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Abstract

One of the notable features of the Oligocene oceans was the appearance in Tethys of
American lineages of larger benthic foraminifera, including the miogypsinids. They were
reef-forming, and became very widespread and diverse, and so they play an important role in
defining the Late Paleogene and Early Neogene biostratigraphy of the carbonates of the
Mediterranean and the Indo-Pacific Tethyan sub-provinces. Until now, however, it has not
been possible to develop an effective global view of the evolution of the miogypsinids, as the
descriptions of specimens from Africa were rudimentary, and the stratigraphic ranges of
genera of Tethyan forms appear to be highly dependent on palacography. Here we present
descriptions of new samples from offshore South Africa, and from outcrops in Corsica,
Cyprus, Syria and Sumatra, which enable a systematic and biostratigraphic comparison of the
miogypsinids from the Tethyan sub-provinces of the Mediterranean-West Africa and the
Indo-Pacific, and for the first time from South Africa, which we show forms a distinct bio-
province. The 116 specimens illustrated include 7 new species from the Far East, Neorotalia
tethyana, Miogypsinella bornea, Miogypsina subiensis, M. niasiensis, M. regularia, M.
samuelia, Miolepidocyclina banneri, 1 new species from Cyprus, Miogypsinella cyprea and 4
new species from South Africa, Miogypsina memillania, M. africana, M. ianmacmilliana, M.
southernia. We infer that sea level, tectonic and climatic changes determined and constrained

in turn the palaecogeographic distribution, evolution and eventual extinctions of the



miogypsinid. The global sea level regressions in the Early Oligocene facilitated trans-
Atlantic migration of Neorotalia and miogypsinids from the Americas. This eastward
migration followed two, distinct, unidirectional dispersals. One dispersal route was to the
south towards South Africa, where distinct miogypsinids phylogenetic lineage similar to their
American ancestors were found in the Burdigalian. They became extinct together with their
American ancestors, at the end of the Burdigalian; a time that coincided with a major global
transgressions, circulation changes on closure of Panama and the major, globally significant
eruption of the Columbia River Flood basalts. The other route was to the north, through the
Tethyan Mediterranean corridor. Our observations indicate that during the Chattian and
Aquitanian significant miogypsinid forms evolved in the Mediterranean from the
morphologically distinct Tethyan Neorotalia and migrated, within a few million years of their
first appearance, eastward into the Indo-Pacific, where the tropical conditions and varied
habitats enabled further local, less widespread forms to develop and diversify. The
tectonically driven closure of the seaway between the Mediterranean and the Indo-Pacific in
the Burgidalian, coupled with the other global events at this stage, triggered a crisis for the
Mediterranean miogypsinids, which after a brief transgression and short-lived influx of Indo-
Pacific fauna, led by their eventual extinction in the Langhian. Miogypsinids survived in the
Indo-Pacific into the Serravallian, but progressive global cooling finally resulted in their total

extinction from their last refuge at the end of this stage.

1. INTRODUCTION

Miogypsinidae were larger benthic foraminifera (LBF), and as such were marine protozoa.
Stratigraphically, fossilised miogypsinids range from Rupelian (Planktonic Zone P18, see for

example BouDagher-Fadel and Banner (1999) and Gradstein ef al. (2004) for definition) to



the Serravallian (N13), and are found in the Americas, South Africa, and both the
Mediterranean-West African and Indo-Pacific Tethyan sub-provinces. They were reef-
forming and are thought to have hosted photosynthesising symbionts. They may often have
been attached to sea-grass or other shallow-water substrates. Morphologically, the largest
forms grew up to 10mm in diameter. They have a flattened to convex test with a fan of
equatorial chamberlets (see Fig. 1). The latitudinal global distribution of the miogypsinids
was mainly controlled by temperature (they were limited to tropical and sub-tropical waters),
and their distribution and morphological adaptations were also dependent on the light
requirements of their endosymbionts and substrates (Murray, 2006; BouDagher-Fadel, 2008).
Their palacogeographic and palaeoenvironmental distribution, when coupled with the
porosity of the reef-related lithologies that they formed, means that today fossil miogypsinids
are found in many potentially valuable oil reservoirs. Their study and the definition of their
stratigraphic range is therefore of considerable commercial importance. As such, they have
been the subject of many regional micropalacontological investigations (see BouDagher-
Fadel (2008) for a recent review), however until now, it has not been possible to develop an
effective global view of their evolution, as the descriptions of specimens from Africa were
rudimentary, and the stratigraphic ranges of Tethyan genera are controversial and appear to
be highly dependent on palaeography. In this paper, we present descriptions of new samples
from offshore South Africa, and from outcrops in Corsica, Cyprus, Syria and Sumatra, which
enable the first systematic and biostratigraphic comparison of the miogypsinids from the
Tethyan sub-provinces of the Mediterranean-West Africa and the Indo-Pacific. Additionally
we establish for the first time that South Africa formed at this time a distinct LBF

micropalaeontological province.

>>> Fig. 1.



The analysis of the different forms of miogypsinids requires an understanding of their
morphology, which is dominated by the development of internal chambers within their tests.
Fig. 2 shows the relationship between the principle miogypsinid forms, which include
Miogypsinella, Miogysinoides, Miogypsinodella and Miogypsina. In the most advanced form,
Miogypsina, the chamberlets are developed as obliquely stacked columns (Figs 1 and 2). In
axial view, they seem to be arranged in three-layers, with a thin median layer and two lateral
walls, which are sub-divided into little chamberlets in the more advanced forms. The
embryont (or first chamber) occurs near the apex or about midway between the centre of the
test and the periphery. The sequential development of new characteristics in the miogypsinids
(Fig. 2), such as the gradual development of the lateral chamberlets, may have been driven by
environmental stress or the opportunity to occupy new niches. It has been suggested that the
division of the solid lateral walls of Miogypsinoides into the small, thin-walled, transparent
chamberlets of Miogypsina, enabled, in favourable warm light-filled shelf environments,
nests of photosynthetic symbionts (e.g. diatoms) to be hosted (see BouDagher-Fadel, 2008).
Each of the small chamberlets would have acted not only as a small convex lens to focus
sunlight, but they could also act as a “greenhouse” for the containment and development of
symbionts. By analogy with other living LBF, it is inferred that the enclosed symbionts
enabled the host miogypsinids to acquire nutrients without the use of food-gathering

pseudopodia (Rottger, 1971).

In Miogypsinella the flange of the median chamberlets is relatively small (not much broader
than the coil of the nepiont); in Miogypsinoides the flange was broader and became laterally
heavily thickened. These thickened lateral walls would have reduced the amount of sunlight

which could reach the median layer, and so offered the evolutionary opportunity of



chamberlet subdivision, as in Miogypsinodella, with the divisions becoming many layers of
convex chamberlets in Miogypsina. The requirement for, and use of direct sunlight, by
Miogypsina is shown by its occurrence only in shallow water marine limestones, associated
with fossil algae. The irregular shape of many species of Miogypsina (e.g. M. bifida, Plate 3,
fig. 8) suggests that their morphology was determined by the shape of the substrate up on
which they grew, such as the stems or leaves of sea-grass (the substrate being biodegradable
is not preserved in thin sections). Only in strong ambient sunlight, which would benefit both
this form and its vegetable substrate, could true Miogypsina flourish (BouDagher-Fadel et al.,

2000).

>>>> Fig. 2

In order to study the phylogenetic evolution of the miogypsinids, Drooger (1952), in his
thesis on American Miogypsinidae, introduced the population concept for classification
purposes, that is to say average morphometric measurements from numerous specimens are
used to define taxa. Drooger went on to perform many biometric studies on the nepiont of
miogypsinids when seen in equatorial section. Indices ‘“X’’ and *“V’’ are used as the primary
characteristics for subdivision, were X is the total number of spirally coiled nepionic
chambers in Miogypsinoides and early Miogypsina, while the biometric factor V, which is
equal to 2000/B (see Fig. 3 for definition), reflects the degree of symmetry between the two

spirals in more advanced forms of Miogypsina.

>>>> Fig. 3



The index “y” is the angle of deviation of the line of symmetry of the embryont from the
apical line, which is the line of symmetry of the adult test (see Fig. 3). For long-spiralled
juveniles this value is considered as a negative number, but positive when there is less than

one juvenile whorl and there is a second nepionic spiral.

The biometric method, therefore, appears in principle to be a useful tool in the study of the
evolution of a single lineage of Miogypsina and of miogypsinids in general. In this study
however, the specimens described are from randomly cut thin sections of core material and so
biometric measurements were not always possible. Nevertheless, where possible, we applied
the biometric method of Drooger (1952) and whenever possible, the biometric indices X and
V are quoted. The biometric factor V is low in older species, and high in the nearly
symmetrical embryont of the younger species (Drooger, 1993). The evolutionary lineage
involves the reduction of the nepionic spiral and the increase in size of the protoconch
(Drooger, 1993; BouDagher-Fadel, 2008). Species of Miogypsina are defined initially on the
decreasing number of nepionic chambers, and later, when the genus had developed two epi-
auxiliary chambers, on the degree of asymmetry of the nepiont and the orientation of the

embryont relative to the apex of the fan of orbitoidal chambers.

In the American and Tethyan provinces we can differentiate between two forms of
Miogypsina that represent different stages in their complex reproductive cycle. The so-called
microspheric  forms of Miogypsina  retain the uniserial coils of their
Miogypsinella/Miogypsinoides ancestors (Fig. 3A, B), while the so-called megalospheric
forms possess a deuteroconch larger than either the protoconch (or first auxiliary chamber),
and the latter form biserial whorls surrounding the proloculus (Fig. 3C, D). In the most

advanced species of Miogypsina, the biserial embryont evolved to achieve bilateral



symmetry, (e.g. M. mediterranea and M. indonesiensis) and regular obliquely stacked
columns. By contrast, in South Africa, the miogypsinids were always of the microspheric
generation, retaining the uniserial coil, but developing a multiserial growth that results in

irregular obliquely stacked columns.

Many parallel lineages of miogypsinids are recognised in the Mediterranean, Indo-Pacific and
American bioprovinces (Van der Vlerk, 1966; Raju, 1974; Raju and Meijer, 1977; De Bock,
1976; Chaproniére, 1983, 1984; Cahuzac, 1984; Ferrero, 1987; Wildenborg, 1991; Ferrero et
al., 1994; Drooger, 1952, 1953, 1963, 1984, 1993; Drooger and Raju, 1973; Cahuzac and
Poignant, 1991; Mishra, 1996; BouDagher-Fadel and Lord, 2000; BouDagher-Fadel and
Price, 2010a; Ferrandini et al.,, 2011), and various miogypsinid species have been used to
zone and date the Tethyan Neogene. They also have been used in biostratigraphic correlation,

particularly in the Neogene of the Indo-Pacific (e.g., Chaproniére, 1983, 1984).

In the past, the study of the relationship between the American, African and Tethyan lineages
has been hampered by the geographic scatter of the miogypsinid assemblages described in the
literature and by the scarcity of the material described from West and South Africa.
Information on forms from West Africa relies on just three articles (Brun and Wong, 1974;
Kiipper, 1960; Raju and Meijer, 1977), and only recently have the phylogenetic lineages of
the American miogypsinids been clarified as a result of data becoming available from
material obtained from the hydrocarbon exploration of LBF-bearing carbonate facies from
some Atlantic basins offshore from Central and South America (Mello e Sousa et al., 2003;

BouDagher-Fadel and Price, 2010a, BouDagher-Fadel ef al., 2010).



In this paper, we present descriptions of new samples (studied in thin section and in SEM)
from offshore South Africa and from outcrops from the Mediterranean (Cyprus, Corsica,
Syria) and the Indo-Pacific (Sumatra). The 116 specimens illustrated include 12 new species,
of which 7 new species are from Nias, east of Sumatra, Neorotalia tethyana, Miogypsinella
bornea, Miogypsina subiensis, M. niasiensis, M. regularia, M. samuelia, Miolepidocyclina
banneri, (see BouDagher-Fadel et al. (2000), and Samuel (1994) for type localities), 1 new
species is from Cyprus, Miogypsinella cyprea (see Lord et al. (2009) for type localities), and
4 new species Miogypsina mcmillania, M. africana, M. ianmacmilliana, M. southernia are
from South Africa (see Dingle (1973), and Rogers and Bremner (1991) for offshore, Childs

Bank localities).

By comparing the stratigraphic ranges of the African and Tethyan miogypsinids described
here (Fig. 4), and in the literature, with recently described American forms, we have been
able to reconstruct the phylogenetic and palaeogeographic evolution of the African and
Tethyan miogypsinids (see Figs 6 to 9) from their origins in the American province
(Rupelian, P18) to their Early Miocene extinction (Burdigalian, earliest N8) in South Africa;
their earliest Middle Miocene (Langhian, top of N8) extinction in the Mediterranean, and
their final global extinction in the latest Middle Miocene (Serravallian, earliest N13) in the

Indo-Pacific.

>>> Fig. 4

2. SYSTEMATIC TAXONOMY, BIOSTRATIGRAPHY AND PHYOGENETIC

RELATIONSHIPS OF THE MIOGYPSINIDS



The systematic taxonomy of the Foraminifera is still undergoing active revision. The
recognition of the Foraminifera as a class has emerged from biological research over the past
two decades, including molecular systematics that are revealing the very early divergence of
the Granuloreticulosa from other protoctistan lineages (Hallock, pers. communication).
Below, we follow Lee’s (1990) elevation of the Order Foraminiferida to Class Foraminfera,
and the concomitant elevating of the previously recognized suborders to ordinal level.
Throughout the paper, the suffix “—oidea” is used in the systematics to denote superfamilies,
rather than the older suffix “-acea”, following the recommendation of the International
Commission on Zoological Nomenclature (see the International Code of Zoological
Nomenclature 1999, p. 32, Article 29.2). The specimens figured in this paper are mainly of
core material and are currently deposited at the collections of the Department of Earth

Sciences, University College London.

In Appendix A, we provide the systematic description of the major genera and species
(including those newly described in this paper) needed to differentiate and define the
phylogenetic and biogeographic evolution of the miogypsinids, and which are figured in

Plates 1 to 6. The biostratigraphic ranges of these forms are given in Fig. 4.

Traditionally, in the Oligocene the LBF are considered to define two major, distinct
palaeogeographic realms, namely the American and the Tethyan provinces. On the basis of
the identification of the new forms described in Appendix A, however, we are able to
establish for the first time that there were in fact three distinct palaeogeographic miogypsinid
provinces, the American, the Tethyan, and the newly defined South African realm. The

respective biostratigraphic and phylogentic evolution of the miogypsinids from these latter



two provinces are outlined below (the evolution of the American forms having been

discussed in BouDagher-Fadel and Price (2010a)).

2.1.  The Tethyan Province

From Figs 6, 7 and 8, it can be seen that the miogypsinids in the Tethyan province can be
divided into two related but distinct sub-provinces, namely those of the Mediterranean
(including West Africa) and of the Indo-Pacific. The forms found in Tethys are similar to
those described in the Americas, but we will show that they are in fact distinct, and that
miogypsinids in these two provinces developed independently of each other, but exhibited a

parallel evolutionary trend.

As inferred by BouDagher-Fadel and Price (2010a), the American province saw the first
development of the miogypsinids from a trochoid ancestor Neorotalia (with an enveloping
canal system and pillars on both sides of the test) into advanced forms of Miogypsina and
Miolepidocyclina, within a short period from Early to Middle Oligocene (P18 to P20). The
earliest Mediterranean form (Neorotalia tethyana) dates from the Rupelian (P19). It has no
apparent Tethyan ancestor, but from the morphological similarity it is reasonable to suggest
that it was derived from an American ancestor. Once in Tethys Neorotalia evolved into a
Tethyan miogypsinid lineages, independently from, yet in a parallel way to their American
ancestors, by the means of gradual nepionic acceleration (shortening of the initial coil; see
Fig. 2). Crucially, however they lack the typical features of American miogypsinids, such as
strong fissures around the periphery of the test (see Fig. 5), indicating that they are a distinct,

yet parallel, linage

>>>Fig. 5



2.1.1. The Mediterranean Sub-Province

In the Mediterranean during the latest Rupelian, Neorotalia (e.g. Neorotalia tethyana, Plate 4,
fig. 1) developed small chamberlets on the periphery of the last trochoid stage (see Fig. 6) as
it gave rise to the Tethyan Paleomiogypsina (e.g. P. boninensis, Plate 4, fig. 2; P21, which is
equivalent to the latest Td and Tel letter stages used in the biostratigraphic description of the
Indo-Pacific province (see Bou-Dagher-Fadel (2008) for more details)). The Tethyan
Paleomiogypsina (which is distinct from the American form) in turn gave rise to the Tethyan
Miogypsinella (e.g. Mlla cyprea new sp., Plate 4, figs. 3-8), which like the American form
possesses a single spire of auxiliary chambers arising from the proloculus and a broad fan of
equatorial chamberlets, but lacks the strong fissures around the periphery of the test
characteristic of the American form. The P21 (equivalent to the latest Rupelian-Early
Chattian) marks the earliest evolutionary appearance of the Tethyan Miogypsinella. The latter
gave rise almost immediately to a fringeless Tethyan Miogypsinoides (e.g. Mdes
complanatus, Plate 4, figs 9-10), with lateral thickening and a planispiral embryont, in the
Chattian (see Fig. 6). The Mediterranean Miogypsinoides evolutionary sequence of
assemblage-species (Mdes complanatus-formosensis-bantamensis-dehaarti) spans the Late
Oligocene to Early Miocene (late P21 to early N8) and involves the reduction of the nepionic
spiral, and the increase in size of the protoconch (Drooger, 1993; BouDagher-Fadel, 2008).
Drooger (1993) set numerical limits to the X values to define the species, thus: complanatus-
17-formosensis-13-bantamensis-10-dehaarti. In Miogypsinoides dehaarti the proloculus is
followed by a single whorl of auxiliary chambers (Van der Vlerk, 1966). Miogypsinoides

disappeared completely at the top of the Burdigalian in the Mediterranean (early N8).



>>>Fig. 6

The Tethyan Miogypsina evolved in the latest Oligocene (upper part of the Chattian, late
P22) in the Mediterranean (see Fig. 7). The general trend of evolution in this group is towards
shorter nepionic spirals and larger embryons in successively younger species with an X index
range of basraensis - 12.5 - gunteri - 9 - tani. At X values between 7 and 6, and y values
close to zero, V values become significant and the morphometric limits of the species are as
follow: globulina - 45 — intermedia — 70 — cushmani — 90 — mediterranea. Another
descendant from the Tethyan Miogypsina, the genus Miolepidocyclina, has been
distinguished on the more central location in the median plane of the nepiont. Most
Miogypsinidae disappeared at the end of the Burdigalian (early N8) in the Mediterranean,
with very few forms persisting into the Middle Miocene (see Figs 6 and 7) where they final

died out within the Early Langhian (N8).

>>>Fig. 7

2.1.2. The Indo-Pacific Sub-Province

In the Indo-Pacific, Neorotalia (e.g. N. tethyana, Pl. 1, Fig. 2-4), appeared in the Middle
Rupelian (P19), while the Tethyan Paleomiogypsina made its first appearance at the base of
the Chattian (c.f. the base of P21 in the latest Rupelian in the Mediterranean) which locally
defines the base of Te letter stage (e.g. P. boninensis, Plate 1, Fig. 5). The morphological
similarity between the major Mediterranean and Indo-Pacific forms suggests that they are in
fact the same, but that they originated in the Mediterranean and migrated to into the Indo-

Pacific a million years or so after they first appeared in the Western Tethys.



Miogypsinella (identical to that in the Mediterranean) also became prominent from the base
of the Chattian and ranged into the Early Aquitanian (Te 2 to Middle Te5 letter stages) (e.g.
Mlla bornea, Plate 1, Figs 9-15; Mlla borodinensis, Plate 1, Fig. 8; Mlla ubaghsi, Plate 1,
Figs 6-7). The Chattian (P22/Te2) also saw the emergence of the first Miogypsinoides (see
Fig. 6) and the establishment of the lineage Mdes complanatus-formosensis-bantamensis-
dehaarti in parallel with that of the Mediterranean forms, but with morphologically similar
species again appearing later in the Indo-Pacific than in the Mediterranean. But unlike the
Mediterranean forms, the Indo-Pacific Miogypsinoides species persisted into the Early

Langhian (Middle Tfl) in the Indo-Pacific (Mdes indica, see Fig. 6).

In the Indo-Pacific, the oldest form of Miogypsina (e.g. M. borneenis, Plate 1, Figs 24-25) is
found with Miogypsinoides bantamensis at the start of the Miocene (Fig. 8). In the Miocene,
unlike the original Mediterranean stock, the forms that migrated into the Indo-Pacific sub-
province exhibited local speciation and gave rise to a wider specific diversity, probably as a
result of the larger variety of geographic niches in the many Indo-Pacific islands and the
enhanced tropical temperatures. Many of these local species are short ranged, and for
example the distinction between Oligocene and Early Miocene parts of the Te stage is drawn
on the occurrence of Miogypsinella borodinensis (Plate 1, fig. 8) in the former and true
Miogypsina (e. M. tani (Plate 2, fig. 5) in the latter. The X parameter, when applied to
Miogypsina, gives rise to the subdivision as follows: borneensis - 12 - gunteri — 9 — tani — 8 —
subiensis, while V values become significant and the morphometric limits of the main Indo-
Pacific species are as follow: globulina - 45 - regularia - 50 — intermedia — 70 — samuelia —
80 - cushmani - 90 — antillea 100 - bifida. The morphometric data indicate sequences

phylogenetically analogous to those in the Mediterranean, but with shorter ranges and



additional gradations provided by the new, sub-provincial species that makes them

biostratigraphically more useful.

>>> Fig. 8

As in the American province, there are in the Tethyan sub-provinces later developments
within the group of Miogypsinidae with lateral chamberlets (Miogypsina s.1.), towards forms
in which the embryon tends to shift towards the centre of the test. These forms were
previously considered to be distinctly different in each of the bioprovinces: the subgenera
Helicosteginoides and Miogypsinita in Central America, Miolepidocyclina in Central
America and the Western Tethys, and Lepidosemicyclina in the Indo-Pacific. However, in the
present study, forms similar to Miolepidocyclina were found in the Burdigalian of the Indo-
Pacific province (e.g. Miolepidocyclina sp.1 from the Late Burdigalian of Borneo, Plate 3,
Fig. 24), thus illustrating other examples of parallel evolution between the American and
Tethyan provinces. Unlike the Mediterranean miogypsinids, all those of the Indo-Pacific

survived into the Middle Miocene, Late Serravallian (Tf3) (Fig. 8).

2.2.  The South African Province

The South African forms are not directly linked to the Tethyan miogypsinids, but are closer
in morphology to their American ancestors (see Fig. 9). They have shortened nepionic coils
and embryonic chambers that are vertical at the apex of the test (Fig. 9D; Plate 5, Fig. 25).
Assemblages are composed only of microspheric generations, closely linked morphologically
to the American M. gunteri which ranges from the latest Rupelian to the Chattian (Late P20
to P22), with uniserial coils surrounding the proloculus. However, they exhibit the unique

characteristic of multiserial growth, which results in irregular oblique rows of equatorial



chamberlets. The development of this multiserial growth and the persistent apical fringe of
their American ancestors differentiates these forms from their counterparts in Tethys (Figs 5
and 9). They also seem to have evolved more slowly than those of the Tethys or the
Americas, as by the Burdigalian they are less evolved than their contemporary Tethyan or
American counterparts. The miogypsinid sequence developed can be characterised
morphometrically as: Miogypsina mcmillania — 11 - M. africana — 9 - M. southernia — 6 - M.
ianmcmillania (Fig. 9A to Fig. 9D). American and Tethyan miogypsinids evolved at a more
rapid pace loosing completely their uniserial coil by the Burdigalian, but this advanced stage
does not occur in South Africa. No South African miogypsinids older than the Burdigalian

have been found.

>>>Fig. 9

3. THE PALAEOGEOGRAPHIC EVOLUTION OF THE MIOGYPSINIDS

We have previously demonstrated that the miogypsinids originated in the Americas from
Neorotalia in the Early Oligocene (Rupelian, P18) (see BouDagher-Fadel and Price, 2010a).
It is apparent that during the Early Oligocene (P18 — P19) a series of sea level regressions
(Miller et al., 2011; Katz et al., 2008) reduced the effective width of the early Atlantic Ocean
sufficiently to facilitate transoceanic migration of Neorotalia from the American province to
the North African coast and into the Mediterranean. During this time, Tethyan shallow water
niches were still occupied by the Paleogene Nummulites. However, towards the end of the
Early Oligocene (Early P1, around 31 to 29Ma), a environmental stress, perhaps associated
with cooling and the large flood basalt event in Ethiopia and Yemen (see Courtillot and

Renne, 2003), contributed to the disappearance of the last Tethyan Nummulites. The Tethyan



Neorotalia (N. tethyana) had by this stage become distinct from its American counterparts by
having lost the strong marginal fringe, and the disappearance of the Nummulites provided an
opportunity for a new phylogenetic lineage of miogypsinids derived from N. fethyana to fill
the warm reefs of the Mediterranean As the morphology of American and Tethyan
miogypsinids are seen to be crucially different, it follows that their evolutionary development
was independent but closely parallel. There appears to be no occurrence of fringed, American
miogypsinids in the Mediterranean, so we conclude that after the last major regression in the
Early Chattian (P21), the rising sea level and the ongoing oceanic rifting eventually isolated
the West African shelf from the American province (around 28 Ma) ending the any flow of
Neorotalia or miogypsininds from America to Tethys. It should be noted that during this
time, there was also a major change in oceanic circulation that resulted from the reversal of
the direction of flow through the Panama Seaway (von der Heydt and Dijkstra, 2006). This
reversal of flow was due to the tectonically driven widening of the Drake Passage and the
narrowing of the seaway between the Mediterranean and Indo-Pacific, and we infer this may
have also mitigated against further trans-Atlantic miogypsinid migration to the Mediterranean

Tethys after P21 (Fig. 10).

>>> Fig. 10

In the Late Oligocene and Early Miocene (P22-Early N8), successive forms of miogypsinid

continued their migration eastward through the open seaway from the Mediterranean and into

the Indo-Pacific, where they typically arrive a million years or so after their first

Mediterranean appearance (Fig. 11).

>>>Fig. 11



Once in the tropical setting of the Indo-Pacific, with its diverse palacogeography, the
migrants gave rise to richer diversity of local species than seen in the Mediterranean.
However, in the Late Burdigalian (Early N8, around 17 Ma) this eastward migration between
the Mediterranean and the Indo-Pacific was interrupted by the closure of the tectonically
narrowed seaway between the Mediterranean and Indian Ocean (Rogl, 1998) during a
significant sea level drop (Fig. 12). Prior to this first closure of the Eastern Tethys seaway in
the Burdigalian (17 Ma), the miogypsinids had thrived in the warm climates of the
Mediterranean reaching their peak diversity, with a maximum number of species, in the Early
Burdigalian. However, with the first closure of the Tethys seaway in the Late Burdigalian, the
miogypsinids became isolated with limited ecological diversity and many species (86%) died
out at the Burdigalian - Langhian boundary (Early N8, 15.9 Ma), but a few species, such as
M. mediterranea persisted into the Early Langhian. The first closure of the Tethyan sea was
short-lived however, as a major global transgressions in the Early Langhian (15.5 — 16.5 Ma),
flooded the Mediterranean from the Indo-Pacific. This transgression led to the extinction of
the remaining Mediterranean miogypsinids within the Early Langhian (N8), as they were
replaced by algal-coral patch reefs, tropical mollusc fauna and flat forms of LBFs, such as
Amphistegina (BouDagher-Fadel and Clark, 2006; BouDagher-Fadel, 2008). This
transgression coincided with a Mid-Miocene (14 — 16.5 Ma) global warming (Fig. 12), which
by contrast stimulated the development of further diversity of the miogypsinids in the Indo —
Pacific sub-province (Figs 6 and 8). In the Late Langhian-Early Serravallian (13 — 14 Ma), a
time of several regressions (Fig. 12), the short-lived marine reconnection between the
Mediterranean and Indian Ocean closed again (Rogl, 1998). This final closure coincided with
the onset of global cooling (Fig. 12) and by the time the East Antarctic Ice Sheet was

established (12 Ma), the miogypsinids had become extinct from the Indo-Pacific sub-



province (Late Serravallian, Early N13/Early Tf3). This final miogypsinid extinction was also
globally accompanied by the extinction of 60% of all other LBF forms (BouDagher-Fadel,

2008).

In contrast to the apparent isolation of Tethys from the Americas from the Early Chattian
onwards, it seems that trans-Atlantic migration to South Africa remained possible up to the
Late Chattian (P22, see Fig. 12), thus enabling the direct migration of the early American
miogypsinids (not just the Neorotalia seen in Tethys) to South Africa. Subsequently, sea-
level rises isolated the South African miogypsinids, which then evolved lineages that were
independent from their American ancestors. In the Burdigalian (N5 — Early N8) South
African species (see Fig. 9) were still morphologically close to their American ancestors, but
never evolved into the advanced forms of the megalospheric generations seen in the
American and Tethyan Miogypsina. This comparatively slow rate of evolution might reflect
the lack of environmental diversity and the more temperate conditions in which the South
African miogypsinids found themselves. Eventually, however, the rapid sea level change
between the Burdigalian and Langhian (Fig. 12) and global tectonic events, such as the
eruption of the Columbia River Flood (15 — 17 Ma), seem to have triggered the extinction of
the South African miogypsinids and they were replaced by other forereef LBF, such as
Operculina and Heterostegina. On the other hand, in the American province, the rapid
deepening of the carbonate facies, coeval with a global warming event (Fig. 10), the so-called
mid-Miocene Climatic Maximum, resulted in the replacement of the reefal facies, dominated
by miogypsinids, by pelagic environments containing planktonic foraminifera (see

BouDagher-Fadel and Price (2010a) and BouDagher-Fadel et al. (2010)).

>>>Fig. 12



4. CONCLUSION

Detailed comparative biostratigraphy has been combined with tectonic, sea-level and climatic
data to infer the phylogenetic and palacogeographic evolution and eventual extinction of the
Tethyan and South African miogypsinids. We conclude that the miogypsinids of Tethys
evolved from a rotaliid ancestor independently from the miogypsinids of the Americas. In
contrast miogypsinids of South Africa evolved, but again independently, from American
miogypsinid ancestors. These processes are an example of “parallel speciation” by Schluter et
al. (2004). As species became geographically isolated, colonising however new areas
environmentally similar to each other, they thrive and evolve similar but distinct parallel
lineages, taking advantages of empty niches and optimum conditions. This processes
probably reflects that they all share a genetic pre-disposition to develop mutations of a

specific, advantageous type, inherited from their last common ancestor.

The new understanding of the phylogenetic evolution of the Tethyan and South African
miogypsinids presented in this paper, when combined with the improved understanding of
their biostratigraphic ranges and facies relationships, enhances the usefulness of the
miogypsinids as a tool for the study of Cenozoic warm-water carbonate platforms, which are
so important in today’s hydrocarbon exploration. However, work is still needed on the
Oligocene-Early Miocene of West Africa to understand better the exact timing and details of
the trans-Atlantic migration event, and on the Late Chattian and Aquitanian of South Africa
to establish the details of the phylogenetic evolution of the Burdigalian forms described in

this paper.
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Appendix A

SYSTEMATIC DESCRIPTION OF THE MYOGYPSININDS

Class FORAMINIFERA Lee, 1990

Order ROTALIIDA Delage and Hérouard, 1896
The tests of members of this order are multilocular and have a calcareous wall, of perforate
hyaline lamellar calcite (Fig. 1). They have apertures that are simple or have an internal

toothplate. They range from Triassic to Holocene.

Superfamily ROTALIOIDEA Ehrenberg, 1839
Tests are involute to evolute, initially trochospiral or planispiral, commonly with many
chambers in numerous whorls. As new chambers are added, septal flaps attach to the previous
apertural face and enclose radial canals, fissures, umbilical cavities, and intraseptal and
subsutural canals. The wall is made of perforate hyaline calcite, and is generally optically
radial in structure. Primary apertures occur singly or as multiples. Small opening into the

canal system may occur along the sutures. Late Cretaceous (Coniacian) to Holocene.

Family Rotaliidae Ehrenberg, 1839
Tests are trochospiral with umbilical plugs and radial canals throughout, or with fissures and
intraseptal and subsutural canals. Apertures are umbilical, basal, single to multiple. Late

Cretaceous (Maastrichtian) to Miocene.

Genus: Pararotalia Le Calvez, 1949



Type species: Pararotalia inermis (Terquem, 1882)
Loeblich and Tappan (1988), in their new description of the genus Pararotalia, reported the
presence of a septal flap partially doubling each of the septa. They describe the aperture as
interiomarginal, extending obliquely into the apertural face, and the intercameral foramen as
areal, due to the attachment of an imperforate toothplate that extends to the distal margin of
the aperture. Hottinger et al. (1991) emended the description of the Pararotaliinae to include
the canal system. It is also distinguished from Neorotalia by the lack of the closed
interlocular spaces (‘‘enveloping canal system’’, Hottinger et al., 1991). Late Cretaceous

(Coniacian) to Middle Eocene.

Pararotalia sp. A

Plate 1, Figure 1
Figured specimen: UCL MF154.
Dimensions: Maximum measured length 1.5 mm.
Remarks: Pararotalia cannot be identified to its species because all the validly named species
are described as solid specimens and all we have are very distinctive thin sections. Pararotalia
sp. A is characterised by a biconvex, low trochospiral, smooth test, with a simple plug that
fills the umbilicus.
Distribution: Early Eocene, Laki Formation, Sakesar Limestione, Bhadrar beds, Salt Range,

Pakistan.

Genus: Neorotalia Bermiidez, 1952
Type species: Rotalia mexicana Reiss, 1963
Low trochospiral, with a simple umbilical boss and pillared walls, both ventrally and

dorsally. Aperture: single, areal, with no complicated umbilical canal system. Early



Oligocene (P18) in the Americas (see BouDagher-Fadel and Price, 2010a), (P19/Late Tc) in
the Mediterranean and the Indo-Pacific, to Early Miocene, Burdigalian (Lower Tfl letter

stage, N6 planktonic foraminiferal zone, see BouDagher-Fadel, 2008)

Neorotalia tethyana BouDagher-Fadel and Price, new species
Plate 1, Figs 2-4, Plate 4, Fig. 1

2008 Neorotalia sp. BouDagher-Fadel, p. 451, Plate 7.14, Figs 1-2.
Figured specimens: UCL MF155.
Dimensions: Maximum measured length 1.5 mm.
Remarks: A Neorotalia with pillared walls, almost rectangular high chambers narrowing
towards the interior of the test; sutures straight, slightly curved near the periphery. 13 to 15
Chambers in the last whorl, increasing gradually in size.
Distribution: Latest Early Oligocene - earliest Miocene (Aquitanian) of Indonesia and

Cyprus.

Family Miogypsinidae Vaughan, 1929
Test: flattened to biconvex. The microspheric form has a trochospiral or planispiral early
spire, while the megalospheric form has a bilocular embryonal stage followed by a fan of

median chamberlets. Middle Oligocene to Middle Miocene.

Genus: Paleomiogypsina Matsumaru, 1996
Type species: Paleomiogypsina boninensis Matsumaru, 1996
Paleomiogypsina differs from Pararotalia (Plate 1, Fig. 2) and Neorotalia (Plate 1, Fig. 6) in
having a few scattered chambers on the dorsal side of the test and a strong umbilical plug.

This is the evolutionary beginning of the fan of chambers which was to develop in



Miogypsinella (see BouDagher-Fadel 2008) . Oligocene (P19 to P21) in the Americas (see
BouDagher-Fadel and Price, 2010a), latest Early Oligocene to latest Late Oligocene (P21) in

the Mediterranean, Late Oligocene (Late P21, Tel) in the Indo-Pacific.

Paleomiogypsina boninensis Matsumaru, 1996
Plate 1, Fig. 5, Plate 4, Fig. 2

1996 Paleomiogypsina boninensis Matsumaru, p. 56-58, pl. 8, figs.1-2; pl. 9, figs. 1-14; pl.
32, fig. 7; text-fig. 23-2 .
2000 Paleomiogypsina boninensis Matsumaru. BouDagher-Fadel, Lord and Banner, p. 144,
pl. 1, figs. 12-13.
2010 Paleomiogypsina boninensis Matsumaru. Matsumaru, Sari, and Ozer, p.448, pl. 1, Figs
1-4.
Figured specimens: UCL MF156.
Dimensions: Maximum measured length 1.50mm.
Remarks: This species is characterised by few advanced equatorial chambers, ogival to
rhombic shaped, present on the equatorial side of spiral chambers.
Distribution: P. boninensis Matsumaru was first described from the Early Chattian of
Minamizaki Limestone, Chichi-Jima, Ogasawara Islands (Matsumaru 1996). It was also
reported from the Early Chattian of the Gomantong Limestone, North Borneo (Bou-Dagher-
Fadel et al. 2000), Christmas Island (Adams and Belford, 1974), and of the Andaman Basin
(Mishra 1996; Govindan 2003), Bey Daglari Autochton, Menderes-Taurus Platform, Turkey.
In the present study it is found in the latest Rupelian to Early Chattian of Cyprus (P21) and

Chattian of Borneo (Late P21).

Genus: Miogypsinella Hanzawa, 1940



Type species: Miogypsinella borodinensis Hanzawa, 1940
Miogypsinella differs from Paleomiogypsina in having a fan of equatorial chambers,
producing a broad equatorial layer of ogival chambers and differs from Miogypsinoides in
having a weak trochospiral initial coil, and the lateral walls of the initial spire and the
succeeding fan of ogival median chambers are much thinner with no solid outer laminae.
Middle to Late Oligocene (P19-P22 planktonic foraminiferal zones) in the Americas (see
BouDagher-Fadel and Price, 2010a), Late Oligocene (P21, Tel) to Early Miocene (Early N4,

Early Te5) in Tethys.

Miogypsinella bornea BouDagher-Fadel and Price, new species
Plate 1, Figures 9-15

Holotype: UCL MF160, Plate 1, fig. 10.
Paratypes: UCL MF161 -6, Plate 1, figs 11-16.
Dimensions: Maximum measured length 1.3mm.
Description: A biconvex test with a small protoconch followed by 11 nepionic chambers in
the megalospheric forms, 17 to 19 in the megalospheric forms. The nepionic chambers are
almost subquadrate in the coiled whorl, increasing gradually in size. In equatorial section the
fan of equatorial chambers is narrow with chambers being arcuate to pointed. and
rudimentary ogival fan of chamberlets. In axial section the median layer is formed by large
thick-walled chambers covered on both sides with pustules and strong pillars. The shape of
the chambers and the pillars and rudimentary chambers distinguish this species from other
Miogypsinella. The subquadrate chambers of the embryonic coil, which are followed by a
narrow fan of small irregular chambers, distinguish this species from other species of

Neorotalia and give it a primitive appearance. This species shows clearly the evolutionary



beginning of the fan of chamberlets that develop in Miogypsinella and separate it from
Paleomiogypsina.

Distribution: Late Oligocene (Early Chattian).

Miogypsinella borodinensis Hanzawa, 1940
Plate 1, Fig. 8

1940 Miogypsinella borodinensis Hanzawa, p.779, pl.39, figs 1-9, p.767, tf.2.
2000 Miogypsinella cf. borodinensis Hanzawa, Boudagher-Fadel, Noad and Lord, 2000, p.144,
pl.2, fig.3.
2008 Miogypsinella borodinensis Hanzawa. BouDagher-Fadel, 2008, p. 451, fig. 3.
Figured specimens: UCL MF159.
Dimensions: Maximum measured length 1.2mm.
Remarks: This species is characterised by a biconvex test with conical pillars embedded in the
dorsal side as seen in axial section. The early, coiled stage in equatorial section is composed of 7
quadrate chambers followed by 6 ogival-formed chambers.
Distribution: This species was first described from the "Oligocene" of North Borodino Island. It

is here found in the Late Oligocene of Borneo (P22).

Miogypsinella cyprea BouDagher-Fadel and Price, new species
Plate 4, Figures 4-8
Holotype: UCL MF229.
Paratypes: UCL MF230-33
Description: A tightly coiled Miogypsinella with a small protoconch followed by 11 elongate
arcuate nepionic chambers. In equatorial section, the arcuate chambers produce an ogival

appearance. Chambers become pointed and irregular in shape towards the distal end of the



test. In axial section, the median layer is composed of subrectangular, large chambers.
Fissures are mainly present at the apex of the test. The periphery has a thick wall traversed by
pillars (Plate 4, Figs 3A, 7C). However, the thickening in the microspheric forms is mainly in
the centre of the test, (Plate 4, Figs 3B, 4). The elongate arcuate chambers and the thickening
of the centre of the test distinguish this form from other species of Miogypsinella.
Microspheric and megalospheric specimens are often found next to each other in the same
sample (see Plate 4, 3, 8).

Distribution. Late Oligocene to Early Miocene, Aquitanian, Terra Limestone, Cyprus

Miogypsinella ubaghsi (Tan Sin Hok, 1936)
Plate 1, Figures 6-7

1936 Miogypsinella ubaghsi (Tan Sin Hok), p. 47, figs 1-7.
2008 Miogypsinella ubaghsi (Tan Sin Hok). BouDagher-Fadel, 2008, p. 437, pl. 7.8, fig. 5,
pl. 7.14, fig. 4,8.
Figured specimens: UCL MF159.
Dimensions: Maximum measured length 1.5mm.
Remarks: The uniserial embryonic coils of Mlla ubaghsi is composed of 13 to 16 small
chambers followed by a narrow fan of thick-walled ogival chambers with thick walls. In axial
section, the chambers are broad and irregular in shape.
Distribution: This species was first described from the “Tertiary” of Borneo. It is figured here

from the Miocene (Early Aquitanian), Darai Limestone, Papua New Guinea.

Genus: Miogypsinoides Yabe and Hanzawa, 1928

Type species: Miogypsinoides dehaarti Van der Vlerk 1924



A miogypsinid with planispiral embryont coils and only one whorl around the megalospheric
proloculus. A weak septal canal system is present. It differs from other miogypsinids in
having very thick and solid lateral walls of the initial spire and the succeeding fan of ogival
median chambers. The septa of all the chambers of Miogypsinoides also possess a clear
intraseptal canal system. latest Early Oligocene (Middle Oligocene) to Late Oligocene (late
P20 to P22 planktonic foraminiferal Zone) in Americas (see BouDagher-Fadel and Price,
2010a), Late Oligocene to Miocene (Chattian, P21b to Burdigalian N7) in the Mediterranean,

(P22 to Early Langhian N8 in the Indo-Pacific province)

Miogypsinoides dehaarti (van der Vlerk, 1924)

Plate 1, Figs 16-23, P1. 2, Figs 1-2, 14, Plate 4, Figs 18-19, Plate 5, Fig. 4
1924 Miogypsina dehaartii van der Vlerk 1924, p. 429-432, text-figs. 1-3
1969 Miogypsina dehaarti van der Vlerk, Cole, p. C10, pl.1, figs 1-20.
1953 Miogypsina dehaarti van der Vlerk, Drooger, p. 110-114, figs. 15-19.
1984 Miogypsina dehaarti van der Vlerk, Chaproniere, p. 46-47, pl. 7, fig. 7a-b; pl. 8, figs.
1-3; pl. 17, figs. 15-17; text-fig. 17-1b, 2e.
2000 Miogypsina dehaarti van der Vlerk, Boudagher-Fadel, Noad and Lord, 2000, p.145, pl. 2,
fig. 5.
2008 Miogypsina dehaarti van der Vlerk, BouDagher-Fadel, p. 451, P1. 7.14, figs 10, 14-18,
PL7.19, figs 1-2.
2010 Miogypsina dehaarti van der Vlerk, Matsumaru, Sari, and Ozer, p.454, pl. 2, figs 7-10,
pl. 3, fig. 6.
Figured specimens: UCL MF167-72, 175-6, 236-7; NHM 6764 1295; Ferr. Coll. 241.

Dimensions: Maximum measured length 2.50mm.



Remarks: M. dehaarti has very thick lateral walls and is smooth exteriorly lacking pillars. The
equatorial chambers are ogival in shape. The large spherical proloculus is followed by an
equally large deuteroconch and 6 to 7 nepionic chambers.

Distribution: This species was first described from the Early Miocene of Larat, Moluques,
Netherlands Indies. It was subsequently found in the Late Aquitanian and Burdigalian of Borneo
and the Late Oligocene (Late Chattian) to Early Miocene (Burdigalian) of Cyprus
(BouDagher-Fadel and Lord, 2006) and Turkey (Matsumaru et al., 2010). This form is
figured here from the Early Miocene, Middle Burdigalian, Subis formation in Borneo, Late
Burdigalian of Northern Sardinia area in Castlesardo section and Late Aquitanian of

Sulawesi.

Miogypsinoides complanatus (Schlumberger, 1900).
Plate 6, Figures 1-3

1900 Miogypsina complanata Schlumberger, p. 300, pl. 2, figs. 13-16; pl. 3, figs. 18-21.
1940 Miogypsinella complanata (Schlumberger) - HANZAWA, p.766-767, fig. 1.
1959 Miogypsina (Miogypsinoides) complanata Schlumberger — Drooger and Magne, p. 273-
271, pl. 2, figs. 1-3.
1962 Miogypsinoides complanatus Schlumberger - Hanzawa, p.153-154, 157, pl. 7, fig. 11,
text-fig. 5.
2010 Miogypsinella complanata (Schlumberger 1900) - Matsumaru, Sari, and Ozer, p.450,
pl., 1, figs 5-7.
Figured specimens: UCL MF262-264

Dimensions: Maximum measured length 2.50mm.



Remarks: The embryonic chambers near apex consist of protoconch and deuteroconch,
followed by subquadrate 9 to 20 nepionic chambers, disposed in planispiral coil typical of a
Miogypsinoides.

Distribution: This form was first described from the Early Aquitanian of France. It was also
found in the Late Oligocene (Late Chattian) of Morocco, France, India, Late Oligocene of
Bey Daglari Autochton, Menderes-Taurus Platform, Turkey. In the present study, it is found

in the Late Oligocene of Borneo and the Early Miocene of Terra Limestone, Cyprus.

Miogypsinoides formosensis (Yabe and Hanzawa, 1928)
Plate 4, Figs 11, 12, 17.

1928 Miogypsina (Miogypsinoides) dehaartii van der Vlerk var. formosensis Yabe and
Hanzawa, p. 536, Fig. 1.
1957 Miogypsinoides formosensis Yabe and Hanzawa - Hanzawa, p. 92, pl. 15, figs. 10, 20-
21.
1974 Miogypsina (Miogypsinoides) formosensis Yabe and Hanzawa - Raju, p. 79, pl. 4, fig.
I, pl. 111, fig. 3.
Figured specimens: Ferr. Coll. MF252
Dimensions: Maximum measured length 2.3mm.
Remarks:The embryonic chambers consist of protoconch and deuteroconch, followed by
16 to 17 planispiral nepionic chambers followed by a wide, irregular fan with ogival
chambers.
Distribution:This form was first described from the “Tertairy” of the the coal bearing Arisan
Formation, Taiwan. It has been reported from the Late Chattian to Early Aquitanian of
Corsica (Ferrandini et al. (2011) and of Turkey (Matsumaru et al., 2010), and from Late

Chattian-Earliest Aquitanian of the Far East (BouDagher-Fadel, 2008). It is here figured from



the Early Aquitanian, Nerthe area, near Marseille, Petit Nid section, Formation pararécifale

du Cap de Nautes.

Miogypsinoides bantamensis (Tan Sin Hok, 1936)
Plate 4, Figs 13-16

1936 Miogypsinoides complanata (Schlumberger) forma bantamensis Tan
Sin Hok 1936, p. 48-50, pl. 1, fig. 13.
1957 Miogypsinoides bantamensis (Tan Sin Hok) - Hanzawa, p.91,pl. 15, figs. 4-6.
2008 Miogypsinoides bantamensis (Tan Sin Hok). — BouDagher-Fadel, p. 451, pl. 7.14, fig.
12.
Figured specimens: Ferr. Coll. MF253-6.
Dimensions: Maximum measured length 2mm.
Remarks: The embryonic chambers consist of protoconch and deuteroconch followed by 12
to 13 planispiral nepionic chambers, and later equatorial ogival chambers are arranged toward
the distal margin.
Distribution: This form was first described from the “Tertairy” of Borneo. It was reported
from the Late Chattian — Aquitanian of Turkey (Matsumaru ef al., 2010), Early Aquitanian to
Late Burdigalian of Corsica (Ferrandini et al., 2011) and Aquitanian of the Far East
(BouDagher-Fadel, 2008). It is here illustrated from the Late Burdigalian of Northern
Sardinia area, Castlesardo section and Early Aquitanian, the Nerthe area, near Marseille, Petit

Nid section, Formation pararécifale du Cap de Nautes.

Genus: Miogypsinodella BouDagher-Fadel, Noad and Lord, 2000

Type species: Miogypsina primitiva Tan Sin Hok, 1936



The embryont coil is similar to that of Miogypsinoides, it is virtually planispiral, but there is
only one whorl around the megalospheric proloculus, and a septal canal system is present.
However, the lateral walls have gaps between the lamellae, which begin to split apart and
form the beginnings of lateral chambers. This splitting results in thick-walled irregular
chambers, unlike the regularly formed, stacked chambers of Miogypsina. Late Oligocene
(Chattian, P22) to Early Miocene (Aquitanian, N4) in Americas (see BouDagher-Fadel and
Price, 2010a), Early Miocene (Burdigalian, N5) to Middle Miocene (Early LanghianEarly

N&8) in Tethys.

Miogypsinodella primitiva (Tan Sin Hok, 1936)
Plate 2, Figs 15-17

1936 Miogypsina primitiva Tan Sin Hok, p. 50, 52-53, pl. 1, figs. 14-16, 17
1940 Miogypsinopsis primitiva (Tan Sin Hok) - Hanzawa, p. 776.
2000 Miogypsinodella primitiva (Tan Sin Hok) - BouDagher-Fadel, Lord and Banner, p. 145-
146, pl. 2, figs. 8-11.
Figured specimens: UCL MF200-3
Dimensions: Maximum measured length 2mm.
Remarks: Embryonic chambers consisting of protoconch and deuteroconch, followed by
planispiral and single whorl of 9 to 10 nepionic. Lateral walls thick with irregular chambers;
pillars traversing lateral walls.
Distribution: This form was first described from the “Tertiary” of Borneo. It has been
reported from the Early Miocene (Burdigalian) to Middle Miocene (Early Langhian) of the
Far East (BouDagher-Fadel et al., 2000, 2008), Turkey (Matsumaru et al., 2010) and Corsica

(Ferrandini et al., 2011). It is figured here from the Burdigalian of Sumatra.



Miogypsinodella pillaria Ferrandini et al., 2011
Plate 4, Figs 22-23

2011 Miogypsinodella pillaria Ferrandini et al., pl. 2, fig. 8, pl. 7, pl. 7, figs 1A, 2.
Figured specimens: UCL MF238-9.
Dimensions: Maximum measured length 2mm.
Remarks: A Miogypsinodella with a biconvex test and pillars between the irregular gaps of
the lamellae. The equatorial chambers are almost rectangular with thick walls.
Distribution : This form was first described from the Late Burdigalian to the Early Langhian
of the southern Corsica. It is here figured from Bonifacio area, southern Corsica, Cala di

Labra Est section, R1 of Cala di Labra Formation.

Genus: Miogypsina Sacco, 1893

Type species Nummulina globulina Michelotti, 1841
The embryont in Miogypsina is near the apex with microspheric specimens possessing a
uniserial coil around the proloculus, and megalospheric embryont having no coil around the
proloculus, but two bidirectional coils around the proloculus, with lateral chambers regularly
stacked on each side of the median layer, but lacking a canal system. Older species have
megalospheric nepionts in which two series of chambers surround the deuteroconch
unequally. In advanced forms the series become equal, and both surround the megalospheric
deuteroconch by means of equal half whorls. Latest Early Oligocene (late P20) to Early
Miocene (Burdigalian, early N8) in Americas (see BouDagher-Fadel and Price, 2010a), Late
Oligocene (Chattian, P22), in Mediterranean, Early Miocene (Aquitanian, N4), in the Far
East) to Middle Miocene (Langhian, Early N8) in the Mediterranean, (Middle Serravallian,

Early N13) in the Indo-Pacific province.



Miogypsina africana BouDagher-Fadel and Price, new species
Plate 5, Figs 19-21

Name: This species is named africana to illustrate its type locality.
Holotype: UCL MF250, Plate 5, fig. 19
Paratypes UCL MF270-71, Plate 5, figs 20-21
Dimensions: Maximum measured length 1.5 mm.
Description: A Miogypsina with biometric factors: X= 9 to 8, V=0, megalospheric forms (P1I.
3, fig. 7). The circular protoconch is followed by a semicircular deurteroconch and 7 to 8
semicircular to spatulate periembryonic chambers, arranged so they extend completely
around the first protoconch but just reaching half of the deuteroconch. The first chamber,
with two stolons, generates two spirals, only one of which creates the fan shaped test. On the
other hand, the fourth embryonic chamber always generate a small chamber with two stolons
within the thick fibrous layer. The equatorial chambers are of regular size and shape shape.
They are broadly spatulate, lacking the pointed ends of M. gunteri Cole, later becoming
hexagonal in shape. In vertical section the equatorial layer is thick throughout the test with
rectangular chambers almost equal in size throughout the test. It is overlaid on either by
stacks of regular lateral curved chambers. Pillars are missing. This species differ from M.
gunteri in the shape of chambers and embryonic chambers. It differs from Miogypsina
irregularis in lacking pillars between the lateral chambers and possessing a more definite coil
of chambers surrounding the initial embryonic chambers. It differs from M. maxmilliana in
the shape and numbers of the embryonic chambers and the shape of the equatorial chambers.

Distribution: Burdigalian, Childs Bank Burdigalian, Kal, South Africa.

Miogypsina antillea (Cushman, 1919)

Plate 6, Figures 4-5



1919 Heterosteginoides antillea Cushman, p.5, pl.5, figs. 5,6.

2010 Miogypsina antillea (Cushman) - BouDagher-Fadel, p.573, pl.3, fig.22.

Figured specimen: UCL MF265-8.

Dimensions: Maximum measured length 1.8mm.

Remarks: A Miogypsina with a biometric factor between 90 and 95. The embryonic chambers
are bilocular with a large circular proloculus (~ 0.16mm), surrounded by almost rectangular
chamberlets. Equatorial chambers are diamond in shape.

Distribution: This species was first described from the Late Oligocene of Anguilla,
Venezuela. It was later reported from the Late Oligocene of Florida, Early Miocene offshore
Brazil (Sousa et al. 2003), (latest P22), the Early Miocene (Burdigalian) offshore Brazil
(BouDagher-Fadel and Price, 2010a), the Middle Miocene (Langhian) of Corsica (Ferrandini
et al., 2011) and from the Late Langhian to Serravallian of the Far East (BouDagher-Fadel,

2008). Here it is figured from the Late Burdigalian of Cyprus.

Miogypsina bifida Rutten, 1912
Plate 3, Figure 8

1912 Miogypsina bifida Rutten, p. 209, pl. 12, figs 10-11.
2008 Miogypsina bifida Rutten, BouDagher-Fadel, p. 485, pl. 7.19, fig. 14.
Figured specimen: NHM. Van Vessem, coll. BB 469 — 1913.
Dimensions: Maximum measured length 2.3mm.
Remarks: An advanved Miogypsina with a symmetrical nepiont of a biometric factor close to
100 with two or more periembryonic spirals.
Distribution: This form was first described from East Borneo. It is widely reported from the
Middle Miocene (Serravallian) of the Far East (BouDagher-Fadel, 2008). It is here recorded

from the Miocene (Serravallian) of Sungai, Boengaloen, East Borneo.



Miogypsina borneensis Tan Sin Hok, 1936
Plate 1, Figs 24-25

1936 Miogypsina borneensis Tan Sin Hok, p. 50, 53-54, pl. 1, figs.18-19.
2008 Miogypsina borneensis Tan Sin Hok — BouDagher-Fadel, p. 485, pl. 7.19, figs 9-13.
2010 Miogypsina borneensis Tan Sin Hok 1936, Matsumaru et al., Pl. 3, figs 9-10, Pl. 4, figs
1-2.
Figured specimens: UCL MF173-4
Dimensions: Maximum measured length 2mm.
Remarks: The protoconch and deuteroconch are followed by planispiral and uniserial coil
composed by 11 to 12 nepionic chambers. Equatorial chambers are ogival to irregular in
shape. Lateral chambers, well developed and occurring in regular tiers between pillars.
Distribution: This species is first described from the “Tertiary” of Borneo. It was reported
from the Aquitanian and Early Burdigalian of France (Cahuzac and Poignant, 1993), Latest
Chattian to Burdigalian of Turkey (Matsumaru ef al., 2010) and Aquitanian of the Far East
(BouDagher-Fadel, 2008). It is figured here from the Aquitanian of the Darai Limestone,

Papua New Guinea.

Miogypsina cushmani Vaughan, 1924
Plate 5, Figure 8, Plate 6, Figures 14-15
1918 Heterosteginoides panamensis Cushman, pars, p. 89, pl. 43, figs. 1, 2.
1924 Miogypsina cushmani Vaughan, pp. 802, 813.
2008 Miogypsina cushmani Vaughan — BouDagher-Fadel, p. 485, pl. 7.19, fig. 16.
2010a Miogypsina cushmani BouDagher-Fadel and Price, p. 573, Text-Figure 1c.

Figured specimen: Ferr. Coll. MF244, UCL MF259-60



Dimensions: Maximum measured length 1.6mm.

Remarks: A Miogypsina with biometric factors V between 80 and 90, megalospheric forms
with a circular protoconch followed by a larger semi-circular deuteroconch. Equatorial
chambers are diamond in shape.

Distribution: This species was first described from the latest Oligocene-Early Miocene of
Venezuela. This form was reported from the latest Oligocene to Early Miocene (Burdigalian)
of offshore Brazil (BouDagher-Fadel, 2008), the Late Burdigalian of Corsica (Ferrandini et
al.,2011) and the Langhian of the Far East (BouDagher-Fadel, 2008). It is here figured from

Late Burdigalian of Castlesardo section (Northern Sardinia), Corsica.

Miogypsina globulina (Michelotti, 1841)

Plate 2, Figs 11-13, 21; Plate 5, Fig.5; Plate 6, Figs 3-5, 13
1841 Nummulites globulina Michelotti 1841, p. 297, pl. 3, fig. 6.
1841 Nummulites irregularis Michelotti 1841, p. 297, pl. 3, fig. 5.
1952 Miogypsina irregularis (Michelotti) - Drooger p. 54-55, pl. 2, figs. 25-29.
2008 Miogypsina globulina (Michelotti 1841) — BouDagher-Fadel, p.485, Fig. 20.
2010 Miogypsina globulina (Michelotti) - Matsumaru ef al., p. 17-26, pl. 1, figs. 1-4
Figured specimens: UCL MF196-9, Ferr. Coll. MF242, UCL MF258, UCL MF265-8.
Dimensions: Maximum measured length 2.30mm.
Remarks: A Miogypsina with a biometric factor V is between 42 and 45. The protoconch is
globular followed by a large deuteroconch (~ 0.14mm) and two principal auxiliary chambers
of unequal size. The protoconchal spiral is composed of 7 spiral nepionic chambers. The
deuteroconchal spiral is short with V values of 20. The equatorial chambers are ogival and

rhombic in shape with curved edges.



Distribution: M. irregularis and M. globulina are Aquitanian - Burdigalian species with a
world-wide geographic distribution (from Central America to the Indo—West Pacific area and
Europe). They were first described from the Early Miocene (Late Burdigalian) of Italy. They
were subsequently described from the Early Miocene (Burdigalian) of Angola (Raju, and

Meijer, 1977), Turkey (Matsumaru et al., 2010), Late Burdigalian of Corsica (Ferrandini et

al., 2011), Burdigalian and Early Aquitanian of the Far East (BouDagher-Fadel, 2008).
Offshore Brazil M. globulina has been found in the Late Oligocene (Chattian) to the
Burdigalian (BouDagher-Fadel and Price, 2010a). It is figured here from the Burdigalian of

Borneo, Cyprus and from Corsica.

Miogypsina gunteri Cole, 1938

Plate 4, Figs 20-21
1938 Miogypsina gunteri Cole, 42, pl. 6, figs. 10-12, 14.
2008 Miogypsina gunteri Cole — BouDagher-Fadel, p. 485, pl. 7.19, figs 3-5.
2010a Miogypsina gunteri Cole - BouDagher-Fadel and Price, p. 574, pl. 3, figs 1-5, 7; P1. 4,
figs 1, 2; PL. 5, figs 6, 7.
Figured specimens: NHM coll MF257
Dimensions: Maximum measured length 3 mm.
Remarks: A Miogypsina with biometric factors: X= 10 to 12, V=0, megalospheric forms (P1I.
4, Fig. 20) with a circular protoconch followed by a subrectangular deuteroconch. These two
chambers are succeeded by 10 to 12 wedge-shaped chambers which completely surround
them. The equatorial chambers are diamond in shape. M. gunteri differs from M. irregularis
in possessing a more definite coil surrounding the initial embryonic chambers and from M.

praegunteri BouDagher-Fadel and Price, 2010a) in having fewer chambers in the first coil.



The equatorial chambers are more regularly shaped than those of M. praegunteri. All Tethyan
M. gunteri have a smaller fissured edge than those of the American forms.

Distribution: M. gunteri was first described from the Upper Oligocene Swannee limestone of
Florida. It is recorded in the Late Oligocene of offshore Brazil, Chattian (BouDagher-Fadel
and Price, 2010a). It is common in the Aquitanian of the Mediterranean (Ozcan et al., 2009),
and the Far East (BouDagher-Fadel, 2008). It is here figured from the Miocene (Aquitanian),

top of Superga Mountain, Aman.

Miogypsina ianmcmillania BouDagher-Fadel and Price, new species
Plate 5, Fig. 25-26

2008 Miogypsina sp. BouDagher-Fadel, p. 441, fig. 7, p..445, fig. 6,
Name: In honour of Prof. lan McMillan.
Holotype: UCL MF276, Plate 5, fig. 25.
Paratype: UCL MF277, Plate 5, fig. 26.
Dimensions: Maximum measured length 1.5 mm.
Description: Teat broadly biconvex with biometric factors: X= 5, V=0, megalospheric forms
(P1. 3, fig. 7) with a large circular protoconch followed by a smaller circular deuteroconch
and 5 to 6 thick-walled periembryonic subtriangular chambers increasing gradually in size,
arranged so they extend completely around the protoconch. The first chamber with two
stolons generate multiple spires. The equatorial chambers are of regular size and shape
shape, broadly spatulate with almost the pointed. In vertical section the equatorial layer is
overlaid on either by stacks of regular lateral chambers. Pillars are missing. This species
differ from other species of South African Miogypsina described here in having a vertically
positioned embryont and in the shape, number and size of embryonic chambers.

Distribution: Burdigalian, Childs Bank, Late Burdigalian, Kal, South Africa.



Miogypsina indonesiensis Tan Sin Hok, 1936
Plate 2, Figures 19-20

1936 Miogypsina (Miogypsina) indonesiensis Tan Sin Hok, p. 54, pl. 2, figs 3-4.
2008 Miogypsina indonesiensis Tan Sin Hok — BouDagher-Fadel, p.444, pl. 7.12, fig. 12.
Figured specimens: UCL MF204.
Dimensions: Maximum measured length 2.5mm.
Description: This species is distinguished in having a biserial embryont with bilateral
symmetry of 98 to 100 biometric factor. Two protoconchal spirals of the same length are
developed, whereas PA-I and PA-II are almost equal in size. The equatorial chambers are
spatula and arranged in oblique stacks.
Distribution: This species was first described from the “Tertiary” of Borneo. It was widely
reported from the Middle Miocene (TF3) of the Far East (BouDagher-Fadel, 2008). It is

figured here from the Miocene (Serravallian), Nias.

Miogypsina kotoi Hanzawa, 1931

Plate 2, figs 3-4; Plate 3, Figures 1-2.
1931 Miogypsina kotoi Hanzawa, p. 154, pl. 25, figs 14-18.
2000 Miogypsina kotoi Hanzawa - BouDagher-Fadel and Wilson, p. 157, pl. 3, figs 1-2.
2008 Miogypsina kotoi Hanzawa - BouDagher-Fadel, p. 484, pl. 719, figs 6,8.
Figured specimens: UCL MF179-8; UCL MF206-7
Dimensions: Maximum measured length 2 mm.
Remarks: This species has a biserial nepiont which is strongly asymmetrical, with biometric
factor between 30 and 40. It distinguished in having ogival median chambers, small thick-

walled, but strongly convex chambers.



Distribution: Miogypsina kotoi was first described from the Burdigalian of Japan. It has been
reported from the Late Burdigalian to Langhian, of eastern Borneo, Kalimantan and in the Tfl
(Upper Burdigalian) and Early Tf2 (Early Serravallian) of Djatirago, the Gunung Sewu area
of South Central Java (BouDagher-Fadel and Wilson, 2000; BouDagher-Fadel, 2008). It is

figured here from the Early Miocene (Middle Burdigalian) of Kalimantan and Borneo.

Miogypsina mediterranea Bronnimann, 1940
Plate 5, Figs 6-7, Plate 6, Figs 8-12

1940 Miogypsina (Miogypsina) mediterranea Bronnimann, p. 94, pl. 6, figs 5, 10-11.
2008 Miogypsina mediterranea Bronnimann, BouDagher-Fadel, p. 485, pl. 7.19, fig. 18.
Figured specimens: Ferr. Coll. MF244; UCL MF252-5
Dimensions: Maximum measured length 3mm.
Remarks: This species has an almost symmetrical nepiont with a biometric factor between 90
and 95. Equatorial chambers are ogival to rhombic in shape.
Distribution: This species was first described from the Late Burdigalian of Morocco. It is
widely reported from the Late Burdigalian of the Mediterranian (BouDagher-Fadel, 2008,
Ferrandini et al., 2010). It is here figured from the Late Burdigalian, Bonifacio area, southern
Corsica, Cala di Ciappili section, R1 of Cala di Labra Formation and from the Burdigalian of

Morocco.

Miogypsina mcmillania BouDagher-Fadel and Price, new species
Plate 5, Figs 9-18
2008 Miogypsina sp. BouDagher-Fadel, p. 441, fig. 7, p..445, fig. 6,
Name: In honour of Prof. lan McMillan.

Holotype: UCL MF239, Plate 5, fig. 9



Paratypes: UCL MF240-49, Plate 5, figs 10-18

Dimensions: Maximum measured length 1.5 mm.

Description: A Miogypsina with biometric factors: X= 11, V=0. Test flattened to biconvex
with a planispiral early spire. The embryont in is near the apex but is surrounded from one
side with pronounced fissures on the periphery of the initial whorls typical of the American
Miogypsina and with a uniserial coil around the proloculus. The latter is followed 11
periembryonic curved to broadly spatulate chambers, arranged so they extend completely
around the first chambers. The first chamber with two stolons generate three spirals; two
become discontinuous at the apex of the test within a thick fibrous layer, while the third spiral
extend to create the fan shaped test. The equatorial chambers are originally of regular size
and shape, broadly spatulate, lacking the pointed ends of M. gunteri Cole. However, they
might become hexagonal in shape. In vertical section the equatorial layer is thick throughout
the test with rectangular chambers almost equal in size throughout the test. It is overlaid on
either by stacks of regular curved thick-walled lateral chambers. Pillars are scattered over the
test. This species differ from M. gunteri in the shape of chambers and embryonic chambers. It
differs from Miogypsina irregularis in lacking pillars between the lateral chambers and
possessing a more definite coil of chambers surrounding the initial embryonic chambers. It
differs from other typical miogypsinas in having the first chamber with two stolons
generating multiple spires, instead of just two and the hexagonal shape of the chambers seen
only in genera such as Lepidosemicyclina in the Far East.

Distribution: Burdigalian, Childs Bank, Early Burdigalian, Kal, South Africa.

Miogypsina niasiensis BouDagher-Fadel and Price, new species
Plate 2, Figures 22-25

Name: This species is named niasiensis to illustrate its type locality.



Holotype: UCL MF205, Plate 2, fig. 22.

Paratypes : UCL MF206-8, Plate 2, figs. 23-25

Dimensions : Maximum measured length 1.3mm.

Description: A Miogypsina with a biometric factor of 75 with a large embryont with large
protoconch and deutereconch placed at the extreme apex of the test. In equatorial section the
chambers are arcuate like those of M. subiensis but they are smaller with much thinner walls
and not in lateral contact. In vertical view, they are stacked in 3 to 4 regular rows on the
equatorial layer. Pillars are absent. The chambers of the median layer are much narrower than
those of M. subiensis as seen in axial section.

Distribution: This species is found in the Early Langhian, Middle Tfl‘‘letter stage’

limestone, Gawo Formation, Nisua, Nias, east of Sumatra, Indonesia.

Miogypsina regularia BouDagher-Fadel and Price, new species
Plate 3, Figures 3-7

Name: This species is named regularia to illustrate the regular stacking of the lateral
chambers.
Holotype: UCL MF208, Plate 3, fig. 3.
Paratypes : UCL MF209-12, Plate 3, figs. 4-7
Dimensions : Maximum measured length 2mm.
Description: A Miogypsina with a biometric factor of 50. Embryonic apparatus is composed
of a large spherical protoconch and slightly rectangular deuteroconh surrounded by thick
walls. The equatorial view shows rhombic to elongate arcuate chambers, producing ogival
appearance. The lateral chambers are small, arcuate, narrow and stacked obliquely in regular

rows on the equatorial layer.



Distribution: This species is found in the Early Langhian, Middle Tfl, Gawo Formation,

Nisua, Nias, east of Sumatra, Indonesia.

Miogypsina samuelia BouDagher-Fadel and Price, new species
Plate 3, Figs 9-16

Name: In honour of Dr. Andy Samuel.
Holotype: UCL MF221, Plate 3, fig. 16.
Paratypes: UCL MF214-20, Plate 3, figs 9-15.
Dimensions: Maximum measured length 2mm.
Description: A Miogypsina with a biometric factor of 70. Embryonic apparutus placed at the
apex of an elongated test with protoconch and deuteroconch almost of equal size. Equatorial
chambers are initially elongate arcuate, producing a familiar ogival appearance but followed
with rhombic and diamond-shaped chambers. Axial view show small arcuate chambers
sperated by pillars and stacked in three rows on either side of the equatorial layer.
Distribution: Late Aquitanian, Gawo Formation, 27B, Nisua, Nias, east of Sumatra,

Indonesia.

Miogypsina subiensis BouDagher-Fadel and Price, new species
Plate 2, Figures 6-10
Name: This species is named subiensis to illustrate its type locality.
Holotype: UCL MF192, Plate 2, fig. 8.
Paratypes: UCL MF190-191, 193-5, Plate 2, figs. 5-7. 9-10.
Dimensions: Maximum measured length 2mm.
Description: Test: small, broadly biconvex. The equatorial section show a miogypsinid coil

with a biometric factor between 5 and 8. This species is distinguished be having broadly



arculate, thick-walled chambers, in lateral contact. In vertical sections the lateral chambers
are irregular in shape and size, stacked in 4 to 5 rows. Pillars are absent to rare. The median
layer is broad, almost of uniform breadth throughout, occupying almost half of the test
toward the edges and fifth of it in the centre. It is formed of rectangular chambers, almost
equal in size, but becoming slightly narrower towards the edges.

Distribution: This form co-occurred with Miogypsinoides dehaarti in the Early Miocene,

Middle Burdigalian, Subis formation, Borneo.

Miogypsina tani Drooger, 1952
Plate 2, Fig. 5

1952 Miogypsina tani Drooger, p. 26, 51, 52, pl. 2, figs. 20-24.
2008 Miogypsina tani Drooger - BouDagher-Fadel, p.437, pl. 7.8, fig. 1.
2010a Miogypsina tani Drooger - BouDagher-Fadel and Price, p. 574, P1. 3, figs 19 — 21.
Figured specimens: UCL MF189.
Dimensions: Maximum measured length 2mm.
Remarks: A Miogypsina with an X = 8; V between 0 and 10. This species is distinguished by
having a long megalospheric nepionic coil of auxiliary chambers, low cubiculae with inflated
roofs and many scattered pillars.
Distribution: This species was first described from the “Middle Oligocene” of east-central
Costa Rica. Similar forms have a wide distribution in the American, Mediterranean and Indo-
Pacific regions. It was recorded from the Aquitanian stage, Upper Te, of Italy and southern
Spain (Raju 1974). Similar specimens were found by BouDagher-Fadel et al. (2000) in the
upper Upper Te (Burdigalian) of Borneo and by Sharaf ef al. (2005) the Lower Tfl “letter
stage” of the Burdigalian of East Java and Early Langhian of Sumatra (BouDagher-Fadel,

2008). This species was also reported from the Late Burdigalian of Corsica (Ferrandini et al.,



2011; Early Miocene (Aquitanian) of the Foz do Amazonas, Brazil (Mello e Sousa et al.
2003) and from the middle Early Oligocene (P21) to Early Miocene of offshore Brazil
(BouDagher-Fadel and Price, 2010a). It is here figured from the Early Miocene, Middle

Burdigalian, Subis formation, Borneo.

Miogypsina southernia BouDagher-Fadel and Price, new species
Plate 5, Figs 22-24

2008 Miogypsina sp. BouDagher-Fadel, p. 441, fig. 7, p.445, fig. 6,
Name: In order to illustrate its geographic occurrence.
Holotype: UCL MF273, Plate 5, Fig. 22.
Paratypes UCLMF274-275, Plate 5, Figs 23-24.
Dimensions: Maximum measured length 1.5 mm.
Description: A Miogypsina with biometric factors: X= 7 to 6, V=0, megalospheric forms (P1I.
3, fig. 7) with a circular protoconch followed by a semicircular deuteroconch and 7 to 8
periembryonic with a very thick fissured peripheral fringe, increasing slowly in size but
rapidly after the fourth chambers, arranged so they extend completely around the protoconch,
reaching just the beginning of the deuteroconch. The first chamber with two stolons generate
two spirals; one become discontinuous at the apex of the test within a thick fibrous layer,
while the second spiral extend to create the fan shaped test. As with M. Africana, the fourth
chamber generates a small chamber within the fibrous layer. Chambers are very thick in
equatorial layers; the first rows are made up with chambers almost diamond in shape
followed by rows of broadly spatulate chambers. In vertical section the equatorial layer is
overlaid on either by stacks of regular curved, thick-walled lateral chambers. Pillars are
missing. This species differ from M. gunteri in the shape of chambers and embryonic

chambers. It differs from Miogypsina irregularis in lacking pillars between the lateral



chambers and possessing a more definite coil of chambers surrounding the initial embryonic
chambers. It differs from M. Africana in shape and size of the embryonic chambers, the
thicker fibrous layer and the shape of the equatorial chambers.

Distribution: Late Burdigalian, Childs Bank Burdigalian, Kal, South Africa

Genus Lepidosemicyclina Rutten, 1911
Type species: Orbiloides (Lepidosemicyclina) thecideaeformis Rutten, 1911
A roughly circular test, with an embryonic apparatus made of a spherical protoconch and a
reniform deuteroconch, has a tendency to become enlarged in most advanced forms. Two sets
of planispiral periembryonic chambers surround the embryo, the larger primary spiral and
three inequal secondary spirals. The equatorial chamberlets are at first ogival, then rhombic
and finally distinctly hexagonal. Early Miocene (Burdigalian, N4 to Early N8) in the Indo-

Pacific.

Lepidosemicyclina banneri BouDagher-Fadel and Price, new species
Plate 3, Figures 17-23

Name: In honour of Prof. Fred Banner.
Holotype: UCL MF239, Plate 6, fig. 20A
Paratypes: UCL MF222, Plate 6, fig. 17; UCL MF240-51, Plate 6, figs 17-19, 21-22.
Dimensions : Maximum measured length 6 mm.
Description: An elongated Lepidosemicyclina with a circular protoconch occupying a place
between centre and edge of the test, and a smaller reniform deuteroconch which lines up with

the protochonch closer to the apex of the test. In axial view chambers are very small,



supported by pillars and stacked in irregular rows on the median chambers. In equatorial
view, chambers are hexagonal in irregular and hexagonal in shape.

Distribution: Early Miocene (Burdigalian), Borneo and Java.

Lepidosemicyclina excentrica Tan Sin Hok, 1937
Plate 6, Figure 16

1937 Miogypsina (Miolepidocyclina) excentrica Tan Sin Hok, p.40, pl.1, fig. 12, pl. 2, figs 1-
9.
Figured specimen: UCL MF263
Dimensions: Maximum measured length 4mm.
Remarks: Embryonic chambers consist of large protoconch and deuteroconch eccentric in
their position. Test elongated in axial section with thick small chambers arranged in regular
tiers and traversed by thin pillars. Equatorial chambers, ogival, rhombic and short hexagonal
in shape.
Distribution: This species was first described from the Burdigalian of Indonesia. It is figured

here from Late Burdigalian of Java.

Lepidosemicyclina thecideaeformis (Rutten, 1911)
Plate 2, figure 18
1911 Orbitoides (Lepidosemicyclina) thecideaeformis Rutten, p. 1157-1158.
1912 Miogypsina thecideaeformis (Rutten), p. 204, pl. 12, figs. 1-5.
1974 Miogypsina (Lepidosemicyclina) thecideaeformis (Rutten). — Raju, p. 84-85, pl. 6, figs.
2-4.
1984 Miogypsina (Lepidosemicyclina) thecideaeformis (Rutten) — Chaproniere, p. 44-46, pl.

7, figs. 3-6; pl. 17, figs. 1-11; pl. 25, fig. 14; Text-fig. 17-3-5.



2008 Lepidosemicyclina thecideaeformis (Rutten) — BouDagher-Fadel, p. 445, pl. 7.12, fig. 8.
Figured specimen: NHM P22849

Dimensions: Maximum measured length 3mm.

Remarks: Embryonic chambers consist of protoconch and deuteroconch and are followed by
two principal auxiliary chambers of unequal size with biometric factors ranging from 45 to
70. Equatorial chambers, ogival, rhombic and short hexagonal in shape; lateral chambers are
well developed and occur in regular tiers between thin pillars .

Distribution: This form was first described from the Miocene of Borneo. It was reported from
the Burdigalian of the Far East BouDagher-Fadel, 2008). The authors here do not consider
the forms figured by Matsumaru et al., 2010, from the Late Chattian to Burdiaglian of Turkey
p. 460, pl. 4, figs 3-4, as Lepidosemicyclina thecidaeformis (Rutten 1911). The figured
specimens have irregular chambers, not the typical hexagonal shape of Lepidosemicyclina

genus. Lepidosemicyclina thecidaeformis is figured here from the Burdigalian of Tanzania.

Genus Miolepidocyclina A. Silvestri, 1907

Type species: Orbitoides (Lepidocyclina) burdigalensis Glimbel, 1870
The embryonic apparatus, consisting of large protoconch and deuteroconch, is surrounded by
a thick wall. The megalospheric nepiont is similar to that of Miogypsina, with no coil around
the proloculus but 2-bidirectional coils around the proloculus. However, the nepiont is
centrally placed, instead of being at the edge of the test, as in Miogypsina. Late Rupelian
(Late P20) to Early Miocene (Burdigalian, Early N8) in Americas (see BouDagher and
Price,2010), Early Miocene, Burdigalian (Late N5 to Early N8) in the Mediterranean, Late

Burdigalian (N6 to Early N8) in the Indo-Pacific.

Miolepidocyclina burdigalensis (Giimbel, 1870)



Plate 6, figures 6-7
1870 Orbitoides (Lepidocyclina) burdigalensis Giimbel, p. 719.
1900 Miogypsina burdigalensis (Giimbel) - Schlumberger, p.330, pl. 2, figs. 11-12; pl. 3, figs.
22, 25.
1952 Miogypsina (Miolepidocyclina) burdigalensis Giimbel - Drooger, p. 58, 61, pl. 1, figs.
30-34.
2010 Miolepidocyclina burdigalensis (Giimbel 1870) - Matsumaru et al., p. 460, pl.4, fig. 9.
Figured specimens: UCL MF256-57
Dimensions: Maximum measured length 1.50mm.
Remarks: Embryonic chambers eccentric in position and consisting of protoconch and
deuteroconch, followed and surrounded by two spiral of 11 nepionic chambers. Equatorial
chambers, ogival to short spatulate shaped toward the periphery.
Distribution: This form was first described from the Miocene of Germany. It has been
reported from the Burdigalian of the Mediterranean (BouDagher-Fadel, 2008; Ferrandini et

al.,2011). It is here figured from the Burdigalian of Cyprus.

Miolepidocyclina excentrica Bronnimann, 1940
Plate 5, Figures 1-3
1940 Miogypsina (Miogypsina) mediterranea Bronnimann var.excentrica Bronnimann, pl. 6,
figs 12-16, pl. 8, fig.25.
2008 Miolepidocyclina excentrica Tan Sin Hok — BouDagher-Fadel, p.444, pl. 7.12, fig. 11,
pl. 7.19, fig. 21.
Figured specimens: UCL MF256-57

Dimensions: Maximum measured length 2.5mm.



Remarks: Embryonic chambers eccentric to almost central in position and consisting of two
large protoconch and deuteroconch, occupring almost third of the test. Equatorial chambers
are with thick walls and ogival in shape.

Distribution: This species was first described from the Burdigalian of Morocco. It was
reported from the Late Burdigalian of Corsica and the Mediterranean (BouDagher-Fadel,
2008; Ferrandini ef al., 2011). It is here figured from the Late Burdigalian, Bonifacio area,

southern Corsica, Cala di Labra Est section, R1 of Cala di Labra Formation.



Fig. 1. SEM images of Miogypsina borneensis Tan Sin Hok showing: (A) embryonic
apparatus, and equatorial chambers; (B) and (C) the internal surface of equatorial chamber

wall bearing ‘eggholders’.

Fig. 2. The generic phylogenetic evolution of Tethyan miogypsinids.

Fig. 3. (A). A sketch showing the earliest chamber of a late Miogypsinoides, such as
Miogypsinoides complanatus. There are 18 spirally coiled nepionic chambers (biometric
index X). The angle of rotation between the apical line of symmetry and the central line
crossing the protoconch and deuteroconch is around -330°. (B) Miogypsinoides bantamensis
Tan Sin Hok from Castlesardo section (Northern Sardinia) with a biometric index X = 10 and
y of approximately - 290. (C) A sketch of the early chambers of an early Miogypsina, such as
M. cushmani, with 2 auxiliary chambers (ax) with a biometric index V ( = 2000/p). y, the
positive angle of deviation of the line of symmetry of the adult test is approximately 78°. (D)
Miogypsina cushmani Vaughan, from Castlesardo section (Northern Sardinia), equivalent of

Cala di Labra formation. (E) Miogypsina mcmillania new sp., Burdigalian, South Africa.

Fig. 4. Range chart of miogypsinid species in the South African and Tethyan provinces.

Fig. 5. (A) a Mediterranean Miogypsinoides (Mdes bantamensis Tan Sin Hok), (B) An
American Miogypsinoides (Mdes praegunteri BouDagher-Fadel and Price, 2010a), (C) the
Mediterranean Miogypsina mediterranea Bronnimann, and (D) the South Africa Miogypsina

mcmilliana new sp.

Fig. 6. The phylogenetic evolution of the Tethyan Neorotalia, Paleomiogypsina,

Miogypsinella and Miogypsinoides spp.



Fig. 7. The phylogenetic evolution of the Mediterranean Miogypsina spp. and

Miolepidocyclina spp.

Fig. 8. The phylogenetic evolution of the Indo-Pacific Miogypsina spp., Miolepidocyclina
spp. and Lepidosemicyclina spp. Dotted arrows show forms thought to have migrated from

the Mediterranean sub-province.

Fig. 9. Evolution of South African miogypsinids during the Burdigalian.

Fig. 10. The major tectonic, oceanic and climatic events affecting miogypsinid migration,

evolution and extinction.

Fig. 11.The migration of miogypsinids during Early Oligocene, shown by black arrows, from

the Americas (1), to the Mediterranean (2), and on to the Indo-Pacific (3), or to South Africa

.

Fig. 12. Variation in sea level and temperature during the Oligocene and Mid-Miocene based

on Miller et al. (2011) and Zachos et al. (2001).
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Plate 1

Fig. 1. Pararotalia sp. A. Early Eocene, Laki Formation, Sakesar Limestione, Bhadrar Beds,
Salt Range, Pakistan, UCL MF154, x38.

Fig. 2-4. Neorotalia tethyana new species. (2-3) Late Oligocene-earliest Miocene, JBC3,
Java, x40; (4) Miocene (Aquitanian), Loc. 621/3, Borneo, UCL MF155, x50.

Fig. 5. Paleomiogypsina boninensis Matsumaru. Late Oligocene, Chattian, P21, Loc. 621/3,
Borneo, UCL MF156, x70.

Figs 6-7. Miogypsinella ubaghsi (Tan Sin Hok). Miocene (Early Aquitanian), Darai
Limestone, UCL MF157; UCL MF158, x54.

Fig. 8. Miogypsinella borodinensis Hanzawa. Late Oligocene, Loc. 204, Borneo, UCL
MF159, x45.

Figs 9-15. Miogypsinella bornea new sp. Late Oligocene (Early Chattian - Early Aquitanian),
Java, holotype UCL MF160, 9, x45; paratypes UCL MF161 -6, 10, x50; 11, megalospheric
form, x42; 12, x45; 13, x34; 14, x29; 15, x20.

Figs 16-23. Miogypsinoides dehaarti (van der Vlerk). 16-17, 23, Late Aquitanian, Sulawesi,
16, UCL MF167-72, x21; 17, x20; 23, x30. 18-19, Miocene (Burdigalian), Waterfall Section,
Christmas Island, Indian Ocean, NHM 6764 1295, 18, x24; 19 x27. 20-22, Miocene, Late
Aquitanian, Loc. 251, Borneo, 20, x17; 21, x15; 22, x19.

Fig. 24-25. Miogypsina borneensis Tan Sin Hok. Miocene (Aquitanian), Darai Limestone,

Papua New Guinea, UCL MF173-4, 24, x45; 25, x30.



Plate 2

Figs 1-2, 14. Miogypsinoides dehaarti (van der Vlerk), 1-2, Miocene (Burdigalian), Nias,
Sumatra, 201, UCL MF175-6, x50; 14, Early Miocene, Middle Burdigalian, Subis Formation,
Borneo, UCL MF178, x24.

Figs 3-4. Miogypsina kotoi Hanzawa. Early Miocene, Middle Burdigalian, Subis Formation,
Borneo, S21, UCL MF179-8, 3, x22; 4, x18.

Figs 5. Miogypsina tani Drooger, Early Miocene, Middle Burdigalian, Subis Formation,
Borneo, UCL MF189, SB8, x25.

Figs 6-10. Miogypsina subiensis new sp. Early Miocene, Middle Burdigalian, Subis
Formation, Borneo, holotype UCL MF192, paratypes 190-91, 193-5. 6, S15, x28; 7, 8, SB6,
x29; 9, 10, SB8, x32.

Figs 11-13, 21. Miogypsina globulina (Michelotti). Burdigalian, Borneo. Loc. 251, UCL
MF196-9, 11, 13, x29; 12, x23; 21, Nias, x40.

Figs 15-17. Miogypsinodella primitiva BouDagher-Fadel and Lord, Miocene (Burdigalian),
Nias, Sumatra, UCL MF200-3, 15, x29; 16, x24; 17, x32.

Fig. 18. Lepidosemicyclina thecideaeformis Rutten, Miocene (Burdigalian), Upper Chake
Beds, Pemba, Tanzania, NHM P22849, x39.

Figs 19-20. Miogypsina indonesiensis Tan Sin Hok. Miocene (Serravallian), Nias, UCL
MF204, x19.

Figs 22-25. Miogypsina niasiensis new species. Gawo Formation, Nias Island, N161, Early
Langhian, Middle Tf1, holotype UCL MF205, N192, Late Burdigalian, lower Tf1, paratypes

UCL MF206-8, 22, x35; 23, x44; 24, x33; 25, x39.



Plate 3

Figs 1-2. Miogypsina kotoi Hanzawa. Early Miocene, NHM coll. 1981/3 Borehole, 075A,
245.4m Sakakanan Kalimantan, UCL MF206-7, 1, x45; 2, x22.

Figs 3-7. Miogypsina regularia new species. Nias, Indonesia, Gawo Formation, 25, Tf1,
Holotype, UCL MF208, 3, x15; paratypes UCL MF209-12, 4, x20; 5, x33; 6, x22; 7, x24.
Fig. 8. Miogypsina bifida Rutten, Miocene (serravallian), Sungai, Boengaloen, East Borneo,
NHM. Van Vessem, coll. BB 469 — 1913, x19.

Figs 9-16. Miogypsina samuelia new species. Nias, Indonesia, Gawo Formation, 27B,
paratypes UCL MF214-20, 9, x32; 10, x20; 11, x21; 12, x24; 13, x28; 14, x24; 15, x30;
holotype UCL MF221, 16, x26.

Fig. 17. A) Lepidosemicyclina banneri new species, B) Heterostegina (Vlerkina) borneensis
van der Vlerk. Early Miocene (Burdigalian), Borneo, Loc. 203, UCL MF222, x12.

Figs 18-23. Miolepidocyclina banneri new species. Early Miocene (Burdigalian), Java,
Indonesia, holotype 20A, UCL MF223; paratypes UCLMF224-27, 18,19, x5; 20, x3; 21, x4;
22,x4; 23, xX7;

Fig. 24. Miolepidocyclina sp.1, Late Burdigalian, Borneo, Loc 130, UCL MF269, x12.



Plate 4

Figs 1. Neorotalia tethyana new species. Rupelian, Cyprus, Geroskipou, UCL MF266, x44.
Fig. 2. Paleomiogypsina boninensis Matsumaru, Late Chattian, Cyprus, Geroskipou, UCL
MF228, x43.

Figs 3-8. Miogypsinella cyprea new species. Early Miocene, Aquitanian, Terra Limestone,
Cyprus, holotype UCL MF229, 6, x27; paratypes UCL MF230-33, 3A, 4, x42; 5, x43; 7A,
x40; 8, x36.

Figs 9-10. Miogypsinoides complanatus (Schlumberger). Early Miocene, Aquitanian, Terra
Limestone, Cyprus, UCL MF234-5, 9, x32; 10, x40.

Figs 11-12, 17. Miogypsinoides formosensis Yabe and Hanzawa. Early Aquitanian, Nerthe
area, near Marseille, Petit Nid section, Formation pararécifale du Cap de Nautes, Ferr. Coll.
MF252, 11, x48; 12, 17, x38.

Figs 13-16. Miogypsinoides bantamensis Tan Sin Hok. Late Burdigalian, Ferr. Coll. MF253-
6, 13-14, Northern Sardinia area, Castlesardo section, 13, x29; 14, x32; 15, Early Aquitanian,
the Nerthe area, near Marseille, Petit Nid section, Formation pararécifale du Cap de Nautes,
x30; 16, Late Burdigalian, Northern Sardinia area, Castlesardo section, x40.

Figs 18-19. Miogypsinoides dehaarti (van der Vlerk). Miocene (Burdigalian), Cyprus, UCL
MF236-7, 18, x 33; 19, x27.

Figs 20-21. Miogypsina gunteri Cole. Miocene (Aquitanian), top of Superga Mountain,
Aman, about 2km S.E. of Superga, NHM coll MF257, x19.

Figs 22-23. Miogypsinodella pillaria Ferrandini ef al.. Miocene (Burdigalian), 22, Cyprus,
UCL MF238, x23; 23, Bonifacio area, southern Corsica, Cala di Labra Est section, R1 of

Cala di Labra Formation, Ferr. Coll. MF239, x28.



Plate 5

Figs 1-3. Miolepidocyclina excentrica Bronnimann. Late Burdigalian, Bonifacio area,
southern Corsica, Cala di Labra Est section, R1 of Cala di Labra Formation, Ferr. Coll.
MF240, 1, x30; 2, x28; 3, x30.

Fig. 4. Miogypsinoides dehaarti (van der Vlerk). Miocene (Late Burdigalian), Northern
Sardinia area, Castlesardo section, Ferr. Coll. MF241, x31.

Fig. 5. Miogypsina globulina (Michellotti). Balistra section (R2), Bonifacio area, southern
Corsica, Cala di Labra Formation, Ferr. Coll. MF242, x30.

Figs 6-7. Miogypsina mediterranea Bronnimann. Late Burdigalian, Bonifacio area, southern
Corsica, Cala di Ciappili section, R1 of Cala di Labra Formation, Ferr. Coll. MF243, x24.
Fig. 8. Miogypsina cushmani Vaughan. Miocene (latest Burdigalian), Castlesardo section
(Northern Sardinia), equivalent of Cala di Labra formation, Fernandini coll., Ferr. Coll.
MF244, x32.

Figs 9-18. Miogypsina mcmillania new species, Burdigalian, Childs Bank Burdigalian, Kal,
400m, South Africa, McMillan coll., 9, holotype UCL MF239, 10-18; paratypes UCL
MF240-9, x29.

Figs 19-21. Miogypsina africana BouDagher-Fadel and Price, new species. Burdigalian,
Childs Bank Burdigalian, Kal, 360m, South Africa, McMillan coll., 19, holotype UCL
MF250; 20-21, paratypes, UCL MF270-71, x25.

Figs 22-24. Miogypsina southernia BouDagher-Fadel and Price, new species. Burdigalian,
Childs Bank Burdigalian, Kal, 360m, South Africa, McMillan coll. 22, holotype UCL
MF273; 23-24, paratypes UCLMF274-275, x20.

Fig. 25-26. Miogypsina ianmcmillania BouDagher-Fadel and Price, new species. Burdigalian,
Childs Bank Burdigalian, Kal, 360m, South Africa, McMillan coll., 25, holotype UCL

MF276; 26, paratype, UCL MF277, x17.



Plate 6

Gigs 1-3. Packstone of Miogypsinoides cyprea new species. Late Oligocene, Chattian, Terra
Limestone, Cyprus, UCL MF262-264, x20.

Figs 4-5. Miogypsina antillea (Cushman). Late Burdigalian, Cyprus, Terra member, UCL
MF265-8, x27.

Figs 6-8. Miolepidocyclina burdigalensis (Glimbel). Burdigalian, Cyprus, UCL MF256-57,
x28.

Figs 9-13. Miogypsina mediterranea Bronnimann. Late Burdigalian, Morocco, UCL MF252-
5, x8.

Fig. 14. Miogypsina globulina (Michellotti). UCL MF258, x10.

Figs 15-16. Miogypsina cushmani Vaughan. Miocene (latest Burdigalian), Castlesardo
section (Northern Sardinia), equivalent of Cala di Labra formation, Fernandini coll., Ferr.
Coll., UCL MF259-60, 15, x17; 16, x30.

Fig. 16. Lepidosemicyclina excentrica Tan Sin Hok. Late Burdigalian, Java, JBC3KAL197,

UCL MF263, x5.
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