we notice several
spectra metrics produce the same ranking, which results in same bug localization per-
formance. In this section, we prove the equivalence of these metrics. Dice is simply
twice Jaccard, for example. Pearson and Phi metrics share the same formula. Jaccard,
Levandowsky, and Watson metrics are also equivalent for ranking, as they share an identi-
cal formula. For others, it is more subtle. For the sake of simplifying the proofs, a simpler
terminology is used for some of the terms that have been defined in the Glossary. F and
P denote the number of fail and pass tests, in place of totF and totP respectively. T

90

5.2. SPECTRA METRICS AND THEIR EQUIVALENCES

denotes the total number of tests; T = F + P . anf = F − aef and anp = P − aep are
denoted in some of the propositions below.

Lemma 5.2.1. A spectra metric m(ā) produces the same rankings as f(m(ā)) if f is a

monotonically increasing function.

Proof. For any given two statements, S1 and S2, S1 ranks higher than S2 if and only if
m(S1) > m(S2). Since f is a monotonically increasing function, f(m(S1)) > f(m(S2)).
Therefore, f will rank S1 higher than S2.

Based on the above lemma, we establish several spectra metrics that are equivalent for
ranking by the following propositions. In the propositions, the monotonically increasing
functions are defined within the range of the metric values evaluated on respective spectra
metrics. For example, statements evaluated using Jaccard metric can only range from 0 to
1. Therefore, a monotonically increasing function defined for Jaccard metric is only true
within the range of 0 to 1.

Proposition 5.2.2. The Jaccard, Anderberg, Sneath & Sokal 2, Sørensen-Dice, Dice,

Goodman, Levandowsky, and Kulczynski1 metrics are all equivalent for ranking.

Proof. We show they are all equivalent to Kulczynski1, aef/(anf + aep). For the Jaccard
metric, we can apply the monotonically increasing function f(x) = 1

(1/x)−1 to obtain the
same result. We can apply the monotonically increasing function 2

(1/x)−1 for the Ander-
berg metric. Sneath & Sokal 2 and Anderberg share an identical formula; hence, equiv-
alent. For the Sørensen-Dice metric, we can apply monotonically increasing function

1
(2/x)−2 . For Dice, we can apply monotonically increasing function 1

(2/x)−1 . For Good-
man, we can apply monotonically increasing function 1

(1/x)−1 + 1
2
. Levandowsky metric

has the same formula as Jaccard.

Proposition 5.2.3. The Rogers and Tanimoto, Gower1, Gower2, Simple Matching, SokalD-

ist, Hamann, Sneath & Sokal 1, M1, M3, Wong2, Euclid, Hamming, NFD, Manhattan, and

Lee metrics are all equivalent for ranking.

Proof. Simple Matching is equivalent to (aef + anp)/T . Applying the monotonically in-
creasing function f(x) = x·T−P , we obtain aef−aep (Wong2). Hamann is equivalent to
(2aef + 2anp−T)/T and applying the monotonically increasing function (x ·T +T)/2T

we get the same result. For Rogers and Tanimoto, we can apply monotonically increasing
function 2

(1/x)+1
to get the Simple Matching formula. For Sneath & Sokal 1, monotoni-

cally increasing function 1
(2/x)−1 can be applied to get the same result. For M1, we can

apply monotonically increasing function 1
(1/x)+1

to obtain the Simple Matching formula.
Euclid squared is simply the same as Hamming, NFD, Manhattan, and Lee. Applying

91

Chapter 5. A MODEL FOR SPECTRA-BASED SOFTWARE FAULT DIAGNOSIS

monotonically increasing function x/T to Hamming, we obtain Simple Matching. We
can transform Simple Matching by 2x to obtain the M3 formula. We square SokalDist√

aep+anf
T

to obtain the Simple Matching formula. By using the notation of anf = F−aef ,

anp = P − aep and simplifying the Gower1 formula, we obtain 2(aef+anp)−T
T

. Adding a
constant value of 1 to the latter formula will obtain 2(aef+anp)

T
. Dividing by two on the lat-

ter equation gives Simple Matching. Gower2 is equivalent to the Simple Matching using
the monotonically increasing function f(x) = 0.5

1
x
−0.5 .

Proposition 5.2.4. The Scott and Rogot1 metrics are equivalent for ranking.

Proof. Taking the Scott formula, 4(aefanp−anfaep)−(anf−aep)2
(2aef+anf+aep)(2anp+anf+aep)

and using anf and anp nota-
tions, by simplifying the latter formula, we obtain

−F 2 + (4P + 2F)aef − 2Faep − 2aefaep − a2ep − a2ef
F 2 + 2PF + 2Paef + 2Paep − 2aefaep − a2ep − a2ef

Adding one to the formula, we obtain

2PF + (6P + 2F)aef + (2P − 2F)aep − 4aefaep − 2a2ep − 2a2ef
F 2 + 2PF + 2Paef + 2Paep − 2aefaep − a2ep − a2ef

Taking the Rogot1 formula, 1
2

(
aef

2aef+anf+aep
+ anp

2anp+anf+aep

)
and simplifying the formula,

we obtain the former result divided by two.

Proposition 5.2.5. The Ochiai, Ochiai3, and CorRatio metrics are equivalent for ranking.

Proof. The Ochiai metric equals aef√
totF (aef+aep)

; by squaring the metric, we obtain Ochiai3.

The CorRatio metric shares an identical formula to Ochiai3; hence equivalent.

Proposition 5.2.6. The Tarantula, CBI Increase (CBI Inc), qe, and Coef metrics are equiv-

alent to aef
aep

for ranking.

Proof. The Tarantula metric is equivalent to aef/F

aef/F+aep/P
. Applying monotonically in-

creasing function F
P ((1/x)−1) , we obtain aef

aep
. CBI Increase is equal to aef

aef+aep
− F

T
. We

apply monotonically increasing function 1/(1/(x + F
T

) − 1) to obtain aef
aep

. qe is equiva-
lent to aef

aef+aep
[Abreu et al., 2007]. Applying monotonically increasing function x

1−x , we
obtain aef

aep
. The Coef metric shares an identical formula to qe; hence, equivalent.

The proposition for Tarantula and CBI Increase metrics is of particular interest for two
reasons. First, it illustrates another advantage of our more formal approach. Our initial
implementation of the CBI Increase (CBI Inc) metric had slightly different performance to
Tarantula. Having proved that they should be identical, the code was examined and a bug

92

5.2. SPECTRA METRICS AND THEIR EQUIVALENCES

in our implementation of the CBI Increase (CBI Inc) was found1. Second, the Tarantula
metric does not perform particularly well — there are significantly better metrics. This
suggests that there is a strong possibility of improving the performance of the CBI system
[Liblit et al., 2005] by using a better metric. Alternatively, the role of Context may be
particularly important and this could influence the way data on statement executions are
best used for diagnosis. In our recent study, we found that Context played an important
role in improving the performance of the bug localization, using a predicate-based metric
known as FPC (Failure plus Context), as compared to using the CBI Increase (CBI
Inc) [Naish et al., 2010].

Both Tarantula and qe metrics have been empirically evaluated on the benchmark of
the Siemens Test Suite and the subset of the Unix Test Suite [Lee et al., 2009a] and
found to produce the same ranking. Error detection accuracy, qe, has been proposed by
Abreu et al. to determine the accuracy of the bug being detected, given that the bug is
known [Abreu et al., 2007]. qe is later known as bug consistency; details are deferred to
Chapter 6.

Proposition 5.2.7. The Braun, Interest, and Forbes metrics are equivalent for ranking.

Proof. The Interest metric equals aef
(aef+aep)F

. Simplifying the latter formula and multiply-

ing the formula with F, we obtain the Braun metric. The Forbes metric equals Taef
(aef+aep)F

.
Multiplying the metric with the constant of 1

T
is equivalent to the Interest metric.

Proposition 5.2.8. The Russell and Rao, Simpson, and Wong1 metrics are equivalent for

ranking, and, if there is a single bug, they result in the same ranking for the bug as the

Binary metric.

Proof. The Russell and Rao metric equals aef/T ; multiplying the latter formula by T

gives aef (which is Wong1). This is maximised for exactly those statements that are
executed in all fail tests. There is at least one such statement, the buggy one, if there is
a single bug and at least one fail test; if there are no fail tests all statements are ranked
equally for all these metrics. The statements that are executed in all fail tests have anf = 0,
and thus also maximise the Binary metric. So the same set of statements is maximally
ranked in these metrics and includes the bug, if there is a single bug. The Simpson metric
equals aef/F ; multiplying by F gives aef (which is Wong1).

Note the non-maximal rankings using Binary can differ from those using Russell and
Rao, Simpson, and Wong1. For multiple-bug programs, the performance may differ. Our
empirical results in Section 5.8 shows identical results for these metrics. O and Op have
a similar relationship, but can give multiple distinct ranks for statements with anf = 0:

1A special case to avoid division by zero returned a value that was not minimal in all cases.

93

Chapter 5. A MODEL FOR SPECTRA-BASED SOFTWARE FAULT DIAGNOSIS

Proposition 5.2.9. O and Op give the same rankings to all statements with anf = 0,

which includes the bug if there is a single bug.

Proof. If anf = 0, O is anp and Op is aef − aep/(P + 1). Also, both metrics return higher
values than for any statement with anf > 0. Applying monotonically increasing function
aef − (P − x)/(P + 1) to O gives Op.

5.3 Model Program

We introduce a model program in order to gain insights into the different execution paths
of a typical program. We can apply the spectra metrics (see Table 2.3) on the model
program to compare bug localization performance of these metrics. The model program
also enables us to understand and develop optimal metrics for single bug programs.

We introduce a simple model program in Figure 5.1. The figure gives the code for
the If-Then-Else-2 (ITE2) program segment, which we use as a model for single-bug
programs. It is assumed that functions s1() and s2() exist and may have side effects
such as assignments to variables whereas Boolean functions t1(), t2(), and t3()

return Booleans but have no side effects. The intention is that ITE2 should assign True
to variable x. There are also intentions for the individual statements and these are met by
the program except for S4, which may sometimes assign False instead of True to x.

if (t1())
s1(); /* S1 */

else
s2(); /* S2 */

if (t2())
x = True; /* S3 */

else
x = t3(); /* S4 - BUG */

Figure 5.1: Program Segment If-Then-Else-2 (ITE2)

We use t3() to model the fact that the buggy code may sometimes behave correctly
and sometimes trigger a failure. t2() (and the second if-then-else) is used to model the
fact that the buggy code may not be executed in every run. We use t1() to model the
fact that spectra metrics (and debugging in general) must cope with noise. It may be that
the execution of S1, for example, is strongly correlated with fail test runs. This may be
due to logical dependencies within the program or the particular selection of test data.
The signal we want to detect is associated with t2() — the buggy statement is executed
if and only if t2() returns False. The signal is essentially attenuated by t3() — if

94

5.4. PERFORMANCE EVALUATION USING MULTISETS OF EXECUTION PATHS

t3() almost always returns True, there is little signal we can detect (and its more likely
that the noise will be greater, leading to S1 or S2 being ranked top).

Our intuition suggests that having noise and an attenuated signal are the two most
important features we need in a model, and ITE2 is the simplest model program we can
think of that has these features. Despite its simplicity, this model has been very useful in
evaluating, understanding, and improving the performance of spectral diagnosis methods,
as our later results show. There are many ways the model could be extended, for example,
by:

• having more bugs,

• having more sources of noise,

• simulating loops, so both branches of an if-then-else can be executed in a single
test, and

• having statements that are executed more or less often over typical sets of tests (in
ITE2, all statements are executed in half the tests, on average).

The way we evaluate performance of metrics (described in the next section) is independent
of the model. We have experimented with all these extensions and report some general
observations here.

5.4 Performance Evaluation using Multisets of Execution
Paths

We use the term execution path to refer to the set of statements executed for a particular
test, along with the result of the test. A single test case determines the execution path (for
deterministic programs at least). A set of test cases determines a multiset of execution
paths (two or more distinct test cases might result in the same execution path), which
determines the aij values for each statement and the performance of a given metric for
that set of tests cases. We abstract away the details of test cases (and sidestep the issue
of nondeterminism) and focus on multisets of execution paths. A typical metric ranks the
buggy statement highly for some multisets of execution paths but not for others. Ideally,
we would like a test set to give an even coverage of all execution paths but in reality, test
sets are often far from this ideal. Our methodology for evaluating the overall performance
of a metric uses the number of tests as a parameter. Given a number of tests T , we
determine the average performance over all possible multisets of T execution paths. Table
5.1 and Table 5.2 in pages 111–112 give results from our model for each metric for various

95

Chapter 5. A MODEL FOR SPECTRA-BASED SOFTWARE FAULT DIAGNOSIS

if (t3()) x = True; else x = False; /* S4 - BUG */

Figure 5.2: Coding of S4 with Two Explicit Paths

values of T . We choose between 2 and 1000. When the number of possible multisets is
not too large, we generate each distinct multiset once to evaluate the overall performance
of each metric. For larger numbers of multisets, we compute estimates by randomly
sampling multisets from a uniform distribution.

5.4.1 Generating Multisets of Execution Paths

There is a naive way of generating a random multiset of execution paths — simply exe-
cute the model program the required number of times with each predicate being a random
choice of true or false. However, this leads to extremely skewed distributions. For ex-
ample, consider a program with just two paths; one correct and one that always results
in failure. With 500 tests, there are 501 possible multisets of execution paths (with zero
up to 500 fail tests). However, the probability of generating the one with 500 fail tests
is 1/2500, rather than 1/501. It is hard to determine the most realistic distribution, but
a uniform distribution is the simplest assumption we can make conceptually (though not
the simplest to implement). Other distributions can easily be generated from a uniform
distribution, or sub-sets of the total space can be examined (which is what we report in our
experiments). Even without refining the distribution, the results obtained from our model
fit reasonably well with empirical results.

To distinguish between fail and pass tests, the two possible return values of t3()
in ITE2 are treated as two separate execution paths. This is equivalent to re-coding
statement S4 as in Figure 5.2. For the first if-then-else of ITE2, there are two possible
paths: S1 and S2. For the second if-then-else, there are three possible paths: S3 (always
returning True), S4 returning True and S4 returning False. This gives a total of six
execution paths of interest for the whole program segment. However, S4 is used in twice
as many paths as S3. To remove this bias, we also treat S3 as having two paths (both
correct), giving a total of four possible paths for the second if-then-else and eight paths
overall. We use this model in our experiments and refer to the model as ITE28. Increasing
the number of execution paths can greatly increase the number of multisets. Since we use
random sampling, though it has relatively little effect on our ability to evaluate metrics.

The system we use to conduct our experiments supports a high level definition of the
model program code including the number and placement of buggy statements, program
points that lead to test case failure and duplication of execution paths. This has allowed
us to experiment with a wide range of other models. A small Prolog program converts

96

5.4. PERFORMANCE EVALUATION USING MULTISETS OF EXECUTION PATHS

#define MODEL_NAME "ite2_8"
#define MODEL_CODE "\

if 1/2=1+1 then \
S1\

else \
S2\

if 2/3=2+2 then \
S3\

else \
S4\
if 1/2=1+1 then \

fail\
else "

#define NBUGS 1
#define NSTATS 4
#define NPATHS 8
#define NFAILPATHS 2
#define INIT_P_RESULT {1, 1, 0, 0, 0, 0, 0, 0}
#define INIT_P_USED {1,0,1,0,1,0,0,1,1,0,1,0,1,0,0,1,\
0,1,1,0,0,1,1,0,0,1,0,1,0,1,0,1}
#define PATH_COUNTS \
totfails = 0+nt[0]+nt[1]; \
totpasses = ntests - totfails; \
fails[1] = 0+nt[0]; \
passes[1] = 0+nt[2]+nt[4]+nt[5]; \
fails[2] = 0+nt[1]; \
passes[2] = 0+nt[3]+nt[6]+nt[7]; \
fails[3] = 0; \
passes[3] = 0+nt[4]+nt[5]+nt[6]+nt[7]; \
fails[4] = 0+nt[0]+nt[1]; \
passes[4] = 0+nt[2]+nt[3]; \

Figure 5.3: C Macros for the ITE28 Model Program

the model definition to C macros. The macros are included in a C program that generates
multisets and computes the performance of different metrics.

A Prolog program is used to produce C macros for the ITE28 model program shown
in Figure 5.3. The code defines the data structure of the model program with the number
of paths taken for each statement. These statements are represented with statement 1
as S1, statement 2 as S2, statement 3 as S3, and statement 4 as S4 (which is the bug).
These macros also define possible paths in each if-then-else, for example, the first if-
then-else is defined by 1/2 = 1 + 1. 1/2 refers to half of the time the S1 and S2 is
executed respectively. 1 + 1 refers to one possible path taken each for S1 and S2. The

97

Chapter 5. A MODEL FOR SPECTRA-BASED SOFTWARE FAULT DIAGNOSIS

code also defines the number of bug(s) in the model program, number of statements, the
total number of execution paths, and the statement that is buggy. The total number of
fail paths for the model program is defined as NFAILPATHS. INIT P RESULT

represents the paths of the model program that pass (0) or fail (1). INIT P USED

defines the paths executing each statement in binary form. 1 indicates the statement has
been executed by a particular path. 0 indicates a particular path does not execute the
statement. PATH COUNTS consists of several assignment statements for the total pass
and fail test cases and the passes and fails for the respective statements of the program.
Model programs can be defined with different data structures (such as nested if-then else),
number of paths that pass or fail, number of statements, and number of bugs. Based on this
information, model programs can be generated automatically using the Prolog program.

Given p (≥ 1) execution paths in the program (8 for ITE28) and T (≥ 0) tests, the
number of distinct multisets of execution paths, f(T, p), can be determined as follows. A
multiset can be represented as a sequence of natural numbers of length p (the execution
count for each path) that sum to T . If T = 0 or p = 1, only one multiset is possible.
In general, the first number can be anything from 0 to T , and the rest of the sequence is
length p− 1, so we can use the recurrence:

f(T, p) =
T∑
i=0

f(i, p− 1)

The problem is equivalent to the more classical “balls and pins” or “books and book-
ends” problems (the number of ways T books can be partitioned on a shelf using p − 1

bookends) and there are several equivalent recurrences. The solution is the Binomial
numbers (also known as Pascal’s triangle) — f(T, p) = C(T + p− 1, T) where

C(n, k) =
n!

k!(n− k)!

We use a bijection between integers in the range 1 to f(T, p) and sequences of p
integers that sum to T . We repeatedly generate a random number in this range (or generate
each number once if the range is small enough) and map it to a sequence of path counts
which represents a multiset.

5.4.2 Using Top-rank-bug Score to Evaluate Performance

For each sequence (multiset), the aij are determined. Suppose M is a spectra metric, X is
a multiset of execution paths, and the spectra metric is evaluated for each statement. m1,
m2,m3, andm4 areM applied to the aij tuples corresponding toX for statements S1, S2,
S3, and S4, respectively. We determine the top-rank-bug score for that multiset (we use

98

5.5. OPTIMAL RANKING

this scoring function for ITE28; the details of this function can be found in Subsection
4.4.2 of Chapter 4).

For example, suppose T = 5 and there is one execution of S1;S4 that fails, two
executions of S2;S4 that pass, and two executions of S1;S3 that pass. For S1 and S4,
〈anp, anf , aep, aef〉 would be 〈2, 0, 2, 1〉 and for S2 and S3 it would be 〈2, 1, 2, 0〉. Using
the Jaccard metric, m1, m2, m3, and m4 would be 1/3, 0, 0, and 1/3, respectively. S4 (the
bug) and S1 would be ranked equal-highest. Using the top-rank-bug score (Subsection
4.4.2), the score would be 1/2.

Definition 14 (Total score for spectra metric M with T tests). The total score for spectra

metric M with test set size T is the sum of the top-rank-bug scores for M with paths X ,

over all possible multisets X of T execution paths that contain at least one fail path.

In our experiments, we report percentage scores: the total top-rank-bug score for all
multisets examined divided by the number of multisets, times 100. We give percentage
scores for multisets of paths with certain characteristics (such as particular numbers of
fail cases). Multisets of paths without these characteristics are simply ignored when com-
puting percentage scores. We always ignore multisets with no fail tests. For example,
with a single test, there are just eight multisets of paths. Six of these have no fail tests
and are ignored. The remaining two multisets have a single execution path containing S1

or S2 followed by (the failing path through) S4. For both of these multisets, the Jaccard
metric (and other reasonable metrics) gives a score of 0.5. The percentage score is thus
(0.5 + 0.5)/2× 100 = 50%.

5.5 Optimal Ranking

For any given multiset of paths, metrics exist that rank S4 top (or equal top) but no sin-
gle metric exists that ranks S4 top for all multisets. Thus no metric is best in all cases.
However, it is possible to have metrics that are optimal in the sense that they maximise
the total score over all possible multisets.

Definition 15 (Optimal spectra metric for T tests). A spectra metric is optimal for test set

size T if no other spectra metric has a higher total score with T tests.

This definition is most appropriate if we assume a uniform distribution, since each
multiset of paths is considered equally. It would be possible to generalise the definition
so each multiset has a weight, which is multiplied by the score for that multiset. Ignoring
some multisets, as we do in our experiments, is equivalent to having a weight of zero for
those multisets and a weight of one for other multisets. Note that a metric that is optimal

99

Chapter 5. A MODEL FOR SPECTRA-BASED SOFTWARE FAULT DIAGNOSIS

for a uniform distribution (equal weights) may not be optimal for other distributions, but
may be close to optimal.

5.5.1 Optimal Spectra Metric O

Definition 16 shows our proposed spectra metric O, and we prove that it is optimal (for
ITE28) for all numbers of tests.

Definition 16 (Spectra metric O).

O(anp, anf , aep, aef) =

{
−1 if anf > 0

anp otherwise

Superficially this is a rather odd metric as it only uses anf and anp, which appear to
be the least important variables in most of the other metrics. However, for single bug
programs such as ITE28, anf is always zero for the buggy statement. Any statement
with a non-zero anf can be given the lowest rank. Furthermore, any two statements that
have anf = 0 must have the same aef value since anf +aef is the total number of fail tests
(which is the same for all statements). Similarly, anp+aep is the total number of pass tests,
so there is only one non-trivial degree of freedom. There is no a priori reason to suppose
a buggy statement is executed more or less often than a correct statement. However, since
all fail tests use the buggy statement, aep will tend to be smaller for the buggy statement,
so anp will tend to be higher.

Proposition 5.5.1. For single bug programs, increasing the value returned by a spectra

metric when anf > 0 never increases the total score for the metric.

Proof. Since there is a single bug, anf is greater than 0 only for non-buggy statements.
Increasing the rank of a non-buggy statement never increases the score for a multiset, so
the total score is never increased.

The key lemma below shows that O cannot be improved by making a minimal change
to the ranking it produces. O ranks a statement with anf = 0 and anp = x lower than a
statement with anf = 0 and anp = x + 1, and no statements are ranked between these.
We consider the effect of swapping the ranks of two such statements, or making the ranks
equal.

Lemma 5.5.2. Suppose O′ and O′′ are spectra metrics such that for a single x

O′(anp, anf , aep, aef) =

{
x+ 1 if anp = x and anf = 0

O(anp, anf , aep, aef) otherwise

100

5.5. OPTIMAL RANKING

O′′(anp, anf , aep, aef) =

{
x+ 1.5 if anp = x and anf = 0

O(anp, anf , aep, aef) otherwise

For ITE28, O has a total score at least as high as O′ and O′′ for all test set sizes T .

Proof. For O′′ the ranking of statements where anp = x and anp = x + 1 is swapped
compared to the ranking using O, and for O′ they have equal rank; the relative rank of all
other pairs of statements is the same as that using O. Since S3 is not executed in the fail
test(s) it has a metric value of -1, which is strictly less than the value for S4 and will not
affect the score for any multiset. Similarly, at least one of S1 and S2 have a score of -1
for each multiset: whenever S1 is used S2 is not used and vice versa, so they can’t both
be executed in (all) the fail test(s). We can never have a tie between S1 and S2 unless
both have the value of -1.

Thus O has a total score greater or equal to that of O′ and O′′ if and only if the
number of multisets such that 〈anp, anf〉 = 〈x + 1, 0〉 for S4 and 〈anp, anf〉 = 〈x, 0〉 for
S1 or S2 (whichever has the larger score) is greater or equal to the number of multisets
such that 〈anp, anf〉 = 〈x + 1, 0〉 for S1 or S2 (whichever has the larger score) and
〈anp, anf〉 = 〈x, 0〉 for S4. Due to the symmetry between S1 and S2, we can simply take
the numbers of multisets where S1 has the larger score, and double it. All these multisets
have anf = 0 for S1 and S4, so we leave this constraint implicit below.

The six pass paths in the ITE28 can be classified as follows: two include S1 but not
S4, one include S4 but not S1, two include neither S4 or S1 and one include S4 and S1

(due to symmetry the same holds if we replace S1 by S2 here). Let b be the number of
tests using neither S4 or S1 (it contributes to the anp total for both since anp is the number
of pass tests that do not execute the statement). Also, let y = x−b and z = T−2y−b−1.

The number of multisets such that anp = x + 1 for S4 and anp = x for S1 is the
number of multisets where there are y+ 1 paths that contribute only to anp for S4, y paths
that contribute only to anp for S1, b paths that contribute to both, and the remaining z
paths that contribute to neither. The number of distinct paths in these categories in ITE28

are two, one, two, and one, respectively (as noted above), and b can range between zero
and bT/2c so the number of multisets is

bT/2c∑
b=0

f(y + 1, 2)f(y, 1)f(b, 2)f(z, 1)

Similarly for S2. By the same reasoning, the number of multisets such that anp = x+1

for S1 and anp = x for S4 is

bT/2c∑
b=0

f(y, 2)f(y + 1, 1)f(b, 2)f(z, 1)

101

Chapter 5. A MODEL FOR SPECTRA-BASED SOFTWARE FAULT DIAGNOSIS

Similarly for S2. It is sufficient to show that f(y + 1, 2)f(y, 1) ≥ f(y, 2)f(y + 1, 1)

in all cases. Using definitions of f and C and simplifying we obtain

C(y + 2, y + 1)C(y, y) ≥ C(y + 1, y)C(y + 1, y + 1)

C(y + 2, y + 1) ≥ C(y + 1, y)

y + 2 ≥ y + 1

which is true.

Theorem 5.5.3 (Optimality of O). Spectra metric O is optimal with respect to ITE28 for

all test set sizes.

Proof. Suppose some spectra metric O′ differs from O. Due to Proposition 5.5.1, any
difference in ranking for tuples such that anf > 0 cannot make O′ better than O. For
tuples in which anf = 0, aef is the number of fail tests, which is the same for all tuples,
and anp+aep is the number of pass tests. Thus, the number of distinct values for the tuples
is the number of distinct values for anp, and O′ is equivalent to a function that maps these
tuples to the range of anp values. O can be modified to obtain an equivalent ranking in a
finite number of steps by swapping the ranking of adjacent values or making them equal.
But by Lemma 5.5.2, none of these steps would increase the total score.

5.5.2 Other Optimal Spectra Metrics

The proofs above can be generalised to show that a spectra metricM is optimal for ITE28

if, given a fixed number of pass and fail tests,

1. when anf = 0, M is increasing in anp or (equivalently) decreasing in aep (the key
requirement for Lemma 5.5.2), and

2. when anf > 0, the value returned is always less than any value returned when
anf = 0 (allowing use of Proposition 5.5.1).

O is the simplest optimal metric from an information-theoretic perspective as it only gives
different ranks when necessary. Metrics can also be considered from a geometrical per-
spective — each metric defines a surface in three dimensions (the four aij values give just
two degrees of freedom if we fix the number of pass and fail tests). Definition 17 shows
our proposed Op metric, which defines a very simple surface — a plane that will be dis-
cussed later in Section 5.6. It is optimal for ITE28 since aef is maximal when anf = 0

and aep varies from 0 to at most the number of pass tests, so the fractional component is
strictly less than one.

102

5.5. OPTIMAL RANKING

Definition 17 (Spectra metric Op).

Op(anp, anf , aep, aef) = aef −
aep
P + 1

where P is the number of pass test cases.

Op has the advantage of performing more rationally thanO for multiple-bug programs.
If there is more than one bug, anf can be non-zero for all statements, leading to O being
-1 in all cases. In contrast, Op ranks statements first on their aef value and even if this
is not maximal, second on their aep value. Op and other optimal metrics can be helpful
in the comparison of metrics (see Subsection 5.7.5). We also use Op in our empirical
evaluation of metrics (to aid comparison with other studies, some multiple-bug programs
are used). In our experiments, we also evaluate the performance of a simplified version
of O, called Binary, which ignores anp and allows us to see the relative importance of the
two components of O. We introduce a new metric by modifying the denominator of the
Jaccard metric. We use the cube root of the existing denominator of the Jaccard metric.
Gonzalez has also previously modified the denominator of the Jaccard metric to create
the Zoltar metric [A.Gonzalez, 2007]. We also introduce Ample2, which is a variation
of the Ample metric that avoids taking the absolute value. A variation of the Wong3
metric, Wong3′, is introduced, where the latter has a special case for statements that are
not executed in any test case (motivated by our empirical studies). The definitions of these
metrics are shown in Table 2.3.

Although we have formally proved the optimality for ITE28 only, O and Op are
optimal for a much broader class of single bug programs. Proposition 5.5.1 holds for all
single bug programs and the combinatorial argument in the proof of Lemma 5.5.2 can
be generalised. With larger numbers of paths and/or sources of “noise”, it is typically
sufficient to show ∀y f(y + 1, j + k)f(y, j) ≥ f(y, j + k)f(y + 1, j), where j and k are
positive integers dependent on the number of paths through the program with particular
characteristics.

Recently, Debroy et al. propose a grouping approach (details of their study can be
found in Chapter 2) which is the same as the Op metric [Debroy et al., 2010]. In their
study, Debroy et al. group statements with identical aef before sorting the statements
within the groups of aef .

Proposition 5.5.4. Evaluating statements using the Tarantula metric [Jones and Harrold,

2005] and the grouping approach [Debroy et al., 2010] is equivalent to using Op metric.

Proof. In the Tarantula metric, aef and aep are part of the metric’s numerator and denom-
inator. The grouping approach groups the evaluated statements of the Tarantula metric

103

Chapter 5. A MODEL FOR SPECTRA-BASED SOFTWARE FAULT DIAGNOSIS

(in descending order) based on the aef [Debroy et al., 2010]. This is essentially giving
primary importance to the aef value. Sorting the statements within the groups of aef in the
grouping approach means giving secondary importance to the -aep value. Therefore, the
grouping approach [Debroy et al., 2010] is equivalent to the Op metric. Similar principles
of importance can potentially be applied for other spectra metrics, such as the Jaccard and
Ochiai metrics.

Xie et al. also propose another grouping approach that helps improve the bug localiza-
tion performance of single bug programs using several spectra metrics [Xie et al., 2010].
Statements that are not executed by any fail test cases (aef=0) are assigned a minimum
metric value and ultimately ranked on the bottom of the ranking. Xie et al. add the metric
value of one to all the statements executed by at least one fail test case. They observe that
their grouping approach helps improve bug localization performance using the optimal
metric, Op. The fiddling of the metric values of statements should not affect the perfor-
mance of bug localization using the Op metric. This is due to the fact that the Op metric
ranks primarily on aef , and the buggy statement of single bug programs is executed by
all fail test cases. Any changes of the metric value (by adding 1) would not change the
ranking of the buggy statement using the Op metric 2.

5.6 Insights of Spectra Metrics

In the previous section, we have proven that O and Op are optimal metrics for single
bug programs. In this section, we attempt to gain insights and understand several spectra
metrics including O, Op, Zoltar, Wong3, Wong4, Kulczynski2, Tarantula, and Rogers.
We show the plot of these metrics’ MetV alue (z-axis) with respect to aef (y-axis) and aep
(x-axis). A range of 0 to 100 for aef and aep is used.

Figure 5.4 and Figure 5.5 show the surface of the O and Op metrics. Both surfaces
peak on the z-axis (MetV alue) when the aef value is high. When the aef value is at the
maximum (100 in this case), the MetV alue is maximised. As O metric is defined in two
cases (see Definition 16), we observe a flat surface for O metric when the aef value is
not at the maximum. For Op metric, the surface slants lower as the aef value is not at the
maximum. While the aef value is at the maximum and the aep value increases, the surface
of Op metric slants lower (MetV alue slightly drops) but it is still higher than any other
points on the surface.

2We contacted the author for further clarification of their findings. Their experimental results include
programs that encountered runtime errors (segmentation fault) when gcov gathers the coverage. Therefore,
the buggy statements in these programs have an aef of 0. In our study, we obtain the coverage of these
programs (without runtime errors) from other researchers who use Valgrind [Nethercote and Seward, 2007].

104

5.6. INSIGHTS OF SPECTRA METRICS

0
20

40
60

80
100

0

20

40

60

80

100
−20

0

20

40

60

80

100

a
ep

Surface for O metric with respect to MetValue, a
ef

 and a
ep

a
ef

MetValue

Figure 5.4: Surface for O metric

0
20

40
60

80
100

0
20

40
60

80
100
−20

0

20

40

60

80

100

a
ep

Surface for Op metric with respect to MetValue, a
ef

 and a
ep

a
ef

MetValue

Figure 5.5: Surface for Op metric

105

Chapter 5. A MODEL FOR SPECTRA-BASED SOFTWARE FAULT DIAGNOSIS

0
20

40
60

80
100

0

20

40

60

80

100
0

0.2

0.4

0.6

0.8

1

a
ep

Surface for Zoltar metric with respect to MetValue, a
ef

 and a
ep

a
ef

MetValue

Figure 5.6: Surface for Zoltar metric

0
20

40
60

80
100

0

20

40

60

80

100
−20

0

20

40

60

80

100

a
ep

Surface for Wong3 metric with respect to MetValue, a
ef

 and a
ep

a
ef

MetValue

Figure 5.7: Surface for Wong3 metric

106

5.6. INSIGHTS OF SPECTRA METRICS

If we observe another metric, Zoltar (Figure 5.6), the bottom surface is flat when the
aef is 0. For other cases, the surface elevates from the bottom. The surface peaks on the
z-axis (MetV alue) when the aef value is high and the aep value is low.

For the Wong3 metric of Figure 5.7, we observe a surface that is very similar to the Op

metric. However, the surface of this metric lifts slightly higher along the y-axis, aef when
the x-axis, aep is at 0. The Wong4 metric shown in Figure 5.8 indicates an interesting
surface that peaks along the y-axis, aef , when the x-axis, aep, is at 0. When the y-axis, aef ,
is at 0, the surface skews downward, creating a steep slope. It starts to create an upward
slope in the surface when the y-axis, aef , is at 5.

0
20

40
60

80
100

0

20

40

60

80

100
−1

0

1

2

3

4

a
ep

Surface for Wong4 metric with respect to MetValue, a
ef

 and a
ep

a
ef

MetValue

Figure 5.8: Surface for Wong4 metric

The Kulczynski2 metric of Figure 5.9 shows a very similar surface to the Wong3 and
Op metrics. However, the surface slants lower with a curve peak at 5 on the y-axis, aef ,
before converging to the metric value, MetV alue, of 0 (aef of 0). Figure 5.10 shows the
surface for the Tarantula metric. This surface is quite similar to Kulczynski2 except that
the peak of the surface is at 1 on the y-axis, aef of 1 when the x-axis, aep, is 0. This is due
to the design of the Tarantula metric where the numerator consists of aef and part of the
denominator consists of aep. Another difference between this surface and the surface for
Kulczynski2 is that the former surface slants lower as the aep increases and the aef is at
the maximum (100).

107

Chapter 5. A MODEL FOR SPECTRA-BASED SOFTWARE FAULT DIAGNOSIS

0
20

40
60

80
100

0

20

40

60

80

100
0

0.2

0.4

0.6

0.8

1

a
ep

Surface for Kulczynski2 metric with respect to MetValue, a
ef

 and a
ep

a
ef

MetValue

Figure 5.9: Surface for Kulczynski2 metric

0
20

40
60

80
100

0

20

40

60

80

100
0

0.2

0.4

0.6

0.8

1

a
ep

Surface for Tarantula metric with respect to MetValue, a
ef

 and a
ep

a
ef

MetValue

Figure 5.10: Surface for Tarantula metric

108

5.7. RESULTS USING MODEL PROGRAM

Figure 5.11 shows the surface for the Rogers metric, which slants lower than other
metrics’ surfaces. The surfaces for other metrics can be found in Appendix B.

0
20

40
60

80
100

0

20

40

60

80

100
0

0.2

0.4

0.6

0.8

1

a
ep

Surface for Rogers metric with respect to MetValue, a
ef

 and a
ep

a
ef

MetValue

Figure 5.11: Surface for Rogers metric

In conclusion, all the surfaces of these metrics share an identical characteristic. The
points on these surfaces peak when the aef and aep are at the maximum and minimum
points respectively (all the fail test cases execute the particular statement but no pass test
cases execute the statement).

5.7 Results Using Model Program

There are several reasons why our approach of modelling the diagnosis problem using a
simple program such as ITE28 is beneficial. First, it is simple to run many experiments
where various parameters are controlled precisely. The vagaries, biases, restrictions and
cost of constructing or gathering real code and test suites are avoided. Such experiments
can inspire hypotheses about the behaviour of various metrics etc., which can then be
investigated further. For example, we have proved the equivalence of various metrics
having noticed they produced the same results for all test suite sizes using our model —
see Subsection 5.2.1. Second, if some result holds for the model and all the benchmarks
we used for evaluation, say, we can be more confident it will also hold for other situations

109

Chapter 5. A MODEL FOR SPECTRA-BASED SOFTWARE FAULT DIAGNOSIS

(more than if the result holds for only one of these at least). Third, a model allows a
more analytical approach, rather than a purely empirical one. A clear example is our
development of optimal metrics.

5.7.1 Test Suite Size

We first investigate how well different spectra metrics perform with different numbers
of tests using the ITE28 model program. We give the percentage score for each of the
metrics discussed earlier for a variety of test suite sizes — see Table 5.1 and Table 5.2
respectively.

To compute these figures, we considered every multiset for up to 50 tests and sam-
pled 2.1 billion multisets for larger numbers of tests. For 50 tests, the number of distinct
multisets is around 264 million, and for 1000 tests it is around 2 × 1017. Except where
noted, we get consistent results to four decimal figures. The metrics are ordered according
to the performance for 100 tests. We use the same ordering for the subsequent tables of
results for the ITE28 model program. Several sets of metrics give the same results in all
cases (we prove they are equivalent for ranking with respect to monotonically increasing
functions – see Lemma 5.2.1 in Subsection 5.2.1). The first set (other than the O and
Op metrics, which we have already discussed) is Jaccard, Anderberg, Sneath & Sokal 2,
Sørensen-Dice, Dice, Goodman, Levandowsky, and Kulczynski1, which we shall refer to
collectively as “Jaccard”. The second is Rogers and Tanimoto, Gower1, Gower2, Simple
Matching, SokalDist, Hamann, Sneath & Sokal 1, M1, M3, Wong2, Euclid, Hamming,
NFD, Manhattan, and Lee, which we label collectively as “Rogers”. The third set, col-
lectively labelled as “Scott”, is Scott and Rogot1. The fourth set, collectively labelled as
“Ochiai” is Ochiai, Ochiai3, and CorRatio. The fifth set, labelled as “Tarantula”, is Taran-
tula, CBI Increase (CBI Inc), qe, and Coef. The sixth set, collectively labelled “Braun”,
is Braun, Interest, and Forbes. This is followed by Russell and Rao, Simpson, Wong1,
and Binary (for single-bug programs), which we shall collectively refer to as “Russell”.
Finally, the last set, collectively labelled “Pearson”, is Pearson and Phi. We shall use the
collective naming of these metrics throughout the thesis.

Due to the large number of metrics, we break down these metrics into two groups
so as to facilitate readability; Group A (see Table 5.1), and Group B (see Table 5.2).
We evaluate all these metrics using average rank percentages in Subsection 5.8.1, and
observe that not all the metrics perform well in terms of bug localization performance.
Therefore, for Group A, we choose several better performing metrics, especially those
used in the debugging area, plus a set of representative metrics of moderate performance.
The remaining metrics, which do not perform well in bug localization, are in Group B.

110

5.7. RESULTS USING MODEL PROGRAM

Table 5.1: Influence of Test Suite Size and Group A metrics on Total Score (%) for ITE28

Num. of tests 2 5 10 20 50 100 500 1000
O, Op 60.00 72.59 81.10 87.98 94.14 96.81 99.32 99.64
Wong3′ 60.00 65.74 76.38 86.86 94.07 96.81 99.32 99.64
Wong3 56.67 63.15 75.59 86.79 94.07 96.81 99.32 99.64
Zoltar 60.00 71.85 80.05 87.54 94.08 96.80 99.32 99.64
Wong4 60.00 66.30 71.85 73.23 86.80 94.55 99.22 99.59
JacCube 60.00 72.59 81.08 87.46 92.48 94.34 95.93 96.05
M2 60.00 72.59 80.99 87.37 92.42 94.31 95.89 96.03
Kulczynski2 60.00 71.85 79.90 86.34 91.79 93.93 95.80 95.97
McCon 60.00 71.85 79.90 86.34 91.79 93.93 95.80 95.97
Russell 53.33 61.11 69.57 78.79 88.91 93.83 98.64 99.30
Overlap 48.89 54.88 66.57 77.91 88.80 93.81 98.64 99.30
Ochiai 60.00 71.85 79.28 84.95 89.53 91.23 92.79 92.90
Rogot2 56.67 67.78 77.10 83.46 88.42 90.22 91.86 91.96
Pearson 48.33 67.13 76.80 83.32 88.22 90.01 91.65 91.75
AMean 48.33 67.13 76.75 83.17 88.01 89.80 91.43 91.55
Ample2 56.67 67.78 76.35 82.74 87.84 89.65 91.33 91.44
Jaccard 60.00 71.85 78.63 83.38 87.09 88.53 89.91 89.99
Tarantula 60.00 66.30 71.60 76.42 80.58 82.21 83.77 83.91
CBI Log 25.00 49.32 63.52 73.12 78.68 80.23 82.40 82.88
Ample 36.67 40.37 44.94 42.88 44.75 46.36 45.98 45.92

Table 5.2: Influence of Test Suite Size and Group B metrics on Total Score (%) for ITE28

Num. of tests 2 5 10 20 50 100 500 1000
Conviction 43.33 66.85 78.67 87.30 94.07 96.80 99.32 99.64
YuleY 48.33 67.13 78.67 87.30 94.07 96.80 99.32 99.64
YuleQ 48.33 67.13 78.67 87.30 94.07 96.80 99.29 99.54
Gower3 48.33 67.13 78.67 87.30 94.07 96.80 99.29 99.54
Confidence 53.33 61.11 69.57 78.79 88.91 93.83 98.64 99.30
AssocDice 53.33 61.11 69.57 78.79 88.91 93.83 98.64 99.30
Kappa 43.33 66.48 76.16 83.81 90.08 92.65 94.97 95.22
Fager 60.00 72.59 80.67 86.45 90.78 92.23 93.28 93.24

Continued on next page

111

Chapter 5. A MODEL FOR SPECTRA-BASED SOFTWARE FAULT DIAGNOSIS

Table 5.2 – continued from previous page
Num. of tests 2 5 10 20 50 100 500 1000

Fossum 6.67 44.26 69.96 82.64 89.41 91.35 92.84 92.93
Klosgen 46.67 44.81 54.85 67.39 82.98 90.54 97.91 98.94
Mountford 60.00 71.11 78.32 83.89 88.43 90.15 91.73 91.85
HMean 48.33 67.13 77.06 83.50 88.43 90.22 91.86 91.96
GMean 48.33 67.13 76.80 83.32 88.22 90.01 91.65 91.75
Ochiai2 48.33 67.13 75.14 80.93 85.22 86.80 88.34 88.46
Cohen 48.33 67.13 75.16 80.67 84.75 86.27 87.76 87.87
Dennis 48.33 65.28 73.25 79.37 84.15 85.90 87.53 87.66
Baroni 60.00 70.00 75.94 79.88 83.00 84.23 85.45 85.53
Certainty 33.33 54.26 66.97 75.57 81.84 83.82 85.42 85.52
Braun 60.00 66.30 71.60 76.42 80.58 82.21 83.77 83.91
Fleiss 56.67 65.93 72.54 76.70 80.07 81.39 82.76 82.85
Scott 56.67 66.67 72.39 76.46 79.64 80.87 82.17 82.27
CBI Sqrt 25.00 46.30 60.67 70.99 77.14 78.61 79.65 79.72
Rogers 56.67 63.15 67.60 71.02 73.89 75.07 76.32 76.42
CollectiveS 10.00 8.89 34.06 57.35 71.31 74.61 76.41 76.48
YuleV 26.67 52.41 64.25 68.85 72.60 73.96 75.28 75.42
AddedValue 13.33 34.44 45.65 52.75 57.77 59.50 61.19 61.31
J-Meas 33.33 28.89 29.67 31.71 34.69 35.92 37.18 37.30
Platetsky-Shapiro 46.67 39.44 33.69 29.59 26.80 25.85 25.17 25.11
Correlation 33.33 7.59 5.06 2.65 1.48 1.14 0.89 0.85

Table 5.1 shows that the optimal metrics, O and Op, perform equal to or better than
all other metrics for all the numbers of tests considered. Since more tests provide more
information, we would expect performance to increase as the number of tests grows. This
is born out in our results for all the Group A metrics except Ample. With some metrics,
such as Rogers and Tanimoto, and Jaccard metrics, the performance grows relatively slow.
With others, such as Overlap, it grows more quickly. As the number of tests increases,
the JacCube metric outperforms the Jaccard metric. Ample performs particularly poorly
for our model. This is because it always ranks S4 and S3 equally (since S4 is executed if
and only if S3 is not executed). Thus, the maximum score the Ample metric can achieve
is 0.5 rather than 1. These results are reasonably consistent with previous empirical stud-
ies comparing Ochiai, Jaccard, Tarantula, and Ample for software fault diagnosis [Abreu

112

5.7. RESULTS USING MODEL PROGRAM

et al., 2007] and Ochiai, Simple Matching, and Rogers and Tanimoto for computing ge-
netic similarity in molecular biology [Meyer et al., 2004].

Table 5.2 shows the performance for Group B metrics with respect to the different
numbers of tests. As the number of tests grow, we also observe the performance in-
creases for all the Group B metrics except Fager, Klosgen, CollectiveS, J-Meas, Platetsky-
Shapiro, and Correlation. As the number of tests grows beyond 5, by using the top-rank-
bug score, Correlation metric performs worse than the random guess of buggy statement
in the ITE28. Such observation is not observed using rank percentages measure in Table
5.12. Metrics in Table 5.2 do not show any better performance as compared to the better
performing metrics in Group A table. Except for Table 5.12, we report the result of the
Group A metrics throughout the thesis to ease readability.

5.7.2 Error Detection Accuracy

Error detection accuracy, qe [Abreu et al., 2006], is defined as the proportion of fail tests
in test cases where the buggy statement was executed (Definition 18).

Definition 18 (Error detection accuracy, qe).

qe =
aef

aef + aep

It is an indication of how consistent a bug is, though it depends on the test set used.
Some bugs always result in failure when they are executed (called deterministic bugs
in [Liblit et al., 2005]), whereas some return the correct result for nearly all tests in which
they are executed. We would expect less consistent bugs to be harder to diagnose. This
has been studied empirically [Abreu et al., 2006,Abreu et al., 2007,Lee et al., 2009a], and
we discuss extensively in Chapter 6. Here, we study briefly using our model.

Table 5.3 gives the performance of the metrics for 100 test cases and several ranges of
qe values. For this (and subsequent) tables, we use strict inequality for the lower bound
and non-strict for the upper bound. For example, 0.9–1.0 means 0.9 < qe ≤ 1.0. We
generate multisets of paths as before, and for each one, we determine the qe value. The
second row of the tables gives the percentage of multisets for which the qe value is in the
range; this peaks around 0.5. Multisets where there are no fail tests are not in any of the
ranges, so the total percentage is slightly less than 100. The metrics in Table 5.3 are sorted
according to the qe range, 0.2–0.5, as our empirical benchmarks in Section 5.8 have an
average qe value for all benchmark programs of approximately 0.3796.

113

Chapter 5. A MODEL FOR SPECTRA-BASED SOFTWARE FAULT DIAGNOSIS

Table 5.3: Influence of Error Detection Accuracy, qe, with 100 tests for ITE28

qe range 0.00-0.05 0.05-0.10 0.1-0.2 0.2-0.5 0.5-0.9 0.9-1.0
% of cases 1.06 2.48 8.03 38.91 45.38 3.77
O, Op 65.47 83.12 91.09 96.68 99.16 99.94
Wong3′ 65.45 83.11 91.08 96.67 99.15 99.93
Wong3 65.45 83.11 91.08 96.67 99.15 99.93
Zoltar 65.47 83.11 91.08 96.67 99.15 99.94
Wong4 48.09 46.04 82.96 96.23 98.57 99.37
Russell 59.50 76.59 86.68 93.68 96.62 97.33
Overlap 59.49 76.59 86.67 93.67 96.60 97.24
JacCube 64.69 79.68 85.91 92.86 98.19 99.93
M2 65.05 80.35 86.38 92.79 98.04 99.93
McCon 65.44 82.59 88.58 92.28 97.14 99.90
Kulczynski2 65.44 82.59 88.57 92.28 97.14 99.90
Ochiai 63.09 75.64 80.74 88.34 96.48 99.90
Rogot2 62.34 74.39 79.20 86.80 95.94 99.89
Pearson 61.98 73.80 78.72 86.59 95.79 99.88
Ample2 62.48 74.70 79.61 86.50 94.92 99.74
AMean 61.61 73.20 78.23 86.37 95.64 99.87
Jaccard 58.59 67.83 73.28 84.41 95.77 99.90
CBI Log 40.88 63.47 69.27 77.04 85.90 92.25
Tarantula 58.05 65.97 69.29 76.90 89.27 98.82
Ample 31.42 39.05 39.73 44.57 49.47 51.99

The performance of all metrics in the table significantly increases as qe increases.
Although our optimality result does not apply to limited qe ranges, the optimal metrics
perform better than all other metrics in all the cases observed. The margin between the
best metrics and poorer ones is greatest for small qe values. There are a few notable
differences in relative performance compared with Table 5.1. First, despite good overall
performance, Overlap and Russell perform relatively poor for very low and very high qe
values. Second, for low qe, Ample2 performs relatively well, and Kulczynski2 performs
better than M2.

114

5.7. RESULTS USING MODEL PROGRAM

5.7.3 The Number of Fail Tests

The number of fail tests can also affects diagnosis performance, which is what we inves-
tigate next. Table 5.4 gives the performance of the metrics with 100 test cases and various
ranges for the proportion of tests that failed. Due to the very small percentage of multi-
sets, figures in the last column may be inaccurate in the last two digits. The metrics in
the Table 5.4 are sorted according to the smallest proportion of fail tests range, 0.1–0.2,
as our empirical benchmark in Section 5.8 has an average fail proportion value for all the
benchmark programs of approximately 0.1980.

Table 5.4: Influence of Proportion of Fail Tests with 100 tests for ITE28

Failure range 0.00-0.05 0.05-0.10 0.1-0.2 0.2-0.5 0.5-0.9 0.9-1.0
% of cases 6.25 11.02 26.54 49.26 6.55 0.002
O, Op 86.86 94.24 96.79 98.36 99.11 99.41
Wong3′ 86.85 94.23 96.79 98.35 99.10 99.11
Wong3 86.85 94.23 96.79 98.35 99.10 99.11
Zoltar 86.86 94.23 96.79 98.35 99.09 99.01
Wong4 66.87 89.23 96.48 97.84 97.88 90.79
McCon 86.76 93.18 94.16 94.67 96.07 98.42
Kulczynski2 86.76 93.18 94.15 94.67 96.07 98.42
M2 86.34 92.13 93.93 95.65 97.42 99.21
Russell 74.36 88.76 93.76 96.82 98.31 98.51
Overlap 74.36 88.76 93.76 96.80 98.23 94.36
JacCube 85.90 91.61 93.76 95.94 97.86 99.21
Ochiai 84.30 88.74 90.45 92.65 95.46 98.42
Ample2 84.58 88.95 89.96 90.38 90.10 85.54
Rogot2 84.25 88.27 89.48 91.37 94.48 96.24
Pearson 83.64 87.80 89.34 91.28 93.85 95.64
AMean 83.04 87.34 89.21 91.18 93.27 94.65
Jaccard 80.80 84.43 86.86 90.61 94.85 98.42
CBI Log 75.60 82.47 82.95 79.72 74.90 69.70
Tarantula 79.97 82.14 82.54 82.53 81.80 75.64
Ample 43.92 44.51 46.59 47.08 46.24 50.79

Overall, these results show patterns for the top five metrics are very similar to those
in Table 5.3, with the optimal metrics performing best in all cases. This is to be expected

115

Chapter 5. A MODEL FOR SPECTRA-BASED SOFTWARE FAULT DIAGNOSIS

since qe is related to the proportion of failures. However, the results do show that some
metrics, such as Tarantula and Ample, are less sensitive to the proportion of failures than
others. Also, Tarantula, its equivalent CBI Increase (CBI Inc), and the variant CBI Log,
peak at around 0.1 to 0.5, rather than monotonically increasing. Performance of Overlap
and Ample2 also decrease slightly for high proportions of failures.

In a previous study [Abreu et al., 2007], there is empirical evidence that around 6 fail
test cases is sufficient for good performance of Ochiai. Increasing the number of pass
tests beyond 20 only resulted in a minor improvement in performance. We reproduce
this experiment within the constraints of 4, 5, and 6 fail tests, on all the metrics. In our
implementation, we generate multiple random numbers for the multisets for large number
of fail tests. This implementation can reduce the time to produce multisets within the
constrained number of fail tests. The results of 4, 5, and 6 fail tests are consistent with
those of [Abreu et al., 2007] — most metrics show only a modest performance increase.
The performance of a few of the poorer metrics actually decreases with more pass tests.
Since the ordering of most metrics are similar for 4, 5, and 6 fail tests, we only show the
result for 5 fail tests in Table 5.5. As with Table 5.4, when the number of tests is large
(and thus the proportion of fail tests is small), Ample2 performs well. The Russell and
Overlap metrics perform relatively poorly, and Kulczynski2 performs better than M2.

Table 5.5: Influence of Pass Tests with 5 Fail Tests for ITE28

Num. of tests 10 20 50 100 500 1000
O, Op 88.91 90.48 91.22 91.47 91.62 91.65
Wong3′ 83.87 89.45 91.15 91.46 91.62 91.65
Wong3 83.87 89.45 91.15 91.46 91.62 91.65
Zoltar 87.17 90.00 91.18 91.46 91.62 91.65
Kulczynski2 86.53 88.49 90.45 91.21 91.61 91.65
McCon 86.53 88.49 90.46 91.21 91.61 91.65
M2 88.44 89.68 90.15 90.30 90.37 90.39
JacCube 88.76 89.66 89.77 89.67 89.50 89.49
Ample2 79.00 84.92 87.07 87.68 88.08 88.15
Rogot2 81.50 84.64 86.42 87.13 87.91 88.06
Ochiai 85.49 86.38 87.05 87.27 87.41 87.45
Pearson 81.56 84.87 86.07 86.44 86.69 86.74
AMean 81.56 84.86 85.72 85.78 85.66 85.66
Russell 83.34 83.33 83.32 83.35 83.33 83.32
Overlap 77.83 82.74 83.29 83.35 83.33 83.32

Continued on next page

116

5.7. RESULTS USING MODEL PROGRAM

Table 5.5 – continued from previous page
Num. of tests 10 20 50 100 500 1000
Jaccard 84.89 84.27 83.33 82.87 82.40 82.37
CBI Log 72.44 79.08 81.31 81.96 82.37 82.42
Tarantula 70.28 77.50 80.62 81.50 82.13 82.23
Wong4 78.03 72.40 66.84 64.70 62.90 62.74
Ample 39.55 42.46 43.54 43.84 44.04 44.07

5.7.4 Buggy Code Execution Frequency

If buggy code is rarely executed, bugs can be hard to diagnose. Here, we investigate the
relationship between bug localization performance and the proportion of tests that execute
the buggy statement (S4). To our knowledge, this has not been studied previously. Note
that we only consider cases in which there is a fail test case, so S4 must be executed at
least once. The number of executions of the buggy statement, error detection accuracy,
and failure rate, are related: the number of failures is the number of tests in which S4 is
executed times qe. That is, the number of executions of S4 is the failure rate divided by
qe. The results are shown in Table 5.6, based on the same ordering of metrics in Table 5.1.

Table 5.6: Influence of Buggy Code Execution Frequency with 100 tests for ITE28

S4 exec range 0.00-0.05 0.05-0.10 0.1-0.2 0.2-0.5 0.5-0.9 0.9-1.0
% of cases 0.064 0.431 3.74 46.52 48.49 0.389
O, Op 99.89 99.76 99.41 97.91 95.55 94.23
Wong3′ 99.89 99.74 99.40 97.91 95.54 94.18
Wong3 99.89 99.74 99.40 97.91 95.54 94.18
Zoltar 99.89 99.75 99.41 97.90 95.54 94.07
Wong4 99.89 99.64 98.70 95.83 93.07 89.29
JacCube 99.89 99.76 99.39 97.30 91.23 80.36
M2 99.89 99.76 99.41 97.54 90.94 76.83
Kulczynski2 99.89 99.75 99.37 97.20 90.53 74.82
McCon 99.89 99.75 99.37 97.20 90.53 74.83
Russell 66.60 77.59 85.86 92.74 95.60 96.85
Overlap 66.59 77.58 85.85 92.73 95.58 96.61
Ochiai 99.89 99.74 99.30 96.31 85.99 64.76

Continued on next page

117

Chapter 5. A MODEL FOR SPECTRA-BASED SOFTWARE FAULT DIAGNOSIS

Table 5.6 – continued from previous page
S4 exec range 0.00-0.05 0.05-0.10 0.1-0.2 0.2-0.5 0.5-0.9 0.9-1.0
Rogot2 99.89 99.75 99.34 96.40 83.92 52.45
Pearson 99.89 99.74 99.29 96.15 83.77 46.38
AMean 99.89 99.73 99.23 95.90 83.63 41.19
Ample2 99.89 99.76 99.41 96.95 82.43 30.08
Jaccard 99.89 99.73 99.21 95.30 81.48 55.70
CBI Log 78.13 92.57 96.70 91.94 68.28 18.31
Tarantula 99.89 99.66 98.96 93.30 70.76 18.61
Ample 49.95 51.95 51.89 49.39 43.33 15.78

Perhaps surprisingly, metrics other than Russell, Overlap, the CBI Log, and Ample
perform extremely well when S4 is executed only a few times, and performance decreases
with greater execution frequency. For O and Op metrics, the decrease is only slight.
Russell and Overlap exhibit the opposite trend — performance increases as the frequency
increases. For very high frequencies, these metrics perform better than O. This is the
only case we have discovered where O does not perform the best. When S4 is executed
in a large proportion of the tests, the anp component of the O formula is misleading. It
is typically very small for S4, but larger for S1 and S2. There are not many test cases
for which anf is zero for S1 or S2, but there are enough to reduce the performance of O
below that of Russell and also Overlap.

5.7.5 Comparison of Metrics

It would be naive to extrapolate results from our simple model to the diagnosis of real
programs without further evidence. Nevertheless, our experiments suggest the following.
The optimal metrics are best overall and are also quite robust. They perform best in
nearly all the cases we have investigated. Zoltar performs almost as well as O in all cases
and Wong3 (and Wong3′) performs similarly when the numbers of tests is reasonably
large. Although Russell and Overlap are next in overall performance for larger number
of tests, and can perform better than O when the bug is executed in a large proportion
of the tests, they are less robust. For small numbers of tests, qe values and proportion of
fail tests results in their performance being significantly worse. In contrast, although M2
and Kulczynski2 perform somewhat worse than these metrics overall for large numbers
of tests, they are more robust and our experiments suggest they may be better metrics to
use in practice (and for small qe and proportion of fail tests, Kulczynski2 is the better

118

5.7. RESULTS USING MODEL PROGRAM

of the two). Several of the other metrics also perform very well in some circumstances.
However, even the ones with higher profiles, such as Tarantula, Jaccard, and Ochiai, do
not have particularly good overall performance. When they perform very well, they are
still not as good as the best metrics. A few metrics perform particularly poorly.

The reason why the Russell, Binary, Wong1, and Overlap metrics behave somewhat
differently from the other metrics, can be understood by considering the two conditions
for optimality. Recall metrics are optimal if under these conditions.

1. they increase as anp increases when anf = 0

2. anp always has smaller values when anf > 0

When anf = 0, the Russell and Overlap metrics are minimal but constant, rather than
increasing in anp (satisfying the second condition but not the first one). All the other non-
optimal metrics we consider are increasing in anp when anf = 0 (this is straightforward
to prove from the formulas), but do not always have smaller values when anf > 0 (sat-
isfying the first condition but not the second condition). Further insight into the relative
performance of the metrics can be obtained by constructing formulas that are equivalent to
the metrics for ranking purposes but are easier to compare. Specifically, we can compare
with formulas that are known to be optimal. In Table 5.7, we provide formulas that (for
ranking) are equivalent to a selection of the formulas given earlier. A simpler terminol-
ogy (similarly defined in Subsection 5.2.1) is used for some of the terms that have been
defined in the Glossary.

Proposition 5.7.1. Table 5.7 gives metrics that, for ranking, are equivalent to the defi-

nitions of metrics in Table 2.3, assuming a single bug and our top-rank-bug score in the

case of Binary.

Proof. The first optimal metric equivalent formula is Op, given earlier. The second opti-
mal formula is equivalent to aef/(aep +P ·F). If anf = 0, this equals to F/(aep +P ·F),
which increases as aep decreases and is greater than the value of the metric for anf > 0,
since the denominator is between P · F and P · (F + 1). Note that the term P · F can be
replaced by any larger term. The rest are either given by the previous propositions or are
straightforward.

Op is similar to the Wong3 metric, but does not have three separate cases with different
aep coefficients: one very small coefficient (its maximum size dependent on the number
of pass tests) is optimal and the other cases just decrease performance in the model. Note
that the smallest aep coefficient in the Wong3 metric is also sub-optimal for more than
1000 tests. With larger numbers of test cases, we see the performance of the Wong3

119

Chapter 5. A MODEL FOR SPECTRA-BASED SOFTWARE FAULT DIAGNOSIS

Table 5.7: Equivalent Formulas for the Spectra Metrics used

Metric(s) Equivalent Formula

Optimal (Op) aef − 1
P+1

aep

Russell aef

Rogers aef − aep
Ample2 aef − F

P
aep

Ample
∣∣aef − F

P
aep
∣∣

Kulczynski2 aef − F
aep+aef

aep

Optimal log aef − log (aep + P.F)

Tarantula log aef − log aep

Jaccard log aef − log (aep + F)

JacCube log aef − 1
3

log (aep + F)

M2 log aef − log (aep + 2F + P)

Ochiai log aef − 1
2

log (aep + aef)

metric again drops noticeably below that of O and Zoltar metrics. For 5000 tests, the
O and Zoltar metrics have a percentage score of 99.93, compared with 99.91 for Wong3
metric.

Comparing the Op formula with those for the Rogers and Russell metrics, we see that
the Russell metric neglects the aep term, whereas Rogers gives it too much influence. For
a large number of pass tests, this means the performance of the Russell metric approaches
to that of Op (since the optimal coefficient of aep approaches zero). Conversely, Rogers is
closer to the Op for very small number of pass tests. For large number of tests, Rogers is
one of the worst metrics, because of its relatively large coefficient for aep. It is particularly
bad when the failure rate, qe, or S4 are small (since aep is relatively large compared to aef
in these cases).

The performance of the Ample2 metric is particularly sensitive to the failure rate. For
a single fail test, it is almost as good as Op (the aep coefficient is 1/(P + 1)) but when the
failure rate is more than 50%, it is even worse than the Rogers metric (the aep coefficient is
more than 1). In practice, failure rates are typically quite small, helping the performance
of Ample2. The use of absolute value in the Ample metric makes it less like Op; this
is what prompted us to experiment with the Ample2 metric, which indeed outperforms
Ample. Kulczynski2 performs better than Ample2, particularly for a high number of
failures, for the following reason. The Kulczynski2 aep coefficient is similar to that of
Ample2, but the denominator is the number of tests in which the statement was executed,

120

5.7. RESULTS USING MODEL PROGRAM

rather than P . For the buggy statement, this will be between F and F + P , whereas for
correct statements it will tend to be lower, lowering the rank of these statements.

Among the formulas with logarithms, it can be seen that M2 is better than Jaccard,
which is better than Tarantula due to the relative influence of aep. The Jaccard metric gets
close to optimal for very high failure rates, and M2 gets close to optimal for both very
high and very low failure rates. The JacCube metric (which we modify based on Jaccard)
is equivalent to reducing the influence of aep to the factor of 1

3
. Therefore, we observe that

the performance using this metric is better than the Jaccard metric. For the Ochiai metric,
the use of the square root (leading to the factor of 1

2
) is helpful to performance. Similarly

to the Jaccard metric, a version of cube root for the Ochiai metric would be even better,
as it would reduce the influence of aep even more.

We have not found a formula equivalent to Zoltar that is easily comparable with an
optimal formula. When anf = 0, the Zoltar metric is aef/(aef + aep), which is increasing
in anp but may be smaller than some cases when anf > 0. For the buggy statement S4, the
value is F/(F + aep). Due to the large factor of 10 000, it is rare for the value for S1 or
S2 to be higher unless aep = 0. Even when aep = 0, we still need aef/F > F/(F + aep)

(S4), which requires a low value of anf and a high value of aep for S4. That is, a correct
statement (S1 or S2) is used in no pass tests but many fail tests, and the buggy statement
is used in many pass tests. For example, with five tests, three of which fail with S4 used
in both pass tests and S1 used in two fail tests and no pass tests, the Zoltar metric for S1

is (just) larger than that for S4 (10/15 compared with 9/15). Such cases form only a tiny
fraction of the multisets for larger number of tests.

5.7.6 Other Models

Many experiments with other models have been conducted. Here are some of the results
briefly, which may be expanded on in the future. Increasing the number of paths while
retaining the same code increases the number of possible multisets of test cases. This has
little effect on the relative performance of the different metrics but does increase absolute
performance. This is because a greater proportion of the multisets have a relatively even
distribution across the different paths (for example, the proportion of multisets that contain
just one path becomes much smaller). Increasing the number of sources of “noise” (adding
extra correct if-then-else statements) with a fixed number of paths decreases performance,
as expected. Decreasing the proportion of paths through the buggy statement that lead to
failure (thus decreasing the average qe value) also decreases performance. In all the cases
above, O appears to be optimal.

We have discovered some classes of models where O is not optimal according to the
definition we have given. If the buggy statement is (almost) always executed then metrics

121

Chapter 5. A MODEL FOR SPECTRA-BASED SOFTWARE FAULT DIAGNOSIS

such as the Russell metric can perform better than O. In Table 5.6, we have this result
for just a subset of the multisets possible with ITE28, but by changing the model, it can
occur with the total score. For such models, we believe it is appropriate to generalise
our definition of optimality. Rather than fixing a specific statement as being buggy, we
could consider the possibility of each statement being buggy, and average over all these
cases. For ITE28, the two definitions are equivalent due to the symmetry of the code.
With such a revised definition, O still appears optimal (for Russell, the performance is
excellent when the frequently executed statement is buggy but poor when the statement is
correct).

5.8 Results Using Empirical Benchmarks

We use the Siemens Test Suite, the subset of the Unix Test Suite, the Concordance, and
the Space benchmarks to perform empirical evaluation on how well the metrics perform.
Table 4.1 in Chapter 4 lists the programs, the number of faulty versions of each program,
the number of lines of code (LOC), and the number of test cases. For the Space program,
we evaluate AllTests set where the entire test suite of Space is used.

We conduct experiments using the same metrics as previously reported in our ITE28

model program. We report the figures for all the benchmarks; Siemens Test Suite, sub-
set of the Unix Test Suite, Concordance, and Space. There are 130 Siemens Test Suite
programs, 102 subset of the Unix Test Suite programs, 13 Concordance programs, and 28
Space programs that failed at least a fail test case. We also report on a subset of the test
suites that allows a better comparison with our model. We use the set of programs that
failed a test case and have a single bug. There are 122, 102, 11, and 15 single bug Siemens
Test Suite, subset of the Unix Test Suite, Concordance, and Space programs respectively.

We provide experimental results using the different established performance measures
of bug localization performance for the different metrics. One of them is rank percentages

(Subsection 4.3.1) which refers to the percentages of the program code that needs to be
examined for a bug to be found. The average of the percentages over all programs in
the test suite are considered. We show the bug localization performance by considering
different lines of code (as discussed in Section 4.2). For one set of results, we consider all
the lines of code (Table 5.8). For the others, we ignore lines that are not executed in any
tests.

122

5.8. RESULTS USING EMPIRICAL BENCHMARKS

5.8.1 Average Rank Percentages

In this subsection, for ease of readability, some of the program names have been abbre-
viated. In the Siemens Test Suite, schedule is referred to as Sch, schedule2 is referred to
as Sch2, print tokens is referred to as Pt, print tokens2 is referred to as Pt2, tot info is
referred to as Tot and replace is referred to as Rep. In the subset of the Unix Test Suite,
Checkeq is referred to as Chck and Spline is referred to as Spl. Concordance is abbreviated
as Conc.

Table 5.8: Average Rank Percentages for programs of the Siemens Test Suite

Metric Tcas Sch Sch2 Pt Pt2 Tot Rep
Op 9.90 3.88 23.21 3.40 0.78 3.11 4.68
O 9.90 7.65 23.21 3.40 0.78 3.11 4.68
Wong3′ 10.11 3.88 17.35 3.40 0.82 3.11 3.95
Wong3 17.78 17.71 29.10 3.40 0.82 9.27 11.29
Wong4 10.03 4.74 20.77 3.55 0.78 3.18 4.68
Zoltar 9.90 3.88 20.77 3.40 0.78 3.13 3.92
M2 10.27 1.57 23.17 4.31 2.00 4.59 4.49
Kulczynski2 9.94 3.88 20.80 3.40 1.08 3.27 4.28
Overlap 14.47 11.36 18.51 7.15 10.65 6.63 9.11
Ochiai 10.66 1.63 23.56 6.22 3.70 5.52 4.90
Amean 10.82 5.14 23.89 7.31 5.09 9.37 5.24
Jaccard 10.77 1.68 26.04 8.37 5.55 6.53 6.25
Tarantula 10.80 1.77 26.04 8.93 5.70 7.09 6.45
Russell 14.47 11.36 18.51 7.15 10.65 6.60 9.10
Binary 14.47 15.15 18.51 7.15 10.65 6.60 9.10
Ample 12.83 12.62 27.50 8.32 5.47 15.09 6.92
Ample2 10.91 4.98 28.42 7.71 4.94 9.38 5.72
Pearson 10.92 4.95 25.13 7.84 4.92 9.31 5.05
McCon 9.94 10.94 20.80 3.40 1.08 3.27 4.28
CBI Log 11.47 7.20 26.04 8.88 5.70 10.26 6.25
JacCube 10.35 2.08 22.91 4.57 2.00 4.53 4.58
Rogot2 10.91 10.83 27.76 7.74 4.92 14.37 5.80

Table 5.8 shows the average of rank percentages, calculated using all lines of program
code, with respect to the different programs of the Siemens Test Suite, using different
metrics. In this table, all the 132 programs of the Siemens Test Suite, including pro-
grams with multiple bugs and programs with no fail test, are included. The average rank
percentages are computed based on the average of the rank percentages (Definition 11)
of program versions of respective programs. In this table, we observe that the average
rank percentages for the schedule (Sch) program evaluated using the O and Op metrics

123

Chapter 5. A MODEL FOR SPECTRA-BASED SOFTWARE FAULT DIAGNOSIS

are different, at 3.88% and 7.65% respectively. The difference is due to one of the sched-
ule (Sch) programs has multiple bugs. The bug localization performance evaluated using
the O metric performs poorly in this program as the anf can be non-zero, especially for
the buggy statements. This leads to the O metric being -1 for all the statements having
non-zero anf .

Table 5.9: Average Rank Percentages for programs of the subset of the Unix Test Suite and Con-
cordance

Metric Col Cal Chck Spl Tr Uniq Conc
Op 13.41 6.52 11.06 6.95 16.11 6.95 3.63
O 13.41 6.52 11.06 6.95 16.11 6.95 3.63
Wong3′ 13.41 6.52 11.06 6.95 16.11 6.95 3.64
Wong3 13.41 6.52 11.06 11.69 16.11 6.95 25.79
Wong4 13.48 8.58 14.35 6.99 16.11 7.15 3.93
Zoltar 13.41 6.99 12.85 6.99 16.11 7.00 3.63
M2 13.41 7.10 13.45 6.99 17.97 8.95 3.84
Kulczynski2 13.41 7.57 14.38 7.04 16.71 9.00 3.66
Overlap 21.63 15.26 23.93 13.75 19.23 13.21 5.87
Ochiai 13.46 7.57 14.82 7.08 19.10 9.65 3.90
AMean 13.46 7.68 20.29 7.08 36.47 11.35 8.52
Jaccard 13.46 7.68 14.82 7.08 20.69 10.15 5.47
Tarantula 16.06 10.65 23.33 7.17 23.36 14.10 6.02
Russell 18.85 11.54 18.18 13.66 19.23 13.06 5.87
Binary 18.85 11.54 18.18 13.66 19.23 13.06 5.87
Ample 13.65 8.08 21.22 7.01 43.24 15.12 10.57
Ample2 13.41 7.68 20.84 6.99 36.54 12.50 8.29
Pearson 13.46 7.68 19.20 7.08 36.47 10.60 8.39
McCon 13.41 7.57 14.38 7.04 16.71 9.00 3.66
CBI Log 14.35 12.88 22.32 10.09 37.74 14.00 12.18
JacCube 13.41 7.10 12.91 7.04 17.97 8.90 3.71
Rogot2 13.52 7.84 17.38 7.04 55.5 10.15 22.70

Table 5.9 shows the different programs of the subset of the Unix Test Suite and Con-
cordance (Conc) using different metrics, calculated using all lines of source code. For the
Concordance dataset, we evaluate all 13 programs (two of which are multiple-bug pro-
grams). From Table 5.8 and Table 5.9, the Op metric performs among the best across all
programs, except for the schedule (Sch), schedule2 (Sch2), and replace (Rep) programs.
For the latter programs, Op metric does not perform well due to the inclusion of some
programs in schedule, schedule2 and replace that have no fail test cases or contain mul-
tiple bugs. In Section 5.5, we showed that Op metric is an optimal metric for single bug
programs. This metric does not perform the best for multiple-bug programs.

124

5.8. RESULTS USING EMPIRICAL BENCHMARKS

Table 5.10: Average Rank Percentages for all Single Bug Datasets

Benchmark Siemens Unix Conc Space All
O 5.81 10.36 2.83 0.49 7.22
Op 5.81 10.36 2.83 0.49 7.22
Wong3′ 6.05 10.36 2.84 0.49 7.33
Zoltar 5.82 10.77 2.83 0.55 7.39
Kulczynski2 5.97 11.49 2.86 0.62 7.76
McCon 5.97 11.49 2.86 0.62 7.76
Wong4 6.05 11.36 3.18 0.49 7.76
JacCube 6.74 11.27 2.92 0.58 8.05
M2 6.72 11.36 3.07 0.58 8.08
Ochiai 7.38 11.93 3.13 0.67 8.65
Jaccard 8.59 12.19 4.96 1.06 9.45
Pearson 8.89 14.73 8.43 0.82 10.77
Amean 8.79 15.02 8.57 0.92 10.85
Ample2 8.94 15.26 8.33 0.82 11.00
Tarantula 8.81 15.77 5.61 1.88 11.09
Wong3 12.25 10.96 22.49 0.49 11.47
Russell 10.45 16.02 5.88 5.35 12.22
Binary 10.45 16.02 5.88 5.35 12.22
Rogot2 10.28 16.44 11.93 0.84 12.30
CBI Log 10.03 17.43 12.89 1.81 12.68
Overlap 10.46 18.49 5.88 5.35 13.23
Ample 12.14 16.55 10.98 2.28 13.30

We also consolidate all the figures of the single bug programs (including all the lines
of code that are not executed), with respect to the benchmarks, in Table 5.10. Note that
we also combine the evaluation of all the benchmarks in the last column of the table (All).
As there are different proportions across the benchmarks, comparisons between these four
columns should be avoided. In each dataset, we show that the O and Op metrics perform
the best or equal best to some other metrics. In the Siemens Test Suite, by using theO and
Op metrics, the programmer only needs to examine 5.81% of the program code in order to
locate the bug. For the subset of the Unix Test Suite, Concordance, and Space programs,O
and Op metrics are among the best metrics, with the programmer only needing to examine
10.36%, 2.83%, and 0.49% respectively of the program code in order to locate the bug.

Considering different lines of code (see Section 4.2) can have a significant effect on the
relative bug localization performance. This is what prompted us to introduce the Wong3′

metric (in several programs, the Wong3 metric as defined in [Wong et al., 2007] ranks
the buggy statement below code that is never executed in any test case). In Table 5.10,
we observe different bug localization performance using the Wong3 and Wong3′ metrics.

125

Chapter 5. A MODEL FOR SPECTRA-BASED SOFTWARE FAULT DIAGNOSIS

This is due to the buggy statement being ranked below code that is never executed in any
test case for some of the programs.

χSuds [Telcordia Technologies, Inc., 1998] is used to extract the spectra and this ap-
parently filters out some information gcov reports, leading to different results [Wong
et al., 2007]. Our model program can be modified to include statements that are never
executed, or debugging systems could a priori exclude such statements from consider-
ation (making Wong3 and Wong3′ equivalent). We show bug localization performance
considering only the lines of code that are executed in Table 5.11 and Table 5.12.

In Table 5.11, we evaluate using Group A metrics (the same metric selections as Ta-
ble 5.1) on the single bug programs. We consolidate all the figures (using just lines of
code that are executed) with respect to the benchmarks, namely the Siemens Test Suite
(Siemens), subset of the Unix Test Suite (Unix), Concordance (Conc), and Space. The
ordering of the metrics in this table is based on the combination of the bug localization
performance for all these benchmarks (column All). We observe that theO and Op metrics
perform the best or equal best with several other metrics in bug localization performance
with 15.69%, 20.47%, 10.11%, and 1.60% of the program code to be examined in order
to locate single bug programs in the Siemens Test Suite, subset of the Unix Test Suite,
Concordance (Conc), and Space benchmarks, respectively.

We also observe that the relative performance of the top performing metrics on the
single bug programs of all the test suites (Table 5.11) fits reasonably well with the overall
results of our model, with the optimal metrics performing best for all single bug programs.
The top four ranked metrics (treating O and Op as the same metric, and similarly Wong3
and Wong3′) in Table 5.11 are identical (modulo equal ranking) to those ranked according
to the qe range of 0.2-0.5 in Table 5.3 and the proportion of fail tests range of 0.1-0.2 in
Table 5.4.

The most significant difference in results between our empirical benchmarks and the
model program ITE28 is that the Russell, Binary, and Overlap metrics perform more
poorly than the overall performance in our model. Performance of the Russell, Binary,
and Overlap metrics is significantly affected by statements that are executed in all test
cases, such as initialisation code. These are always ranked equal-highest. Adding such
a statement in our model program approximately halves their model performance. The
top-rank-bug score measure (Subsection 4.4.2) we use is also kind to these metrics, espe-
cially Binary. If Binary doesn’t rank the bug equal-top, it ranks it equal-bottom. Other
good metrics that fail to rank it equal-top will often rank it strictly above most correct
statements, but the score will still be the same.

The JacCube metric is also slightly lower in the ranking than in our model. We observe
that the metric has relative poor performance as compared to the McCon and Kulczynski2

126

5.8. RESULTS USING EMPIRICAL BENCHMARKS

Table 5.11: Average Rank Percentages for all Single Bug Datasets — executed lines of code only
(Group A metrics)

Benchmark Siemens Unix Conc Space All
O,Op 15.69 20.47 10.11 1.60 16.55
Wong3 16.28 20.47 10.15 1.60 16.84
Zoltar 15.71 21.24 10.11 1.76 16.88
Wong4 16.27 22.11 11.35 1.60 17.56
Kulczynski2 16.13 22.58 10.21 2.01 17.65
McCon 16.13 22.58 10.21 2.01 17.65
JacCube 18.31 22.15 10.43 1.87 18.54
M2 18.28 22.32 10.97 1.86 18.62
Ochiai 20.17 23.37 11.19 2.12 20.00
Pearson 22.07 25.35 18.42 2.55 22.08
Jaccard 23.47 23.85 17.68 3.19 22.15
AMean 21.81 25.88 18.90 2.82 22.20
Ample2 22.21 26.33 18.05 2.54 22.53
Rogot2 23.84 26.14 19.25 2.59 23.30
CBI Log 24.46 29.59 22.63 6.01 25.37
Tarantula 24.12 30.65 20.03 6.22 25.53
Ample 31.39 28.69 27.53 6.62 28.63
Russell 28.36 31.99 21.03 17.30 28.85
Binary 28.36 31.99 21.03 17.30 28.85
Overlap 28.39 36.81 21.03 17.30 30.84

in the Column Siemens of the Table 5.11. This is expected, since they perform poorly for
low qe and proportion of fail tests. In the Siemens Test Suite, we observe that the qe value
and the fail proportion are 0.1276 and 0.035, respectively. In the range of 0.1-0.2 of Table
5.3 and 0.00-0.05 of Table 5.4, we observe JacCube has relatively poor performance as
compared to the McCon and Kulczynski2 metrics. However, we do not observe the latter
case in the subset of the Unix Test Suite and Space. There are many programs in these
test suites that have ties between the buggy statement and other non-buggy statement(s),
which can affect bug localization performance. We defer these details to Subsection 6.3.2
of Chapter 6.

Ample performs rather better than predicted by the model. If the bug occurs in an if-
then-else statement, the Ample metric typically gives both the then and else statements the
same reasonably high rank. Since this is still only a small fraction of the code (as opposed
to half the code in our model) the performance overall is reasonable. Experiments using
different models indicate that as the number of statements increases, the difference in
performance between Ample and the better metrics decreases.

Another interesting observation is that there are 30 Siemens Test Suite programs, 17

127

Chapter 5. A MODEL FOR SPECTRA-BASED SOFTWARE FAULT DIAGNOSIS

Table 5.12: Average Rank Percentages for all Single Bug Datasets — executed lines of code only
(Group B metrics)

Benchmark Siemens Unix Conc Space All
Conviction 15.84 23.54 17.79 1.76 18.22
Fager 19.68 23.14 11.10 2.08 19.66
Fossum 20.46 23.48 18.27 2.12 20.50
Mountford 21.40 23.81 11.97 2.86 20.86
HMean 22.03 25.13 18.33 2.59 21.97
GMean 22.07 25.35 18.42 2.55 22.08
Certainty 23.80 25.59 19.43 5.49 23.24
Dennis 23.18 26.99 18.85 3.29 23.35
Kappa 22.62 26.64 18.22 10.65 23.35
Cohen 24.02 26.28 19.39 3.74 23.52
CBI Sqrt 24.50 29.42 22.89 5.97 25.32
Ochiai2 27.37 27.98 19.44 4.76 25.91
Braun 24.12 32.58 20.03 6.22 26.32
Baroni 30.68 26.57 21.05 7.79 27.21
Gower3 27.50 35.73 27.51 17.81 30.27
YuleQ 27.50 35.73 27.51 17.92 30.28
YuleY 27.50 35.73 27.51 17.92 30.28
AssocDice 28.39 36.81 21.03 17.92 30.87
Confidence 28.39 36.81 21.03 17.92 30.87
YuleV 31.17 36.69 21.22 13.33 31.91
AddedValue 26.79 45.75 23.77 35.37 34.91
Scott 41.93 29.26 41.23 15.83 35.16
Fleiss 42.23 29.39 41.45 16.11 35.39
Platetsky-Shapiro 44.47 30.31 49.03 24.93 37.72
Rogers 44.48 30.47 49.16 25.34 37.82
CollectiveS 44.50 30.66 49.31 25.34 37.92
J-Meas 47.62 33.22 34.45 30.28 40.13
Klosgen 41.06 43.73 31.96 32.99 41.26
Correlation 47.74 47.92 38.89 45.37 47.28

subset of the Unix Test Suite programs, and 4 Concordance programs, where Russell
performs better than O, despite relatively poor performance overall. In all these cases,
the buggy statement is executed on average 81% of the total test cases. This is consistent
with our model (see Table 5.6) — when S4 is executed in 0.50–0.90 of tests, Russell
outperforms O and is the best of all metrics considered.

We also evaluate Group B metrics on our benchmarks in Table 5.12. We apply the
same ordering of the metrics in this table, based on the bug localization performance

128

5.8. RESULTS USING EMPIRICAL BENCHMARKS

across all benchmarks (Column All). However, we do not perform further analysis on the
metrics in this group, as these metrics do not perform particularly well.

Figure 5.12 shows the plot of the breakdown of the average rank percentages (executed
lines of code only) for the respective single bug (one-bug) programs in the Siemens Test
Suite, the subset of the Unix Test Suite, and the Concordance (Conc) benchmarks, using
the optimal metric Op. This figure also shows the error bars of each program, which refers
to the standard deviation of the average rank percentages for different program versions.

0

10

20

30

40

50

60

70

Average Rank Percentages of Op (%) vs One−bug Programs (Siemens, Unix, Concordance)

One−bug Programs

A
ve

ra
ge

 R
an

k
P

er
ce

nt
ag

es
 (

%
)

Pt2 Sch Rep Conc Tot Pt Uniq Cal Spl ChckCol Tcas Tr Sch2

Figure 5.12: Average Rank Percentages with Error Bars evaluated using Op metric on One-bug
(Single Bug) Programs of Siemens Test Suite, subset of the Unix Test Suite, and
Concordance (Conc)

In this figure, we observe that print tokens2, Pt2, is the program that shows best bug
localization performance (average rank percentages) evaluated using the Op metric, with
2.02% of the program code to be examined by the programmer in order to locate the bug.
On the other end of this figure, the schedule2, Sch2, program is the program that shows
the worst bug localization performance evaluated using the Op metric, with 42.55% of the
program code to be examined by the programmer to locate the bug. From the figure, we
also observe that the standard deviation of the respective programs is wider as the bug
localization performance worsens.

We also evaluate on two sets of Space programs, using the entire test suite of Space,
AllTests and using the subset of test suite of Space, Subset (in 10 bins). The details of

129

Chapter 5. A MODEL FOR SPECTRA-BASED SOFTWARE FAULT DIAGNOSIS

both sets of Space programs can be found in Section 4.5. Figure 5.13 shows the bug
localization performance for the AllTests and Subset (in 10 bins) of the entire Space test
suite, on the 15 single bug (one-bug) Space programs. From this figure, we observe the
average rank percentages for AllTests are quite similar to the average rank percentages for
the Space Subset (represented in 10 bins). We make a similar observation for the error
bars of the AllTests and the Subset of all the 10 bins of the single bug Space programs.

0

0.5

1

1.5

2

2.5

3

3.5

4

AllTests Bin1 Bin2 Bin3 Bin4 Bin5 Bin6 Bin7 Bin8 Bin9 Bin10

Average Rank Percentages of Op (%) vs One−bug Programs (AllTests and 10 Bins of Space)

A
ve

ra
ge

 R
an

k
P

er
ce

nt
ag

es
 (

%
)

One−bug Programs

Figure 5.13: Average Rank Percentages with Error Bars evaluated using Op metric on One-bug
(Single Bug) Programs of Space

5.8.2 Successful Diagnosis of Bugs, SucDiag

We evaluate several spectra metrics using the performance measure of successful diag-
nosis of bugs, SucDiag. This refers to whether diagnosis is successful after examining
some percentages of the program. We use this measure to perform a fair comparison of
our proposed approach with other studies [Renieres and Reiss, 2003, Jones and Harrold,
2005, Cleve and Zeller, 2005, Hao et al., 2005, Jiang and Su, 2005, Liblit et al., 2005, Liu
et al., 2005]. This measure has been described in detail in Subsection 4.3.2 in Chapter 4.
We report the percentages of successful diagnosis of bugs over all the test suites of our
benchmarks.

130

5.8. RESULTS USING EMPIRICAL BENCHMARKS

Table 5.13: Percentage of Successful Diagnosis of Bugs, SucDiag for Single Bug Siemens Test
Suite, subset of the Unix Test Suite, Concordance, and Space programs

Code Examined 1% 2% 4% 6% 8% 10% 20% 50%
Op 11.42 22.69 37.55 45.93 51.12 54.81 67.60 91.34
O 11.42 22.69 37.55 45.93 51.12 54.81 67.60 91.34
Zoltar 11.02 22.69 37.41 45.59 50.81 54.06 67.03 90.88
Wong3 11.02 22.69 37.55 45.93 51.12 54.81 67.57 90.74
Wong4 10.82 21.84 36.09 44.43 49.48 53.02 66.38 89.70
M2 10.58 21.83 34.84 43.38 47.91 50.90 64.52 88.97
JacCube 10.53 21.81 34.85 43.62 48.28 51.24 64.79 88.95
McCon 10.21 21.48 36.34 45.09 49.79 52.77 65.56 90.16
Kulczynski2 10.21 21.48 36.34 45.09 49.79 52.77 65.56 90.16
Ample2 9.84 19.96 33.25 41.28 45.41 47.94 58.27 83.48
Ochiai 9.79 19.80 32.69 41.03 46.18 48.73 60.63 87.75
Ample 9.40 17.94 28.32 34.08 39.51 42.28 53.52 75.27
Rogot2 9.34 19.53 32.39 40.52 45.24 47.62 58.05 82.68
Pearson 9.31 19.30 32.16 40.09 45.60 47.90 58.88 84.22
AMean 9.11 18.34 30.94 39.21 44.31 47.13 58.68 84.24
Jaccard 8.89 17.37 29.87 36.37 41.73 45.19 58.32 85.52
CBI Log 8.36 14.78 26.15 32.90 38.49 41.17 53.64 81.76
Tarantula 7.64 14.42 25.24 31.61 37.24 40.63 53.38 80.82
Russell 1.43 4.04 8.84 13.40 18.08 22.03 40.46 82.93
Binary 1.43 4.04 8.84 13.40 18.08 22.03 40.46 82.93
Overlap 1.41 3.90 8.53 12.91 17.42 21.19 38.72 79.13

Table 5.13 shows the percentages of single bug programs for the Siemens Test Suite,
the subset of the Unix Test Suite, Concordance, and Space (combined benchmark sets)
that are successfully diagnosed as the percentage of the code examined increases; lines
of code that are not executed are ignored. Again, the results fit well with our model for
the smaller percentiles. The performance measure used with our model, top-rank-bug
score (Subsection 4.4.2), only considers the top-ranked statements — higher percentiles
are ignored. Using average rank percentages (Subsection 4.3.1) arguably gives too much
weight to high percentiles. A weighted average of rank percentages giving more weight
to lower percentages would make a better practical measure of performance. We have
experimented with such scoring functions with our model. The optimal metrics performed
best in all cases examined. However, proving optimality for these more complex scoring
functions is much more difficult than for the top-rank-bug score, evaluated on the model
program in Section 5.7.

Table 5.14 gives the corresponding results for all the Siemens Test Suite programs with
at least a fail test case (130 programs), which allows a fairer comparison with diagnosis

131

Chapter 5. A MODEL FOR SPECTRA-BASED SOFTWARE FAULT DIAGNOSIS

Table 5.14: Percentage of Successful Diagnosis of Bugs, SucDiag for the Siemens Test Suite

Code Examined 1% 2% 4% 6% 8% 10% 20% 50%
O 11.29 22.19 39.58 50.05 55.60 59.34 70.42 89.57
Op 11.29 22.19 39.58 50.05 55.60 59.34 70.42 89.57
Zoltar 11.29 22.19 39.39 49.67 55.60 59.34 70.42 89.57
Wong4 10.90 21.43 37.85 48.13 53.29 57.04 70.42 88.56
Wong3 10.52 22.19 39.58 50.05 55.60 59.34 70.42 87.65
Kulczynski2 9.75 20.66 37.47 48.67 53.88 57.63 69.34 89.49
McCon 9.75 20.66 37.47 48.67 53.88 57.63 69.34 89.49
M2 9.70 21.34 35.72 46.94 51.00 54.19 67.51 87.93
JacCube 9.66 21.29 35.48 46.43 50.70 53.90 67.27 87.61
Ochiai 9.03 19.04 32.59 43.30 47.25 50.04 61.43 86.69
Ample2 9.03 19.42 34.51 44.84 48.52 50.86 60.25 84.29
Rogot2 8.88 19.27 33.55 43.88 47.94 49.96 58.29 82.58
Pearson 8.88 18.89 33.17 43.11 47.90 50.54 60.06 84.32
Ample 8.65 17.67 27.34 33.22 39.15 42.01 52.50 72.36
AMean 8.50 17.22 31.05 42.34 46.15 48.48 59.97 84.98
CBI Log 8.34 15.59 28.57 37.61 41.51 45.50 57.65 83.82
Jaccard 8.11 15.89 29.24 37.57 42.90 46.88 59.52 84.33
Tarantula 7.96 15.58 28.55 37.57 41.45 45.42 57.51 83.56
Russell 1.62 4.15 8.87 13.73 18.82 23.09 41.82 82.40
Binary 1.62 4.15 8.87 13.73 18.82 23.09 41.82 82.40
Overlap 1.61 4.14 8.84 13.69 18.77 23.02 41.67 82.40

Jiang et al. [2005] 29.23 34.62 46.15 51.54 54.62 56.92 62.31 N/A
Sober 8.46 19.23 30.77 33.85 40.00 52.31 73.85 83.08
CBI 7.69 18.46 23.08 30.00 33.08 40.00 63.85 76.15
CT 4.65 N/A N/A N/A N/A 26.36 37.98 60.47

based on other techniques (albeit with some noise from programs with no fail test cases).
The table also lists the Wong3 and Wong4 metrics, which have been recently proposed in
Wong et al. [2009]. The last line of the table gives figures for Cause Transition (CT) from
Cleve et al. [2005]. Note that Cleve et al. [2005] only evaluates on 129 programs; there-
fore, we obtained their figures with respect to the 129 programs. The previous three lines
of the table are figures published in Jiang et al. [2005] for their own system, SOBER [Liu
et al., 2005], and CBI [Liblit et al., 2005]. Precise comparison is not possible because
the way the percentiles of SucDiag are computed is different: Jiang et al. [2005] use
nodes in the program dependence graph, rather than lines of code that are executed. How-
ever, we can conclude that the system of Jiang et al. [2005] performs better than the best
spectral-based diagnosis for the very small percentiles; it ranks significantly more bugs in
the top 1%. This is unsurprising, as the analysis is much more sophisticated. However,

132

5.9. MULTIPLE-BUG PROGRAMS

from the eighth percentile upwards, the best spectral methods (O, Op, and Zoltar) appear
to perform better.

The predicate-based CBI system performs worse than spectral-based diagnosis using
the Tarantula metric. We show that the Tarantula metric is equivalent to our simplified
version of the CBI metric (CBI Inc) in Proposition 5.2.6. The reason why the CBI met-
ric performs worse than the Tarantula metric is the poor design of the CBI metric [Naish
et al., 2010]. Recently, we investigated the relationship of statement-based spectra cover-
age and predicate-based spectra coverage (see the details of this study in Chapter 2) [Naish
et al., 2010]. We reconstructed predicate-based spectra coverage and observed that the
predicate-based CBI metrics perform more poorly than the simplified version of the CBI
metric (CBI Inc). Our proposed FPC metric (Failure plus Context) has been shown to per-
form better than the predicate-based CBI metric (CBI Inc). These metrics can be found in
Table 2.5. The other possible explanation of the poor performance of the predicate-based
CBI metric is that the way the figures are calculated makes the comparison misleading
(for example, basic blocks versus statements or the treatment of ties in the ranking).

5.9 Multiple-bug Programs

We evaluate the same set of spectra metrics on the multiple-bug programs (the two-bug
and three-bug programs of the Siemens Test Suite and the subset of the Unix Test Suite).
We combine all the single bug programs in order to generate the multiple-bug programs
and the details can be found in Section 4.5. We also evaluate the multiple-bug Space
programs, which consist of two-bug, three-bug, and more than three-bug (see Table 4.1).

Table 5.15 shows the breakdown and overall performance of bug localization for the
two-bug programs Siemens Test Suite and the subset of the Unix Test Suite using several
spectra metrics. As expected, the O and Op metrics, which are optimal for single bug pro-
grams, are no longer the best performing metrics for the two-bug programs. We observe
a different ordering of metrics in this table. Kulczynski2 metric yields the best bug local-
ization performance overall (Combined column). Using this metric, the programmer only
needs to examine 19.53% of the program code in order to locate the two-bug programs
of the Siemens Test Suite and the subset of the Unix Test Suite. The Kulczynski2 and
McCon, and Pearson metrics give the least average rank percentages for the Siemens Test
Suite and the subset of the Unix Test Suite, with 18.25% and 22.06%, respectively. In the
Combined column of this table, we observe Op shows better bug localization performance
as compared to the O metric, with 22.84% and 24.95%, respectively. A buggy statement
is not necessarily executed by all the fail test cases in a multiple-bug program. In the O
metric, statements with aef less than totF are given a minimum metric value of -1. The Op

133

Chapter 5. A MODEL FOR SPECTRA-BASED SOFTWARE FAULT DIAGNOSIS

Table 5.15: Average Rank Percentages for the Two-bug Siemens Test Suite and the subset of the
Unix Test Suite — executed lines of code only

Benchmark Siemens Unix Combined
Kulczynski2 18.25 22.74 19.53
McCon 18.25 22.74 19.53
Ochiai 19.20 22.60 20.18
JacCube 18.67 25.10 20.51
Zoltar 19.11 24.06 20.52
Wong4 20.21 22.19 20.78
M2 19.01 25.26 20.80
AMean 20.47 22.23 20.97
Pearson 20.70 22.06 21.09
Jaccard 20.49 22.64 21.10
Ample2 20.72 23.00 21.37
Rogot2 21.62 22.18 21.78
CBI Log 21.65 23.81 22.26
Wong3 20.89 26.67 22.54
Op 21.13 27.10 22.84
Tarantula 21.66 26.82 23.13
Ample 24.77 23.80 24.49
O 22.66 30.67 24.95
Russell 31.80 32.84 32.10
Binary 33.13 36.26 34.02
Overlap 31.18 41.09 34.02

metric ranks primarily on aef followed by aep (see Subsection 5.5.2). Therefore, the buggy
statements in the multiple-bug programs can be ranked higher using Op as compared to
the O metric.

Figure 5.14 shows the plot of the average rank percentages for better performing met-
ric, Kulczynski2, on the two-bug programs in the Siemens Test Suite and the subset of the
Unix Test Suite. The tot info (Tot) program shows the best bug localization performance
for the two-bug programs, with the programmer only examining 7.37% of the program
code in order to locate bugs. On the other hand, the Col program shows the worst bug
localization performance for the two-bug programs. The programmer has to examine
28.07% of the program code in order to locate bugs. The error bars in this figure are
widest for the Tr, Sch2, and Col programs, as they show the worst bug localization per-
formance in the two-bug programs of the Siemens Test Suite and the subset of the Unix
Test Suite.

134

5.9. MULTIPLE-BUG PROGRAMS

0

5

10

15

20

25

30

35

40

45

50

Two−bug Programs

A
ve

ra
ge

 R
an

k
P

er
ce

nt
ag

es
 (

%
)

Tot Pt2 Spl Uniq Cal Chck Rep Tcas Tr Sch2 Col

Average Rank Percentages of Kulczynski2 (%) vs Two−bug Programs

Figure 5.14: Average Rank Percentages with Error Bars (Standard Deviation) evaluated using
Kulczynski2 metric on the Two-bug Programs of Siemens Test Suite and the subset
of the Unix Test Suite

Table 5.16 shows the performance of bug localization for the three-bug programs of
the Siemens Test Suite and the subset of the Unix Test Suite, evaluated with several spec-
tra metrics. In this table, the overall ordering of the metrics is different from the ordering
of the metrics for the two-bug programs (Table 5.15). Again, we observe that the Op

metric is not the best spectra metric for the three-bug programs. The Kulczynski2 and
McCon metrics have the best bug localization performance (least average rank percent-
ages) among all the other metrics for three-bug programs of the Siemens Test Suite and
the subset of the Unix Test Suite. By using the latter metrics, the programmer only needs
to examine 21.94% of the program code in order to locate the bugs.

Figure 5.15 shows the average rank percentages for the Kulczynski2 metric evaluated
on the three-bug programs of the Siemens Test Suite and the subset of the Unix Test Suite.
The tot info (Tot) program shows the best bug localization performance among the three-
bug programs. The programmer has to examine only 5.84% of the program code in order
to locate bugs. The error bar in this figure is widest for the print tokens2 (Pt2) program.

135

Chapter 5. A MODEL FOR SPECTRA-BASED SOFTWARE FAULT DIAGNOSIS

Table 5.16: Average Rank Percentages for the Three-bug Siemens Test Suite and the subset of the
Unix Test Suite — executed lines of code only

Benchmark Siemens Unix Combined
Kulczynski2 8.70 24.88 21.94
McCon 8.70 24.88 21.94
AMean 15.42 23.75 22.24
Pearson 15.73 23.77 22.31
Rogot2 16.94 23.78 22.53
Ample2 16.24 23.96 22.56
Ochiai 12.59 24.82 22.60
Wong4 12.04 24.94 22.60
Jaccard 15.32 24.85 23.12
CBI Log 18.08 24.54 23.37
Zoltar 8.59 26.80 23.49
Ample 20.11 24.72 23.88
JacCube 14.19 27.23 24.86
M2 14.74 27.24 24.97
Wong3 12.45 28.08 25.24
Op 12.51 28.18 25.33
Tarantula 18.17 29.24 27.23
Russell 18.22 30.99 28.67
O 14.54 32.56 29.29
Binary 19.64 35.27 32.43
Overlap 16.18 43.26 38.34

Table 5.17 shows the bug localization performance of multiple-bug Space programs.
As described in Section 4.5, we use two sets of Space programs. The first set of Space
programs that we evaluate is using the entire Space test suite, which is known as AllTests.
The other set of Space programs that we evaluate is the subset of the entire test suite of
Space in 10 bins (Subset column). The ordering of the metrics for both sets are very
similar, except for the Wong4 and Jaccard metrics.

Figure 5.16 shows the plot of the bug localization performance on AllTests and the
Subset of the entire Space test suite (in 10 bins) of 13 multiple-bug Space programs. From
the figure, we observe the average rank percentages using the top performing metric,
Zoltar for the AllTests is quite similar to the average rank percentages of Zoltar for the
Space Subset (represented in 10 bins). We make the same observation on the error bars
(standard deviation) of the AllTests and the Subset of all the 10 bins of the multiple-bug
Space programs.

136

5.9. MULTIPLE-BUG PROGRAMS

0

5

10

15

20

25

30

35

40

45

Three−bug Programs

Av
er

ag
e

Ra
nk

 P
er

ce
nt

ag
es

 (%
)

Tot Uniq Spl Rep Pt2 Cal Sch2 Chck Tr Col

Average Rank Percentages of Kulczynski2 (%) vs Three−bug Programs

Figure 5.15: Average Rank Percentages with Error Bars (Standard Deviation) evaluated using
Kulczynski2 metric on the Three-bug Programs of Siemens Test Suite and the subset
of the Unix Test Suite

0

1

2

3

4

5

6

7

8

AllTests Bin1 Bin2 Bin3 Bin4 Bin5 Bin6 Bin7 Bin8 Bin9 Bin10

Average Rank Percentages of Zoltar (%) vs Multiple−bug Programs (AllTests and 10 Bins of Space)

Av
er

ag
e

Ra
nk

 P
er

ce
nt

ag
es

 (%
)

Multiple−bug Space Programs

Figure 5.16: Average Rank Percentages with Error Bars (Standard Deviation) evaluated using
Zoltar metric on the Multiple-bug Space Programs

137

Chapter 5. A MODEL FOR SPECTRA-BASED SOFTWARE FAULT DIAGNOSIS

Table 5.17: Average Rank Percentages for the AllTests and Subset of Multiple-bug Space Pro-
grams (average of 10 bins)

Metric Space
AllTests Subset

Zoltar 2.32 2.42
JacCube 2.42 2.49
O 2.50 2.54
Op 2.50 2.54
Wong3 2.50 2.54
Wong4 2.50 2.82
M2 2.58 2.58
Kulczynski2 2.61 2.64
McCon 2.61 2.64
Ochiai 2.65 2.85
Rogot2 3.22 3.42
Pearson 3.22 3.49
Jaccard 3.25 3.37
Ample2 3.39 3.52
AMean 3.47 3.65
CBI Log 4.41 3.85
Tarantula 4.51 4.44
Ample 8.13 8.09
Overlap 17.50 18.07
Russell 17.50 17.85
Binary 17.50 17.85

5.10 Discussion

We have shown that parameters such as error detection accuracy, qe, proportion of fail
tests, the number of fail tests, and buggy code execution frequency, can be explicitly
adjusted (Subsection 5.7.2, 5.7.3, and 5.7.4 respectively) in the model program to observe
their relationships with the bug localization performance. More investigation could be
done to fine tune these parameters of the model program. The model program that we
proposed does not have to be restricted to the two if-then-else statements; rather, it can be
defined for a nested if-then-else or a while loop.

We have explored using different models of multiple-bug programs tuned with the
above mentioned parameters. For models with multiple bugs, we see a divergence be-
tween the performance of O and Op. Op and the other good metrics other than O gener-
ally perform quite well, especially when most failures are caused by a single bug. In some
cases, Ochiai and even Jaccard perform better. None of the metrics examined is optimal

138

5.11. OTHER PERFORMANCE MEASURES

for more than a very small number of tests. Using different model programs, we have
constructed optimal metrics for some cases. However, we have not successfully obtained
similar orderings of the metrics using the models and the multiple-bug program bench-
marks (Table 5.15, Table 5.16, and Table 5.17). It may be that by constructing optimal
metrics in other cases, some patterns will emerge. This would allow us to find optimal
or near-optimal metrics in a broad range of cases. It may be also due to the multiple-bug
programs benchmarks which we have used. These multiple-bug programs are generated
by the combination of single bug program versions (details can be found in Section 4.5).
Some of these programs have more program versions as compared to the other programs.
For example in Table 4.1, we observe the tcas program has 604 two-bug programs as
compared to only 28 two-bug programs versions for schedule2 (Sch2). With this im-
balanced distribution of the number of programs, it is possible that we cannot obtain an
accurate representation of the bug localization performance for the multiple-bug programs
by using the spectra metrics.

5.11 Other Performance Measures

Several performance measures have been proposed in Chapter 4. We evaluate most of
these measures on single bug programs of the Siemens Test Suite benchmark. The eval-
uation results on multiple-bug program benchmarks are not considered in this section,
as the optimality of spectra metric for multiple-bug programs has not been generalised.
However, we have evaluated Op metric in Section 5.9 to see how well this metric performs
for multiple-bug programs.

5.11.1 High, Mid, Low, and Median measures

In Section 4.2, different measures are detailed to handle ties between statements having
the same metric value as the buggy statement. These measures have been used in previous
studies [Jones and Harrold, 2005, Abreu et al., 2006, Abreu et al., 2007, Wong et al.,
2010]. For fair comparison, we evaluate the High, Mid, and Low (Section 4.2) of the rank
percentages measure in all the single bug programs of the Siemens Test Suite. For these
measures, we consider the average of the rank percentages of these programs.

Table 5.18 shows the different measures of the average rank percentages for several
metrics in single bug programs of the Siemens Test Suite, with the optimal metrics, O and
Op, performing the best. By using the latter metrics, the programmer needs to examine
10.69%, 15.69%, and 20.68% of the program code in order to locate the bug using the
High, Mid, and Low measures respectively. The Mid measure refers to the average rank

139

Chapter 5. A MODEL FOR SPECTRA-BASED SOFTWARE FAULT DIAGNOSIS

Table 5.18: Results of High, Mid, Low, Median, First Quartile, and Third Quartile Rank Percent-
ages for the Siemens Test Suite (Single Bug Programs)

Metric High Mid Low Median First Quartile Third Quartile
O, Op 10.69 15.69 20.68 5.80 2.34 24.57
Zoltar 10.72 15.71 20.71 6.10 2.34 24.57
Kulczynski2 11.13 16.13 21.12 6.25 2.34 24.57
McCon 11.13 16.13 21.12 6.25 2.34 24.57
Wong4 11.27 16.27 21.28 6.85 2.34 25.78
Wong3 11.29 16.28 21.28 5.80 2.34 25.78
M2 13.29 18.28 23.28 7.63 2.44 27.34
JacCube 13.32 18.31 23.31 8.05 2.54 27.34
Ochiai 15.17 20.17 25.16 9.95 2.76 27.34
AMean 16.82 21.81 26.80 12.25 2.80 30.77
Pearson 17.08 22.07 27.06 12.43 2.76 33.34
Ample2 17.21 22.21 27.20 11.61 2.54 33.47
Jaccard 18.48 23.47 28.47 17.48 2.80 35.89
Rogot2 18.84 23.84 28.83 15.47 2.54 37.29
Tarantula 19.13 24.12 29.12 18.62 2.80 38.69
CBI Log 18.79 24.46 30.13 19.09 2.80 40.57
Russell 0.90 28.36 55.82 29.87 21.77 37.71
Binary 0.90 28.36 55.82 29.87 21.77 37.71
Overlap 0.90 28.39 55.88 29.87 21.77 37.71
Ample 25.82 31.39 36.96 18.30 3.04 67.97

percentages measure that we use to report bug localization performance figures throughout
the thesis. Therefore, the figures for the Mid measure are the average rank percentages
figures we reported in the Siemens column of Table 5.11. For the High measure, Rus-
sell, Binary, and Overlap are the metrics that give the smallest average rank percentages
(0.90%) as compared to other metrics. This does not indicate that the latter are the best
metrics. Rather, this observation is due to the nature of these metrics. The statement
initialisation codes are always executed by all the test cases. We know that the buggy
statement for single bug programs is executed by all the fail test cases. Therefore, by
using the Russell and Binary metrics (see the metrics in Table 2.3), the statement initiali-
sation codes will yield identical metric values and rank equally with the buggy statement.
Using the High measure for the Russell and Binary metrics return the first ranking posi-
tion of the statement that shares the same metric value as the buggy statement. For the
Overlap metric, the denominator of the metric always takes the minimum value among
aef , anf , and aep (see the metric in Table 2.3). The initialisation code always has the same
value for both numerator and denominator of the buggy statement. The same case applies
for Russell, Binary, and Overlap metrics when evaluating using the Low measure. Due

140

5.11. OTHER PERFORMANCE MEASURES

to ties in the ranking, these metrics return the last ranking position of the statement that
shares the same metric value as the buggy statement. Therefore, it is rather misleading to
use extreme cases, such as the High and Low measures.

 O,O^p W3 Zol W4 Och Tar Rus
0

5

10

15

20

25

30

35

40

45

50

Spectra Metric(s)

Q
1, Q

2 a
nd

 Q
3 (

in
 r

an
k

pe
rc

en
ta

ge
s

(%
))

25th (Q
1
), Median (Q

2
) and 75th (Q

3
) Percentile vs Spectra Metrics for Siemens Test Suite

75th percentile,Q
1

25th percentile,Q
3

Median percentile,Q
2

Figure 5.17: Median Rank Percentages of the Siemens Test Suite (Single Bug) Programs

Instead of taking the average of the rank percentages using the High, Mid, and Low

measures, we consider the median, First Quartile, and Third Quartile [Dodd, 1938]. The
median rank percentages is used to avoid any outlier in bug localization performance
across the datasets. By using the average rank percentages, there is a possibility that sev-
eral programs that perform very poorly in the bug localization performance would affect
and distort the overall bug localization performance of a particular spectra metric. The
First Quartile (25th Percentile) and Third Quartile (75th Percentile) are used to understand
the spread of the percentages of programs in the test suite that perform in the respective
average rank percentages on several spectra metrics. We consider the Mid measure to
evaluate the median, First Quartile, and Third Quartile measures.

We also observe that the First Quartile and Third Quartile of the rank percentages for
several metrics at the top of the table are identical. We observe that the spread of the
rank percentages (difference between the 25th and 75th percentile) gets larger for metrics
that are ranked at the bottom of the table. This indicates that by using these metrics,
buggy statements in the single bug programs do not rank high most of the time. We plot
the median rank percentages and the error bar (representing the First Quartile (Q1) and
Third Quartile (Q3)) for several metrics such asO, Op, Wong3 (W3), Zoltar (Zol), Wong4
(W4), Ochiai (Och), Tarantula (Tar), and Russell (Rus), in Figure 5.17. We observe that

141

Chapter 5. A MODEL FOR SPECTRA-BASED SOFTWARE FAULT DIAGNOSIS

the Russell (Rus) metric has the narrowest error bar in the figure. It ranges from the rank
percentages of approximately 21% to 38%. By using the metric, there are huge number
of programs where the non-buggy statements ranked equally with the buggy statement.
Therefore, the rank percentages for the single bug programs evaluated with the Russell
(Rus) metric do not differ much.

5.11.2 Top-rank-bug Score

We have evaluated the top-rank-bug score on our ITE28 model program in Table 5.1. In
Table 5.19, we detail the breakdown evaluation of top-rank-bug score on all the single bug
programs of the Siemens Test Suite. We observe that the O and Op metrics are among the
top metrics, with 10.94% of the single bug programs of the Siemens Test Suite having the
bug ranked top.

Table 5.19: Results of the Top-rank-bug Score (%) for the Siemens Test Suite (Single Bug Pro-
grams)

Metric Top-rank-bug (%)
O,Op 10.94
Zoltar 10.94
Wong4 10.94
Wong3 10.12
Kulczynski2 9.713
McCon 9.713
M2 9.664
JacCube 9.246
Ample2 9.25
Ample 9.217
Rogot2 9.082
Ochiai 8.836
AMean 8.672
Pearson 8.672
Jaccard 8.262
CBI Log 8.111
Tarantula 8.098
Russell 1.949
Binary 1.949
Overlap 1.943

142

5.11. OTHER PERFORMANCE MEASURES

5.11.3 Relative Score

In Subsection 4.4.3 of Chapter 4, we have defined the relative score measure Relp (see
Definition 13). This measure is used to evaluate bug localization performance of a spectra
metric in the cases where no sensible metric is able to rank the bug on top. One of the
observed cases is a huge number of non-buggy statements sharing identical aij values with
the buggy statement in the subset of the Unix Test Suite in Subsection 6.3.2. It causes ties
of metric value of the non-buggy statements with the buggy statement. Due to the ties in
the ranking of the statements, no sensible spectra metric can rank the bug of the program
on top and affects the bug localization performance. This measure ignores such case and
evaluate the best possible bug localization performance a spectra metric could achieve.

Table 5.20: Results of Average Relative Score for Single Bug Programs of the Siemens Test Suite,
the subset of Unix Test Suite, Concordance, and Space

Metric Average of Relative Score
O,Op 100.00
Zoltar 99.65
Wong3 99.70
Wong4 98.97
Kulczynski2 98.88
McCon 98.88
JacCube 97.98
M2 97.89
Ochiai 96.51
Pearson 94.40
Jaccard 94.35
AMean 94.28
Ample2 93.95
Rogot2 93.18
CBI Log 90.96
Tarantula 90.94
Ample 87.82
Russell 83.67
Binary 83.67
Overlap 81.62

We evaluate the relative score measure on our single bug and multiple-bug bench-
marks, namely the Siemens Test Suite, subset of the Unix Test Suite, Concordance, and
Space. For the Space, we evaluate the measure on the entire test suite of the Space,
AllTests. We report the average of the relative score with respect to the single bug and
multiple-bug benchmarks. Table 5.20 shows the average relative score for several spectra

143

Chapter 5. A MODEL FOR SPECTRA-BASED SOFTWARE FAULT DIAGNOSIS

metrics evaluated on the 250 single bug programs of our benchmarks. Higher relative
score of a metric (see Definition 13) indicates the best bug localization performance that
a metric can achieve. The table shows that O and Op metrics have the highest average
relative score, 100 compared to other metrics.

In the design of our optimal metrics O and Op for single bug programs (see Section
5.5), the buggy statement must be executed by all the fail test cases (aef = totF). O metric
returns anp if it is a buggy statement. Op metric primarily ranks statements based on the aef
and then aep. As explained in Subsection 4.4.3, using any sensible metrics, statement(s)
that rank(s) higher than the buggy statement have aef and anp values greater than the buggy
statement’s aef and anp respectively. For the latter case, no sensible metric can achieve
any better bug localization performance and rank the bug top in the ranking. For O and
Op metrics in single bug programs, we know that any statement that ranks higher than the
buggy statement, must have aef = totF and anp values greater than the buggy statement’s
anp value. Using relative score (Algorithm 29), statements that ranked higher than the
buggy statement with the latter conditions are not considered. Relative score also ignore
the case where the statement(s) that rank(s) higher than the buggy statement that has
the identical aij values (having similar metric value) as the buggy statement. Therefore,
nonbug and nonbugties variables of Algorithm 29 are 0 for O and Op metrics. These
metrics are able to show the best bug localization performance with the relative score of
100 for all the single bug programs.

We observe other metric such as Tarantula has the average relative score of 90.94.
The reason to the different average relative score in Op and Tarantula metrics is due to the
influence of aep in the denominator of Tarantula metric. Some of the non-buggy statements
have lesser aep values than the buggy statement’s aep values. Even though these non-buggy
statements have lesser aef value than the buggy statement, Tarantula metric can possibly
rank these non-buggy statements higher than the buggy statement. Therefore, Tarantula
metric is unable to show the best bug localization performance as compared to using the
Op metric on programs with the latter condition.

We also evaluate the average of the relative score for 6661 multiple-bug programs
of our benchmarks (Siemens Test Suite, subset of the Unix Test Suite, and Space) in
Table 5.21. Kulczynski2 and McCon metrics yield the highest average relative score
of 98.09 as compared to other metrics. Unlike in Table 5.20 where better performing
metrics, O and Op metrics show the best possible bug localization performance (100),
better performing metrics such as, Kulczynski2 and McCon metrics in Table 5.21 do not
yield average relative score of 100 for the multiple-bug programs of our benchmarks.
The latter observation might be due to the multiple-bug program benchmarks that we use.
This has been discussed in detail in Section 5.10. It may also be other reasonable spectra

144

5.11. OTHER PERFORMANCE MEASURES

metrics that are possible to achieve better bug localization performance than Kulczynski2
and McCon metrics on the multiple-bug program benchmarks and these will be the future
work.

In all the evaluation on single bug programs of the Siemens Test Suite using different
performance measures in this section, the ordering for most of the better performing spec-
tra metrics are similar to the ordering of the metrics using the average rank percentages
(Siemens column of Table 5.11). We observe that bug localization performance using
optimal metrics O and Op on the Siemens Test Suite single bug programs consistently
outperform other metrics across the different performance measures. Wong3 and Zoltar
metrics show some slight different orderings on several performance measures, but the
differences between these metrics are small.

Table 5.21: Results of Average Relative Score for Multiple-bug Programs of the Siemens Test
Suite, the subset of Unix Test Suite, and Space

Metric Average of Relative Score
Kulczynski2 98.09
McCon 98.09
Wong4 97.95
Zoltar 97.83
Ochiai 97.06
AMean 96.61
Pearson 96.53
Ample2 96.42
Jaccard 96.31
Rogot2 96.19
JacCube 96.06
Wong3 95.94
M2 95.92
Op 95.91
CBI Log 95.72
Ample 94.53
O 94.37
Tarantula 93.51
Russell 91.85
Binary 90.43
Overlap 88.46

145

Chapter 5. A MODEL FOR SPECTRA-BASED SOFTWARE FAULT DIAGNOSIS

5.12 Summary

In this chapter, we have advanced the state-of-the-art of software fault diagnosis using
program spectra. We proposed a simple model to evaluate the performance of spectra
metrics. We performed extensive empirical study of metrics that can be used for ranking
statements according to how likely they are buggy. We also showed several metrics are
equivalent for ranking using the property of monotonically increasing function. Based on
the model, we developed a theoretical understanding of single bug programs that led the
discovery of optimal spectra metrics for single bug programs that are much simpler than
many of the metrics proposed. The evaluation results from the model fit very well with the
results for single bug programs in the benchmarks (Siemens test suite, subset of the Unix
Test Suite, Concordance, and Space), where the optimal metrics perform the best. We
considered this to be a firm validation of our approach. Multiple-bug programs were also
evaluated using the same set of metrics. This serves as the motivation to propose several
bug localization approaches and to improve the bug localization performance for multiple-
bug programs. We briefly discussed using the proposed model program for multiple-bug
programs. Finally, several new performance measures were evaluated especially on the
single bug Siemens Test Suite to gain insights of these measures using several spectra
metrics.

146

6
Bug Consistency of Buggy Statement with

respect to Bug Localization Performance

6.1 Introduction

There are two types of buggy statement in a typical buggy program, namely determin-
istic and non-deterministic buggy statements [Liblit et al., 2003]. Deterministic buggy
statements are statements that always show unintended output when executed by any test
case; for example, when any of the test cases executes the buggy statement, variable x re-
turns the wrong value instead of the expected value. Non-deterministic buggy statements
are statements that only show unintended output some time when executed by any of the
test cases. This type of bug is usually harder to diagnose, as the buggy statement does
not always show unintended output when executed by any of the test cases. These two
classifications essentially refer to bug consistency (how consistently the buggy statement
shows unintended output when executed by test cases). We are interested in investigating
the relationship between the consistency of the bug and bug localization performance.

Abreu et al. have introduced a measure of error detection accuracy, qe [Abreu et al.,
2007]. We discuss how the effectiveness in determining buggy statements (bug localiza-
tion performance using rank percentages) for various metrics degrades as the bug consis-
tency (error detection accuracy, qe) of a statement approaches zero. We show the relation-
ship between bug localization performance using rank percentages and bug consistency,
qe using several spectra metrics on single bug and multiple-bug programs.

147

Chapter 6. BUG CONSISTENCY OF BUGGY STATEMENT WITH RESPECT TO BUG
LOCALIZATION PERFORMANCE

6.2 Relationship of Bug Consistency, qe with respect to
Bug Localization Performance (Rank Percentages)

The bug consistency of a buggy statement is defined as how frequently it shows unin-
tended output when executed. Bug consistency fits into the definition of error detection
accuracy, qe, which has been used as a measure of the accuracy with which the bug is de-
tected in a program [Abreu et al., 2007]. qe is defined as the proportion of fail tests in test
cases where the buggy statement was executed. We have already defined qe (Definition
18) in page 113. In this chapter, we use the terms bug consistency and qe interchangeably.

We consider a good approach to locate bugs should have maximum bug localization
performance for consistent (deterministic) bugs. As bug consistency approaches zero, bug
detection becomes harder, and the prediction becomes no better than a random guess. In
the worst case, the bugs will be so inconsistent that there can be no failures in the test
suite used. The bug consistency, qe, value depends on the particular test suite used.

We show the relationship of bug consistency with bug localization performance us-
ing the rank percentages performance measure (Subsection 4.3.1 of Chapter 4) with the
following hypothesis. Smaller rank percentages means less program code needs to be
examined by the programmer in order to locate a bug. As qe approaches 0, the ranking
of the buggy statement can vary between lower and higher ranks. As qe approaches 1,
the buggy statement will be ranked higher, approaching the best possible bug localization
performance (smallest rank percentages).

0 0.2 0.4 0.6 0.8 1
10

−1

10
0

10
1

10
2

R
an

k
P

er
ce

nt
ag

es

Bug Consistency, q
e

Rank Percentages vs q
e
 for Ideal Case

A

Figure 6.1: Relationship of Rank Percentages vs qe for Ideal Case

148

6.3. PLOT OF THE RELATIONSHIP OF RANK PERCENTAGES VS BUG
CONSISTENCY, QE

Based on the above hypothesis, we plot the Ideal Case in Figure 6.1. Each point in
this figure represents a program which has a buggy statement. In this figure, we make
an assumption that a typical program has 300 program statements. The figure shows bug
localization performance – how much program code must be examined in order to locate
the buggy statement – as the qe value of the buggy statement varies. We use a logarithmic
scale for the y-axis to observe programs with low rank percentages. Point A in the figure
refers to a typical program where the buggy statement has a qe value of 0.4 and requires
the programmer to examine 1% of the program code (3 lines of code) to locate the buggy
statement.

In the figure, as the qe is approaching 1 (the bug is consistent), the bug localization
performance converges to lower rank percentages. The buggy statement that ranks first
among the 300 program statements gives us a rank percentage of approximately 0.33%.
This is the best possible bug localization performance (using rank percentages). The
points in the figure form a asymptotically decreasing curve for the Ideal Case. For better
performing spectra metrics on single bug programs (observed in Chapter 5), such asO and
Op, we expect the bug localization performance to improve as the bug becomes consistent
(qe is 1). Therefore, we expect the points for these metrics to form a similar asymptotically
decreasing curve of the Ideal Case.

For metrics that perform less well than the O and Op metrics, such as Tarantula and
Rogers, as the qe increases (the bug becomes more consistent), the buggy statement will
not be located as quickly as for the better performing spectra metrics. Therefore, the
points for these metrics would form a less steep asymptotically decreasing curve, as bug
localization performance improves much slower than the better performing spectra met-
rics.

6.3 Plot of the Relationship of Rank Percentages vs Bug
Consistency, qe

In this section, we plot the relationship between rank percentages and bug consistency,
qe, for several spectra metrics. Abreu et al. performed a similar study of the relationship
between rank percentages and the qe [Abreu et al., 2007]. However, they modify the test
cases in the test suite of the benchmark in order to vary the qe values. They randomly
exclude pass and fail test cases for the programs in the Siemens Test Suite [Do et al.,
2005] in order to achieve this. In our study, we use the entire Siemens Test Suite to
perform the study of this relationship. We also use other benchmarks such as the subset
of the Unix Test Suite, Space, and Concordance to study the same relationship. We plot

149

Chapter 6. BUG CONSISTENCY OF BUGGY STATEMENT WITH RESPECT TO BUG
LOCALIZATION PERFORMANCE

the relationship for different benchmarks of single bug programs and compare the latter
relationships with the Ideal Case of Figure 6.1. BothO and Op metrics are optimal metrics
for single bug programs in Chapter 5. Therefore, we only show the plot for one of the
optimal metrics, Op, in this chapter.

6.3.1 Siemens Test Suite

Initially, we plot rank percentages and bug consistency, qe for the single bug programs
of the Siemens Test Suite programs for the two spectra metrics, namely Op and Rogers
(Figure 6.2 and Figure 6.3). We have observed that Op metric is a better performing metric
for the Siemens Test Suite in Table 5.11 in Chapter 5. Rogers metric does not perform so
well and is part of the Group B metrics in Table 5.12.

0 0.2 0.4 0.6 0.8 1
Bug Consistency, qe

10−1

100

101

102

R
a
n
k
 P

e
rc

e
n
ta

g
e
s

Rank Percentages vs qe (Op metric) for Single Bug Siemens

Figure 6.2: Rank Percentages vs qe for the Single Bug Siemens Test Suite with respect to the Op

metric

150

6.3. PLOT OF THE RELATIONSHIP OF RANK PERCENTAGES VS BUG
CONSISTENCY, QE

0 0.2 0.4 0.6 0.8 1
Bug Consistency, qe

10−1

100

101

102

R
a
n
k
 P

e
rc

e
n
ta

g
e
s

Rank Percentages vs qe (Rogers metric) for Single Bug Siemens

Figure 6.3: Rank Percentages vs qe for the Single Bug Siemens Test Suite with respect to the
Rogers metric

0 0.2 0.4 0.6 0.8 1
Bug Consistency, qe

10−1

100

101

102

R
a
n
k
 P

e
rc

e
n
ta

g
e
s

Metrics

Rogers
Op

Trend Line for Rank Percentages (Op and Rogers) vs qe for Single Bug Siemens

Figure 6.4: Trend line for the Rank Percentages vs qe for the Single Bug Siemens Test Suite with
respect to the Op and Rogers metrics

Figure 6.2 and Figure 6.3 show the rank percentages for the Op and Rogers metrics,
compared to bug consistency, qe. Each point, represented with the symbol of X in the
figure, relates to the buggy statement of a typical program of 122 single bug Siemens
Test Suite programs. For illustrative purposes, we plot the trend lines based on the points
in both of these figures using a fitting function, known as the power regression func-
tion [Weisstein, 2011]. This function is also known as least square fitting function with
power law, and is commonly used to study the trend of data in several biochemical stud-

151

Chapter 6. BUG CONSISTENCY OF BUGGY STATEMENT WITH RESPECT TO BUG
LOCALIZATION PERFORMANCE

ies [Savageau, 1969,Shiraishi and Savageau, 1992]. We choose to use this fitting function
as it is readily available in the Gnumeric tool [GNOME, 2010]. Other fitting functions
could also be used for the plot of the trend lines in this study.

For both of the figures, we observe that there are many points along the y-axis when
the qe value is small. These points indicate that the ranking of the buggy statement is
anywhere between the lower and the higher rank position. In the Rogers metric (Figure
6.3), we observe most of the points concentrate between the rank percentages of 10% to
100% when the qe value is no more than 0.3. As the qe value increases and approaches 1,
we observe the rank percentages becoming smaller for both of the metrics. This indicates
that the buggy statement is ranked at a higher position as the bug becomes more consistent.
The programmer can easily locate the bug without needing to examine much program
code. This supports the hypothesis we established earlier in Section 6.2.

When the qe value is 1, we also observe that some of the points are still in the range
of rank percentages of 0.6% to 2% in both Figure 6.2 and Figure 6.3. These points are
due to several programs in the Siemens Test Suite having ties, that is, buggy statement
that share the same aij values and metric value as the non-buggy statements, where these
non-buggy statements are in the same block of the program as the buggy statement. Such
a case is more obvious in the subset of the Unix Test Suite, and we defer the discussion to
Subsection 6.3.3.

For clarity purposes, we separately show the trend lines observed in Figure 6.2 and
Figure 6.3 in Figure 6.4. We observe the difference in the trend lines for the Op and Rogers
metrics. The latter metric shows a less steep asymptotic decreasing curve as compared to
the former. This indicates that as qe increases, the bug localization performance of the
Rogers metric does not improve as much as compared to a better performing metric such
as the Op metric.

The Russell metric in Figure 6.5 provides a different observation. The trend line for
the metric shows a flat horizontal line for all the qe values. In this figure, most of the
points are in the rank percentages of 30%-60% for all the qe values. The reason for this
observation is the nature of the metric (see the metric in Table 2.3). The Russell metric
ranks the statements of the program based on the aef value. The buggy statement is ranked
together with the other non-buggy statements (e.g statement initialisation), producing a
huge number of ties. In this thesis, the Mid measure (for details of this measure, refer
to Section 4.2) is used to handle the ranking of a buggy statement that has ties with non-
buggy statements. Therefore, the rank percentages obtained using this metric reflect the
average of the bug position in the ties, and do not vary much for most of the single bug
programs.

152

6.3. PLOT OF THE RELATIONSHIP OF RANK PERCENTAGES VS BUG
CONSISTENCY, QE

0 0.2 0.4 0.6 0.8 1
Bug Consistency, qe

100

101

102

R
a
n
k
 P

e
rc

e
n
ta

g
e
s

Rank Percentages vs qe (Russell metric) for Single Bug Siemens

Figure 6.5: Rank Percentages vs qe for the Single Bug Siemens Test Suite with respect to the
Russell metric

6.3.2 Subset of the Unix Test Suite

In this subsection, we plot the relationship of rank percentages using several spectra met-
rics evaluated on the subset of the Unix Test Suite programs. We evaluate a similar set of
spectra metrics as in Subsection 6.3.1 to perform fair comparison on the metrics across
different datasets. In the following figures, each point relates to the buggy statement of a
typical program of 102 single bug of the subset of the Unix Test Suite.

0 0.2 0.4 0.6 0.8 1
10

0

10
1

10
2

Ra
nk

 P
er

ce
nt

ag
es

Bug Consistency, q
e

Rank Percentages vs q
e
 (Op metric) for Single Bug subset of Unix

Figure 6.6: Rank Percentages vs qe for the Single Bug of subset of the Unix Test Suite with respect
to the Op metric

153

Chapter 6. BUG CONSISTENCY OF BUGGY STATEMENT WITH RESPECT TO BUG
LOCALIZATION PERFORMANCE

Figure 6.6 and Figure 6.7 show the relationship of rank percentages with respect to
the bug consistency, qe, for the Op and Rogers metrics on the subset of the Unix Test
Suite. These figures show different patterns of the points of rank percentages from what
we observed earlier for the Siemens Test Suite in Subsection 6.3.1. Therefore, we do
not plot any trend lines for the subset of the Unix Test Suite, and defer discussion of this
behaviour to Subsection 6.3.3.

Figure 6.8 for the Russell metric shows a similar pattern of the points of rank per-
centages as Figure 6.5 for the Siemens Test Suite. Most of the points are in the rank
percentages of 30%-60% for all the qe values.

0 0.2 0.4 0.6 0.8 1
10

0

10
1

10
2

Ra
nk

 P
er

ce
nt

ag
es

Bug Consistency, q
e

Rank Percentages vs q
e
 (Rogers metric) for Single Bug subset of Unix

Figure 6.7: Rank Percentages vs qe for the Single Bug of subset of the Unix Test Suite with respect
to the Rogers metric

We also plot similar relationships of rank percentages with respect to bug consistency,
qe, using a similar set of metrics, for the single bug programs of the Concordance and
Space programs. These figures can be found in Appendix C. The appendix also shows
the plots for other metrics on the Siemens Test Suite and the subset of the Unix Test Suite
using spectra metrics, namely, Tarantula, Wong3, and Wong4.

In this study, we have shown that the relationship of rank percentages and bug con-
sistency, qe, in the Siemens Test Suite fits well with our hypothesis and the Ideal Case of
Figure 6.1. However, we do not observe a similar trend for other benchmarks, such as the
subset of the Unix Test Suite, Concordance, and Space programs. The points of the rank
percentages on the subset of the Unix Test Suite and Space programs are spread out as the
bug consistency, qe, increases. One possible explanation for the different observation on
the Siemens Test Suite from the other benchmarks is the test case design. The test cases
in the Siemens Test Suite are generated by the researchers at Siemens [SIR, 2010] using

154

6.3. PLOT OF THE RELATIONSHIP OF RANK PERCENTAGES VS BUG
CONSISTENCY, QE

0 0.2 0.4 0.6 0.8 1
10

0

10
1

10
2

Ra
nk

 P
er

ce
nt

ag
es

Bug Consistency, q
e

Rank Percentages vs q
e
 (Russell metric) for Single Bug subset of Unix

Figure 6.8: Rank Percentages vs qe for the Single Bug of subset of the Unix Test Suite with respect
to the Russell metric

the category partition approach [Ostrand and Balcer, 1988] (detailed in Subsection 7.2.1).
The researchers at Siemens also ensure that each executable statement of the program is
executed by at least 30 test cases. For the subset of the Unix Test Suite, we observe a
huge number of programs with ties (the buggy statement shares the same aij and metric
value as non-buggy statements). This could affect bug localization performance, and is
further explained in Subsection 6.3.3. For Concordance and Space, we cannot draw any
strong conclusion from the rank percentages points, as we only have a small number of
programs for these benchmarks.

6.3.3 Insights on the Bug Consistency, qe with respect to the Rank
Percentages

In Subsection 6.3.2, for the subset of the Unix Test Suite, we observe that some points
with respect to the rank percentages (Figure 6.6 and Figure 6.7) do not agree with the
hypothesis we have established in Section 6.2. A similar observation also applies to the
Space programs in Figure C.13 and Figure C.14 of Subsection C.1.4.

Initially, we investigate the behaviour observed for the subset of the Unix Test Suite
in Figure 6.6 and Figure 6.7. In these figures, when the qe value is 1, we still have a huge
number of rank percentages points especially between 10% and 50%. This is in contrast
with our hypothesis in Figure 6.1. In our hypothesis, as the bug becomes more consis-
tent (qe value of 1), the buggy statement would have achieved the best bug localization
performance, and be ranked top.

155

Chapter 6. BUG CONSISTENCY OF BUGGY STATEMENT WITH RESPECT TO BUG
LOCALIZATION PERFORMANCE

We investigate the programs in the subset of the Unix Test Suite dataset where the
rank percentages are between 10% and 50% and the bug is consistent (qe value is 1). We
also investigate some of the programs that have lower rank percentages and the bug is
consistent (qe value is 1). This enables us to gain some understanding on the patterns of
the programs observed in Figure 6.6 and Figure 6.7. We choose one of the metrics, Op, to
investigate the behaviour observed for the rank percentages on the subset of the Unix Test
Suite. We propose to investigate the distribution of qe values of some of the programs in
the dataset, namely, Colv29, Checkeqv12, and Splinev14. The buggy statement of these
programs has a qe value of 1, but the bug localization performance evaluated with the Op

metric varies.

Figure 6.9: Number of Statements vs qe Range for the subset of the Unix Test Suite-Colv29 using
Op metric

Initially, we choose to investigate Colv29 program. Figure 6.9 shows the histogram
of the distribution of the qe values (in ranges) for all the program statements of Colv29
of the subset of the Unix dataset. The qe range of 0 in the x-axis refers to the number of
program statements that have a qe value greater than 0 and strictly lesser than 0.1. The
qe range of 0.1 refers to the number of program statements that have a qe value of greater
than 0.1 and strictly lesser than 0.2. The same equality condition for the qe range of 0.1
also holds for the qe range of 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 respectively. The qe
range of 1.0 indicates that the number of program statements that have the qe value equal
to 1. By using the Op metric, the rank percentages for this program is 33.22%.

There are 144 statements in the program that share the similar qe value of 1 (qe range
of 1.0 in x-axis). We observe 104 of the 144 statements are ranked together with the buggy
statement. These statements have identical aij values to the buggy statement. Some of

156

6.3. PLOT OF THE RELATIONSHIP OF RANK PERCENTAGES VS BUG
CONSISTENCY, QE

these statements are in the same block as the buggy statement, and so share the same met-
ric value as the buggy statement. Since we use the Mid measure in the rank percentages
(see Section 4.2), the average of the tied position range of the buggy statement is used.
Therefore, we can observe poor performance of bug localization (rank percentages) for
this particular program, even though the bug is consistent (qe value is 1).

Figure 6.10: Number of Statements vs qe Range for the subset of the Unix Test Suite-Checkeqv12
using Op metric

We investigate the distribution of qe values for all the statements of Checkeqv12 of the
subset of the Unix Test Suite (Figure 6.10). This program performs slightly better than
Colv29 on the Op metric. The programmer needs to examine 4.31% of the program code
in order to locate the bug. We observe 21 statements in the program that share the same qe
value of 1. These statements have 4 of the 21 statements ranked together with the buggy
statement, and these four statements are in the same block as the buggy statement.

We also study another example of the distribution of qe values for all the statements
of Splinev14 from the subset of the Unix Test Suite in Figure 6.11. In this program,
using the Op metric, the programmer needs to examine 1.15% of the program code in
order to locate the bug. We observe that there is only one statement having a qe of 1
and ranked together with the buggy statement. This statement is in the same block of the
buggy statement. As the number of statements in the program having a qe value of 1 is
smaller, the performance of bug localization for this program is better than the previous
two programs (Colv29 and Checkeqv12) as expected. This result also holds for several
other sensible metrics, including Zoltar and Wong3.

157

Chapter 6. BUG CONSISTENCY OF BUGGY STATEMENT WITH RESPECT TO BUG
LOCALIZATION PERFORMANCE

Figure 6.11: Number of Statements vs qe Range for the subset of the Unix Test Suite-Splinev14
using Op metric

Figure 6.12: Number of Statements vs qe Range for Spacev4 using Op metric

We also investigate and gain understanding of the relationship of rank percentages
and qe for the Space program, Spacev4, with a qe value of 1. By using the Op metric, this
program shows poor bug localization performance, with the rank percentages of 0.49%.
The best rank percentages in the Space program is 0.06%. This program has a huge
number of non buggy statements sharing the qe value of 1 with the buggy statement. We
plot the distribution of qe values for all the statements of the Spacev4 in Figure 6.12.
There are 108 statements that have a qe value of 1. Out of the 108 statements, there are 69
that ranked together with the buggy statement. Therefore, we observe poor performance

158

6.3. PLOT OF THE RELATIONSHIP OF RANK PERCENTAGES VS BUG
CONSISTENCY, QE

of bug localization (rank percentages) for this particular program even though the bug is
consistent (qe of 1).

We have gained some insights from our investigation of the three examples of the sub-
set of the Unix Test Suite programs and one example of the Space program. Even though
qe gives us information on how consistent the bug is, it does not necessarily guarantee that
the bug will be ranked top in the ranking. Our hypothesis, established earlier in Figure 6.1,
suits programs in the Siemens Test Suite (Subsection 6.3.1). We do not observe a huge
number of non-buggy statements in the same block with the buggy statement, especially
when the bug is consistent (qe of 1).

We are also interested to investigate the types of bugs for the points observed in Figure
6.6 in the subset of the Unix Test Suite. We want to study the type of bugs where the bug
consistency is 1 but the bug localization performance (rank percentages) is poor. There
are 17 programs having such a condition and the bug localization performance for these
programs is within the rank percentages range of 20% to 30%. 10 out of 17 programs have
the bugs related either to constant or data type changes. A typical example for changes
of constant is version 4 of the print tokens2 program with the bug id = 0. This type
of bug is harder to diagnose as it is executed by all the test cases. Bugs that occur in
conditional statements are easier to diagnose; for example, certain test cases only execute
the then or else condition. The other 7 programs in the figure that perform poor bug
localization performance when the bug is consistent (qe is 1) are related to the conditional
statements. We expect these programs would give better bug localization performance.
However, we investigate these 7 programs and there are a huge number of non-buggy
statements having ties with the buggy statement. Some of these non-buggy statements
share the same metric value, MetV alue, as the buggy statement within the same block
of programs. Therefore, poor bug localization performance (higher rank percentages) are
observed for these programs.

The details of the type of bugs for all the programs in our benchmarks can be found in
Appendix H.

6.3.4 Evaluating The Relationship of Rank Percentages vs Bug Con-
sistency, qe on the Multiple-bug Programs

We observe that the Kulczynski2 and Zoltar metrics perform the best in bug localization
performance for the two-bug programs and three-bug programs of the Siemens Test Suite
(Table 5.15 and Table 5.16 respectively). We plot the relationship between the rank per-
centages on these better performing metrics and the bug consistency, qe, on the multiple-
bug programs. We do not consider the subset of the Unix Test Suite in our plot, as we

159

Chapter 6. BUG CONSISTENCY OF BUGGY STATEMENT WITH RESPECT TO BUG
LOCALIZATION PERFORMANCE

have observed a huge number of ties that can affect the bug localization performance in
Subsection 6.3.2.

Initially, we plot the relationship of the rank percentages on the multiple-bug programs
of the Siemens Test Suite for the Kulczynski2 and Zoltar metrics (Figure 6.13 and Figure
6.14). Each point of X in these figures relates to one of the multiple-bug programs of
the Siemens Test Suite. We consider the bug localization performance of multiple-bug
programs, based on the buggy statement that has the highest rank in the ranking. Each
point in these figures for the x-axis refers to the bug consistency, qe, of the buggy statement
of a particular multiple-bug program that is first found in the ranking by the programmer.
In Figure 6.14, we observe most of the bugs of the three-bug programs of the Siemens
Test Suite can be located within 10% of the program code using the Zoltar metric. The
relationship observed from the points in both of the figures are closely similar to our
observation for most metrics in the subset of the Unix Test Suite (Subsection 6.3.2). The
points in these figures are spread out as the bug consistency, qe, increases. In some of
these points, the bug localization performance is affected due to the ties of non-buggy
statements with the buggy statement. These observations are possibly due to the test cases
design. For the multiple-bug programs, we picked any two or more single bug programs
with different bugs and treated them as a multiple-bug program (detailed in Section 4.5).
We do not redesign test cases for the multiple-bug programs, but use the same test suite
from the Siemens Test Suite [SIR, 2010], originally designed for single bug programs.

0 0.2 0.4 0.6 0.8 1
10

−1

10
0

10
1

10
2

Ra
nk

 P
er

ce
nt

ag
es

Bug Consistency, q
e

Rank Percentages vs q
e
 (Kulczynski2 metric) for Two−Bug Siemens

Figure 6.13: Rank Percentages vs qe for the Two-bug Siemens Test Suite with respect to the Kul-
czynski2 metric

160

6.4. SUMMARY

0 0.2 0.4 0.6 0.8 1
10

−1

10
0

10
1

10
2

Ra
nk

 P
er

ce
nt

ag
es

Bug Consistency, q
e

Rank Percentages vs q
e
 (Zoltar metric) for Three−Bug Siemens

Figure 6.14: Rank Percentages vs qe for the Three-bug Siemens Test Suite with respect to the
Zoltar metric

We also plot the multiple-bug Space programs in Appendix C. As we have only 13
multiple-bug Space programs, we cannot make any conclusion from the observations on
this benchmark.

6.4 Summary

In this chapter, we studied the relationship between bug localization performance and bug
consistency, qe. When the bug consistency, qe, is approaching 1, we observe that the bug
localization performance improves for better performing spectra metrics. However, not
all test suites show this relationship. Bug localization performance is affected even though
the bug was consistent (qe is 1), as there are several statements in the same block as the
buggy statement.

We also studied the relationship of rank percentages and bug consistency, qe, on the
multiple-bug programs of the Siemens Test Suite and Space. The points of rank percent-
ages of the multiple-bug programs are spread out as the bug consistency, qe, increases
(similar to the single bug programs in the subset of the Unix Test Suite).

161

7
Bug Localization using Unique

(Non-redundant) Test Cases

7.1 Introduction

A test suite often contains a large number of test cases. As a typical software project
evolves, more test cases are added by programmers, and regression testing is always per-
formed before a new software release, to ensure the software passes all the test cases. We
wish to investigate any effect on the bug localization performance when we remove any
redundant test cases having identical coverage patterns.

In the area of debugging, several studies have also looked into the idea of removing
redundant test cases in the test suites [Harrold et al., 1993, Rothermel et al., 1998, Wong
et al., 1998, Jones and Harrold, 2003, Heimdahl and George, 2004, Hao et al., 2005, Yu
et al., 2008]. In these studies, the entire test suite containing all the test cases is referred
to as the unreduced test suite. The test suite where the redundant test cases have been
removed is known as a minimised test set or reduced test suite. In the previous chapters,
we used the entire test suites of our benchmarks to evaluate bug localization performance.
In this chapter, we perform thorough evaluation using non-redundant test cases to observe
the effectiveness of bug localization performance. We use the term redundant test cases for
the method that includes all the test cases, and the term unique test cases for the reduced
test suite. We introduce the concept of using unique test cases to locate bugs with pro-
gram spectra. We investigate the amount of redundant test cases in our benchmarks: the
Siemens Test Suite, the subset of the Unix Test Suite, Concordance, and Space programs.
We then evaluate several spectra metrics using the unique test cases on our benchmarks.
We also evaluate bug localization performance for unique test cases on multiple-bug pro-
grams of our benchmarks. We show the importance of using more unique test cases with
respect to the bug localization performance for several spectra metrics.

163

Chapter 7. BUG LOCALIZATION USING UNIQUE (NON-REDUNDANT) TEST CASES

7.2 Concept of Unique (Non-redundant) Test Cases

There are mainly two approaches to remove redundant test cases. Let tA and tB as the
program spectra of test case A and test case B respectively. Each test tA and tB consists
of a set of statements executed by the test case. In the first approach, tA is considered
redundant if tA ⊆ tB. This approach is referred to as statement-based reduction [Yu et al.,
2008]. In the second approach, tA is considered redundant if and only if tA=tB. This
approach is referred to as vector-based reduction [Yu et al., 2008]. The first approach has
been used by Harrold et al. [1993]. The second approach is used in our study.

Table 7.1: Code Fragment of Figure 1 from Yu et al. [2008]

Test Cases
t1 t2 t3 t4 t5 t6 t7 t8

mid() { int x,y,z,m; 3,
3,

5

1,
2,

3

3,
2,

1

5,
5,

5

5,
3,

4

7,
5,

4

2,
1,

3

4,
3,

5

1: read("Enter 3 numbers:",x,y,z); • • • • • • • •
2: m = z; • • • • • • • •
3: if (y < z) • • • • • • • •
4: if (x < y) • • • • •
5: m=y; •
6: else if (x < z) • • • •
7: m=y; // *** bug *** • • •
8: else • • •
9: if (x > y) • • •

10: m=y; • •
11: else if (x > z) •
12: m=x;
13: print("Middle number is:",m); • • • • • • • •

} Pass/Fail Status P P P P P P F F

We illustrate these two approaches using a fragment of code given in Yu et al. [2008].
Table 7.1 shows a typical test coverage of a program with 8 tests and 13 statements. In
this table, there are six pass test cases (t1–t6) and two fail test cases (t7–t8). The Pass and
Fail status of the test cases are represented with P and F respectively. For the pass test
cases, t1 6= t2 6= t3 6= t4. t5 ⊆ t1 and t3 = t6. For the fail test cases, t7 = t8. In the case of
vector-based reduction (used in our study), the unique test cases would be t1, t2, t3, t4, t5,
t7. In the case of statement-based reduction, the unique test cases would be t1, t2, t3, t4,
t7. In this study, we retain unique identical pass and fail test cases; that is, we treat pass
and fail test cases independently.

164

7.2. CONCEPT OF UNIQUE (NON-REDUNDANT) TEST CASES

Table 7.2: Breakdown of Unique Test Cases (on average) for the Subset of the Single Bug Pro-
grams

Program Test Cases Unique Test Cases Unique Test Cases (%)
Concordance 372 132 35.48
replace 5542 2025 36.54
schedule 2650 469 17.69
schedule2 2710 664 24.50
tcas 1608 10 0.62
Space Subset 1103 895 81.14

7.2.1 Insights of Redundant Test Cases

We remove the redundant test cases from our benchmarks; Siemens Test Suite, the subset
of the Unix Test Suite, Concordance, and Space programs. In order to remove the redun-
dant test cases and determine the unique test cases, all the test cases in the test suites have
to be executed.

Due to the space constraint, we only show the information of the number of all test
cases (redundant), number of unique test cases, and the percentages of the unique test
cases (Unique Test Cases (%)) for several single bug programs of our benchmarks in Table
7.2. The figures for Unique Test Cases and Unique Test Cases % in this table are averaged
across different program versions for each program. The proportion of unique test cases in
tcas is 0.62%. This means that approximately 99.38% of test cases are redundant. There
are huge number of redundant pass and fail test cases in the tcas program.

The Siemens Test Suite has a huge number of redundant test cases due to the test
cases generated by the researchers at Siemens [SIR, 2010] using the category partition
approach [Ostrand and Balcer, 1988]. This approach partitions and decomposes test spec-
ifications into several test cases. For example, a test specification of an array variable can
be decomposed to test cases checking the size of the array and checking whether the array

is empty or full. The researchers at Siemens also manually added more test cases in the
test suite to ensure that each executable statement of the program is executed by at least
30 test cases.

For Concordance, the proportion of unique test cases per program (on average) is
35.48%. The redundant test cases are also observed for Space program. In this study, we
use the Subset test cases of Space (consisting of 10 bins), which are randomly selected
from the existing test suite of Space programs. The details of the Subset of Space can be
found in Section 4.5. On average for a Space program in one bin, the proportion of unique
test cases is 81.14%.

165

Chapter 7. BUG LOCALIZATION USING UNIQUE (NON-REDUNDANT) TEST CASES

We also show the breakdown of unique test cases of other single bug and multiple-bug
programs in Appendix D. The breakdown of the unique pass and fail test cases for each
program version in the benchmarks can be found at the webpage (http://www.cs.
mu.oz.au/˜leehj/unique/appendix.htm).

7.3 Bug Localization Performance using Unique Test Cases

We evaluate the performance of bug localization based on the unique test cases (vector-
based reduction approach) for the Siemens Test Suite and the subset of the Unix Test
Suite, Concordance, and Space programs.

Yu et al. evaluate both the statement-based and vector-based reduction approaches to
study the effect of bug localization performance [Yu et al., 2008]. In their study, Yu et al.
use the subsets of test cases before removing redundant test cases. They use the subsets
of test cases in the Siemens Test Suite and Space to study the effect of bug localization
performance with respect to the different test suite sizes. In our study, we use the entire test
cases of the test suites before removing any identical test cases for pass and fail test cases.
We evaluate the unique test cases using several better performing spectra metrics (which
have been found in Chapter 5), such as Op, Zoltar, and Wong3. Yu et al. found that the
vector-based reduction approach gives an improvement in bug localization performance
as compared to the statement-based reduction approach for the Siemens Test Suite and
Space. In their evaluation, they use Tarantula, Jaccard, and Ochiai metrics. They report
their evaluation based on all the Siemens Test Suite and Space programs regardless of the
number of bugs in these programs. We report the figures according to the breakdown of
the number of bugs in the programs: single bug, two-bug, and three-bug programs.

7.3.1 Single Bug Programs

Table 7.3: Average Rank Percentages for Redundant and Unique Test Cases of the Single Bug
Siemens Test Suite and the subset of the Unix Test Suite

Metric Redundant Unique p-value
O, Op 17.86 17.79 0.8117
Zoltar 18.23 18.00 0.6501
Kulczynski2 19.06 18.56 0.2053
McCon 19.06 18.56 0.2053
JacCube 20.06 18.67 0.0032
M2 20.12 18.88 0.0005

Continued on next page

166

7.3. BUG LOCALIZATION PERFORMANCE USING UNIQUE TEST CASES

Table 7.3 – continued from previous page
Metric Redundant Unique p-value

Wong3 18.19 18.90 1
Ochiai 21.63 19.65 0.0082
Wong4 18.93 20.78 1
Jaccard 23.64 21.58 0.0245
Pearson 23.56 22.19 0.0013
AMean 23.66 22.38 0.0010
Ample2 24.08 23.33 0.0874
Rogot2 24.88 23.57 0.0047
Tarantula 27.09 25.91 0.0158
CBI Log 26.80 28.11 0.6631
Russell 30.02 30.02 1
Binary 30.02 30.02 1
Ample 30.16 30.04 0.5625
Overlap 32.23 32.23 1

Table 7.4: Average Rank Percentages for Redundant and Unique Test Cases of the Single Bug
Concordance Programs

Metric Redundant Unique p-value
O,Op 10.11 10.14 0.9632
Zoltar 10.11 10.14 0.9632
Kulczynski2 10.21 10.20 0.6054
McCon 10.21 10.20 0.6054
JacCube 10.43 10.22 0.0987
M2 10.97 10.40 0.2113
Ochiai 11.19 10.51 0.1006
Wong3 10.15 11.19 0.9849
Jaccard 17.68 12.35 0.2771
Wong4 11.35 12.75 0.3937
AMean 18.90 13.76 0.0173
Pearson 18.42 13.91 0.5
Ample2 18.05 14.68 0.7908
Tarantula 20.03 15.81 0.5

Continued on next page

167

Chapter 7. BUG LOCALIZATION USING UNIQUE (NON-REDUNDANT) TEST CASES

Table 7.4 – continued from previous page
Metric Redundant Unique p-value

Rogot2 19.24 19.73 0.8886
Overlap 21.03 21.03 1
Russell 21.03 21.03 1
Binary 21.03 21.03 1
CBI Log 22.63 25.71 0.8532
Ample 27.53 40.06 0.9929

Table 7.5: Average Rank Percentages for Redundant and Unique Test Cases of the Single Bug
Space Programs (on average of 10 bins)

Metric Redundant Unique p-value
O,Op 1.64 1.63 0.5
Wong3 1.65 1.74 0.9093
Zoltar 1.80 1.78 0.5
JacCube 1.90 1.88 0.5
M2 1.92 1.89 0.8145
Kulczynski2 2.07 2.01 0.2113
McCon 2.07 2.01 0.2113
Ochiai 2.26 2.23 0.8145
Wong4 1.64 2.54 0.8618
Rogot2 2.67 2.90 0.8193
Pearson 2.72 2.96 0.9093
Ample2 2.68 3.15 0.9704
AMean 2.93 3.15 0.7052
Jaccard 3.18 3.36 0.8193
Tarantula 6.31 6.42 0.5472
Ample 6.56 8.24 0.9704
CBI Log 6.65 8.46 0.7219
Russell 17.59 17.59 1
Binary 17.59 17.59 1
Overlap 18.31 18.31 1

168

7.3. BUG LOCALIZATION PERFORMANCE USING UNIQUE TEST CASES

Table 7.3, Table 7.4, and Table 7.5 show the bug localization performance (average
rank percentages) using unique test cases on all the single bug programs from the Siemens
Test Suite and the subset of the Unix Test Suite, Concordance, and Space. We also perform
a one-sided Wilcoxon rank sum test [Hollander and Wolfe, 1973] on the benchmarks to
check the statistical significance of our hypothesis - the bug localization performance

using the unique test cases improves as compared to the bug localization performance

using the redundant test cases. We report the p-value [Rice, 1989] for our hypothesis in
these tables. We choose p-value of 0.05 for our hypothesis. For the Space programs, we
only perform the statistical test on one of the 10 bins in the Subset of Space programs,
as the bug localization performance across these 10 bins is very similar (shown in Figure
5.13 of Subsection 5.8.1).

When using the better performing metrics such as O and Op, there is a slight im-
provement in bug localization performance using unique test cases as compared to using
redundant test cases on the Siemens Test Suite and the subset of the Unix Test Suite, and
Space programs. Even though these metrics show a slight improvement in bug localiza-
tion performance using unique test cases, we observe larger p-values for these metrics.
p-values greater than 0.05 indicate that the improvement in bug localization performance
using unique test cases as compared to using redundant test cases for these metrics is not
statistically significant. We observe a slight drop in the effectiveness of the bug local-
ization performance for O and Op metrics on Concordance by using unique test cases as
compared to using redundant test cases.

Metrics shown at the bottom of the Table 7.3, such as Rogot2 and Tarantula show
statistically significant improvement of bug localization performance using unique test
cases as compared to using redundant test cases. These metrics have lower p-values as
compared to the better performing metrics such as O and Op. For example, the Tarantula
metric in Table 7.3 shows statistically significant improvement of bug localization perfor-
mance (p-value less than 0.05) using unique test cases as compared to using redundant
test cases. Yu et al. found that bug localization performance using unique test cases on
the Tarantula metric improves as compared to using redundant test cases of the Siemens
Test Suite and Space programs [Yu et al., 2008]. However, metric such as Tarantula is
not very useful for bug localization. We observe the programmer needs to examine more
program code (higher average rank percentages in Table 7.3, Table 7.4, and Table 7.5) to
locate bugs using the Tarantula metric as compared to using the better performing metrics
such as O and Op. Generally for most of the single bug benchmarks, we do not observe
any degradation of bug localization performance for better performing metrics by using
unique test cases.

169

Chapter 7. BUG LOCALIZATION USING UNIQUE (NON-REDUNDANT) TEST CASES

7.3.2 Multiple-bug Programs

We evaluate our proposed unique test cases approach on multiple-bug programs. We
evaluate on the two-bug and three-bug programs of the Siemens Test Suite and the subset
of the Unix Test Suite in Table 7.6 and Table 7.7 respectively. We also evaluate the unique
test cases approach on multiple-bug Space programs in Table 7.8. In these tables, we
report the p-value of our hypothesis, which is defined in Subsection 7.3.1.

Table 7.6: Average Rank Percentages for Redundant and Unique Test Cases of the Two-bug Pro-
grams of the Siemens Test Suite and the subset of the Unix Test Suite

Metric Redundant Unique p-value
Pearson 21.09 20.04 <0.05
Ample2 21.37 20.11 <0.05
AMean 20.97 20.13 <0.05
Jaccard 21.10 20.29 <0.05
Rogot2 21.78 20.40 <0.05
Wong4 20.78 20.58 0.9998
Kulczynski2 19.53 20.89 0.2171
McCon 19.53 20.89 0.2171
Ochiai 20.18 20.93 0.8003
CBI Log 22.29 21.13 <0.05
Zoltar 20.52 21.16 0.9848
Tarantula 23.13 21.61 <0.05
Wong3 22.54 22.33 1
M2 20.80 22.35 0.7035
JacCube 20.51 22.37 0.9080
Op 22.84 23.19 0.9443
Ample 24.49 23.67 <0.05
O 24.95 25.05 0.9240
Russell 32.10 32.44 1
Binary 34.02 34.02 1
Overlap 34.02 34.08 0.7305

170

7.3. BUG LOCALIZATION PERFORMANCE USING UNIQUE TEST CASES

Table 7.7: Average Rank Percentages for Redundant and Unique Test Cases of the Three-bug
Programs of the Siemens Test Suite and the subset of the Unix Test Suite

Metric Redundant Unique p-value
Wong4 22.60 22.29 0.0583
Ample2 22.56 22.86 0.7748
CBI Log 23.37 22.87 0.0004
Pearson 22.31 23.19 1
Rogot2 22.53 23.21 0.9983
AMean 22.24 23.28 1
Ample 23.88 23.78 0.1698
Zoltar 23.49 25.04 1
Kulczynski2 21.94 25.16 1
McCon 21.94 25.16 1
Ochiai 22.60 25.52 1
Jaccard 23.12 25.73 1
Wong3 25.24 26.21 1
M2 24.97 26.79 1
Op 25.33 26.90 1
Tarantula 27.23 26.94 0.2674
JacCube 24.86 27.03 1
O 29.29 29.48 1
Russell 28.67 30.05 1
Binary 32.43 32.43 1
Overlap 38.34 38.42 0.9207

Table 7.8: Average Rank Percentages for Redundant and Unique Test Cases of the Multiple-bug
Space Programs (on average of 10 bins)

Metric Redundant Unique p-value
Zoltar 2.67 2.42 0.4
JacCube 2.75 2.47 0.3946
O 2.80 2.55 0.5
Op 2.80 2.55 0.5
Wong3 2.80 2.55 0.5
M2 2.83 2.58 0.2919

Continued on next page

171

Chapter 7. BUG LOCALIZATION USING UNIQUE (NON-REDUNDANT) TEST CASES

Table 7.8 – continued from previous page
Metric Redundant Unique p-value

Kulczynski2 2.91 2.63 0.5
McCon 2.91 2.63 0.5
Ochiai 3.13 2.77 0.3
Wong4 3.09 2.80 0.2092
Jaccard 3.70 3.25 0.0907
Rogot2 3.75 3.26 0.6054
Pearson 3.84 3.41 0.6054
Ample2 3.84 3.51 0.5
AMean 4.00 3.59 0.6054
CBI Log 4.21 3.80 0.6063
Tarantula 4.85 4.36 0.3051
Ample 8.82 8.39 0.2919
Binary 19.62 17.85 0.4392
Russell 19.62 17.85 0.4392
Overlap 19.87 18.07 0.4645

In Table 7.6 and Table 7.7, we observe a slight improvement in bug localization per-
formance on unique test cases of the multiple-bug Siemens Test Suite and the subset of the
Unix Test Suite programs, for better performing metrics such as Pearson and Wong4. In
Table 7.8, we observe an improvement in bug localization performance for the better per-
forming Zoltar metric for multiple-bug Space programs with the improvement of average
rank percentages of 0.25%. However, the latter improvement observed in Table 7.8 is not
statistically significant (p-value of 0.4). The Tarantula metric shows improvement in bug
localization performance for multiple-bug programs using the unique test cases approach
as compared to using the redundant test cases approach. The improved bug localization
performances for the Tarantula metric in Table 7.6, Table 7.7, and Table 7.8 are 1.52%,
0.29%, and 0.49% respectively. However, the improved bug localization performance of
using unique test cases with the Tarantula metric is only statistically significant (p-value
less than 0.05) for the two-bug programs of the Siemens Test Suite and the subset of the
Unix Test Suite in Table 7.6. In our evaluation, using unique test cases on the multiple-
bug programs also does not show any degradation of the bug localization performance for
better performing metrics, namely Pearson in Table 7.6, Wong4 in Table 7.7, and Zoltar
in Table 7.8.

172

7.4. STUDY OF VARYING THE NUMBER OF UNIQUE TEST CASES WITH RESPECT
TO BUG LOCALIZATION PERFORMANCE

7.4 Study of Varying the Number of Unique Test Cases
with respect to Bug Localization Performance

In this section, we investigate bug localization performance by varying the number of
unique test cases. We want to observe whether using more unique test cases can help to
improve bug localization performance. We vary the percentage of unique test cases and
observe the trend in bug localization performance.

Our study in this section is related to the previous finding in Subsection 5.7.3 where we
observe the relationship of bug localization performance (using model program ITE28)
by varying the number of fail test cases. The number of pass test cases also changes by
varying the number of fail test cases. However, we observe no great improvement of bug
localization performance using 4, 5, and 6 fail tests.

In this section, for each percentage of unique test cases, we randomly perform test
selection from the pool of unique test cases. We perform test selection from the pool of
unique test cases (for pass, fail, and both pass and fail test cases, respectively). To avoid
any bias in test case selection, the random selection of unique test cases is performed ten
times for different percentages of unique test cases. These random selections of respective
percentages of unique test cases generate ten representative sets of randomly selected
unique test cases. For each percentage of unique test cases, we report the bug localization
performance by taking the average of the bug localization performance across the ten
representative sets of randomly selected unique test cases. We report the results according
to the breakdown of the benchmarks; Siemens Test Suite and the subset of the Unix Test
Suite, Concordance, and Space. Evaluation is performed on single bug and multiple-
bug programs of our benchmarks. We establish a hypothesis, that the bug localization

performance using all the unique test cases (100%) will improve as compared to using

only 10% of the unique test cases. We use one-sided Wilcoxon rank sum test [Hollander
and Wolfe, 1973] and report p-value to check the statistical significance of the hypothesis.

Initially, we evaluate the different percentages of unique pass test cases for the single
bug programs of the Siemens Test Suite and the subset of the Unix Test Suite in Table 7.9.
In each percentage of the unique pass test cases evaluated, the number of fail test cases
remains the same. For example, if we have 100 unique pass and fail test cases, for 10%,
20%, 30%, 40%, 50%, and 80%, the effective unique pass test cases we evaluate are 10,
20, 30, 40, 50, and 80 unique pass test cases respectively. The fail test cases still contain
the existing 100 unique fail test cases. The column 100% of the table refers to using all the
unique pass and fail test cases. The bug localization performance for the Column Unique
(100%) of Table 7.9 is equivalent to the average rank percentages figures we obtain in the
Column Unique of Table 7.3. In this table, we report the p-value of our hypothesis. As

173

Chapter 7. BUG LOCALIZATION USING UNIQUE (NON-REDUNDANT) TEST CASES

we only vary the percentages of the unique pass test cases, our hypothesis is that the bug

localization performance using all the unique test cases (100%) will improve as compared

to using only 10% of the unique pass test cases.

Table 7.9: Average Rank Percentages (on average) for the different Percentages Selection of the
Unique Pass Test Cases - Single Bug Siemens Test Suite and the subset of the Unix
Test Suite

Metric 10% 20% 30% 40% 50% 80% Unique (100%) p-value
O,Op 20.37 19.60 18.83 18.45 18.29 18.00 17.79 <0.05
Zoltar 20.39 19.62 18.96 18.62 18.47 18.23 18.00 <0.05
Kulczynski2 20.88 20.12 19.47 19.13 18.99 18.76 18.56 <0.05
McCon 20.88 20.12 19.47 19.13 18.99 18.76 18.56 <0.05
JacCube 20.83 20.21 19.49 19.14 19.01 18.79 18.67 <0.05
M2 20.97 20.34 19.64 19.31 19.17 19.00 18.88 <0.05
Wong3 20.67 19.91 19.48 19.31 19.22 18.84 18.90 <0.05
Ochiai 21.28 20.70 20.13 19.87 19.81 19.72 19.65 <0.05
Wong4 24.30 22.74 21.82 21.27 21.09 20.92 20.78 <0.05
Jaccard 21.90 21.68 21.31 21.18 21.29 21.60 21.58 <0.05
Pearson 25.48 24.40 23.57 22.94 22.80 22.46 22.19 <0.05
AMean 25.75 24.71 23.93 23.22 23.03 22.65 22.38 <0.05
Ample2 26.36 25.40 24.63 23.96 23.81 23.42 23.33 <0.05
Rogot2 26.89 25.98 25.05 24.68 24.31 23.97 23.57 <0.05
Tarantula 28.73 27.93 27.19 26.64 26.42 26.11 25.91 <0.05
CBI Log 26.72 26.91 27.23 27.27 27.49 27.80 28.11 1
Russell 30.02 30.02 30.02 30.02 30.02 30.02 30.02 1
Binary 30.02 30.02 30.02 30.02 30.02 30.02 30.02 1
Ample 34.11 32.83 31.56 31.01 30.75 30.27 30.04 <0.05
Overlap 33.92 33.43 33.06 32.75 32.55 32.37 32.23 <0.05

For better performing metrics such as Op, we observe that the bug localization perfor-
mance gradually improves as we evaluate using larger number of unique pass test cases.
We observe improved average rank percentages of 2.58% for this metric using all the
unique pass test cases as compared to using 10% of the unique pass test cases. For most
of the metrics, as the number of unique of pass test cases increases, the bug localiza-
tion performance of the metric converges to the bug localization performance for Column

174

7.4. STUDY OF VARYING THE NUMBER OF UNIQUE TEST CASES WITH RESPECT
TO BUG LOCALIZATION PERFORMANCE

Unique (100%) of Table 7.9. We observe that the CBI Log metric shows the bug localiza-
tion performance to worsen as we evaluate using a larger number of unique pass test cases.
In this table, the Russell and Binary metrics do not show any improvement in bug local-
ization performance for different percentages of unique pass test cases. Russell metric
ranks statements based on aef (refer to Russell metric in Table 2.3). Varying the number
of unique pass test cases for the Russell metric does not vary the ranking of statements,
especially of buggy statements. The same goes for the Binary metric (refer to the metric
in Table 2.3), where the metric relies on the fail test cases. Therefore, the bug localization
performance of Russell and Binary metrics stay the same across the different percentages
of unique pass test cases. Except for the CBI Log, Russell, and Binary metrics, the p-value
of our hypothesis for all the metrics is less than 0.05. This indicates that for most of the
metrics, the improvement in bug localization performance using all the unique test cases
as compared to using only 10% of the unique pass test cases is statistically significant
with confidence greater than 95%.

0 10 20 30 40 50 60 70 80 90 100
17.00

17.50

18.00

18.50

19.00

19.50

20.00

20.50

21.00

21.50

22.00

Percentages (%) of Unique Pass Test Cases

R
an

k
P

er
ce

nt
ag

es
 (

%
)

Rank Percentages for Siemens and subset of Unix test suite vs Percentages of Unique Pass Test Cases

Op

Zoltar

Kulczynski2

Metrics

Figure 7.1: Average Rank Percentages (on average) for the Single Bug Siemens Test Suite and
the subset of the Unix Test Suite vs Percentages of the Unique Pass Test Cases

We plot the average of the bug localization performance (Op, Zoltar, and Kulczynski2
metrics) of the ten representative sets of unique test cases (randomly selected) for the
different percentages of the unique pass test cases (see Figure 7.1). We observe that bug
localization performance for the different percentages of unique pass test cases converges

175

Chapter 7. BUG LOCALIZATION USING UNIQUE (NON-REDUNDANT) TEST CASES

to the bug localization performance using all the unique test cases. However, we observe
some fluctuation in the effectiveness of bug localization performance for these metrics.
The bug localization performance for these metrics has slightly worsened, especially from
the range of 50% to 60% of unique pass test cases. Using these metrics, we observe that
the programmer needs to examine more program code in order to locate the bug using
60% of the unique pass test cases as compared to using 50% of the unique pass test cases.
Similar worsened bug localization performance has also been observed from the range of
80% to 90% of the unique pass test cases.

In Figure 7.1, we plot the standard deviation (error bars) of the performance of bug
localization for the ten representative sets of unique test cases (randomly selected) for the
different percentages of the unique pass test cases. The width of the error bars in the figure
indicates that the variation of bug localization performance of the ten representative sets of
randomly selected percentages of the unique pass test cases. The error bar for Kulczynski2
overlaps with the Op and Zoltar metrics in the range of 10%, 20%, and 30% of unique pass
test cases. As the range of percentage of unique pass test cases goes beyond 30%, only
the error bar of Op overlaps with the error bar of the Zoltar metric.

Table 7.10: Average Rank Percentages (on average) for the different Percentages Selection of the
Unique Fail Test Cases - Single Bug Siemens Test Suite and the subset of the Unix
Test Suite

Metric 10% 20% 30% 40% 50% 80% Unique (100%) p-value
O,Op 23.97 21.52 20.51 19.77 19.34 18.53 17.79 <0.05
Zoltar 24.13 21.79 20.88 20.13 19.67 18.75 18.00 <0.05
Kulczynski2 24.13 21.82 21.02 20.33 19.96 19.18 18.56 <0.05
McCon 24.13 21.82 21.02 20.33 19.96 19.18 18.56 <0.05
JacCube 24.28 21.98 21.12 20.52 20.13 19.29 18.67 <0.05
M2 24.28 22.01 21.29 20.70 20.32 19.57 18.88 <0.05
Wong3 27.16 24.26 23.15 22.24 21.51 20.28 18.90 <0.05
Ochiai 24.80 22.97 22.27 21.55 21.16 20.34 19.65 <0.05
Wong4 27.87 26.42 25.05 24.26 22.02 21.00 20.78 <0.05
Jaccard 26.18 25.01 24.35 23.75 23.22 22.39 21.58 <0.05
Pearson 25.74 24.60 24.02 23.55 23.29 22.74 22.19 <0.05
AMean 25.58 24.38 23.89 23.43 23.22 22.77 22.38 <0.05
Ample2 25.83 24.90 24.42 24.10 23.95 23.54 23.33 <0.05
Rogot2 27.12 26.03 25.46 25.07 24.79 24.14 23.57 <0.05
Tarantula 26.93 26.62 26.45 26.33 26.25 26.07 25.91 <0.05

Continued on next page

176

7.4. STUDY OF VARYING THE NUMBER OF UNIQUE TEST CASES WITH RESPECT
TO BUG LOCALIZATION PERFORMANCE

Table 7.10 – continued from previous page
Metric 10% 20% 30% 40% 50% 80% Unique (100%) p-value

CBI Log 37.19 32.17 31.15 30.09 29.34 28.71 28.11 <0.05
Russell 35.32 33.22 32.40 31.77 31.30 30.59 30.02 <0.05
Binary 35.32 33.22 32.40 31.77 31.30 30.59 30.02 <0.05
Ample 34.20 32.50 31.84 31.51 31.14 30.51 30.04 <0.05
Overlap 36.19 34.77 34.23 33.72 33.37 32.73 32.23 <0.05

In Table 7.10, we observe the bug localization performance for single bug programs
from the Siemens Test Suite and the subset of the Unix Test Suite, with respect to different
percentages of unique fail test cases. In each percentage of the unique fail test cases eval-
uated, the number of pass test cases remains the same. As we only vary the percentages
of the unique fail test cases, our hypothesis is the bug localization performance using all

the unique test cases (100%) improves as compared to using only 10% of the unique fail

test cases.
For most of the metrics in this table, we observe that the bug localization performance

gradually improves as we evaluate using larger number of unique fail test cases. As we
evaluate using larger number of unique fail test cases, the bug localization performance
for better performing metrics converges to the bug localization performance of using all
the unique test cases (Column Unique (100%) of Table 7.10). We do not observe any fluc-
tuation in the bug localization performance by varying only the unique fail test cases. As
we evaluate using larger number of unique fail test cases, the buggy statement is executed
more frequently. This helps to indicate that the buggy statement is likely to be buggy,
allowing the programmer to locate the bug more effectively. Several studies [Wong et al.,
2010, Debroy et al., 2010, Xie et al., 2010] discuss the importance of using fail test cases
in helping to locate bugs; the details of these studies can be found in Chapter 2. In this
table, we observe the Russell and Binary metrics also show improvement in bug localiza-
tion performance when varying only the number of unique fail test cases. The p-value of
our hypothesis for all the metrics is less than 0.05. This indicates that for all the metrics,
the improvement of the bug localization performance using all the unique test cases as
compared to using only the 10% of the unique fail test cases is statistically significant
with confidence greater than 95%.

We plot the average of the bug localization performance (Op, Zoltar, and Kulczynski2
metrics) of the ten representative sets of unique test cases (randomly selected) for different
percentages of the unique fail test cases (see Figure 7.2). This figure shows improvement
in bug localization performance for the metrics as we evaluate using larger number of

177

Chapter 7. BUG LOCALIZATION USING UNIQUE (NON-REDUNDANT) TEST CASES

0 10 20 30 40 50 60 70 80 90 100
17

18

19

20

21

22

23

24

25

Percentages (%) of Unique Fail Test Cases

R
an

k
P

er
ce

nt
ag

es
 (

%
)

Rank Percentages for Siemens and subset of Unix test suite vs Percentages of Unique Fail Test Cases

Op

Zoltar

Kulczynski2

Metrics

Figure 7.2: Average Rank Percentages (on average) for the Single Bug Siemens Test Suite and
the subset of the Unix Test Suite vs Percentages of the Unique Fail Test Cases

unique fail test cases. We observe that the width of error bars for these metrics are smaller
than the error bars for the previous evaluation on unique pass test cases in Figure 7.1. This
indicates less variation of bug localization performance in the ten representative sets of
unique test cases for different percentages of unique fail test cases.

Table 7.11: Average Rank Percentages (on average) for the different Percentages Selection of the
Unique Pass and Fail Test Cases - Single Bug Siemens Test Suite and the subset of
the Unix Test Suite

Metric 10% 20% 30% 40% 50% 80% Unique (100%) p-value
O, Op 26.02 23.20 21.47 20.18 19.61 18.58 17.79 <0.05
Zoltar 26.10 23.29 21.68 20.36 19.84 18.83 18.00 <0.05
Kulczynski2 26.17 23.40 21.89 20.58 20.12 19.28 18.56 <0.05
McCon 26.17 23.40 21.89 20.58 20.12 19.28 18.56 <0.05
JacCube 26.18 23.47 21.85 20.71 20.22 19.28 18.67 <0.05
M2 26.21 23.54 22.01 20.90 20.40 19.54 18.88 <0.05
Wong3 26.69 23.63 22.18 21.23 20.89 19.94 18.90 <0.05
Ochiai 26.64 24.18 22.82 21.55 21.11 20.30 19.65 <0.05

Continued on next page

178

7.4. STUDY OF VARYING THE NUMBER OF UNIQUE TEST CASES WITH RESPECT
TO BUG LOCALIZATION PERFORMANCE

Table 7.11 – continued from previous page
Metric 10% 20% 30% 40% 50% 80% Unique (100%) p-value

Wong4 29.76 27.89 25.70 24.60 22.14 21.09 20.78 <0.05
Jaccard 27.47 25.65 24.31 23.28 22.90 22.26 21.58 <0.05
Pearson 27.80 26.29 24.96 24.05 23.58 22.79 22.19 <0.05
AMean 27.87 26.39 25.06 24.14 23.67 22.89 22.38 <0.05
Ample2 27.96 26.65 25.44 24.62 24.23 23.58 23.33 <0.05
Rogot2 29.73 28.13 26.87 25.62 25.18 24.36 23.57 <0.05
Tarantula 29.01 28.41 27.44 26.88 26.54 26.09 25.91 <0.05
CBI Log 35.64 30.72 29.77 29.08 28.64 28.47 28.11 <0.05
Russell 35.32 33.24 32.25 31.60 31.25 30.54 30.02 <0.05
Binary 35.32 33.24 32.25 31.60 31.25 30.54 30.02 <0.05
Ample 35.84 34.15 32.99 32.05 31.54 30.69 30.04 <0.05
Overlap 36.50 35.18 34.54 33.92 33.55 32.82 32.23 <0.05

In Table 7.11, we observe the bug localization performance for single bug programs
from the Siemens Test Suite and the subset of the Unix Test Suite with respect to the
different number of unique pass and fail test cases for the Siemens Test Suite and the
subset of the Unix Test Suite. In this table, our hypothesis is that the bug localization

performance using all the unique test cases (100%) improves as compared to using only

10% of the unique pass and fail test cases.
We also observe a similar improvement of bug localization performance for all the

metrics as we use more unique pass and fail test cases. As we use larger number of
unique pass and fail test cases, we also observe similar convergence of bug localization
performance to the bug localization performance of using all the unique test cases in Table
7.11. The p-value of our hypothesis for all the metrics is less than 0.05. Therefore, for
all the metrics, the improvement of the bug localization performance using all the unique
test cases as compared to using only the 10% of the unique pass and fail test cases is
statistically significant with confidence greater than 95%.

In Figure 7.3, we plot the average of the bug localization performance (Op, Zoltar,
and Kulczynski2 metrics) of the ten representative sets of unique test cases (randomly
selected) for different percentages of the unique pass and fail test cases. The trend of
improvement on the bug localization performance observed in this figure is very similar
to Figure 7.1 and Figure 7.2.

179

Chapter 7. BUG LOCALIZATION USING UNIQUE (NON-REDUNDANT) TEST CASES

0 10 20 30 40 50 60 70 80 90 100
17

18

19

20

21

22

23

24

25

26

27

Percentages (%) of Unique Pass and Fail Test Cases

R
an

k
P

er
ce

nt
ag

es
 (

%
)

Rank Percentages for Siemens and subset of Unix test suite vs Percentages of Unique Pass and Fail Test Cases

Op

Zoltar

Kulczynski2

Metrics

Figure 7.3: Average Rank Percentages (on average) for the Single Bug Siemens Test Suite and the
subset of the Unix Test Suite vs Percentages of the Unique Pass and Fail Test Cases

We evaluate similar studies of varying the percentages of unique test cases for the
single bug Concordance and Space programs and for the multiple-bug programs of our
benchmarks. In these evaluation, we report the p-values for the similar hypothesis that we
have established earlier for the single bug Siemens Test Suite and the subset of the Unix
Test Suite. These figures can be found in Appendix E. In these evaluation, we observe that
the bug localization performance improves as we use a larger number of unique test cases.
For Concordance (Table E.1), the improved bug localization performance using all the
unique test cases as compared to using 10% of the unique pass and fail test cases on better
performing metrics is only significant with confidence of 84%. We observe improvement
in bug localization performance by using larger number of unique test cases for the single
bug Space programs (Table E.2), and multiple-bug programs of the Siemens Test Suite
and the subset of the Unix Test Suite (Table E.3 and Table E.4). In these programs, we
observe the statistically significant improvement in bug localization performance using all
the unique test cases as compared to using 10% of the unique pass and fail test cases, for
all the better performing metrics with confidence greater than 95%. The improved bug
localization performance using all the unique test cases as compared to using 10% of the
unique pass and fail test cases on the better performing metrics in multiple-bug programs
ranging from the average rank percentages of 5.83% to 11.45%.

180

7.5. SUMMARY

7.5 Summary

By using unique test cases, we observed most of the benchmarks (Siemens Test Suite, sub-
set of Unix Test Suite, Concordance, and Space) did not show any degradation of the bug
localization performance for better performing metrics. We also performed experimen-
tal study on varying the percentages of unique test cases with respect to bug localization
performance for all the single bug and multiple-bug programs of our benchmarks. From
our evaluation, we found improvement in bug localization performance by using all the
unique test cases compared to using 10% of the unique pass and fail test cases. The lat-
ter improvement is statistically significant with confidence greater than 95% for better
performing metrics on most of our benchmarks. The improvement in bug localization
performance for the better performing metrics, especially on multiple-bug programs of
our benchmarks is in the range of 5.83% to 11.45%.

181

8
Weighted Incremental Ranking

Approaches

8.1 Introduction

In earlier chapters, we use program spectra to locate bugs. We will now propose some
improvements based on the heuristics from the test cases, especially fail test cases. Ini-
tially, we associate varying weights with fail test cases — test cases that execute fewer
statements are given more weight and have more influence on the ranking. This generally
improves diagnosis accuracy with little additional cost. We also propose to rank the pro-
gram statements incrementally. After the top-ranked statement is identified, the weights
are adjusted in order to compute the rest of the ranking. This further improves accuracy.
The cost is greater, but not prohibitive. Previous studies [Jones and Harrold, 2005, Abreu
et al., 2006] locate bugs without using any weights. We name such an approach as Un-
weighted.

We introduce an approach where different weights are assigned according to the infor-
mation of the fail tests. This is followed by proposing the incremental ranking approaches.
We analyse our proposed weighted and incremental ranking approaches on the model pro-
gram of ITE28 (Figure 5.1). We also detail the empirical results of using our proposed
weighted and incremental ranking approaches on the Siemens Test Suite, the subset of the
Unix Test Suite, Concordance, and Space benchmarks.

8.2 Varying Weights for Fail Tests

Fail test cases are important in locating bugs. A typical fail test case that executes
statements indicates the likelihood of these statements being buggy. By making use of

183

Chapter 8. WEIGHTED INCREMENTAL RANKING APPROACHES

this knowledge, we want to improve bug localization performance by assigning different
weights to the different fail test cases.

The idea behind varying weights comes from the following observations. First, some
fail tests provide more information than other fail tests. Consider the extreme example of
two fail tests, where one executes almost every statement and the other executes only one
statement. The first test gives us little information whereas the second test allows us to
conclude with certainty that the executed statement is buggy. By only using the number
of fail tests in which a statement is executed, this information is lost. Second, although
ranking metrics are normally applied to natural numbers, they can be defined and used on
real numbers. With varying weights for fail tests, the aef and anf values we compute can
be any real number between zero and the number of fail tests. Of the dozens of metrics
proposed, none use integer-specific operations such as modulo; no adaptation is needed
for their use with non-integral aef and anf values. For the sake of readability, simpler
terminology is used for some of the terms that have already been defined in the Glossary.
F denotes the total number of fail tests instead of totF .

The weights we use depend on the set of suspect (possibly buggy) statements, B. Ini-
tially, these are the statements executed in at least one fail test. The execution information
is represented as a matrix of binary numbers es,t (as shown in Table 2.2). This is refined in
the incremental ranking approach described later. We first define a relative weight, wt, for
each test t, which is (almost) inversely proportional to the number of suspect statements
executed in the test minus one:

Definition 19 (Relative Weight, wt).

wt =
1∑

s∈B es,t − 1 + ε

We use a small constant, ε (we use 0.0001 in our code), to avoid division by zero when
there is only one suspect statement executed. The weight given to a fail test t is wtF/W ,
where W is the sum of the relative weights wt over all fail tests:

∑F
t=1wt. The total

weight of all fail tests is thus unaffected by the weighting, so the overall impact of the
fail tests (compared to pass tests) is not changed. Also, if all fail tests execute the same
number of statements, all weights are 1 (and the method is equivalent to the Unweighted
method). To compute aef for a statement, we take the sum of the weights of fail tests in
which it was executed, rather than simply the number of tests.

Definition 20 (Weighted aef).

aef =
∑
es,t=1

wtF/W

184

8.2. VARYING WEIGHTS FOR FAIL TESTS

By using the same example of Table 2.2, if we ignore ε, the relative weights for tests
1–3 are 1/4, 1/4, and 1/2, respectively. The aef values for statements 1–6 are 3, 3, 1.5, 1.5,
2.25, and 0.75, respectively. The anf values can be computed using the same weighted
sum (over the fail tests where the statement is not executed). Alternatively, we can simply
use the total number of fail tests minus aef . In this example, the anf values are therefore
0, 0, 1.5, 1.5, 0.75, and 2.25, respectively. The greater weight for test 3 leads to the aef
for statement 5 being greater than the aef for statement 3 and statement 4. For most of the
better metrics, this is sufficient to raise the ranking of statement 5 above that of statement
3 and 4.

In general, the weightings result in more rational behaviour than the Unweighted
method. If there is one fail test that executes a single statement s, that test will have
relative weight of 1/ε and a weight close to one, whereas other weights will be close to
zero. Thus, the aef of the statement swill be close to F , while the aef for other statements
will be close to zero. The better ranking metrics will rank s highest (it is as if statement s
is used in all the fail tests and no other statement is used in any fail test).

The weighting approach we propose is not just a generic method for determining sim-

ilarity of a row of the matrix of Table 2.2 with the result vector — it uses knowledge of
the software diagnosis domain. As this approach involves weighting of fail tests, we name
this approach as Weighted throughout this chapter.

Algorithm 30: Algorithm of Weighted Approach
Input: program spectra
Output: ranking (sequence of statements)
foreach fail test case do1

Determine the number of suspect statements in the test;2
Determine the relative weight, wt, for the test (Definition 19) ;3

end4
foreach statement do5

Compute the aij for the statement including the weighted aef (Definition 20) ;6
Compute the MetV alue of respective spectra metrics;7

end8
Rank and sort all the statements based on the MetV alue in descending order;9

Using weights does not change the algorithmic complexity of ranking. We show the
Weighted approach in Algorithm 30. S, T , and F refer to the number of statements, test
cases, and fail test cases respectively. Initially, the suspect and the relative weight wt is
determined for each fail test case of F . This is followed by computing the aij values
(including weighted aef in Definition 20) and the metric value for each statement s. This
gives a time complexity for the Weighted approach of O(ST). The Unweighted approach
also has O(ST) if the whole matrix of execution data is stored and each statement s is
processed at a time to compute the aij values. Having computed the aij values, the metric

185

Chapter 8. WEIGHTED INCREMENTAL RANKING APPROACHES

values can be determined and then sorted in O(S logS) time to give the ranking. This
gives an overall complexity for the Weighted approach of O(ST + S logS) time.

In terms of space complexity, if the whole matrix is not stored, the Unweighted ap-
proach only takes O(S) to compute the aij values, instead of O(ST). Accumulators can
be used for the aij values while processing one test at a time. The same space complexity
of O(S) applies for the Weighted approach to compute the weighted values. From Al-
gorithm 30, relative weight can be computed for each fail test. An accumulator can be
used for the relative weight of each fail test. An accumulator can also used to compute
the number of fail tests. After processing the last test, the accumulators for the relative
weights of each fail test can be multiplied with the accumulator of the total number of fail
tests, divided by W (the sum of all the accumulators of the relative weights of fail tests)
to compute the weighted aef values (Step 6).

8.3 Incremental Ranking Approaches

The model of debugging suggested by ranking statements (by any method) is that the top-
ranked statement is considered first and the second-ranked statement is only considered
when the programmer has established the top-ranked statement is correct. Although naive,
this model is typically assumed when evaluating performance of ranking methods. It also
allows us to use additional information to refine the ranking, and generate it incrementally.
Once the top-ranked statement has been decided, other statements can be ranked under
the assumption that the top-ranked statement is not buggy. With a probabilistic approach,
for example, the statement with the highest probability of being buggy would be ranked
highest. The next highest ranking would be the statement with the highest probability of
being buggy given that the top-ranked statement is correct, and so on.

Generating a ranking incrementally in this way is not a particularly novel technique.
However, it cannot refine traditional (Unweighted) spectral ranking because there is no
method of incorporating the additional information: the metric value returned for a state-
ment does not depend on information about other statements. In contrast, the Weighted
approach introduced depends on the set of suspect statements. By no longer considering
the top-ranked statement to be suspect, the number of suspect statements executed in a
test decreases and the weights change, potentially changing the ranking. We use pseudo-
random numbers to break the ties of the weighted statements and pick the highest ranked
statement in each iteration.

For example in Table 2.2, having computed the metric values using the Weighted ap-
proach, statement 1 (S1) and statement 2 (S2) are ranked highest with all sensible metrics.
Assuming that S1 is ranked slightly higher than S2 (due to the pseudo-random numbers

186

8.3. INCREMENTAL RANKING APPROACHES

that we introduce to break the ties), S1 is no longer considered suspect in the next itera-
tion. Therefore, the number of suspect statements executing test T1, T2, and T3 are 4, 4,
and 2 respectively. In the next iteration, S2 is ranked highest by all sensible metrics. S2 is
no longer considered suspect in the following iteration. T3 has a relative weight of 1/ε and
statement 5 (S5) (the only remaining suspect statement executed in T3) is ranked highest
by all sensible metrics. Note this ranking is different (and more rational) than the rank-
ing produced by the Unweighted method. As this approach involves ranking statements
starting with the highest ranked statement, we name this approach top-down incremental
ranking (Incre.).

Algorithm 31: Algorithm of Top-down Incremental Ranking Approach (Incre.)
Input: spectra coverage including Pass/Fail of the tests
Output: ranking (sequence of statements)
// Let ranking as empty array
while any fail tests that executes at least one suspect statement do1

Compute fail tests weights using suspect and spectra coverage;2
Compute aij and metric values for each statement;3
Determine statement s with maximum metric value;4
Append s to the ranking;5
Remove s from suspect and spectra coverage (assume s is not buggy);6

end7
Exit;8

The pseudocode of the top-down incremental ranking approach (Incre.) is described in
Algorithm 31. It uses the spectra coverage as inputs and outputs the ranking array which
consists of a sequence of statements. It terminates when all statements executed in at least
one fail test have been ranked. This ensures a buggy statement appears in the ranking,
and prevents weights from becoming negative. In our example, it terminates after ranking
statement S1, S2, and S5 — one of these must be buggy so it is not necessary to consider
the other two statements at all in our search for a bug. When several statements have the
maximal metric value, an arbitrary one is chosen (our implementation picks one pseudo-
randomly). In order to avoid bias in choosing one particular statement randomly, we
evaluate the incremental ranking approach on each program 20 times, and the average of
these evaluation is taken. Note that the chosen statement with the maximum metric value
might be different, which could affect the ranking of the buggy statement. Therefore,
there might be some fluctuation of the bug localization performance using the incremental
ranking approach.

The time taken to find the top-ranked statement is O(ST), and the time taken to pro-
duce the entire ranking is O(S2T). This is a substantial increase in overall CPU time.
However, it is possible to compute the lower parts of the ranking in parallel with manu-
ally checking correctness of the higher ranked statements (though this does constrain the

187

Chapter 8. WEIGHTED INCREMENTAL RANKING APPROACHES

user interface in a debugging tool). The manual checking is likely to take more time, so
the main bottleneck is determining the top-ranked statement, which has acceptable com-
plexity. Space is another additional cost. The weights depend on which statements are
suspect, and as this changes during execution, the matrix of Table 2.2 (for fail tests at least)
is required. If the matrix is stored in the main memory, the space complexity is O(ST).
The alternative is re-reading it from the disk in each iteration, reducing space complexity
to O(S) but slowing the algorithm by a substantial constant factor. Overall, although the
decrease in efficiency is significant, it does not make the algorithm infeasible.

One way to reduce the CPU time is to use the incremental ranking approach to rank
only some statements, and rank the remaining statements using the simpler Weighted
approach (with the remaining set of suspect statements). In Section 8.5, we provide per-
formance figures for ranking the top 10% and 20% of statements incrementally. These
approaches will stop immediately if the programmer recognises the top-ranked statement
that is likely the bug. In practice, the bug is not known by the programmer. If the bug is
not found after ranking all the 10% and 20% of the top-ranked statements, the algorithm
will stop.

The other possible variation of the incremental ranking approach is to generate the
ranking bottom-up — starting with the lowest ranked statement. Similar weight treatment
can be applied for each program statement. The statement with the lowest probability
of being buggy (metric value) is ranked lowest. The lowest-ranked statement is often
least likely to be the bug. Therefore, all the statements of the program have to be ranked
before the complete ranking list of statements (likely to be buggy) is presented to the
programmers. This approach takes a longer time and is not practical in debugging. We do
not evaluate this approach in this chapter.

The bottom-up ranking approach is not a particularly new approach. Guyon et al. ap-
plied this approach, which referred to as the support vector machine (SVM) method of
Recursive Feature Elimination (SVM-RFE) in their study [Guyon et al., 2002]. This ap-
proach is used to narrow down the gene expressions (features of genes) that are responsi-
ble for leukaemia and colon cancer. The proposed SVM-RFE uses the SVM classification
algorithm [Boser et al., 1992, Vapnik, 1998] to train, classify, and discover features of
genes that are responsible for cancer tissues. Initially, the SVM algorithm is applied on
the genes dataset to compute the weight for each feature of the genes that are likely to
cause the cancer. This is followed by ranking the features of the genes. The gene feature
that gives the lowest weight will be eliminated and will not be considered as part of the
feature of the genes in the next iteration. A feature rank list containing the feature of
the genes with the lowest weight is maintained in each iteration. The SVM algorithm is
applied again in the next iteration. The feature of the genes with the next lowest weight

188

8.4. USING PROPOSED WEIGHTED AND INCREMENTAL RANKING APPROACHES
ON MODEL PROGRAM

is eliminated and the feature rank list is updated. These steps are repeated until all the
features of the genes have been ranked in the feature rank list.

8.4 Using Proposed Weighted and Incremental Ranking
Approaches on Model Program

We found that O and Op are optimal metrics for the single bug programs in Chapter 5. In
this section, we want to investigate whether the proposed incremental ranking approaches
affect the ranking of these optimal metrics in the single bug programs. We use the ITE28

model program (Figure 5.1) to evaluate our proposed incremental ranking approaches on
these metrics.

Table 8.1: Evaluation of Incremental Ranking Approaches on the Model Program ITE28

Average Rank Percentages (on average of 100 times)
Metric Unweighted Weighted Incre.

Number of Tests=2
O 35.00 35.00 38.10
Op 35.00 35.00 34.94

Number of Tests=5
O 31.85 31.85 32.03
Op 31.85 32.03 32.02

Number of Tests=10
O 29.72 29.72 29.74
Op 29.72 30.33 30.33

Number of Tests=100
O 25.80 25.80 25.80
Op 25.80 26.26 26.26

Table 8.1 shows bug localization performance of the evaluation of the ITE28 model
program on different number of tests (2, 5, 10, and 100 tests) with 1 million points. To
avoid bias on certain single generated multiset paths, we perform the evaluation for 100
times and take the average. On 2 tests, we observe that the bug localization performance
for the Unweighted and Weighted approaches on the O and Op metrics are the same, with
the average rank percentages of 35.00%. For the top-down incremental ranking approach
(Incre.), we observe a slight improvement of bug localization performance (improved
average rank percentages of 0.06%) on the Op metric as compared to the Unweighted ap-
proach. As we increase the number of tests beyond 2, we observe that the effectiveness of
bug localization performance for the Weighted approach drops slightly for the Op metric

189

Chapter 8. WEIGHTED INCREMENTAL RANKING APPROACHES

as compared to the Unweighted approach. However, the O metric still shows no differ-
ences in bug localization performance for both Unweighted and Weighted approaches for
all the tests.

The Op metric (refer to the metric in Table 2.3) ranks statements primarily on aef and
secondarily on aep. When applying the Weighted approach (Algorithm 30) on the multiset
paths of ITE28 (Figure 5.1), it is possible for S1 or S2 (the non-buggy statements) to
have an aef value close to the aef value of S4 (the buggy statement). At the same time,
S1 or S2 can possibly has lower aep value than the aep value of S4. Using the Op metric,
S1 or S2 can potentially ranks higher than the buggy statement in some cases.

Even though the weighted S1 or S2 has an aef value close to the aef value of S4, these
statements are not executed by all the fail test cases. S1 or S2 has the property that anf
> 0. For the O metric, these statements will have very small metric values (refer to the
O metric in Table 2.3). Therefore, the cases of S1 or S2 ranking higher than the buggy
statement S4 are not observed using O metric, and we do not observe any drop in the bug
localization performance for the Weighted approach for this metric in Table 8.1.

In Table 8.1, the top-down incremental ranking approach (Incre.) does not show con-
sistent bug localization improvement on the optimal metrics O and Op. In the ITE28

model program, either S1 or S2 and the bug S4 are executed by fail test cases. Using
pseudo-random numbers to break the ties of choosing the highest-ranked statement might
introduce some noise and affect the bug localization performance of the incremental rank-
ing approach. We already attempt to reduce the noise by repeating the evaluation 20 times
and taking the average of the evaluation.

Generally, we do not observe any improvement in bug localization performance by
using our proposed Weighted and top-down incremental ranking approach (Incre.) on the
optimal metrics O and Op of the ITE28 model program (single bug program). There
might be different observations of bug localization performance for O and Op metrics on
multiple-bug programs. For a typical multiple-bug program, the buggy statements are
not necessarily executed by all the fail test cases. These statements might have differ-
ent weights assigned using the Weighted and the incremental ranking approaches. We
evaluate our proposed approaches empirically in Section 8.5.

190

8.5. EMPIRICAL EVALUATION OF THE PROPOSED WEIGHTED AND
INCREMENTAL RANKING APPROACHES

8.5 Empirical Evaluation of the Proposed Weighted and
Incremental Ranking Approaches

In this section, we evaluate our proposed Weighted and incremental ranking approaches
on our benchmarks, namely the Siemens Test Suite, the subset of the Unix Test Suite, Con-
cordance, and Space programs. For each dataset, we compare the Unweighted approach
with the Weighted and incremental ranking approaches. In the incremental ranking ap-
proaches, we rank the top 10% (10% Inc) and 20% (20% Inc) of the statements. We
also rank all the statements using the top-down incremental ranking approach (Incre.). In
the 10% Inc, 20% Inc, and Incre. approaches, it is possible to have more than one highest
ranked statement. We use pseudo-random numbers to break ties of the statements and pick
the highest ranked statement. The bug localization performance might vary as these state-
ments can have different random orderings. We attempt to reduce this noise by repeating
each evaluation 20 times. We report the average of the bug localization performance of
the evaluation.

For Space programs, we evaluate all the 10 bins which consist of the different Subset

of the entire test suite of Space (refer to the details in Section 4.5). We take the average
of the bug localization performance for all the 10 bins in the evaluation.

8.5.1 Single Bug Programs

Table 8.2: Average Rank Percentages for the Single Bug Siemens Test Suite and the subset of the
Unix Test Suite

Metric Unweighted Weighted 10% Inc 20% Inc Incre. p-value
O 17.86 17.86 18.01 18.04 18.00 0.5066
Op 17.86 17.87 17.87 17.81 17.83 0.3997
Wong3 18.19 18.06 18.08 18.08 18.02 0.1727
Zoltar 18.23 18.22 18.13 18.16 18.16 0.6014
Wong4 18.93 18.76 19.24 19.15 19.03 0.9976
Kulczynski2 19.06 18.91 18.98 18.97 18.98 0.2109
McCon 19.06 18.91 18.80 19.04 19.00 0.6154
JacCube 20.06 19.58 19.34 19.37 19.55 0.0945
M2 20.12 19.73 19.82 19.74 19.60 0.0468
Ochiai 21.63 21.18 20.95 20.55 20.87 0.0105
Pearson 23.56 23.27 23.17 23.19 23.31 0.0472
Jaccard 23.64 23.09 23.19 23.25 23.27 0.0051

Continued on next page

191

Chapter 8. WEIGHTED INCREMENTAL RANKING APPROACHES

Table 8.2 – continued from previous page
Metric Unweighted Weighted 10% Inc 20% Inc Incre. p-value

AMean 23.66 23.19 23.27 23.33 23.43 0.1657
Ample2 24.08 23.65 23.68 23.67 23.72 0.0157
Rogot2 24.88 24.11 24.01 24.08 24.15 0.0618
CBI Log 26.80 25.61 25.70 26.04 26.02 0.0336
Tarantula 27.09 26.49 27.35 27.34 27.36 0.4311
Binary 30.02 30.02 29.82 30.02 29.54 0.4349
Russell 30.02 30.02 30.01 30.55 29.92 0.4748
Ample 30.16 27.39 27.43 27.22 27.38 0.0012
Overlap 32.23 32.20 27.93 29.07 32.95 0.5298

Table 8.3: Average Rank Percentages for the Single Bug Concordance Programs

Metric Unweighted Weighted 10% Inc 20% Inc Incre. p-value
O 10.11 10.11 10.05 10.06 10.03 0.3631
Op 10.11 10.11 10.07 10.23 10.04 0.2875
Zoltar 10.11 10.11 10.08 10.11 10.09 0.2875
Wong3 10.15 10.11 10.02 10.09 10.00 0.0379
Kulczynski2 10.21 10.35 10.35 10.29 10.35 0.3120
McCon 10.21 10.35 10.38 10.30 10.33 0.6822
JacCube 10.43 10.56 10.60 10.62 10.56 0.1568
M2 10.97 10.61 10.58 10.65 10.66 0.5472
Ochiai 11.19 10.76 10.73 10.69 10.79 0.7232
Wong4 11.35 11.43 20.12 17.30 16.76 1
Jaccard 17.68 11.43 11.37 11.30 11.38 0.2641
Ample2 18.05 11.00 11.07 11.07 11.05 0.4528
Pearson 18.42 11.17 11.24 11.25 11.14 0.3999
AMean 18.90 11.56 11.42 11.59 11.44 0.0914
Rogot2 19.24 18.70 18.76 18.75 18.76 0.2771
Tarantula 20.03 12.78 12.55 12.59 12.71 0.1869
Binary 21.03 21.03 21.85 18.87 21.67 0.5294
Overlap 21.03 21.03 17.02 20.28 20.86 0.6499
Russell 21.03 21.03 20.73 20.47 21.76 0.8205
CBI Log 22.63 12.46 12.44 12.87 12.63 0.4192

Continued on next page

192

8.5. EMPIRICAL EVALUATION OF THE PROPOSED WEIGHTED AND
INCREMENTAL RANKING APPROACHES

Table 8.3 – continued from previous page
Metric Unweighted Weighted 10% Inc 20% Inc Incre. p-value

Ample 27.53 24.02 23.80 22.17 22.03 0.1429

Table 8.4: Average Rank Percentages (on average of 10 bins) for the Single Bug Space Programs

Metric Unweighted Weighted 10% Inc 20% Inc Incre. p-value
O 1.64 1.64 1.71 1.70 1.73 0.3193
Op 1.64 1.64 1.64 1.65 1.62 0.6334
Wong4 1.64 1.70 1.70 1.71 1.71 0.4333
Wong3 1.65 1.64 1.64 1.61 1.64 0.0191
Zoltar 1.80 1.81 1.82 1.80 1.81 0.4435
JacCube 1.90 1.90 1.91 1.91 1.91 0.3649
M2 1.92 1.93 1.92 1.93 1.92 0.6441
Kulczynski2 2.07 2.08 2.10 2.09 2.12 0.9794
McCon 2.07 2.08 2.10 2.09 2.07 0.4452
Ochiai 2.26 2.32 2.34 2.35 2.34 0.1262
Rogot2 2.67 2.65 2.63 2.62 2.64 0.9822
Ample2 2.68 2.60 2.60 2.59 2.59 0.7612
Pearson 2.72 2.71 2.70 2.71 2.70 0.2997
AMean 2.93 2.90 2.89 2.91 2.91 0.3124
Jaccard 3.18 3.10 3.11 3.08 3.10 0.7744
Tarantula 6.31 6.02 6.09 6.12 6.09 0.1651
Ample 6.56 3.99 3.80 3.80 3.78 0.0151
CBI Log 6.65 6.15 6.35 6.25 6.24 0.9681
Binary 17.59 17.59 17.91 18.06 18.21 0.8634
Russell 17.59 17.59 17.42 17.68 17.62 0.598
Overlap 18.31 18.28 16.39 18.43 18.12 0.2106

For our evaluation on all the single bug programs (Table 8.2, Table 8.3, and Table
8.4), we observe that the O metric does not show any difference in bug localization per-
formance using the Weighted approach as compared to using the Unweighted approach.
This concurs with the observation of the O metric using the ITE28 model program in
Section 8.4. Op metric shows no difference in bug localization performance using the

193

Chapter 8. WEIGHTED INCREMENTAL RANKING APPROACHES

Weighted approach as compared to using the Unweighted approach in all the single bug
programs except the Siemens Test Suite and the subset of the Unix Test Suite. There is a
slight drop in the effectiveness of bug localization performance on this metric using the
Weighted approach as compared to the Unweighted approach in Table 8.2 (17.87% and
17.86% respectively). The drop of the effectiveness of bug localization performance on
this metric is similarly observed using the model program ITE28 in Section 8.4. In Table
8.2, Table 8.3, and Table 8.4, metrics which are at the bottom of the tables (e.g AMean and
Tarantula to name a few) show that the bug localization performance using the Weighted
approach outperforms the Unweighted approach.

The O and Op metrics only show marginal improvement of bug localization perfor-
mance for the top 10% (10% Inc) approach as compared to the Unweighted approach in
the single bug Concordance programs, with improved average rank percentages of 0.06%
and 0.04% respectively. We observe a slight fluctuation of the bug localization perfor-
mance on the Op metric, where the bug localization performance improves using the top
20% (20% Inc) approach but not, using the top 10% (10% Inc) approach on the single bug
Siemens Test Suite and the subset of the Unix Test Suite. Other metrics that are not at the
top of the tables of our evaluation of single bug programs, namely Overlap, also shows
fluctuation in bug localization performance using the top 10% (10% Inc) and 20% (20%
Inc) approaches. This is due to the way we use pseudo-random numbers to break ties in
choosing the highest-ranked statement. Statements that are supposedly ranked just below
the buggy statement using the Unweighted approach can be ranked before the buggy state-
ment in the 10% Inc and 20% Inc approaches. Therefore, we observe a slight fluctuation
in bug localization performance for some of these metrics.

For the top-down incremental ranking approach (Incre.), only the Op and Wong3 met-
rics show improved bug localization performance compared with using the Unweighted
approach for all the single bug programs. The latter improvement of average rank per-
centages is in the range of 0.01% to 0.17%.

In the evaluation of all the single bug programs (Table 8.2–Table 8.4), it is not clear
how significant is the improvement in bug localization performance using our proposed
top-down incremental ranking approach (Incre.) as compared to the Unweighted approach.
Therefore, we report the p-value [Rice, 1989] of our hypothesis in these tables. We estab-
lish the hypothesis that the bug localization performance using our proposed top-down

incremental ranking approach (Incre.) improves as compared to using the Unweighted

approach. One-sided Wilcoxon rank sum test [Hollander and Wolfe, 1973] is applied to
check the statistical significance of our hypothesis. We perform this statistical test on one
of the 10 bins in the Space programs as the bug localization performance across the 10
bins are very similar (see Figure 5.13 of Subsection 5.8.1).

194

8.5. EMPIRICAL EVALUATION OF THE PROPOSED WEIGHTED AND
INCREMENTAL RANKING APPROACHES

Generally the bug localization performance using the top-down incremental ranking
approach (Incre.) as compared to the Unweighted approach gives only weak support for
our hypothesis in the single bug programs. We can say with reasonable confidence that
performance for top metrics such as Op metric does not significantly degrade in this case.
Stronger statistical evidence requires a larger set of benchmarks.

8.5.2 Multiple-bug Programs

We evaluate our proposed approaches on the multiple-bug Siemens Test Suite, subset of
the Unix Test Suite, and Space programs (Table 8.5, Table 8.6, and Table 8.7). We also
evaluate on the Subset of the test suite of the Space for multiple-bug Space programs. We
report the average of the bug localization performance for the 10 bins of Space programs
in Table 8.7.

Table 8.5: Average Rank Percentages for the Two-bug Siemens Test Suite and the subset of the
Unix Test Suite

Metric Unweighted Weighted 10% Inc 20% Inc Incre. p-value
Kulczynski2 19.53 19.35 18.05 17.83 18.00 <0.05
McCon 19.53 19.35 17.98 18.03 17.91 <0.05
Ochiai 20.18 19.62 18.22 18.22 18.17 <0.05
JacCube 20.51 20.27 19.07 19.01 18.99 <0.05
Zoltar 20.52 20.46 19.11 19.18 19.17 <0.05
Wong4 20.78 20.46 19.76 19.43 19.40 <0.05
M2 20.80 20.70 19.31 19.38 19.24 <0.05
AMean 20.97 20.29 19.08 18.98 18.98 <0.05
Pearson 21.09 20.26 18.97 18.92 18.91 <0.05
Jaccard 21.10 20.38 19.09 19.06 19.03 <0.05
Ample2 21.37 20.59 19.32 19.30 19.28 <0.05
Rogot2 21.78 21.19 19.70 19.72 19.75 <0.05
CBI Log 22.29 21.50 20.44 20.46 20.47 <0.05
Wong3 22.54 22.44 21.05 21.07 21.14 <0.05
Op 22.84 22.72 21.40 21.41 21.28 <0.05
Tarantula 23.13 22.27 21.32 21.23 21.28 <0.05
Ample 24.49 24.17 23.11 23.02 23.03 <0.05
O 24.95 24.66 22.65 22.52 22.67 <0.05
Russell 32.10 32.01 26.79 26.60 26.65 <0.05
Binary 34.02 33.75 27.57 27.74 27.78 <0.05

Continued on next page

195

Chapter 8. WEIGHTED INCREMENTAL RANKING APPROACHES

Table 8.5 – continued from previous page
Metric Unweighted Weighted 10% Inc 20% Inc Incre. p-value

Overlap 34.02 34.02 23.87 24.90 26.99 <0.05

Table 8.6: Average Rank Percentages for the Three-bug Siemens Test Suite and the subset of the
Unix Test Suite

Metric Unweighted Weighted 10% Inc 20% Inc Incre. p-value
Kulczynski2 21.94 21.61 17.59 17.57 17.54 <0.05
McCon 21.94 21.61 17.60 17.49 17.62 <0.05
AMean 22.24 21.84 17.92 17.84 17.77 <0.05
Pearson 22.31 21.83 17.92 17.90 17.86 <0.05
Rogot2 22.53 22.14 17.97 18.06 18.04 <0.05
Ample2 22.56 22.11 18.20 18.16 18.14 <0.05
Ochiai 22.60 22.25 18.22 18.20 18.19 <0.05
Wong4 22.60 21.62 18.43 18.17 17.97 <0.05
Jaccard 23.12 22.69 18.63 18.54 18.62 <0.05
CBI Log 23.37 23.11 19.32 19.38 19.33 <0.05
Zoltar 23.49 23.44 19.32 19.40 19.35 <0.05
Ample 23.88 23.54 19.60 19.60 19.52 <0.05
JacCube 24.86 24.63 20.54 20.52 20.54 <0.05
M2 24.97 24.88 20.74 20.75 20.69 <0.05
Wong3 25.24 25.18 21.04 20.96 21.05 <0.05
Op 25.33 25.25 21.05 21.02 21.08 <0.05
Tarantula 27.23 26.26 20.58 20.48 20.44 <0.05
Russell 28.67 28.65 23.06 23.03 22.97 <0.05
O 29.29 28.90 22.84 22.74 22.66 <0.05
Binary 32.43 32.05 24.39 24.44 24.37 <0.05
Overlap 38.34 38.42 23.65 23.96 24.43 <0.05

196

8.5. EMPIRICAL EVALUATION OF THE PROPOSED WEIGHTED AND
INCREMENTAL RANKING APPROACHES

Table 8.7: Average Rank Percentages (on average of 10 bins) for the Multiple-bug Space Pro-
grams

Metric Unweighted Weighted 10% Inc 20% Inc Incre. p-value
Zoltar 2.67 2.67 2.27 2.27 2.24 <0.05
JacCube 2.75 2.74 2.31 2.33 2.34 <0.05
O 2.80 2.80 2.40 2.38 2.37 <0.05
Op 2.80 2.80 2.37 2.39 2.39 <0.05
Wong3 2.80 2.80 2.40 2.39 2.39 <0.05
M2 2.83 2.83 2.41 2.39 2.41 <0.05
Kulczynski2 2.91 2.91 2.52 2.50 2.50 <0.05
McCon 2.91 2.91 2.51 2.49 2.50 <0.05
Wong4 3.09 3.03 2.61 2.60 2.63 <0.05
Ochiai 3.13 3.10 2.70 2.71 2.71 <0.05
Jaccard 3.70 3.66 3.25 3.24 3.23 <0.05
Rogot2 3.75 3.71 3.27 3.28 3.28 <0.05
Ample2 3.84 3.79 3.35 3.35 3.36 <0.05
Pearson 3.84 3.76 3.32 3.32 3.31 <0.05
AMean 4.00 3.95 3.47 3.47 3.48 <0.05
CBI Log 4.21 4.19 3.78 3.77 3.77 <0.05
Tarantula 4.85 4.79 4.37 4.38 4.38 <0.05
Ample 8.82 4.83 4.42 4.40 4.41 <0.05
Binary 19.62 19.62 11.54 11.57 11.68 <0.05
Russell 19.62 19.62 11.48 11.70 11.80 <0.05
Overlap 19.87 19.86 11.30 11.39 11.31 <0.05

In Table 8.5 and Table 8.6, using the top-down incremental ranking approach (Incre.)
helps to improve bug localization performance as compared to using the Unweighted
approach. The differences of the bug localization performance between the top-down
incremental ranking approach (Incre.) and the Unweighted approach are more obvious
in Table 8.6 as compared to Table 8.5. Better performing metrics such as Kulczynski2
and McCon show that the improved average rank percentages are 0.18% and 0.33% in
Table 8.5 and 8.6 using the Weighted approach as compared to the Unweighted approach.
We also observe improvement in the bug localization performance for all the metrics in
these tables using the 10% Inc and 20% Inc approaches as compared to the Unweighted
approach. In the 10% Inc and 20% Inc approaches, the improvement of bug localization

197

Chapter 8. WEIGHTED INCREMENTAL RANKING APPROACHES

performance for all the metrics in these tables ranges from the improved average rank
percentages of 0.39% to 14.69% as compared to the Unweighted approach.

For the multiple-bug Space programs (Table 8.7), we observe that most metrics do not
show much differences in bug localization performance using the Weighted approach as
compared to the Unweighted approach. Generally, all the metrics in this table observe
improvement in bug localization performance using the incremental ranking approaches
(10% Inc, 20% Inc, and Incre.) as compared to the Unweighted approach.

We also report the p-value of our hypothesis (as defined in Subsection 8.5.1) in all
the multiple-bug programs (Table 8.5, Table 8.6, and Table 8.7). The p-value of our hy-
pothesis for all the metrics in the multiple-bug programs is less than 0.05. Therefore, the
improved bug localization performance using our proposed top-down incremental rank-
ing approach (Incre.) as compared to the Unweighted approach is statistically significant
with confidence greater than 95% for all the metrics. For the multiple-bug programs of
the Siemens Test Suite and the subset of the Unix Test Suite (Table 8.5 and Table 8.6), we
also evaluate the p-value to compare the improvement of bug localization performance
using our proposed Weighted approach and the Unweighted approach. In these tables, all
the better performing metrics show statistically significant improvement in bug localiza-
tion performance using the Weighted approach as compared to the Unweighted approach,
with confidence greater than 95%. The latter improvement ranges in the average rank
percentages of 0.06% to 0.98%.

8.5.3 Time Taken

We report the average of the time taken to locate program bugs using the Unweighted,
Weighted, and incremental ranking approaches. Note that our implementation of the pro-
posed Weighted and the incremental ranking approaches are naive and does not consider
any optimisation of the algorithm. Table 8.8 reports the time taken to compute and locate
bugs of the Siemens Test Suite and subset of the Unix Test Suite. The time taken to com-
pute and locate the single bug of Concordance and Space programs is shown in Table 8.9.
We also show the time taken to compute and locate the multiple-bug Space programs in
Table 8.10.

The time taken to evaluate the Siemens Test Suite, the subset of the Unix Test Suite,
and Concordance programs (Table 8.8 and Table 8.9) increases uniformly by using the
Unweighted, Weighted, 10% Inc, 20% Inc, and Incre. approaches. The time taken to
compute the weights and produce the ranking of statements for the Weighted approach is
slightly more than the Unweighted approach. For the 10% Inc and 20% Inc approaches, a
longer time is needed to compute the weights incrementally and find the next top-ranked
statement(s) until the bug is found. For different iterations, weights have to be recomputed

198

8.5. EMPIRICAL EVALUATION OF THE PROPOSED WEIGHTED AND
INCREMENTAL RANKING APPROACHES

Table 8.8: Time Taken for the Siemens Test Suite and the subset of the Unix Test Suite Programs
(on average of one program)

Approach Siemens Test Suite and the subset of the Unix Test Suite
One-bug (sec) Two-bug (sec) Three-bug (sec)

Unweighted 0.33 0.10 0.04
Weighted 0.47 0.19 0.20
10% Inc 1.57 0.82 1.46
20% Inc 1.94 1.05 1.85
Incre. 2.06 1.07 1.94

Table 8.9: Time Taken for the Single Bug Concordance and Space Programs (on average of one
program)

Approach Concordance (sec) Space (sec)
Unweighted 0.10 0.49
Weighted 0.19 3.41
10% Inc 0.82 269.99
20% Inc 1.05 286.87
Incre. 1.07 289.78

Table 8.10: Time Taken for the Multiple-bug Space Programs (on average of one program)

Approach Space (sec)
Unweighted 0.58
Weighted 1.92
10% Inc 114.99
20% Inc 132.21
Incre. 148.66

each time to find the next top-ranked statements. In our implementation of the 10% Inc
and 20% Inc approaches, the algorithm stops once the bug is recognised by the program-
mer. The time increases for the top-down incremental ranking approach (Incre.) as more
iterations are needed before the bug is found (Algorithm 31).

There is a huge increase of time taken to locate bugs of the program using the 10% Inc,
20% Inc, and Incre. approaches for single bug and multiple-bug Space programs in Table
8.9 and 8.10. The size of the Space programs is larger than the Siemens Test Suite and the
subset of the Unix Test Suite, and Concordance benchmarks. Therefore, we expect the
time taken to compute the weights for all the statements and to find the next top-ranked
statements (10% Inc, 20% Inc, and Incre.) in Space programs to be longer.

199

Chapter 8. WEIGHTED INCREMENTAL RANKING APPROACHES

8.6 Summary

In this chapter, we proposed two enhancements to the traditional spectral ranking method
for diagnosing software errors. The first is to have variable weights for different fail tests,
dependent on the number of statements executed in the tests. The second is to compute the
ranking incrementally, and relies on the first method. Our proposal for varying weights of
fail tests considers domain-specific knowledge in order to maximise the bug localization
performance. We used statistical tests to validate our hypothesis of improved bug local-
ization performance using our proposed top-down incremental ranking approach (Incre.)
as compared to the Unweighted approach.

For single bug programs, we did not observe any difference in bug localization perfor-
mance using our proposed Weighted approach as compared to the Unweighted approach
on better performing metrics. For the multiple-bug Siemens Test Suite and the subset of
the Unix Test Suite programs, we observed a statistically significant improvement in bug
localization performance on all better performing metrics using the Weighted approach as
compared to the Unweighted approach. The latter improvement is statistically significant
with confidence greater than 95% and ranging in the average rank percentages of 0.06% to
0.98%. For all of the multiple-bug programs of our benchmarks, we also showed improve-
ment in bug localization performance using our proposed top-down incremental ranking
approach (Incre.) as compared to the Unweighted approach on all the better performing
metrics. The latter improvement observed on the better performing metrics is in the range
of 0.41% to 4.63% and is statistically significant with confidence greater than 95%.

The time taken for the top-down incremental ranking approach (Incre.) might scale up
as the program size increases. This concern could be addressed by adapting the algorithm
of our proposed approach to be executed in parallel. We showed the robustness of our
proposed Weighted and incremental ranking approaches on unique (non-redundant) test
cases of our benchmarks where the bug localization performance improves as compared
to using the Unweighted approach (refer to the empirical results in Appendix F). We
considered this to be a firm validation of our proposed approaches.

200

9
Using Spectral Frequency Weighting

Function in Bug Localization

9.1 Introduction

We have used mainly binary information of test coverage to locate bugs on several spec-
tra metrics. This refers to using the information of each program statement being exe-
cuted and not executed by a particular test; indicated by 1 and 0 respectively. We use the
terms of binary information of test coverage and traditional binary weighting approach

interchangeably. In this chapter, we propose using more information from test cover-
age, particularly frequency counts of test execution. This information has been used in
SOBER [Liu et al., 2005]. Frequency execution counts of a program statement refers
to the number of times the statement is being executed by a particular test. By exploit-
ing more information from the test coverage (frequency execution counts), we want to
investigate whether it could help to improve the bug localization performance.

We introduce an approach of using the frequency counts of test executions to map
into respective spectra properties anp, anf , aep, and aef . Using the new aij values, we
evaluate several well-known spectra metrics on the Siemens Test Suite and the subset of
the Unix Test Suite, Concordance, and Space benchmarks. We conduct statistical tests
on the improvement of the bug localization performance using our proposed approach
compared to using the binary information of test coverage.

9.2 Introduction to Spectral Frequency Weighting Func-
tion

We detailed a typical test coverage in Table 2.1 of Chapter 2. For convenience, we repro-
duce Table 9.1 and Table 9.2. Table 9.1 refers to a matrix of test executions with each row

201

Chapter 9. USING SPECTRAL FREQUENCY WEIGHTING FUNCTION IN BUG
LOCALIZATION

Table 9.1: Example of Test Coverage Information (frequency counts) with Tests T1 . . . T5

T1 T2 T3 T4 T5
S1 60 2 100 0 38
S2 70 65 90 0 45
S3 25 35 0 4 0
S4 80 30 0 42 0
S5 42 0 37 48 81
S6 0 59 0 0 17
Test Result Fail Fail Fail Pass Pass

Table 9.2: Example of Test Coverage Information (binary) and Program Spectra with Tests
T1 . . . T5

T1 T2 T3 T4 T5 anp anf aep aef
S1 1 1 1 0 1 1 0 1 3
S2 1 1 1 0 1 1 0 1 3
S3 1 1 0 1 0 1 1 1 2
S4 1 1 0 1 0 1 1 1 2
S5 1 0 1 1 1 0 1 2 2
S6 0 1 0 0 1 1 2 1 1

...
Test Result Fail Fail Fail Pass Pass

and column for program statement, s and test case, t respectively. This table indicates
the number of times a statement is executed by a particular test case. This type of cover-
age is known as frequency counts coverage. The larger frequency counts of a particular
statement of the test case indicates the statement gets executed more frequently by the test
case. Additionally, there is a vector (last row) indicating the result; Pass and Fail of each
test case. Table 9.2 shows the binary information of test coverage that only consists of 0
and 1, which we used in previous chapters to locate bugs of the program.

Frequency information is important as it indicates how often a particular statement is
executed by a corresponding test case. In order to exploit this extra information, the fre-
quencies are mapped using a frequency weighting function of a typical sigmoid function
in the range of [0, 1]. Sigmoid functions are also known as sigmoid curves or logistic
curves, and have been used in a range of fields including neural network, biology, and
economics [Heaton, 2008]. The sigmoid function is defined as the following.

202

9.2. INTRODUCTION TO SPECTRAL FREQUENCY WEIGHTING FUNCTION

1 2 3 4 5 6 7 8 9 10

Frequency Counts of Test Coverage

0

0.2

0.4

0.6

0.8

1

M
ap

pe
d

va
lu

e
R

an
ge

s
fr

om
 0

 t
o

1

Mapped Value vs Frequency Counts of Test Coverage

Alpha variants
Alpha=1
Alpha=2
Alpha=3
Alpha==30

Figure 9.1: Mapped Value vs Frequency Counts

Definition 21 (Sigmoid Function, M).

M(kst) =

{
1

1+e−α∗kst
, if kst > 0

0 otherwise

where k is frequency counts of statement, s of test, t and α is a constant

In this definition, the α value refers to a parameter of the sigmoid function, M . We
use the sigmoid function M to map the non-zero frequency counts. When there is no
execution (frequency count is zero), the function M returns as 0. This function is referred
to as the spectral frequency weighting function because it is used to map the respective
program spectra properties. Different α values are applied to represent different frequency
weighting functions. For illustrative purposes, Figure 9.1 shows a simple mapping of the
frequency counts ranging from 1 to 10 using the α value in the range of [1-30]. When the
frequency count is 0, the value mapped using the function M for all the α values will be
0. As the mapped value is 0 for all α values, we do not show this point in the figure. As
the α value increases, the frequency weighting function curve is steeper. As the α value
gets very large (in this example, α value of 30), the mapping approaches to the binary
information of test coverage (step function of 0 and 1).

We show a motivated example on the differences between our proposed frequency
weighting function approach and the traditional binary weighting approach (binary infor-
mation of test coverage). Table 9.3 (identical to Table 9.1) is the matrix of test execution
information represented in the form of frequency execution counts. It contains the total
pass tests, totP of 2 and the total fail tests, totF of 3. We observe Statement 1 (S1) and
Statement 2 (S2) have been executed by test T1 for 60 and 70 times respectively. However,
S1 and S2 have been executed by test T2 for 2 and 65 times respectively. Using our pro-
posed approach of function M in Definition 21 (assuming α value is 1), the value mapped
to both S1T2 and S2T2 are different (approximately 0.88 and 1.00 respectively). S1 has

203

Chapter 9. USING SPECTRAL FREQUENCY WEIGHTING FUNCTION IN BUG
LOCALIZATION

Table 9.3: Example of Program Spectra with Frequency Information and Mapped Program Spec-
tra Properties

T1 T2 T3 T4 T5 anp anf aep aef

S1 60 2 100 0 38 1.00 0.12 1.00 2.88
S2 70 65 90 0 45 1.00 0.00 1.00 3.00
S3 25 35 0 4 0 1.02 1.00 0.98 2.00
S4 80 30 0 42 0 1.00 1.00 1.00 2.00
S5 42 0 37 48 81 0.00 1.00 2.00 2.00
S6 0 59 0 0 17 1.01 2.00 0.99 1.00

...
Test Result Fail Fail Fail Pass Pass

been executed by test T1 and T3 for 60 and 100 times respectively. The value mapped
to both S1T1 and S1T3 is 1. S2 has been executed by test T1 and T3 for 70 and 90 times
respectively. Both S2T1 and S2T3 is 1. Therefore, aef for S1 and S2 are approximately
2.88 and 3.00 respectively. The anf and anp for the statements is by taking the subtraction
of the aef and aep from the totF and totP respectively.

Another example is S3 and S4 that have been executed differently by test T4 (4 and
42 times respectively). S3T4 and S4T4 would be mapped to approximately 0.98 and 1.00
respectively. Therefore, aep for Statement 3 (S3) will be 0.98 and Statement 4 (S4) will be
1.00.

If we observe Table 9.2 (test coverage information in binary form), S1 and S2 are
assigned the same metric values since they have identical information of anp, anf , aep, and
aef . By using our proposed approach in Table 9.3, the frequency counts information is
able to further differentiate the likelihood of a particular statement being buggy. In Table
9.3, we can differentiate that S2 is more likely to be buggy as compared to S1. This is due
to more fail test cases executing S2 than S1 (aef of S2 and S1 is 3.00 and 2.88 respectively).

The frequency weighting function is applied on all the test cases. We explore dif-
ferent α variants of the M function to observe whether changing the α values (different
frequency weighting functions) gives any obvious pattern in terms of the improvement of
bug localization performance. We expect the values of anp, anf , aep, and aef to change and
influence the ranking order of the buggy statements. Different ranking orders of buggy
statements indicate the amount of the program code that needs to be examined by the pro-
grammer to locate the bugs. Therefore, the performance of bug localization might vary
for the different α variants applied to the function M .

204

9.3. BUG LOCALIZATION PERFORMANCE USING SPECTRAL FREQUENCY
WEIGHTING FUNCTION

9.3 Bug Localization Performance Using Spectral Fre-
quency Weighting Function

We now discuss experiments performed to evaluate the effectiveness of our proposed ap-
proach by comparing our proposed approach (using frequency weighting function) with
the traditional binary weighting approach. We evaluate these approaches on the Siemens
Test Suite, the subset of the Unix Test Suite, Concordance, and Space benchmarks. We
evaluate on the Subset of Space programs of the existing Space test cases (in 10 bins). We
take the average of the bug localization performance for the 10 bins to reduce any bias
of the bug localization performance of any specific bin. The figures for the traditional
binary weighting approach on our benchmarks are identical to the figures in which we
have reported in Chapter 5.

9.3.1 Single Bug Programs

Initially, we perform our evaluation on the single bug Siemens Test Suite and the subset of
the Unix Test Suite programs with respect to the different α values in Table 9.4. The last
column (Bin) refers to the traditional binary weighting approach. Other columns refer to
our proposed frequency weighting function applied to the different α values (Definition
21). We apply the α values ranging from 0.1 to 100 but only show several of them due to
limited space. For example, column 1 refers to applying Definition 21 with the α value
being 0.1, column 2 refers to applying the α value being 0.5, and etc.

We observe interesting patterns in bug localization performance using our proposed
frequency weighting function on the different α values for several spectra metrics. For
readability purposes, we have bolded the figures that give the best bug localization perfor-
mance among the different α values for several spectra metrics.

All the metrics in the table show the bug localization performance on the different
α values converge to the bug localization performance of the traditional binary weight-
ing approach. For best performing spectra metric such as Op, the performance of bug
localization is the best (17.00%) using our proposed approach with the α value 10. The
programmer only has to examine 17.00% of the program code in order to locate bugs.
By using the traditional binary weighting approach for the same metric, the programmer
needs to examine 17.86% of the program code to locate bugs. Some of the metrics show
some fluctuation of bug localization performance across the different α values. For ex-
ample, JacCube metric shows fluctuation of bug localization performance between the α
values of 1 and 20.

Tarantula metric shows the best improvement in bug localization performance by us-

205

Chapter 9. USING SPECTRAL FREQUENCY WEIGHTING FUNCTION IN BUG
LOCALIZATION

ing our proposed approach with the α value of 0.1 as compared to using the traditional
binary weighting approach (with 25.81% and 27.09% respectively). Using our proposed
approach on any α values, the O metric does not show any improvement in bug localiza-
tion performance. O metric has the non continuous function property (see the metric in
Table 2.3). If a statement of the program has anf > 0, O metric assigns the statement with
a very small metric value. Using our proposed approach of frequency weighting function,
the buggy statement can have a small anf value. Therefore, the buggy statement is ranked
together with other non-buggy statement(s) (tie exists) and bug localization performance
is affected.

To see the trend of bug localization performance on the different choices of α values,
we plot the bug localization performance (average rank percentages) against the different
α values (ranges from 0.1 to 100) including the traditional binary weighting approach
(Bin) for several metrics in Figure 9.2. The metrics shown are Op, Tarantula, Wong3,
Wong4, and Zoltar. It shows that the trend of bug localization performance improves
as the α value is between 10 to 20 for the better performing metrics. As the α value
gets larger beyond 20, the average rank percentages for all these metrics converge to the
average rank percentages using the traditional binary weighting approach (Bin).

Using our proposed approach with the α values ranging between 10 to 50, it has
already shown the improvement of bug localization performance for all the metrics in
Figure 9.2 as compared to using the traditional binary weighting approach (Bin).

Table 9.4: Average Rank Percentages for the Single Bug Siemens Test Suite and the subset of the
Unix Test Suite with respect to the Different α values

α

Metric 0.1 0.5 1 2 4 8 10 20 Bin
O 50.46 49.69 48.22 47.38 45.39 44.70 44.13 38.15 17.8617.8617.86
Op 28.68 27.27 26.22 23.83 20.28 17.02 17.0017.0017.00 17.21 17.86
Wong3 28.17 26.96 24.52 22.27 18.98 17.79 17.3617.3617.36 17.55 18.19
Zoltar 24.16 24.21 24.12 23.99 22.90 18.45 17.71 17.5117.5117.51 18.23
Wong4 28.45 27.28 25.65 23.80 20.52 18.6018.6018.60 18.75 18.61 18.93
Kulczynski2 24.53 22.33 21.90 19.95 18.47 18.1618.1618.16 18.29 18.34 19.06
McCon 24.53 22.33 21.90 19.97 18.48 18.1518.1518.15 18.34 18.38 19.06
JacCube 23.06 20.34 19.51 19.63 19.1419.1419.14 19.36 19.33 19.53 20.06
M2 24.30 20.88 19.70 19.80 19.2919.2919.29 19.33 19.31 19.40 20.12
Ochiai 21.56 20.70 20.6320.6320.63 20.77 20.83 20.83 20.87 20.94 21.63
Pearson 22.99 21.98 21.7921.7921.79 22.13 22.49 22.61 22.62 22.80 23.56

Continued on next page

206

9.3. BUG LOCALIZATION PERFORMANCE USING SPECTRAL FREQUENCY
WEIGHTING FUNCTION

Table 9.4 – continued from previous page
Metric 0.1 0.5 1 2 4 8 10 20 Bin

Jaccard 23.30 22.42 22.3722.3722.37 22.59 22.73 22.65 22.70 22.91 23.64
AMean 22.76 21.9721.9721.97 21.9721.9721.97 22.35 22.59 22.75 22.75 23.01 23.66
Ample2 23.38 22.0022.0022.00 22.16 22.66 23.02 22.94 22.97 23.25 24.08
Rogot2 23.09 21.7821.7821.78 21.79 21.90 22.19 22.24 22.25 23.22 24.88
CBI Log 25.81 25.34 25.35 26.00 26.24 25.3325.3325.33 25.3325.3325.33 25.98 26.80
Tarantula 25.8125.8125.81 25.84 26.02 26.63 26.83 26.66 26.77 26.99 27.09
Russell 31.18 30.35 29.80 29.60 29.54 29.40 28.85 28.6828.6828.68 30.02
Binary 50.46 49.75 48.30 47.58 45.98 45.50 45.12 40.45 30.0230.0230.02
Ample 28.04 27.5227.5227.52 27.94 28.53 28.86 28.75 28.77 29.04 30.16
Overlap 31.19 31.21 30.8730.8730.87 31.61 32.01 31.46 31.76 33.27 32.23

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 4 5 7 8 10 20 50 80 100 Bin

Alpha values

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

A
v
e
ra

g
e
 R

a
n
k
 P

e
rc

e
n

ta
g
e
s

Average Rank Percentages vs Alpha values for Single Bug Programs (Siemens and subset of Unix)

Metrics

O^p
Tarantula
Wong3
Wong4
Zoltar

Figure 9.2: Average Rank Percentages for the Different α values of the Single Bug Siemens Test
Suite and the subset of the Unix Test Suite

We also evaluate our proposed approach on the single bug programs of Concordance
and Space. Similar improvement of bug localization performance is observed using our
proposed approach on different α values. The details can be found in Appendix G.

207

Chapter 9. USING SPECTRAL FREQUENCY WEIGHTING FUNCTION IN BUG
LOCALIZATION

9.3.2 Multiple-bug Programs

In this section, we evaluate our proposed approaches on the multiple-bug programs of the
Siemens Test Suite, the subset of the Unix Test Suite, and Space.

Table 9.5: Average Rank Percentages for the Two-bug Siemens Test Suite and the subset of the
Unix Test Suite with respect to the Different α values

α

Metric 0.1 0.5 1 2 4 8 10 20 Bin
Kulczynski2 20.36 19.00 18.53 18.18 17.8817.8817.88 17.97 18.01 18.17 19.53
McCon 20.36 19.00 18.53 18.18 17.8817.8817.88 17.97 18.01 18.16 19.53
Ochiai 19.43 18.25 17.9717.9717.97 18.16 18.36 18.56 18.57 18.78 20.18
JacCube 21.18 19.76 18.88 18.6018.6018.60 18.87 18.99 18.98 19.16 20.51
Zoltar 19.46 19.37 19.24 19.56 19.87 19.71 19.41 19.1619.1619.16 20.52
Wong4 21.02 20.79 20.44 20.39 19.87 19.21 19.1719.1719.17 19.36 20.78
M2 21.72 20.24 19.22 19.06 19.0719.0719.07 19.22 19.18 19.36 20.80
AMean 19.95 18.71 18.5018.5018.50 18.77 19.15 19.34 19.33 19.54 20.97
Pearson 20.00 18.70 18.4718.4718.47 18.77 19.10 19.36 19.35 19.56 21.09
Jaccard 19.90 18.59 18.5618.5618.56 18.96 19.14 19.31 19.35 19.69 21.10
Ample2 20.00 18.60 18.4518.4518.45 18.66 19.36 19.58 19.58 19.87 21.37
Rogot2 20.00 18.68 18.5418.5418.54 18.71 18.84 18.95 18.94 20.23 21.78
CBI Log 19.60 19.0619.0619.06 19.21 19.76 20.17 20.25 20.39 21.47 22.26
Wong3 23.60 23.14 22.39 22.15 21.77 21.09 21.0221.0221.02 21.13 22.54
Op 23.93 23.60 23.46 22.83 22.44 21.34 21.3021.3021.30 21.43 22.84
Tarantula 22.11 21.9321.9321.93 22.16 22.43 22.69 22.69 22.74 22.85 23.13
Ample 22.71 21.46 21.4021.4021.40 21.69 22.43 22.70 22.71 22.95 24.49
O 50.43 48.55 48.61 47.73 47.13 46.55 43.52 37.03 24.9524.9524.95
Russell 26.46 26.27 26.1326.1326.13 26.18 26.36 26.47 26.44 26.50 32.10
Binary 50.41 48.56 48.62 47.82 47.32 46.86 44.16 37.96 34.0234.0234.02
Overlap 27.6827.6827.68 28.04 27.6827.6827.68 28.04 27.88 29.02 28.58 33.90 34.02

208

9.3. BUG LOCALIZATION PERFORMANCE USING SPECTRAL FREQUENCY
WEIGHTING FUNCTION

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 4 5 7 8 10 20 50 80 100 Bin

Alpha values

17.00

18.00

19.00

20.00

21.00

22.00

23.00

24.00

A
v
e
r
a
g
e
 R

a
n
k
 P

e
r
c
e
n

t
a
g
e
s

Average Rank Percentages vs Alpha values for Two-Bug Programs (Siemens and subset of Unix)

Metrics

Kulczynski2
O^p
Wong3
Wong4
Zoltar

Figure 9.3: Average Rank Percentages for the Different α values of the Two-Bug Siemens Test
Suite and the subset of the Unix Test Suite

Table 9.6: Average Rank Percentages for the Three-bug Siemens Test Suite and the subset of the
Unix Test Suite with respect to the Different α values

α

Metric 0.1 0.5 1 2 4 8 10 20 Bin
Kulczynski2 17.98 16.37 16.1416.1416.14 16.78 16.86 17.80 17.86 18.53 21.94
McCon 17.98 16.36 16.1416.1416.14 16.78 16.87 17.79 17.85 18.53 21.94
AMean 17.78 16.5016.5016.50 16.55 16.75 17.07 18.17 18.09 18.84 22.24
Pearson 17.73 16.6116.6116.61 16.63 16.86 17.12 18.20 18.13 18.87 22.31
Rogot2 17.86 16.75 16.7116.7116.71 16.93 17.11 18.10 18.01 19.09 22.53
Ample2 18.13 16.64 15.9215.9215.92 15.96 17.30 18.25 18.30 19.06 22.56
Ochiai 17.51 16.38 16.3016.3016.30 17.24 17.43 18.41 18.44 19.16 22.60
Wong4 16.96 16.7916.7916.79 16.98 17.35 18.11 18.34 18.34 19.16 22.60
Jaccard 18.09 16.5616.5616.56 16.57 17.48 17.80 18.74 18.81 19.61 23.12
CBI Log 15.43 15.1915.1915.19 15.55 17.23 18.14 18.72 19.08 21.31 23.37
Zoltar 16.1816.1816.18 16.35 17.06 18.30 18.65 19.70 19.58 20.06 23.49
Ample 18.92 17.48 16.7816.7816.78 16.90 18.32 19.30 19.34 20.08 23.88
JacCube 18.93 18.25 17.9917.9917.99 18.06 19.86 20.74 20.81 21.48 24.86
M2 19.10 18.29 17.9917.9917.99 18.91 19.86 20.89 20.88 21.57 24.97
Wong3 19.83 19.79 19.44 19.3119.3119.31 20.95 21.36 21.29 21.92 25.24
Op 19.98 20.09 20.32 19.8219.8219.82 21.38 21.37 21.35 22.00 25.33

Continued on next page

209

Chapter 9. USING SPECTRAL FREQUENCY WEIGHTING FUNCTION IN BUG
LOCALIZATION

Table 9.6 – continued from previous page
Metric 0.1 0.5 1 2 4 8 10 20 Bin

Tarantula 25.3525.3525.35 25.75 26.42 26.66 26.91 26.94 26.95 26.98 27.23
Russell 20.0520.0520.05 20.22 20.58 21.36 22.16 23.36 23.40 24.26 28.67
O 50.11 40.66 39.26 38.22 38.77 37.29 32.57 31.69 29.2929.2929.29
Binary 50.08 40.68 39.22 38.29 38.96 37.56 33.44 32.71 32.4332.4332.43
Overlap 33.6933.6933.69 35.24 35.69 36.35 36.01 37.68 37.47 38.08 38.34

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 4 5 7 8 10 20 50 80 100 Bin

Alpha values

15.00

16.00

17.00

18.00

19.00

20.00

21.00

22.00

23.00

24.00

25.00

26.00

A
v
e
ra

g
e
 R

a
n
k
 P

e
rc

e
n

ta
g
e
s

Average Rank Percentages vs Alpha values for Three-Bug Programs (Siemens and subset of Unix)

Metrics
Kulczynski2
O^p
Wong3
Wong4
Zoltar

Figure 9.4: Average Rank Percentages for the Different α values of the Three-Bug Siemens Test
Suite and the subset of the Unix Test Suite

Table 9.7: Average Rank Percentages (on average of 10 bins) for the Multiple-bug Space Pro-
grams with respect to the Different α values

α

Metric 0.1 0.5 1 2 4 8 10 20 Bin
Zoltar 4.01 4.46 4.28 4.15 3.33 2.70 2.342.342.34 2.38 2.42
JacCube 2.76 2.79 2.74 2.392.392.39 2.46 2.46 2.46 2.45 2.49
O 50.10 50.55 50.72 50.66 47.25 42.26 41.63 41.06 2.542.542.54
Op 6.18 6.50 5.90 4.94 3.82 2.442.442.44 2.51 2.51 2.54
Wong3 5.40 5.42 4.69 4.30 3.76 2.452.452.45 2.52 2.52 2.54

Continued on next page

210

9.3. BUG LOCALIZATION PERFORMANCE USING SPECTRAL FREQUENCY
WEIGHTING FUNCTION

Table 9.7 – continued from previous page
Metric 0.1 0.5 1 2 4 8 10 20 Bin

M2 3.38 3.21 2.76 2.492.492.49 2.492.492.49 2.54 2.54 2.53 2.58
Kulczynski2 3.49 3.29 3.17 2.96 2.602.602.60 2.61 2.61 2.602.602.60 2.64
McCon 3.49 3.29 3.17 2.96 2.602.602.60 2.61 2.61 2.602.602.60 2.64
Wong4 5.13 4.94 4.69 4.31 3.52 2.612.612.61 2.65 2.68 2.82
Ochiai 2.85 2.78 2.75 2.712.712.71 2.78 2.79 2.79 2.78 2.85
Jaccard 3.013.013.01 3.06 3.09 3.18 3.29 3.30 3.30 3.29 3.37
Rogot2 3.51 3.55 3.53 3.55 3.63 3.39 3.37 3.363.363.36 3.42
Pearson 3.45 3.45 3.43 3.43 3.51 3.43 3.423.423.42 3.423.423.42 3.49
Ample2 3.59 3.56 3.49 3.403.403.40 3.42 3.47 3.47 3.47 3.52
AMean 3.493.493.49 3.50 3.50 3.51 3.59 3.58 3.58 3.57 3.65
CBI Log 3.91 3.93 3.84 3.82 3.79 3.763.763.76 3.763.763.76 3.77 3.85
Tarantula 4.384.384.38 4.39 4.39 4.384.384.38 4.40 4.40 4.40 4.43 4.44
Ample 8.21 8.18 8.11 8.008.008.00 8.008.008.00 8.05 8.05 8.04 8.09
Russell 10.2510.2510.25 10.46 10.42 10.42 10.31 10.31 10.37 12.52 17.85
Binary 50.10 50.55 50.72 50.68 47.42 42.07 41.76 17.8517.8517.85 17.8517.8517.85
Overlap 6.54 6.48 6.316.316.31 6.38 6.54 16.02 15.87 15.70 18.07

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 4 5 7 8 10 20 50 80 100 Bin

Alpha values

2.00

3.00

4.00

5.00

6.00

7.00

A
v
e
ra

g
e
 R

a
n
k
 P

e
rc

e
n

ta
g
e
s

Average Rank Percentages vs Alpha values for Multiple Bugs Programs (Space)

Metrics

Zoltar
Op
Wong3
Kulczynski2
Ochiai

Figure 9.5: Average Rank Percentages for the Different α values of the Multiple-bug Space Pro-
grams

We evaluate the traditional binary weighting approach for the two-bug and three-bug
programs of the Siemens Test Suite and the subset of the Unix Test Suite in Section 5.9

211

Chapter 9. USING SPECTRAL FREQUENCY WEIGHTING FUNCTION IN BUG
LOCALIZATION

of Chapter 5. Kulczynski2 and McCon metrics are the most effective metrics to be used
in these benchmarks. By using our proposed approach (using frequency weighting func-
tion) on these benchmarks, we observe that the performance of bug localization for the
Kulczynski2 and McCon metrics improve as compared to using the traditional binary
weighting approach (Bin) (see Table 9.5 and Table 9.6). By using Kulczynski2 and Mc-
Con metrics, we observe the most improvement of bug localization performance using our
proposed approach with the α value of 4 and 1 as compared to using the traditional binary
weighting approach in Table 9.5 and Table 9.6 respectively. In these tables, other metrics
such as Ochiai and Ample show the best improvement in bug localization performance by
using our proposed approach with the α value of 1 compared with using the traditional
binary weighting approach (Bin).

We also report the Subset of multiple-bug Space programs using our proposed ap-
proach for the different α variants in Table 9.7. There is some improvement of bug local-
ization performance using our proposed approach for metrics, such as Zoltar, Op, Wong3,
and M2, to name a few. For Zoltar, it performs the best when evaluating our approach with
the α values of 10 compared to using the traditional binary weighting approach (Bin) with
the average rank percentages of 2.34% and 2.42% respectively.

For the two-bug Siemens Test Suite and the subset of the Unix Test Suite, metrics
in Figure 9.3 show that the bug localization performance improves using our proposed
approach with the wider range of the α values of between 2 to 50 compared with the
traditional binary weighting approach (Bin). We observe any α value less than 50 already
shows improved bug localization performance for all the metrics in Figure 9.4, using our
proposed approach on the three-bug Siemens Test Suite and the subset of the Unix Test
Suite. For multiple-bug Space programs in Figure 9.5, we observe that within a range
of the α values between 10 to 50, our proposed approach already shows improved bug
localization performance as compared to using the traditional binary weighting approach
(Bin).

In all these tables, we do not observe any improvement of bug localization perfor-
mance on O metric using our proposed frequency weighting function approach. Any
spectra metric with higher average rank percentages is not useful. In our evaluation, spec-
tra metrics located at the bottom of Table 9.4 – 9.7 and Table G.1 – G.2 should not be
considered at the first place by the programmer in locating bugs.

9.3.3 Statistical Significance

In Subsection 9.3.1 and Subsection 9.3.2, we observe that bug localization performance
improves using our proposed frequency weighting function approach compared with the
traditional binary weighting approach. It is unclear whether the improvement of bug

212

9.3. BUG LOCALIZATION PERFORMANCE USING SPECTRAL FREQUENCY
WEIGHTING FUNCTION

localization performance of our proposed approach is significant from statistical point of
view.

In our evaluation, we observe the different ranges of the α variants that show the bug
localization performance improves using our proposed approach compared to using the
traditional binary weighting approach. The different ranges of the α variants that show
improvement of bug localization performance using our proposed approach might be pro-
gram dependent. In practice, the programmer does not know the number of bugs in the
program. From all the observations in the tables, we can generalise that for any pro-
gram without any knowledge on the number of bugs, choosing an α value of 10 is suffi-
cient to show improvement in bug localization performance using our proposed approach
compared to using the traditional binary weighting approach. Therefore, we establish a
hypothesis, by using our proposed frequency weighting function approach (with α value

of 10), the bug localization performance improves as compared to using the traditional

binary weighting approach.

We perform the one-sided Wilcoxon rank sum test [Hollander and Wolfe, 1973] on all
the spectra metrics to check the statistical significance of the improved bug localization
performance using our proposed approach (α value is 10), compared to the traditional
binary weighting approach. For Space, we showed that the bug localization performance
of the Subset of Space programs (subset of the Space test cases) across the 10 bins is very
similar (see Figure 5.13 and Figure 5.16). Therefore, we only perform the statistical test
on one of the 10 bins of the subset of the Space programs to test the significance of our
hypothesis.

Significance of Improved Bug Localization Performance on Single Bug Programs

For the Siemens Test Suite and the subset of the Unix Test Suite, better performing met-
rics, namely Op, Wong3, and Zoltar metrics in Table 9.4 have the p-value [Rice, 1989]
for our hypothesis of 0.0069, 0.0112, and 0.0124 respectively. A p-value of less than 0.05
indicates that the improved bug localization performance using our proposed approach
(α value of 10), is statistically significant as compared to the traditional binary weighting
approach with confidence greater than 95%.

For Concordance and Space (Table G.1 and G.2), we observe marginal improvement
of bug localization performance on several metrics. We do not observe statistically signif-
icant improvement in bug localization performance using our proposed approach (α value
of 10) compared to the traditional binary weighting approach.

213

Chapter 9. USING SPECTRAL FREQUENCY WEIGHTING FUNCTION IN BUG
LOCALIZATION

Significance of Improved Bug Localization Performance on Multiple-bug Programs

For the multiple-bug programs (Table 9.5, Table 9.6, and Table 9.7), we perform signifi-
cant tests on better performing metrics using our hypothesis established earlier. Most of
the better performing metrics in these tables have the p-value [Rice, 1989] of our hypothe-
sis of < 0.01. Therefore, these metrics show a statistically significant improvement in bug
localization performance using our proposed approach (α value of 10) with confidence
greater than 99%.

9.4 Summary

In this chapter, we proposed the use of extra information, which is the frequency counts of
test coverage to map into the respective spectra properties anp, anf , aep, and aef using a fre-
quency weighting function. Frequency counts of test coverage indicate how many times
the respective statement of the test case has been executed. From our evaluation on bench-
marks (Siemens Test Suite, subset of the Unix Test Suite, Concordance, and Space pro-
grams), exploiting frequency counts information led to significant improvements in bug
localization performance compared to using the traditional binary weighting approach.

We showed that by using the proposed frequency weighting function within the range
of α values of 10 to 20 on most of the better performing metrics generally improves
the bug localization performance, compared to using the traditional binary weighting ap-
proach. We chose α of 10 and showed statistically significant improvement in bug lo-
calization performance for most of the better performing metrics on all the multiple-bug
programs of our benchmarks. The improvement is statistically significant with confidence
greater than 99% and is in the range of average rank percentages of 0.03% to 4.52%.

214

10
Conclusions

This chapter concludes the thesis. There are two sections in this chapter. The first section
briefly summarises the contributions of the thesis in the spectral debugging area. The
second section explores several avenues for future research.

10.1 Summary

In this thesis, we have made the following contributions to spectral debugging:

• A comprehensive study of spectra metrics in the literature and the application of
these metrics in spectral debugging.

• The use of the model-based approach based on a simple if-then-else program (ITE28)
to understand single bug programs, and the proposal of optimal spectra metrics O
and Op for improving the bug localization performance of single bug programs.

• The relationship of bug consistency, qe, with respect to bug localization perfor-
mance.

• Bug localization performance using unique (non-redundant) test cases.

• Varying weights on fail tests and the proposed incremental ranking approaches of
the top-ranked statements.

• The use of more information of test coverage, such as the frequency counts of test
execution.

215

Chapter 10. CONCLUSIONS

The major results obtained in each part of the thesis are indicated as follows.

10.1.1 Model Program

We have advanced the state-of-the-art of software diagnosis using program spectra. Using
a model-based approach (the simple model program ITE28), we are able to obtain a better
understanding of single bug programs. This enables us to develop optimal spectra metrics,
O and Op, for single bug programs. We studied a comprehensive list of spectra metrics
used in the literature. Our experiments on the model program ITE28 fit well with the
overall evaluation on the real world benchmarks (Siemens Test Suite, subset of the Unix
Test Suite, Concordance, and Space). We showed improvement in bug localization perfor-
mance using the O and Op metrics. These metrics outperformed other metrics proposed
in the debugging area such as the Wong3, Wong4, Zoltar, Ochiai, Jaccard, Tarantula, and
Ample metrics.

10.1.2 Bug Consistency

We studied the relationship between bug consistency, qe, and bug localization perfor-
mance. Bug consistency refers to how consistent the buggy statement shows an unin-
tended output when executed by test cases. When the bug is not consistent (qe is small),
bug localization performance may vary. As the bug is more consistent (qe approaching 1),
bug localization performance improves. However, we observed ties in the program code
affected bug localization performance even when the bug of the program is consistent (qe
is 1).

10.1.3 Equivalence of Spectra Metrics

We showed that any two spectra metrics are equivalent for ranking if and only if any
one of them can be transformed to the other using a monotonically increasing function
(see Lemma 5.2.1). For example, the Russell and Rao (Russell) and Wong1 metrics are
equivalent for ranking. The Jaccard, Anderberg, Sneath & Sokal 2, Sørensen-Dice, Dice,
Goodman, Levandowsky, and Kulczynski1 metrics are also equivalent for ranking. We
also showed that the bug consistency, qe, CBI Increase (CBI Inc), Coef, and Tarantula
[Jones and Harrold, 2005] metrics are equivalent.

10.1.4 Unique (Non-redundant) Test Cases

We proposed using unique (non-redundant) test cases in order to evaluate the bug local-
ization performance of programs. We found redundant test cases in the test suites of our

216

10.1. SUMMARY

benchmarks (Siemens Test Suite, subset of the Unix Test Suite, Concordance, and Space).
We performed an empirical study of bug localization performance using unique test cases
on the single bug and multiple-bug programs. We generally observed no degradation of
bug localization performance using unique test cases on better performing metrics for
most of the benchmarks.

We also showed the importance of using a larger number of unique test cases to im-
prove bug localization performance. We found improvement in bug localization perfor-
mance for better performing metrics using all the unique test cases, compared to using
10% of the unique pass and fail test cases on all our benchmarks. The latter improve-
ment for most of our benchmarks is statistically significant with confidence greater than
95%. We found the improvement for the better performing metrics on all the multiple-bug
programs of our benchmarks is in the range of 5.83% to 11.45%.

10.1.5 Varying Weights on Fail Tests

We proposed to vary the weights for different fail test cases. Program statements executed
in a fail test with fewer statements are more likely buggy than those program statements
executed in a fail test that executed a larger number of statements. We assigned different
weights to the statements according to the information of the fail tests. This is known as
the Weighted approach. For multiple-bug Siemens Test Suite and the subset of the Unix
Test Suite programs, we observed a statistically significant improvement in bug localiza-
tion performance on all better performing metrics using the Weighted approach as com-
pared to the Unweighted approach (without assigning any weights). The improvement is
statistically significant with confidence greater than 95% and ranging in the average rank
percentages of 0.06% to 0.98%.

Apart from assigning weights to the fail tests, we also proposed to rank the top state-
ments of the program incrementally. For each iteration, once the top-ranked statement has
been decided, the other statements can be ranked under the assumption that the top-ranked
statement is not buggy. We proposed to rank the top 10% and 20% of the top-ranked
statements of a program (and use the Weighted approach for the remainder). We observed
improvement using these approaches as compared to the Unweighted approach especially
on the multiple-bug programs.

We evaluate the top-down incremental ranking approach where we rank all the top
ranked statements until there is a fail test that does not execute any statement. For single
bug programs, we only found a marginal improvement in bug localization performance
on better performing metric, Op, by using the top-down incremental ranking approach as
compared to using the Unweighted approach. For the multiple-bug programs, we found a
statistically significant improvement in bug localization performance on all the better per-

217

Chapter 10. CONCLUSIONS

forming metrics using the top-down incremental ranking approach compared to the Un-
weighted approach. The improvement is statistically significant with confidence greater
than 95% and ranging from the average rank percentages of 0.41% to 4.63%.

We validated the proposed Weighted and top-down incremental ranking approaches
on the unique test cases of our benchmarks in Appendix F. The improvement of bug lo-
calization performance using the proposed Weighted and incremental ranking approaches
on the benchmarks further validated the robustness of our proposed approaches.

10.1.6 Frequency Weighting Function

Instead of using the binary test coverage (traditional binary weighting approach), we pro-
posed the use of more information of the test coverage, namely the frequency counts. A
frequency weighting function is applied by using a sigmoid function to map the frequency
counts to the respective program spectra properties 〈anp, anf , aep, aef〉. We showed im-
provement in bug localization performance on better performing metrics using the fre-
quency weighting function compared to using the traditional binary weighting approach
on our benchmarks (Siemens Test Suite, subset of the Unix Test Suite, Concordance, and
Space).

By using the frequency weighting function with the range of α value of 10 to 20, we
observed improvement in bug localization performance compared to using the traditional
binary weighting approach on most of the better performing metrics for all of our bench-
marks. Therefore, we chose the α value of 10 for the frequency weighting function. We
observed improvement of bug localization performance compared to using the traditional
binary weighting on most of the better performing metrics of all single bug programs. The
improvement is in the range of average rank percentages from 0.02% to 0.86%. For all
the multiple-bug programs, we observed a statistically significant improvement on most
of the better performing metrics (ranging from 0.03% to 4.52%) with confidence greater
than 99%.

10.2 Future Directions

Some future directions which could be investigated are outlined below:

• We can apply our proposed optimal spectra metrics, O and Op, to the predicate-
based CBI system [Liblit et al., 2005], and the Holmes system [Chilimbi et al.,
2009], which uses path-based spectra coverage. The bug localization performance
of these metrics can be compared with other metrics, such asCBIInc andCBILog,
which have been proposed in the CBI and Holmes systems. Recently, we proposed

218

10.2. FUTURE DIRECTIONS

to reconstruct predicate-based spectra coverage based on statement-based spectra
coverage [Naish et al., 2010]. Several predicate-based spectra metrics have been
proposed and bug localization performance for single bug programs improved us-
ing these metrics, as compared to using the Op metric (the optimal metric for single
bug programs). These predicate-based metrics could potentially be applied to the
Holmes system [Chilimbi et al., 2009] to observe bug localization performance of
the path-based spectra coverage.

• We can extend the study of the model-based approach to multiple-bug programs,
although the assumptions we have made for single bug programs are not applicable
to multiple-bug programs. For example, in a typical multiple-bug program, the
buggy statements are not necessarily executed by all the fail test cases. Further
studies are needed to adjust different parameters on the models of multiple-bug
programs. An in-depth understanding of a particular multiple-bug model program
would be useful in developing an optimal metric for multiple-bug programs.

• The history log provides information on what has been fixed in the past, and which
particular statements of the program were affected in the past. Moin et al. used the
information of history logs (bug information, changes made on the program code)
of previous projects stored in revision control system to locate bugs [Moin and
Khansari, 2010]. They apply a machine learning approach, which is support vector
machine [Steinwart and Christmann, 2008] to train and predict the location of bug in
the program code stored in the revision control system. We can apply this approach
by incorporating this extra information together with the ranked program statements
from the program spectra. Statements of the program not altered before are less
likely to be buggy when compared to statements altered before by the programmers.
Therefore, programmers can focus on top-ranked statements that have been recently
fixed by the programmer to narrow down the search of the bugs.

• Typically in software testing, test cases are developed to ensure the test coverage
of the program is achieved (program statements are covered and requirements of
the program are tested). However, we believe, for debugging purposes, building
distinct test cases is important, even though the test coverage might be small and
we propose this as future work.

We hope that this thesis will become the basis for much further analysis of this area of
spectral debugging.

219

Bibliography

[ABC, 2008] ABC. Years of Failure Caused M5 Mess: RTA Veteran. Retrieved from
http://www.abc.net.au/news/stories/2008/09/23/2371848.htm.

[ABC, 2010] ABC. Myki Customers Caught in Programming Error. Retrieved from
http://www.abc.net.au/news/stories/2010/03/26/2856820.
htm?section=business.

[Abreu et al., 2006] Abreu, R., Zoeteweij, P., and van Gemund, A. (2006). An Evaluation
of Similarity Coefficients for Software Fault Localization. In Proceedings of the 12th
Pacific Rim International Symposium on Dependable Computing, pages 39–46. IEEE
Computer Society Washington, DC, USA.

[Abreu et al., 2007] Abreu, R., Zoeteweij, P., and van Gemund, A. (2007). On the Ac-
curacy of Spectrum-based Fault Localization. Testing: Academic and Industrial Con-
ference Practice and Research Techniques-Mutation, 2007. TAICPART-Mutation 2007,
pages 89–98.

[ACCC, 2010] ACCC. Electronic Funds Transfer at Point of Sale (EFT-
POS). Retrieved from http://www.accc.gov.au/content/index.
phtml/itemId/816401.

[A.Gonzalez, 2007] A.Gonzalez (2007). Automatic Error Detection Techniques based on
Dynamic Invariants. Master’s thesis, Delft University of Technology, The Netherlands.

[Agrawal and Horgan, 1990] Agrawal, H. and Horgan, J. (1990). Dynamic Program Slic-
ing. ACM SIGPLAN Notices, 25(6):246–256.

[Agrawal et al., 1995] Agrawal, H., Horgan, J., London, S., Wong, W., and Bellcore, M.
(1995). Fault Localization using Execution Slices and Dataflow Tests. In Proceedings
of the 6th International Symposium on Software Reliability Engineering, pages 143–
151.

[Ali et al., 2009] Ali, S., Andrews, J., Dhandapani, T., and Wang, W. (2009). Evaluating
the Accuracy of Fault Localization Techniques. In Proceedings of the 24th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pages 76–87.
IEEE Computer Society.

[Anderberg, 1973] Anderberg, M. R. (1973). Cluster Analysis for Applications. Mono-
graphs and Textbooks on Probability and Mathematical Statistics. Academic Press,
Inc., New York.

[Andrews et al., 2005] Andrews, J., Briand, L., and Labiche, Y. (2005). Is Mutation an
Appropriate Tool for Testing Experiments? In Proceedings of the 27th International
Conference on Software Engineering, pages 402–411. ACM.

[BankWest, 2010] BankWest. Bank of Western Australia (Bankwest). Retrieved from
http://www.bankwest.com.au/.

221

BIBLIOGRAPHY

[Beck and Eichmann, 2002] Beck, J. and Eichmann, D. (2002). Program and Interface
Slicing for Reverse Engineering. In Proceedings of the 15th International Conference
on Software Engineering, pages 509–518. IEEE Computer Society.

[Beizer, 1995] Beizer, B. (1995). Black-box Testing. Wiley New York.

[Bellard, 2010] Bellard, F. Tiny C Compiler. Retrieved from http://bellard.org/
tcc/.

[Berkhin, 2006] Berkhin, P. (2006). Survey of Clustering Data Mining Techniques.
Grouping Multidimensional Data: Recent Advances in Clustering, pages 25–71.

[Berlekamp, 1968] Berlekamp, E. (1968). Algebraic Coding Theory, volume 111.
McGraw-Hill New York.

[Bloom, 1981] Bloom, S. (1981). Similarity Indices in Community Studies: Potential
Pitfalls. Mar. Ecol. Prog. Ser, 5(2):125–128.

[BOQ, 2010] BOQ. Bank of Queensland (BOQ). Retrieved from http://www.boq.
com.au/.

[Boser et al., 1992] Boser, B., Guyon, I., and Vapnik, V. (1992). A Training Algorithm
for Optimal Margin Classifiers. In Proceedings of the 5th Annual Workshop on Com-
putational Learning Theory, pages 144–152. ACM.

[Braun-Blanquet, 1932] Braun-Blanquet, J. (1932). Plant Sociology: The Study of Plant
Communities. Trans. by Fuller, GD & Conard.

[Breiman, 2001] Breiman, L. (2001). Random Forests. Machine Learning, 45(1):5–32.

[Briand et al., 2007] Briand, L., Labiche, Y., and Liu, X. (2007). Using Machine Learn-
ing to Support Debugging with Tarantula. In Proceedings of the 18th IEEE Interna-
tional Symposium on Software Reliability Engineering, pages 137–146. IEEE Com-
puter Society.

[Brin et al., 1997] Brin, S., Motwani, R., Ullman, J., and Tsur, S. (1997). Dynamic Item-
set Counting and Implication Rules for Market Basket Data. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, pages 255–264.
ACM.

[Bross, 1977] Bross, I. (1977). Critical Levels, Statistical Language and Scientific Infer-
ence. Experimental Design and Interpretation, 6:476.

[Charette, 2010] Charette, R. N. Y2K Bug Ten Years (Plus Six) Late. Retrieved from
http://spectrum.ieee.org/riskfactor/computing/software/
y2k-bug-ten-years-plus-six-late.

[Chen, 2009] Chen, B. X. Snow Leopard Update Fixes Deletion Bug.
Retrieved from http://www.wired.com/gadgetlab/2009/11/
snowleopard-update/.

222

BIBLIOGRAPHY

[Chen et al., 2002] Chen, M., Kiciman, E., Fratkin, E., Fox, A., and Brewer, E. (2002).
Pinpoint: Problem Determination in Large, Dynamic Internet Services. In Proceedings
of the International Conference on Dependable Systems and Networks, pages 595–604,
Washington, DC. IEEE Computer Society.

[Chen and Cheung, 1993] Chen, T. and Cheung, Y. (1993). Dynamic Program Dicing.
In Proceedings of the International Conference on Software Maintenance (CSM-93),
pages 378–385.

[Chilimbi et al., 2009] Chilimbi, T., Liblit, B., Mehra, K., Nori, A., and Vaswani, K.
(2009). HOLMES: Effective Statistical Debugging via Efficient Path Profiling. In Pro-
ceedings of the IEEE 31st International Conference on Software Engineering, pages
34–44. IEEE Computer Society.

[Chung et al., 2008] Chung, Y., Huang, C., and Huang, Y. (2008). A Study of Modified
Testing-based Fault Localization Method. In Proceedings of the 14th IEEE Pacific Rim
International Symposium on Dependable Computing, pages 168–175. IEEE Computer
Society.

[Cleve and Zeller, 2005] Cleve, H. and Zeller, A. (2005). Locating Causes of Program
Failures. In Proceedings of the 27th International Conference on Software Engineer-
ing, volume 27, pages 342–351, Missouri, USA. ACM Press New York, NY, USA.

[CNT, 2010] CNT. CNT. Retrieved from http://sourceforge.net.

[Cohen, 1960] Cohen, J. (1960). A Coefficient of Agreement for Nominal Scales. Edu-
cational and Psychological Measurement, 20(1):37–46.

[Cohen, 1995] Cohen, W. (1995). Fast Effective Rule Induction. In Proceedings of the
12th International Conference on Machine Learning, Tahoe City, California, pages
115–123. Morgan Kaufmann.

[Dahm et al., 2002] Dahm, M., van Zyl, J., and Haase, E. Bytecode Engineering Library
(BCEL). Retrieved from http://jakarta.apache.org/bcel/.

[Dallmeier et al., 2005] Dallmeier, V., Lindig, C., and Zeller, A. (2005). Lightweight
Bug Localization with AMPLE. In Proceedings of the 6th International Symposium
on Automated Analysis-driven Debugging, pages 99–104. ACM.

[Debroy et al., 2010] Debroy, V., Wong, W., Xu, X., and Choi, B. (2010). A Grouping-
based Strategy to Improve the Effectiveness of Fault Localization Techniques. In Pro-
ceedings of the 10th International Conference on Quality Software (QSIC), pages 13–
22. IEEE Computer Society.

[Dennette A. Harrod, 1996] Dennette A. Harrod, J. The First Computer Bug! Re-
trieved from http://www.waterholes.com/˜dennette/1996/hopper/
bug.htm.

[Di Fatta et al., 2006] Di Fatta, G., Leue, S., and Stegantova, E. (2006). Discriminative
Pattern Mining in Software Fault Detection. In Proceedings of the 3rd International
Workshop on Software Quality Assurance, pages 62–69. ACM.

223

BIBLIOGRAPHY

[Dickinson et al., 2001] Dickinson, W., Leon, D., and Podgurski, A. (2001). Finding
Failures by Cluster Analysis of Execution Profiles. In Proceedings of the 23rd Interna-
tional Conference on Software Engineering, pages 339–348. IEEE Computer Society
Washington, DC, USA.

[Do et al., 2005] Do, H., Elbaum, S., and Rothermel, G. (2005). Supporting Controlled
Experimentation with Testing Techniques: An Infrastructure and its Potential Impact.
In Empirical Software Engineering, pages 405–435. Springer.

[Dodd, 1938] Dodd, E. (1938). Definitions and Properties of the Median, Quartiles, and
other Positional Means. American Mathematical Monthly, 45(5):302–306.

[Domingos, 1999] Domingos, P. (1999). Metacost: A General Method for Making Clas-
sifiers Cost-Sensitive. In Proceedings of the 5th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pages 155–164. ACM.

[Duarte et al., 1999] Duarte, J., Santos, J., and Melo, L. (1999). Comparison of Similarity
Coefficients based on RAPD Markers in the Common Bean. In Genetics and Molecular
Biology, volume 22, pages 427–432. SciELO Brasil.

[Dunham, 2002] Dunham, M. (2002). Data mining: Introductory and Advanced Topics.
Prentice Hall, PTR Upper Saddle River, NJ, USA.

[eibe, 2010] eibe, fracpete, w. Weka—Machine Learning Software in Java. Retrieved
from http://sourceforge.net/projects/weka/.

[Emerson, 2008] Emerson, D. Traffic Chaos Hits Sydney Again. Re-
trieved from http://www.smh.com.au/news/national/
traffic-chaos-hits-sydney-again/2008/06/25/1214073288063.
html?page=fullpage#contentSwap1.

[Etcheberry, 1977] Etcheberry, J. (1977). The Set-Covering Problem: A New Implicit
Enumeration Algorithm. Operations Research, 25(5):760–772.

[Everett and McLeod, 2007] Everett, G. and McLeod, R. (2007). Software Testing: Test-
ing Across the Entire Software Development Life Cycle. Wiley-IEEE Computer Soci-
ety.

[Everitt, 1978] Everitt, B. (1978). Graphical Techniques for Multivariate Data. North-
Holland, New York.

[Everitt and Rabe-Hesketh, 1997] Everitt, B. and Rabe-Hesketh, S. (1997). The Analysis
of Proximity Data. Arnold Publishers.

[Fager and McGowan, 1963] Fager, E. and McGowan, J. (1963). Zooplankton Species
Groups in the North Pacific. Science, 140:453–460.

[Ferrante et al., 1987] Ferrante, J., Ottenstein, K., and Warren, J. (1987). The Program
Dependence Graph and Its Use in Optimisation. ACM Transactions on Programming
Languages and Systems (TOPLAS), 9(3):319–349.

224

BIBLIOGRAPHY

[Festa, 2001] Festa, P. Governments Push Open-Source Software. Retrieved from http:
//news.cnet.com/2100-1001-272299.html.

[Fleiss, 1965] Fleiss, J. (1965). Estimating the Accuracy of Dichotomous Judgments.
Psychometrika, 30(4):469–479.

[Forbes, 1933] Forbes, W. (1933). A Grouping of the Agrotine Genera. Entomologica
Americana, 14(1).

[Frank and Witten, 1998] Frank, E. and Witten, I. (1998). Generating Accurate Rule Sets
Without Global Optimisation. pages 144–151.

[Frankl and Iakounenko, 1998] Frankl, P. and Iakounenko, O. (1998). Further Empirical
Studies of Test Effectiveness. ACM SIGSOFT Software Engineering Notes, 23(6):153–
162.

[Friedman et al., 2001] Friedman, J., Tibshirani, R., and Hastie, T. (2001). The Elements
of Statistical Learning. Springer-Verlag New York.

[Gartner, 2010] Gartner. Gartner Report IT Spending 2010. Retrieved from http://
www.slideshare.net/rsink/gartner-report-it-spending-2010.

[GCC, 2010a] GCC, G. GCC, The GNU Compiler Collection. Retrieved from http:
//gcc.gnu.org/.

[GCC, 2010b] GCC, G. GDB: The GNU Project Debugger. Retrieved from http:
//www.gnu.org/software/gdb/.

[gimp, 2010] gimp. GIMP - The GNU Image Manipulation Program. Retrieved from
http://www.gimp.org/.

[GNOME, 2010] GNOME. GNOME Office/Gnumeric. Retrieved from http://
projects.gnome.org/gnumeric/.

[Goethals, 2003] Goethals, B. (2003). Survey on Frequent Pattern Mining. Manuscript,
pages 1–43.

[Goodman and Kruskal, 1954] Goodman, L. and Kruskal, W. (1954). Measures of As-
sociation for Cross Classifications. Journal of the American Statistical Association,
49(268):732–764.

[Gower, 1971] Gower, J. (1971). A General Coefficient of Similarity and Some of its
Properties. Biometrics, pages 857–871.

[Gower and Legendre, 1986] Gower, J. and Legendre, P. (1986). Metric and Euclidean
Properties of Dissimilarity Coefficients. Journal of Classification, 3(1):5–48.

[Greenwood and Nikulin, 1996] Greenwood, P. and Nikulin, M. (1996). A Guide to Chi-
squared Testing. Wiley-Interscience.

225

BIBLIOGRAPHY

[Guyon et al., 2002] Guyon, I., Weston, J., Barnhill, S., and Vapnik, V. (2002). Gene
Selection for Cancer Classification using Support Vector Machines. Machine learning,
46(1):389–422.

[Hailpern and Santhanam, 2002] Hailpern, B. and Santhanam, P. (2002). Software De-
bugging, Testing, and Verification. IBM Systems Journal, 41(1):4–12.

[Hall et al., 2009] Hall, M., Padua, D., and Pingali, K. (2009). Compiler Research: The
Next 50 Years. Communications of the ACM, 52(2):60–67.

[Hamann, 1961] Hamann, U. (1961). Merkmalsbestand und Verwandtschaftsbeziehun-
gen der Farinosae: Ein Beitrag zum System der Monokotyledonen. Willdenowia,
2(5):639–768.

[Hamming, 1950] Hamming, R. (1950). Error Detecting and Error Correcting Codes.
Bell System Technical Journal, 29(2):147–160.

[Hao et al., 2006] Hao, D., Zhang, L., Mei, H., and Sun, J. (2006). Towards Interactive
Fault Localization using Test Information. In Proceedings of the 13th Asia Pacific
Software Engineering Conference (APSEC), pages 277–284. IEEE Computer Society.

[Hao et al., 2008] Hao, D., Zhang, L., Pan, Y., Mei, H., and Sun, J. (2008). On Similarity-
Awareness in Testing-based Fault Localization. Automated Software Engineering,
15(2):207–249.

[Hao et al., 2005] Hao, D., Zhang, L., Zhong, H., Mei, H., and Sun, J. (2005). Elim-
inating Harmful Redundancy for Testing-based Fault Localization using Test Suite
Reduction: An Experimental Study. In Proceedings of the 21st IEEE International
Conference on Software Maintenance, 2005, pages 683–686. IEEE Computer Society.

[Harrold et al., 1993] Harrold, M., Gupta, R., and Soffa, M. (1993). A Methodology for
Controlling the Size of a Test Suite. ACM Transactions on Software Engineering and
Methodology (TOSEM), 2(3):285.

[Heaton, 2008] Heaton, J. Introduction to Neural Networks for Java.

[Heimdahl and George, 2004] Heimdahl, M. and George, D. (2004). Test-suite Reduc-
tion for Model based Tests: Effects on Test Quality and Implications for Testing. In
Proceedings of the 19th IEEE International Conference on Automated Software Engi-
neering (ASE), pages 176–185. IEEE Computer Society.

[Hollander and Wolfe, 1973] Hollander, M. and Wolfe, D. (1973). Nonparametric Statis-
tical Methods. New York, page 518.

[Holliday et al., 2003] Holliday, J., Salim, N., Whittle, M., and Willett, P. (2003). Analy-
sis and Display of the Size Dependence of Chemical Similarity Coefficients. J. Chem.
Inf. Comput. Sci, 43(3):819–828.

[Horgan and London, 1992] Horgan, J. and London, S. (1992). ATAC: A Data Flow Cov-
erage Testing Tool for C. In Proceedings of the Symposium of Quality Software Devel-
opment Tools, pages 2–10.

226

BIBLIOGRAPHY

[Horowitz et al., 1995] Horowitz, E., Sahni, S., and Mehta, D. (1995). Fundamentals of
Data Structures in C++. Computer Science Press.

[Horwitz and Reps, 1992] Horwitz, S. and Reps, T. (1992). The Use of Program De-
pendence Graphs in Software Engineering. In Proceedings of the 14th International
Conference on Software Engineering, pages 392–411. ACM.

[Hsu et al., 2008] Hsu, H., Jones, J., and Orso, A. (2008). RAPID: Identifying Bug Sig-
natures to Support Debugging Activities. In Proceedings of the 23rd IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE), pages 439–442. IEEE
Computer Society.

[IEEE, 2004a] IEEE. IEEE SA 1012-1998 - IEEE Standard for Software Verification and
Validation. Retrieved from http://standards.ieee.org/reading/ieee/
std_public/description/se/1012-1998_desc.html.

[IEEE, 2004b] IEEE. IEEE SA 829-1983 - IEEE Standard for Software Test Documenta-
tion. Retrieved from http://standards.ieee.org/reading/ieee/std_
public/description/se/829-1983_desc.html.

[IEEE, 2004c] IEEE. IEEE Standard Glossary of Software Engineering Termi-
nology/IEEE Std 610.12-1990. Retrieved from http://www.amazon.com/
Standard-Glossary-Engineering-Terminology-610-12-1990/dp/
155937067X.

[Jaccard, 1901] Jaccard, P. (1901). Étude Comparative de la Distribution Florale Dans
une Portion des Alpes et des Jura. Bull. Soc. Vaudoise Sci. Nat, 37:547–579.

[Jackson, 2004] Jackson, E. Software Problem Caused Cancer Patients’ Radiation
ODs. Retrieved from http://www.thepanamanews.com/pn/v_10/issue_
01/science_01.html.

[Jiang and Su, 2005] Jiang, L. and Su, Z. (2005). Automatic Isolation of Cause-effect
Chains with Machine Learning. Technical report, CSE-2005-32, University of Califor-
nia, Davis.

[Jones et al., 2007] Jones, J., Bowring, J., and Harrold, M. (2007). Debugging in Paral-
lel. In Proceedings of the International Symposium on Software Testing and Analysis,
pages 16–26. ACM.

[Jones and Harrold, 2003] Jones, J. and Harrold, M. (2003). Test-suite Reduction and
Prioritization for Modified Condition/Decision Coverage. IEEE Transactions on Soft-
ware Engineering, pages 195–209.

[Jones and Harrold, 2005] Jones, J. and Harrold, M. (2005). Empirical Evaluation of
the Tarantula Automatic Fault-Localization Technique. In Proceedings of the 20th
IEEE/ACM International Conference on Automated Software Engineering, pages 273–
282. ACM.

227

BIBLIOGRAPHY

[Jones et al., 2001] Jones, J., Harrold, M., and Stasko, J. (2001). Visualization for Fault
Localization. In Proceedings of the International Conference of Software Engineering
Workshop on Software Visualization, Toronto, Ontario, Canada, pages 71–75.

[Jones et al., 2002] Jones, J., Harrold, M., and Stasko, J. (2002). Visualization of Test
Information to Assist Fault Localization. In Proceedings of the 24th International
Conference on Software Engineering, pages 467–477. ACM Press New York.

[Kaesler, 1966] Kaesler, R. (1966). Quantitative Re-evaluation of Ecology and Distri-
bution of Recent Foraminifera and Ostracoda of Todos Santos Bay, Baja California,
Mexico.

[Klosgen, 1992] Klosgen, W. (1992). Problems for Knowledge Discovery in Databases
and their Treatment in the Statistics Interpreter EXPLORA. International Journal of
Intelligent Systems, 7(7):649–673.

[Kohonen, 2002] Kohonen, T. (2002). The Self-Organizing Map. In Proceedings of the
IEEE, pages 1464–1480. IEEE Computer Society.

[Korel, 1988] Korel, B. (1988). PELAS-Program Error-Locating Assistant System. IEEE
Transactions on Software Engineering, 14(9):1253–1260.

[Korel and Laski, 1990] Korel, B. and Laski, J. (1990). Dynamic Slicing of Computer
Programs. Journal of Systems and Software, 13(3):187–195.

[Korel and Rilling, 1997] Korel, B. and Rilling, J. (1997). Dynamic Program Slicing in
Understanding of Program Execution. In Proceedings of the 5th International Work-
shop on Program Comprehension (WPC97), pages 80–85. IEEE Computer Society.

[Krause, 1973] Krause, E. (1973). Taxicab Geometry. Mathematics Teacher, 66(8):695–
706.

[Lance and Williams, 1966] Lance, G. and Williams, W. (1966). Computer Programs for
Hierarchical Polythetic Classification (similarity analyses). The Computer Journal,
9(1):60–64.

[Lauritzen, 1996] Lauritzen, S. (1996). Graphical Models. Oxford University Press,
USA.

[Lee, 1958] Lee, C. (1958). Some Properties of Nonbinary Error-correcting Codes. IEEE
Transactions on Information Theory, 4(2):77–82.

[Lee et al., 2009a] Lee, H., Naish, L., and Ramamohanarao, K. (2009a). Study of the
Relationship of Bug Consistency with respect to Performance of Spectra Metrics. In
Proceedings of the 2nd International Conference on Computer Science and Informa-
tion Technology, pages 501–508, Beijing, China. IEEE Computer Society.

[Lee et al., 2009b] Lee, H., Naish, L., and Ramamohanarao, K. (2009b). The Effective-
ness of using Non Redundant Test Cases with Program Spectra for Bug Localization.
In Proceedings of the 2nd International Conference on Computer Science and Infor-
mation Technology, pages 127–134, Beijing, China. IEEE Computer Society.

228

BIBLIOGRAPHY

[Lee et al., 2010] Lee, H., Naish, L., and Ramamohanarao, K. (2010). Effective Software
Bug Localization using Spectral Frequency Weighting Function. In Proceedings of
the 34th Annual IEEE Computer Software and Applications Conference (COMPSAC),
pages 218–227. IEEE Computer Society.

[Levandowsky, 1972] Levandowsky, M. (1972). An Ordination of Phytoplankton Popu-
lations in Ponds of Varying Salinity and Temperature. Ecology, 53(3):398–407.

[Levandowsky and Winter, 1971] Levandowsky, M. and Winter, D. (1971). Distance be-
tween Sets. Nature.

[Liblit, 2004] Liblit, B. (2004). Cooperative Bug Isolation. PhD thesis, University of
California.

[Liblit et al., 2003] Liblit, B., Aiken, A., Zheng, A., and Jordan, M. (2003). Bug Isolation
via Remote Program Sampling. In Proceedings of the ACM International Conference
on Programming Language Design and Implementation, pages 141–154. ACM New
York, NY, USA.

[Liblit et al., 2005] Liblit, B., Naik, M., Zheng, A., Aiken, A., and Jordan, M. (2005).
Scalable Statistical Bug Isolation. In Proceedings of the 2005 ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, pages 15–26. ACM
New York.

[Liu et al., 2005] Liu, C., Yan, X., Fei, L., Han, J., and Midkiff, S. P. (2005). SOBER:
Statistical Model-based Bug Localization. SIGSOFT Softw. Eng. Notes, 30(5):286–
295.

[Lourenco et al., 2004] Lourenco, F., Lobo, V., and Bação, F. (2004). Binary-based Sim-
ilarity Measures for Categorical Data and Their Application in Self-Organizing Maps.
JOCLAD.

[Lucia et al., 2010] Lucia, Lo, D., Jiang, L., and Budi, A. (2010). Comprehensive Evalu-
ation of Association Measures for Fault Localization. In Proceedings of the 26th IEEE
International Conference on Software Maintenance, pages 1–10. IEEE Computer So-
ciety.

[Lyle, 1985] Lyle, J. (1985). Evaluating Variations on Program Slicing for Debugging.
Dissertation Abstracts International Part B: Science and Engineering[DISS. ABST.
INT. PT. B- SCI. & ENG.],, 46(5).

[Lyle and Weiser, 1987] Lyle, J. and Weiser, M. (1987). Automatic Program Bug Lo-
cation by Program Slicing. In Proceedings of the 2nd International Conference on
Computers and Applications, pages 877–882.

[Maxwell and Pilliner, 1968] Maxwell, A. and Pilliner, A. (1968). Deriving Coefficients
of Reliability and Agreement for Ratings. Br J Math Stat Psychol, 21(1):105–16.

[McConnaughey and Laut, 1964] McConnaughey, B. and Laut, L. (1964). The Determi-
nation and Analysis of Plankton Communities. Lembaga Penelitian Laut.

229

BIBLIOGRAPHY

[Meyer et al., 2004] Meyer, A., Garcia, A., Souza, A., and Souza Jr, C. (2004). Com-
parison of Similarity Coefficients used for Cluster Analysis with Dominant Markers in
Maize (Zea mays L). Genetics and Molecular Biology, 27:83–91.

[Moin and Khansari, 2010] Moin, A. and Khansari, M. (2010). Bug Localization Using
Revision Log Analysis and Open Bug Repository Text Categorization. Open Source
Software: New Horizons, pages 188–199.

[Morris and Cherry, 1983] Morris, R. and Cherry, L. (1983). DC- An Interactive Desk
Calculator. UNIX Time-sharing System: UNIX Programmer’s Manual, page 460.

[Mountford, 1962] Mountford, M. (1962). An Index of Similarity and its Application to
Classificatory Problems. Progress in Soil Zoology, 43:50.

[Murtagh, 1983] Murtagh, F. (1983). A Survey of Recent Advances in Hierarchical Clus-
tering Algorithms. The Computer Journal, 26(4):354.

[myki, 2010] myki. Myki-It’s Your Key. Retrieved from http://www.myki.com.
au/.

[Naish et al., 2009] Naish, L., Lee, H., and Ramamohanarao, K. (2009). Spectral Debug-
ging with Weights and Incremental Ranking. In Proceedings of the 16th Asia-Pacific
Software Engineering Conference (APSEC), pages 168–175. IEEE Computer Society.

[Naish et al., 2010] Naish, L., Lee, H., and Ramamohanarao, K. (2010). Statements ver-
sus Predicates in Spectral Bug Localization. In Proceedings of the 17th Asia-Pacific
Software Engineering Conference (APSEC), pages 375–384. IEEE Computer Society.

[Naish et al., 2011] Naish, L., Lee, H., and Ramamohanarao, K. (2011). A Model for
Spectra-based Software Diagnosis. ACM Transactions on Software Engineering and
Methodology, 20(3).

[Nethercote and Seward, 2007] Nethercote, N. and Seward, J. (2007). Valgrind: A
Framework for Heavyweight Dynamic Binary Instrumentation. In Proceedings of the
2007 ACM SIGPLAN, pages 89–100. ACM Press New York, NY, USA.

[Neumann, 1990] Neumann, P. G. Telephone World-The Crash of the AT&T Network
in 1990. Retrieved from http://www.phworld.org/history/attcrash.
htm.

[Newman, 2002] Newman, M. Software Errors Cost U.S. Economy $59.5 Billion
Annually NIST Assesses Technical Needs of Industry to Improve Software-Testing.
Retrieved from http://www.nist.gov/public_affairs/releases/
n02-10.htm.

[Newmark, 1988] Newmark, J. (1988). Statistics and Probability in Modern Life. Saun-
ders College Pub.

[Neyman, 1937] Neyman, J. (1937). X-Outline of a Theory of Statistical Estimation
based on the Classical Theory of Probability. Phil. Trans. Royal Soc. London, A,
236:333–380.

230

BIBLIOGRAPHY

[Ng et al., 2001] Ng, A., Jordan, M., and Weiss, Y. (2001). On Spectral Clustering: Anal-
ysis and an Algorithm. Advances in Neural Information Processing Systems 14, pages
849–856.

[Nichols, 2010] Nichols, S. Software Testing Market Set to Boom. Retrieved from http:
//www.v3.co.uk/v3/news/2268744/software-testing-set-boom#
ixzz0xiyXK8jI.

[Ochiai, 1957] Ochiai, A. (1957). Zoogeographic Studies on the Soleoid Fishes found in
Japan and its Neighbouring Regions. Bull. Jpn. Soc. Sci. Fish, 22:526–530.

[Offutt et al., 1996] Offutt, A., Pan, J., Tewary, K., and Zhang, T. (1996). An Experimen-
tal Evaluation of Data Flow and Mutation Testing. Software-Practice and Experience,
26(2):165–176.

[Ostrand and Balcer, 1988] Ostrand, T. and Balcer, M. (1988). The Category-partition
Method for Specifying and Generating Functional Tests. Communications of the ACM,
31(6):676–686.

[Oyster, 2010] Oyster. What is Oyster? Retrieved from http://www.tfl.gov.uk/
tickets/14836.aspx.

[Pan and Spafford, 1992] Pan, H. and Spafford, E. (1992). Heuristics for Automatic Lo-
calization of Software Faults. Technical report, SERC-TR-116-P.

[Peters, 1968] Peters, J. (1968). A Computer Program for Calculating Degree of Biogeo-
graphical Resemblance between Areas. Systematic Zoology, 17(1):64–69.

[Pytlik et al., 2003] Pytlik, B., Renieris, M., Krishnamurthi, S., and Reiss, S. (2003). Au-
tomated Fault Localization using Potential Invariants. In Proceedings of the 5th Inter-
national Workshop on Automated and Algorithmic Debugging, pages 273–276. ACM.

[Quinlan, 1993] Quinlan, J. (1993). C4. 5: Programs for Machine Learning. Morgan
Kaufmann.

[Renieres and Reiss, 2003] Renieres, M. and Reiss, S. (2003). Fault Localization with
Nearest Neighbor Queries. In Proceedings of the 18th IEEE International Conference
on Automated Software Engineering (ASE), pages 30–39, Montreal, Canada. IEEE
Computer Society.

[Reps et al., 1997] Reps, T., Ball, T., Das, M., and Larus, J. (1997). The Use of Program
Profiling for Software Maintenance with Applications to the Year 2000 Problem. In
ACM SIGSOFT Software Engineering Notes, volume 22, pages 432–449, New York,
USA. Springer-Verlag New York, Inc. New York.

[Rhythm, nd] Rhythm. Rhythm. Retrieved from http://rhythm.sourceforge.
net.

[Rice, 1989] Rice, W. (1989). Analyzing Tables of Statistical Tests. Evolution,
43(1):223–225.

231

BIBLIOGRAPHY

[Rogers and Tanimoto, 1960] Rogers, D. and Tanimoto, T. (1960). A Computer Program
for Classifying Plants. Science, 132(3434):1115–1118.

[Rogot and Goldberg, 1966] Rogot, E. and Goldberg, I. (1966). A Proposed Index for
Measuring Agreement in Test-Retest Studies. Journal of Chronic Diseases, 19(9):991–
1006.

[Romanovskiı̆, 1970] Romanovskiı̆, V. (1970). Discrete Markov Chains. Wolters-
Noordhoff.

[Rothermel et al., 1998] Rothermel, G., Harrold, M., Ostrin, J., and Hong, C. (1998). An
Empirical Study of the Effects of Minimization on the Fault Detection Capabilities of
Test Suites. In Proceedings of the International Conference on Software Maintenance,
pages 34–43. IEEE Computer Society.

[Russel and Rao, 1940] Russel, P. and Rao, T. (1940). On Habitat and Association of
Species of Anopheline Larvae in South-Eastern Madras. Journal of the Malaria Insti-
tute of India, 3:153–178.

[Sahar and Mansour, 1999] Sahar, S. and Mansour, Y. (1999). An Empirical Evaluation
of Objective Interestingness Criteria. In SPIE Conference on Data Mining and Knowl-
edge Discovery, pages 63–74.

[Santelices and Harrold, 2007] Santelices, R. and Harrold, M. (2007). Efficiently Moni-
toring Data-flow Test Coverage. In Proceedings of the 22nd IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 343–352. ACM.

[Santelices et al., 2009] Santelices, R., Jones, J., Yu, Y., and Harrold, M. (2009).
Lightweight Fault-Localization using Multiple Coverage Types. In Proceedings of the
31st International Conference on Software Engineering, pages 56–66. IEEE Computer
Society.

[Savage, 1960] Savage, J. (1960). Evolution of a Peninsular Herpetofauna. Systematic
Biology, 9(3-4):184.

[Savageau, 1969] Savageau, M. (1969). Biochemical Systems Analysis+*:: II. The
Steady-state Solutions for an N-Pool System using a Power-law Approximation. Jour-
nal of Theoretical Biology, 25(3):370–379.

[Savive, 2010] Savive. Thera 25 Mistreatment. Retrieved from http://www.
savive.com/casestudy/therac.html.

[Scott, 1955] Scott, W. (1955). Reliability of Content Analysis: The Case of Nominal
Scale Coding. Public Opinion Quarterly, 19(3):321–325.

[selinger, 2010] selinger. CCRYPT- Download CCRYPT Software for Free at Source-
Forge.net. Retrieved from http://sourceforge.net/projects/ccrypt/.

[Shapiro, 1987] Shapiro, F. (1987). Etymology of the Computer Bug: History and Folk-
lore. American Speech, 62(4):376–378.

232

BIBLIOGRAPHY

[Shiraishi and Savageau, 1992] Shiraishi, F. and Savageau, M. (1992). The Tricarboxylic
Acid Cycle in Dictyostelium Discoideum. III. Analysis of Steady State and Dynamic
Behavior. Journal of Biological Chemistry, 267(32):22926.

[Simpson, 1961] Simpson, G. (1961). Principles of Animal Taxonomy.[Animal Taxon-
omy]. Columbia Biological Series, 20.

[SIR, 2010] SIR. Software-Artifact Infrastructure Repository. Retrieved from http:
//sir.unl.edu/php/index.php.

[Smyth and Goodman, 1991] Smyth, P. and Goodman, R. (1991). Rule Induction using
Information Theory. Knowledge Discovery in Databases, 1991.

[Sokal and Michener, 1975] Sokal, R. and Michener, C. (1975). A Statistical Method for
Evaluating Systematic Relationships. Multivariate Statistical Methods, Among-Groups
Covariation, pages 1409–1438.

[Sokal and Sneath, 1963] Sokal, R. and Sneath, P. (1963). Principles of Numerical Tax-
onomy. WH Freeman.

[Sørensen, 1948] Sørensen, T. (1948). A Method of Establishing Groups of Equal Am-
plitude in Plant Sociology based on Similarity of Species Content and its Application
to Analyses of the Vegetation on Danish Commons. K. danske vidensk. Selsk.

[Sorgenfrei, 1958] Sorgenfrei, T. (1958). Molluscan Assemblages from the Marine Mid-
dle Miocene of South Jutland and their Environments, 1-2. Danmarks Geologiske
Undersogelse (2), 79:1–503.

[Steinwart and Christmann, 2008] Steinwart, I. and Christmann, A. (2008). Support Vec-
tor Machines. Springer Verlag.

[Stephenson et al., 1968] Stephenson, W., Williams, W., Lance, G., Institution, S., and
Museum, U. S. N. (1968). Numerical Approaches to the Relationships of Certain
American Swimming Crabs (Crustacea: Portunidae). Smithsonian Inst.

[Tallam and Gupta, 2005] Tallam, S. and Gupta, N. (2005). A Concept Analysis In-
spired Greedy Algorithm for Test Suite Minimization. In Proceedings of the 6th ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engineer-
ing, pages 35–42. ACM.

[Tan et al., 2002] Tan, P., Kumar, V., and Srivastava, J. (2002). Selecting the Right In-
terestingness Measure for Association Patterns. In Proceedings of ACM SIGKDD
ICKDM, pages 32–41. ACM New York, NY, USA.

[Tan et al., 2004] Tan, P., Kumar, V., and Srivastava, J. (2004). Selecting the Right Ob-
jective Measure for Association Analysis. Information Systems, 29(4):293–313.

[Teitelbaum et al., 2001] Teitelbaum, T. et al. Code Surfer User Guide and Reference,
Technical Report, Gramma Tech Product Documentation, 2001. Retrieved from
http://www.grammatech.com/csurf-doc/manual.html.

233

BIBLIOGRAPHY

[Telcordia Technologies, Inc., 1998] Telecordia Software Visualization and Analysis
Toolsuite (χSuds). Users Manual, Chapter 12.

[Thomsett and Co, 1998] Thomsett, R. and Co, T. (1998). The Year 2000 bug: A Forgot-
ten Lesson. IEEE Software, 15(4):91–93.

[Udny Yule and Kendall, 1948] Udny Yule, G. and Kendall, M. (1948). An Introduction
to the Theory of Statistics. C. Griffin and Co. Ltd., London.

[Urbani, 1976] Urbani, C. (1976). A Numerical Analysis of the Distribution of
British Formicidae1 (Hymenoptera, Aculeata). Verhandlungen der Naturforschenden
Gesellschaft in Basel, page 51.

[Van Ommering et al., 2000] Van Ommering, R., van der Linden, F., Kramer, J., and
Magee, J. (2000). The Koala Component Model. IEEE computer, 78:85.

[van Rijsbergen, 1979] van Rijsbergen, C. J. (1979). Information Retrieval. Butterworth.

[Vapnik, 1998] Vapnik, V. (1998). Statistical Learning Theory, volume 2. Wiley New
York.

[Walczak and Massart, 1996] Walczak, B. and Massart, D. (1996). The Radial Basis
Functions–Partial Least Squares Approach as a Flexible Non-Linear Regression Tech-
nique. Analytica Chimica Acta, 331(3):177–185.

[Wang and Han, 2004] Wang, J. and Han, J. (2004). BIDE: Efficient Mining of Frequent
Closed Sequences. In Proceedings of the 20th International Conference on Data En-
gineering, page 79. IEEE Computer Society.

[Weiser and Lyle, 1986] Weiser, M. and Lyle, J. (1986). Experiments on Slicing-based
Debugging Aids. In Empirical Studies of Programmers, pages 187–197.

[Weisstein, 2011] Weisstein, E. Least Squares Fitting–Power Law. Retrieved from
http://mathworld.wolfram.com/LeastSquaresFittingPowerLaw.
html.

[Williams, 2007] Williams. Systems Glitch Hits Hundreds of Tokyo Stations. wash-
ingtonpost.com, 2007. Retrieved from http://www.washingtonpost.com/
wp-dyn/content/article/2007/10/12/AR2007101200865_pf.
html.

[Wong et al., 2010] Wong, W., Debroy, V., and Choi, B. (2010). A Family of Code
Coverage-based Heuristics for Effective Fault Localization. Journal of Systems and
Software, 83(2):188–208.

[Wong et al., 1998] Wong, W., Horgan, J., London, S., and Mathur, A. (1998). Effect
of Test Set Minimization on Fault Detection Effectiveness. Software-Practice and
Experience, 28(4):347–369.

234

BIBLIOGRAPHY

[Wong and Qi, 2004] Wong, W. and Qi, Y. (2004). An Execution Slice and Inter-block
Data Dependency-based Approach for Fault Localization. In Proceedings of the 11th
Asia-Pacific Software Engineering Conference (APSEC), pages 366–373. IEEE Com-
puter Society.

[Wong et al., 2007] Wong, W., Qi, Y., Zhao, L., and Cai, K. (2007). Effective Fault
Localization using Code Coverage. In Proceedings of the 31st Annual International
Computer Software and Applications Conference (COMPSAC), pages 449–456, Wash-
ington DC, USA. IEEE Computer Society.

[Wong et al., 2008] Wong, W., Shi, Y., Qi, Y., and Golden, R. (2008). Using an RBF
Neural Network to Locate Program Bugs. In Proceedings of the 19th International
Symposium on Software Reliability Engineering (ISSRE), pages 27–36. IEEE Com-
puter Society.

[Wong et al., 1994] Wong, W. E., Horgan, J. R., London, S., and Mathur, A. P. (1994).
Effect of Test Set Minimization on the Fault Detection Effectiveness of the All-uses
Criterion. In Proceedings of the 17th International Conference on Software Engineer-
ing, pages 41–50.

[Xie et al., 2010] Xie, X., Chen, T. Y., and Xu, B. (2010). Isolating Suspiciousness from
Spectrum-based Fault Localization Techniques. In Proceedings of the 10th Interna-
tional Conference on Quality Software (QSIC), pages 385–392. IEEE Computer Soci-
ety.

[Yu et al., 2008] Yu, Y., Jones, J., and Harrold, M. (2008). An Empirical Study of the
Effects of Test-suite Reduction on Fault Localization. In Proceedings of the 30th In-
ternational Conference on Software Engineering, pages 201–210. ACM.

[Yule, 1900] Yule, G. (1900). On the Association of Attributes in Statistics: With Illus-
trations from the Material of the Childhood Society. Philosophical Transactions of the
Royal Society of London. Series A, Containing Papers of a Mathematical or Physical
Character, pages 257–319.

[Zeller, 2000] Zeller, A. (2000). From Automated Testing to Automated Debugging. Uni
Passau, Feb.

[Zeller, 2002] Zeller, A. (2002). Isolating Cause-effect Chains from Computer Programs.
In Proceedings of the 10th ACM SIGSOFT Symposium on Foundations of Software
Engineering, pages 1–10. ACM Press New York, NY, USA.

[Zeller, 2010] Zeller, A. AskIgor - Automated Debugging Service. Retrieved from http:
//www.st.cs.uni-saarland.de/askigor/.

[Zhang et al., 2008] Zhang, Z., Jiang, B., Chan, W., and Tse, T. (2008). Debugging
through Evaluation Sequences: A Controlled Experimental Study. In Proceedings
of the 32nd International Computer Software and Applications (COMPSAC’08), pages
128–135. IEEE Computer Society.

235

BIBLIOGRAPHY

[Zheng et al., 2003] Zheng, A., Jordan, M., Liblit, B., and Aiken, A. (2003). Statisti-
cal Debugging of Sampled Programs. In Advances in Neural Information Processing
Systems 16. Neural Information Processing Systems Foundation.

[Zheng et al., 2006] Zheng, A., Jordan, M., Liblit, B., Naik, M., and Aiken, A. (2006).
Statistical Debugging: Simultaneous Identification of Multiple Bugs. In Proceedings
of the 23rd International Conference on Machine Learning, pages 1105–1112. ACM
New York, NY, USA.

[Zimmermann and Zeller, 2002] Zimmermann, T. and Zeller, A. (2002). Visualizing
Memory Graphs. Software Visualization, pages 533–537.

[Zoeteweij et al., 2007] Zoeteweij, P., Abreu, R., Golsteijn, R., and van Gemund, A.
(2007). Diagnosis of Embedded Software using Program Spectra. In Proceedings
of the 14th International Conference and Workshops on the Engineering of Computer-
Based Systems (ECBS), pages 213–220. IEEE Computer Society.

236

Appendices

237

A
Reported Software Bug & Software

Failure Incidents

Table A.1: Software Bug & Software Failure Incidents (partly taken from Charette [2005])

YEAR COMPANY OUTCOME / COST IN US$

2011 Apple Alarm not working on the 1st Jan 2011.
Caused customers to miss flights and to
work. Suspected bug in the week-number al-
gorithm.

2010 NAB NAB system crashed. Delayed payments to
customers. Due to the bug in the batch pro-
cessing software code that contained instruc-
tions on how the system operate in the batch
processing operations.

2010 Bank of
Queensland [BOQ, 2010]
and Bankwest in
Australia [BankWest,
2010]

On 1st January, 2010, electronic point-of-
sale transactions system (better known as
EFTPOS) has switched the date automati-
cally to year 2016. Retail businesses could
not proceed with any EFTPOS transaction
[ACCC, 2010] but to manually issue receipts
to the customers [Charette, 2010].

2009 Apple A bug found that replaced primary folder
in Snow Leopard with empty folder when
logged in as a Guest account. Caused loss of
data stored in the primary folder such as pho-
tos, documents, and other type of files [Chen,
2009].

2005 Hudson Bay Co., Canada Problems with inventory system contributed
to $33.3 million1 loss.

2004-05 UK Inland Revenue Software errors contributed to $3.45 billion1

tax-credit overpayment.
2004 Avis Europe PLC, UK Enterprise Resource Planning (ERP) system

cancelled after $54.5 million2 is spent.
Continued on next page

239

APPENDIX A. REPORTED SOFTWARE BUG & SOFTWARE FAILURE INCIDENTS

Table A.1 – continued from previous page
YEAR COMPANY OUTCOME / COST IN US$

2004 Ford Motor Co. Purchasing system abandoned after deploy-
ment cost approximately $400 million.

2004 J Sainsbury PLC, UK Software did not have any record of the
warehouse’s existence. Supply-chain man-
agement system abandoned after deployment
cost $527 million2.

2004 Hewlett-Packard Co. Problems with ERP system contributed to
$160 million loss.

2003-04 AT & T Wireless Customer relations management (CRM) up-
grade problems led to revenue loss of $100
million.

2002 McDonald’s Corp. The Innovate information-purchasing system
cancelled after $170 million is spent.

2002 Sydney Water Corp. Billing system cancelled after $33.2 million2

is spent.
2002 CIGNA Corp. Problems with CRM system contributed to

$445 million loss.
2001 Nike Inc. Problems with supply-chain management

system contributed to $100 million loss.
2001 KMart Corp. Supply-chain management system is can-

celled after $130 million is spent.
2000 Washington DC. City payroll system abandoned after deploy-

ment cost $25 million.
1999 United Way Administrative processing system cancelled

after $12 million is spent.
1999 State of Mississippi Tax system cancelled after $11.2 million is

spent; state received $185 million damages.
1999 Hershey Foods Corp. Problems with ERP system contributed to

$151 million loss.
1998 Snap-on Inc. Problems with order-entry system con-

tributed to revenue loss of $50 million.
1997 U.S. Internal Revenue

Service
Tax modernisation effort cancelled after $4
billion is spent.

1997 State of Washington Department of Motor Vehicle (DMV) system
cancelled after $40 million is spent.

1997 Oxford Health Plans Inc. Billing and claims system problems con-
tributed to quarterly loss; stock plummets,
leased to $3.4 billion loss in corporate value.

1996 Arianespace, France Software specification and design errors
caused $350 million Ariane 5 rocker to ex-
plode.

1996 FoxMeyer Drug Co. $40 million ERP system abandoned after de-
ployment forced company into bankruptcy.

Continued on next page

240

Table A.1 – continued from previous page
YEAR COMPANY OUTCOME / COST IN US$

1995 Toronto Stock Exchange Electronic trading system cancelled after
$25.5 million1 is spent.

1994 U.S. Federal Aviation
Administration

Advanced Automation System cancelled af-
ter $2.6 billion is spent.

1994 State of California DMV system cancelled after $44 million is
spent.

1994 Chemical Bank Software error caused a total of $15 million
to be deducted from 100 000 customer ac-
counts.

1993 London Stock Exchange Taurus stock settlement system cancelled af-
ter $600 million3 is spent.

1993 Allstate Insurance Co. Office automation system abandoned after
deployment, cost $130 million.

1993 London Ambulance
Service

Dispatch system cancelled in 1990 at $11.25
million3; second attempt abandoned after de-
ployment, cost $15 million3.

1993 Greyhound Lines Inc. Bus reservation system crashed repeatedly
upon introduction and contributed to revenue
loss of $61 million.

1992 Budget Rent-A-Car,
Hilton-Hotels, Marriott
Int’l,American Airlines

Travel reservation system cancelled after
$165 million is spent.

1990 AT & T Wireless Massive shutdown of their network [Neu-
mann, 1990] due to a bug in the program
code which is part of software upgrade to
speed up calling function.

1985 Atomic Energy
Commission Limited
(AECL) and CGR

Subtle bug found in Therac-25 radiation
therapy machine caused three persons dead
and another three persons critically injured
[Jackson, 2004, Savive, 2010].

1962 National Aeronautics and
Space Administration
(NASA)

During the launch of Mariner I rocket of the
first Mariner mission, incorrect signals guid-
ance (due to a missing superscript bar in a
written formula) to the spacecraft resulted in
off course.

1 Converted to U.S. dollars using current exchange rates of press time.
2 Converted to U.S. dollars using exchange rates for the year cited, according to the

Statistical Abstract of United States, 1996.
3 Converted to U.S. dollars using exchange rates of press time.

241

B
Spectra Metrics Surfaces

0
20

40
60

80
100

0

20

40

60

80

100
0

0.2

0.4

0.6

0.8

1

a
ep

Surface for Ample metric with respect to MetValue, a
ef

 and a
ep

a
ef

MetValue

Figure B.1: Surface for Ample metric

243

APPENDIX B. SPECTRA METRICS SURFACES

0
20

40
60

80
100

0

20

40

60

80

100
−1

−0.5

0

0.5

1

a
ep

Surface for Ample2 metric with respect to MetValue, a
ef

 and a
ep

a
ef

MetValue

Figure B.2: Surface for Ample2 metric

0
20

40
60

80
100

0

20

40

60

80

100
0

0.2

0.4

0.6

0.8

1

a
ep

Surface for Jaccard metric with respect to MetValue, a
ef

 and a
ep

a
ef

MetValue

Figure B.3: Surface for Jaccard metric

244

0
20

40
60

80
100

0

20

40

60

80

100
−1

−0.5

0

0.5

1

a
ep

Surface for McCon metric with respect to MetValue, a
ef

 and a
ep

a
ef

MetValue

Figure B.4: Surface for McCon metric

0
20

40
60

80
100

0

20

40

60

80

100
0

0.2

0.4

0.6

0.8

1

a
ep

Surface for Ochiai metric with respect to MetValue, a
ef

 and a
ep

a
ef

MetValue

Figure B.5: Surface for Ochiai metric

245

APPENDIX B. SPECTRA METRICS SURFACES

0
20

40
60

80
100

0

20

40

60

80

100
0

0.1

0.2

0.3

0.4

0.5

a
ep

Surface for Russell metric with respect to MetValue, a
ef

 and a
ep

a
ef

MetValue

Figure B.6: Surface for Russell metric

246

C
Bug Localization Performance vs Bug
Consistency, qe for Respective Spectra

Metrics

C.1 Single Bug Programs
In this section, we show the relationship of bug localization performance with respect
to bug consistency, qe, for other spectra metrics not shown in Chapter 6 on the Siemens
Test Suite and the subset of the Unix Test Suite. We also detail our study of the latter
relationship for the single bug programs of Concordance and Space.

C.1.1 Siemens Test Suite

0 0.2 0.4 0.6 0.8 1
10

−1

10
0

10
1

10
2

Ra
nk

 P
er

ce
nta

ge
s

Bug Consistency, q
e

Rank Percentages vs q
e
 (Tar metric) for Single Bug Siemens

Figure C.1: Rank Percentages vs qe for the Single Bug Siemens Test Suite with respect to the
Tarantula (Tar) metric

247

APPENDIX C. BUG LOCALIZATION PERFORMANCE VS BUG CONSISTENCY, QE

FOR RESPECTIVE SPECTRA METRICS

0 0.2 0.4 0.6 0.8 1
10

−1

10
0

10
1

10
2

Ra
nk

 P
er

ce
nta

ge
s

Bug Consistency, q
e

Rank Percentages vs q
e
 (Wong3 metric) for Single Bug Siemens

Figure C.2: Rank Percentages vs qe for the Single Bug Siemens Test Suite with respect to the
Wong3 metric

0 0.2 0.4 0.6 0.8 1
10

−1

10
0

10
1

10
2

Ra
nk

 P
er

ce
nta

ge
s

Bug Consistency, q
e

Rank Percentages vs q
e
 (Wong4 metric) for Single Bug Siemens

Figure C.3: Rank Percentages vs qe for the Single Bug Siemens Test Suite with respect to the
Wong4 metric

248

C.1. SINGLE BUG PROGRAMS

C.1.2 Subset of the Unix Test Suite

0 0.2 0.4 0.6 0.8 1
10

0

10
1

10
2

Ra
nk

 P
er

ce
nta

ge
s

Bug Consistency, q
e

Rank Percentages vs q
e
 (Tar metric) for Single Bug subset of Unix

Figure C.4: Rank Percentages vs qe for the Single Bug of subset of the Unix Test Suite with
respect to the Tarantula (Tar) metric

0 0.2 0.4 0.6 0.8 1
10

0

10
1

10
2

Ra
nk

 P
er

ce
nta

ge
s

Bug Consistency, q
e

Rank Percentages vs q
e
 (Wong3 metric) for Single Bug subset of Unix

Figure C.5: Rank Percentages vs qe for the Single Bug of subset of the Unix Test Suite with
respect to the Wong3 metric

249

APPENDIX C. BUG LOCALIZATION PERFORMANCE VS BUG CONSISTENCY, QE

FOR RESPECTIVE SPECTRA METRICS

0 0.2 0.4 0.6 0.8 1
10

0

10
1

10
2

Ra
nk

 P
er

ce
nta

ge
s

Bug Consistency, q
e

Rank Percentages vs q
e
 (Wong4 metric) for Single Bug subset of Unix

Figure C.6: Rank Percentages vs qe for the Single Bug of subset of the Unix Test Suite with
respect to the Wong4 metric

C.1.3 Concordance
In this section, we evaluate the relationship of bug localization performance with the bug
consistency, qe, for the Concordance using several spectra metrics. Each point in the
below figures refers to the buggy statement of a typical program of the 11 single bug
Concordance programs. We could not draw any strong conclusion of the points in Figure
C.7 – Figure C.12 as there are only 11 programs in Concordance.

0 0.2 0.4 0.6 0.8 1
10

−1

10
0

10
1

10
2

Ra
nk

 P
er

ce
nt

ag
es

Bug Consistency, q
e

Rank Percentages vs q
e
 (Op metric) for Single Bug Concordance

Figure C.7: Rank Percentages vs qe for the Concordance with respect to the Op metric

250

C.1. SINGLE BUG PROGRAMS

0 0.2 0.4 0.6 0.8 1
10

−1

10
0

10
1

10
2

Ra
nk

 P
er

ce
nt

ag
es

Bug Consistency, q
e

Rank Percentages vs q
e
 (Rogers metric) for Single Bug Concordance

Figure C.8: Rank Percentages vs qe for the Concordance with respect to the Rogers metric

0 0.2 0.4 0.6 0.8 1
10

−1

10
0

10
1

10
2

Ra
nk

 P
er

ce
nt

ag
es

Bug Consistency, q
e

Rank Percentages vs q
e
 (Tar metric) for Single Bug Concordance

Figure C.9: Rank Percentages vs qe for the Concordance with respect to the Tarantula (Tar) metric

251

APPENDIX C. BUG LOCALIZATION PERFORMANCE VS BUG CONSISTENCY, QE

FOR RESPECTIVE SPECTRA METRICS

0 0.2 0.4 0.6 0.8 1
10

0

10
1

10
2

Ra
nk

 P
er

ce
nta

ge
s

Bug Consistency, q
e

Rank Percentages vs q
e
 (Russell metric) for Single Bug Concordance

Figure C.10: Rank Percentages vs qe for the Concordance with respect to the Russell metric

0 0.2 0.4 0.6 0.8 1
10

−1

10
0

10
1

10
2

Ra
nk

 P
er

ce
nta

ge
s

Bug Consistency, q
e

Rank Percentages vs q
e
 (Wong3 metric) for Single Bug Concordance

Figure C.11: Rank Percentages vs qe for the Concordance with respect to the Wong3 metric

252

C.1. SINGLE BUG PROGRAMS

0 0.2 0.4 0.6 0.8 1
10

−1

10
0

10
1

10
2

Ra
nk

 P
er

ce
nta

ge
s

Bug Consistency, q
e

Rank Percentages vs q
e
 (Wong4 metric) for Single Bug Concordance

Figure C.12: Rank Percentages vs qe for the Concordance with respect to the Wong4 metric

C.1.4 Space
We also study the relationship between bug localization performance and bug consistency,
qe, on the single bug programs of Space (15 programs) using the same set of spectra
metrics (Subsection 6.3.1, Subsection 6.3.2, and Subsection C.1.3). We use the Subset of
the Space test suite (randomly selected subset of Space test suite in 10 bins). Figure 5.13
of Chapter 5 shows that the bug localization performance is very similar in all the 10 bins.
Therefore, we only choose to show the relationship of the bug localization performance
with the bug consistency, qe, for one of the 10 bins of Space Subset in this study.

0 0.2 0.4 0.6 0.8 1
10

−2

10
−1

10
0

10
1

Ra
nk

 P
er

ce
nt

ag
es

Bug Consistency, q
e

Rank Percentages vs q
e
 (Op metric) for Single Bug Space

Figure C.13: Rank Percentages vs qe for the Single Bug Space Programs with respect to the Op

metric

Op and Rogers metrics in Figure C.13 and Figure C.14 respectively show that the
points of rank percentages are spread out as qe increases. We also plot similar relationship

253

APPENDIX C. BUG LOCALIZATION PERFORMANCE VS BUG CONSISTENCY, QE

FOR RESPECTIVE SPECTRA METRICS

0 0.2 0.4 0.6 0.8 1
10

−2

10
−1

10
0

10
1

10
2

Ra
nk

 P
er

ce
nt

ag
es

Bug Consistency, q
e

Rank Percentages vs q
e
 (Rogers metric) for Single Bug Space

Figure C.14: Rank Percentages vs qe for the Single Bug Space Programs with respect to the
Rogers metric

on Space for other metrics, namely, Tarantula, Russell, Wong3, and Wong4 in Figure
C.15, Figure C.16, Figure C.17, and Figure C.18 respectively.

0 0.2 0.4 0.6 0.8 1
10

−1

10
0

10
1

10
2

Ra
nk

 P
er

ce
nt

ag
es

Bug Consistency, q
e

Rank Percentages vs q
e
 (Tar metric) for Single Bug Space

Figure C.15: Rank Percentages vs qe for the Single Bug Space Programs with respect to the Taran-
tula (Tar) metric

254

C.1. SINGLE BUG PROGRAMS

0 0.2 0.4 0.6 0.8 1
10

0

10
1

10
2

Ra
nk

 P
er

ce
nta

ge
s

Bug Consistency, q
e

Rank Percentages vs q
e
 (Russell metric) for Single Bug Space

Figure C.16: Rank Percentages vs qe for the Single Bug Space Programs with respect to the Rus-
sell metric

0 0.2 0.4 0.6 0.8 1
10

−2

10
−1

10
0

10
1

Ra
nk

 P
er

ce
nta

ge
s

Bug Consistency, q
e

Rank Percentages vs q
e
 (Wong3 metric) for Single Bug Space

Figure C.17: Rank Percentages vs qe for the Single Bug Space Programs with respect to the
Wong3 metric

255

APPENDIX C. BUG LOCALIZATION PERFORMANCE VS BUG CONSISTENCY, QE

FOR RESPECTIVE SPECTRA METRICS

0 0.2 0.4 0.6 0.8 1
10

−2

10
−1

10
0

10
1

Ra
nk

 P
er

ce
nta

ge
s

Bug Consistency, q
e

Rank Percentages vs q
e
 (Wong4 metric) for Single Bug Space

Figure C.18: Rank Percentages vs qe for the Single Bug Space Programs with respect to the
Wong4 metric

C.2 Multiple-bug Space Programs
In this section, we plot the relationship between the bug localization performance and
bug consistency, qe, for the 13 multiple-bug Space programs. Similarly to Subsection
C.1.4, we only show the relationship of the bug localization performance with the bug
consistency, qe, for one of the 10 bins of the Subset of the Space test suite in this study.

In Table 5.17, we observe that Zoltar performs the best in bug localization performance
of the multiple-bug Space programs as compared to the Tarantula (Tar) metric. We plot
these two metrics on the 13 programs of the multiple-bug Space programs in Figure C.19
and Figure C.20 respectively. We observe the points of rank percentages in these figures
are spread out as qe increases.

256

C.2. MULTIPLE-BUG SPACE PROGRAMS

0 0.2 0.4 0.6 0.8 1
10

−2

10
−1

10
0

10
1

10
2

Bug Consistency, q
e

Ra
nk

 P
er

ce
nt

ag
es

Rank Percentages vs q
e
 (Zoltar metric) for Multiple−bug Space

Figure C.19: Rank Percentages vs qe for the Multiple-bug Space Programs with respect to the
Zoltar metric

0 0.2 0.4 0.6 0.8 1
10

−2

10
−1

10
0

10
1

10
2

Bug Consistency, q
e

Ra
nk

 P
er

ce
nt

ag
es

Rank Percentages vs q
e
 (Tar metric) for Multiple−bug Space

Figure C.20: Rank Percentages vs qe for the Multiple-bug Space Programs with respect to the
Tarantula (Tar) metric

257

D
Information of Unique (Non-redundant)

and Redundant Test Cases

D.1 Single Bug Programs

Table D.1: Breakdown of Unique Test Cases (on average) for the Single Bug Siemens Test Suite,
the subset of the Unix Test Suite, Concordance, and Space Programs

Program Test Cases Unique Test Cases Unique Test Cases (%)
Cal 162 21 12.96
Checkeq 332 34 10.24
Col 156 48 30.77
Concordance 372 132 35.48
print tokens 4130 1855 44.92
print tokens2 4115 1735 42.16
replace 5542 2025 36.54
schedule 2650 469 17.69
schedule2 2710 664 24.50
Spline 700 83 11.86
tcas 1608 10 0.62
tot info 1052 174 16.54
Tr 870 72 8.276
Uniq 431 122 28.31
Space Subset 1103 895 81.14

259

APPENDIX D. INFORMATION OF UNIQUE (NON-REDUNDANT) AND
REDUNDANT TEST CASES

D.2 Multiple-bug Programs

Table D.2: Breakdown of Unique Test Cases (on average) for the Two-bug Siemens Test Suite and
the subset of the Unix Test Suite

Program Test Cases Unique Test Cases Unique Test Cases (%)
Cal 162 20 12.34
Checkeq 332 29 8.735
Col 156 49 31.41
print tokens2 4115 987 23.99
replace 5542 2029 36.61
schedule2 2710 667 24.61
Spline 700 82 11.71
tcas 1608 12 0.7463
tot info 1052 177 16.82
Tr 870 77 8.85
Uniq 431 115 26.68

Table D.3: Breakdown of Unique Test Cases (on average) for the Three-bug Siemens Test Suite
and the subset of the Unix Test Suite

Program Test Cases Unique Test Cases Unique Test Cases (%)
Cal 162 19 11.73
Checkeq 332 26 7.831
Col 156 49 31.41
print tokens2 4115 994 24.16
replace 5542 2063 37.22
schedule2 2710 658 24.28
Spline 700 81 11.57
tot info 1052 172 16.35
Tr 870 79 9.080
Uniq 431 117 27.15

Table D.4: Breakdown of Unique Test Cases (on average) for the Multiple-bug Space Programs

Program Test Cases Unique Test Cases Unique Test Cases (%)
Space Subset 1225 1068 87.18

260

E
Varying the Number of Unique Test Cases

with respect to Bug Localization
Performance

In this appendix, we detail the study of varying the number of unique test cases for single
bug and multiple-bug programs. In this evaluation, we vary the different percentages of
the unique pass and fail test cases. For example, if we have 100 unique pass and fail test
cases respectively, for 10%, 20%, 30%, 40%, 50%, and 80%, the effective unique pass
and fail test cases we evaluate are 10, 20, 30, 40, 50, and 80 unique pass and fail test
cases respectively. 100% simply refers to using all the unique pass and fail test cases.
Our hypothesis is the bug localization performance using all the unique test cases (100%)
improves as compared to using only 10% of the unique pass and fail test cases.

E.1 Single Bug Programs
We detail the study of varying the number of unique test cases for the single bug Concor-
dance and Space programs. As we have 10 bins of Space programs for the Subset of the
entire test suite of Space, we report the average of bug localization performance across
these bins for different number of unique test cases.

Table E.1: Average Rank Percentages (on average) for the different Percentages Selection of the
Unique Pass and Fail Test Cases - Single Bug Concordance Programs

Metric 10% 20% 30% 40% 50% 80% Unique (100%) p-value
O,Op 17.43 15.31 14.24 12.38 12.01 10.67 10.14 0.1540
Zoltar 17.55 15.35 14.26 12.39 12.01 10.67 10.14 0.1540
Kulczynski2 17.63 15.45 14.39 12.47 12.08 10.74 10.20 0.1540
McCon 17.63 15.45 14.39 12.47 12.08 10.74 10.20 0.1540
JacCube 17.50 15.44 14.40 12.54 12.14 10.77 10.22 0.1540
M2 17.62 15.53 14.54 12.68 12.21 10.84 10.40 0.1540
Ochiai 18.21 16.12 15.22 13.29 12.48 11.14 10.51 0.1540
Wong3 19.67 16.84 15.88 13.97 13.56 11.88 11.19 0.1540
Jaccard 18.81 17.30 16.75 15.78 14.69 12.73 12.35 0.1540
Wong4 22.80 18.40 16.32 13.26 13.14 12.24 12.75 0.1540

Continued on next page

261

APPENDIX E. VARYING THE NUMBER OF UNIQUE TEST CASES WITH RESPECT
TO BUG LOCALIZATION PERFORMANCE

Table E.1 – continued from previous page
Metric 10% 20% 30% 40% 50% 80% Unique (100%) p-value

AMean 19.41 18.50 17.45 16.85 16.96 15.15 13.76 0.1795
Pearson 19.41 18.51 17.50 16.93 17.08 15.17 13.91 0.1540
Ample2 19.47 18.70 17.76 17.13 17.39 15.64 14.68 0.2378
Tarantula 19.71 19.17 18.58 18.02 18.22 16.93 15.81 0.1540
Rogot2 25.52 22.97 24.09 21.92 22.49 19.93 19.73 0.3051
Overlap 26.42 24.56 23.72 22.94 23.36 21.72 21.03 0.0917
Russell 26.35 24.52 23.69 22.91 23.33 21.70 21.03 0.0917
Binary 26.35 24.52 23.69 22.91 23.33 21.70 21.03 0.0917
CBI Log 43.18 42.06 45.06 38.40 39.07 29.18 25.71 <0.05
Ample 46.30 44.17 43.56 42.36 40.92 40.27 40.06 0.3188

0 10 20 30 40 50 60 70 80 90 100
10

12

14

16

18

20

22

24

Percentages (%) of Unique Pass and Fail Test Cases

R
an

k
P

er
ce

nt
ag

es
 (

%
)

Rank Percentages for Concordance test suite vs Percentages of Unique Pass and Fail Test Cases

Op

Zoltar

Kulczynski2

Metrics

Figure E.1: Average Rank Percentages (on average) for the Single Bug Concordance Programs
vs Percentages of the Unique Pass and Fail Test Cases

262

E.1. SINGLE BUG PROGRAMS

Table E.2: Average Rank Percentages (on average) for the different Percentages Selection of the
Unique Pass and Fail Test Cases - Single Bug Space Programs

Metric 10% 20% 30% 40% 50% 80% Unique (100%) p-value
O,Op 3.12 2.18 1.95 1.83 1.75 1.66 1.63 <0.05
Wong3 4.60 2.96 2.63 2.43 2.30 1.99 1.74 <0.05
Zoltar 3.29 2.38 2.16 2.02 1.90 1.81 1.78 <0.05
JacCube 3.31 2.41 2.18 2.06 2.01 1.91 1.88 <0.05
M2 3.33 2.42 2.22 2.12 2.05 1.94 1.89 <0.05
Kulczynski2 3.47 2.59 2.38 2.25 2.14 2.05 2.01 <0.05
McCon 3.47 2.59 2.38 2.25 2.14 2.05 2.01 <0.05
Ochiai 3.73 2.97 2.72 2.56 2.44 2.31 2.23 <0.05
Wong4 5.15 3.44 3.59 2.56 2.67 2.60 2.54 <0.05
Rogot2 4.71 3.63 3.38 3.18 3.07 2.93 2.90 <0.05
Pearson 4.36 3.67 3.50 3.26 3.19 3.01 2.96 <0.05
AMean 4.34 3.71 3.62 3.40 3.38 3.18 3.15 <0.05
Ample2 4.46 3.69 3.55 3.39 3.33 3.22 3.15 <0.05
Jaccard 4.37 3.91 3.78 3.68 3.62 3.45 3.36 <0.05
Tarantula 6.70 6.71 6.81 6.71 6.67 6.54 6.42 <0.05
Ample 9.77 8.82 8.74 8.53 8.47 8.34 8.24 <0.05
CBI Log 23.80 15.00 14.03 14.19 14.42 11.91 8.46 <0.05
Russell 19.30 18.33 18.06 17.92 17.86 17.68 17.59 <0.05
Binary 19.30 18.33 18.06 17.92 17.86 17.68 17.59 <0.05
Overlap 20.25 19.37 19.07 18.85 18.73 18.45 18.31 <0.05

Table E.1 and Table E.2 show bug localization performance of Concordance and Space
programs respectively for different number of unique pass and fail test cases. The bug lo-
calization performance for Column Unique (100%) of Table E.1 and Table E.2 are equiv-
alent to the figures we obtained in Column Unique of Table 7.4 and Table 7.5 respectively.

In these tables, we observe improvement in bug localization performance for most of
the metrics as we evaluate using larger number of unique pass and fail test cases. We
observe the latter bug localization performances converge to its performance of bug local-
ization using all the unique test cases (Column Unique (100%)). We report the p-value of
our hypothesis and observe all the better performing metrics in the Table E.2 have p-value
of less than 0.05. This indicates that, for Space, the improvement in bug localization per-
formance for all the better performing metrics using all the unique test cases as compared
to using only the 10% of the unique pass and fail test cases, is statistically significant
with confidence greater than 95%. We also observe improvement in bug localization per-
formance for Concordance in Table E.1. The latter improvement for better performing
metrics is only significant with confidence of 84%.

In Figure E.1 and Figure E.2, we plot bug localization performance of better perform-
ing spectra metrics (Op, Wong3, Zoltar, and Kulczynski2) using the randomly selected ten
representative sets of unique test cases for different percentages of the unique pass and fail
test cases. In these figures, we also plot the standard deviation (represented in error bars)
of bug localization performance for the ten sets of randomly selected representative test

263

APPENDIX E. VARYING THE NUMBER OF UNIQUE TEST CASES WITH RESPECT
TO BUG LOCALIZATION PERFORMANCE

0 10 20 30 40 50 60 70 80 90 100
1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Percentages (%) of Unique Pass and Fail Test Cases

R
an

k
P

er
ce

nt
ag

es
 (

%
)

Rank Percentages for 10 bins of Space (On average) vs Percentages of Unique Pass and Fail Test Cases

Op

Wong3

Zoltar

Metrics

Figure E.2: Average Rank Percentages (on average) for the Single Bug Space Programs vs Per-
centages of the Unique Pass and Fail Test Cases

cases of unique pass and fail test cases. For Space programs, we take the average of the
standard deviation of bug localization performance which we obtain across the 10 bins of
the Subset of the entire test suite of single bug Space programs.

264

E.2. MULTIPLE-BUG PROGRAMS

E.2 Multiple-bug Programs
We evaluate the two-bug and three-bug programs of the Siemens Test Suite and the subset
of the Unix Test Suite in Table E.3 and Table E.4 respectively. We also report the p-value
of our hypothesis in these tables.

Table E.3: Average Rank Percentages (on average) for the different Percentages Selection of the
Unique Pass and Fail Test Cases - Two-bug Programs Siemens Test Suite and the subset
of the Unix Test Suite

Metric 10% 20% 30% 40% 50% 80% Unique (100%) p-value
Pearson 30.23 28.50 26.25 24.76 23.64 21.69 20.04 <0.05
Ample2 30.35 28.66 26.45 24.94 23.72 21.87 20.11 <0.05
AMean 30.26 28.54 26.30 24.81 23.71 21.65 20.13 <0.05
Jaccard 30.14 28.55 26.35 24.90 23.82 21.95 20.29 <0.05
Rogot2 30.81 29.00 26.68 25.24 24.05 21.97 20.40 <0.05
Wong4 32.03 29.79 27.24 25.25 23.97 21.83 20.58 <0.05
Kulczynski2 29.68 27.97 25.89 24.26 23.22 21.24 20.89 <0.05
McCon 29.68 27.97 25.89 24.26 23.22 21.24 20.89 <0.05
Ochiai 29.74 27.99 25.95 24.41 23.34 21.45 20.93 <0.05
CBI Log 35.10 33.31 33.01 31.96 29.65 25.80 21.13 <0.05
Zoltar 30.00 28.57 26.49 24.86 23.71 21.61 21.16 <0.05
Tarantula 31.03 29.78 27.82 26.44 25.40 23.56 21.61 <0.05
Wong3 30.10 28.85 27.45 26.38 25.66 23.60 22.33 <0.05
M2 29.96 28.42 26.54 25.03 23.96 22.40 22.35 <0.05
JacCube 30.02 27.34 25.37 24.52 23.27 22.03 22.37 <0.05
Op 30.62 29.31 27.48 25.94 24.89 23.19 23.19 <0.05
Ample 33.83 32.26 30.33 28.83 27.52 25.70 23.67 <0.05
O 31.11 30.21 28.57 27.18 26.24 24.83 25.05 <0.05
Russell 37.30 36.06 35.43 34.86 34.26 33.15 32.44 <0.05
Binary 37.71 36.85 36.39 35.92 35.45 34.56 34.02 <0.05
Overlap 38.32 37.76 37.42 36.87 36.31 35.01 34.08 <0.05

Table E.4: Average Rank Percentages (on average) for the different Percentages Selection of the
Unique Pass and Fail Test Cases - Three-bug Programs Siemens Test Suite and the
subset of the Unix Test Suite

Metric 10% 20% 30% 40% 50% 80% Unique (100%) p-value
Wong4 30.43 26.76 25.41 24.39 23.57 22.67 22.29 <0.05
Ample2 29.17 25.96 24.67 23.91 23.48 23.02 22.86 <0.05
CBI Log 31.35 26.91 25.05 24.06 23.41 22.99 22.87 <0.05
Pearson 29.09 26.01 24.89 24.32 23.98 23.79 23.19 <0.05

Continued on next page

265

APPENDIX E. VARYING THE NUMBER OF UNIQUE TEST CASES WITH RESPECT
TO BUG LOCALIZATION PERFORMANCE

Table E.4 – continued from previous page
Metric 10% 20% 30% 40% 50% 80% Unique (100%) p-value

Rogot2 29.27 26.08 24.92 24.42 23.99 23.76 23.21 <0.05
AMean 29.11 26.04 24.90 24.35 24.00 23.75 23.28 <0.05
Ample 30.95 27.48 26.10 25.26 24.73 23.93 23.78 <0.05
Zoltar 29.56 27.07 26.14 25.83 25.38 25.21 25.04 <0.05
Kulczynski2 29.36 26.69 25.78 25.55 25.37 25.22 25.16 <0.05
McCon 29.36 26.69 25.78 25.55 25.27 25.22 25.16 <0.05
Ochiai 29.43 26.85 25.96 25.81 25.67 25.58 25.52 <0.05
Jaccard 29.62 27.11 26.23 26.05 25.86 25.77 25.73 <0.05
Wong3 29.60 27.14 26.88 26.84 26.80 26.21 26.21 <0.05
M2 29.77 27.47 26.89 26.88 26.84 26.79 26.79 <0.05
Op 30.08 27.84 27.32 27.09 26.98 26.90 26.90 <0.05
Tarantula 30.52 29.00 28.46 27.88 27.62 27.42 26.94 <0.05
JacCube 30.24 28.43 27.95 27.90 27.52 27.31 27.03 <0.05
O 30.32 29.97 29.76 29.59 29.55 29.53 29.48 <0.05
Russell 35.11 32.35 31.42 30.94 30.61 30.17 30.05 <0.05
Binary 35.29 32.79 32.72 32.69 32.62 32.55 32.43 <0.05
Overlap 39.25 39.65 39.78 39.57 39.41 38.76 38.42 <0.05

In these tables, we observe that bug localization performance improves as we evaluate
using larger number of unique pass and fail test cases for the Siemens Test Suite and the
subset of the Unix Test Suite. For all the better performing metrics in these tables, we
also observe the improvement in bug localization performance using all the unique test
cases as compared to using only the 10% of the unique pass and fail test cases. The latter
improvement is statistically significant with confidence greater than 95%.

For the two-bug programs of the Siemens Test Suite and the subset of the Unix Test
Suite, we plot bug localization performance for several better performing metrics (Pear-
son, Ample2, and Jaccard) for the ten sets of randomly selected representative unique
pass and fail test cases (Figure E.3). Figure E.4 shows the plot of bug localization per-
formance for several better performing spectra metrics (Wong4, Ample2, and Pearson)
for the three-bug programs of the Siemens Test Suite and the subset of the Unix Test
Suite. These figures also similarly show that bug localization performance improves as
we evaluate using larger number of the unique pass and fail test cases.

266

E.2. MULTIPLE-BUG PROGRAMS

0 10 20 30 40 50 60 70 80 90 100
20

22

24

26

28

30

32

Percentages (%) of Unique Pass and Fail Test Cases

R
an

k
Pe

rc
en

ta
ge

s
(%

)
Rank Percentages for Two−bug Siemens and subset of Unix test suite vs Percentages of Unique Pass and Fail Test Cases

Pearson

Ample2

Jaccard

Metrics

Figure E.3: Average Rank Percentages (on average) for the Two-bug Siemens Test Suite and the
subset of the Unix Test Suite vs Percentages of the Unique Pass and Fail Test Cases

0 10 20 30 40 50 60 70 80 90 100
20

22

24

26

28

30

32

Percentages (%) of Unique Pass and Fail Test Cases

R
an

k
Pe

rc
en

ta
ge

s
(%

)

Rank Percentages for Three−bug Siemens and subset of Unix test suite vs Percentages of Unique Pass and Fail Test Cases

Wong4

Ample2

Pearson

Metrics

Figure E.4: Average Rank Percentages (on average) for the Three-bug Siemens Test Suite and the
subset of the Unix Test Suite vs Percentages of the Unique Pass and Fail Test Cases

267

F
Empirical Evaluation of the Proposed
Incremental Ranking Approaches on
Unique (Non-redundant) Test Cases

We used unique (non-redundant) test cases to evaluate bug localization performance in
Chapter 7. Generally, we did not observe statistically significant improvement in bug
localization performance by using unique test cases on better performing metrics. Some
not so good metrics showed a slight improvement in bug localization performance using
the unique (non-redundant) test cases. In this section, we are not interested in which
spectra metric performs better in terms of bug localization performance. Instead, we
want to investigate whether the proposed Weighted and incremental ranking approaches
in Chapter 8 still perform robustly using the unique test cases. We use the term of non-
redundant test cases and unique interchangeably.

We detail the evaluation of the Weighted and incremental ranking approaches on sin-
gle bug and multiple-bug programs of our benchmarks in the following sections. These
sections can be skipped as similar improvement of bug localization performance is ob-
served using our proposed Weighted and incremental ranking approaches on the unique
test cases of our benchmarks.

F.1 Single Bug Programs
Table F.1, Table F.2, and Table F.3 detail the evaluation of our proposed approaches using
unique (non-redundant) test cases of the single bug programs, namely the Siemens Test
Suite and the subset of the Unix Test Suite, Concordance, and Space programs respec-
tively.

Table F.1: Average Rank Percentages for the Single Bug Siemens Test Suite and the subset of the
Unix Test Suite (Unique)

Metric Unweighted Weighted 10% Inc 20% Inc Incre. p-value
O 17.79 17.79 17.92 17.74 17.62 0.4597
Op 17.79 17.80 17.90 17.90 17.78 0.5141
Zoltar 18.00 17.99 18.02 17.98 18.05 0.4485
Kulczynski2 18.56 18.50 18.49 18.52 18.34 0.4534

Continued on next page

269

APPENDIX F. EMPIRICAL EVALUATION OF THE PROPOSED INCREMENTAL
RANKING APPROACHES ON UNIQUE (NON-REDUNDANT) TEST CASES

Table F.1 – continued from previous page
Metric Unweighted Weighted 10% Inc 20% Inc Incre. p-value

McCon 18.56 18.50 18.65 18.70 18.77 0.5249
JacCube 18.67 18.57 18.52 18.60 18.36 0.4532
M2 18.88 18.79 18.67 18.68 18.81 0.4758
Wong3 18.90 18.00 17.91 18.04 17.91 0.2924
Ochiai 19.65 19.53 19.37 19.41 19.64 0.4483
Wong4 20.78 20.92 22.37 21.81 21.90 0.9880
Jaccard 21.58 21.03 21.26 21.10 20.94 0.4016
Pearson 22.19 21.59 21.56 21.86 21.73 0.4222
AMean 22.38 21.73 21.84 21.95 21.71 0.3694
Ample2 23.33 22.44 22.46 22.68 22.62 0.3772
Rogot2 23.57 22.72 22.36 22.60 22.86 0.4308
Tarantula 25.91 24.98 25.83 25.69 25.70 0.4487
CBI Log 28.11 25.77 27.08 28.03 27.94 0.3838
Binary 30.02 30.02 29.97 30.01 30.14 0.8704
Russell 30.02 30.02 30.19 30.24 30.14 0.4379
Ample 30.04 26.38 26.50 26.43 26.56 0.0663
Overlap 32.23 32.44 29.34 30.25 33.00 0.5214

Table F.2: Average Rank Percentages for the Single Bug Concordance (Unique)

Metric Unweighted Weighted 10% Inc 20% Inc Incre. p-value
O 10.14 10.14 10.02 10.05 10.05 0.2417
Op 10.14 10.14 10.18 10.15 10.12 0.2643
Zoltar 10.14 10.14 10.20 10.14 10.14 0.6369
Kulczynski2 10.20 10.14 10.12 10.25 10.07 0.0917
McCon 10.20 10.14 10.06 10.24 10.19 0.4721
JacCube 10.22 10.16 10.13 10.23 10.13 0.0705
M2 10.40 10.29 10.28 10.29 10.44 0.6880
Ochiai 10.51 10.62 10.55 10.78 10.66 0.5472
Wong3 11.19 10.14 10.18 10.09 10.14 0.1432
Jaccard 12.35 11.46 11.51 11.57 11.51 0.1716
Wong4 12.75 13.01 17.25 17.12 15.36 0.7296
AMean 13.76 11.44 11.40 11.51 11.37 0.1432
Pearson 13.91 11.49 11.48 11.50 11.49 0.1568
Ample2 14.68 11.88 11.79 11.67 11.82 0.0400
Tarantula 15.81 12.86 12.75 12.87 12.78 0.0220
Rogot2 19.73 14.39 13.51 13.48 13.57 0.1716
Binary 21.03 21.03 21.53 20.47 21.24 0.8635
Overlap 21.03 21.03 16.83 19.60 19.74 0.0337
Russell 21.03 21.03 20.50 20.19 21.35 0.6877
CBI Log 25.71 14.93 13.37 13.37 13.36 0.0547
Ample 40.06 27.45 26.53 25.75 25.89 0.0333

270

F.1. SINGLE BUG PROGRAMS

Table F.3: Average Rank Percentages (on average of 10 bins) for the Single Bug Space (Unique)

Metric Unweighted Weighted 10% Inc 20% Inc Incre. p-value
O 1.63 1.63 1.63 1.63 1.57 0.4505
Op 1.63 1.63 1.63 1.62 1.59 0.5165
Wong3 1.74 1.63 1.64 1.63 1.58 0.3544
Zoltar 1.78 1.77 1.79 1.79 1.72 0.5331
JacCube 1.88 1.87 1.88 1.89 1.82 0.5248
M2 1.89 1.90 1.92 1.89 1.83 0.5
Kulczynski2 2.01 2.01 2.01 2.02 1.95 0.4835
McCon 2.01 2.01 2.01 2.02 1.95 0.5165
Ochiai 2.23 2.22 2.22 2.24 2.13 0.5
Wong4 2.54 2.64 2.61 2.63 2.57 0.5
Rogot2 2.90 2.70 2.69 2.70 2.63 0.5331
Pearson 2.96 2.77 2.76 2.77 2.68 0.5495
AMean 3.15 2.97 2.96 2.96 2.89 0.4669
Ample2 3.15 2.94 2.92 2.92 2.83 0.4669
Jaccard 3.36 3.12 3.10 3.10 3.01 0.4669
Tarantula 6.42 6.13 6.14 6.15 6.00 0.4351
Ample 8.24 4.36 4.38 4.38 4.28 0.2807
CBI Log 8.46 6.40 6.15 6.06 5.90 0.1735
Binary 17.59 17.59 17.33 17.43 17.56 0.4854
Russell 17.59 17.59 17.34 17.63 17.61 0.7304
Overlap 18.31 18.22 16.99 19.01 18.72 0.5326

We observe a marginal drop in the effectiveness of bug localization performance by
using the Weighted approach compared to using the Unweighted approach on Op metric
in Table F.1. However, we do not observe any difference in bug localization performance
for the metric in the Concordance and Space programs (Table F.2 and Table F.3). In
Table F.1 – Table F.3, we observe improvement in bug localization performance using the
Weighted approach compared to the Unweighted approach for most metrics that are not
located at the top of these tables. In these tables, most metrics show improvement in bug
localization performance using the 10% Inc and 20% Inc approaches as compared to using
the Unweighted approach. Better performing metrics such as O, Op, and Kulczynski2
metrics only show the improvement in bug localization performance using the top-down
incremental ranking approach (Incre.) as compared to the Unweighted approach for all the
single bug programs. The improved average rank percentages using Incre. as compared
to the Unweighted for O, Op, and Kulczynski2 metrics are in the range from 0.06% to
0.17%, 0.01% to 0.04%, and 0.06% to 0.22% respectively.

In these tables, we also report the p-value of our hypothesis [Rice, 1989]. We establish
a hypothesis; the bug localization performance using our proposed top-down incremental
ranking approach (Incre.) improves as compared to using the Unweighted approach. We

271

APPENDIX F. EMPIRICAL EVALUATION OF THE PROPOSED INCREMENTAL
RANKING APPROACHES ON UNIQUE (NON-REDUNDANT) TEST CASES

apply the one-sided Wilcoxon rank sum test [Hollander and Wolfe, 1973] to check the
statistical significance of our hypothesis. We perform this statistical test only on one of
the 10 bins in the Space program as the bug localization performances across the 10 bins
are very similar (as shown in Figure 5.13 of Subsection 5.8.1). In all the unique test cases
of the single bug programs, we do not observe any strong statistical significance of our
hypothesis for all the metrics.

F.2 Multiple-bug Programs
We also evaluate our proposed approaches using the unique (non-redundant) test cases of
the multiple-bug programs of the Siemens Test Suite, the subset of the Unix Test Suite,
and Space programs. For Space programs, we use the Subset of the representative of the
Space test suites (random test case selections in 10 bins). In this table, we report the
average of bug localization performance for the Space programs across the 10 bins.

Table F.4: Average Rank Percentages for the Two-bug Siemens Test Suite and the subset of the
Unix Test Suite (Unique)

Metric Unweighted Weighted 10% Inc 20% Inc Incre. p-value
Pearson 20.04 19.47 18.10 18.18 18.09 <0.05
Ample2 20.11 19.26 17.89 17.84 17.80 <0.05
AMean 20.13 19.59 18.21 18.32 18.07 <0.05
Jaccard 20.29 19.69 18.32 18.27 18.29 <0.05
Rogot2 20.40 20.26 19.10 19.08 19.10 <0.05
Wong4 20.59 20.63 20.63 19.81 19.48 <0.05
Kulczynski2 20.89 20.58 19.12 19.10 19.11 <0.05
McCon 20.89 20.58 19.11 19.11 19.03 <0.05
Ochiai 20.93 20.37 19.00 18.90 18.87 <0.05
CBI Log 21.13 20.51 19.46 19.49 19.51 <0.05
Zoltar 21.16 21.06 19.71 19.70 19.76 <0.05
Tarantula 21.61 20.82 19.63 19.59 19.64 <0.05
Wong3 22.33 22.05 20.49 20.46 20.51 <0.05
M2 22.35 21.68 20.25 20.30 20.25 <0.05
JacCube 22.37 21.84 20.52 20.41 20.41 <0.05
Op 23.19 22.89 21.47 21.41 21.41 <0.05
Ample 23.67 23.75 22.45 22.56 22.65 <0.05
O 25.05 24.76 22.82 22.68 22.65 <0.05
Russell 32.44 32.02 26.77 26.73 26.47 <0.05
Binary 34.02 33.75 27.65 27.67 27.54 <0.05
Overlap 34.08 33.92 25.12 25.79 27.06 <0.05

272

F.2. MULTIPLE-BUG PROGRAMS

Table F.5: Average Rank Percentages for the Three-bug Siemens Test Suite and the subset of the
Unix Test Suite (Unique)

Metric Unweighted Weighted 10% Inc 20% Inc Incre. p-value
Wong4 22.29 21.37 18.28 17.88 17.70 <0.05
Ample2 22.86 22.41 18.44 18.35 18.39 <0.05
CBI Log 22.87 22.50 18.57 18.46 18.46 <0.05
Pearson 23.19 22.76 18.70 18.63 18.60 <0.05
Rogot2 23.21 23.06 18.98 19.03 19.00 <0.05
AMean 23.28 22.86 18.74 18.77 18.73 <0.05
Ample 23.78 23.73 19.83 19.77 19.70 <0.05
Zoltar 25.04 25.03 20.86 20.84 20.87 <0.05
Kulczynski2 25.16 24.50 19.61 19.56 19.47 <0.05
McCon 25.16 24.50 19.55 19.47 19.49 <0.05
Ochiai 25.52 24.84 19.78 19.82 19.83 <0.05
Jaccard 25.73 24.30 20.05 20.02 19.98 <0.05
Wong3 26.21 25.82 20.79 20.79 20.80 <0.05
M2 26.79 25.16 20.95 20.85 20.88 <0.05
Op 26.90 25.60 21.40 21.31 21.32 <0.05
Tarantula 26.94 26.32 20.08 20.05 20.11 <0.05
JacCube 27.03 25.38 21.20 21.11 21.13 <0.05
O 29.48 29.08 22.96 22.93 22.87 <0.05
Russell 30.05 28.62 23.11 23.06 23.03 <0.05
Binary 32.43 32.05 24.39 24.45 24.42 <0.05
Overlap 38.42 38.35 24.25 24.45 24.78 <0.05

Table F.6: Average Rank Percentages (on average of 10 bins) for the Multiple-bug Space (Unique)

Metric Unweighted Weighted 10% Inc 20% Inc Incre. p-value
Zoltar 2.42 2.42 2.04 2.05 2.05 <0.05
JacCube 2.47 2.47 2.08 2.11 2.09 <0.05
O 2.55 2.55 2.16 2.16 2.17 <0.05
Op 2.55 2.55 2.17 2.18 2.18 <0.05
Wong3 2.55 2.55 2.18 2.17 2.17 <0.05
M2 2.58 2.60 2.23 2.22 2.22 <0.05
Kulczynski2 2.63 2.61 2.24 2.25 2.25 <0.05
McCon 2.63 2.61 2.26 2.25 2.25 <0.05
Ochiai 2.77 2.76 2.39 2.39 2.39 <0.05
Wong4 2.80 2.75 2.36 2.38 2.37 <0.05
Jaccard 3.25 3.23 2.83 2.85 2.85 <0.05
Rogot2 3.26 3.22 2.84 2.83 2.83 <0.05
Pearson 3.41 3.38 2.98 2.98 2.99 <0.05
Ample2 3.51 3.44 3.04 3.02 3.02 <0.05

Continued on next page

273

APPENDIX F. EMPIRICAL EVALUATION OF THE PROPOSED INCREMENTAL
RANKING APPROACHES ON UNIQUE (NON-REDUNDANT) TEST CASES

Table F.6 – continued from previous page
Metric Unweighted Weighted 10% Inc 20% Inc Incre. p-value

AMean 3.59 3.52 3.13 3.13 3.13 <0.05
CBI Log 3.80 3.77 3.42 3.41 3.42 <0.05
Tarantula 4.36 4.31 3.94 3.94 3.95 <0.05
Ample 8.39 4.48 4.09 4.09 4.09 <0.05
Binary 17.85 17.85 10.50 10.52 10.52 <0.05
Russell 17.85 17.85 10.52 10.45 10.50 <0.05
Overlap 18.07 18.07 10.26 10.39 10.78 <0.05

Table F.4 and Table F.5 show that bug localization performance using the Weighted
approach is better than the Unweighted approach for most of the metrics. In Table F.6,
we do not observe much improvement in bug localization performance using the pro-
posed Weighted approach compared to the Unweighted approach. In the evaluation of
all the multiple-bug programs of our benchmarks (Table F.4, Table F.5, and Table F.6),
the improvement of bug localization performance using 10% Inc, 20% Inc, and Incre.
approaches as compared to the Unweighted approach are more obvious than the single
bug programs (Table F.1, Table F.2, and Table F.3). In the former tables, the improved
average rank percentages of the 10% Inc, 20% Inc, and Incre. approaches as compared to
using the Unweighted approach for all the metrics range from 0.35% to 14.17%, 0.36%
to 13.97%, and 0.36% to 13.64% respectively.

We also report the p-value of our hypothesis [Rice, 1989] in all the tables of the
multiple-bug programs. We establish similar hypothesis of the bug localization perfor-
mance using our proposed top-down incremental ranking approach (Incre.) improves as
compared to using the Unweighted approach. We apply the one-sided Wilcoxon rank sum
test [Hollander and Wolfe, 1973] to check the statistical significance of our hypothesis.

For the multiple-bug programs of the Siemens Test Suite and the subset of the Unix
Test Suite, and Space (Table F.4, Table F.5, and Table F.6), we observe a statistically
significant improvement in bug localization performance using the top-down incremen-
tal ranking approach (Incre.) as compared to the Unweighted approach with confidence
greater than 95% for all the metrics.

274

G
Spectral Frequency Weighting Function on

Concordance and Space programs

In this section, we detail the evaluation of our proposed frequency weighting function
approach in Chapter 9 on other single bug programs such as Concordance and Space.

Table G.1: Average Rank Percentages for the Single Bug Concordance with respect to the Differ-
ent α values

α
Metric 0.1 0.5 1 2 4 8 10 20 Bin

O 50.37 50.69 53.66 49.29 51.37 52.61 47.95 49.21 10.1110.1110.11
Op 23.41 24.09 21.12 16.16 11.52 10.0910.0910.09 10.0910.0910.09 10.12 10.11
Zoltar 20.56 24.05 20.91 21.06 17.88 17.90 12.96 10.12 10.1110.1110.11
Wong3 24.59 25.12 21.80 19.70 12.50 9.839.839.83 10.14 10.16 10.15
Kulczynski2 24.26 24.73 23.06 22.91 13.11 10.2010.2010.20 10.2010.2010.20 10.31 10.21
McCon 24.26 24.73 23.06 22.91 13.11 10.2010.2010.20 10.2010.2010.20 10.22 10.21
JacCube 18.18 17.71 14.55 13.27 10.4010.4010.40 10.42 10.42 10.43 10.43
M2 22.75 24.42 21.37 13.10 10.9410.9410.94 10.96 10.97 11.06 10.97
Ochiai 17.02 19.51 17.01 13.68 11.1811.1811.18 11.1811.1811.18 11.1811.1811.18 11.20 11.19
Wong4 24.33 28.13 23.00 24.15 27.07 28.54 28.85 22.91 11.3511.3511.35
Jaccard 15.1015.1015.10 15.51 17.09 17.57 17.76 17.76 17.77 17.69 17.68
Ample2 22.75 23.80 20.75 20.51 18.0218.0218.02 18.0218.0218.02 18.0218.0218.02 18.05 18.05
Pearson 21.48 23.63 21.29 20.73 18.40 18.40 18.3818.3818.38 18.43 18.42
AMean 18.31 23.08 21.40 20.77 18.8718.8718.87 18.8718.8718.87 18.8718.8718.87 18.89 18.90
Rogot2 22.84 23.41 21.01 20.71 18.2318.2318.23 18.30 18.30 18.32 19.24
Tarantula 19.73 19.5219.5219.52 19.94 19.83 20.01 20.01 20.01 20.03 20.03
Russell 28.37 29.09 25.81 25.18 25.26 24.39 24.55 24.15 21.0321.0321.03
Binary 50.37 50.69 53.66 49.59 51.44 52.50 48.86 50.17 21.0321.0321.03
Overlap 27.99 28.85 25.57 22.82 23.87 18.45 18.0318.0318.03 19.71 21.03
CBI Log 23.35 23.22 23.16 22.68 22.78 22.50 22.51 22.43 22.3522.3522.35
Ample 34.87 36.10 33.04 31.65 27.5027.5027.50 27.5027.5027.50 27.5027.5027.50 27.53 27.53

275

APPENDIX G. SPECTRAL FREQUENCY WEIGHTING FUNCTION ON
CONCORDANCE AND SPACE PROGRAMS

Table G.2: Average Rank Percentages (on average of 10 bins) for the Single Bug Space with
respect to the Different α values

α
Metric 0.1 0.5 1 2 4 8 10 20 Bin

O 50.06 50.64 50.81 51.25 51.11 43.42 40.05 39.10 1.641.641.64
Op 6.32 6.19 5.99 5.74 5.06 1.60 1.49 1.481.481.48 1.64
Wong4 7.50 8.38 7.93 7.24 6.75 3.70 3.73 3.08 1.641.641.64
Wong3 6.62 6.41 6.17 5.88 5.03 2.23 1.58 1.551.551.55 1.65
Zoltar 5.64 6.74 6.76 6.40 5.52 3.68 2.17 1.651.651.65 1.80
JacCube 4.82 5.22 4.67 3.87 1.98 1.741.741.74 1.741.741.74 1.741.741.74 1.90
M2 4.89 5.21 4.55 3.61 1.77 1.76 1.76 1.751.751.75 1.92
Kulczynski2 4.88 5.90 5.99 4.85 2.33 1.911.911.91 1.911.911.91 1.911.911.91 2.07
McCon 4.88 5.90 5.99 4.85 2.33 1.911.911.91 1.911.911.91 1.911.911.91 2.07
Ochiai 4.06 4.69 4.36 3.55 2.102.102.10 2.102.102.10 2.102.102.10 2.102.102.10 2.26
Rogot2 3.72 4.06 3.49 2.87 2.53 2.512.512.51 2.512.512.51 2.512.512.51 2.67
Ample2 2.58 2.59 2.57 2.502.502.50 2.502.502.50 2.51 2.51 2.52 2.68
Pearson 3.50 3.60 3.29 2.76 2.59 2.562.562.56 2.562.562.56 2.562.562.56 2.72
AMean 3.68 3.62 3.29 2.92 2.78 2.772.772.77 2.772.772.77 2.772.772.77 2.93
Jaccard 4.08 4.47 4.37 4.24 2.992.992.99 3.02 3.02 3.02 3.18
Tarantula 6.30 6.22 6.176.176.17 6.22 6.26 6.28 6.28 6.31 6.31
Ample 6.59 6.44 6.51 6.45 6.396.396.39 6.40 6.40 6.40 6.56
CBI Log 6.46 6.48 6.426.426.42 6.46 6.46 6.44 6.44 6.63 6.65
Russell 12.43 12.61 12.59 12.38 12.11 12.0212.0212.02 12.08 13.11 17.59
Binary 50.06 50.81 51.25 51.12 43.99 43.80 40.55 39.96 17.5917.5917.59
Overlap 12.2412.2412.24 13.62 13.97 12.80 12.59 18.83 18.72 20.91 18.31

Evaluation is performed using our proposed approach of frequency weighting func-
tion on Concordance which consists of only 11 single bug programs. In Table G.1, there
is a marginal improvement in bug localization performance for the Op, Kulczynski2, and
Ochiai metrics using the proposed approach with the α value of 10 (average rank per-
centages of 10.09%, 10.20%, and 11.18%) as compared to using the traditional binary
weighting approach (Bin) (average rank percentages of 10.11%, 10.21%, and 11.19%)
respectively. Other metrics such as O, Zoltar, Wong4, Russell, Binary, and CBI Log do
not show any improvement in bug localization performance using our proposed approach.
In this table, we observe most metrics show the best improvement in bug localization
performance by using our proposed approach with the α values ranging from 4 to 10.

We evaluate our proposed approach on the single bug programs of Space which con-
sists of 15 programs. For the Space programs, we use the Subset of existing Space test
cases (in 10 bins). In order to avoid the bias of bug localization performance on one
particular bin, we take the average bug localization performance of the 10 bins of Space.
The latter also applies when we evaluate bug localization performance for the traditional
binary weighting approach (Bin). Table G.2 shows (on average) bug localization perfor-
mance with respect to the different α values in Space. For each α variant we evaluate, we
report the average of the bug localization performance of the Subset of Space programs

276

across the 10 bins. We observe that the Op metric performs the best using our proposed
approach with the α value of 20 when compared to the traditional binary weighting ap-
proach (Bin) with the average rank percentages of 1.48% and 1.64% respectively.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 4 5 7 8 10 20 50 80 100 Bin

Alpha values

5.00

10.00

15.00

20.00

25.00

30.00

A
v
e
ra

g
e
 R

a
n
k
 P

e
rc

e
n

ta
g

e
s

Average Rank Percentages vs Alpha values for Single Bug Programs (Concordance)

Metrics
O^p
Tarantula
Wong3
Wong4
Zoltar

Figure G.1: Average Rank Percentages for the Different α values of the Single Bug Concordance

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 4 5 7 8 10 20 50 80 100 Bin

Alpha values

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

A
v
e
ra

g
e
 R

a
n
k
 P

e
rc

e
n

ta
g
e
s

Average Rank Percentages vs Alpha values for Single Bug Programs (Space)

Metrics

O^p
Wong4
Wong3
Zoltar
Kulczynski2

Figure G.2: Average Rank Percentages for the Different α values of the Single Bug Space

To see the trend of the bug localization performance on the choices of α values for
both Concordance and Space programs, we plot the average rank percentages against dif-
ferent Alpha, α values (ranges from 0.1 to 100) including the traditional binary weighting
approach (Bin) for several metrics in Figure G.1 and Figure G.2. For Concordance in
Figure G.1, we observe that our proposed approach on the Op and Tarantula metrics show
improvement in bug localization performance in the range of the α value between 5 to 20

277

APPENDIX G. SPECTRAL FREQUENCY WEIGHTING FUNCTION ON
CONCORDANCE AND SPACE PROGRAMS

as compared to using the traditional binary weighting approach. In Figure G.2 for Space,
all the metrics except Zoltar and Wong4 show slight improvement in bug localization per-
formance with the range of the α value from 10 to 20 as compared to using the traditional
binary weighting approach (Bin).

278

H
Bug Information of Respective Datasets

Table H.1: Table of Print Tokens Bug Information

Ver Base Version Seeded Version Bug Type
1 case 16:ch=get_char(

tstream_ptr->ch_stream
);

case 16 : missing
switch
case
statement

case 32 : ch=get_char
(tstream_ptr->

ch_stream);

added
switch
case
statement
as part
of the
new
switch
case

case 25 : case 25 : token_ptr
->token_id=special(
next_st);

added
switch
case
statement

case 32 : token_ptr
->token_id=special(
next_st);

removed
switch
case
statement

case 32: return(
EQUALGREATER);

added
switch
case
statement

case 32: return(
EQUALGREATER);

removed
switch
case
statement

2 case 12 : added
empty
switch
case

Continued on next page

279

APPENDIX H. BUG INFORMATION OF RESPECTIVE DATASETS

Table H.1 -- continued from previous page
Ver Base Version Seeded Version Bug Type
3 unget_char(ch,

tstream_ptr->ch_stream
);

/*unget_char(ch,
tstream_ptr->ch_stream
);*/

commented
line

5 token_ind=next_st=0; next_st=0; commented
line

7 if(token_ind >= 80)
break;

if(token_ind >= 10)
break;

logic
error

Table H.2: Table of Print Tokens2 Bug Information

Ver Base Version Seeded Version Bug Type
1 if(id==0 && ch==59){ch

=unget_char(ch,tp); if
(ch==EOF)unget_error(
tp);return(buffer); }

removed
if
conditions

2 if(ch==EOF)unget_error
(tp);

unget_error(tp); commented
line

3 return(buffer); removed
return
statement

4 if(ch==59)id=2; if(ch==59)id=0; logic
error

5 return(FALSE); return(TRUE); logic
error

6 if(isdigit(*(str+i))) if(isdigit(*(str + i
+1)))

logic
error

7 {if(ch=='\n') {if(ch=='\n'||ch==' ') logic
error

8 if(ch ==' ' || ch=='\
n' || ch==59)return(
TRUE);

if(ch ==' ' || ch=='\n
' || ch==59 || ch ==
'\t')return(TRUE);

logic
error

9 { if(ch=='\n') { if(ch=='\n' || ch ==
'\t')

logic
error

10 { while (*(str+i)
!='\0')

{ while (*(str)!='\0') logic
error

Table H.3: Table of Replace Bug Information

Ver Base Version Seeded Version Bug Type
1 if (src[*i - 1] ==

ESCAPE){
if (src[*i] == ESCAPE)
{

logic
error

2 if (src[*i - 1] ==
ESCAPE){

/* if (src[*i - 1]
== ESCAPE){

commented
line

} else } else*/ commented
line

Continued on next page

280

Table H.3 -- continued from previous page
Ver Base Version Seeded Version Bug Type
3 if ((m >= 0)&& (lastm

!= m)){
if ((m >= 0)){ logic

error
4 if ((m >= 0)&& (lastm

!= m)){
if ((m >= 0)&& (i != m
)){

logic
error

5 for (k = src[*i-1]+1;
k<=src[*i+1]; k++)

for (k = src[*i-1]+1;
k< src[*i+1]; k++)

logic
error

6 while ((i > offset)) while ((i >= offset)) logic
error

7 return (c ==BOL || c
==EOL || c ==CLOSURE);

return (c ==BOL || c
==ANY || c ==CLOSURE);

logic
error

8 return (c ==BOL || c
==EOL ||c ==CLOSURE);

return (c ==BOL || c
==EOL);

logic
error

9 else if ((isalnum(src
[*i - 1]))&&(isalnum(
src[*i + 1]))&&(src[*i
- 1] <= src[*i + 1]))

else if ((isalnum(src
[*i - 1]))&& (isalnum(
src[*i + 1])))

logic
error

10 else if ((isalnum(src
[*i - 1]))&& (isalnum(
src[*i + 1]))

else if ((isalnum(src
[*i - 1]))

logic
error

11 && (src[*i - 1] <= src
[*i + 1]))

&& (src[*i - 1] > src
[*i]))

logic
error

12 #define MAXPAT MAXSTR #define MAXPAT 50 #define
constant
mutation

13 i = i + 1; if (m == -1)i = i + 1;
else i = i + 2;

added
code

14 if ((lin[*i] !=
NEWLINE)&& (!locate(
lin[*i], pat, j+1)))

if ((lin[*i] !=
NEWLINE))

logic
error

15 result = i; result = i + 1; logic
error

16 return (c == BOL ||c
==EOL ||c ==CLOSURE);

return (c == BOL || c
== EOL || c == CLOSURE
|| c == ANY);

logic
error

17 result = ESCAPE; result = NEWLINE; logic
error

18 if ((lin[*i] !=
NEWLINE)&& (!locate(
lin[*i], pat, j+1)))

if ((!locate(lin[*i],
pat, j+1)))

logic
error

19 result = fgets(s,
maxsize, stdin);

if (!fgets(s, 104,
stdin)){*result = 0;}

added
code

20 result = ESCAPE; result = ENDSTR; logic
error

Continued on next page

281

APPENDIX H. BUG INFORMATION OF RESPECTIVE DATASETS

Table H.3 -- continued from previous page
Ver Base Version Seeded Version Bug Type
21 #define MAXPAT MAXSTR #define MAXPAT 99 #define

constant
mutation

result = fgets(s,
maxsize, stdin);

result = fgets(s,
maxsize - 1, stdin);

logic
error

if(*j >= maxset) if(*j > maxset) logic
error

else if((arg[i] == EOL
)&&(arg[i+1]==delim))

else if((arg[i] == EOL
))

logic
error

22 if(arg[*i] == NEGATE) if(arg[*i + 1] ==
NEGATE)

logic
error

23 if(s[*i + 1]==ENDSTR) if(s[*i] == ENDSTR) logic
error

24 if(lin[*i] == NEWLINE)
advance = 0;

advance = 0; removed
if
condition

25 if(lin[*i] == NEWLINE) if(lin[*i] <= NEWLINE) logic
error

26 if((lin[*i] != NEWLINE
)&& (!locate(lin[*i],
pat, j+1)))

if((lin[*i] != NEWLINE
)&& (!locate(lin[*i],
pat, j)))

logic
error

27 #include <stdlib.h> library
inclusion

return (c == LITCHAR
|| c == BOL || c ==

EOL || c == ANY

return (c == LITCHAR
|| c == BOL || c ==
ANY

logic
error

change(pat, sub);
return 0;

funcB();atexit(funcB)
;void funcB(){change(
pat, sub);}

added
code

28 return (c == BOL || c
== EOL ||c ==CLOSURE);

return (c == BOL || c
== EOL || c == CLOSURE
|| c == CCL);

logic
error

29 return (c == BOL || c
== EOL ||c ==CLOSURE);

return (c == BOL || c
== EOL || c == CLOSURE
|| c == NCCL);

logic
error

30 return (c == BOL || c
== EOL ||c ==CLOSURE);

return (c == BOL || c
== EOL || c == CLOSURE
|| c != LITCHAR);

logic
error

31 if ((lin[*i] !=
NEWLINE)&& (!locate(
lin[*i], pat, j+1)))

if ((lin[*i] >=
NEWLINE)&& (!locate(
lin[*i], pat, j+1)))

logic
error

32 else if ((isalnum(src
[*i - 1]))&& (isalnum(
src[*i + 1]))

else if ((isalnum(src
[*i - 1]))& (isalnum(
src[*i + 1]))

logic
error

282

Table H.4: Table of Schedule Bug Information

Ver Base Version Seeded Version Bug Type
1 for(i=1; f_ele && (i<n

); i++)
for (i=1; f_list->
first && (i<n); i++)

logic
error

2 count = block_queue->
mem_count

count = block_queue->
mem_count + 1

logic
error

n = (int)(count*ratio
+1)

n = (int)(count*ratio) logic
error

3 n = (int)(count*ratio
+1);

n = (int)(count*ratio
+1.1);

logic
error

4 if(count > 0){ if (count > 1){ logic
error

5 if (proc){ /* if (proc){ */ commented
line

} /* } */ commented
line

6 for (i=1; f_ele && (i<
n); i++)

for (i=1; f_list && (i
<n); i++)

logic
error

7 if(ratio == 1.0)n--; added if
condition

if(ratio == 1.0)n--; added if
condition

8 proc->priority = prio; /* proc->priority =
prio; */

commented
line

9 if (argc<(MAXPRIO+1)) if (argc < (MAXPRIO)) logic
error

Table H.5: Table of Schedule2 Bug Information

Ver Base Version Seeded Version Bug Type
1 if(prio < 1 || prio

> MAXLOPRIO)return(
BADPRIO);

/* if(prio < 1 ||
prio > MAXLOPRIO)

return(BADPRIO); */

commented
lines

2 index = index >=
length ? length -1 :
index;

/* index = index >=
length ? length -1 :
index;*/

commented
line

3 if(ratio < 0.0 ||
ratio > 1.0)return(
BADRATIO);

/* if(ratio < 0.0
|| ratio > 1.0)return(
BADRATIO); */

commented
lines

5 if(prio < 1)return(
BADPRIO);

added if
condition

6 *prio = *command = -1;

*ratio =-1.0;
*prio = 1; *command =
-1; *ratio =1.0;

logic
error

7 if(ratio < 0.0 ||
ratio > 1.0)return(
BADRATIO);

if(ratio < 0.0 ||
ratio >= 1.0)return(
BADRATIO);

logic
error

Continued on next page

283

APPENDIX H. BUG INFORMATION OF RESPECTIVE DATASETS

Table H.5 -- continued from previous page
Ver Base Version Seeded Version Bug Type
8 if(prio > MAXPRIO

|| prio < 0)return(
BADPRIO);

/* if(prio > MAXPRIO
|| prio < 0)return(
BADPRIO); */

commented
lines

9 reschedule(0); get_current(); new
changes

10 if(status =put_end(
prio, new_process))
return(status);

put_end(prio,
new_process);

removed
if
condition

Table H.6: Table of Tcas Bug Information

Ver Base Version Seeded Version Bug Type
1 result = !(

Own_Below_Threat())||
((Own_Below_Threat())&&
(!(Down_Separation >= ALIM
())));

result = !(
Own_Below_Threat())||
((Own_Below_Threat())&&
(!(Down_Separation > ALIM
())));

logic
error

2 return (Climb_Inhibit ?
Up_Separation + NOZCROSS :
Up_Separation);

return (Climb_Inhibit ?
Up_Separation + MINSEP :
Up_Separation);

logic
error

3 && Other_RAC == NO_INTENT; || Other_RAC == NO_INTENT; logic
error

4 result = Own_Above_Threat
()&& (Cur_Vertical_Sep >=
MINSEP)&& (Up_Separation
>= ALIM());

result = Own_Above_Threat
()&& (Cur_Vertical_Sep >=
MINSEP)|| (Up_Separation
>= ALIM());

logic
error

5 enabled = High_Confidence
&& (Own_Tracked_Alt_Rate
<= OLEV)&& (

Cur_Vertical_Sep >
MAXALTDIFF);

enabled = High_Confidence
&& (Own_Tracked_Alt_Rate
<= OLEV);

logic
error

6 return (Own_Tracked_Alt <
Other_Tracked_Alt);

return (Own_Tracked_Alt <=
Other_Tracked_Alt);

logic
error

7 Positive_RA_Alt_Thresh[1]
= 500;

Positive_RA_Alt_Thresh[1]
= 550;

logic
error

8 Positive_RA_Alt_Thresh[3]
= 740;

Positive_RA_Alt_Thresh[3]
= 700;

logic
error

9 upward_preferred =
Inhibit_Biased_Climb()>
Down_Separation;

upward_preferred =
Inhibit_Biased_Climb()
>= Down_Separation;

logic
error

10 return (Own_Tracked_Alt <
Other_Tracked_Alt);

return (Own_Tracked_Alt <=
Other_Tracked_Alt);

logic
error

return (Other_Tracked_Alt
< Own_Tracked_Alt);

return (Other_Tracked_Alt
<= Own_Tracked_Alt);

logic
error

Continued on next page

284

Table H.6 -- continued from previous page
Ver Base Version Seeded Version Bug Type
11 return (Own_Tracked_Alt <

Other_Tracked_Alt);
return (Own_Tracked_Alt <=
Other_Tracked_Alt);

logic
error

return (Other_Tracked_Alt
< Own_Tracked_Alt);

return (Other_Tracked_Alt
<= Own_Tracked_Alt);

logic
error

if (need_upward_RA &&
need_downward_RA)alt_sep
= UNRESOLVED; else if (
need_upward_RA)

if (need_upward_RA) removed
code

12 enabled = High_Confidence
&& (Own_Tracked_Alt_Rate
<= OLEV)&& (
Cur_Vertical_Sep >
MAXALTDIFF);

enabled = High_Confidence
|| (Own_Tracked_Alt_Rate
<= OLEV)&& (
Cur_Vertical_Sep >
MAXALTDIFF);

logic
error

13 #define OLEV 600 #define OLEV 600+100 #define
constant
mutation

14 #define MAXALTDIFF 600 #define MAXALTDIFF 600+50 #define
constant
mutation

15 enabled = High_Confidence
&&(Own_Tracked_Alt_Rate <=
OLEV)&&(Cur_Vertical_Sep
> MAXALTDIFF);

enabled = High_Confidence
&& (Own_Tracked_Alt_Rate
<= OLEV);

logic
error

16 Positive_RA_Alt_Thresh[0]
= 400;

Positive_RA_Alt_Thresh[0]
= 400+1;

logic
error

17 Positive_RA_Alt_Thresh[1]
= 500;

Positive_RA_Alt_Thresh[1]
= 500+1;

logic
error

18 Positive_RA_Alt_Thresh[2]
= 640;

Positive_RA_Alt_Thresh[2]
= 640+50;

logic
error

19 Positive_RA_Alt_Thresh[3]
= 740;

Positive_RA_Alt_Thresh[3]
= 740+20;

logic
error

20 upward_preferred =
Inhibit_Biased_Climb()>
Down_Separation;

upward_preferred =
Inhibit_Biased_Climb()
>= Down_Separation;

logic
error

21 upward_preferred =
Inhibit_Biased_Climb()>
Down_Separation;

upward_preferred = (
Up_Separation + NOZCROSS)>
Down_Separation;

logic
error

22 upward_preferred =
Inhibit_Biased_Climb()>
Down_Separation;

upward_preferred =
Up_Separation >
Down_Separation;

logic
error

23 upward_preferred =
Inhibit_Biased_Climb()>
Down_Separation;

upward_preferred = (
Up_Separation + NOZCROSS)>
Down_Separation;

logic
error

Continued on next page

285

APPENDIX H. BUG INFORMATION OF RESPECTIVE DATASETS

Table H.6 -- continued from previous page
Ver Base Version Seeded Version Bug Type
24 upward_preferred =

Inhibit_Biased_Climb()>
Down_Separation;

upward_preferred =
Up_Separation >

Down_Separation;

logic
error

25 result = !(
Own_Above_Threat())||
((Own_Above_Threat())&& (
Up_Separation >= ALIM()));

result = !(
Own_Above_Threat())||
((Own_Above_Threat())&& (
Up_Separation > ALIM()));

logic
error

26 enabled = High_Confidence
&& (Own_Tracked_Alt_Rate
<= OLEV)&& (

Cur_Vertical_Sep >
MAXALTDIFF);

enabled = High_Confidence
&& (Cur_Vertical_Sep >

MAXALTDIFF);

logic
error

27 enabled = High_Confidence
&& (Own_Tracked_Alt_Rate
<= OLEV)&& (

Cur_Vertical_Sep >
MAXALTDIFF);

enabled = High_Confidence
&& (Own_Tracked_Alt_Rate
<= OLEV);

logic
error

28 return (Climb_Inhibit ?
Up_Separation + NOZCROSS :
Up_Separation);

return ((Climb_Inhibit
== 0)? Up_Separation +
NOZCROSS : Up_Separation);

logic
error

29 return (Climb_Inhibit ?
Up_Separation + NOZCROSS :
Up_Separation);

return (Up_Separation); logic
error

30 return (Climb_Inhibit ?
Up_Separation + NOZCROSS :
Up_Separation);

return (Up_Separation +
NOZCROSS);

logic
error

31 result = result && (
Own_Tracked_Alt <=
Other_Tracked_Alt);

added
code

result = result &&
(Own_Tracked_Alt <
Other_Tracked_Alt);

added
code

need_upward_RA =
Non_Crossing_Biased_Climb
()&& Own_Below_Threat();

need_upward_RA =
Non_Crossing_Biased_Climb
();

logic
error

32 need_downward_RA =
Non_Crossing_Biased_Descend
()&& Own_Above_Threat();

need_downward_RA =
Non_Crossing_Biased_Descend
();

logic
error

Continued on next page

286

Table H.6 -- continued from previous page
Ver Base Version Seeded Version Bug Type
33 Positive_RA_Alt_Thresh

[0] = 400;
Positive_RA_Alt_Thresh
[1] = 500;
Positive_RA_Alt_Thresh
[2] =640;
Positive_RA_Alt_Thresh
[3] = 740;

Positive_RA_Alt_Thresh
[1] = 400;
Positive_RA_Alt_Thresh
[2] = 500;
Positive_RA_Alt_Thresh
[3] = 640;
Positive_RA_Alt_Thresh
[4] = 740;

logic
error

34 if (enabled && ((
tcas_equipped &&
intent_not_known)|| !
tcas_equipped))

if (enabled &&
tcas_equipped &&
intent_not_known || !
tcas_equipped)

logic
error

35 return (Climb_Inhibit ?
Up_Separation + NOZCROSS :
Up_Separation);

return (Climb_Inhibit
? Up_Separation :
Up_Separation + NOZCROSS);

logic
error

36 #define DOWNWARD_RA 2 #define DOWNWARD_RA 1 #define
constant
mutation

37 return
Positive_RA_Alt_Thresh[
Alt_Layer_Value];

return
Positive_RA_Alt_Thresh
[0];

logic
error

38 int Positive_RA_Alt_Thresh
[4];

int Positive_RA_Alt_Thresh
[3];

logic
error

39 result = !(
Own_Above_Threat())||
((Own_Above_Threat())&& (
Up_Separation >= ALIM()));

result = !(
Own_Above_Threat())||
((Own_Above_Threat())&& (
Up_Separation > ALIM()));

logic
error

40 result = !(
Own_Below_Threat())||
((Own_Below_Threat())&&
(!(Down_Separation >= ALIM
())));

result = ((
Own_Below_Threat())&&
(!(Down_Separation >= ALIM
())));

logic
error

need_upward_RA =
Non_Crossing_Biased_Climb
()&& Own_Below_Threat();

need_upward_RA =
Non_Crossing_Biased_Climb
();

logic
error

41 result = Own_Above_Threat
()&& (Cur_Vertical_Sep >=
MINSEP)&& (Up_Separation
>= ALIM());

result = (Cur_Vertical_Sep
>= MINSEP)&& (
Up_Separation >= ALIM());

logic
error

287

APPENDIX H. BUG INFORMATION OF RESPECTIVE DATASETS

Table H.7: Table of Tot Info Bug Information

Ver Base Version Seeded Version Bug Type
1 goto ret1; /* goto ret1; */ commented

line
2 if (scanf(" %ld", &x

(i,j))!= 1)
if (scanf(" %ld", &x
(i,j))== 0)

logic
error

3 if (r * c > MAXTBL) if (r * c > MAXTBL
-10)

logic
error

4 if (Abs(gold)< EPS

* Abs(g))
if (Abs(gold)< Abs(
g))

logic
error

5 totinfo += info; totinfo = info; logic
error

6 #define MAXLINE 256 #define MAXLINE 56 #define
constant
mutation

7 if (pi > 0.0) if (pi >= 0.0) logic
error

8 if (Abs(del)< Abs(sum
)* EPS)return sum *
exp(-x + a * log(x)
- LGamma(a));

if (Abs(del)< Abs(sum
)* EPS)return sum *
exp(x + a * log(x)-
LGamma(a));

logic
error

9 totdf += infodf; totdf = infodf; logic
error

10 double N; float N; data type
changes

11 sum += del *= x/++ap; sum = del *= x/++ap; logic
error

12 return -tmp + log(
2.50662827465 * ser);

return -tmp + log(
2.50663 * ser);

logic
error

13 if (pj > 0.0) if (pj >= 0.0) logic
error

14 if (r * c > MAXTBL) if (r * c >= MAXTBL) logic
error

15 if (Abs(del)< Abs(
sum)* EPS)

if (Abs(del)< Abs(
sum)* (EPS-.000001))

logic
error

16 if (info >= 0.0) if (info >= 0.1) logic
error

17 anf = an * fac; anf = an - fac; logic
error

18 if (rdf <= 0 || cdf
<= 0)

if (rdf == 0 || cdf
== 0)

logic
error

19 #define MAXLINE 256 #define MAXLINE 26 #define
constant
mutation

20 if (rdf <= 0 || cdf
<= 0)

if (rdf <= 0) logic
error

Continued on next page

288

Table H.7 -- continued from previous page
Ver Base Version Seeded Version Bug Type
21 #define MAXTBL 1000 #define MAXTBL 5000 #define

constant
mutation

22 if (N <= 0.0) if (N <= 1.0) logic
error

23 for (n = 1; n <=
ITMAX; ++n)

for (n = 0; n <=
ITMAX; ++n)

logic
error

Table H.8: Table of Cal Bug Information

Ver Base Version Seeded Version Bug Type
1 if(argc == 2) if(argc = 2) logic

error
2 y = tm->tm_year +

1900;
y = tm->tm_year +
1800;

logic
error

3 if(y<1 || y>9999){ if(y<1 || y<9999){ logic
error

4 for(i=0; i<6*24; i
+=24)

for(i=0; i<=6*24; i
+=24)

logic
error

5 if(y<1 || y>9999){ if(y>9999){ logic
error

6 for(i=0; i<12; i+=3){ for(i=0; i<12; i+=4){ logic
error

7 if(*s++ == '\0') if(*++s == '\0') logic
error

8 if(*--s != ' ') if(*--s == ' ') logic
error

9 30, 31, 30, 31, 30, 31, 30, 30, logic
error

10 mon[2] = 29; mon[3] = 29; logic
error

11 mon[9] = 30; mon[9] = 31; logic
error

12 case 1:mon[2] = 28;
break;

removed
switch
case
statement

13 if(i==3 && mon[m]==19) if(i==3 || mon[m]==19) logic
error

14 s++; removed
statement

15 d %= 7; i %= 7; logic
error

16 s = p+w; s = p; logic
error

Continued on next page

289

APPENDIX H. BUG INFORMATION OF RESPECTIVE DATASETS

Table H.8 -- continued from previous page
Ver Base Version Seeded Version Bug Type
17 d = 4+y+(y+3)/4; d = 4+y+(y*3)/4; logic

error
18 d += (y-1601)/400; d += y-1601/400; logic

error
19 d += 3; d = 3; logic

error
20 cal(i+3, y, string+46,

72);
cal(i+3, j, string+46,
72);

logic
error

Table H.9: Table of Checkeq Bug Information

Ver Base Version Seeded Version Bug Type
1 if (argc <= 1) if (argc <= 0) logic

error
2 while (--argc > 0){ while (argc-- > 0){ logic

error
3 if ((fin = fopen(*++

argv, "r"))== NULL){
if ((fin = fopen(*argv
++, "r"))== NULL){

logic
error

4 start = 0; totdel = 0; variable
changes

5 start = eq = line =
ndel = totdel = 0;

start = line = ndel =
totdel = 0;

added
variable

7 ndel = 0; ndel = 1; logic
error

8 ndel++; ndel--; logic
error

9 totdel = 0; removed
statement

10 if (*in=='.' && *(in
+1)=='E' && *(in+2)=='
Q'){

if (*in=='.' && *(in
+1)=='E' || *(in+2)=='
Q'){

logic
error

11 } else if (*in=='.' &&

*(in+1)=='E' && *(in
+2)=='N'){

} else if (*in=='.' &&

*(in+1)=='E' || *(in
+2)=='N'){

logic
error

12 eq = 0; eq = 1; logic
error

14 delim = *p; line = *p; variable
changes

15 delim = *p; delim = *(++p); logic
error

16 else printf(" New
delims %c%c, line %d\n
", delim, delim, line)

removed
else
condition

17 if (ndel>0 && eq>0) if (ndel>0 || eq>0) logic
error

Continued on next page

290

Table H.9 -- continued from previous page
Ver Base Version Seeded Version Bug Type
18 if (ndel > 0 && eq >

0)
if (ndel > 0 && eq <=
0)

logic
error

19 totdel += ndel; totdel -= ndel; logic
error

20 else {printf(" %d line
%c%c, lines %d-%d\n",
line-start+1, delim,
delim, start, line);
start = line;}

removed
else
condition

21 if (start > 0){ if (start== 0){ logic
error

22 if (totdel) if (ndel) variable
changes

Table H.10: Table of Col Bug Information

Ver Base Version Seeded Version Bug Type
1 #define GREEK 0200 #define GREEK 0x200 #define

constant
mutation

2 fflag++; hflag++; variable
changes

3 pgmname = argv[0]; pgmname = argv[1]; logic
error

5 break; removed
break
statement

6 for (p = argv[i]+1;*p;
p++){

for (p = argv[i]-1;*p;
p++){

logic
error

8 pcp = 0; pcp = 1; logic
error

9 cp = 0; lp = 0; variable
changes

11 if (--half < -1){ if (--half < -1) logic
error

14 greek = GREEK; greek = greek; logic
error

15 cp = (cp + 8)& -8; cp = cp + (8 & -8); logic
error

16 if (cp > 0) if (cp >= 0) logic
error

17 cp = 0; lp = 0; variable
changes

18 c &= 0177; c |= 0177; logic
error

Continued on next page

291

APPENDIX H. BUG INFORMATION OF RESPECTIVE DATASETS

Table H.10 -- continued from previous page
Ver Base Version Seeded Version Bug Type
20 outc(c | greek); outc(c || greek); logic

error
21 if (*--p) ! if (*p--)! logic

error
22 lp--; lp++; logic

error
23 if (bflag || *line ==

'\0' || *line == ' ')
if (bflag || *line ==
'\0')

logic
error

24 c1 = *++line; c1 = ++(*line); logic
error

26 c1=c2; c2=c3; c2=c3; c1=c2; logic
error

27 if (page[lno] == 0){ if (page[lno] = 0){ logic
error

28 lno %= PL; lno /= PL; logic
error

29 static int cline = 0; int cline = 0; data type
changes

30 while (cline < lineno
- 1){

while (cline < lineno)
{

logic
error

31 store (ll--); store (--ll); logic
error

32 ncp = pcp; pcp = ncp; logic
error

33 if ((++ncp & 7)== 0 &&
hflag){

if ((++ncp | 7)== 0 &&
hflag){

logic
error

34 if (!*--p) if (*--p) logic
error

35 if (gflag != (*p &
GREEK)&& *p != '\b'){

if (gflag != (*p &
GREEK)|| *p != '\b'){

logic
error

36 gflag ˆ= GREEK; hflag ˆ= GREEK; variable
changes

37 putchar (*p & ∼GREEK); putchar(*p && ∼GREEK); logic
error

Table H.11: Table of Spline Bug Information

Ver Base Version Seeded Version Bug Type
1 else if(!getfloat(&x.

val[n]))break;
removed
else
condition

4 for(j=m;j>0||i==0&&j
==0;j--){

for(j=m;j>0&&i==0&&j
==0;j--){

logic
error

5 d = 1; d = 0; logic
error

Continued on next page

292

Table H.11 -- continued from previous page
Ver Base Version Seeded Version Bug Type
6 m = 1.001*m*hi1/(x.ub-

x.lb);
m = 0.001*m*hi1/(x.ub-
x.lb);

logic
error

7 yy =D2yi*(x0-x0*x0*x0)
+D2yi1*(x1-x1*x1*x1);

yy =D2yi*(x0-x0*x0*x0)
+D2yi1*x1-x1*x1*x1;

logic
error

9 x.val[i+1]-x.val[i]; x.val[i+1]-x.val[0]; logic
error

11 zz = (y.val[i]-y.val[i
-1])/(x.val[i]-x.val[i
-1]);

zz = (x.val[i]-x.val[i
-1])/(x.val[i]-x.val[i
-1]);

logic
error

12 r[i] = rhs(i)-hi*r[i
-1]/d;

r[i] = rhs(i)+hi*r[i
-1]/d;

logic
error

13 a - hi*hi/d; a - hi*hi*d; logic
error

14 if(i==0)D2yi = konst*
D2yi1;

if(i=0)D2yi = konst*
D2yi1;

logic
error

15 hi = x.val[i]-x.val[i
-1];

hi = y.val[i]-x.val[i
-1];

logic
error

16 x1 = j*h/hi1; x1 = j*h; logic
error

17 s = -hi*s/d; removed
statement

Table H.12: Table of Tr Bug Information

Ver Base Version Seeded Version Bug Type
1 else if(dflag)code[i]

= 0;
else if(cflag)code[i]
= 0;

variable
changes

2 if(!sflag || c!=save
|| !squeez[c&0377]){

if(!dflag || c!=save
|| !squeez[c&0377]){

logic
error

3 string1.last = string2
.last = 0;

string1.last = string2
.last = 1;

logic
error

5 case 's':sflag++;
continue;

removed
switch
case
statement

9 if(cflag)c = *compl++; if(cflag)c = ++*compl; logic
error

10 else lastd = d; removed
else
condition

11 code[c&0377] = dflag
?1:d;

code[c&0377] = dflag?d
:1;

logic
error

12 squeez[d&0377] = 1; squeez[d|0377] = 1; logic
error

Continued on next page

293

APPENDIX H. BUG INFORMATION OF RESPECTIVE DATASETS

Table H.12 -- continued from previous page
Ver Base Version Seeded Version Bug Type
14 if(s->last && *s->p

=='-'){
if(*s->p=='-'){ logic

error
16 n = n*8 + c - '0'; n = n*8 + c + '0'; logic

error
17 compl = vect; compl = code; variable

changes

Table H.13: Table of Uniq Bug Information

Ver Base Version Seeded Version Bug Type
1 else mode = argv

[1][1];
removed
else
condition

2 linec++; linec--; logic
error

4 *buf++ = c; *++buf = c; logic
error

5 return; removed
return
statement

6 uniq = 0; uniq = 1; logic
error

7 while((c = *b1++)=
0) !

while((c = *b1--)=
0)!

logic
error

8 while(nf++<fields){ while(nf++ <=
fields){

logic
error

9 while(!(*s == ' '
|| *s == '\t' || *s
== 0))

while(!(*s == ' '
|| *s == '\t' && *s
== 0))

logic
error

10 while(nl++ <
letters && *s!= 0)

while(nl++ <
letters && s!=0)

logic
error

12 if(*b2 = 0) ! if(*b1 = 0)! logic
error

13 while((c = *b1++)=
0) !

while((c = *++b1)=
0)!

logic
error

14 while(!(*s == ' '
|| *s == '\t' || *s
== 0))

while(!(*s == ' '
|| *s == '\t'))

logic
error

15 while(!(*s == ' '
|| *s == '\t' || *s
== 0))

while(!(*s == ' '
|| *s == '\t')|| *s
== 0)

logic
error

16 linec = 0; linec = 1; logic
error

17 return(s); return(++s); logic
error

Continued on next page

294

Table H.13 -- continued from previous page
Ver Base Version Seeded Version Bug Type
18 uniq = 0; linec = 0; variable

changes
19 break; removed

break
statement

Table H.14: Table of Concordance Bug Information

Ver Correct Version Buggy Version Description
1 assert (fp); added assert

statement
2 if (head){ added if

condition
3 int wordBfrSize =

MAXBFRSZ;
char wordBfr[MAXBFRSZ
];

added code

wordBfr = (char *)
malloc (sizeof (char)*
wordBfrSize);

4 assert (confile != 0); if (confile == 0){
cerr << "Couldn't open
concordance file " <<
conFn << endl;perror

("File opening error")
;exit(1); }

added assert
statement

assert (alphafile!=0); if (alphafile == 0){
cerr << "Couldn't open
alphabet file " <<

alphaFn << endl;perror
("File opening error

");exit(1);}

added assert
statement

5 else if (inbuffer[n]
== '>' && isNum)

else if (inbuffer[n]
== '>' && countType ==
's' && isNum)

logic error

6 for (n = 1; argv[1][
n]; n++){if (!strchr
("slpqn:0123456789",
argv[1][n])){cerr << "
\n\nSYNTAX ERROR on
command line: invalid
switch character\n";
exit(1);}}

added
for-loop

7 if (argc < 2 || argc >
4 || ((argc == 4)&& (
argv[0][1] != '-')))

if (argc < 2) logic error

Continued on next page

295

APPENDIX H. BUG INFORMATION OF RESPECTIVE DATASETS

Table H.14 -- continued from previous page
Ver Correct Version Buggy Version Description
8 else if (argc == 2 &&

argv[1][0] == '-'){
instructions ();return
0;}

added elseif
statement

9 if (argc == 2 || (argc
== 3 && argv[1][0] ==
'-'))

if (argc < 4) logic error

outfile = new char[
strlen (argv[argc -
1])];

outfile = new char[
strlen (argv[3])];

logic error

strcpy (outfile, argv
[argc - 1]);

strcpy (outfile, argv
[3]);

logic error

if (argc > 2 && argv
[1][0] == '-')

if (argc > 2) logic error

10 n = 1; for (n = 1; n < argc;
n++){if (strstr (argv[
n], "-")){

removed
for-loop

11 if (argv[1][n] != 0)
{cerr <<''\n\nSYNTAX
ERROR on command line:
switch -n: number too
big\n'';exit(1);}

added if
condition

12 for (n = 0; argv[1][n]
!= 'n'; n++);if (argv

[1][n+1] != ':')

for (n = 0; argv[1][n]
!= ':'; n++); n++

logic error

13 if (n == 0){cerr <<''\
n\n SYNTAX ERROR on
command line: switch
-[pvl]n: did not
contain a proper

integer.\n'';exit(1);}

added if
condition

Table H.15: Table of Space Bug Information

Ver Base Version Seeded Version Bug Type
3 *curr_ptr = *tp; curr_ptr = tp; removed

pointer
variable

4 *pp2 = *curr_ptr; pp2 = curr_ptr; removed
pointer
variable

5 *pp2 = *curr_ptr; pp2 = curr_ptr; removed
pointer
variable

Continued on next page

296

Table H.15 -- continued from previous page
Ver Base Version Seeded Version Bug Type
6 *tp = *curr_ptr; tp = curr_ptr; removed

pointer
variable

14 error = (GetKeyword (
Keywords[88], curr_ptr
));

GetKeyword (Keywords
[88], curr_ptr);

removed
variable

15 error = (GetKeyword (
Keywords[88], curr_ptr
));

GetKeyword (Keywords
[88], curr_ptr);

removed
variable

17 port_ptr->OMIT_POL =
YES;

removed
statement

18 app_ptr->PHEA += phi; app_ptr->PSEA += phi; variable
changes

19 if ((group_ptr
->ELEM_PTR)->
POLARIZATION !=
LIN_POL)return 0;

added if
condition

20 can += angle_step; can = angle_step; logic
error

21 cph += phase_step; cph = phase_step; logic
error

23 while (app_ptr!=NULL) while (app_ptr->NEXT
!= NULL)

pointer
variable
changes

28 *app_ptr =*addrem_ptr; app_ptr = addrem_ptr; removed
pointer
variables

31 if (error == 17) if (error != 0) logic
error

33 gnode_ptr->PHEA +=
angle;

gnode_ptr->PHEA =
angle;

logic
error

297

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:

Lee, Hua Jie

Title:

Software debugging using program spectra

Date:

2011

Citation:

Lee, H. J. (2011). Software debugging using program spectra. PhD thesis, Department of

Computer Science and Software Engineering, The University of Melbourne.

Persistent Link:

http://hdl.handle.net/11343/36410

File Description:

Software debugging using program spectra

Terms and Conditions:

Terms and Conditions: Copyright in works deposited in Minerva Access is retained by the

copyright owner. The work may not be altered without permission from the copyright owner.

Readers may only download, print and save electronic copies of whole works for their own

personal non-commercial use. Any use that exceeds these limits requires permission from

the copyright owner. Attribution is essential when quoting or paraphrasing from these works.

