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ABSTRACT  

 

The research reported in this thesis investigated aspects of statistical models used for 

genomic selection. The importance of, and, interest in genomic selection is driven by 

the desire to increase the rate of genetic gain for commercially important traits. 

Genomic selection could increase the rate of genetic gain by increasing the accuracy 

of selection through the inclusion of DNA markers.  

 

Multiple methods and models have been proposed for implementing genomic 

selection. All methods have to overcome the problem that the number of DNA 

markers (p) is typically much larger than the number of phenotypic records (n) i.e. the 

p>n problem. One approach to this problem is to use Bayesian Inference which 

allows for an oversaturated model. Two simulation studies and a large data study were 

undertaken to gain a comprehensive understanding of what makes a robust and 

accurate Bayesian prediction model. Results from the simulation studies indicated that 

the match between the assumed QTL distribution and the true QTL distribution had 

an effect on the accuracy of the direct genomic values (DGV) produced by the 

different Bayesian models. Some of the models producing accurate DGV were 

computationally demanding. Subsequently, a novel Bayesian model using Stochastic 

Search Variable Selection (SSVS) for genomic selection was developed (Bayes 

SSVS). This model was demonstrated to produce accurate DGV and be 

computationally efficient.  

 

In contrast to the results from simulated studies, the results from a real dairy cattle 

data study showed a general equality in the accuracy of prediction across the various 

Bayesian models including Bayes SSVS. The exception was for traits with atypical 

genetic architectures such as fat percentage in milk where Bayes SSVS and other 

model selection approaches performed better than other approaches assuming that all 

markers equally contributed to the total genetic variation.  

 

The thesis also sought to explore the potential of genomic selection for improving 

novel traits that have been traditionally very difficult to select for. Energy Balance 

(EB) is a minimally recorded trait as the cost and measurement logistics mean it can 

only recorded on experimental farms. Using EB as a case study, it was demonstrated 
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that genomic selection could provide the opportunity to select for EB and other 

minimally recorded through the accurate prediction of DGV. Additionally, selection 

for EB could be a valuable tool in finding a balance between production and non-

production traits.  

 

Another attractive feature of some of the Bayesian models for genomic selection is 

they can be used to map QTL. Consequently, the establishment of significance when 

using multi-locus models for genome wide association studies was explored using a 

permutation testing approach. Three examples demonstrated that the permutation 

testing approach could correctly identify QTL. Two specialised approaches, 

permuting within strata, are presented. One approach accounted for a structured 

pedigree satisfying the condition of exchangeability. The second approach enabled the 

identification of secondary moderate QTL in the presence of a major QTL. The effect 

of the number of permutations needed was also examined; confirming previous 

results. This method was shown to provide accurate identification of QTL when 

compared with current approaches.  
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CHAPTER 1  

Introduction 
 

1.1 THE DEVELOPMENT OF SELECTION TECHNIQUES 

 

Genetic improvement of breeding stock has been the goal of livestock producers for 

centuries. The emphasis on the selection of superior animals is driven by the desire to 

both reduce economic costs, for example by reducing health problems or selecting 

animals with better feed efficiency, and to increase profit by producing animals with a 

better quality and quantity of the desired product. Over the years, it has become 

apparent that, in most species, a range of traits need to be selected to obtain animals 

with a balanced range of desirable characteristics.  

 

The accuracy of the selection for the desired traits determines the amount of genetic 

gain. This desire to select the superior animals as breeding stock has lead to the 

refinement and development of selection methods as technology has become 

available. Traditionally, selection was based entirely on phenotypic characteristics. 

These traits include reproductive features, weight, body composition and carcass 

characteristics. Some of these characteristics were evaluated visually, for example for 

beef cattle, characteristics like anatomical soundness. Other characteristics include 

different production traits that were identified as significant and quantifiable.  

Initially, employing these characteristics, an animal’s worth was determined using 

within herd ratios; that is, an animal’s relative worth was measured as the difference 

from the herd average. The contemporary herd comparison, proposed in 1954 

(Henderson et al., 1954), followed the use of simple averages based on differences in 

daughter and dam records (Lush, 1931, Lush, 1933).  In each case, the aim was to 

estimate the unobserved genetic or breeding value.    

 

In 1950, C.R Henderson introduced the idea of best linear unbiased prediction 

(BLUP) (Henderson, 1950). He referred to the BLUP estimates as “joint maximum 

likelihood estimates”. The BLUP principle was concurrently developed in 

econometrics (Goldberger, 1962). Henderson then went on to refine the method to 

enable it to include genetic relationships between animals by including recorded 
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pedigree information and computational methods for implementation (Henderson, 

1973, Henderson, 1975a, b, 1976, 1977, 1978).   

 

Computational advances in the 1980s allowed breed associations to start applying the 

animal model that Henderson had developed. The associations use the BLUP 

procedure to calculate and report estimated breeding values (EBVs) as a numeric 

representation of an animal’s genetic worth. EBVs are an efficient way to combine 

heritability information with the performance of relatives and progeny to predict an 

animal’s breeding value. EBVs effectively allow breeders to select and compare 

animals. The breeding values can now be reported to a base average of more than that 

of animal’s herd or management group. Australian Breeding Values (ABVs) are 

recorded by the Australian Dairy Herd Improvement Scheme (ADHIS) in a national 

database containing all Australian Dairy Cattle. Similarly for beef cattle, 

BREEDPLAN reports EBVs for Australian beef cattle and is also utilised in other 

countries. Initially only like-treated cattle (same management group) were compared. 

Subsequently, management groups have been linked via common herd genetics (sires 

with progeny in more than one management group) allowing cross-herd comparisons.  

 

While substantial genetic gain has been achieved by selection on EBV evident 

through its implementation across many industries and countries, in recent years the 

information on the bovine genome has increased dramatically. Single nucleotides 

polymorphisms (SNP) have become mapped in the hundreds of thousands while, in 

more recent years, some animals have had their genome completely sequenced (Liu et 

al., 2009). Consequently, with such an increase in information, considerably more 

research has been focused on identifying mutations or quantitative trait loci (QTL) 

affecting economically important traits. The identification of major QTL can be used 

to select animals with the QTL to increase the genetic gain for a desirable trait. 

  

Despite substantial research on marker assisted selection (MAS) in general, the results 

have had minimal impact. This is because, as is becoming increasingly clear, most 

traits are not controlled by QTL with large effects but are affected by many QTL with 

each explaining only a small amount of the variation seen in the trait (e.g. 

Chamberlain et al. (2007)). Therefore identifying and selecting on only one or a few 
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QTL has not produce the results or genetic gain that was initially expected and 

desired.  

 

Genomic Selection (Meuwissen et al., 2001) is an alternative approach to MAS. The 

main difference is that MAS seeks to use only a single or small subset of SNPs known 

to be linked to QTL, whereas genomic selection uses all SNPs at once and therefore 

can explain more of the variation for the trait of interest. Genomic selection does not 

attempt to quantify the number of or identify QTL affecting the trait of interest but 

seeks to capture and maximize the proportion of genetic variance that can be 

explained by the markers. Genomic prediction, the first step in genomic selection, 

uses linkage disequilibrium (LD) between the SNP markers and the QTL to capture 

the true QTL effects and thus the animal’s true breeding value. Thus genomic 

prediction estimates SNP effects in order to approximate the true QTL effects.  

 

The major challenge of genomic prediction is to accurately model the true QTL 

effects. This challenge is caused by disparity between the large number of SNP 

markers (p) and the number of records (n) that are available to estimate the SNP 

effects. This is the well documented p>n statistical problem. Any model to be used for 

genomic prediction must be able to accommodate the p>n problem.    

 

Genomic selection is the selection of animals based on their direct genomic value 

(DGV) for a specific trait. These DGV are estimated breeding values, based only on 

marker effects and genotypes. The creation of the prediction equation and subsequent 

estimation of the DGV is termed “genomic prediction” and is the first step in genomic 

selection. This first step utilises a reference population of animals that have 

phenotypes, genotypes and a known pedigree. The second step is using the prediction 

equation to estimate DGV for a set of selection candidates and then to select the best 

animals based on these genomic breeding values.  

 

The importance of, and, interest in genomic selection is driven by the desire to 

increase the rate of genetic gain for commercially important traits. Genomic selection 

provides an approach to increase the rate of genetic gain by through the inclusion of 

DNA markers. This is caused by a higher accuracy of selection. Additionally, 

genomic selection allows for the selection of juvenile animals without phenotypes.  
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This can be exceptionally useful for traits were phenotypic observations are only 

possible late in life e.g. sex limited traits and slaughter quality traits. This early 

selection leads to both, a decrease in generation interval and a decrease in the age at 

first mating.  In addition, traits that using current selection techniques have a low 

accuracy of selection could achieve a higher accuracy of selection through the use of 

genomic selection. This potentially includes traits that have a low heritability, that are 

difficult or expensive to measure, and thus are minimally recorded, such as late life 

and slaughter quality traits, and disease resistance.        

 

1.2 AIMS AND OUTLINE OF THE THESIS 

 

Multiple methods and models have been proposed for implementing genomic 

selection. Perhaps the most popular approach is Bayesian Inference. This approach 

allows for an oversaturated and sparse model which is one approach to the p>n 

problem where the number of parameters (p) (in this case the SNP effects) to be 

estimated is greater than the number of records or observations (n) available for 

estimating them. The next chapter reviews the literature and possible models for 

genomic prediction.  

  

Subsequent chapters (3-6) focus on aspects of and development of Bayesian models 

and their performance. Bayesian approaches are dependent on the specification of 

prior distributions. The choice of prior distributions therefore can have a significant 

impact on the accuracy of the predicted DGV through the prediction of the SNP 

effects. In the research reported in the Chapter 3, the effect on the accuracy of the 

predicted DGV caused by varying the prior distributions used for the SNP effects was 

investigated. The major finding was that the approaches that produced the higher 

accuracies were the most computationally demanding. Consequently, an additional 

method, known as Bayes SSVS, was developed. It is presented in Chapter 4. The 

advantage of Bayes SSVS is that it maintained the assumptions of the original 

accurate Bayes B (Meuwissen et al., 2001) approach while requiring a less 

computationally demanding MCMC algorithm. Using real dairy data, this approach 

was demonstrated to produce accurate results equivalent to the original Bayes B. This 
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approach and the results of this study have been published in Genetics Research 

(Verbyla et al., 2009). 

 

A second simulation study is presented in Chapter 5. This study used the simulated 

data from the 13th QTL-MAS workshop where the data structure closely resembled a 

linkage analysis and again examined the effect of different prior distributions. Bayes 

SSVS from Chapter 4 was one of three new methods not presented in Chapter 3. 

Bayes A that was applied in Chapter 3 was also used. This study showed that 

Bayesian methods that allowed SNP to explain different amounts of variation 

produced very similar sets of DGV compared to a genomic BLUP approach which 

assumes that all SNP explain an equal amount of variation. Despite producing a 

different set of DGV, the Bayesian genomic BLUP approach produced DGV equally 

highly correlated with the true breeding values (TBV). This indicated that despite its 

dissimilar assumptions to the other approaches that it may still provide a viable 

approach to genomic prediction under certain conditions. This second simulation 

study has been published in BMC Proceedings as part of the publications from 13th 

QTLMAS workshop (Verbyla et al., 2010a). 

 

Chapter 6 contains a critical overview of a range of Bayesian approaches and 

examines the accuracy of these approaches when predicting DGV in real data. It 

examines the robustness of the different models across nine dairy traits with differing 

genetic architecture. In addition, it examines whether the pre-selection of smaller 

subsets of SNP is detrimental or beneficial to the accuracy of prediction. For this 

research, a set of proven bulls with Australian Breeding Values (ABV) for the nine 

dairy traits were used to predict DGV using Bayes A and Bayes BLUP with three 

different sets of SNP (two subsets and a set of all SNP). Bayes SSVS was also run to 

enable further comparison.  In addition to DGV, Genomic Estimated Breeding Values 

(GEBV) were calculated. This enabled the accuracies of the GEBV to be discussed 

and compared to the outcomes of other studies using real data and conclusions drawn. 

This study was orally presented at the 2nd Nordic-Baltic Biometric Conference, 2009 

(Tartu, Estonia) and the 60th Annual Meeting of the European Federation of Animal 

Science 2009 (Barcelona, Spain).  
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Genome wide association studies (GWAS) to identify QTL are still of importance for 

understanding biological pathways and identification of genes affecting traits. 

Identification of important biological factors may allow the modification of traits and 

a better understanding of traits’ genetic architectures both of which may increase the 

accuracy of genomic prediction. The multi-locus models used for genomic selection 

can also be used for GWAS. Most QTL studies are performed using single marker 

models despite the fact that the use of multi-locus models overcomes many of the 

problems associated with estimating the variances, significance and effect sizes of all 

markers in separate models. The problem of determining significance however can 

still remain with the use of multi-locus models; to address this, in Chapter 7, a 

permutation testing approach is presented. The approach allows for the establishment 

of significance when using multi-locus models for genome wide association studies. 

Three examples demonstrate how the permutation approach can be used to produce 

thresholds that allow the declaration of significant major or moderate QTL. Two 

stratification approaches are presented. One approach was designed to allow for a 

structured pedigree within the data and to allow the condition of exchangeability to be 

satisfied. The second approach enables the identification of secondary moderate QTL 

when a major QTL is present. This study has been submitted for publication in 

Genetics. 

 

The research covered in Chapter 8 demonstrated that genomic selection could be used 

to implement selection for novel traits that are typically minimally recorded due to 

cost or logistical difficulty in implementing recording in progeny testing schemes 

such as Energy Balance (EB). Energy Balance is generally only recorded on 

experimental or nucleus farms. Using a small number of Dutch genotyped animals, 

the accuracy of estimated breeding values predicted using purely polygenic 

information (EBV) versus utilising all available SNP and polygenic information 

(DGV) was examined. The use of SNP information showed an increase in the 

accuracy of prediction for EB over the simple polygenic model. The study showed 

that in the future, selection for EB could be performed using genomic selection which 

could provide a valuable tool in finding a balance between production and non-

production traits. This result and study has been published in the Journal of Dairy 

Science (Verbyla et al., 2010b).  
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In the final chapter (Chapter 9), a summary of the key findings are presented and the 

implications of the research outcomes are discussed. In addition, possible future 

directions are considered, indicating the increasing potential of genomic selection, 

further enhanced by the contribution of this research.  
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CHAPTER 2  

Literature Review 

 

2.1 INTRODUCTION  

 

As the information on the bovine genome has increased, much focus has been on the 

identification of quantitative trait loci (QTL) and the inclusion of genetic information 

in selection techniques. Substantial research has been carried out on Marker Assisted 

Selection (MAS) where selection is based on one or a set of markers. An overview of 

the principles of MAS and implementation in livestock is provided by Dekkers 

(2004). The markers can be in linkage with the QTL, in linkage disequilibrium (LD) 

with it, or it can be based on the causative mutation gene or can be the causative 

mutation. A few major QTL and genes affecting traits of interest have been identified 

and thus some possible markers for use in MAS have been found e.g. Grisart et al. 

(2002). However, it has become apparent that many traits are controlled by a large 

number of moderate and minor QTL all contributing to small amounts of the genotype 

and phenotypic variation (Chamberlain et al., 2007). Thus, there has been only limited 

successful implementation of MAS.  

 

In 2001, Meuwissen et al. published a paper describing a new approach to using 

marker data for prediction of breeding values called Genomic Selection (Meuwissen 

et al., 2001). The main difference is that whilst MAS uses only a single or small 

subset of markers or single nucleotide polymorphisms (SNP), in contrast, genomic 

selection uses all SNP at once and therefore can explain more of the variation for the 

trait of interest. Another difference is that genomic selection assumes that the markers 

are always in linkage disequilibrium with QTL and therefore the markers can be 

assumed to be the QTL for the purpose of modelling. In contrast, some MAS schemes 

assume linkage equilibrium between the markers and QTL which means all QTL 

alleles are treated as different and have to be estimated separately. 

 

Ideally, the true QTL effects could be estimated, however this is not possible. 

Consequently, genomic prediction and selection seeks to use the LD between the 

markers and the QTL to model as accurately as possible the true QTL effects. Thus 
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the SNP themselves do not have a causal effect on the phenotype but an apparent 

effect due to being in LD with the QTL.  

!

When the idea of genomic selection was first introduced, the markers available did 

not provide sufficient coverage of the genome to enable the markers to capture the 

QTL effects. However in 2003, sequencing of the bovine genome began as part of the 

collaborative project proposed in the bovine genomic sequencing initiative white 

paper (Gibbs et al., 2002). That paper indicated a goal to identify 100,000 SNP for use 

in identification and mapping of QTL regions. Recent bovine SNP chips such as those 

containing 10,000 (Affymetrix GnenChip® Bovine Genome Array) and 54,000 SNP 

(Illumina BovineSNP50 BeadChip) allow sufficient coverage of the genome to begin 

the process of developing strategies to utilise fully this information in genomic 

selection. These developments and the large reductions in the cost of the technology 

have made its application viable.  Given the availability of the SNP data at reasonable 

cost, development of statistical methods to allow accurate prediction of breeding 

values for selection candidates in breeding programs from this data are critical.  The 

discrepancy between the large number of SNP and the smaller number of phenotypic 

records provides the challenge if the modelling of the SNP effects is to fully utilize 

the available information. The following section describes the framework of genomic 

selection while the methods proposed for genomic prediction and the relevant 

literature are reviewed in the remaining sections in this chapter.   

 

2.2 IMPLEMENTATION OF GENOMIC SELECTION 

 

As illustrated in Figure 2.1, the success of Genomic Selection relies on deriving an 

accurate prediction equation for predicting breeding values from marker genotypes. 

As stated in Chapter 1, genomic breeding values based on animals’ genotypes are 

called direct genomic values (DGV).  These DGV can be used to rank and then select 

the best animals for breeding. Notation for estimated breeding values that utilise 

marker data is still evolving, but commonly DGV refers to an estimated breeding 

value from the SNP prediction equation only.  

The simplest DGV is the sum of the all SNP effects e.g. !=
=

p

j
jj !

1

ˆxDGV  where the 

DGV is the direct genomic values calculated for the ith individual, xj is the indicator 
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variable representing the genotype of the jth marker for the ith individual (xj=0,1,2),  

j!̂  is the estimated effect associated with marker j. However, the term DGV can also 

be used when a polygenic effect (based on the pedigree) and the estimated mean are 

included (Figure 2.1). The term genomic estimated breeding value (GEBV) contains 

both DGV and traditional pedigree and phenotypic information. The extra information 

contained in the GEBV extracted from the traditional pedigree and phenotype data is 

not used in the calculation of the DGV. 

 

The process of creating the prediction equation and then the prediction of DGV is 

hereafter referred to as genomic prediction. The prediction equation is estimated in a 

reference population where phenotypes and genotypes exist (Figure 2.1). Once the 

prediction equation is constructed, the DGV for the selection candidates are directly 

calculated requiring only an animal’s genotype (SNP) information and the prediction 

equation.  

 

 

 

Figure 2.1 - Genomic Selection Procedure 
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The ideal reference population has a number of requirements. Evidence suggests that 

the accuracy of genomic prediction increases as the number of animals within the 

reference population increases (Hayes et al., 2009c, Usai et al., 2009, VanRaden et al., 

2009). Along with this, the type of animals that are in the reference population is 

equally as important. In the dairy industry, proven bulls provide an excellent option to 

form the reference population. This is for two reasons. Firstly reference animals need 

to have reliable phenotypic information; this can be in the form of recorded 

phenotypes but also estimated breeding values, deregressed EBVs or daughter yield 

deviations (DYD). Proven bulls have reliable estimated breeding values based on the 

phenotypes of many offspring. The second reason is because it has been demonstrated 

that the prediction equation produces the most accurate DGV when the animals in the 

reference population are related to the selection candidates (Habier et al., 2007, 

Habier et al., 2010b). If the prediction equation is to be used across genetically 

different populations, then animals from each distinct population should be present in 

the reference population. Additionally, Muir (2007) showed that the accuracy 

produced by a prediction equation persists for more generations if the reference 

population contains animals from multiple generations.   

 

With a suitable reference population in place, the critical issue for genomic prediction 

is the method used to predict the SNP effects and establish the prediction equation. In 

the following section, the methods that have been proposed for genomic prediction 

are systematically described; they are categorized according to how they tackle the 

underlying statistical problem of p>n where the number of markers, p, significantly 

exceeds the number of phenotypic records, n. The focus of part of this thesis is on 

aspects related to the performance of Bayesian methods for genomic prediction; it is 

in the other chapters of this thesis that the performance of the methods which are 

outlined in this chapter is evaluated. 

 

2.3 STATISTICAL METHODS FOR GENOMIC PREDICTION 

 

Genomic prediction relies on using SNPs located across the entire genome. This 

means that any statistical method implemented for genomic prediction must be able to 

simultaneously evaluate marker effects across the entire genome. Consequently the 

main difficulty to be addressed is how to handle large numbers of markers in a single 
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model, especially when the majority of the time the number of markers, p, will 

significantly exceed the number of phenotypic records, n i.e. the statistical problem of 

p>n.  

 

The classical multivariate linear regression problem assumes p variables 

pXXX ,.....,, 21  (where Xi is a 1 x n vector) and a response vector y, again with n 

observations. The linear relationship between the two corresponds to the simplest 

prediction equation and can be expressed generally as  

eX!y +=         

where X is the n x p design matrix, !  is the vector of coefficients and e is the residual 

error also assumed to be normally distributed, ( )2,0~ eIe σN . The vector of 

coefficients, β , using classical regression when it is fit as a fixed effect is estimated 

by ( ) yXXX ''
1−

, thus requiring np ≤ . Unfortunately, as the number of SNP 

available is usually far greater than the number of phenotypic records, this approach is 

not viable for genomic prediction. This is because there is no unique solution to !  

but many equally good solutions (i.e. the sum of squares equals zero). For instance, 

one solution is ( ) yXXX! 1
''

−= . Despite there being possible solutions, a problem 

arises when these !  are used in a new sample and the prediction error variance is 

large. 

 

Hierarchical models which overcome this p>n problem perceive the problem as a 

prediction problem where the effects of all p parameters are estimated (i.e. BLUP). 

Whilst others approach the problem as a model or variable selection problem utilising 

sparsity, still others use dimension reduction approaches to attempt to establish the 

original variable or set of variables. The models can also be distinguished by their 

assumptions or lack of assumptions about the distribution of QTL effects. Those 

models using model/variable selection and dimension reduction approaches are 

seeking to remove the noise and identify the important parameters explaining 

variation. Consequently these models can also be used in QTL studies and genome 

wide association studies. Another decision is whether to use a linear or non-linear 

predictor. This leads to the question of whether using non-linear predictors is sensible 

given that the SNP effects are linearly combined when calculating DGV. 
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A further question is whether to model the QTL effects as fixed or random. Generally 

the approaches proposed for genomic prediction, as discussed later in this chapter, 

choose to fit the effects as random. This is because it allows all SNP to be fitted in a 

single model. These models include both Bayesian and frequentist approaches. A 

Bayesian always treats all parameters as random with distributions while frequentists 

are able to fit both random and fixed effects. Frequentist and Bayesian perspectives 

differ due to the fundamental beliefs and definition that they attribute to probability. A 

frequentist sees probability as a long-run frequency and will calculate confidence 

intervals and construct significance levels. In contrast, Bayesians perceive 

probabilities to be a measure of the "degree of belief" and using Bayes' theorem (the 

rules of probability) the belief can be revised given the observed data. Chapter 3 

contains an introduction to Bayesian Inference. 

 

2.3.1 Stepwise Regression 

 

An obvious approach to determining a prediction equation is to use the classical least-

squares regression in a stepwise procedure. Two different such approaches have been 

proposed for genomic prediction. Meuwissen et al. (2001) present a two step 

procedure where each marker location is tested for significance and those that are 

deemed significant are included in the final fixed regression model to estimate the 

DGV. Alternatively, Habier et al. (2007) and Moser et al. (2009a) use a forward 

stepwise regression as described in Kutner et al. (2005). This approach adds and 

removes markers from the model based on significance until no more markers can be 

added or removed. Once a suitable first-order linear regression equation is developed 

this becomes the prediction equation and the DGV are calculated. This approach is 

not perfect, as ideally all markers would be included simultaneously and their 

significance and effect calculated concurrently. The way to be able to do this is to 

treat the SNP or QTL effects, ! , as random effects. All other models proposed for 

genomic prediction, described hereafter model, the SNP effects as random.  
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2.3.2 BLUP 

 

The simplest approach to modelling the SNP effects as random is to use BLUP (Best 

Linear Unbiased Prediction) estimation using random regression. BLUP assumes that 

each SNP effect is drawn from a normal distribution with a constant variance. This 

assumption is actually an infinitesimal model but will be a good approximation 

whenever there are many QTL affecting a trait and none of them have a large 

individual effect. BLUP assumes the same general model and assumptions as 

presented earlier for a classical multivariate linear regression problem (Section 2.3) 

where in addition BLUP assumes that the maker effects !  come from a normal 

distribution with a common variance. Thus 

   eX!y +=         [1]  

where ( )2,0~ βσN!   

The SNP effects, !  are estimated by solving  

( ) yRXIRXX 11
'' −−+ λ       [2]  

where 22
βσσλ e=  is constant for all markers and R is a diagonal matrix of weights 

which reflects the reliabilities of phenotypes (y) as predictors of breeding value. The 

diagonal elements of R can be set to 1 thus R=I, this occurs when no information is 

available to weight the phenotypes or where all are highly reliable.   

 

Assuming that the markers are dense enough so that the QTL genotypes are 

completely predictable from the marker genotypes, then the markers will explain the 

complete genetic variance ( 2
aσ ). The genetic variance explained by the average 

marker will therefore be 2H βσ  where H  is the average heterozygosity of markers. 

The heterozygosity of a particular marker is !−= 21H kp where kp  is the frequency 

of the kth allele and the sum is over all alleles. Under the assumption that each ! is 

drawn from a distribution with constant variance 2
βσ  and ! is independent of the H , 

then )(22
pa nH ×= σσ β .  
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Meuwissen et al (2001) assumed 1H =  because their markers were actually 

haplotypes of two multi-allelic markers. However, assuming that 1H =  leads to an 

underestimate of 2
βσ  and so the estimates of ! will tend to be shrunk excessively. 

When using SNP markers that had only two alleles, Habier et al (2007) used 

( )! −=
m

mma pp 1222 σσ β  where mp is the allele frequency for the mth SNP.  Both 

approaches have been applied in other studies (Moser et al., 2009a, Nielsen et al., 

2009, Usai et al., 2009).  

 

The random regression BLUP approach has been shown to be equivalent to the 

replacement of the additive relationship matrix (A matrix) with the genomic 

relationship matrix (GRM) in standard mixed models (Fernando et al., 2008, 

Goddard, 2008, Habier et al., 2007). For example, if the standard animal model is 

expressed as eXay n ++= µ1  where ( )ANa u
2,0~ σ  and  ( )2,0~ eINe σ  then the 

variance of y is 22')var( ea IZAZy σσ += . If A is replaced by G defined as 

( )! −
k

kk ppXX 12'  then ( )GNa u
2,0~ σ  and a is equal to X! from random regression 

BLUP [1]. Different approaches have been suggested for creating the GRM (Hayes 

and Goddard, 2008b, VanRaden, 2008). Neither of these BLUP approaches are 

concerned with determining the major effects that may reflect the QTL affecting the 

trait of interest, rather they are interested only in predicting the total genetic value of 

each animal. Thus this approach treats genomic prediction as a pure prediction 

problem.  

 

2.3.3 Ridge regression 

 

The BLUP approach discussed in the previous section is a special form of ridge 

regression (Whittaker et al., 2000). The BLUP solution for the SNP effects [2], is also 

the ridge regression solution for the SNP effects with λ
 
representing the penalty 

parameter. The penalty parameter, λ  can be found in different ways  such as cross 

validation (Draper and Smith, 1998). Whittaker et al. (2000) suggest testing a range of 

λ and choosing the λ that minimises the model error.  
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2.3.4 Bayes A 

 

An alternative to assuming a normal distribution of SNP effects is to assume a 

distribution with fat tails e.g. a t-distribution. This means that like BLUP all SNP are 

assumed to have some effect, however, the fat tails of the assumed distribution allow 

for the assumption that some of the SNP are in linkage disequilibrium with QTL of 

moderate to large effect. This assumption can be incorporated in a Bayesian model 

where the prior distribution for the SNP effects has a hierarchical structure. The SNP 

effects sampled from a normal distribution with the variance for each SNP sampled 

from an inverse scaled chi square distribution (or the analogous inverse gamma) as 

follows:  

( )

( ) "
#
$

%
&
'−−

2
,

2
~,~

,0~|

12 rsr
srv

vNv

i

iii

γχ

β

 

where r is the degrees of freedom and s is the scale parameter. This formulation 

means that the SNP effects are really being sampled from a student-t distribution. This 

is evident through the definition of the student t-distribution as probability distribution 

of the ratio; tVZ /  where Z is the normally distributed ( )1,0~ NZ  and V has a chi 

square distribution with t degrees of freedom. The expected mean on the distribution 

is zero and the variance is defined as 
2

)var(
−

=
t

t! .  

 

This model and formulation was termed Bayes A by Meuwissen et al. (2001). The 

formulation of Bayes A means that each SNP will have some effect. The shape of the 

distribution that the SNP effects are sampled from is dependent on the degrees of 

freedom used for the inverse scaled chi square distribution (and subsequently the t-

distribution). The values of the inverse scaled chi square distribution parameters, r 

and s, can be found for a random variable X, from the mean:  
)2(

)(
−

=
r

rs
XE  and the 

variance: 
)4()2(

2
)var(

2

22

−−
=

rr

sr
X . Combining the two expressions gives: 

)4(

2

)(

)var(
2 −

=
rXE

X
. Thus using the expected mean and variance, the hyper-parameters r 

and s can be set for the inverse scaled chi square distribution.  
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The variance for the t-distribution (inverse scaled chi-square distribution) is undefined 

for t<2 (r<4) and the mean is improper for t<1 (r<2).  As the degrees of freedom 

increase for the t-distribution, the distribution resembles a normal distribution. Thus 

with low degrees of freedom (for the inverse scaled chi-square distribution and  the 

resultant t-distribution), this framework allows for the majority SNP to have only 

minor effect with a few having larger, more major, effects.  For some traits, this 

distribution with fatter tails (see Figure 2.1) may have a better approximation to the 

real distribution of QTL effects than sampling the SNP effects from a normal 

distribution (Schaeffer, 2006).  

 

The t-distribution has been used more widely than other fat-tailed distributions 

because it is possible to sample directly from the posterior distribution when the data 

are normally distributed by using the hierarchical structure. The general form for the 

inverse scaled chi square conjugate prior and posterior distributions for the SNP 

effects are:  

( ) ( )sr,22 ~ −χσπ β j
 prior  

 ( ) ""
#

$
%%
&

'
+

+
+−

nr

!!rs
n,r

jj22 ~ χσ β j
post  posterior  

In the formulation of Meuwissen et al (2001), the values of r and s were calculated so 

that the prior distribution had the same mean and variance as an estimated distribution 

of QTL effects (eg. Hayes and Goddard (2001)) and n takes the values of 1.  

 

Xu (2003) and ter Braak et al. (2005) applied a Bayesian method analogous to that of 

Bayes A with alternative prior for the SNP variances. Xu (2003) set v and s to zero to 

give an uninformative prior where n again takes the value of 1 i.e. ( ) ( ) 122 ~
−

ii
p ββ σσ . 

ter Braak et al (2005) presented an extension of the proposed prior in Xu (2003) and 

report that to ensure a valid posterior the prior should be ( ) ( ) δ

ββ σσ
+−122 ~

ii
p where 

500 .≤< δ yielding a posterior where δ21 −−−−====n . All these priors are conjugate in 

nature and thus all can be implemented using the Gibbs Sampler, a Markov Chain 

Monte Carlo (MCMC) sampling algorithm (see Section 3.1.2 for introduction to 

MCMC sampling algorithms) allowing direct sampling from the posterior 

distribution. The prior and posterior distributions are summarised in Table 2.1.  
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Table 2.1- QTL effects variances prior and posterior distributions  

 Prior Distribution  Posterior Distribution  

Meuwissen et al. (2001) ( ) ( )sv
i

,~ 22 −χσπ β  ( ) "
#
$

%
&
'

+

+
+−

1
,1~ 22

v

vs
vpost ii

j

ββ
χσ β  

Xu (2003) ( ) ( ) 122 ~
−

ii ββ σσπ  ( ) ( )iij
post ββχσ β ,1~ 22 −  

te Braak et al. (2005) ( ) ( ) δ

ββ σσπ
+−122 ~

ii
 ( ) "

#
$

%
&
'

−
−−

δ

ββ
δχσ β

21
,21~ 22 ii

j
post  

 

Xu (2003) presented results using real barley data that indicate that multiple marker 

Bayesian analysis analogous to Bayes A gives much clearer results compared to 

individual marker regression analysis in a Genome wide association study. Whittaker 

et al. (2000) introduced the idea of marker-assisted selection using ridge regression 

(this is analogous to BLUP assuming a constant variance for all SNP), but even they 

acknowledge that having dense markers in the model produces serious co-linearity. 

Xu (2003) also showed that ridge regression was not viable for entire genome scans 

using simulated data as it estimated small effects across the simulated genome and 

failed to find any large effects (as would be expected using BLUP). However, Gianola 

et al. (2003) present a hierarchical method using ridge regression from a Bayesian 

perspective. That paper however presented only the theoretical aspects and there has 

been no subsequent simulation or application of the model published. 

 

2.3.5 Bayes B 

 

Another possible assumption for the SNP effects is that many of the SNP are in 

genomic regions where there are no QTL and thus have zero effects, whilst a small 

proportion of SNP are in LD with QTL and consequently do have an effect. 

Reflecting this assumption, Meuwissen et al (2001) present Bayes B. This alternative 

approach assumes that the majority of the SNP effects are exactly zero and only a 

proportion (1- !) of all SNP have a non-zero effect; those that are non zero have an 

individual variance using the identical prior to that used in Bayes A.  
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Consequently the SNP effects were sampled from a normal with the variance sampled 

with probability ! from a bulk at zero and 1- ! from the inverse scaled chi square 

distribution, as originally formulated in Meuwissen et al (2001) is expressed as:  

   ( )2
!i
#,0~| Nv iiβ  

0=2
!i
#  with probability ! 

( )sr,# 2
!i

2~ −χ  with probability 1-!  

This can alternatively be written as: 
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where 0I is a point mass at zero. This formulation is suggested as more appropriate 

from a Bayesian Inference perspective (Gianola et al., 2009), however both will 

produce the same t- distribution for the SNP effects.  

  

This hierarchical structure means that those effects that are non-zero can be thought of 

as those in stronger LD with the QTL. In fact, if the number of times a SNP is 

included in the model (i.e. has a non-zero effect) is recorded, the posterior probability 

of that SNP being linked to a QTL can be calculated.  

 

There are two issues with the use of Bayes B. The first is that ! has to be 

predetermined.  If a value which is inconsistent with the true distribution of SNP 

effects is chosen, the accuracy of the DGV could be negatively affected. To overcome 

this, a method for sampling this proportion has been presented by Fernando (2009). 

The proposed approach placed a uniform prior on ! ( ( )1,0! uniform= ) and it is 

sampled along with all other parameters during MCMC iterations. Once convergence 

is reached, the parameter is set to the mean of its posterior distribution and the 

algorithms are run again to estimate the SNP effects.  In general, ! is set to reflect the 

expected proportion of SNP in linkage disequilibrium with QTL relative to the total 

number of SNP. 

  

Another potential difficulty with Bayes B is that the hierarchical priors specified 

means the priors are not conjugate and thus cannot be sampled using a Gibbs 
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Sampler. (This is unlike in Bayes A where all parameters posterior distributions can 

be directly sampled using the Gibbs Sampler.) Meuwissen et al (2001) use a single 

site updating Metropolis Hastings algorithm where each element of β  (the SNP 

effects) and 2
!i
#  (the SNP variance) are updated individually. The use of the mixture 

distribution means as the prior distribution also could mean that the dimensionality of 

the model is changing as the number of SNP included in the model varies. However 

by setting the value of ! the dimensions of the model remain constant. In situations 

where the dimensions are dramatically changing (where ! is also being sampled) the 

reversible jump MCMC algorithm (Green, 1995) is needed to communicate across all 

possible models and their differing dimensionality according to the proper acceptance 

ratio. The reversible jump MCMC algorithm essentially generalizes the Metropolis-

Hastings algorithm and consequently the Metropolis Hastings is in fact a special form 

of the reversible jump MCMC algorithm.  

 

Despite these two issues, Meuwissen et al. (2001) demonstrated in simulated data that 

both Bayes A and Bayes B implemented using MCMC could be applied successfully 

to simultaneously estimate all SNP effects across the entire genome. They also 

showed in simulated data that the Bayesian regressions outperformed a least squares 

forward stepwise approach and the genomic BLUP approach. Bayes B produced more 

accurate DGV than Bayes A on the simulated data which was attributed to assumed 

prior distribution matching the simulated distribution of QTL effects. These results 

are likely to be dependent on the model used to simulate the data which more closely 

matched the assumptions of Bayes A and B rather than the other approaches trialled.   

 

2.3.6 LASSO  

 

The previously mentioned Bayesian approaches; Bayes A and Bayes B, assume that 

any non-zero QTL effects are sampled from a t-distribution. Alternatively, the double 

exponential distribution is another possible distribution for the SNP effects. The 

double exponential distribution has long tails like the t-distribution but has a larger 

number of small non-zero effects (see Figure 2.2). LASSO (least absolute shrinkage 

and selection operator) approach (Foster et al., 2007a, Tibshirani, 1996, Vach et al., 

2001) uses a double exponential for the distribution of the QTL effects when 
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formulated in a Bayesian framework. The LASSO estimates can be derived as the 

Bayes posterior mode under independent double exponential priors for the QTL 

effects (Tibshirani, 1996). The double exponential can also be expressed as a mixture 

distribution of normal distribution with variance sampled from an exponential 

distribution.  
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Figure 2.2- Comparison of prior distributions for the SNP effects. All distributions 

have a mean of 0 and variance of 2 (N(0,2) ,DE(1), t(4)). Normal used for BLUP, t-

distribution used for Bayes A and B, and Double Exponential used for LASSO.     

 

The LASSO was first proposed by Tibshirani (1996) as a technique that combines the 

strengths of subset reduction and ridge regression by setting some variables to zero 

and shrinking others. The LASSO model can be expressed as a linear random model 

and can also be incorporated into a linear mixed model (Foster et al., 2007a, Foster et 

al., 2007b). As the LASSO is a variance reduction and variable selection approach 

and it has the potentially advantageous feature of only including a subset of SNP in 

the final predictive model. This means that the LASSO is appropriate for ‘sparse’ 

models, where ridge regression is unlikely to succeed (as ridge regression forces all 



  23 

coefficients to be non-zero). The lasso is a form of penalized least squares that 

minimizes the residual sum of squares while controlling the L1-norm of the 

coefficient vector !. The estimates are the set of SNP that satisfy 
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which alternatively can also be written as: 

( ) ( )
1

ˆ !X!yX!y λβ β +−−= T
argmin   

where t is the constraint parameter choose prior to estimation, λ 0 is a Lagrange 

multiplier, which relates implicitly to the bound or shrinkage parameter t and controls 

the degree of shrinkage.   

 

The LASSO is commonly implemented using LARS (Least Angle Regression), a 

model selection algorithm that allows the implementation of a stepwise approximation 

to LASSO (Efron et al., 2004). The use of LARS means the computationally 

demanding quadratic programming can be avoided (Tibshirani, 1996). Usai et al., 

(2009) employ LARS to estimate the SNP effects for the set of SNP deemed as 

significant for genomic prediction. Akin to the Bayesian methods, the LASSO’s 

tuning or shrinkage parameter, t, needs to have a value determined.  Tibshirani (1996) 

suggest using cross-validation, generalised cross validation or an analytical unbiased 

estimate of risk to estimate this parameter. Usai et al., (2009) used a cross-validation 

approach to determine the value for this parameter in order to predict genomic 

breeding values.   

 

An alternative implementation of the LASSO is to use Bayesian Inference (Hans, 

2009, Park and Casella, 2008). Tibshirani (1996) suggested that LASSO estimates 

could be interpreted as posterior mode estimates when assigning independent and 

identical double-exponential (Laplace) priors to each jβ . The advantage of this 

formulation is that a prior can be set to estimate the hyper (shrinkage) parameter or a 

product of this hyper-parameter. Yi and Xu (2008) like Park and Casella (2008) set a 

gamma prior on the squared hyper parameter and sample it directly from the posterior 

distribution using the Gibbs Sampler. They also both suggest using the posterior 

median gives the closest estimate to the LASSO estimates. 
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2.3.7 Non and Semi Parametric regression 

 

Another variable selection approach to genomic prediction was presented by Gianola 

et al. (2006, 2003, 2008). They introduce the idea of using semi and non-parametric 

approaches for genomic prediction including a semi-parametric kernel mixed model, 

reproducing kernel Hilbert spaces (RKHS) regression and kernel regression. The main 

difference between these approaches and those previously presented is that they use 

non-linear regression. The advantages of these approaches are that no strong 

assumptions need to be made about the distribution of the parameters. Thus the 

relationship between y and x can expressed as   

( ) iii egy += x   ni ,....,2,1=  

where iy  is the phenotypic value for the ith individual,  ix  is the vector of quantified 

genotypes for the ith individual (also called the information set), ( ).g  is some 

unknown function relating genotypes to phenotypes and ie  is the ith residual term. 

( ).g  maps from the information set, in this case the SNP genotypes { }ni xx ,......1=x , 

to evaluations of the conditional expectation function, ( ) ( )ii xx |iyEg = . In kernel 

regression, a kernel is used as a weighting function in the estimation of ( ).g . e.g. the 

Nadaraya-Watsib estimator 
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=  where K is a kernel with a bandwidth h. 

Kernel regression is a form of local weighted regression where given data ),( YX  the 

aim is to find a regression function ),( yxf such that the function best fits the original 

data. The idea is that the kernel is a set of identical weighted functions that assigns 

weight to each new data points based on distance from the original data point. The 

kernel functions depend only to the radius, width or variance from the data point, Xi, 

to a set of neighbouring locations, x. Consequently, the kernel model can be expressed 

as:  

 ( )!+= ii XxK! ,1 µny   

where K is the kernel.  The most commonly used kernel is the Gaussian (normal) 

kernel, defined as: 
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where " is the bandwidth that determines the amount of smoothing. As shown, these 

approaches do require specification of the form of the kernel, the bandwidth (which 

determines the amount of smoothing) and the loss function (see below).   

 

In RKHS regression the problem can be expressed as: 

 ( ) ( ){ }2||||),(,ˆ Hi
Hg

ggylminargg λ+=
∈

xxx    [3] 

where ( )xx ),(, igyl  is the loss function, H is the Hilbert space and λ is the smoothing 

parameter. Due to function ( ).g  not being given a parametric form, 2|||| Hgλ is 

included as the penalty term where H||.|| is the norm in Hilbert space, H. For more 

details see de los Campos et al. (2009), Gianola and van Kaam (2008) and Gianola et 

al. (2006). Gonzalez-Recio et al. (2008) applied the non-parametric methods for 

genomic prediction to mortality records of broilers.  

 

An alternative approach for genomic prediction implemented by Moser et al (2009) is 

to use support vector regression (SVR).  SVR is a supervised learning method which 

is a machine learning technique. In fact, SVR is a specific algorithm of RKHS with an 

altered objective function. In [3] the loss function, ( )xx ),(, igyl , uses the quadratic 

loss function in RKHS but replaced in SVR with the epsilon-sensitive loss function 

i.e.   

RKHS: ( ) ( ) ( ))()(),(,
/

iii gygygyl xxxx −−=  

 SVR: ( )
)
*
+

,
-
.

−−

≤−
=−=

otherwisegyf

gyif
gygyl

i

i
ii ε

ε
ε )(

)(0
)(),(,

x

x
xxx  

This difference changes the system from one in which the coefficients are found from 

a linear model to a quadratic programming problem (Moser et al., 2009a). For more 

information on SVR see Smola and Schölkopf (2004), Moser et al. (2009) and Vapnik 

(1998).  
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2.3.8 Principle Component Analysis and Partial Least Squares Regression 

 

Another dimension reduction approach that has been extensively applied to p>n 

problems across many disciplines is partial least square regression (PLS) and 

principal component analysis (PCA). Both techniques are an extension of the multiple 

linear regression model and seek to reduce the dimensionality of the set of variables 

by finding combinations of the original predictors. Although often bracketed together 

PCA and PLS are actually very different. PLS tries to extract the latent factors 

accounting for as much of the variation as possible while modelling the responses as 

well. A tutorial on PLS introducing the basics of PLS is provided by Geladi and 

Kowalski (1986). PCA seeks to reduce the dimensions of the model by transforming a 

number of possibly correlated variables into a smaller number of uncorrelated 

variables which are the principal components. Smith (2002) provide a more thorough 

description of the principles of PCA. There is no physical interpretation of the 

principal components based on SNP. It is impossible to relate a combination of SNP 

on different chromosomes to the prediction of a specific QTL. Thus a DGV based on 

principal components produced by PCA is likely to be unreliable. However, PCA is 

reported to capture population structure (McVean, 2009). Solberg et al.(2009) use 

both PCA and PLS for genomic prediction while Moser et al. (2009) use PLS as one 

of five approaches tested for accurate genomic prediction. It is to be noted that PCA 

and PLS have no distributional assumptions only mild assumptions associated with 

being an extension of multiple linear regression model and the form of the input data.   

 

2.3.9 Genetic Algorithms 

 

Carlborg et al. (2000) present an approach to multiple QTL mapping using Genetic 

algorithms. Genetic algorithms are search algorithms and are a particular class of 

evolutionary algorithms. Genetic algorithms can be used to explore the vast set of 

possible models and find an approximate best model. They are non-linear predictors. 

Crump et al. ( 2007) applied a genetic algorithm to genomic prediction using a 

Bayesian Information Criterion (BIC) as the fitness criterion to find the best model. 

BIC is a criterion used for model selection seeking to find the best model with the 

lowest number of parameters.  
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2.3.10 Comparative performance of methods 

 

The performance of many of the previously mentioned methods has been tested for 

both simulated and real data. In general, those methods that assume unequal variance 

and make reasonable assumptions about the distribution of QTL effect outperform 

other methods in simulated data (Meuwissen et al., 2001); this is also demonstrated in 

Chapter 3. However, as real data has become available, different trends have emerged. 

These are discussed in Chapter 5 and 8. In general, most approaches for genomic 

prediction (except least squares regression) that have been applied to real data have 

produced very similar results with the exception for traits that have a major QTL 

explaining a large amounts of genetic variation. When this occurs, approaches such as 

Bayes B that assume unequal variances for the SNP produce higher accuracies of 

prediction.  

 

Much of the focus of the following chapters is on the use of Bayesian methods; 

however their performance is evaluated and discussed in context relative to many of 

the different statistical models for genomic prediction. A comprehensive comparison 

of the performance of the Bayesian methods is presented in Chapter 5 including 

discussion of how these methods perform relative to other approaches.  In Chapter 8, 

a consolidated discussion of the performance of currently applied methods including 

the results from previous chapters is presented. Additionally in Chapter 8, the focus is 

shifted to what future methods and models may be required as the genomic 

information increases in the form of the number of SNP and complete sequencing of 

animals. 

 
 
2.4 MULTI-LOCUS MODELS FOR GENOME-WIDE ASSOCIATION 

STUDIES  

 

In addition to the significant focus in genomic prediction and selection, the 

availability of dense marker SNP panels has also lead to an increase in genome-wide 

association studies aiming to identify QTL (Goddard and Hayes, 2009, Hardy and 

Singleton, 2009, McCarthy et al., 2008). Most quantitative traits are complex traits 

with numerous genetic factors contributing to the genetic variation and identifying 
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these factors could be beneficial for biomarker identification, marker assisted 

selection and identification of possible drug targets. Many of the statistical models 

highlighted for genomic prediction can be used for genome wide association studies 

using multi-locus models.  

 

The advantage of fitting all markers over using the traditional single marker model is 

the avoidance of the problems of biased results. Results may become biased through 

the fitting of a single QTL (marker or interval) in a model that may be affected by the 

presence of other QTL not fitted in the model. This may confound the results and 

cause false positives (that is a significant QTL is found where there is in fact not a 

QTL), false negatives (that is no QTL is found where there is actually a QTL) and 

reporting of incorrect levels of significance and size. A further problem is caused by 

the multiple estimates of the residual variance leading to problems when calculating 

the total phenotypic variance. In addition, the total variance explained by the QTL has 

to be calculated from the estimates from different models which can lead to estimates 

of total variance that are too high.  

 

Model or variable selection approaches such as forward stepwise least-squares 

regression, the LASSO, PLS and PCA already provide subsets of SNP thought to 

explain amounts of genetic variation and thus be linked to QTL. Other approaches 

like Bayes A have non-zero effects for all the SNP and thus would require some 

threshold to be set to enable determination of which SNP are linked to QTL. Bayes B 

would also require thresholds to be set to determine significance as SNP may be 

included in the model during only a proportion of the MCMC iterations thus resulting 

in a posterior probability of less than 1.  

 

The limitation of all multi-locus approaches is that due to p>>n, the ability to 

distinguish significant QTL is determined by the available data. Donoho and Stodden 

(2006) showed that as the number of non zero parameters got closer to the number of 

observations, the performance of model selection methods decreased. They also found 

that the greater the difference between p and n, the lower the ability to recover the 

underlying model. They tested forward stepwise selection, the LASSO approach using 

the original quadratic programming (Tibshirani, 1996) and LARS, the stepwise 

approximation to the LASSO. As the number of non-zero parameters (k, where k<p) 
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included in the model increased towards the number of records (n), the ability to 

recover the underlying sparse model was shown to be significantly reduced. In fact, 

the forward stepwise algorithm never improved the ability to recover the underlying 

model once the number of non-zero parameters exceeded twenty percent of the 

number of records. The addition of a False Discovery Rate threshold to the forward 

step selection algorithm lead to similar results to that produced by LARS and the 

LASSO. The ability to successfully identify QTL is therefore generally bound by not 

only the number of phenotypic records but the number and size of the QTL associated 

with the trait of interest. The ability to correctly model the true distribution of the 

QTL affecting the trait of interest will also have a significant impact on the ability to 

identify QTL.  

 

Thus, once adequate data is available the only issue remaining is the establishment of 

significance. Setting of thresholds is generally arbitrary with values less than a 

predetermined value set to zero and deemed insignificant. One formal approach to 

setting significance thresholds is to use a permutation approach (Churchill and 

Doerge, 1994, Doerge and Churchill, 1996). A novel permutation approach for multi-

locus models used in GWAS is presented in Chapter 7. This approach was 

demonstrated using an analogous model to that of Bayes SSVS presented in Chapter 4 

with simulated and real data sets.   

 

2.5 CONCLUSION 

 

In this chapter, the range of methods that have been proposed for genomic prediction, 

have been systematically overviewed. That overview has been structured around the 

approach to the p>n problem, how the methods deal with the modelling of SNP 

effects and, then in the case of the random modelling of the SNP effects, the 

assumption made about the distribution of non-zero SNP effects. The overview of the 

methodology is summarized in Figure 2.3. Most of the approaches seek to find the 

best model using model selection techniques or reduce the dimensionality by variable 

selection. Only Bayes A and BLUP predict an effect for all SNP effects. However, the 

structure of the Bayes A prior distributions (Table 2.1) means that it seeks to shrink 

most insignificant SNP effects back to very close to zero, particularly if the degrees of 

freedom for the inverse scaled chi square distribution are small. 
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Figure 2.3- Overview of the assumptions for the different genomic prediction 

approaches. *Bayesian Approach, 1Can be viewed as a Bayesian Approach 

 

The most significant difference between the approaches occurs due to the modelling 

of the QTL effects. The non-parametric methods do not, by definition, make any 

assumptions about the distribution of the QTL effects. Both PLS and PCA seek to 

reduce the dimensions of the model and also make no assumptions about the QTL 

effect distribution. In stepwise regression where the QTL effects are modelled as 

fixed and consequently no assumptions are also made about the distribution of the 

SNP effects. All other approaches make assumptions about the modelling of the 

QTL/SNP effects. The different hierarchical models and their assumptions for the 

QTL effects are summarised in Table 2.2.  

 

The final difference is between the use of linear and non-linear predictors. The 

question remains whether a non-linear prediction approach is appropriate when a 

linear model is extracted from the results and used as the prediction equation. Further 

discussion of this and relevant results is provided in the general discussion (Chapter 

8). While some indication of the performance of the various methods has been 
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provided, the following chapters are focussed on exploring Bayesian methods for 

genomic prediction, in particular the affect of different prior distributions for the SNP 

effects on the accuracy of the predicted DGV and different approaches to modelling 

these assumptions. The reasons for this focus is that previous results of Bayesian 

approaches to genomic prediction have been promising, but further investigation into 

the effect of different prior distributions on the performance of these models is needed 

for a better understanding of what makes a robust and accurate model.  

 

Table 2.2- Hierarchical modelling of SNP effects   

Prior Distribution  Definition  
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A brief introduction to the principles of Bayesian statistics, optimum selection theory 

and a review of possible prior distributions and relevant literature are provided in 

Chapter 3. In that chapter, the role and impact of different prior distributions on the 

accuracy of DGV are explored in data simulated under a simplistic model. The results 

of this Chapter lead to the development of the Bayesian approach for genomic 

prediction presented in Chapter 4. Stochastic Search Variable Selection is utilised in a 

Bayesian model to derive the accurate DGV in significantly less time than comparable 

methods. Chapter 5 presents a second simulation study where this new model with 

Bayes A and two other different models not used Chapter 3 were applied to data 

simulated as part of the 13th QTLMAS workshop.  
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A thorough comparison of different Bayesian methods for genomic prediction on real 

data is presented in Chapter 6. This study allowed for the comparison of different 

models using real data which is important for truly assessing the value and usefulness 

of different methods. The models were compared across a range of traits with 

differing genetic architecture. Also within this chapter, the impact of using pre-

selected reduced sets of SNP is investigated, as well as the difference in accuracies 

between DGV and GEBV. The chapter ends with a discussion of the findings in the 

context of other published results and the implications of this comparison are 

discussed.  

 

Chapter 7 presents an original permutation approach for use with Bayesian multi-

locus models to enable the establishment of significance QTL in genome-wide 

association studies (GWAS). An example of a possible application of genomic 

prediction for use with minimally recorded traits is presented in Chapter 8. Energy 

balance in lactating dairy cattle is a minimally recorded trait but could be an important 

link between production and non-production traits. In Chapter 8, genomic prediction 

is shown even with a small data set for the difficult trait of energy balance to produce 

higher accuracies than a traditional pedigree BLUP approach.  

 

Finally in Chapter 9, the major results are reviewed and impact of the increased 

availability of SNP information in the future on the suitability of the various methods 

is also considered. 
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CHAPTER 3  

Performance of Bayesian models with Varying Prior Distributions 

for Genomic Prediction 

 

3.1 INTRODUCTION  

 

Before the introduction of genomic selection, Bayesian methods were proposed for 

use in QTL detection to analyse the linkage between markers and quantitative trait 

loci (QTL) (Hoeschele and Vanraden, 1993a, b, Satagopan et al., 1996, Thaller and 

Hoeschele, 1996a, b).  The idea was based on the fact that other methods such as 

linear fixed regression, random regression and maximum likelihood all depend on the 

number of markers and that the QTL effects associated with the selected makers is 

always overestimated. Consequently, in a situation such as genomic prediction and 

selection, where the number of markers is large and far outweighs the number of 

phenotypic records, a Bayesian approach is suggested as ideal. Analogous approaches 

are available from a frequentist perspective fitting all effects as random (see Section 

2.3 for a discussion on the difference between frequentists and Bayesian 

perspectives). Appreciating the advantage of Bayesian methods, Meuwissen et al. 

(2001) implemented two Bayesian approaches for genomic prediction in the original 

genomic selection paper.  

 

The aim of this chapter was to assess the performance of Bayesian models with 

varying prior distributions for use in genomic prediction.  The chapter begins with a 

brief introduction to Bayesian inference is presented in the next section, followed by a 

succinct review of the relevant MCMC sampling algorithms (3.1.2). Subsequently the 

importance of the prior distribution is explored in relation to the optimum selection 

criterion (3.1.3) and literature relevant to the choice of prior distribution for the SNP 

effects is examined (3.1.4).  Then, a small data set is used to compare the performance 

of a range of prior distributions when using a Bayesian model for genomic prediction. 
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3.1.1 Bayesian Inference   

 

A Bayesian approach is based on Bayes Theorem. Let θ  be a random variable 

and y be the data, then Bayes Theorem states:  

( ) ( ) ( )
( )y

y
y

f

|f
|

θθ
θ

&& =         [3] 

where ( )y|! θ  is the conditional or posterior distribution of the random variable 

given the data, ( )θ|f y  is the likelihood of the data given the random variable, ( )θ!  is 

the prior distribution of the random variable and ( )yf  is the normalising constant 

found by integrating out θ . The normalising constant can be left out, changing [3] 

into  

( ) ( ) ( )θθθ !|f|! yy ∝          [4] 

 

In this Bayesian framework, all parameters are treated as random variables.  

Consequently, each variable in the model has a distribution. The parameters are 

divided into observables and unobservables. Observables are the parameters that can 

be recorded like the phenotypic data (real or simulated) and the genotypes. The 

unobservables are the parameters we want to estimate, for example, the SNP effects 

and their associated variances (Section 2.2).  The distribution for the unobservables is 

known as the prior distribution ( )θ!  and must be specified.  The distribution of the 

observables conditional on the random variable θ  is known as the likelihood, ( )θ|f y  

and is a function of the unobservables. The purpose of Bayesian analysis is to find the 

conditional or posterior distributions ( )y|! θ  of the parameters given the observed 

data. This distribution is dependent on the likelihood, ( )θ|yf and the prior 

distribution, ( )θ!  [4]. Thus if θ  is the SNP effects, then the choice of the prior 

distribution for θ  is important as it will effect the posterior distribution and thus the 

estimation of the SNP effects.  

  

3.1.2 Markov Chain Monte Carlo sampling algorithms  

 

It is often difficult to solve [2] directly consequently sampling approaches are used to 

establish the posterior distributions. Markov Chain Monte Carlo (MCMC) sampling 
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algorithms are a class of algorithms for sampling a “parameter from approximate 

distributions and then correcting those draws to better approximate the target posterior 

distribution” (Gelman et al., 2003). The parameters are sampled sequentially where 

the new state is only dependent on the previous state, thus forming a Markov Chain.  

The quality of the approximate target posterior distribution improves as a function of 

the length of the chain.  The ultimate aim is therefore the convergence of the chain to 

the target distribution.   

 

The most popular MCMC sampling method is the Gibbs Sampler (Geman and 

Geman, 1984). Its popularity is due to the fact that the posterior values can be directly 

sampled from the conditional distribution giving at the end a set of variables that 

represent the target posterior and consequently it is generally quicker. However it can 

only be used when conjugate prior distributions are employed. A prior distribution is 

defined as a conjugate when, given a set likelihood, the posterior distribution and the 

prior distribution are from the same family of distributions and the posterior has a 

known form. For example, the inverse scaled chi- square distribution is a conjugate 

distribution for the variance under a normal likelihood, such that, the prior and 

posterior has the general definition (r and s as defined in Section 2.3.4):  

( ) ( )sr,22 ~ −χσ j"   (prior)          [5]  
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Thus when a conjugate prior distribution is used, the posterior distribution is known 

and generally it is possible to sample from it.    

 

When a conjugate prior is not used, then the posterior distribution usually cannot be 

directly sampled and must be constructed. In this instance, a Metropolis Hasting 

algorithm can be used. The Metropolis Hastings Algorithm implemented in this study 

is often known as the ‘independent single site updating’ Metropolis-Hastings 

Algorithm (Gelman et al., 2003). In this special case, each element (within a vector 

such as a vector of SNP effects) is updated separately and the candidate states are 

generated by a distribution that is independent of the current state of the chain. The 

same characteristics as the traditional Metropolis-Hastings are maintained; in that, the 
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distribution does not have to be symmetric unlike the stricter Metropolis Algorithm. 

The Metropolis Hastings algorithm uses multiple iterations to create the posterior; in 

each iteration, a new proposed state is rejected or accepted over the current state 

based on an acceptance ratio using their respective likelihoods. 

 

3.1.3 Point Estimation and the Optimum Selection Criterion 

 

Using the appropriate MCMC algorithm, the posterior distribution of the SNP effects 

!  given the data, y, can be established, ( )y! |& . The choice of the point estimate for 

each SNP effects could be the median, mean or the mode (other point estimates are 

also possible) of the posterior distribution. When calculating a point estimate (or 

making a decision), Bayesians want to minimize the expected loss of a decision rule 

under the prior distribution ( )!!  for ! . Different loss functions can be used. The 

mean of the posterior distribution is the most commonly used as it provides the 

minimum mean square error (MMSE) estimator. This means that the mean square 

error is used as the loss function. The use of different loss function will result in the 

median and mode of the posterior distribution. Due to its simplicity, the MMSE 

estimator is used for the point estimates of all parameters (i.e. the mean of the 

posterior distribution is used).  

 

Further support of the use of MMSE estimator for the SNP effects is provided by the 

optimum selection criterion. The traditional estimated breeding values (EBV) 

produced using BLUP (Chapter 1) can be expressed as the conditional mean of the 

unobservable true breeding values u  given the observed data y , that is ( )yuu |E=ˆ  

where û  denotes the EBV.  Notably in a Bayesian framework ( )yu |E  can be 

interpreted as the mean of the posterior distribution of u  given y , thus BLUP can fit 

into a Bayesian formulation.  

 

Direct genetic values (DGV- Section 2.2) for genomic selection are calculated by 

summing over the SNP effects j! . Generally, !+=
=

p

j
jiji

1

ˆxˆˆ !"u  where iû  is the 

estimated genomic breeding value for the ith  individual,  µ is the overall mean, xij is 
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the indicator variable representing the genotype of the jth marker for the ith individual 

(xij=0,1,2),  !j  is the size of the QTL effect associated with marker j (j=1,..p) .  

 

Consequently, to maintain the optimum criterion for selection, the best predictor for 

the SNP effects is: 

( )y!! |E=ˆ        [7] 

Thus, the best predictor of the SNP effects is the conditional mean of the posterior 

distribution of SNP effects given the phenotypic records y .  Consequently, throughout 

this thesis where Bayesian methods are employed the MMSE estimator using the 

mean of the posterior distributions are used to provide point estimates of the SNP 

effects.  

 

Expanding [7] gives 
( ) ( )

( ) ( )5
5 ×

=
d!&|f

d!&|f

!!y

!!y!!̂  where !  are the true QTL effects, 

( )!!  is the prior distribution (Bayesian) or the random variable distribution 

(frequentist) of the QTL effects, and ( )y|!f  is the likelihood. If the QTL effects are 

assumed to have a normal prior with a constant variance matrix i.e. ( ) ( )2,0~! βσN! ,  

the estimates are BLUP. Consequently, the accuracy of the estimated SNP effects and 

optimum selection can be seen to be dependent on the specification of the prior 

distribution ( )!& . 

 

3.1.4 Prior Distributions 

 

The specification of prior distributions can also accommodate differing assumptions 

such as that a large number of markers or chromosome segments have a zero or close 

to zero effect or, in contrast, that all SNP have a small effect. This is done by 

allocating an appropriate prior distribution for the size of the SNP effects and their 

variances. Consequently, the distribution of QTL effects has been examined (Hayes 

and Goddard, 2001, Weller et al., 2005).  

 

Hayes and Goddard (2001) performed a meta-analysis. They assumed that the QTL 

effects had a gamma distribution and investigated the parameters using published 
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QTL effect estimates for pig and dairy data. Many papers have reported the L-shaped  

distribution for QTL effects (see Figure 3.1) so consequently the assumption of a 

gamma distribution seems reasonable (Bost et al., 2001, Bost et al., 1999, Edwards et 

al., 1987, Jorge et al., 2005, Mackay, 2001, Wu and Li, 2000). Weller et al. (2005) 

examined nine traits in dairy cattle and showed that the different traits had different 

QTL effects distributions. They found that some traits (protein percentage and fat 

percentage) had L-shaped gamma distributions. Others, such as fertility and herdlife, 

had bell-shaped gammas while the other traits examined had left skewed bell shaped 

gammas (see Figure 3.1). These results suggest correctly that different traits have 

varying genetic architecture and thus may require different prior distributions. The 

robustness of different prior distributions is therefore an interesting issue; this is 

explored in Chapter 6.   
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Figure 3.1- Different types of Gamma distributions found to represent QTL 
distribution for various traits 
 

Xu (2003) performed QTL analyses using a Bayesian approach with markers across 

the entire genome and subsequently also discovered that the gene effects followed an 

L-shaped gamma distribution for all traits analysed. However, they also 

acknowledged that the gamma distribution is not a conjugate prior with a normal error 

distribution and consequently Gibbs sampling (Geman and Geman, 1984) cannot be 

used.  This means the application of the Metropolis-Hastings algorithm (Gilks et al., 

1996, Hastings, 1970, Metropolis et al., 1953) is needed which is less efficient than 

Gibbs sampling but still effective.  
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While the results of Hayes and Goddard (2001), Xu (2003) and Weller et al. (2005) 

indicate that the distribution of gene/QTL effects may be assumed to follow a gamma 

distribution, there is some criticism of the use of the gamma distribution as the prior 

in Bayesian QTL analyses and genomic prediction. Gianola et al (2003) criticise the 

use of the gamma prior because the effects sampled would all be strictly positive but 

the estimates can be positive or negative. The major problem is however the 

computationally demanding algorithms that would need to be used. Consequently, 

most Bayesian approaches to QTL analyses and genomic prediction utilize a normal 

prior distribution for the size of the QTL/gene effects (Gianola et al., 2003, 

Meuwissen et al., 2001, ter Braak, 2006, ter Braak et al., 2005, Wang et al., 2005, Xu, 

2003, Yi, 2004, Yi and Xu, 2002, Yi et al., 2005). However, the variances used for the 

normal distribution can be sampled from different distributions. Meuwissen et al. 

(2001), Xu (2003), and ter Braak et al. (2005) all sample individual SNP variances 

from an inverse scaled chi-square distribution. This is analogous to an inverse-gamma 

distribution. The benefit of this formulation is an inverse scaled chi-square 

distribution is a conjugate distribution and the computationally efficient Gibbs 

Sampler can be used. This formulation also results in the SNP effects being sampled 

from a t-distribution. A t-distribution has fat tails allowing for a few larger effects, 

and unlike the gamma distribution, it no longer has the problem of being strictly 

positive.   

 

Another option is presented by Kiiveri (2003) and applied in his program GeneRaVE. 

A normal-gamma prior is used which can be expressed as: 

( )
( )ϖλγ

β

,~

,0~|

i

iii

v

vNv
 

It has a mixture distribution which has a normal distribution for size of the QTL 

effects and a gamma distribution for variance of the size of the QTL effects. While 

this offers the desired shape, it has an infinite spike at zero for 21≤≤≤≤λ . Thus, the 

distribution has the normal-Jeffreys as the limiting density form. The Jeffreys prior is 

a non-informative prior distribution that is proportional to the square root of the 

determinant of the Fisher information (Gelman et al., 2003) and requires no pre-

selection of a hyper-parameter. It is based on the principle that the prior density 

should remain constant despite re-parameterisation. 

[8] 
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 The choice of parameters for the gamma distribution [8] can have a severe impact as 

0→→→→λ  where the limiting form has infinite mass, an infinite spike at zero and flatness 

for large values of |βi|. Consequently it does not penalise large values and can strongly 

influence the modal behaviour of the posterior. Thus the choice of parameters for the 

gamma needs to be considered when using this choice of prior distribution. 

Additionally, under a normal likelihood the gamma is not a conjugate prior and 

cannot be sampled with the Gibbs Sampler. 

 

The LASSO (Section 2.2.5) provides another option for the choice of  prior for the 

size of the QTL effects. The estimates from this approach can be thought of as the 

Bayes posterior mode under independent double exponential (DE) priors for the QTL 

effects. Therefore, the assumption is that the QTL effects come from a double 

exponential distribution with mean zero. It creates the shape of the gamma (L-shaped) 

while no longer having the problem of being strictly positive. Its use allows the 

distribution to have a large frequency of SNP effects close to zero as well as being 

centred on zero and having both negative and positive values. The double exponential 

can also be expressed as a normal-exponential mixture model; thus this prior is a 

special case of the normal-gamma prior distribution with 1====λ .  

 

The double exponential and normal gamma prior distributions can be expressed as 

mixture distributions (Griffin and Brown, 2005). Griffin and Brown (2005) also 

introduce the idea of a normal exponential gamma (NEG) and exponential gamma 

(EG) distributions.  

( )

( )βαγλ

λ

β

,~

)exp(~

,0~|NEG

i

ii

v

vNvi

 

( )βαγλ

λλβ

,~

)exp(~|EG i
 

The advantage of the NEG is that, unlike other distributions, it has a finite limit at 

zero for all parameters in range (unlike the gamma as 0→→→→λ  where the limiting form 

has infinite mass at zero) and incorporates both of the limiting cases for the double 

exponential and normal-Jeffrey’s cases. This is suggested by Griffin and Brown 

(2005) to be superior as a prior. However this highly hierarchical prior framework, 
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means that more parameters have to be sampled. It still requires the hyper-parameters 

of gamma to be set correctly since choosing an inappropriate prior would negatively 

affect the QTL effects posterior distribution. Subsequently, this formulation also 

appears more computationally and time intensive. 

 

Different prior distributions have been used in Bayesian models proposed for genomic 

selection. Meuwissen et al (2001) originally presented two Bayesian hierarchical 

models with different prior distributions assuming unequal variances across the SNP. 

These were called Bayes A and Bayes B and are introduced in Sections 2.2.3 and 

2.2.4 respectively. The main difference between the two approaches is the 

assumptions about the QTL effects. The specification of Bayes A means it assumes 

that all SNP have some effect. Conversely, Bayes B assumes only some SNP have an 

effect where the other SNP have no effect and have an effect size of zero. Xu (2003) 

and ter Braak et al. (2005) present alternative prior distributions for the SNP effect 

variances for an analogous model to Bayes A. These are described in Section 2.2.3 

and summarised in Table 3.1 in Section 3.2.2.3.  

  

The objective of this study was to examine the effect that the use of different prior 

distributions had on the accuracy of predicted DGV for genomic prediction using 

Bayesian models. In this study, Bayes A and Bayes B as described originally in 

Meuwissen et al. (2001), and Normal-Exponential and Normal-Gamma mixture 

distributions are used as the hierarchical prior distributions for the SNP effects.  

 

3.2 MATERIALS AND METHODS  

 

3.2.1 Simulated Data 

 

The SNP data was simulated using a mutational-drift model where the mutation rate 

was assumed to be 2.5 x 10-5 per locus per generation. The population was assumed to 

have an effective population size of 100 in the first 100 generations. The final set of 

phenotyped animals was created by crossing 50 sires and 40 dams so that each dam 

had fifty offspring, one with each sire. The reference and validation data sets 

consisted of 100 randomly selected animals (from the 2000 offspring) with 250 

polymorphic markers on a single chromosome of 250cM to maintain the real world 
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condition of p>n (where the number of markers (p) was greater than the number of 

records/observations (n)).  

 

Table 3.1- Summary of simulated data 

 Data set 1  Data set 2 Data set 3 

Number of Loci with an Effect 14 14* 0 

Genetic Variance Explained 2.8% or 11.4% 2.5%-25% 0 

*explaining 2% or more of the genotypic variance 

 

The three data sets were simulated using different simulated QTL distributions. For 

all data sets, the size of the QTL effects were treated as fixed effects and simulated as 

in Xu (2003) with positive and negative effects. The SNP simulated as the QTL was 

assumed to be the causative mutation and was removed from the genotype data for 

estimation for the first simulated data set. A summary of the effects for the three data 

sets are presented in Table 3.1. 

 

Figure 3.2 -Distribution of QTL effects for simulated dataset 2 
 

The first data set had 14 QTL simulated with discrete values of ±1 and ±2. The effects 

in the second data set were sampled from a double exponential (continuous) 

distribution with total variance of 1. A total of 50 QTL were simulated; however only 
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20 had an effect over 0.5 and only 14 explained each more that 2 percent of the 

genetic variance (Table 3.1). This simulated data set was to reflect the results that 

studies such as Xu (2003) had found which indicated that most SNP effects 

distributions followed an L-shape gamma distribution; the double exponential 

produced very similar features to the L-shape gamma reflected about zero.  

 

The third data set had no QTL effects. The phenotypic data for all data sets was 

obtained by adding an error term that was normally distributed with mean 0 and 

variance 1. This simulated data for a trait with heritability of 0.5.  No polygenic, 

epistatic or imprinting (maternal or paternal) effects were simulated.   

 

3.2.2 Model  

 

At each SNP (total number of SNP, p) there are three possible combinations of two 

alleles (e.g. A or B), the homozygote of one allele (AA), the heterozygote (AB) and 

the homozygote of the other allele (BB). These are then quantitatively represented by 

0, 1 and 2 respectively. Subsequently, the phenotypic models used were  

eX1y
p

j
jjn +!+= βµ           

where y  is the vector of phenotypes of the trait being analysed for all n individuals, µ 

is the mean, 
n

1 is a vector of ones of length n, Xj is a vector of indicator variables 

representing the genotypes of the jth marker for all individuals (xij=0,1,2),  !j is the size 

of the QTL effect associated with marker j and e is the residual error normally 

distributed as ( )2~ 0, e ne N σ I  where nI is the n x n identity matrix . 

 

3.2.3 Prior Specification and Iterative Algorithms  

 

The Markov Chain Monte Carlo (MCMC) algorithms utilized during this study were 

the Gibbs Sampler and the Metropolis Hastings Algorithm (as described in Section 

3.1.2). The Gibbs Sampler was used to directly sample the posterior distributions of 

the mean, the QTL effects and the error variance (Table 3.2).     
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Table 3.2 - Summary of Prior and Posterior Distributions for the Mean, SNP effects 

and residual variance.   
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The difference between the models is based on the specification of the prior used for 

the variance of the SNP effects. All models used hierarchical prior distributions for 

the SNP effects that can be defined as normal mixture distributions. This is clearly 

shown in Table 3.3 where the different approaches are defined by the specification of 

the prior distribution for the variance of the SNP effects. The values for the respective 

hyper-parameters were set so that the total genetic variance equalled 1; these values 

are also shown in Table 3.3. 

 

The MCMC algorithms needed to sample the variance of the SNP effects were the 

Gibbs Sampler for Bayes A and the Metropolis Hastings algorithm for the remaining 

three approaches. The inverse scaled chi square distribution used in Bayes A is 

conjugate under a normal likelihood and thus the posterior had a known form and 

could be directly sampled. (See Section 3.1.2 for the prior and posterior forms for an 

inverse scaled chi square distribution). The priors used by Bayes B, normal-gamma 

and normal-exponential mixture models involve non-conjugate prior distributions for 

the variance of the SNP effects. Consequently, as the posterior has no known form, 

the Metropolis Hastings algorithm is applied to sample from the unknown posterior 

distribution to enable construction of the posterior distribution.   
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Table 3.3- Hyper-parameter Settings  
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3.2.4 Sampling Sequence  

 

An MCMC sampling scheme was utilised to sample all the parameters. Thus, the 

sampling sequence that was implemented was as follows: (The posteriors sampled 

from are shown in Table 3.2 and Table 3.3.) 

1. Initialize all unobservable and denote by 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]0202020200
2

0
1

00 ......,,,......,,
21 j

epQ βββ σσσσβββµ=  

2. Update each variable, namely: 

• Update the mean, µ.  

• Update the size of the QTL effects, bj, j=i,...p.   

 When a conjugate prior distribution is not being used, the Metropolis 

Hastings Algorithm is required as follows:  

o Sample βj(new) from the prior distribution p(βj ) 

o Replace current βj by βj(new)  with a probability 
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β

β
α  

where  p(y*|βj (new)) is the likelihood of the data given βj(new) and y* is the data 

adjusted for the mean and all other genetic affects except βj. 

o Repeat  

• Update the error variance #e
2.   

• Update the variance of the size of the QTL effects, #j
2, j=i,...p.  

3. Repeat step 2, until convergence to a stationary distribution has occurred.  

Five separate MCMC chains with different starting seeds were used to assess 

variability of the methods and to confirm reliability of the results. Each was run for 

10,000 cycles with the first 1000 discarded as burn in. Five replicated were run fro 

each data set.The programming was in R.  

 

3.2.5 Direct Genomic Values (DGV) 

 

The estimated DGV for each animal was found as the sum of the mean and the SNP 

effect i.e. βµ X1n +=DGV . The accuracy of the estimated DGV was established by 

comparing the true breeding value (TBV) and predicted DGV using regression 

coefficient, Pearson correlation coefficient and mean square error (MSE). The 

regression coefficient was the true value regressed on the predicted. MSE was 

calculated as standard as nuuMSE
n

i
ii /)ˆ(

1

2! −=
=

 where n is the number of animals. 

 

3.3 RESULTS  

 

3.3.1 Data Set 1  

 

The results for the accuracy of prediction for each method (and standard errors) across 

the five replicates are shown in Table 3.4. The figures for all models of the actual 

TBV versus the predicted DGV for the reference and validation populations are 

shown in figures 3.3-3.6. All methods were extremely accurate for the reference 

population as expected as this is the population where the QTL effects are estimated. 

The different models produce less accurate DGV in the validation population but with 
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no clear difference in Pearson Correlation coefficient between the models. In contrast, 

both the normal-gamma and normal-exponential mixture prior distributions produced 

the lowest MSE indicating a lower bias and regression coefficients closest to one. The 

standard errors and figures clearly show that the Bayes A and B hierarchical priors are 

more variable across replicates. The model with the normal exponential hierarchical 

prior was the least variable between the replicates as shown in Figure 3.6 and Table 

3.4 with the smallest standard errors.    

 

Table 3.4 - Results of Data Set 1. Validation and Reference population results 

comparing predicted DGV and true breeding values (TBV) using regression 

coefficients (Reg) of true regressed onto predicted, Pearson correlation coefficient 

(Cor) and mean square error (MSE).  

NEVENE#GE!$;$7B69:;#!! ! ! !

! A/H%)!6! A/H%)!A! #E! #P!

N%5! CRQQWQ!X!QRQQQY! CRQQSZ!X!QRQQQ[! CRQ[Q\!X!QRQQQQQS! CRQC\Z!X!QRQQQQY!

G+.! QRSSC[!X!QRQQQZ! QRSSTT!X!QRQQQ]! QRSS[]!X!QRQQQQQY! QRSST\!X!QRQQQQQT!

8"E! QR]CW]!X!QRQC[W! QRCC\S!X!QRQQTY! QRCZ\[!X!QRQQQ]! QRCC[W!X!QRQQQC!

O6B:D69:;#!$;$7B69:;#!! ! ! !

! A/H%)!6! A/H%)!A! #E! #P!

N%5!! QRWW[C!X!QRQC[Z! QRWWZW!X!QRQCTQ! QRSZC\!X!QRQQQ]! QRS]QW!X!QRQQQQT!

G+.!! QRWSQ\!X!QRQC]Z! QRWSWY!X!QRQQSW! QRWS\W!X!QRQQQQ\! QRSQZS!X!QRQQQQS!

8"E!! [RQYSQ!X!QRZZQ]! [RWSC[!X!QR\\S\! YRQ[WS!X!QRQQWS! ]RW]YQ!X!QRQC[]!

 

Figure 3.3- Bayes A plots- TBV vs DGV- for the reference (a.) and validation (b.) 

populations 
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Figure 3.4- Bayes B plots- TBV vs DGV- for the reference (a.) and validation (b.) 

populations  

 

Figure 3.5- Normal Gamma plots- TBV vs DGV- for the reference (a.) and validation 

(b.) population  

 

Figure 3.6 - Normal Exponential plots- True vs Predicted DGV- for the reference (a.) 

and validation (b.) populations  
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3.3.2 Data Set 2 

 

The results for the accuracy of each method (and standard errors) using data set 2, 

across the five replicates are shown in Table 3.5. The table clearly shows that in both 

the reference and validation populations that Bayes A performed the worst. Figure 3.7 

shows the reference and validation population for predicted DGV versus the TBV for 

Bayes A. It reveals that these lower values may be partially the result of one replicate 

with less accurate results caused by bias. The figures for the other different 

hierarchical models for the reference and validation population are shown in figures 

3.7-3.10. Unlike Bayes A, Bayes B was the best performing of the models assessed 

using all three comparative measures. However, Bayes B, the normal-gamma and 

normal-exponential mixtures all produced extremely reliable results when comparing 

the Pearson correlation coefficient and MSE with no significance difference between 

their performance.   

 

Table 3.5- Results for Data Set 2. Validation and Reference population results 

comparing predicted DGV and true breeding values (TBV) using regression 

coefficients (Reg) of true regressed onto predicted, the Pearson correlation 

coefficient (Cor) and mean square error (MSE). 

NEVENE#GE!$;$7B69:;#! ! ! !

! A/H%)!6! A/H%)A! #E! #P!

N%5! QRS[TT!X!QRQQCS! QRS\T\!X!QRQQQT! CRQYSQ!X!QRQQQQC! CRQCS[!X!QRQQ]Z!

G+.! QRSWTZ!X!QRQQC]! QRSSCQ!X!QRQQQY! QRSS[]!X!QRQQQQC! QRSSCS!X!QRQQQ]!

8"E! QRTT]Q!X!QRQY\[! QRY]C]!X!QRQCQ[! QRYTTZ!X!QRQQQ]T! QR]WZ]!X!QRQQWS!

O6B:D69:;#!$;$7B69:;#! ! ! !

! A/H%)!6! A/H%)A! #E! #P!

N%5! QRWWZ\!X!QRQCC\! QRSS]W!X!QRQQCY! CRQ\\T!X!QRQQQC! CRQ\[Z!X!QRQ]]S!

G+.! QRSTWYX!QRQQ\Q! QRSWC]CC!X!QRQQQS! QRS\SY!X!QRQQQC! QRSWCW!X!QRQQQZ!

8"E! CR[[ZYX!QR]YCW! QRT]T\!X!QRQCZ]! QRZ[W]!X!QRQQQW! QRT[[Q!X!QRQ]YY!
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Figure 3.7- Bayes A plots- TBV vs DGV- for the reference (a.) and validation (b.) 
population  

 

Figure 3.8 - Bayes B plots- TBV vs DGV- for the reference (a.) and validation (b.) 

populations  

!
Figure 3.9 - Normal Gamma plots- TBV vs DGV- for the reference (a.) and validation 

(b.) populations 
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Figure 3.10 - Normal Exponential plots- TBV vs DGV- for the reference (a.) and 

validation (b.) populations 

 
 

3.3.3 Data Set 3 

 

Three replicates were performed for each of the hierarchical models using data set 3 

where there were no SNP effects and any variation in the phenotypes was caused only 

by noise.  The results were extremely similar across replicates. Table 3.6 presents the 

MSE values for the reference and validation populations and Figure 3.11 shows the 

results of TGV versus the predicted DGV from 1 replicate (as all replicates were 

extremely similar) . The most interesting result is that even though Bayes B allows 

SNP effects to be set to zero, Bayes A was the only model that correctly set all SNP 

effects to effectively zero. Nevertheless the results are still not significantly different 

and all methods produce relatively accurate results.  

 

Table 3.6- Results for Data Set 3. Validation and Reference population results 

comparing predicted and true breeding values mean square error (MSE) with the 

standard error (± s.e) 

N%&%.%0'%!$+3>-/(1+0! ! ! !

! A/H%)!6! A/H%)!A!! #+.*/-!E23+0%0(1/-!! #+.*/-!P/**/!!

8"E!^X!)R%_! Q! QRQ[YZ!XQRQQ]Q! QRQ[C[!XQRQQT]! QRQ\CY!XQRQQQ]!

O/-1,/(1+0!$+3>-/(1+0!! ! !

! A/H%)!6! A/H%)!A!! #+.*/-!E23+0%0(1/-!! #+.*/-!P/**/!!

8"E!^X!)R%_!! Q! QRCC[WXQRQQ[Z! QRQWTWXQRQCWQ! QRCWWTXQRQQCW!

Data set 2
 Normal Exponential- reference population

TBV

D
G

V

0

5

10

15

20

0 5 10 15 20

rep1
rep2
rep3
rep4
rep5

Data set 2
 Normal Exponential - validation population

TBV

D
G

V

5

10

15

20

5 10 15 20

rep1
rep2
rep3
rep4
rep5

a. b. 



  52 

0 5 10 15

0
5

1
0

1
5

Bayes A

predicted EBV

tr
u
e
 E

B
V

0 5 10 15

0
5

1
0

1
5

BayesB

predicted EBV

tr
u
e
 E

B
V

0 5 10 15

0
5

1
0

1
5

Normal Exponential

predicted EBV

tr
u
e
 E

B
V

0 5 10 15

0
5

1
0

1
5

Normal-Gamma

predicted EBV

tr
u
e
 E

B
V

 

Figure 3.11- No SNP effects- predicted DGV from replicate 1 versus true DGV for 

the validation population.       

 

3.3.3 DISCUSSION  

 

3.4.1 Data Set 1 

 

The results for the reference population for the data set 1 were as expected with all 

models producing regression and correlation coefficients close to 1. Bayes A had a 

higher MSE perhaps indicating more bias which could be accounted for by increased 

variation between the replicates. This variation was a result of inaccurate estimation 

of the mean and subsequently the SNP effects. However, in the validation population, 

Bayes B had the highest MSE. Both Bayes A and Bayes B had replicates that were 

more susceptible to variation resulting in an overall higher MSE, which is shown by 

the spread of predicted breeding values in Figures 3.2 and 3.3, and the greater 

standard errors.  
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On inspection of the estimated means, the values differed across replicates for both 

Bayes A and Bayes B. It appeared that the effect of the mean was in some replicates 

absorbed into the SNP effects. The reason for this is not obvious; inspection of 

parameter values in the MCMC chain showed that convergence had been reached, so 

it is most probably a reflection of the very small size of the data set and would be 

expected to disappear once the data set size was increased. Also contributing to the 

underperformance of Bayes B is that the prior probability of a SNP having a non-zero 

effect was set to 0.05 which relates to 12.5 (12-13) SNP being linked to a QTL .The 

restriction placed on the number of SNP with non-zero effects (and variances) in 

Bayes B may, in fact, restrict the amount of variation that can be explained by the 

SNP. If more than one SNP is needed to accumulate the effect of one QTL then this 

restriction, if too low, may negatively affect the accuracy of the DGV 

 

Figure 3.12- Posterior distributions and True distribution of SNP effects for all 

models for dataset 1. NG = normal-gamma hierarchical prior distribution, NE = 

normal-exponential hierarchical prior distribution.  

 

When examining the posterior distributions of the SNP effects (Figure 3.11), the 

shrinkage effects of all approaches are evident. The normal-gamma hierarchical prior 
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estimation of the genetic variance possibly resulting in increased shrinkage.  Also 

obvious is the smooth t-distribution of the SNP effects of Bayes A.  

 

The normal-exponential and normal-gamma prior distributions were the most 

consistent across the replicates, producing sets of DGV with the lowest MSE (bias 

and error), highest Pearson correlation coefficients and regression coefficients that 

were closest to one. Interestingly, while the prior specification of Bayes B sets a bulk 

of SNP effects to zero and thus it would seemingly be the closest prior specification to 

the simulated effects, the normal-exponential and normal-gamma prior distributions 

assumptions appear to produce DGV that are closer to the true breeding values.  

Insight into the cause of this is provided by Figure 3.12. The normal-gamma and 

normal-exponential distribution have posteriors similar to that of the simulated QTL 

distribution, in that they have a bulk of effects with very small effects and then some 

larger effects. They compensate for not having really large effects, that is, none close 

to the ±2 simulated, by estimating a larger proportion of smaller SNP effects. This is 

evident in both Figure 3.12 and Figure 3.13. Figure 3.13 shows the simulated QTL 

effect across the genome and the estimated SNP effects for each of the models.  

 

Figure 3.13– Position and effects of the simulated QTL and the estimated SNP 

effects for the four hierarchical models for data set 1   
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All models are able to correctly distinguish most QTL. However, those hierarchical 

models that used the Metropolis Hastings algorithm identified more QTL. Bayes A 

appeared unable to identify all the minor QTL with a negative effect (-1).  

Additionally, it overestimated the effect of the three large positive QTL effects. This 

is a most likely a reflection of its prior distribution with the larger effects being 

sampled from the fat tails and the fact that in some replicates some of the mean was 

absorbed by the SNP effects.    

 

3.4.2  Data Set 2 

 

The accuracy of the DGV produced by the different hierarchical prior distributions 

differed for this simulated data set. They could be split based on the hierarchical prior 

distribution and subsequent MCMC sampling algorithm. Bayes A produced the least 

accurate DGV with the lowest correlation with the TBV, the highest MSE indicating 

bias and a regression coefficient the furthest from one. This lack of accuracy is 

primarily due to the fact that its prior assumptions make it the least able to 

approximate the true distribution of the QTL effects. Bayes B, normal-exponential 

and normal-gamma prior distributions all produce very similar DGV; correlations of 

>0.999 and Spearman rank correlations of >0.99 between the three different sets of 

DGV. 
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Figure 3.14– Position and effects of the simulated QTL and the estimated SNP 

effects for the four hierarchical models for data set 2.   

 

It is not surprising that normal-exponential and normal-gamma prior distributions 

produce accurate DGV for this data set as their prior distributions are very similar to 
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that of the simulated QTL effects, namely, double exponential distribution with many 

small effects and a few large effects. Additionally, Bayes B is well able to estimate 

the QTL effects despite the simulated data having many SNP with minor effects. In 

fact, Bayes B was the most accurate model with the lowest MSE and correlation and 

regression coefficients that are the closest to one. This indicated that the Bayes B 

hierarchical prior distribution provided a flexible and robust approach. Similarly to 

data set 1, all models were able to identify most of the major QTL (Figure 3.14). 

However, Bayes A again struggled to identify some of the minor QTL and this may 

have explained its slightly lower correlation coefficient.  

 

3.4.3 Data Set 3  

 

 

 

 

 

 

 

 

 

 

Figure 3.15 - Posterior distributions of SNP effects for data set 3  
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Consequently, if by chance a SNP may be assigned a non zero value and thus move 

away from the starting values of zero. Each of these accepted values make up the 

posterior of the SNP.  The mean is then used to calculate the final SNP effect 

averaging all the values in the posterior. Consequently if the posterior contains even a 

single non-zero value then the final SNP effect will also be non-zero. The approaches 

do however shrink the effects back towards zero as shown in Figure 3.11 and 3.15. 

The normal-exponential model appears the most successful in shrinking these effects 

back towards zero. In contrast to Bayes A, Bayes B could never have found that there 

was no QTL. The specification of the prior distributions states that a certain 

probability of the effects must be non-zero, thus prohibiting the exact result found by 

Bayes A. Despite this Bayes B does adjust and produces DGV that were closer to the 

real mean than the normal-gamma prior distribution. Should the specification of the 

prior distributions have remained the same for Bayes B, the normal-exponential and 

normal-gamma models, an increase in the size of the data set would not be expected 

to change the results as all three distributions are likely to yield no-zero SNP effects.  

 

3.4.4 Computational Time  

 

The computational time for 10,000 iterations for each model is shown in Table 3.12. 

Immediately evident is that those models employing the Metropolis Hastings 

algorithm are significantly more computationally demanding. The use of R with the 

utilised code is shown to be unviable. However, the use of winBUGS may have 

yielded shorter times. Bayes A was viable but it generally produced the lowest 

accuracies.  A consequence of this result was the recommendation and use of C++ and 

FORTRAN for all remaining computation and programming for the other studies 

presented in this thesis. 

 

Table 3.7- CPU Time for 10,000 Iterations for the different hierarchical models  

!#()#' =">%+'4?' =">%+'=@' AB@' AC@'

G$7!91*%I! QRT!<.! T]!<.! YY\RT!<.! Y]CR]!<.!
$.+5./*! N! N! N! N!

#P?!0+.*/-?5/**/!*12(>.%!,1)(.1=>(1+0F!#E?!0+.*/-?%23+0%0(1/-!*12(>.%!,1)(.1=>(1+0F! C8+,%-)!>(1-1)105!
(<%!P1==)!"/*3-%.F!]8+,%-)!>(1-1)105!(<%!8%(.+3+-1)!U/)(105)!/-5+.1(<*F!I<.!`!<+>.)F!*10`!*10>(%)!!!

 



  58 

3.5 CONCLUSION  

 

The results for this small simulation study indicate that the models with the prior 

distribution that match to the true distribution will produce the highest accuracies. 

However, all models appeared generally robust, flexible and able to cope with 

different underlying QTL distributions. Generally Bayes A produced the DGV with 

the lowest correlation with the TBV and the highest MSE for the data sets containing 

QTL (data sets 1 and 2) indicating that it produced biased sets of DGV. This is due to 

the more strict assumption that the QTL effects are from a t-distribution; thus not at 

any stage matching the simulated QTL distribution). With such a small data set, this 

prior assumption may have overwhelmed the data. Bayes A does allow the more 

efficient Gibbs Sampler to be used reducing computational time. In contrast to Bayes 

A, all other hierarchical prior distributions do not have a fixed posterior rather the 

computationally slower Metropolis Hastings algorithm was used to construct the 

posterior distribution. The results and higher than normal accuracies obtained in this 

study are dependent on the simplistic model used to simulate the data, an increase in 

data set size and more realistic simulation model (or the use of real data) may change 

the results. These scenarios are explored in the following chapters.  

 

The major result from this study was that those hierarchical priors that used 

Metropolis Hastings algorithm and that assumed unequal variances (i.e. Bayes B or 

normal-gamma or normal-exponential hierarchical prior distributions) produced more 

accurate DGV across the simulated data sets but were significantly computationally 

slower and thus unviable. In addition the normal –gamma and normal exponential 

hierarchical prior distributions over shrank the effects and found more minor QTL 

than were simulated.  As a result, an alternative model was developed with 

comparable assumptions to Bayes B but with significantly less computational 

demands. This Bayes SSVS method is described in the next chapter (Chapter 4). It 

utilises stochastic search variable selection to enable the use of the Gibbs Sampler 

will maintaining the assumption of only a small number of significant large QTL. It 

equivalence to Bayes B is also proven in Chapter 4.  
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CHAPTER 4  

Accuracy of Genomic Selection using Stochastic Search Variable 

Selection in Australian Holstein Friesian dairy cattle 

 

4.1 INTRODUCTION 

 

The results from the simulation studies in Chapter 3 suggest that more accurate DGV 

result from approaches that assume a majority of the SNPs have no or minor effects 

but have distributions with fat tails allowing a few major QTL (e.g. Bayes B, Normal-

gamma and Normal-exponential prior distributions versus Bayes A). Those models 

with hierarchical priors such as Bayes B, the normal-exponential and normal-gamma 

mixtures (Chapter 3) use non-conjugate priors and thus require the use of the 

Metropolis Hastings algorithm which has significant time and computational 

demands. These demands make their use for large data sets such as those created 

using the Illumina BovineSNP50 beadchip (54,001 SNP) unviable.  

 

An alternative approach is to use Stochastic Search Variable Selection (SSVS) 

(George and McCulloch, 1993). SSVS provides a method to maintain a constant 

dimensionality across all models but allows the parameters, in this case the SNPs, in 

the predictive set to change. It does this by not removing from the model all non-

significant parameters (that is those that would be excluded from the predictive set 

and thus set to zero in Bayes B); instead, their effects are limited to values very close 

to zero.  

 

The major advantage of this method is that, instead of using more computationally 

demanding algorithms, the posterior distribution of all parameters can be sampled 

directly using the Gibbs sampler. SSVS has been previously used for identifying 

multiple QTL (Yi et al., 2003), multivariate regression models (Brown et al., 1998), 

gene mapping (Swartz et al., 2006) and generalized linear models (George and 

McCulloch, 1997). It has also been utilised for analysing multi-trait QTL mapping 

data (Meuwissen and Goddard, 2004), and subsequently to investigate the effect that 

different methods for defining haplotypes and the effect of the inclusion of the 
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polygenic effect had on the accuracy of genomic selection in simulated data (Calus et 

al., 2008, Calus and Veerkamp, 2007).   

 

In this chapter, it is demonstrated that a Bayesian SSVS can be employed effectively, 

when compared to other methods, for genomic selection using real SNP data. The 

method also provides a viable alternative to more computationally demanding 

approaches such as Bayes B (Meuwissen et al., 2001) will maintaining nearly 

identical assumptions about the SNP effects.  The approach used is novel and is 

modelled differently to the approach presented in Calus et al. (2008) where a 

relationship matrix is present at each SNP location describing the relationship of that 

SNP with the other SNP. This research presented here has been published in Genetics 

Research (Verbyla et al., 2009) (see Appendix A1 for the published paper).   

 

4.2 MATERIALS AND METHODS  

 

4.2.1 Data 

 

The data set contained 1498 Australian Holstein-Friesian bulls genotyped for the 

Illumina Bovine50K array. After quality control, 39048 SNPs remained in the 

predictive set. The quality control applied to the SNP data is described by Hayes et al. 

(2009). The reference data set where the SNP effects were predicted contained 1098 

proven bulls born between 1940 and 2000. The phenotypes for these bulls were 

Australian Breeding Values (ABV) for protein kg, fat kg, protein percentage, fat 

percentage and daughter fertility, all deregressed to remove any contribution from 

relatives (Hayes et al., 2009b). Daughter fertility is here defined as the difference 

between bulls for the percentage of their daughters that are pregnant 6-weeks after 

mating start date or 100-days after calving in year-round herds. The validation set 

contained 400 genotyped bulls proven in the years 2005, 2006 and 2007 with  

information from at least 100 milking daughters and available ABV to enable 

comparison with predicted DGV.  
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4.2.2. Model 

 

At each locus (total number of loci, q) there are three possible combinations of two 

alleles (e.g. A or B), the homozygote of one allele (AA), the heterozygote (AB) and 

the homozygote of the other allele (BB). These are quantitatively represented by 0, 1 

and 2 respectively. The model fitted to the above data was then:   

eZuX1y n ++++++++++++==== !!!!
====

q

j
jj !

1

µ  

where y is the vector of phenotypes of the trait being analysed for all n individuals, µ 

is the mean, n1 is a vector of ones of length n, Xj  is a vector of indicator variables 

representing the genotypes of the jth marker for all individuals (xij=0,1,2),  !j is the 

size of the SNP effect associated with marker j, u is the vector of random polygenic 

effects of length n  (Z is the associated design matrix) and is assumed to be normally 

distributed, (((( ))))A,~u 20
u

N σ  where A is the pedigree-derived additive genetic 

relationship matrix and e is the residual error also assumed to be normally distributed, 

(((( ))))20
e

N σI,~e . The polygenic effect was included to remove the effect of population 

structure to enable the more accurate estimation of the SNP effects. The inclusion of 

the polygenic effect has been shown to produce slightly better accuracies of prediction 

while reducing the bias of the variance components (Calus and Veerkamp, 2007). 

 

4.2.3. Stochastic Search Variable Selection  

 

The key feature of SSVS compared to Bayes A or B (Meuwissen et al., 2001) is the 

introduction of a latent or indicator variable, γ , into the hierarchical model. This 

enables the extraction of information relevant to variable selection. The latent variable 

can take either 1 or 0, representing whether the SNP is included as a significant effect 

in the model or not. As such, the prior distribution for each SNP effect is a normal 

mixture conditional on the corresponding latent variableγ and the variance which is 

sampled from an inverse scaled chi square distribution:   
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At the SNP effect level, this hierarchical prior distributions specification means the 

SNP effects are sampled from a mixture of two student t-distributions, one with a very 

small variance and a second larger distribution. The values of r and S were calculated 

as in Meuwissen et al (2001). The prior distribution of the indicator variable is chosen 

to reflect the belief of whether a SNP is in linkage disequilibrium with a QTL. The 

probability of a SNP being sampled from the smaller or larger distribution is:   

( ) ( ) iii ppp ====− 101 γγ  

Subsequently, the prior distribution for indicator variable is a Bernoulli distribution: 

 ( )ii pbernoulli~γ  

The prior probability 
i

p  is chosen to reflect the information available on how many 

QTL affect the trait of interest. It can be quantified as the number of SNP expected to 

be linked to a QTL divided by the total number of SNP. In genome-wide association 

studies or genomic selection applications, the expected proportion of QTL can 

sometimes be estimated based on knowledge about the trait of interest and previous 

QTL studies results.  

 

The posterior distribution of the indicator variable can be sampled directly using:  
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where i−γ  is all terms ofγ  except iγ . 

            

The frequency that each SNP appears in the model is shown by the posterior 

distribution of the indicator variable. SNP that are included in the model frequently 

have a high posterior probability and will most likely be linked to a QTL. 

Consequently this approach could also be used for genome wide association studies.  

 

4.2.4. Additional Methods  

 

Bayes A, Bayes B and Bayes BLUP were also run on the data.  Bayes A and Bayes B 

were as specified in Meuwissen et al (2001) and as described in Chapter 3 with the 

addition of a polygenic effect. A Bayesian BLUP method was also implemented. It is 

identical to the specification of Bayes A with the exception that all SNP have a 
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constant equal variance that was sampled once each iteration from an inverse scaled 

chi square distribution.  

 

In order to have Bayes B results for comparison to those of Bayes SSVS, a modified 

version of Bayes B approach was used.  The modified version which consisted of 

running Bayes B cycles with the Metropolis Hastings Algorithm after every 100 

iterations of Bayes A. If a SNP effect was found to be zero during these Metropolis 

Hastings algorithm iterations then it was set to zero during the subsequent Bayes A 

cycles. This effectively maintained the same assumptions as Bayes B, while 

significantly reducing the time required to reach convergence.  

 

All methods were run for 10,000 iterations to ensure convergence. This number of 

iterations was shown to be sufficient for convergence with formal diagnostic methods 

provided in the package R, coda  (Plummer et al., 2007 -b). 

 

4.2.5. Breeding Values  

 

Marker estimated breeding values (DGV) for bulls in the validation data set were 

calculated as the sum of the mean, the effects of the SNP genotypes that it carried and 

the polygenic effect, ûˆˆ ++++++++==== βµ XDGV . The accuracy of the methods were 

evaluated on the correlation, the mean square error (MSE) and the regression 

coefficient of the Australian breeding value (assumed to be the true breeding value) 

on the predicted DGV. Genomic selection aims to produce breeding values as close as 

possible to the true breeding value. The ABV was used for comparison as it is a most 

accurate predictor of the true breeding value.  

 

4.3. RESULTS AND DISCUSSION  

 

4.3.1. Time to Convergence  

 

The use of the SSVS method is analogous to Bayes B in the assumption that the 

majority of the SNP effects are thought to be very small and insignificant. However as 

illustrated in Table 4.1, the fixed dimensions of the model and the conjugate nature of 
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the prior distribution used in the Bayesian SSVS model allowed the use of the Gibbs 

Sampler which is significantly computationally less demanding and consequently 

quicker than the Metropolis Hastings algorithm used in traditional Bayes B. Given the 

very high computational demand of Bayes B, it was not possible to run this algorithm 

to convergence. The time to convergence was extrapolated from running Bayes B for 

1000 iterations. The Bayes A and Bayes BLUP methods reached convergence in 

comparable times to Bayes SSVS.   

 

Table 4.1 - Computational time for genomic selection methods 

Method Computational Time a 

Bayes BLUP 6 
Bayes A 6 
Bayes B ~2440 b 
Bayes B Modified 240 
Bayes SSVS 6 

a Processor clock hours 

b Estimated time to convergence 

 

4.3.2. Comparison of BAYES B and BAYES SSVS results  

 

The correlations between the ABVs and the DGV predicted for the animals in the 

validation set by the modified Bayes B and Bayes SSVS for fertility and protein kg 

traits are shown in Table 4.2. This shows that the two methods produce almost 

identical correlations with the ABVs as expected. The DGV for the two methods are 

99.9% and 98.0% correlated for protein and fertility respectively. This equivalence in 

results demonstrates that the Bayes SSVS method does maintain the SNP effect 

assumptions of the original Bayes B and produces near to identical results. The 

slightly lower result for fertility is probably due to the non-normality of the trait 

making it harder to estimate. The modified Bayes B produced not significantly 

different but slightly larger mean square errors and regression coefficients for protein 

(Table 4.3 and 4.4). This is most likely due to the modification to reduce the 

computational time to convergence. The time taken for the modified version of Bayes 

B was still 40 fold larger than that for the Bayes SSVS which produced identical 

accuracies (see Table 4.1).  
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Table 4.2- Correlation between predicted DGV and ABV for proven bulls (years 

2005, 2006, 2007 and overall) for the modified Bayes B and Bayes SSVS.  

 Bayes B (modified) Bayes SSVS 
Protein kg – 2005 0.620 0.627 
                 – 2006 0.638 0.646 
                 – 2007 0.502 0.490 
Protein kg – Overall  0.575 0.583 
Fertility   – 2005 0.576 0.577 
                – 2006 0.430 0.429 
                – 2007 0.628 0.628 
Fertility  – Overall  0.540 0.540 

 

 

 

Table 4.3- Mean Square Error between predicted DGV and ABV for proven bulls 

(years 2005, 2006, 2007 and overall) for the modified Bayes B and Bayes SSVS.  

 Bayes B (modified) Bayes SSVS 
Protein kg – 2005 50.1 49.2 
                 – 2006 53.8 52.7 
                 – 2007 65.2 64.2 
Protein kg – Overall  55.4 54.4 
Fertility   – 2005 5.03 5.03 
                – 2006 5.11 5.11 
                – 2007 3.02 3.02 
Fertility  – Overall  4.52 4.52 

 

 

 

Table 4.4 - Regression Coefficient of predicted ABV on DGV for proven bulls (years 

2005, 2006, 2007 and overall) for the modified Bayes B and Bayes SSVS.  

 Bayes B (modified) Bayes SSVS 
Protein kg – 2005 1.128 1.072 
                 – 2006 1.407 1.346 
                 – 2007 1.435 1.274 
Protein kg – Overall  1.187 1.131 
Fertility   – 2005 1.091 1.095 
                – 2006 0.783 0.781 
                – 2007 0.926 0.929 
Fertility  – Overall  0.930 0.933 
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4.3.3.  Comparison of BLUP, BAYES A, BAYES SSVS results  

 

The logarithm of the mean square error, regression and correlation coefficients for the 

predicted DGV and Australian Breeding Values (ABV) for the traits protein kg, fat 

kg, protein percentage and fat percentage are shown in Table 4.5. The values shown 

are the average values for the proven bulls in the years 2005, 2006 and 2007 from the 

validation data set. BLUP has the highest overall correlation and the lowest MSE 

between the three methods for protein kg. For the traits, fat kg and protein percentage, 

Bayes SSVS produces the highest correlations and has the lowest bias, but over all 

there are no significant differences between methods. However, there are significant 

differences between the performances of the methods for the trait, fat percentage.  

 

Table 4.5- MSE, Correlation and Regression Coefficient between predicted DGV and 

ABV in the validation data set  

 

*Average accuracies reported over validation sets from years 2005, 2006, 2007. 

τDGV,ABV  Correlation coefficient between the ABV and predicted DGV, log(MSE) is 

the logarithm of the Mean square error between the ABV and predicted DGV, 

bABV,DGV Regression coefficient of the ABV on predicted DGV. 

 

The individual SNP variances that Bayes A and Bayes SSVS uses, allows some SNPs 

to have effects which are not penalised (shrunk) as severely as in BLUP. This is 

clearly shown in Figure 4.1, where the percentage each SNP contributes to the total 

Method  Measure Bayes SSVS*  Bayes A*  Bayes BLUP* 

Protein kg τDGV,ABV 0.583 0.567 0.602 

 log(MSE) 4.03 4.06 3.96 
 bABV,DGV 1.187 1.126 1.128 

Fat kg τDGV,ABV 0.563 0.532 0.563 

 log(MSE) 5.18 5.22 5.23 
 bABV,DGV 0.900 0.856 0.988 

Protein % τDGV,ABV 0.668 0.641 0.655 

 log(MSE) -4.94 -4.88 -4.84 
 bABV,DGV 0.972 0.995 0.887 

Fat % τDGV,ABV 0.740 0.716 0.646 

 log(MSE) -3.07 -3.24 -3.32 
 bABV,DGV 0.874 0.864 0.925 

Fertility τDGV,ABV 0.540 0.539 0.538 

 log(MSE) 1.51 1.51 1.52 
 bABV,DGV 0.933 0.942 0.905 
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SNP effects are plotted for the three methods for the centromeric end of the bovine 

chromosome 14. Bayes A and Bayes SSVS have a SNP with an effect significantly 

greater than zero while the Bayes BLUP effects for SNP near DGAT1 are close to 

zero. Bayes SSVS does perform slightly better than Bayes A for fat percentage. The 

advantage of the Bayes SSVS over Bayes A may be the prior structure consisting of 

two distributions: a distribution of larger significant effects and a smaller distribution 

close to zero. This allows the SNP with larger effects to have values in their posterior 

sampled from the larger distribution, while those SNP without significance have their 

effects sampled from the smaller posterior distribution of values very close to zero. 

Traits with large effects will be more accurately predicted using SSVS than Bayes 

BLUP as the prior structure allows more variance to be attributed to the larger effects.  
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Figure 4.1- SNP effects (% of total effects) for fat percentage from Bayes A, Bayes 

BLUP and Bayes SSVS found on the centromeric end of chromosome 14  

 

These differences in the method accuracies across traits or the apparent “trait by 

method” interactions can be explained by the distribution of QTL for the different 

traits. For example, Protein kg has no known genes of large effect and thus BLUP, 
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which applies equal variances across all SNP, can be used successfully to accurately 

predict breeding values. In contrast, fat percentage has a mutation, DGAT1, that is 

common and acts additively and is known to be responsible for approximately 50% of 

the genetic variation for the trait (Grisart et al., 2002).  

 

 

4.4. CONCLUSION 

 

Bayesian SSVS produced more accurate DGV than the other methods for most of the 

dairy traits in the data set.  The comparison with a modified version of Bayes B 

showed that it produces nearly the same results with dramatically less computational 

time required. For traits with a mutation of known large effect such as fat percentage, 

Bayes SSVS gave significantly higher accuracy of DGV than the BLUP method as 

expected given that its prior is closer to the real distribution of effects than that of 

BLUP. The use of an indicator variable in Bayes SSVS would also allow the 

premeditated inclusion of SNP in a model that are known to be linked to QTL of 

biological importance or are themselves causal mutations. Instead of using a single 

value for the prior probability for all SNP, a vector of probabilities could be used as 

prior probabilities to allow more prior information to be included should it be 

available.  

 

Overall, this study had shown that Bayes SSVS method provides reduced 

computational time and accurate results when using real dairy data to predict genomic 

breeding values and provides a viable alternative to other Bayesian methods for 

Genomic Selection.      

 

The performance of Bayes SSVS and Bayes B modified are further examined in 

simulated data produced as part of the 13th QTLMAS workshop in the next chapter. In 

addition, a Bayesian BLUP approach and Bayes A are applied to the data. The aim is 

to again examine the performance of these models and of priors (different from 

Chapter 3) with known QTL distributions. In that study, the performance of the 

models raised different issues and the implications of these are discussed 
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CHAPTER 5  

Sensitivity of Genomic Selection to using different prior distributions 

 

5.1 INTRODUCTION 

 

As a response to the development of Bayes SSVS and the implementation of a 

modified Bayes B (Bayes A/B hybrid), a second simulation study was performed to 

assess the performance of these methods in simulated data. This study used the 

simulated data from the 13th QTL-MAS workshop. The advantage of this data set was 

that it allowed the testing of Bayesian genomic prediction approaches on a data with a 

linkage analysis structure. Consequently, it provided an opportunity to assess the 

performance of four Bayesian genomic prediction models on a differently structured, 

more realistic, simulated data set than presented in Chapter 3.  

 

Four Bayesian models differing again through the specification of the prior 

distributions for the SNP effects and their respective variances were applied to 

estimate DGV. They included three new methods not presented in Chapter 3, Bayes 

SSVS (Chapter 4), Bayes BLUP and Bayes A/B along with Bayes A (used in Chapter 

3). The results of this study have been published in BMC proceedings as part of the 

publications for 13th QTLMAS workshop (Verbyla et al., 2010a) (see Appendix A3 

for the published paper). 

 

5.2 MATERIAL AND METHODS  

 

5.2.1 Simulated data 

  

The data was simulated as part of the 13th QTLMAS workshop held in Wageningen, 

the Netherlands in 2009. The data set consisted of 2,025 individuals from two 

generations. All individuals had complete marker information. The first 25 individuals 

were the parents, 20 female and 5 male. The remaining 2000 individuals were 

offspring consisting of 100 full sibs (FS) families, one from each combination of a 

male and female parent. Each FS family has 20 offspring. Fifty FS families were 

phenotyped, the other 50 FS families did not have phenotypes. FS families were 
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chosen such that each female parent has at least 40 phenotyped offspring while each 

male parent has 100 phenotyped offspring. The phenotypes were measured at 5 time 

points (0, 132, 265, 397 and 530). The phenotypes were simulated such that they 

could be seen as yield values representing weight during the growth of an animal or 

plant. The phenotypes formed points on a logistic growth curve. The true breeding 

values (TBV) were available for time point 600 for the animals without phenotypes. 

 

There were 453 SNP marker loci which were randomly distributed over 5 

chromosomes. Each chromosome was approximately 1 Morgan in length. 18 QTL 

were simulated, 6 affecting each parameter of the logistic curve with one QTL 

explaining 50 percent of the genetic variation for that parameter. The LD (r2) between 

a marker and QTL varied between 0.16 and 1.00. The average LD (r2) between 

flanking markers was 0.14. Three QTL were on chromosome 1 and 5 and four QTL 

were on the other chromosomes. They all acted additively and explained from 2.5% to 

32% of the phenotypic variance. No polygenic, epistatic or imprinting 

(maternal/paternal) effects were simulated.   

 

The TBV and the details of how the data was simulated were only revealed after the 

workshop and the data analysis was completed; for more details, see Coster et al. 

(2010).  

 

5.2.2 Prediction of Breeding Values at Time Point 600  

 

Due to the availability of phenotypes only at t=0, 132, 265, 397 and 530, the problem 

of how to model the time series data and estimate DGV at time point 600 was 

explored. Options included estimating the phenotype at t=600 and then deriving the 

DGV. This could have been done linearly or by assuming a type of growth curve.  

However, there was little information available to estimate any inflection points or 

asymptotic values. The second alternative was to estimate the DGV and then 

extrapolate to t=600. This approach was adopted to estimate the DGV. The predicted 

DGV at time points 265, 397 and 530 were found to have a linear relationship; they 

appear to form the linear part of the growth curve (Figure 5.1). Consequently, as there 

was no other information available after time point 530 to predict asymptotes etc., the 



  71 

DGV at time point 600 were estimated by fitting a linear regression through the 

breeding values at the three linear time points; 265, 397 and 530 (Figure 5.1).  

 

Figure 5.1– DGV predicted for t=0, 132, 265, 397 and 530 and extrapolated for 

t=600 using linear regression through t=265, 397 and 530.  

 

5.2.3 Model 

 

Unlike the model used in simulated study in Chapter 3, the model used here included 

the polygenic effect. This was primarily because it was unknown whether or not a 

polygenic effect was included in the simulated data. The model used was:   

eZuXy
p

j
jj ++!+= βµ n1        

where y  is the vector of phenotypes of the trait being analysed for all n individuals, µ 

is the mean, n1 is a vector of ones of length n, Xj  is a vector of indicator variables 

representing the genotypes of the jth marker for all individuals (xij=0,1,2),  !j is the size 

of the QTL effect associated with marker j, u is the vector of random polygenic 

effects of length n (Z the associated design matrix) and is assumed to be normally 

distributed, ( )ANu u
2,0~ σ  where A is the pedigree derived additive genetic 

relationship matrix and e is the residual error also assumed to be normally distributed, 
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( )2,0~ eINe σ  where I is the nxn  identity matrix. The prior distributions for the 

variances of the random polygenic effects and the residual were uninformative flat 

priors of the form ( )0,22 −−χ . For specification of posteriors distribution sampled for 

the mean, residual and QTL effects see Chapter 3 (Section 3.2.3).    

 

5.2.4 Prior Distributions for QTL effects and Algorithms  

 

Four differing sets of prior distributions were assessed; the specifications are shown in 

Table 5.1. The Bayes BLUP model assumed the same variance for the normal 

distribution from which the SNP effects were assumed to be derived. The variance of 

the normal distribution was sampled once every MCMC iteration using a Gibbs 

Sampler. Bayes A (Meuwissen et al., 2001) as used in Chapter 3 and 4 assumes that 

the SNP effects come from a t-distribution. The values for the inverse scaled chi 

square hyper parameters (r and S) were calculated as in Meuwissen et al (2001); see 

Table 3.7 for values.  

 

Table 5.1- Prior Distribution Specifications   

Method  Prior Distribution 

Bayes BLUP ( )
( )11

22

2

,~

,0~

sr

Ni

−χσ

σβ
 

Bayes A ( )
( )11

22

2

,~

,0~|

sr

Nv

i

iii

−χσ

σβ
 

Bayes A/B 

(Hybrid) 

( )20 iii Nv σβ ,~|  

02 =iσ  with probability 1-! 

( )22
22 ,~ sri

−χσ  with probability ! 

Bayes SSVS ( ) ( ) ( )

( )
( ) ( ) i

i

p

p

====−

+−
−

101

~

),(~

,0100/,01~,|

22
22

222

ii

i

i

iiiiiii

pp

bernoulli

Sr

NN

γγ

γ

χσ
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Hyper-parameters were set at pi=!=0.05, ( ) ( )0954.0,0035.4, 11 =sr , 

( ) ( )8800.1,0692.4, 22 =sr .  
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The other two models assumed mixture distributions for the SNP effects reflecting the 

assumption that there is a large number of SNPs with zero or near zero effects and a 

second smaller set of SNPs with larger significant effects. A Bayes A/B “hybrid” 

method was used. This approximation to Bayes B (Meuwissen et al., 2001) was used 

to keep computational and time demands reasonable. In this algorithm, after every k 

Bayes A iterations, Bayes B via the Metropolis Hasting algorithm was employed. The 

Metropolis Hasting algorithm was run multiple times per SNP and then any SNP with 

a final state of zero in the current Bayes B iterations was set to zero for the subsequent 

k iterations of the Bayes A (k = 100) . The prior distributions are identical to that of 

the original Bayes B using a mixture prior distribution for the SNP variance allowing 

a proportion, !, to be set to zero.  The other proportion, 1-!, is sampled from a similar 

mixture distribution to that used for Bayes A. See Meuwissen et al (2001) for more 

details of priors and conditional distributions used.  

 

A faster alternative to both the Bayes A/B hybrid and Bayes B is to use Stochastic 

Search Variable Selection (SSVS) (George and McCulloch, 1993) (Bayes SSVS – 

Chapter 4). This avoids the problem of a non-conjugate prior and the possible 

changing dimensionality of the models (if pi, the proportion of significant SNP 

effects, is also sampled) by providing a technique to maintain constant dimensionality 

across all models while still allowing the SNP in the predictive set to change. Instead 

of removing all non-significant parameters, their posterior distributions are limited to 

values close to zero. The major advantage of this method is that it can be implemented 

using the Gibbs Sampler instead of the more computationally demanding algorithms 

such as the Metropolis Hastings algorithm. The indicator variable (γ ) determines 

whether the SNP effect is sampled from the larger distribution (i.e. significant effect) 

or from the small distribution with near zero effects. This model was developed as a 

response to the time and computational demands of Bayes B that made it unviable for 

use on bigger real data sets. However, the assumptions of Bayes B, in simulated data, 

produced higher accuracies than the faster Bayes A, thus Bayes SSVS provides a fast 

algorithm with similar assumptions to Bayes B.  Further specification, testing and 

discussion of Bayes SSVS are presented in Chapter 4 and published in Verbyla et al. 

(2009).  
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The prior values of ! and pi for Bayes A\B and Bayes SSVS respectively were set to 

0.05, reflecting the fact that with 435 SNP, it appeared reasonable to expect at least 21 

SNP would be associated with a QTL as no additional information was available 

about the trait being analysed. The algorithms associated with each model were run 

for 30,000 iterations with the first 10,000 discarded as burn-in.  The DGV at each 

time point were then calculated as ûˆˆDGV ++= βµ X . 

 

5.3 RESULTS AND DISCUSSION 

 

5.3.1 Breeding Values  

 

The methods produced significantly different summary statistics (variances, means, 

minimums and maximums) for different sets of DGV produced for the animals 

without phenotypes (Table 5.2). Bayes SSVS and Bayes A/B produced very similar 

summary statistics which is aptly explained by the similarity in the prior distributions. 

Bayes BLUP produced a similar mean value but a higher variance. All approaches 

utilised have a much lower variance in their respective sets of DGV than the TBV. 

This could be caused by the extrapolation of the DGV to the 600 time point and the 

fact that the QTL effects were estimated linearly where they were simulated as 

influencing the three parameters of the logistic growth curve.  

 

Table 5.2- Summary of DGV statistics for each model and the TBV.  

 TBV Bayes A Bayes SSVS Bayes BLUP BayesA/B 

Min 18.068 23.998 23.845 16.950 22.205 

Max 48.711 49.994 48.877 49.314 48.206 

Mean 29.569 29.601 29.609 29.512 29.572 

Variance 25.346 18.441 17.913 20.721 17.124 

 

Despite the small apparent differences in DGV produced by Bayes A, Bayes A/B and 

Bayes SSVS, the correlations between these sets of DGV were extremely high 

(>0.99).  Consequently, the DGV appeared relatively insensitive to the model used 

when assuming unequal variances. The correlations between the predicted sets of 

DGV for the alternative methods, for animals without phenotypes are shown in Table 

5.3.  
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Table 5.3- Correlations between Estimated DGV for animals with no phenotype at 

t=600 

  Bayes SSVS  Bayes A/B Bayes BLUP 

Bayes A 0.9991 0.9901 0.8598 

Bayes SSVS  1 0.9924 0.8634 

Bayes A/B   1 0.8928 

 

Table 5.4 - Comparison of True and Estimated DGV. Correlation, Mean Square Error 

(MSE), Rank (Spearman Rank Correlation for the first 100 animals) and regression of 

the true on the estimated DGV 

Method Correlation MSE Rank Regression 

Bayes BLUP 0.885 5.479 0.691 0.979 

Bayes A 
0.864 6.630 

0.696 1.162 

Bayes A/B 0.889 5.435 0.73 1.081 

Bayes SSVS 0.869 6.232 0.71 1.024 

 

Correlations, mean square errors, the accuracy of predicting the order of the first 100 

animals (rank) and the regression coefficient between the predicted and true breeding 

values are shown in Table 5.4. While there is no significant difference between the 

methods, Bayes A/B performed the best of the methods producing the lowest MSE 

and the highest correlation and rank statistics. Interestingly, whilst Bayes SSVS has 

very similar hierarchical prior distributions, it does slightly worse than Bayes A/B. 

Further optimisation of the prior probability of pi for Bayes SSVS increased the 

accuracy. The optimal value for pi was found to be 0.3; values tested were 0.05, 0.1, 

0.2, 0.3, 0.4, 0.6 and 1. This was also consistent with the value used to accurately 

identify the QTL (Heuven and Janss, 2010). This value produced results that were 

similar to the results seen for Bayes A\B (! = 0.05). When pi was set to 1, the DGV 

and accuracy were almost identical to Bayes A (the only difference caused by the 

differing hyper-parameters).  This does highlight the importance of the correct 

assumption of the proportion assigned to the smaller and larger distributions in a 

mixture model. This difference between these two methods may demonstrate that 

Bayes SSVS is more sensitive to an incorrect assumption about this proportion. 

Alternatively, due to the extremely high correlation between the two sets, the slight 
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reduction in accuracy may be a result of an introduced bias in Bayes SSVS reflected 

by the higher MSE in Table 5.4.  

 

The inclusion of the polygenic effect in the model (not simulated in the data) only 

slightly reduced the accuracy of prediction (.01) but not significantly (Table 5.5). It 

was included in the model as its inclusion has been shown to produce slightly better 

accuracies of prediction while reducing the bias of the variance components (Calus 

and Veerkamp, 2007). 

 

Table 5.5- Comparison of Bayes SSVS results with varied parameters   
Proportion (pi) Polygenic Effect Correlation Coefficient  

0.05 Included  0.869 

0.05 Not Included  0.877 

0.1 Included 0.883 

0.3  Included 0.891 

pi is the proportion of SNP with a significant effect for Bayes SSVS. 

 

Bayes BLUP produced a significantly different set of DGV. This is evident by the 

much lower correlations with the other methods and the fact its regression coefficient 

is significantly different from the other approaches. These differences are caused by 

the very different specification of the hierarchical prior distribution assumed. Despite 

these differences, Bayes BLUP produces good accuracy and a low MSE (Table 5.4).  

The assumption of equal variance meant that the effect and variance explained by the 

QTL were picked up by many SNP. This meant that the effect was effectively spread 

across those SNP in LD with the QTL. The success of the BLUP approach in this data 

set can be explained by two factors. The first that the structured pedigree creates LD 

within families over long distances and thus allows BLUP to capture successfully and 

to spread the QTL effect over a number of SNP. The second factor is that the 

accuracy of BLUP in simulated small data studies has been shown to be inversely 

related to the number of SNP (Fernando et al., 2007). However, this inverse 

relationship was defined in the situation where the number of QTL remained constant 

and the accuracy of BLUP was measured as the numbers of SNP were increased. The 

assumptions of BLUP do predict this behaviour; as the numbers of SNP increase the 

amount of variance explained that can be explained by a single SNP decreases. If the 

proportion of SNP in LD with QTL is constant then BLUP should behave the same 



  77 

but if the proportion changes and less SNP are in LD with the QTL then the accuracy 

will decrease. In this data set, the small number of markers (453) with 18 QTL and 

consequently the extent of LD, allows for BLUP to be able to produce comparably 

accurate DGV. However if the percentage of genetic variance explained by a single 

QTL was to be large and the level and length of LD was low, Bayes BLUP could be 

expected to produce worse results as it would be difficult to spread the large effects of 

the QTL across a small number SNP in LD with it. This would appear to be especially 

true with large numbers of SNP. Thus this caveat to using Bayes BLUP should be 

considered when considering this method.  

 

For all methods, the setting of the hyper parameters from the data may have increased 

the accuracy rather than following the method in Meuwissen et al (2001).      

 

5.3.2 Computational requirements  

 

The computational time for 30,000 iterations for each model is shown in Table 5.6. 

Evident is that that Bayes A/B, the only model employing the Metropolis Hastings 

algorithm is significantly more computationally demanding. However all times are 

viable compared with the extremely slow time when using the R code as presented in 

Chapter 3. Also apparent is the equivalence in CPU time required for Bayes A, Bayes 

BLUP and Bayes SSVS.  

 

Table 5.6- CPU Time for 30,000 Iterations for the different hierarchical models 

!#()#'' =">%+'4?' =">%+'4D=@' =">%+'=EF!?' =">%+'GGHG?'
G$7!91*%I!! ][!*10! C\\!*10! ][!*10! ][!*10!
$.+5./*!! Gaa! Gaa! Gaa! Gaa!

NG- normal-gamma mixture distribution, NE- normal-exponential mixture 

distribution , 1Models utilising the Gibbs Sampler, 2Models utilising the Metropolis 

Hastings algorithm and Gibbs Sampler, * min= minutes!! 
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5.4 CONCLUSION  

 

All methods produced DGV that were highly correlated (greater than 0.85) with the 

true breeding values despite diverse assumptions and prior distributions. This 

indicates that the hierarchical model is relatively insensitive to the choice of prior 

distributions for this data set. The results cannot be seen to reflect the match between 

the prior and the true distribution of QTL possibly due to the mismatch between the 

method in which that data was simulated (using a logistic growth curve) and the 

approach to predicting the SNP effects (using a linear model). The results presented 

are also dependent on the underlying the model used to simulate the data and thus if 

this was to change the performance of the models may change. However, the 

Bayesian models do appear robust and are able to handle this lack of match between 

the simulated data and the model assumptions. This bodes well for real data where the 

genetic architecture of the trait may be unknown.  

 

The study does show that methods assuming unequal variances (Bayes A, Bayes B 

and Bayes A/B) produced very similar sets of DGV in comparison to a significantly 

different set of DGV produced by the Bayesian genomic BLUP approach. However, 

Bayes BLUP produced DGV highly correlated with the true breeding values (TBV) 

indicating that it may provide a viable approach to genomic prediction in real data 

where the population is heavily structured.  

 

A comprehensive comparison of Bayesian methods in real data is presented in the 

next chapter where the performance of Bayes BLUP, Bayes A and Bayes SSVS is 

examined across a range of traits differing genetic architecture. The results are then 

discussed and compared with comparable studies from different countries. In addition, 

the effect of pre-selecting a subset of SNP is explored for the Bayes A and Bayes 

BLUP methods (where all SNP included have a non-zero effect).   
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CHAPTER 6  

Comparison of Bayesian Methods for genomic selection using real 

dairy data 

 

6.1 INTRODUCTION 

 

Real data emphasizes the p>n problem that simulated often data does not mimic. 

Currently, only a few thousand of animals with genotypes and phenotypes are 

available for use as reference populations and the current bovine SNP chip has 54001 

SNP available and this number will continue to increase. This disparity between the 

number of SNP and phenotypes can be problematic. Consequently, one proposal is to 

first select a small number of influential SNP that are most likely to be linked to QTL 

affecting the trait of interest. Then in a second stage use these pre-selected SNP for 

more sophisticated modelling of the relationship between the SNP and the trait of 

interest. This approach was initially introduced as a way to pre-select markers for 

GWAS. Hoh et al. (2000) proposed a two stage analysis using a model-free approach 

to first select influential markers for further modelling in the second stage. The 

approach for the pre-selection step was based on a bootstrap procedure. In the context 

of genomic prediction,  Macciotta et al.(2009) used a simple single SNP linear 

regression model and Long et al. (2007) developed a Machine learning classification 

procedure both to pre-select SNP for use in the creation of a prediction equation.  In 

addition to reducing the dimensions of the data, the identification of a predictive 

subset of SNP could also reduce the cost of genotyping animals consequently making 

the application of genomic selection more cost effective. The raises the question of 

whether the use of a selected subset of SNP will produce higher accuracies will 

depend on the LD present between the SNP and QTL and the genetic architecture of 

the trait. The affect is assessed in this Chapter by preselecting SNP using single SNP 

linear regression with and without weights and using these reduced subsets of SNP 

with two genomic prediction models.  

 

As can be seen from the systematic overview presented in Chapter 2, multiple 

different approaches have been proposed and implemented for genomic selection and 

prediction. Chapters 3 and 5 analytically considered different Bayesian approaches 
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differentiated by their prior distribution specifications. It was demonstrated that the 

performance of the models in simulated data reflected the match between the prior 

distributions of the QTL effects in these models and the “true” or simulated 

distribution of QTL effects.  However, the performance of approaches and the 

resultant accuracies of prediction are dependent on the detailed assumptions of the 

simulation and may not be an accurate representation of the performance of these 

methods in real data. This is because the true distribution of QTL effects is not known 

in real data. Furthermore the SNP may only be partially in LD with QTL; so it may 

only be possible to capture part of the effect of some QTL. Thus a good test of a 

genomic prediction model is its ability to reliably and accurately predict breeding 

values across a range of genetically diverse traits in real data. Importantly, the ideal 

model will be robust and able to produce highly accurate DGV for traits with differing 

genetic architecture. The performance of different models will be related to the 

equivalence between the model assumptions about the QTL distribution and the real 

QTL distribution. Thus, the relative performance of the different models can also be 

seen to give insight to the underlying genetic architecture of the traits.   

 

This chapter presents an extension of the investigation presented in Chapter 3 and 5 to 

real diary data to obtain a more comprehensive comparative analysis of the 

performance of Bayes BLUP, Bayes A and Bayes SSVS. In addition, the affect of 

selecting subsets of SNP on the accuracy of genomic prediction is explored using real 

data. The performance of the different methods is assessed across a range of nine 

traits with differing genetic architectures. For example, for fat percentage, there is a 

well characterised mutation of large effect (DGAT1). In addition, across the nine 

traits, the impact on the accuracies for selection of using smaller pre-selected sets of 

SNP is examined for the Bayes BLUP and Bayes A models.  

 

6.2 METHODS 

 

6.2.1 Data 

 

A total of 1498 Australian Holstein-Friesian bulls were genotyped for the Illumina 

Bovine50K array. Quality control was applied to the SNP data (see Hayes et al. 

(2009)) leaving a final set of 39048 SNPs. Of the 1498 animals, 1098 bulls born 
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between 1940 and 2000 formed the reference data set. The remaining 400 genotyped 

bulls formed the validation set. These bulls were proven in the 2005, 2006 or 2007 

with Australian Breeding Values (ABV) including information from at least 100 

milking daughters to enable comparison with predicted GEBVs. The phenotypes for 

these bulls were ABVs for protein kg, fat kg, milk yield, protein percentage, fat 

percentage, daughter fertility, ASI (Australian Selection Index), APR (Australian 

Profit Ranking) and overall type. ASI is defined as: 

( ) ( ) ( )ABVABVABVABV litresMilk0.048kgFat0.9kgProtein3.8ASI ×−×+×=  

APR is defined as: 

( ) ( ) ( )
( ) ( )ABVABV

ABVABV

SCC0.34Liveweight0.26

tTemperamen2.0SpeedMilking1.2IndexSurvival3.9ASIAPR

×−×−

×+×+×+=

where SCC stands for somatic cell count. As in Chapter 4, daughter fertility is 

defined as the difference between bulls for the percentage of their daughters that are 

pregnant 6-weeks after mating start date or 100-days after calving in year-round 

herds. All ABV were deregressed to remove any contribution from relatives other 

than daughters (Hayes et al., 2009b).   

 

6.2.2 Model and Prior Distributions  

 

The model was the standard model previously presented in Chapters 4 and 5. Briefly, 

the model was:   

eZuXy
q

j
jj ++!+=

=1

βµ n1  

where y is the vector of deregressed phenotypes of the trait being analysed for all n 

individuals, µ is the mean, n1 is a vector of ones of length n, Xj  is a vector of indicator 

variables representing the genotypes of the jth marker for all individuals (xij=0,1,2),  !j 

is the size of the effect for marker j, u is the vector of random polygenic effects of 

length n  (Z is the associated design matrix) and where ( )ANu u
2,0~ σ  and e is the 

residual error also assumed to be normally distributed, ( )2,0~ eINe σ . 

 

The prior distributions used for this study are presented in Table 6.1. Three 

hierarchical priors distributions were used. The first, Bayes BLUP (Section 2.2.2, 

4.2.4 and 5.2.4) sampled the SNP effects from a normal distribution and assumed that 
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all SNP had an equal variance.  This approach results in all SNP having some effect. 

Similarly, the Bayes A framework produces effects for all SNP. However in contrast 

to Bayes BLUP, the SNP are assumed to have unequal variance and due to the choice 

of conjugate priors, the SNP are sampled from a t-distribution (Section 2.2.3). The 

final hierarchical framework, Bayes SSVS, introduced in Chapter 4, used Stochastic 

Search Variable Selection (SSVS) to enable only a distinct subset of SNP to be 

assumed in linkage disequilibrium QTL and thus non-zero. All prior distributions 

were implemented using the MCMC Gibbs Sampler.  

 

 Table 6.1- Prior Distributions Specifications  
 

 

 

 

 

 

 

 

 

 

 

 

6.2.3 Pre-selection of SNP 

 

To examine the effect that using selected subsets of SNP had on the accuracy of 

prediction, a pre-selection step was carried out to select sets of SNP that were the 

most likely to be linked to QTL affecting the trait of interest. These subsets were 

chosen using single SNP analysis carried out in ASReml (Gilmour et al., 2006a). A 

maternal grandsire model was implemented as follows:  

eZZX1y n ++++= 2211 uuβµ  

where y is the vector containing the phenotypic records for all individuals, X is a 

vector of indicator variables representing the genotypes of the ith SNP marker for all 

individuals, ! is the associated effect of the ith SNP, 1u  is the random sire effect ( 1Z  
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associated design matrix) and is normally distributed, ( )IN u
2

1 1
,0~ σu , 2u  is the 

random maternal grand sire effect ( 2Z  associated design matrix) and is also normally 

distributed, ( )AN u
2

2 2
,0~ σu . The model was fitted with and without weights, where 

the weights were defined as the number of effective records (which for bulls is equal 

to the number of effective daughters).  The model was run for each trait individually 

fitting all SNP separately. The results of the single SNP analyses were examined and 

any SNP that was reported with a p value < 0.1 was selected as part of the reduced set 

of SNP for that trait. Thus three sets of SNP were created for each trait. The first 

containing all SNP, a second set containing SNP selected for the trait not using 

weights and the final set containing SNP selected for the trait using weights.  

  

6.2.4 Breeding Values  

 

The direct genetic values (DGV) for bulls in the validation data set were calculated as 

the sum of the effects of the SNP genotypes that it carried, the mean and the estimated 

polygenic effect; ii

∧

++= u!DGVi
ˆXµ . Genomic Estimated Breeding Values 

(GEBV) were also calculated. They were calculated by combing the DGV and the sire 

maternal-grandsire pathway (SP), namely, breeding value predictions based on the 

sire maternal-grandsire pathway calculated at the time of the birth of the bull calves. 

The GEBV were calculated as follows: 

21

21

ww

SPwDGVw
GEBV

+

+
=  where ( )2

i
2
ii R1Rw −=  for 1i =  for the DGV and 2i =  

for the sire pathway (Moser et al., 2009). The reliability, 2R , of the DGV was 

calculated as the correlation squared between the DGV and the ABV. Similarly, 

reliability of the sire pathway was calculated as the correlation squared between the 

SP and the ABV. In practice, the reliabilities would be calculated from the inverse of 

the Genomic relationship matrix, but this approach provided a quick approximation 

using optimal weights. 

 

The accuracy of prediction for both DGV and GEBV for the methods was evaluated 

using the Pearson correlation coefficient. 
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6.3 RESULTS 

 

6.3.1 Accuracy of Prediction  

 

The Pearson correlation coefficient between the estimated DGV/GEBV and the ABV 

are shown in Table 6.1 and Table 6.2 respectively. Across all nine traits, no one 

method produced the highest correlation coefficient or, consequently, the highest 

accuracy of selection. Regardless, there are clear trends between the different 

hierarchical prior assumptions. For instance, Bayes BLUP which assumed equal 

variance across all included SNP, produced DGV and GEBV for protein and ASI with 

higher accuracies of selection than the other approaches which assumed unequal 

variances for the SNP.  In contrast, the opposite is true for fat percentage. The 

accuracies produced for APR, fertility and Overall Type, followed very similar 

patterns of accuracies with only Bayes BLUP, using the SNP selected without 

weights, producing significantly worse results.  

!
In general, the GEBV produced the more accurate estimated breeding values when 

compared to the DGV, with the exception of some accuracies for fat and protein 

percentage. This is highlighted in Figure 6.1 which shows a comparison of the 

accuracies for Bayes SSVS. Also evident is that without the addition of the sire 

pathway to create the GEBV, the accuracy of the DGV for fertility is poor and may be 

a reflection of its low heritabilty. This was true for all prediction models.    

!
Table 6.2- Pearson correlation coefficient calculated between DGV and ABV.  
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Table 6.3- Pearson correlation coefficient calculated between GEBV and ABV.  

2%&7)9' *"&"?'' 2(5:' !#)&%(.' J"&' J"&'K' !#)&%(.'K' LM%#"55'N>/%' J%#&(5(&>'' 4!O' 4GP'
A/H%)!AB7$! C! QRZ[W! "#&+)! QRT]W! QRZYQ! QRZZQ! QRT\Z! QRTYW! QRTY[! "#$,+!
!! ]! "#&$%! QRZCQ! QRT[Y! QRZ[Y! QRZZC! QRTTZ! QRTQ[! QRTCZ! QRT]T!
!! Y! QRZ[Z! QRTSZ! QRT]\! QRZWS! "#&*(! QRTQZ! QR[[[! QR[SC! QRTQ[!
A/H%)!6!! C! QRZYC! QRT\]! QRTYW! QR\QQ! QRZ[T! QRT\S! QRTYS! QRTCY! QR[[[!
!! ]! QRZYT! QRTWY! QRTYW! QR\Q[! QRZ[W! "#$($! QRTYZ! QRTYC! QR[TZ!
!! Y! QRZYS! QRT\S! QRT[Y! QR\C]! QRZZ\! QRT\W! QRT]S! QRTCS! QR[ZC!
A/H%)!""O"! C! QRZ[[! QRTWW! "#$$*! "#*,(! QRZ\Q! QRT\T! "#$'"! "#$)$! QR[\Z!
C! D/(/! )%(! >)%,! &+.! 3.%,1'(1+0c! C! `! 6--! "#$F! ]! `! "#$! )%-%'(%,! 41(<! 4%15<()! /0,! Y! `! "#$! )%-%'(%,!
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!
Figure 6.1- Comparison of the reliabilities for DGV and GEBV for Bayes SSVS.  
!
!
6.3.2 Pre-selection of SNP 

 

The pre-selection step produced two subsets of SNP for each trait. The number of 

SNP selected for each trait using the single SNP model with and without weights is 

shown in Table 6.4. Immediately evident is that using weights (and thus the correct 

error term) increased the number of SNP selected using a 0.1 significance level.  In 

fact, it can be seen that 2 to 5 times as many SNP were selected using the weighted 

analyses. 
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Table 6.4- Numbers of SNPs pre-selected using the single SNP model with and 
without weights.  

Trait Unweighted Weighted 

Protein kg 5545 14489 

Fat kg 4546 19280 

Milk (L) 5177 18690 

Protein % 5747 20318 

Fat % 4518 23919 

ASI 5503 16719 

APR 5007 11088 

Overall Type 5214 15129 

Daughter Fertility 4144 10346 

 

The difference in the number of SNP has a significant impact on the performance of 

the approaches. The trend across the number of SNP was not uniform across Bayes A 

and Bayes BLUP as seen in Figures 6.2 and 6.3 and Table 6.5 which clearly illustrate 

two main facts. The first is that Bayes BLUP and Bayes A perform differently when 

the different sets of SNP are used.  Generally, Bayes A performed the best with the 

two smaller subsets of SNP compared with Bayes BLUP which performed better with 

more SNP (the larger subset and all SNP). The exceptions to this fact were for fat 

percentage and protein percentage where for both Bayes A and Bayes BLUP, the 

results show that accuracies are highest with the smallest subset (Figures 6.2 and 6.3). 

The second feature shown is that, other than for fertility, the addition of the sire 

pathway does not change the order of accuracies for the different SNP sets. However, 

for fertility, the ranking of accuracies for the different SNP sets change with the 

addition of the sire pathway. This could be a reflection of the non-normality of the 

trait and its low heritability.   
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Figure 6.2- Performance of Bayes A for the three different sets of SNP for a) DGV 

and b) GEBV 

 

Table 6.5- Average Correlation Coefficient across all traits for Bayes A and Bayes 

BLUP using different number of SNP  
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C Average Selected number of SNP across all traits, 2 Average Correlation Coefficient 

across all traits, Selected (W) = SNP selected in single SNP model with weights, 

Selected (UW) = SNP selected in single SNP model without weights.   
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Figure 6.3 - Performance of Bayes BLUP for the three different sets of SNP for a) 

DGV and b) GEBV 

 

6.4 DISCUSSION 

 

6.4.1 Accuracy of Prediction 

 

Over all, the accuracies produced by the different models are generally comparable. 

But there are observable differences between accuracies across the traits produced by 

the same model and differences between the accuracies across the models for the 

same trait. These differences can be traced, in part, to the variation in genetic 

architectures of traits and the subsequent match between the models’ assumptions 

about the distribution of SNP effects and the trait’s genetic architecture that is the 

“true” distribution of QTL effect. The most obvious difference in accuracies is for fat 

percentage. This can be explained largely by the fat percentage’s genetic architecture 

has a single QTL with a much larger effect than any other traits. DGAT1 is reported 
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to have a significant effect and thus the two models (Bayes A and Bayes SSVS) that 

assume SNP have unequal variances produce higher accuracies for fat percentage. 

This follows the trend reported in other studies. Hayes et al (2009c) reported that 

results from New Zealand (Harris et al., 2008), the Netherlands and United States 

studies (VanRaden et al., 2009) also found that Bayesian Methods performed slightly 

better than BLUP for traits where there is a single QTL that explain a large proportion 

of the genetic variance. This trend is also evident here in both DGV and GEBV for fat 

percentage and protein percent.  

 

This trend of Bayesian methods to out-perform BLUP for traits with QTL explaining 

a large proportion of the genetic variance also occurs in breeds other than Holsteins. 

Gredler (2009) found a similar trend in Fleckvieh bulls when they tested Bayes A, 

Bayes B, linear (BLUP) (VanRaden, 2008), the LASSO and PLS for use for genomic 

prediction. They too found the same trend of Bayes B significantly out-performing the 

other method for fat percentage with a general equality of performance across the 

other methods.  

 

Also apparent from the results (Table 6.2 and Table 6.3) is that BLUP actually 

performs slightly better than the Bayesian approaches for some traits such as Protein 

kg and ASI. This again may be linked to the genetic architecture of the traits where a 

very large number of QTL explain small amounts of variation. This feature means that 

the “true” distribution of QTL effects more closely matches with the assumptions 

made about the SNP effects distribution by Bayes BLUP than Bayes A and Bayes 

SSVS. Alternatively for lower heritable traits, this could be a reflection of the fact that 

BLUP may better capture relationships in the SNP effects than the other methods.     

 

However, the performance of BLUP is heavily dependent on the extent of the LD.  

When the LD decays quickly over distance, BLUP would be unable to spread the 

large effects of a QTL across the one or few SNP in LD with it and thus would be 

inaccurate and unviable for genomic prediction. Bayes BLUP would be expected to 

produce worse results in situations such as multi-breed data sets. For example, within 

breed results have indicated that genomic selection can be successfully carried out 

with 50,000 SNP (assuming an r2 0.20 between adjacent markers within breed). 

However across breeds (e.g. Jersey, Holstein-Friesian and Angus cattle) to have the 
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same LD (r2 0.20), approximately 300,000 markers are needed to obtain consistent 

marker effects across these breeds (de Roos et al., 2008). This need to be able to 

spread the effect of the QTL across multiple SNP also explains why BLUP can not 

produce as high accuracies for fat percentage. The large effect and variance related to 

DGAT1 simply does not have enough SNP in LD with it to be able to capture the 

entire effect and variance caused by the QTL.   

 

For other traits such as overall type and APR, similar accuracies are produced 

independent of the model that is used. This indicates that there is most likely some 

moderate QTL and well as a large number of minor QTL. This genetic architecture 

allows both a BLUP approach assuming equal variances across SNP and Bayes A and 

Bayes SSVS approaches assuming unequal variances for the SNP to produce 

comparable DGV and GEBV.  

 

Fertility was a difficult trait to predict with the ranking of models based on the 

accuracies changing between the DGV sets and GEBV sets. This is most likely due to 

the non-normality of the trait and its low heritability; consequently it was difficult to 

establish a stable prediction equation. Additional animals within the reference 

population should improve the ability to produce more accurate DGV and GEBV for 

traits with low heritability such as fertility.   

 

The apparent equality of models when accounting for all traits and the robustness and 

ease of BLUP implementation (using a genomic relationship matrix and the 

traditional mixed model equations) has lead to many countries adopting a linear 

BLUP approach (Berry and Kearney, 2009, Reinhardt et al., 2009, Schenkel et al., 

2009, VanRaden et al., 2009). In contrast, the Netherlands (de Roos et al., 2009) and 

the Nordic countries (Lund and Su, 2009) have implemented versions of Bayes SSVS.  

 

The accuracies of selection (Pearson correlation coefficient) of the GEBV found in 

this study for the Bayesian methods using all SNP, five other approaches applied to 

the same data as presented here (GEBV calculated using the same approach) and the 

models used and results reported in other real data studies are presented in Table 6.6. 

This comparison of results across studies is made difficult by the disparity in the 

numbers of animals in the reference populations and the numbers of traits analysed. 
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Nevertheless it is obvious from Table 6.6, that the studies with the largest reference 

population generally produced higher accuracies. This outcome is expected due to the 

increase in information about the effects of SNP alleles provided by more phenotypic 

records (Hayes et al., 2009c, Usai et al., 2009, VanRaden et al., 2009). The 

relationship between the number of records and accuracy is determined by the number 

of QTL and the heritability of the trait; this has been reported elsewhere such as in 

Daetwyler et al. (2008) and Goddard (2008). This relationship is explored in Chapter 

8 and modified for use to predict accuracies that are determined between phenotype 

and DGV/GEBV.  

 

Also affecting the accuracy of the DGV and GEBV is the relationship between the 

reference population and the validation (or selection) population. In the dataset 

presented in this chapter the animals in the validation and reference sets are related. 

This is ideal as it has been demonstrated that the prediction equation produces the 

most accurate DGV when the animals in the reference population are related to the 

selection candidates (Habier et al., 2007, Habier et al., 2010b). Additionally, if the 

prediction equation is to be used across genetically different populations, then animals 

from each distinct population need be present in the reference population. Muir 

(2007) showed that the reference populations should contain animals from multiple 

generation in order to create a prediction equation persists for longer across 

generations. 

  

Across all the Bayesian approaches and the other additional approaches applied to the 

data (Table 6.6), there are little differences between the approaches. The Bayes SSVS 

results found in this study and those reported by de Roos et al. (2009) differ. However 

these can again be explained by the difference in reference population size. Schenkel 

et al., (2009) and Berry and Kearney (2009), using comparable size reference 

populations to this study, report very similar accuracies. Schenkel et al., (2009) have a 

slightly lower average accuracy of prediction possibly caused by the larger number of 

traits analysed including more traits with lower heritability.  
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Table 6.6 - Accuracy of Selection for GEBV  
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1 Methods run on the same data- Bayes A Haplotypes – Bayes A as described but run 

using haplotypes, GBLUP as described in Hayes et al.(2009a), LASSO as described 

in Usai et al (2009) , PLS and SVR as described in Moser et al (2009b).  

2Version of Bayes SSVS based on the work of Meuwissen and Goddard (2004) and 

presented by Calus and Veerkamp (2007) and Calus et al., (2008) 

3Methods described in VanRaden (2008) 

 

The difference in the heritability of the traits analysed will also have affected the 

accuracies. This is due to the relationship previously mentioned between the accuracy 

of prediction, the number of SNP, the numbers of phenotypic records and the 

heritability. The higher the heritability, the less phenotypic records are needed to 

achieve a high accuracy of prediction. Again, this relationship is further discussed and 

elaborated using Energy Balance as an example in Chapter 8. 

  

Another difference between the results could be caused by the method to construct the 

GEBV. Currently, most countries that have or will implement genomic selection do 

not select on DGV alone but combine the DGV with traditional breeding and 
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selection information in the form of national EBV, Parent Average (PA) or 

predictions based on additional pedigree information i.e. sire and maternal pathways 

(Berry and Kearney, 2009, de Roos et al., 2009, Harris and Montgomerie, 2009, 

Reinhardt et al., 2009, Schenkel et al., 2009, VanRaden et al., 2009). This addition is 

reported to add vital parental information that is not fully contained in the DGV 

despite the inclusion of the polygenic effect. This information is not contained in the 

DGV due to the small subset of the data used in the prediction analysis. This inclusion 

also increases the accuracy of prediction and selection of the breeding values. For 

instance, this is clearly shown in Figure 6.1 using the results of Bayes SSVS as the 

example. Interestingly, as shown in the previous sections (6.3.2 and 6.4.2), for some 

models and traits, this additional information does change the ranking of the models 

and changes which model produces the best results. This can be explained by the 

proportion of genetic variance accounted for by the SNP effects for the different traits. 

Thus the amount of extra accuracy the EBV or PA will add to the GEBV will be trait 

dependent and should be able to be predicted.  

 

Some studies use selection index theory to construct the final GEBV while others use 

a BLUP approach introduced by Ducrocq and Lui, (2009) (for example Reinhardt et 

al. (2009)). The approach used in this study incorporated predictions based on the sire 

maternal grandsire pathway and is weighted by the respective reliabilities. The sire 

maternal grandsire pathway is referred to by de Roos et al. (2009) as the sire pedigree 

index. de Roos et al. (2009) also include the other components that make up the 

national EBV, including the maternal pedigree index and the Mendelian sampling 

effects, to evaluate GEBV. A selection index that is more widely used to compute 

GEBV, combines traditional PA/EBV calculated using the traditional additive 

relationship matrix, a subset of PA/EBV calculated using only the subset of 

genotyped ancestors and the DGV  (Berry and Kearney, 2009, Schenkel et al., 2009, 

VanRaden et al., 2009); the weights for the selection index are again calculated using 

the respective reliabilities. This difference in calculation may have an effect on the 

overall accuracies reported. For example, Reinhardt et al. (2009) report higher 

accuracies of prediction than those reported by VanRaden et al. (2009) for the same 

linear (BLUP) approach. This is despite the study reported by VanRaden et al. (2009) 

having 1651 more animals in their reference population while comparing an 

equivalent number of traits. This discrepancy could be caused by the method used to 
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construct the GEBV with Reinhardt et al. (2009) utilising the BLUP approach of 

Ducrocq and Lui, (2009) while VanRaden et al. (2009) applying a slightly different 

selection index approach.  

 

6.4.2 Pre-selection of SNP 

 

The effect of the pre-selection of SNP was not considerable but the differences 

observed were dependent on both the model and trait with which the selected subsets 

were used. This is clearly shown in Figures 6.2 and 6.3 (Section 6.3.2) and in Table 

6.4.  For Bayes BLUP, the general relationship between the number of SNP and the 

accuracy of selection was positive; generally the highest correlations were found 

when all SNP were included in the model. The opposite was true for Bayes A where 

the two subsets of SNP performed better on average than when all the SNP were 

included. The explanation for this is that decreasing the number of SNP used has two 

opposing effects. Firstly, it reduces the amount of information available which tends 

to decrease the accuracy of DGVs; this explains why, for most traits, BLUP produces 

the highest accuracies with all SNP. However the reduction in the number of SNP 

used, may for traits with a large QTL (such as fat percentage), increase the size of the 

effect estimated for SNP who are in LD with the QTL whose effect is therefore larger 

than that of most SNP. Thus for fat and protein percentage, both Bayes A and Bayes 

BLUP have highest accuracies when the smallest pre-selected subset are used 

(Figures 6.2 and 6.3). This feature, as previously stated, can be linked to the 

architecture of both traits, namely, a single QTL of large effect. Even in the BLUP 

analysis where equal variance is assumed, decreasing the number of SNPs increases 

the variance ascribed to the remaining SNPs and so allows their estimated effect to be 

greater. The effect of using pre-selected SNPs with Bayes A for fat percentage may 

make the analysis more like Bayes SSVS which produced the highest accuracy.  

 

While these results indicate that the pre-selection of a subset of SNP neither 

significantly benefits nor is detrimental to the accuracies of prediction produced. The 

method of pre-selection and the make-up of the final subset will obviously influence 

the results. Macciotta et al.(2009) and Gonzalez-Recio et al. (2008) both present 

genomic selection approaches using subsets of SNP. Macciotta et al.(2009) used an 

equivalent approach to this study whilst Gonzalez-Recio et al. (2008) used the 
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machine learning procedure presented by Long et al. (2007). Neither compared the 

effect of the use of the subsets of SNP, versus the inclusion of all SNP, on the 

accuracy of prediction. Habier et al. (2009), using simulated data, examined the effect 

of both subsets of selected SNP and of SNP evenly spaced across the genome. They 

employed both a Bayesian approach (Bayes B, Section 2.2.4) and forward stepwise 

least squares regression (Section 2.2.1) to select the SNP. All subsets of SNP 

produced accuracies lower than when all SNP were used. The subset of SNP selected 

using Bayes B producing the lowest reduction in accuracy. Habier et al. (2009) also 

reported reduced accuracies when using less dense, evenly spaced, SNP. These results 

however are dependent on the simulated data and may not be a reflection of these 

approaches performance in real data.  

 

In real data,  VanRaden et al. (2009) reported that the lower SNP densities produced 

reduced accuracies and reliabilities. As Hayes et al. (2009c) report, the SNP must be 

in sufficient LD with the QTL to be able to predict the effects of all QTL. Thus a 

reduction in the set of SNP will also diminish the extent of LD and consequently 

decrease the ability of any model to predict all the QTL effects. Thus if a reduced-

subset of SNP is to be used, this set of SNP should be selected based on an analysis 

that seeks to identify the SNP most likely to be in LD with the QTL effecting the trait.  

 

The selection of SNP in this study did not significantly increase accuracy of 

prediction, but it did increase the time and computation demands. The single SNP 

analysis was time consuming and consequently is not recommended as it provided no 

convincing additional benefits. It would be of interest to see how many SNP, the set 

SNP and what accuracies would be produced when the SNP were selected using 

different models such as a Bayesian model or a machine learning procedure.  

 

With the increase in numbers of SNP available (the next SNP chip is reported to have 

850,000 SNP), the ability to pre-select the important features (SNP) related to a trait 

may again become an important issue as approaches and procedures seek to deal with 

the dramatic increase in the number of SNP. Thus it could potentially once the SNP 

are selected significantly reduce the time and computational demands. Additionally, 

using reduced number of pre-selected SNP would also provide significant economical 
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savings by requiring selection candidates to be genotyped for only the smaller number 

of SNP. 

 

6.5 CONCLUSION  

 

The accuracies of prediction produced by all models were relatively equal with the 

exception of fat percentage due to the influence of DGAT1. These results agree with 

the results previously published (Berry and Kearney, 2009, de Roos et al., 2009, 

Gredler et al., 2009, Harris et al., 2008, Lund and Su, 2009, Reinhardt et al., 2009, 

Schenkel et al., 2009, VanRaden et al., 2009). The study shows that the Bayesian 

methods provide a valid approach to genomic selection however the uniformity of 

results means that less computationally demanding approaches are attractive.  

Consequently the robustness and ease of application of the genomic BLUP approach 

has lead to many countries adopting this approach for their genomic prediction model. 

The selection of subset of SNP showed neither a major increase nor decrease in 

accuracy, but did show different trends across models most likely as a response to the 

distribution of QTL effects assumed. The use of subsets and models for selection may 

become important as the number of SNP increases. The comparison of this study with 

the results of other studies reinforced the known fact that the number of animals in the 

reference population is a key parameter determining the accuracy of DGV. Also 

raised for consideration is the methodology to construct the GEBV and the affect this 

has on the accuracy of prediction.  
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CHAPTER 7  

Significance testing for whole genome multi-locus models using 

permutation tests 

 

7.1. INTRODUCTION 

 

Most quantitative traits are complex traits with numerous genetic factors contributing 

to the genetic variation. Identifying these factors could be beneficial for biomarker 

identification, marker assisted selection and identification of possible drug targets.  In 

addition to the significant focus on genomic prediction and selection in livestock, the 

availability of dense SNP panels has also led to an increase in genome-wide 

association studies aiming to identify QTL (Goddard and Hayes, 2009, Hardy and 

Singleton, 2009, McCarthy et al., 2008).  Furthermore having increased information 

on a trait’s genetic architecture could result in more accurate genomic prediction and 

selection models.  

 

Considerable efforts have been made over the years to identify QTL (quantitative trait 

loci) across a range of species. Traditionally, models have included one QTL or 

examined one marker interval at a time (Jansen, 1993, Knott and Haley, 1992, Lander 

and Botstein, 1989, Luo and Kearsey, 1989, Martinez and Curnow, 1992, 1976, 

Weller, 1986, Zeng, 1993, 1994). However, the individual estimation of each marker 

or interval effect from different models can cause biased results. Results may become 

biased through the fitting of a single QTL in a model that may be affected by the 

presence of other QTL not in the model, resulting in false positives (a significant QTL 

is found where there is in fact not a QTL), false negatives (no QTL is found where 

there is actually a QTL) and reporting incorrect levels of significance and size (e.g. 

the Beavis effect (Beavis, 1994)).  

 

A further problem is caused by the multiple estimates of the residual variance leading 

to problems when calculating the total phenotypic variance. Consequently, an 

increasingly popular alternative is to fit multiple markers in a single model (Baierl et 

al., 2006, Bogdan et al., 2004, Kao et al., 1999, Narita and Sasaki, 2004, Shriner, 

2009, Sillanpaa and Arjas, 1998, Storey et al., 2005, Xu, 2003, Zou and Zeng, 2009). 
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These include both frequentist and Bayesian modelling approaches. A selection of 

these models (e.g. Storey et al. (2005)) do not fit all the SNP in a single model, but 

perform sequential tests of markers (or sets of markers) to determine the significant 

set of markers and then fit a final model containing the selected set of markers. In 

contrast, Bayesian inference models are able to fit all possible markers into a single 

model (Narita and Sasaki, 2004, Satagopan et al., 1996, Sen and Churchill, 2001, 

Shriner, 2009, Stephens, 1998, Wang et al., 2005, Xu, 2003, Yi and Xu, 2008, Yi, 

2004, Yi et al., 2003, Yi et al., 2007, Yi et al., 2005, Zhang et al., 2005). These 

models provide two distinct advantages over single SNP analysis or a sequential 

scheme to select SNPs. The first is that fitting all SNP simultaneously in a single 

model will result in more precise locations of the QTL: a multi-locus model will 

identify only the SNP or set of SNPs in LD with the QTL which best explain the 

effect, rather than all SNPs which are in LD with the QTL.  This is an advantage 

particularly in livestock, where low level LD can extend for more than 1 Mbp (The 

Bovine HapMap Consortium (2009)). The second is that the residual variance is 

reduced in a single analysis which will result in more power to identify QTL.   

 

Despite the advantages of using Bayesian multi-locus models, it is still 

computationally demanding with the ever increasing number of markers (p) to explore 

the entire sampling space of all possible models (2p) that contains all possible 

combinations and numbers of markers. In humans, the current SNP chip has over 

900,000 SNP and the next bovine SNP chip is anticipated to have over 850,000 SNP. 

An inability to fully explore the total sample space and test all possible alternative 

hypotheses leads to its own problem of biased results.  

 

To be able to deal with this abundance of markers juxtaposed with the smaller number 

of observations, Bayesian multi-locus models utilize model selection procedures or 

shrinkage estimation. Shrinkage estimation models include all candidate markers but 

their estimated effects are forced to shrink toward zero with the larger effects being 

shrunk the least (Meuwissen and Goddard, 2001, Wang et al., 2005, Xu, 2003). 

Thresholds can then be used to determine which SNP should be included in the final 

model. Model selection approaches seek to identify the significant parameters (Swartz 

et al., 2006, Yandell et al., 2007, Yi, 2004, Yi et al., 2007). One model selection 

approach, Bayesian Stochastic Search Variable Selection (SSVS), introduced by 
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George and McCulloch (1993, 1997) was discussed in Chapter 4. This model 

selection approach fits a hierarchical latent variable model that allows the selection of 

the most promising models for further investigation. Yi et al. (2003) first propose 

SSVS for use in QTL mapping and their approach has been widely applied and is 

available in the R package qtlbim (Yandell et al., 2007, Yi and Shriner, 2008, Yi, 

2004, Yi et al., 2007, Yi and Xu, 2000, 2002, Yi et al., 2005). 

 

As with single locus models the question of how to declare QTL significant is still an 

important issue when using multi-locus models. Different approaches for establishing 

significance have been suggested and used in multi-locus methods. These include 

using the false discovery rate (FDR) and variants of FDR (Conlon et al., 2006, Storey, 

2003, Zou and Zeng, 2009) and Bayes Factors  (Kass and Raftery, 1995, Shriner, 

2009, Yi and Shriner, 2008). Storey (2003) show that positive FDR can be written as 

a Bayesian posterior probability under specific assumptions while Genovese and 

Wasserman (2002) developed a Bayesian version of FDR which has been used to 

declare significance (Conlon et al., 2006, Do et al., 2005, Heuven and Janss, 2010).  

 

Another alternative to establish significance thresholds is permutation testing. This 

has been widely employed for identifying QTL using single locus models. 

Permutation testing was first suggested by Fisher (1935) and was introduced to QTL 

mapping by Churchill and Doerge (1994). Permutation tests work by breaking any 

association between two variables by permuting (shuffling) the data. This enables the 

establishment of a distribution of test statistics in the absence of any association. This 

distribution can then be used to declare if there are any real associations between the 

two variables. The null hypothesis for permutation testing for the multi-locus model is 

H0: that no SNP is linked to a QTL. The possible alternative hypotheses are 2p-1 in 

number (for p SNPs) where there is a hypothesis reflecting each possible combination 

of SNPs being found to be linked to each QTL. The number of the alternative 

hypotheses actually tested is equal to the extent of the model space explored. Thus an 

approach such as SSVS that explores the most likely models will test the most 

appropriate alternative hypotheses. Due to the assumption that with such large 

numbers of genome-wide SNPs, each QTL will be in LD with at least one SNP, 

further possible alternative hypotheses that a QTL is present but is not linked to any 

SNP is ignored in this study. 
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Nonetheless, permutation testing has been rarely used with Bayesian multi-locus 

models. Xu (2003) used 10 permutated data sets to examine the null distribution (that 

is that there is no association between genotype and phenotype). Churchill and 

Doerge (1994) report that when using single marker models, for a reliable p-value of 

0.05, at least 1000 permutations are needed while 10000 permutations are suggested 

as sufficient for a reliable p-value of 0.01; for more extreme p-values, even more 

permutations are needed. Consequently, the 50 permutation tests used by Bauer et al. 

(2009) appear drastically too few in number to be able to reliably to declare 

significance even at a 0.05 significance level.    

 

Permutation testing is generally a simple approach as there is only one independent 

variable and thus all individuals are exchangeable under the null hypothesis. This 

means that under the null hypothesis of no QTL effecting the trait, the observations 

must be able to be exchanged i.e. any order of the observations is equally likely. 

Permutation tests unlike other parametric tests require only this mild condition of 

exchangeability to be satisfied. A problem arises however if there is a second 

independent variable.  A good example is livestock populations where phenotype, 

marker and structured pedigree are available. With such structured pedigrees, 

individuals may not be equally exchangeable. For example, within a set of 

individuals, some may have the same sire and consequently their genotype is not 

equally likely amongst all individuals but more likely amongst those with the same 

sire due to the shared inheritance of one allele from the common sire. Thus the 

condition of exchangeability may not be satisfied. Consequently, the question is what 

effect this pedigree-genotype relationship, or ignoring it, has on the declaration of 

significance.  

 

In the study reported here, a thorough exploration of permutation testing for Bayesian 

multi-locus models was performed. The issue of exchangeability with a second 

variable (a pedigree) is examined and different procedures for accounting for this are 

explored. A further extension of the permutation testing using multi-locus models is 

demonstrated using the idea of permutation within genotypes classes presented by 

Doerge and Churchill (1996) based on work of Lehmann (1986). The results are 

evaluated and compared to previously proposed measures of significance, namely, 

Bayes Factors and posterior expected False Discovery Rate (PeFDR). In addition, the 
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number of permutation tests needed is again explored in the context of multi-locus 

models. A Bayesian hierarchical latent variable multi-locus model is employed 

similar to that introduced in Chapter 4. The use of a Bayesian SSVS model for QTL 

mapping was first suggested by Yi et al. (2003) and this model is based on the work 

Meuwissen and Goddard (2004). The approach is demonstrated through two 

simulation studies and a real data example.   

 

7.2. METHODS 

 

7.2.1 Model 

 

A Bayesian multi-locus hierarchical latent variable model using SSVS very similar to 

the model described in Chapter 4 was used to perform the genome-wide association 

studies. The model used here expands upon the work of Meuwissen and Goddard 

(2004). This approach, as in Chapter 4, uses the latent variables to indicate whether a 

SNP has a significant effect (i.e. is linked to a QTL) and is included in the model. The 

model can be expressed as follows:   

( )( ) eZuv1y
m

j
jjjn ++!+=

=1

qXµ        

where y is the vector of phenotypes of the trait being analysed for all n individuals, n1  

is a vector of ones of length n, µ  is the mean, m is the number of SNP markers, j
X  is 

the (n x k) design matrix containing the information on the possible k alleles at the jth 

marker for all individuals (where xjk=0,1,2 having no, one or two copies of the kth 

allele respectively), j
q is the vector (kx1) containing the effects of all k possible alleles 

at locus j where qjk. are drawn from a standard normal distribution N(0,1), jv  is the 

standard deviation of the allelic effects at locus j and is dependent on whether the 

locus effect is considered significant or not using the latent variable e.g. jv  is 

sampled: )100/)1(,0(~)p jN III|(v jjj −+  where 1=jI  if the SNP has a 

significant effect and conversely 0=jI  if the SNP has a very small effect, where the 

prior distribution is )(~I ij pbernoulli  (where 05.0=ip  for all examples), u is the 

vector of random additive polygenic effects of length n (Z is the associated design 
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matrix) and is assumed to be normally distributed, ( )ANu u
2,0~ σ  where A is the 

pedigree-derived additive genetic relationship matrix and e is the residual error also 

assumed to be normally distributed, ( )2,0~ eINe σ  where I is the n x n  identity 

matrix. The allele substitution effect of a locus j can be calculated from the estimated 

effects as: ( ) jjjj vqqa 21 −=  where 1j
q  ( 2

q
j ) is the effect of allele 1(2) at locus j. For 

the full specification of the priors used and an alternative formulation of the model see 

Calus et al. (2008) and Meuwissen and Goddard (2004).  

 

The models were run for 10,000 iterations with 2000 iterations used as burn in for the 

simulation study and 20,000 iterations with 5000 iterations used as burn in for the real 

data example. No thinning was performed. This appeared sufficient for convergence 

and was tested using the formal diagnostic methods provided in the package R, coda 

(Plummer et al., 2007 -a). 

  

Due to the Bayesian nature of the model used to analyse the data, the “test statistic” 

used in this study and the presented examples are the posterior probabilities of the 

SNPs. The model explicitly produces a posterior probability for each SNP through the 

inclusion of the latent variable (by calculating the number of times the SNP had a 

latent variable 1=jI
 

over all iterations excluding the burn in period). The prior 

probability of  1=jI  can be set (as presented) or estimated. Once set or estimated 

with the observed data, this value must be kept the same for all permuted data sets.  

The posterior probability can not be used directly confidently unless the value is 

extremely close to one. The posterior probabilities are dependent on both the data and 

the prior distribution and thus can be heavily affected by the choice of prior and prior 

parameters.    

 

7.2.2. Permutation  

 

Permutation tests permute the data to effectively destroy any association between the 

two variables to test if there is association e.g. genotype and phenotype. The un-

permuted data is first analysed and test statistics for every marker are produced; the 

data is then permuted N times and analysed to create the null distribution. The null 
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hypothesis is that no SNP is linked to a QTL, thus the null distribution is a 

distribution of test statistics created in the absence of any real association, in this case 

caused by permuting the data. If there is a QTL linked to a marker then breaking the 

relationship between the marker and phenotype will change the distribution of the test 

statistic; conversely, if there is no association, the distribution of the test statistic will 

not change. A comparison of the original test statistic and the distribution of test 

statistics created by the permuted data will allow the assignment of significance.  

 

Normally when permuting the data, the phenotype data is shuffled as described in 

Fisher (1935). The individuals are indexed from 1,…,n and then the trait values are 

randomly permuted. The ith trait value after the permutation is then assigned to the ith 

individual. This is generally the simplest approach, as the data includes only a 

genotype – phenotype relationship. However, in animal breeding, the population is 

highly structured and consequently there is often a pedigree with relationship to the 

genotype and phenotypes. One option to assist in removing the effect of population 

structure when estimating QTL effects is to include a polygenic effect (Kennedy et 

al., 1992). The inclusion of a polygenic effect may also be useful in human studies 

where populations are genetically isolated or for some structured ethnic subgroups 

(Aulchenko et al., 2007). The polygenic effect is fitted to avoid the possibility that 

SNP effects found as significant are not linked to a QTL but caused by the population 

structure of the data (derived from the pedigree).  

 

Consequently, when this triangular relationship exists there are three scenarios when 

permuting data. They are:   

1. Permute the phenotypes breaking the phenotype-pedigree relationship, but 

retaining the genotype-pedigree relationship. 

2. Permute the genotype/s breaking the genotype-pedigree relationship, but retaining 

the phenotype-pedigree relationship. 

3. Permute the genotype within pedigree structures (e.g. sire families).  

 

The first scenario for QTL mapping does not allow the estimation of a polygenic 

effect and QTL may be indicated that are actually artefacts caused by the population 

structure. The second scenario is plausible and the most simple approach when 

dealing with individuals with a structured pedigree but can be seen to violate the 
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exchangeability condition for highly structured data. For example, if one sire has a AA 

genotype then all his progeny must get at least one A allele and a second sire has a BB 

genotype the all his progeny must get at least one B allele. All offspring are not 

equally exchangeable as any order is not equally likely.  

 

The second scenario is explored in the first simulation study. Under this approach, the 

individuals are indexed from 1,…,n. The complete genotypes are then randomly 

permuted. The ith genotype after the permutation is then assigned to the ith individual. 

There is no modification of the genotypes themselves and all linkage between the 

markers is maintained. The shuffled data is analysed using the identical model to the 

original unshuffled data. The resulting test statistics are stored and the process is 

repeated N times.  

 

The third scenario is the most correct approach as it does not violate the condition of 

exchangeability. To permute the data, individuals are separated into sire groups and 

then permuted within these groups. The genotypes of the individuals within each 

genotype strata are indexed from 1,…,mk where mk is the number of individuals in the 

current group k. The complete genotypes are then randomly permuted within each 

stratum. The ith genotype after the permutation in each stratum is then assigned to the 

ith individual within each stratum. The permuted data is then analysed. The resulting 

test statistics are retained and the process is repeated N times. Doerge and Churchill 

(1996) suggest that if there is a known major QTL, in order to establish other 

moderate or minor QTL, individuals can be stratified based on their genotypes (AA, 

AB or BB) of the conditioning marker or markers associated with the major QTL. The 

approach taken is therefore identical to permuting inside sire groups except that the 

strata are the genotype classes of the conditioning marker. This means that there will 

always be three strata in contrast to a variable number of strata dependent on the 

number of sires present in the data.  

 

7.2.3. Thresholds 

 

Three different thresholds can be calculated to establish significance. They are the 

genome-wide threshold (experimentwise), the chromosome-wide thresholds and the 

SNP-specific (comparisonwise or pointwise) thresholds. The experimentwise and 
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comparisonwise  thresholds are described in Churchill and Doerge (1994). The term 

experimentwise threshold is herein replaced with genome-wide threshold. The 

comparisonwise or pointwise threshold is herein called the SNP-specific threshold. 

The SNP-specific threshold describes the critical value used only for determining the 

significance of an individual SNP. The threshold is calculated from the N test 

statistics for the SNPs after the N permutations. The SNP specific p-value for each 

SNP is calculated as the probability of obtaining a test statistic that is greater than or 

identical to the original test statistic. The previously identified problem with this 

threshold is that while it provides the greatest power to detect QTL, the type I error 

rate can become uncontrolled through testing all SNPs where the test statistics are 

dependent. This is due to the type I error (false positives) rate applying only to the 

single SNP under consideration. More problematic and critical in a multi-locus model 

is that the test statistics themselves are dependent and SNP in high linkage 

disequilibrium may share or exchange random associations, affecting the final null 

distribution of test statistics created from the permutation testing. Therefore, when 

testing many loci and declaring significance using the SNP specific threshold, there is 

a high chance of false positives due to uncontrolled type I error and the use of an 

incorrect null distributions that was used to establish significance. Consequently, this 

threshold is unviable for use.  

  

The chromosome-wide and genome-wide thresholds are both calculated by taking the 

maximum test statistic after each permutation, either for each chromosome or the 

entire genome. The distribution of those maximum values after the N permutations is 

then used to calculate the threshold. The genome-wide threshold is calculated from 

the distribution of maximum test statistics across all SNPs from each permutation. 

Similarly the chromosome-wide threshold is calculated by taking the maximum test 

statistics for each chromosome for each permutation to enable the calculation of a 

threshold for each chromosome. For 1000 permutations, the thresholds with a 

significance level of 0.05 are set as the value of the 950th test statistic when all the N 

test statistics are ordered in increasing size.  
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7.2.4. Bayes Factors and False Discovery Rate  

 

Bayes Factors are the dominant method of Bayesian model testing. They are the 

Bayesian analogues of likelihood ratio tests. By taking prior probabilities into 

consideration, Bayes Factors can be used to compare models with and without 

particular markers (Kass and Raftery, 1995). To calculate a Bayes Factor, 12B , let y  

be the data, 1H and 2H be the two possible hypothesis that are being tested (such that 

1H : the marker is linked to a QTL v 2H : the marker is not linked to a QTL). Thus 

( )1HPr  is the prior probability of the first hypothesis, 1H  and ( )2HPr  be the prior 

probability of the alternative hypothesis, 2H . Similarly, ( )y|1HPr  is the posterior 

probability of 1H and ( )y|2HPr , the posterior probability of the alternative 2H . 

Using Bayes theorem, a Bayes Factor comparing hypothesizes 1H and 2H , for a 

single SNP, is defined as:  
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This can be seen as the ratio of the posterior odds to the prior odds. Consequently, it 

can be expressed as:  
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In order to have comparable thresholds, the posterior probability ( )y|1HPr  relating 

to a Bayes Factor of 3.2 was used as the significance threshold. The value of 3.2 is the 

lowest value of the Bayes Factor that indicates substantial evidence in favour of the 

first hypothesis (Kass and Raftery, 1995). For example, if the prior probability of a 

SNP being linked to a QTL is 0.05, the threshold is derived by setting 2.3B12 =  and 

( ) 05.0HPr 1 =  so that: 
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Thus Pr(H1|y) can be calculated by rearranging to: 
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It is also evident from the calculation of such a the threshold that the threshold is in 

fact only based on the prior probabilities and the set Bayes Factor and thus is not 

dependent on the data.  

 

The false discovery rate (the posterior predicted FDR- PeFDR) in a Bayesian context 

can be expressed as (Conlon et al., 2006, Do et al., 2005, Genovese and Wasserman, 

2002): 

( )
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FDREPeFDR    [9] 

where m is the number of markers,  ( )ym |1HPr is the posterior probability of marker 

m being linked to a QTL ( QTL) a  tolinked ismarkerthat :1  m H  and mδ represents the 

decision ( 1,0=mδ ) whether, based on the data (and posterior probability), marker m 

is linked to a QTL. Thus if it is decided marker m is linked to a QTL, 1=mδ , then the 

( )ym |1HPr  of marker m is included in the summation in [9]. For a single marker the 

PeFDR is simply the posterior probability that 2H is correct, as follows:  

( ) ( )yy ||1 21 HPrHPrPeFDR =−=  

Thus the PeFDR can be used to produce a false discovery rate for each individual 

locus and for a group of loci thought to be linked to a QTL.  

 

7.2.5. Simulation Study     

 

Two data sets were simulated to demonstrate that the proposed method can be used to 

identify minor/moderate QTL. In both data sets, an effective population size of 100 

animals was simulated for 100 generations. Each animal had a single chromosome of 

1 Morgan, generated to have 1000 evenly located markers. Each consecutive 

generation was formed by generating 100 offspring (50 females and 50 males), their 

parents selected at random from the previous generation. Generation 101 and 102 

comprised 500 animals each, created by crossing 50 or 20 sires and 250 dams 

randomly selected such that each dam had two offspring and the sires had 4 or 25 

offspring respectively. The data sets analysed contained 1000 animals with 

phenotypes and genotypes. In the first data set, a single additive QTL was created in 

the centre of the chromosome explaining 20% of total genetic variation. The trait was 
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generated to have a heritability of 0.3. Thus the QTL was moderate and explaining 

only 6% of the total phenotypic variation. The second data set had two additive QTL 

(0.43 M and 0.2M) explaining 20% and 6% of the phenotypic variance with a 

heritability of 0.5. The causative mutations were removed from the both data sets 

leaving a total of 780 and 767 polymorphic markers within the population after the 

100 generations. For details of the simulation program see Mulder et al. (2009).  

 

The first data set was used to establish that permutation could accurately identify 

QTL. No stratification was used when permuting this data set as each sire had only 5 

offspring; a number too small to stratify within.  In contrast, the permutation testing 

for the second data set was carried out twice once without stratification (scenario 2) 

and a second time permuting within sire groups (scenario 3- stratified permutation 

within sire families).   

 

7.2.6. Real data example 

 

588 dairy cows were genotyped for the Illumina BovineSNP50 bead chip (54001 SNP 

in total). Criteria for selecting the final set of SNPs were a call rate of over 90%, a 

GenCall score > 0.2 and a GenTrain score > 0.55 (Illumina genotype quality 

statistics),  a minor allele frequency of >2.5% and a deviation from Hardy Weinberg 

equilibrium (%2 < 600). Animals with greater than 5% missing SNPs were removed. 

Non Mendelian error checks were used to identify genotypes of daughters that were 

inconsistent with their dams. A further pedigree check was performed by comparing 

the coefficients of the additive genetic relationship matrix and the genomic 

relationship matrix (VanRaden, 2008). In total, 43011 SNPs and 548 animals were 

retained.  Of these 548 animals, 518 had phenotypes for the trait, fat percentage.   

 

For the dairy trait fat percentage, there is a known, common mutation on centromeric 

end of chromosome 14. As mentioned previously, DGAT 1 (Diacylglycerol O-

acyltransferase 1) is reported to explain greater than 50 percent of the total genetic 

variation seen in fat percentage (Grisart et al., 2002). Due to one SNP with such a 

large effect, it is often difficult to find other QTL with more moderate effects. A SNP 

located at centromeric end of chromosome 14 with a posterior probability of one can 

be confidently assumed to be in linkage disequilibrium with this mutation. Doerge 
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and Churchill (1996) suggest that permutation testing using stratification within the 

genotype classes of a known QTL could be used to set thresholds to identify moderate 

or minor QTL by accounting for the known major QTL. This real data set was used to 

demonstrate that such an approach was also viable with multi-locus models. The SNP 

found with a posterior probability of 1 was used as the conditioning marker. The 

animals were then stratified into 3 groups based on the genotypes of this SNP (e.g. 

AA, AB, and BB). The permutation then occurred within these three strata and the 

subsequent data sets were analysed using the same procedure as the original data. 

 

7.3. RESULTS    

 

7.3.1. Simulation Study  

 

The results of the analysis of the first simulated data set revealed two posterior 

probabilities significantly (>100 fold) greater than the others, one at 0.5M with a 

posterior probability of 0.503 and a second at 0.65M with a probability of 0.181 (see 

Figure 7.1). Both posterior probabilities are noticeably lower than the conclusive 

result of 1. Permutation testing was carried out with 1000 data sets created by 

permuting across all individuals (scenario 2- no stratification). The results of the 

permutation produced genome-wide threshold (significance level of 0.05) of 0.203. A 

Bayes Factor threshold declared both of the peaks significant in comparison to the 

permutation testings genome-wide threshold where only the SNP at 0.5M is 

significant; Figure 7.1 shows the both thresholds. If the SNP-specific threshold was 

incorrect to be used it would declare 58 SNP as significantly linked to a QTL giving a 

FDR of close to 1. Of the 58 SNP, only two are clearly evident in Figure 7.1 and the 

second highest peak is a false positive. Calculating the PeFDR only including the 

SNP with the largest posterior probability (so correctly deciding that only this SNP 

was linked to a QTL) still produces a PeFDR of 0.497 which is high and the inclusion 

of any other SNP only increases the value.  
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Figure 7.1- QTL analysis of the simulated data set 1. Genome-wide threshold (--

-) plotted for a significance level of 0.05, Bayes Factor threshold plotted for a 

Bayes factor of 3.2 (⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅) with the position of the true QTL indicated (!).  
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Figure 7.2- QTL analysis of the simulated data set 2. Genome-wide threshold plotted 

for a significance level of 0.05 for the permutations with no stratification (---) 

(Scenario 2) and for the permutations with stratification (−−) (Scenario 3), Bayes 

Factor threshold plotted for a Bayes Factor of 3.2 (⋅⋅⋅⋅) and the positions of the 

simulated QTL (!).    
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The second simulated data set was permuted with and without stratification. The 

different thresholds produced using these two different approaches are shown in 

Figure 7.2. When the data was permuted within strata, the 0.05 significance threshold 

was 0.156 while when the data was permuted randomly across all individuals the 

threshold was 0.138. The threshold for a Bayes Factor of 3.2 had a posterior 

probability of 0.144. All thresholds are very similar and produce identical results 

correctly identifying the two QTL. The PeFDR is zero when only the SNP with the 

highest posterior probability is included and increases to 0.34 when both SNPs with 

the highest posterior probabilities are included. 

 

7.3.1. Real Data Example 

 

The results of the QTL analysis revealed a SNP with a posterior probability of one at 

the centrometric end of BTA chromosome 14. This SNP was used as the conditioning 

marker and three strata were formed using the genotypes of the individuals. Within 

these strata, the data was permuted 1000 times and each data set was then analysed as 

in the original analysis.  A genome-wide threshold and chromosome-wide thresholds 

were calculated at a 0.05 significance level. In addition, for comparison, SNP specific 

thresholds were calculated. A Bayes Factors threshold was calculated for a Bayes 

Factor of 3.2. The results of using these thresholds including the number of SNPs 

found significant for each threshold and the associated (average) threshold values are 

shown in Table 7.1. Also shown are the results of using a Bayes Factor threshold. 

 

Table 7.1- Estimated threshold values and numbers of significant SNP detected  
' C%.)$%Q;(9%'' 37#)$)+)$%Q;(9%'' GA!'+/%0(1(0'' =">%+'J"0&)#''

#+R!+&!9<.%)<+-,)! C! YQ! [YQCC! C!
#+R!+&!)1501&1'/0(!"#$!10,1'/(%,!! CI! C\! CZSW! [Y!
E)(1*/(%,!9<.%)<+-,!O/->%!/!! QRT]W! QR][\=! QRQQ]=! QRCZW!

Values from 1000 permutations of the data with the posterior probability used as the test 

statistic, * Excluding the conditioning and surrounding SNP, a The posterior probability above 

which significance can be established at a 0.05 level, b mean value for all analysis points 

(SNP or chromosomes)  

 

Table 7.2 presents the details for the seventeen SNPs found significant at the 

chromosome-wide significance levels; included are the respective SNP’s Bayes 
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Factors and PeFDR. The SNP that was found linked to DGAT1 is not included in the 

tabulated results as it was conditioned upon and therefore already established as 

significant. The Bayes Factors threshold declares more than double the number of 

SNPs as significantly linked to QTL than the chromosome-wide thresholds. 

Comparatively for a false discovery rate of 0.05 no SNP or combination of SNPs, 

other than the single SNP associated with DGAT1, is able to produce such a rate.  

 

Each analysis still showed a SNP or SNPs with high posterior probabilities at the 

centromeric end of chromosome 14. This was expected because the permutation 

occurred within condition marker genotype classes consequently the phenotype-

genotype relationship for these SNPs and the major QTL was not broken. The 

posterior probabilities of SNPs located in the first 10 Mbp on BTA chromosome 14 

were ignored in the calculation of the genome-wide and chromosome-wide thresholds 

to avoid any SNP in high LD with the conditioning marker that may have had inflated 

the thresholds.  

 

The reason for conditioning on the SNP and not permuting across all individuals is 

due to the huge effect of DGAT1. If the permuting had been carried out across all 

individuals consequently by breaking the relationship between DGAT1 and the 

phenotypes, the large amount of variance that would have been attributed to DGAT1 

would have been transferred to random associations. This would result in inflated 

SNP effects that would have caused a higher threshold that would most likely have 

only declared DGAT1 as significant. This result is not helpful as the effect of DGAT1 

has already been established. 

 

To highlight that the approach can accurately identify QTL, the focus was placed on 

three chromosomes (BTA 6, 19 and 26) with QTL previously reported as associated 

with fat percentage (Druet et al., 2006, Gautier et al., 2006, Khatkar et al., 2004). 

Figure 7.3 shows the posterior probabilities of all SNPs on BTA chromosome 6, 14, 

19 and 26 and the genome-wide and chromosome-wide thresholds at a 0.05 

significance level and the Bayes Factor threshold.  
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Table 7.2 - Details of the 17 Significant SNP detected using the chromosome-wide 

thresholds including their posterior probability, Posterior expected FDR and Bayes 

factor.  

37#)$)+)$%' !)+(&().'82,/<' !)+&%#()#'!#),",(5(&>'8/(<' !%J*O'8?Q'/(<' =">%+'J"0&)#''

C[! QR]Z! C! Q! ∞!!

]Z! CYR[Z! QRTZ[! QR[YZ! ][RZQ!
CS! TWRWS! QRT]Z! QR[\[! ]CRCQ!
C]! ZTRY\! QRY\]! QRZ]W! CCR]Z!
]\! YQRSZ! QRYTS! QRZ[C! CQRZ[!
Z! TYRZC! QRYTT! QRZ[Z! CQR[Y!
C! CQCRZQ! QRY[]! QRZTS! SRWT!
W! WSRZ[! QRY[Q! QRZZQ! SRWQ!
]]! ]CRQW! QRYYS! QRZZC! SR\[!
\! \[RZ\! QRYCT! QRZWT! WR\T!
]! C][R]\! QRYC]! QRZWW! WRZQ!
Z! SSR][! QRYQT! QRZST! WRY[!
]! ZWRT[! QRYQT! QRZST! WRY]!
W! [\RCS! QRYQY! QRZS\! WR]T!
CS! ]\RQZ! QR]\Z! QR\][! \R][!
Y! [[RCY! QR]\]! QR\]W! \RCC!
C\! \ZRQ]! QR]\C! QR\]S! \RQZ!
Y! WWRYT! QR][W! QR\T]! ZR]\!
CS! ][R[W! QR][T! QR\TT! ZRCT!
CY! ][RS[! QR][]! QR\TW! ZRQW!

 

On BTA chromosome 26 there is a SNP that would be declared significant at both a 

genome-wide and chromosome-wide significance level (0.05). This location has been 

previously reported as containing a QTL affecting fat percentage (Druet et al., 2006, 

Gautier et al., 2006). This SNP closely links to the physical location of SCD1 

(stearoyl-CoA desaturase (delta-9-desaturase)) as reported in Genbank (while not 

being placed on the current assembly) (Benson et al., 2007). SCD1 has been 

associated with carcass fatty acid composition in Japanese Black cattle (Taniguchi et 

al., 2004), with milk production traits in Italian Holstein (Macciotta et al., 2008) and 

with milk-fat composition in Dutch Holstein Friesians (Stoop et al., 2009).  
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Figure 7.3 - QTL analysis of real dairy data for the trait, fat percentage. The genome-

wide threshold (---), chromosome-wide thresholds (""") are plotted for a significance 

level of 0.05 and posterior probability for a Bayes Factor of 3.2 ( ). 

On BTA 6 and BTA 19, no SNPs could be declared significant at a genome-wide 

level. However, 2 SNPs on each chromosome would be declared significant at the 

chromosomal level. On BTA 19, one SNP appears to be in association with FADS6 

(Fatty acid desaturase domain family 6) while the other SNP indicates a region that 

has been previously suggested as associated with fat percentage (Khatkar et al., 2004). 

Multiple locations on BTA 6 have been previously proposed as related to fat 

percentage. Stoop et al (2009) report a significant association at 53 and 57cM which 

is consistent with the findings here. In total, across all chromosomes, there were 17 

SNPs indicated as significant at the chromosome level.  
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7.3. DISCUSSION 

 

Permutation tests provide an alternative robust mechanism to identify statistically 

significant QTL. The robustness and ease of implementation has been confirmed by 

the wide spread use of the approach in single locus models. The power of the tests is 

at least as high as unbiased parametric approaches which are highly dependent on 

model assumptions (Churchill and Doerge, 1994). The examples presented here show 

that permutation testing can be used to establish significance using multi-locus 

models in QTL mapping. The results are most closely matched with those that were 

produced using a Bayes Factor threshold of 3.2 to compare hypotheses.  

 

Highlighted in the analysis of the first simulated data set there is a large random 

association in the original analysis that is incorrectly declared significant using a 

Bayes Factor threshold. However, using permutation testing to establish significance, 

this random association was correctly identified as insignificant. This suggests that 

permutation testing produces more robust thresholds.  While the Bayes Factor 

threshold does not depend on the data being analysed (as demonstrated in Section 

7.2.4) but only the prior probability and the Bayes Factor value; which generally set 

as reflecting substantial evidence (eg. it is always 3.2 or greater), thresholds 

established by permutation testing change reflect the empirical distribution of the 

data. The posterior expected false discovery rate was unviable as a method to 

establish significance in the examples presented here because all examples produced 

at maximum one SNP with a posterior probability of one or close to one. The use of 

PeFDR will only work well when there are a large number of QTL that produce 

posterior probabilities close to one. Of more interest here were approaches that 

allowed significance to be established when the posterior probabilities are low and 

inconclusive. Both permutation testing and Bayes Factor provide more viable and 

successful approaches.  
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Figure 7.4- Distributions of significance thresholds at 0.05 significance level 

produced using 50, 200, 500 and 750 permutations 

 

The effect of the number of permutations performed was also examined after the 

completion of the analyses. The results of the 1000 permuted data analyses were used 

with 50, 200, 500 and 750 (N) permuted data sets results (test statistics) randomly 

sampled. Then, a 0.05 threshold was calculated from each set; the maximum test 

statistic were taken from the N (50, 200, 500 or 750) permuted analyses and ordered 

and the N x 0.95 value was taken as the threshold. This was repeated 10,000 times for 

each N. Using the permutations from the second simulation study with stratification 

as an example, the distributions of the thresholds for each number of permutations are 

presented in Figure 7.3. The trend seen here is echoed in the analyses of the other data 

sets. What is immediately obvious is that the 50 permutation tests used in Bauer et al. 

(2009) are insufficient. Using only 50 permutation tests yielded a range of genome-

wide thresholds for a significance level of 0.05 from a posterior probability 0.360 to 1 

for the real data. This clearly shows it is possible with such a small number to get 

significance thresholds that are extreme and will cause incorrect interpretation of the 

results.  As the number of permutations increase, the range of possible thresholds 

decreases. This result agrees with the work of Doerge and Churchill (1996) that state 

that 1000 permutations is the lowest number needed for a significance level of 0.05 

which is generally the lowest level of significance required. 

 

In a livestock setting, the inclusion of the polygenic effect is important to avoid 

declaring significance that is caused by the data structure rather than a real QTL. The 

inclusion of the polygenic effect means that the traditional approach of permuting just 
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the phenotypes is infeasible, as it would also break the phenotype-pedigree 

relationship. Presented here is an alternative approach of essentially permuting of the 

entire genotypes or stratifying within sire families. The first approach allows the 

inclusion of the polygenic effects by breaking the relationship between phenotype and 

genotype as desired, but conserving the phenotype- pedigree relationship permitting 

the estimation of the polygenic effect; this approach violates the condition of 

exchangeability. In comparison, stratifying within sire families satisfies, for the most 

part, the condition of exchangeability. This approach of stratifying within sire families 

has been widely used in single QTL mapping e.g. Seaton et al. (2002). Consequently, 

the approach applied here could be used for data that has been designed for linkage 

studies. A comparison of these two approaches produced very similar thresholds and 

whilst the violation of exchangeability does occur, the extent of the violation appears 

to be minor. Consequently, stratifying within sire groups is recommended if the data 

supports it as this will satisfy the condition of exchangeability and adds no additional 

demands to the approach.    

 

Permutation within strata was shown to be a valuable tool in establishing significance 

for moderate or minor QTL in the presence of a major QTL. A conditioning marker 

was used but any SNPs also in LD with DGAT1 or the conditioning marker were also 

by default conditioned upon. This increased the power to identify moderate QTL also 

affecting fat percentage. Due to the large amount of variance explained by DGAT1, 

should stratification not been used, this variance would have shifted to other SNP 

forming random associations with the phenotypes resulting in inflated thresholds that 

would have been unlikely to establish significance for any QTL other than DGAT1. 

Conditioning upon more than one marker i.e. there is more than one major QTL, 

could be problematic if the number of individuals in the strata become small. 

However, provided that data set is large enough and the strata are substantial, this is a 

further possibility.  

 

Doerge and Churchill (1996) recommend excluding the chromosome on which the 

conditioning marker(s) are located, as any markers linked to the conditioning 

markers(s) if included will continue to show associations and inflate the thresholds. 

Despite this, the study excluded the first 10 Mbp when establishing the chromosome 

and genome-wide thresholds. This was because the chromosome-wide threshold for 



  118 

BTA chromosome 14 (0.239) showed no inflation and was lower than the average 

chromosome-wide threshold (0.247). The genome-wide threshold was found to be 

lower when the entire BTA chromosome 14 was excluded (0.513 compared to 0.528). 

However, the genome-wide threshold was also equally low or lower when it was re-

calculated after other individual chromosomes were excluded. This exclusion of other 

complete chromosomes meant that 14 times (out of a possible 30 times for the 

removal of each other chromosome) the re-calculated genome-wide threshold was 

lower than or as low as the threshold calculated when BTA chromosome 14 was 

omitted. Thus the inclusions of other chromosomes equally increase the threshold, 

indicating that the exclusion of only the first 10 Mbp did not inflate the final genome-

wide threshold. Exclusion of the first 5 instead of 10 Mbp on BTA chromosome 14 

produced identical results. However, excluding less than 5 Mbp caused some inflation 

of the both the genome-wide and chromosome-wide thresholds for this data set.  

 

Consequently, it appears unnecessary to remove the entire chromosome on which the 

conditioning marker(s) are contained and appears sufficient to exclude the set of 

markers surrounding the conditioning markers. The distance from the conditioning 

marker is dependent on the data set and can be investigated for individual data sets; in 

this instance, 5 Mbp on each side of the conditioning markers seemed reasonable to 

avoid inflating the thresholds.  There were no significant QTL on BTA chromosome 

14 at either the chromosome-wide or genome-wide threshold (Figure 7.3) 

 

Further research is needed to determine the upper and lower bounds for the size of 

strata that can be used effectively when stratifying on the basis of genotype classes 

and sire groups. The stratification within sire families produced similar results to 

when stratification was not performed and the data was permuted across all 

individuals. Interestingly, permuting within sire produced a significance threshold that 

was greater than the threshold produced with permutation testing without 

stratification. This was unexpected as permuting without stratifying removes the 

correlation between pedigree and genotypes. This latter relationship would generally 

make it harder to estimate the SNP effects, so eliminating it should cause the SNP 

effects to be more easily estimated, thus inflating the SNP effects and overestimating 

precision of the analysis.  However the opposite appears true for this data set where 
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permuting within sire families produces larger random associations, thus higher SNP 

effects resulting in a slightly higher threshold.  
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Figure 7.5- Polygenic variance for the 1000 analyses of the permuted data with and 

without stratification.  

 

One explanation of this finding is that the sire effects are being attributed to the SNP 

effects instead of the polygenic effect. On inspection of the polygenic variance, the 

polygenic variance is larger when the no stratification has taken place. This indicates 

more variance is attributed to polygenic effect when no stratification has taken place 

and thus less variance is explained by the SNPs. Subsequently the SNP effects will be 

lower which will make it more probable for a SNP to not be included in the 

significant effects. This will reduce the SNP’s posterior probability and thus the 

overall threshold. The polygenic variances from the analyses of the 1000 permuted 

data sets with and without stratification are shown in Figure 7.5. This observed effect 

may be a reflection of sire family sizes where the family groups with 25 individuals 

may have been small. Small sire family sizes may result in less allelic variation within 

families and may cause SNP effects to remain similar due to unchanged genotypes at 

specific loci with family groups despite permutation. More testing is required to 

establish a consensus on what is the effect of stratifying within family structures and 

what the minimum size of these groups needs to be. Obviously more relationships are 
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present in the data than the groups stratified across, so the effect of stratification on 

these other relationships and consequently, the results, also requires exploration.  

 

The advantages and disadvantages of the different thresholds have previously been 

discussed (Churchill and Doerge, 1994). In a multi-locus setting, the SNP specific 

threshold is shown to be unviable. This is due to the major problem caused by 

comparing the original test statistic with a distribution created from the permutation 

tests that due to dense linked SNPs could be incomplete or biased.  Consider 

a (random or real) association between some linked  SNPs  and the phenotypes.  

In single locus models, the effect will be attributed to each of the linked SNPs as they 

are fitted in separate models; permutation testing using the single locus model 

therefore yields the correct distribution of the test statistic for each SNP.  However in 

multi-locus models, the effect may be spread across all the linked SNPs or the 

effect may be attributed to just one of the linked SNP.  Therefore, in multi-locus 

models the test statistic distribution of a single SNP may not include all the values 

that accurately indicate the true number of random associations that occurred during 

the permutation testing. Consequently, these distributions do not reflect the null 

distributions that are to be sampled from, which corresponds to the hypothesis that 

there is no association between the phenotypes and the SNPs. This distortion would 

result in an increase in the incorrect declarations of a significant SNP linked to a QTL. 

This increase is evident in both examples by the excessive number of SNPs 

established as significantly linked to QTL using this threshold. An alternative 

approach may be to calculate the joint posterior probabilities for overlapping intervals 

for SNP found in each interval (Sahara et al., 2010). This would allow region (or 

interval) specific threshold to be calculated.  

 

The other two thresholds can be used as originally proposed as they use the maximum 

test statistic either for each chromosome or the entire genome. The genome-wide 

threshold has the least power to declare significant QTL affecting the trait but allows 

the control of the type I error rate. The chromosome-wide threshold has increased 

power to identify significant QTL but due to testing each chromosome separately the 

type I error rate could be higher than the desired value. This threshold therefore 

provides a balance between the control of the type I error rate and the power to 

identify QTL.   
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A possible caveat to the multi-locus method proposed, is that performing the 

permutations can be time consuming. The time required is dependent on the length of 

the time that the model and implemented approach requires to produce results. In the 

case of the study reported here, due to the implementation of the Bayesian latent 

variable model, the time demands were high. The model was run for 10,000 and 

20,000 iterations for the simulated and real data respectively, to ensure convergence. 

Consequently, the real data example with 43011 SNPs took twelve processor hours to 

complete. However to run a single SNP model including a polygenic effect using 

ASReml (Gilmour et al., 2006b) for the 43011 SNPs took three times the amount of 

time needed for the multi-locus model (without the polygenic effect the time 

requirements were still at least twice as long). Consequently, the approach presented 

has lower time demands than if permutation testing was used for all 43011 SNPs 

using a single locus model. 

 

Should more extreme p-values be desired, one way to reduce the computational time 

would be to approximate the tail of the distribution (Knijnenburg et al., 2009). This 

method does provide a way to test for more extreme p-values while requiring fewer 

permutations. However, as many or more permutations than tested here would be 

needed to accurately re-construct the tail of the test statistic distributions.  

 

 

 

7.4. CONCLUSION 

 

In summary, multi-locus models offer advantages over the traditional single locus 

models as they overcome the problem of multiple testing and estimation of the total 

variance explained by the QTL, as well as leading to more precise mapping of QTL. 

However the problem of establishing significance has been difficult for multi-locus 

models. In this chapter, a permutation approach is presented to enable the declaration 

of significant QTL for multi-locus models. The approach was compared to other 

methods to establish significance. Bayes Factors and permutation testing produced 

reasonable thresholds while the posterior expected FDR was shown to be unviable for 

use with similar data sets. The proposed approach was demonstrated to identify 
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known QTL in both simulated and real data, and therefore provides a valuable 

technique to establish significance for minor and moderate QTL with or without the 

presence of a major QTL when using a multi-locus model. In addition two approaches 

to dealing with a linked third variable are presented. While promising, the results 

were inconclusive and more research is required.  

 

While genomic selection and prediction do not seek to establish the QTL underlying 

the trait of interest, many of the models applied to predict an animal’s total genetic 

value can be used for QTL analysis with the exception of any BLUP approaches. 

BLUP approaches assume equal variance across SNP and thus tend to share the effect 

of QTL across a range of SNP which results in very low SNP effects across most 

SNP. This type of approach makes it difficult to determine the exact position and 

effect of any QTL.  

 

While genomic selection is currently producing results that lead to increased levels of 

accuracy of selection, the ability to determine correctly the biological factors and 

QTL underlying the trait of interest would further increase the ability to construct a 

robust and accurate prediction equation.  Thus as the number of genotyped animals 

(with reliable phenotypes) increase, the ability to identify significant QTL should 

increase. The problem of how to identify the many minor QTL explaining only small 

amounts of genetic variation can be partially accounted for by the setting of 

thresholds and increasing the power of QTL studies.     
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CHAPTER 8  

Predicting energy balance for dairy cows using high density SNP 

information 

 

8.1 INTRODUCTION 

 

Many countries have introduced measures of fertility into national selection indexes 

to try to address declining fertility rates in dairy cattle (Miglior et al., 2005, Royal et 

al., 2000). One explanation for these decreases is the difference between energy 

intake and energy usage that occurs during early lactation. This difference is defined 

as energy balance (EB). Energy balance provides an essential link between production 

and non-production traits because both depend on a common source of energy. An 

animal’s energy must be partitioned efficiently to maintain production levels as well 

as an animal’s ability to remain healthy and fertile. Severe negative energy balance 

(NEB) during early lactation has been cited as an underlying cause of the negative 

relationship of health and fertility with production (Butler and Smith, 1989, Jorritsma 

et al., 2003, Pryce et al., 2004).  

 

Recently, there has been a  major focus on trying to overcome the NEB problem by 

modifying the diet during the dry period (Agenas et al., 2003, Dewhurst et al., 2000, 

Garnsworthy et al., 2008a, b, McNamara et al., 2003). Other suggested approaches to 

tackling NEB include varying the length of the dry period (Watters et al., 2009) and 

frequency of milking (McNamara et al., 2008). However, estimates of genetic 

parameters suggest that NEB is not only a consequence of a poor match between 

nutrition and production, but there is also genetic variation (Coffey et al., 2004, 

Friggens et al., 2007, Veerkamp, 1998, Veerkamp et al., 2003). Veerkamp (1998) 

reviewed the results of different studies that reported genetic correlations for a variety 

of energy measures and milk yield, with values ranging from -0.05 to -0.91 and 

heritability for energy traits that ranged from 0.19 to 0.69. Coffey et al. (2004) 

demonstrated that distinct genetic lines responded differently to a range of diets and 

differed in the time taken to return to positive EB. Similarly, Friggens et al. (2007) 

concluded that variability among animals on a stable nutritional diet could not be 

accounted for by environmental factors and indicated a genetic basis for EB. Thus, an 
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alternative to management approaches may be to select animals that are genetically 

predisposed to maintain a better EB.  

 

Accounting for EB in selection programs has been complicated, since measuring feed 

intake in progeny testing schemes is generally not practical. However, the current d 

evelopment of genomic prediction and selection methods as discussed in Chapter 3, 4 

and 5, coupled with the increase in both selection accuracy and genetic gain that 

genomic selection provides over traditional selection methods (Hayes et al., 2009c) 

may provide one option to allow for the selection of EB. 

 

The aim of the study presented in this chapter was to examine whether genomic 

prediction could be used to estimate DGV for EB using a small Dutch experimental 

farm data set. The objective was to demonstrate the genetic basis of EB and the 

potential use of genomic selection to facilitate inclusion of EB in selection programs. 

The study and its results have been published in the Journal of Dairy Science (Verbyla 

et al., 2010b) (see Appendix A3 for published version).  

 

8.2. MATERIALS AND METHODS 

 

8.2.1. Data  

 

Data on 613 Holstein-Friesian heifers born between 1990 and 1997 was collected 

during the first 15 weeks of lactation including 450 cows participating in the breeding 

program of CRV (Arnhem, The Netherlands) and 163 cows originating from an 

experimental farm (’t Gen, the Netherlands). All animals were housed together on a 

single farm under the same environmental and management influences. All cows were 

fed ad libitum. Live weight, feed intake, and milk yield were measured on 565 of the 

animals. Milk samples were taken on a fixed day of the week for measurement of fat, 

protein, and lactose yields. Feed intake was recorded daily using automated feed 

intake units. Live weight was recorded once a week. Energy balance (MJ/d) was 

calculated, using the method described in Veerkamp et al. (2000), as the difference 

between energy intake and the calculated energy requirements for milk, fat and 

protein yields, and maintenance costs as a function of live weight. Energy balance 

values across weeks 2 to 15 were averaged, where possible, to give an overall EB 



  125 

phenotype. More comprehensive details on the data used can be found in Veerkamp et 

al. (2000). Raw EB phenotypes were pre-adjusted for year-season of calving and age 

at calving (linear, quadratic) using ASReml (Gilmour et al., 2006b), since their 

inclusion was not feasible in the final model due to software limitations. The residuals 

from this analysis were used as the EB phenotypes for the prediction of the breeding 

values.   

 

588 of the 613 heifers had known pedigree and these were genotyped using the 

Illumina 50K SNP panel (54,001 SNP in total). The quality control criteria for 

selecting the final set of SNP were a call rate of over 90%, a GenCall score >0.2 and a 

GenTrain score >0.55 (Illunima descriptive statistics on genotype quality), a minor 

allele frequency of >2.5% and a lack of deviation from Hardy Weinberg equilibrium, 

%2<600 (Wiggans et al., 2009). Animals with greater than 5% missing SNP genotypes 

were removed. Non-Mendelian error checks identified genotypes of daughters that 

were inconsistent with their dams. A further, more comprehensive pedigree check was 

performed by comparing the coefficients of the additive genetic relationship matrix 

and the genomic relationship matrix (G matrix) calculated via the first method 

described in VanRaden (2008). This enabled inconsistencies between recorded half 

and full siblings to be examined. Animals with many inconsistencies between the 

pedigree and G matrix were removed. After all editing steps, in total, 43,011 SNP and 

548 animals were retained; of these 548 animals, 527 had phenotypes for EB. 

 

8.2.2. Statistical Analysis  

 

8.2.2.1. Models 

 

Two models using Gibbs Sampling were applied to estimate additive breeding values. 

One model included the available SNP information. This model used stochastic search 

variable selection (SSVS) (George and McCulloch, 1993), as in Chapter 4, which 

introduces an indicator variable, Ij, that determines whether SNP j has a large 

significant effect or whether the effect is insignificant and is therefore scaled back 

towards zero. The indicator variable for each locus j has a Bernoulli prior distribution: 

   (((( ))))pI
j

bernoulli~  
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The prior probability p  is chosen to reflect the information available on how many 

QTL affect the trait of interest. It can be quantified as the number of SNP expected to 

be linked to a QTL divided by the total number of SNP. For a complex trait such as 

EB, it was assumed that about 1% of the SNP were linked to a QTL ( 010.====p ). The 

model extends that presented in Chapter 4 based on the model presented in 

Meuwissen and Goddard (2004) for multi trait QTL analysis. The SNP model can be 

expressed as follows:   

( )( ) eZu1y
m

j
jjn ++!+=

=1
jvqXµ        

where y is the vector of phenotypes corrected for fixed effects for the trait being 

analysed for all n individuals, n1 is a vector of ones of length n, µ  is the mean, m is the 

number of SNP markers, j
X  is the (n x k) design matrix containing the information 

on the possible k alleles at the jth marker for all individuals (where xjk=0,1,2 having no, 

one or two copies of the kth allele respectively), j
q  is the vector (kx1) containing the 

effects of all k possible alleles at locus j where qjk. are drawn from a standard normal 

distribution N(0,1), jv  is the standard deviation of the allelic effects at locus j and is 

dependent on whether the locus effect is considered significant or not using the 

indicator variable e.g. jv is sampled: )100/)1(,0(~)p jN III|(v jjj −+ , u is the 

vector of random additive polygenic effects of length n (Z is the associated design 

matrix) and is assumed to be normally distributed, ( )ANu u
2,0~ σ  where A is the 

pedigree-derived additive genetic relationship matrix and e is the residual error also 

assumed to be normally distributed, ( )2,0~ eINe σ  where I is the n x n  identity 

matrix. The allele substitution effect of a locus j can be calculated from the estimated 

effects as: ( ) jjjj vqqa 21 −=  where 1j
q  ( 2

q
j ) is the effect of allele 1(2) at locus j. For 

the full specification of the priors used and an alternative formulation of the model see 

Calus et al. (2008) and Meuwissen and Goddard (2004). The DGV were calculated as 

the sum of estimated SNP effects and the polygenic effect ( (((( ))))(((( ))))
i

p

j
jjij

uvq ˆX ++++==== !!!!
====1

DGV
!

). 

The second model used was a simple additive polygenic model using pedigree-based 

relationships, as follows:  

euZ1y ++= µn                            
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where the EBV calculated by this model were the estimated polygenic effect for each 

animal ( iû=EBV ). Both models were run for 10,000 iterations to ensure 

convergence with the first 1000 iterations used as burn in. 

 

8.2.2.2. Validation  

 

Due to the small size of the data set, a 10-fold cross validation approach was carried 

out to assess the accuracy of predicted breeding values. The data set was randomly 

partitioned into 10 subsets each containing 10% of the data. Each subset was retained 

once as the validation data set and the remaining 9 became the reference sets. Results 

from the reference sets were then used to predict breeding values of animals in the 

validation set. Accordingly, each animal appeared only once in a validation set and 

had only one predicted DGV.  

 

The DGV and EBV were assessed using accuracy, gyr ! , defined as the Pearson 

correlation of the predicted breeding values (DGV or EBV) ( g
!

) and the phenotypes 

(y). The maximum achievable accuracy, gyr ! , due to the correlation between 

phenotypes and predicted breeding values, was equal to the square root of the 

heritability of the phenotypes. The observed heritability for EB was estimated by 

fitting a model with year-season and age at calving (linear and quadratic regression) 

as the fixed effects and a random animal effect (a). The random animal effect was 

assumed normally distributed, ( )G,~ 20 aNa σ  where 2
aσ  is the additive genetic 

variance and G was the genomic relationship matrix calculated via the first method 

described in VanRaden (2008). Deriving the heritability this way has been shown to 

produce estimates closer to the true value than using the pedigree based relationship 

matrix (Hayes and Goddard, 2008a). 

  

As no daughter yield deviations (DYD) or reliable breeding values were available, the 

predicted breeding values (DGV and EBV) were compared to phenotypes. Most 

studies estimating accuracies of DGV, use DYD or reliable EBV predicted for proven 

bulls and consequently report accuracies of selection ( ggr ! ) and reliabilities ( 2
ggr ! ),  that 
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compare DGV and the closest estimate of the true breeding values )g( . Thus, the 

accuracy of selection was predicted (Daetwyler et al., 2008, Goddard, 2009) as:  

12

2

ˆ
+

=
h

h
r gg

λ

λ
where 

G

p

n

n
====λ    [10] 

where 2h is the observed heritability, p
n is the number of phenotypic records and 

G
n the number of effective QTL or chromosome segments. This function therefore 

can be used to estimate the number of effective QTL and the number of records 

needed to increase the accuracy of selection. The function can be modified for use 

when the accuracy is calculated using the correlation between the predicted DGV and 

phenotypes ( gyr ! ). Falconer and Mackay (1996) state that ggggr σσ ˆˆ = . The accuracy 

between DGV and phenotypes can be similarly expressed as yggyr σσ ˆˆ = . gyr !  can 

also be denoted as:  
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which can be rewritten as:  

2
gggy hrr ×= ˆˆ     [11] 

when combined with [10], this gives: 
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Hence, gyr !  can also be transformed into ggr ! .  The accuracy, gyr ! , was subsequently 

used to calculate the number of QTL affecting EB and the number of records needed 

to improve the accuracy of the predicted DGV.  

 

8.3. RESULTS  

 

The pedigree check step for data quality control proved a very effectual additional 

measure to identify any animal that had an incorrectly recorded pedigree or where an 

animal may have been misidentified. It allowed checking of half-sibling and full-

sibling relationships that is not possible using standard non-Mendelian checking 

which compares parent with offspring to establish any conflicting homozygotes. 

Figure 8.1 effectively illustrates the additional information contained in the SNP data 



  129 

about the relatedness of the animals. This is most obviously shown by the 

monozygotic twins that have a marker relationship of 1 (due to identical DNA) but are 

recorded as full siblings in the pedigree. The negative marker relationships are due to 

the method used to calculate the G matrix which ideally uses the allele frequencies 

that were present in the base population (VanRaden, 2008). However as the 

frequencies in the base population were unknown, the G matrix was calculated using 

the allele frequencies in the available highly selected population resulting in negative 

marker relationships.   

 

Figure 8.1- Comparison of the coefficients of the additive relationship matrix 

(pedigree relationship) and the coefficients of the genomic relationship matrix 

(markers relationship)   

 

The accuracies ( gyr ! ) of predicting phenotypes for the two models and the 2
gyr !  are 

shown in Table 8.1. Transformed values using (1) giving the accuracies of selection  

( ggr ! ) and the reliabilities ( 2
ggr ! ) are also shown. The heritability for EB was estimated 

separately, as described earlier, with a moderate value of 0.325 (SE = 0.12). The 
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accuracy of selection, gg
!r , was then calculated using [11]. The model including the 

SNP information yielded an overall accuracy of 0.29, which was higher than the 

overall accuracy of 0.21 produced by the polygenic model.   

 

 

Table 8.1- Accuracies and reliabilities of the DGV and EBV 

Model 
gy
!r  gg

!r  2
gyr !  2

ggr !  

Direct Genomic Value 

 (DGV)  

0.294 (±0.038) 0.516 0.086 (±0.025) 0.265 

Estimated Breeding Values 

(EBV)  

0.211 (±0.047) 0.370 0.044 (±0.023) 0.135 

DGV is predicted using the model including both the SNP and polygenic effects and 

the EBV using the model including only the polygenic effect.  gyr !  is the Pearson 

correlation between the predicted breeding values ( g
!

) and the phenotypes (y) (± 

standard error derived from the 10 data sets). ggr ! is the accuracy of selection 

(comparing the predicted breeding values ( g
!

) and the true breeding values (g)). 
2
gyr ! is the reliability of the predicted phenotypes (± standard error),  2

ggr !  is the reliability 

of the predicted breeding values.  

 

Figure 8.2- Histogram of DGV and EBV, (#) represents the estimated breeding 

values (EBV) predicted by the polygenic model and (#) represents the direct genomic 

values (DGV) predicted by the model including the SNP information   
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The calculated reliability ( 2
ggr ! ) of DGV is double that of the EBV produced by the 

polygenic model. This implies that the DGV explained twice as much variation as the 

EBV which is illustrated also by the range of the breeding values (Figure 8.2). The 

predicted DGV and EBV were positively correlated with a value of 0.70.   

 

A total of 472 effective QTL for EB were predicted. A sensitivity analysis was 

conducted to investigate the effect of the number of effective QTL, heritability and 

number of records had on the expected accuracy of selection. Figure 8.3 is a plot of 

2
gyr !  ( 2

ggr !  is provided for comparison on the second y axis) against the number of 

effective QTL for differing heritability where the number of records was kept constant 

at the available number of 527. This shows the impact that the number of effective 

QTL would have on the expected accuracies and reliabilities of the DGV. It 

demonstrates that the greater the number of QTL affecting the trait, the lower the 

expected accuracy and reliability. This is due to lack of information available in the 

limited number of phenotypes to be able to accurately estimate large numbers of QTL 

effects. Figure 8.3 also illustrates that this reduction in reliability, as the number of 

effective QTL increases, is more gradual for higher heritabilities.  

 

The number of total records needed to improve the accuracy was also investigated and 

results are shown in Figure 8.4. The heritability was set at the observed value for EB 

(0.325). It is evident from Figure 8.4 that the number of effective QTL has a 

significant impact on the number of records needed to improve the accuracy. The 

greater the number of effective QTL, the larger the number of phenotypic records 

required to reach higher accuracies and reliabilities. A total of 5,818 records with 

phenotype and genotype information was predicted as needed for a 2
gyr !  of 0.24 ( 2

ggr !  of 

0.80) for EB with the predicted 472 effective QTL. 
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Figure 8.3- Accuracy of prediction versus the number of effective QTL where the 

number of records is fixed to the number used in this study (527). ),( gyr
!2  is the 

squared correlation between the phenotypes and the predicted direct genomic 

values, DGV (characterized in the text as 2
gyr ! ). ),( ggr

!2  is the estimated reliability 

between the true breeding value and the predicted DGV (characterized in the text as 

2
ggr ! ). 

 

Figure 8.4- Accuracy of prediction versus the number of records for a fixed 

heritability of 0.325. ),( gyr
!2  is the squared correlation between the phenotypes and 

the predicted direct genomic values, DGV (characterized in the text as 2
gyr ! ). ),( ggr

!2  

is the estimated reliability between the true breeding value and the predicted DGV 

(characterized in the text as 2

gg
r ! ).  
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8.4. DISCUSSION 

 

The objective of this study was to demonstrate the genetic basis of energy balance and 

that it could potentially be incorporated into selection programs using genomic 

selection based on a limited reference population. EB is a minimally recorded trait 

and consequently only a small number of phenotypic records were available. Despite 

the limitation on available data, genomic prediction was able to produce accuracies 

greater than a traditional polygenic model. Thus the results indicate that EB can be 

estimated using genomic prediction. The low accuracy gained can be explained as a 

direct result of the small number of phenotypic records and the moderate heritability 

found for this trait. The heritability calculated with this data set was consistent with 

results of other studies (Huttmann et al., 2009, Veerkamp, 1998). In order to consider 

including EB in breeding schemes, higher accuracies than found here are necessary. 

This increase could be facilitated through an increase in the heritability of the trait or 

an increase in the number of phenotypic records. One way to increase the heritability 

would be to standardize the environmental conditions to reduce non-genetic 

differences between animals, but this may be difficult to do in practice. An alternative 

approach to increase the heritability of phenotypes would be to use deregressed 

breeding values or DYD of proven bulls as phenotypes, based on EB records of many 

daughters. This allows for an increase in the accuracy, while keeping the number of 

genotyped animals constant. This scenario will not lead to any additional genotyping 

costs since most bulls may already be genotyped as part of reference populations for 

other breeding goal traits. Nevertheless this may still be more costly due to the (much) 

higher number of recorded EB phenotypes that would be needed. An increase in the 

number of available records would also allow for an increase in the accuracy of 

predicted DGV as previously indicated in other studies (Goddard, 2009, Hayes et al., 

2009c). The required increase could only occur if the measurement and recording of 

EB improved. 

 

Due to the low recording of EB, a seemingly obvious solution would be to 

immediately select for a more widely recorded trait, like body condition score (BCS), 

to indirectly try to reduce NEB. The problem with using BCS is that after the first 60 

days in milk (DIM), the genetic correlations between EB and BCS decrease markedly 

(Huttmann et al., 2009). However, until the recording of EB increases to useful levels, 
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BCS does provide a viable option to attempt to select animals with a better EB. In the 

future having both EB and BCS phenotypes available will probably allow for the best 

prediction of energy partitioning and utilisation. 

 

The model used to predict the DGV could also be used for whole genome association 

studies. Thus, the produced posterior probabilities of SNP were examined to see if 

there were any significant associations with EB. Due to the small number of records 

and large number of SNP, the power of the association study to identify QTL was 

very low and this was evident. There was no SNP with a high enough posterior 

probability to be confident that it was linked to a QTL. The prior for the expected 

number of QTL affecting EB was varied but results were consistently low. Although 

the posterior probabilities were low, there was one SNP that had 10-fold higher 

posterior probabilities than all the other SNP in all analyses regardless of the prior 

probability used. However, using a Bayes Factor (Section 7.2.4) (Kass and Raftery, 

1995) with a value of 3.2 (the lowest value of the Bayes Factor that indicates 

substantial evidence) indicated that the result could be declared to be significant and 

that this SNP linked to a QTL.  

 

The SNP is located on chromosome 21 and is in extremely close proximity to, and 

appears in association with, the nuclear receptor subfamily 2, group F, member 2 

(NR2F2), otherwise known as chicken ovalbumin upstream promoter transcription 

factor II (COUP-TFII). COUP-TFII has been previously reported as playing an 

essential role in regulating adipogenesis, glucose homeostasis and energy metabolism 

(Li et al., 2009, Xu et al., 2008). It has also been reported as regulating growth 

hormone receptor 1A promoter activity (Xu et al., 2004) and mediating progesterone 

and controlling estrogen levels and thus involved in reproduction (Klinge et al., 1997, 

Kurihara et al., 2007, Nakshatri et al., 2000, Petit et al., 2007, Takamoto et al., 2005). 

Whilst the results of this association study are not conclusive and further validation is 

required, COUP-TFII appears to be a good candidate gene for EB. 

 

Despite being unable to conclusively establish QTL associated with EB, results of the 

study allowed the estimation of the number of effective QTL influencing EB. Given 

the nature and complexity of EB, the number of predicted effective QTL (472) was 

plausible. However this prediction may be dependent just on the number of records, 
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effective population size and the length of the genome (Goddard, 2009). The 

relationships with both production and non-production traits means that potentially 

numerous genes and pathways could be involved in the variation observed in EB. 

Previous whole genome association studies of residual feed intake and other traits 

related to EB in beef cattle, report between 4 and 120 QTL affecting the traits studied 

(Barendse et al., 2007, Sherman et al., 2009). These values are significantly lower 

than the predicted 472, but reflect the power of the studies to detect significant QTL 

and the number of SNP (which were 2194 and 8786 respectively), rather than the true 

number of effective QTL. An increase in the number of phenotypic records would 

also allow genome wide association studies for EB in dairy cattle to identify possible 

candidate genes affecting the trait and would provide a better idea of the effective 

number of QTL.  

 

The ability to select and include EB in selection indexes may indirectly increase the 

genetic gain for fertility traits. The interval between calving and start of luteal activity 

(C-LA) has been demonstrated to be an indicator of fertility during later lactation 

(Darwash et al., 1999, Petersson et al., 2007, van der Lende et al., 2004). Veerkamp et 

al. (2000) reported genetic correlations between EB and C-LA of -0.60 (and -0.49 for 

C-LA adjusted for milk, fat and protein). A moderate to high genetic correlation 

similar to what was previously reported would mean that genetic gain for EB should 

also result in improved fertility. For example, if a bull had 25 daughters, the accuracy 

of selection for the bull’s EBV would be 0.40 for fertility (assuming a heritability of 

0.03), whereas for EB, the accuracy of selection for the bull’s EBV would be 0.83. 

Thus, given a genetic correlation of -0.5, the accuracy of selection for fertility using 

EB would be 0.41. Consequently for bulls with this number of daughters or less, 

selection using EB will result in greater genetic gain for fertility than selecting for 

fertility itself. However, as number of offspring per bull increases beyond 25, the 

benefit of using EB rather than fertility is lost, such that, selection for fertility itself 

will produce better genetic gains. Thus, the use of EB in selection indexes, in addition 

to fertility, may prove beneficial and result in increased genetic gain for fertility.   

 

In addition, to the possible benefits of improved fertility, EB could be used with feed 

intake data to select animals for feed efficiency (Veerkamp, 1998) or reduce methane 

emission (Hegarty et al., 2007). Improving feed efficiency could be economically 
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desirable as feed costs contribute the greatest proportion to production costs (Simm et 

al., 1994). However, feed efficiency data alone cannot distinguish whether the energy 

is used for production or maintenance. This may result in selection of animals that 

have low intake and high yield but consequently have problems related to high NEB. 

Thus, both NEB and improved feed efficiency (or intake) data should be considered 

simultaneously in order to effectively reduce the feeding costs while not having 

detrimental effects on the animals’ health and fertility.  

 

There are many other traits including several fertility and reproduction traits such as 

milk progesterone profiles and milk quality trait which are difficult to record. 

Accounting for these traits, like EB, in selection has been complicated, since 

measuring them in progeny testing schemes is not practical. The study reported here 

demonstrates that it is possible for such traits, with similar heritabilities and expected 

number of QTL to produce DGV with accuracies above 0.8 when there are more than 

approximately 2,600 (2,581 predicted for EB) phenotypic records available for use as 

the reference population. This means that it is possible to select for these traits using 

genomic selection by combining data from experimental and nucleus herds, where 

individually there are a limited numbers of raw phenotypic records.   

 

Genomic prediction is often performed using a two step procedure where the input 

phenotypes are pre-corrected so that the model predicting the DGV only includes the 

mean, polygenic and SNP effects. Since pre-correction will always introduce a new 

source of error, our preference would have been to include all fixed effects in the 

models used to predict the breeding values. There is on-going development of the 

genomic prediction program used, to allow the inclusion of multiple discrete and 

continuous fixed effects in a single model.   

 

8.5. CONCLUSIONS 

 

The use of SNP information to predict DGV is shown to explain variation between the 

EB of animals, confirming the genetic background of EB. The use of SNP 

information showed an increase in the accuracy of prediction for EB over the simple 

polygenic model for animals without an EB record. However, the number of 

phenotypes would need to be increased to improve the accuracy. In the future, 



  137 

selection for EB could be performed using genomic selection which could provide a 

valuable tool in finding a balance between production and non-production traits.  

 

The potential of genomic prediction and selection to allow selection for difficult traits 

that would have been previously impossible or extremely difficult is demonstrated 

here through the use of energy balance. As discussed in chapter 5, a variety of 

genomic prediction methods could have been applied with the expectation that each 

would produce a higher accuracy of prediction than the polygenic model due to the 

similar accuracy of most genomic prediction approaches on real data. Bayesian 

approaches would be expected to produce only slightly (~1-3%) higher accuracies 

than genomic BLUP (Hayes et al., 2009c). The results again highlight that the 

accuracy of genomic prediction is heavily reliant on the availability of reliable 

phenotypes due to p>n as discussed in Chapter 2 and 5. A further discussion on 

genomic prediction and selection requirements for increased success and development 

are contained in the following chapter.  
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CHAPTER 9  

General Discussion 

 

9.1. INTRODUCTION  

 

The aim of the research reported in this thesis was to investigate important aspects of 

genomic selection to enable a more comprehensive understanding of what makes a 

robust and accurate Bayesian prediction model.  A further aim was to explore new 

possibilities introduced though genomic selection, for instance, selecting for 

minimally recorded traits. Results from the preliminary simulation studies in Chapter 

3 indicated that the match between the assumed QTL distribution and the true QTL 

distribution had an effect on the accuracy of the DGV produced by the different 

models. Conversely in real data (Chapters 4 and 6), a general equality in the accuracy 

of prediction was found across the various models. The exception was for traits with 

atypical genetic architectures. Thus the model used to simulate may not well represent 

the real genetic model.  

 

In the proceeding chapters, this thesis has presented studies and outcomes that 

contribute new knowledge and implications to the current abundance of research on 

genomic selection. Novel research undertaken for this thesis is detailed; much of these 

results have been published.  

 

In this chapter, the major findings are discussed and their implications for the current 

and future implementation and use of genomic selection are considered.   

     

9.2. BAYES SSVS 

 

The development of the Bayes SSVS model presented in Chapter 4 was in response to 

the slow computational times produced by Bayes B and the acknowledged higher 

accuracies produced by models with similar assumptions to Bayes B. Bayes SSVS is a 

alternate formulation of a Bayesian model using Stochastic Search Variable Selection.  
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A similar approach using Stochastic Search Variable Selection was developed by 

Calus and Veerkamp (2007) using the work of Meuwissen and Goddard (2004). The 

model of Meuwissen and Goddard was originally presented for GWAS and was 

developed as a genomic prediction model by Calus and Veerkamp (2007). However, 

the performance of this approach was not initially demonstrated in real data until de 

Roos et al. (2009). Its equivalence to the original Bayes B and its performance 

compared with other genomic prediction models has never been presented. However, 

the robustness and usefulness of this type of model is highlighted by the 

implementation of this SSVS approach by CRV in the Netherlands for use in 

producing national GEBV.   

 

The problem with the SSVS approach, as previously noted for Bayes B (Gianola et 

al., 2009), is setting of the value of the hyper-parameter, pi (the proportion of SNP in 

the larger distribution). One solution is to set a prior distribution and also sample this 

parameter (Fernando, 2009). A second problem has been stated to be the way the 

hyper-parameters of the prior distributions for the variance of the SNP effects are 

determined. Gianola et al. (2009) states that the formulation of the hyper-parameters 

for Bayes A and consequently Bayes B and Bayes SSVS cause the prior to dominate 

the data as the formulation for the variance means that if r is the degrees of freedom 

for the inverse scaled chi-squared prior distribution, then the degrees of freedom for 

the conjugate posterior distribution will always be r + 1. This is true with respect to 

estimating the SNP specific variance but not with respect to estimating the SNP 

effect. They suggest that clusters of markers are formed such that markers in the same 

cluster share the same variance, resulting in shrinkage specific to individual clusters. 

Additionally, they propose that the clusters could be formed on the basis of biological 

information or a statistical procedure. Further investigation is required by the authors 

to demonstrate that these changes (not currently available) would actually increase the 

accuracy of the DGV produced by these models and that the current formulation is 

biasing or reducing the accuracy through the current approach. In fact, Habier et al 

(2010a) present alternative methods accounting for the drawbacks outlined by 

(Gianola et al., 2009) and determined that these statistical issues to not affect the 

accuracy of Bayes A and Bayes B  (and thus Bayes SSVS as presented here). The 

major difference between the new methods presented by Habier et al (2010a) is that 

they used a common effect variance instead of a SNP-specific variance to avoid the 
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suggested issue related to the formulation of the hyper-parameters and the subsequent 

overwhelming of the data.  

 

As mentioned previously, the general equality of performance in real data has lead to 

most countries implementing a genomic BLUP approach due to the ease of 

implementation. Despite this, Bayes SSVS performed up to 9.8% better than the worst 

model especially for traits with major QTL that explain large amounts of genetic 

variation (Verbyla et al., 2009). As the genetic architecture of traits becomes more 

apparent and as the number of SNP increases, a Bayes SSVS or Bayesian model 

selection approach may offer advantages in selecting the best model containing only 

those SNP linked to the QTL.  Additionally, should the genetic architecture be known, 

the prior distribution can to be set to match the true QTL distribution, something that 

is not possible with BLUP.  

 

9.3. GENOMIC PREDICTION  

 

The Bayesian hierarchical models were shown in this thesis to be rather robust and 

flexible when applied to varying genetic architectures in both simulated and real data. 

The results from the simulation studies presented in this thesis, and similar others, 

indicate that the models that assume the QTL distribution that matches fairly closely 

to the true distribution will produce high accuracies. In general, the accuracies of 

prediction for the different models were comparable. An overview of the 

performance, issues and important features of the Bayesian hierarchical models 

compared in Chapter 3-6 are presented in Table 9.1.  

 

However, there were differences between the accuracies for specific traits. These 

could be explained by the variation in genetic architectures of traits and the 

subsequent match between the models’ assumptions about the distribution of SNP 

effects and the trait’s genetic architecture e.g. the “true” distribution of QTL effect. 

These differences between models were evident for only the traits with noticeably 

different architectures such as fat percentage which has a major QTL (mutation 

DGAT1 (Grisart et al., 2002)) explaining a large amount of genetic variation, or, 

protein kilograms where there are postulated to be thousands of QTL, each explaining 

only a small amount of genetic variation (eg. Chamberlain et al. (2007)). For fat 
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percentage, Bayes SSVS and Bayes A produce significantly higher accuracies than 

BLUP. 

 

Table 9.1- Overview of the Bayesian hierarchical models used for genomic 

prediction.  

 Prior Distribution 
Assumptions   

Computational 
Demands 

Accuracies of 
Prediction  

Considerations 
before use   

BLUP -Normal 

-Equal Variance  

Low (very low1) High except for 
traits with 
atypical QTL 
distributions2 

Relies on LD 
extending over long 
distances.   

Bayes A -t-distribution 

-unequal Variance 

Low Moderate/High 
across all traits  

All SNP effects are 
non-zero and this 
single distribution can 
be prohibitive  

Bayes B -Mixture of            
t-distribution and 
point mass at zero 

-unequal Variance 

High  High across all 
traits 

Unviable due to 
computational and 
time demands  

Bayes 
A/B  

-Mixture of            
t-distribution and 
point mass at zero 

-unequal Variance 

Moderate/High  High across all 
traits 

Unviable due to 
computational and 
time demands 

Bayes 
SSVS 

-Mixture of two       
t-distribution (large 
and small) 

-unequal Variance 

Low High across all 
traits 

The proportion of SNP 
sampled from the large 
distribution can 
influence the  
accuracies   

  1When BLUP is implemented in traditional mixed models replacing the A matrix with the 

GRM, 2Those traits with QTL explaining large proportions of genetic variation e.g. fat 

percentage 

 

The major result from the first simulation study (Chapter 3), where a variety of 

different QTL distributions were simulated, was that the hierarchical prior 

distributions that assumed unequal variances (i.e. Bayes B) produced more accurate 

DGV. However, these were significantly computationally slower than Bayes A that 

was able to utilise the faster Gibbs Sampler. The use of the Metropolis Hasting 

algorithm for the Bayes A/B hybrid approach (Chapter 4) also followed the trend of 

being computationally more demanding. Thus the use of the Bayes SSVS or any other 

approach that only requires the use of the Gibbs Sampler is significantly more 
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efficient and given the general equality of performance with real data, more attractive.   

 

The simulation study in Chapter 5 demonstrated that despite producing a noticeably 

different set of DGV, the DGV produced by a genomic BLUP approach had 

accuracies equivalent to or better than that of the sets of DGV estimated using the 

other models. This result was echoed in the real data study in Chapter 6 with Bayes 

BLUP producing comparable accuracies for all traits except fat percentage which has 

the mutation, DGAT1, explaining a large proportion of the genetic variation. For traits 

where there is no large QTL, the BLUP assumption of equal variance across SNP has 

a limited effect on accuracy of prediction. One reason for this is due to the data 

having a structured population (as it does in Chapter 4 and 5). This creates LD over 

long distances which has been reported to extend for more than 1 Mbp (The Bovine 

HapMap Consortium, 2009), thus when using a BLUP approach, the multiple SNP 

linked to a single QTL can take part of the overall QTL effect and explain small 

proportions of genetic variation caused by the QTL. This is also the reason that BLUP 

cannot produce high accuracies for fat percentage. It is unable to estimate the large 

effect of DGAT1 by spreading effects across the SNP linked to the mutation.   

 

The results reported in Chapter 6 for real data studies agree with previously published 

results (Berry and Kearney, 2009, de Roos et al., 2009, Gredler et al., 2009, Harris et 

al., 2008, Lund and Su, 2009, Reinhardt et al., 2009, Schenkel et al., 2009, VanRaden 

et al., 2009). These indicate that while the Bayesian methods give competitive 

accuracies of DGV (slightly higher accuracies for traits with QTL explaining large 

amounts of variation), the uniformity of results across methods means that less 

computationally demanding approaches are attractive.  For example, the robustness 

and ease of application of the genomic BLUP approach has lead to many countries 

adopting this approach for their genomic prediction model. However, it is important 

to note that the performance of BLUP is dependent on spreading the effects of QTL 

across a number of SNP. Consequently if the LD declines rapidly over short 

distances, for example in multi-breed data, then a BLUP approach may perform worse 

than other approaches such as Bayes SSVS, as it will be unable to capture the same 

amount of variation that approaches that allow for unequal variances between SNP. 
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The other approaches to genomic prediction presented in Chapter 2 including PCA, 

PLS, Genetic Algorithms and non-parametric approaches are yet to applied to real 

dairy data similar to that presented in Chapter 6 and comparable studies. Solberg et al. 

(2009) demonstrate that PCA and PLS produce lower accuracies and greater bias than 

Bayes B in simulated data, leading to the conclusion that they are unviable for 

genomic prediction due to the reduction in accuracy. This result for PLS was also 

shown in real data by Moser et al.(2009b). PLS and PCA are also reported to be less 

responsive to the addition of further marker information (Solberg et al., 2009), which  

makes these approaches less attractive with the future SNP chips which contain as 

many as 850,000 SNP. There is also a risk that the PCA approach will be particularly 

susceptible to population structure, in fact in human GWAS, variation in the first few 

PCA are generally removed to avoid false positive results due to population 

stratification (Price et al., 2006). 

 

A more possible and rewarding alternative method, maybe the use of non-parametric 

models (Gianola et al., 2006, Gianola and van Kaam, 2008) (Section 2.3.6). They 

have been shown to produce promising results in real data (Gonzalez-Recio et al., 

2008). However, further research is needed into suitable kernels and the apparent 

complexity of these approaches will continue to prevent many from implementing 

them.    

 

The real data study also highlighted the importance of other parameters affecting the 

accuracy of selection including the heritability of the trait being analysed, the number 

of SNP (or LD between the SNP) and number of animals in the reference population. 

The study showed that traits with low heritability, such as fertility, produced low 

accuracies of prediction. However, the relationship between the number of records, 

heritability and accuracy of prediction means that an increase in the number of 

records should increase the accuracy of selection. An increase in the number of SNP 

would increase the LD found between the SNP and the QTL and this should also 

increase the accuracies of prediction (Calus et al., 2008).  

 

Currently, most countries that have or will implement genomic selection, do not or 

will not select on DGV alone but combine the DGV with traditional breeding and 

selection information in the form of EBV, Parent Average (PA) or predictions based 
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on additional pedigree information i.e. sire and maternal pathways (Berry and 

Kearney, 2009, de Roos et al., 2009, Harris and Montgomerie, 2009, Reinhardt et al., 

2009, Schenkel et al., 2009, VanRaden et al., 2009). This addition is reported to add 

vital parental information that is not fully contained in the DGV. This information is 

not contained in the DGV despite the inclusion of the polygenic effect, reflecting the 

small subset of the total data that is used in the prediction analysis, given the limited 

numbers of animals genotyped to date. It is commonly accepted that in real data 

studies, such as those in Chapter 4 and 6,  that the polygenic effect should be included 

to remove the effect of population structure to enable the more accurate estimation of 

the SNP effects. This is because the inclusion of the polygenic effect has been shown 

to produce slightly better accuracies of prediction while reducing the bias of the 

variance components (Calus and Veerkamp, 2007). Inclusion of additional pedigree 

information added to create the GEBV also increases the accuracy of prediction and 

selection as well as the reliability of the breeding values for most traits; this is 

demonstrated in Chapter 6.  For some traits, however, such as fat percentage and 

protein kilograms mentioned earlier, this additional information does actually 

decrease the accuracy of prediction. This can be explained by the proportion of 

genetic variance accounted for by the SNP effects for the different traits; the amount 

of extra accuracy that the PA will add to the GEBV will be trait dependent and can be 

predicted based on the genetic architecture of the trait. For example for fat percentage 

almost all the genetic variation is captured by the SNPs thus the DGVs produce higher 

accuracies than the GEBVs. 

 

9.4. SELECTION OF SUBSETS OF SNP 

 

The difference between the number of SNP and phenotypes can be large. To address 

this, one proposal is to first select a small number of influential SNP that are most 

likely to be linked to QTL affecting the trait of interest; this set of SNP is used then in 

a second stage involving more sophisticated modelling of the relationship between the 

SNP and the trait of interest by simultaneously estimating the SNP effects to create 

the prediction equation. 

 

The study presented in this thesis found that the pre-selection of SNP did not 

significantly increase accuracy of prediction, but it did increase the time and 
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computation demands. The single SNP analysis to first select the sets of SNP was 

time consuming and consequently is not recommended as it provided no convincing 

additional benefits. Regardless, it would be interesting to examine whether pre-

selecting using different models such as a Bayesian model or a machine learning 

procedure (that could produce different sets of SNP) would produce similar results.   

 

In the (near) future, with the increase in the number of available SNP, the ability to 

pre-select the important features and possible QTL (and linked SNP) related to a trait 

may again become an important issue as approaches and procedures seek to deal with 

the dramatic increase in the dimensions of the data needed to be modelled. Thus, SNP 

selection could be a viable option to allow modelling of the data and potentially 

significantly reduce the time and computational demands. Additionally, using a 

reduced number of pre-selected SNP would also provide significant economical 

savings by requiring selection candidates to be genotyped only for the smaller 

selected number of SNP. To this extent, breeding companies appear likely to develop 

multiple low-density genotyping assays. Weigel et al. (2009) report that a set of 300 

SNP selected due to having the largest effects might capture nearly half of the gain in 

reliability that could be achieved by using all SNP currently available through dense 

genotyping. They also postulate that a gain of two-thirds of the possible reliability 

could be achieved with 750 to 1,000 SNP.  

 

9.5. ENERGY BALANCE 

 

Energy balance (EB) is a minimally and difficult to record trait and, generally, it can 

only be recorded on nucleus or experimental farms. The study reported in this thesis 

achieved its objective by demonstrating the genetic basis of energy balance and that it 

could potentially be incorporated into selection programs using genomic selection. 

Despite the limitations on available data, genomic prediction was able to produce 

accuracies of prediction greater than a traditional polygenic model. Thus, the results 

indicated that EB can be estimated using genomic prediction. The low accuracy 

gained can be explained as a direct result of the small number of phenotypic records 

and the moderate heritability found for this trait. The heritability calculated with this 

data set was consistent with results of other studies (Huttmann et al., 2009, Veerkamp, 

1998).  
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In order to consider including EB in breeding schemes, higher accuracies than found 

here would be desirable. This increase could be achieved through an increase in the 

heritability of the trait or an increase in the number of phenotypic records. In the 

future, selection for EB could be performed using genomic selection which could 

provide a valuable tool in finding a balance between production and non-production 

traits.  

 

The study also indicated a possible candidate gene for EB. A single SNP appeared 

significantly related to EB. It was located on chromosome 21 and appeared to be in 

association with the nuclear receptor subfamily 2, group F, member 2 (NR2F2), 

otherwise known as chicken ovalbumin upstream promoter transcription factor II 

(COUP-TFII). COUP-TFII has been previously reported as playing an essential role 

in regulating adipogenesis, glucose homeostasis and energy metabolism (Li et al., 

2009, Xu et al., 2008). It has also been reported as regulating growth hormone 

receptor 1A promoter activity (Xu et al., 2004) and mediating progesterone and 

controlling estrogen levels and thus involved in reproduction (Klinge et al., 1997, 

Kurihara et al., 2007, Nakshatri et al., 2000, Petit et al., 2007, Takamoto et al., 2005). 

Whilst the results of this association study are not conclusive and further validation is 

required, COUP-TFII appears to be a good candidate gene for EB. 

 
The ability to select and include EB in selection indexes may indirectly increase the 

genetic gain for fertility traits and may allow selection for feed efficiency and 

methane emission without detrimental effects on health and fertility. Moderate to high 

genetic correlations have been found between EB and fertility traits. Thus, the use of 

EB in selection indexes, in addition to fertility, may prove beneficial and result in 

increased genetic gain for fertility.  In addition, EB could be used with feed intake 

data to select animals for feed efficiency (Veerkamp, 1998) or reduce methane 

emission (Hegarty et al., 2007) to prevent the selection of animals that are highly 

productive and eat less but are therefore prone to health and fertility problems. By 

also selecting for a positive (or at least not an extremely negative) EB, animals 

selected should have a reduced number of health and fertility problems. Improving 

feed efficiency could be economically desirable as feed costs contribute the greatest 
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proportion to production costs (Simm et al., 1994) while reducing methane emission 

has environmentally benefits.  

 

9.6. GENOMIC SELECTION FOR DIFFICULT TO MEASURE TRAITS 

 

The potential of genomic prediction and selection to allow selection for difficult traits, 

that would have been previously impossible or extremely difficult, is demonstrated in 

the research reported in this thesis, through the use of energy balance in Chapter 8. 

There are many other traits including several fertility and reproduction traits such as 

milk progesterone profiles and milk quality traits which are also difficult or expensive 

to record. Accounting for these traits, like EB, in selection has been complicated, 

since measuring them in progeny testing schemes is not practical. The accuracy of 

prediction has been shown in deterministic predictions (Daetwyler et al. 2009, 

Goddard 2008) to be a function of the heritability of the trait, the number of QTL and 

the number of records. The accuracy of prediction was defined by these authors as the 

correlation between the true and predicted breeding values. In this study only 

phenotypes were available to calculate the accuracy of prediction. Thus this original 

function was translated for use with phenotypes and DGV.   

 

The study demonstrates that it is possible for such traits, with similar heritabilities and 

expected number of QTL to produce DGV with accuracies above 0.8 when there are 

more than approximately 2,600 (2,581 predicted for EB) phenotypic records available 

for use as the reference population. This indicates that it is possible to select for these 

traits using genomic selection by combining data from experimental and nucleus 

herds, where individually there are a limited numbers of raw phenotypic records.   

 

9.7. PERMUTATION APPROACH FOR MULTI-LOCUS MODELS  

 

In addition to their use for genomic prediction, genome wide SNP and multi-locus 

models can be used for identifying QTL affecting economically important traits.  

While genomic selection is useful for increasing genetic gain, understanding the 

biological features and pathways are equally important and may provide a way to 

change a trait through the identification of gene pathways to use as potential 

intervention targets. Also potentially useful for genomic selection, as demonstrated by 
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the accuracies produced by fat percentage through the knowledge of the presence of 

DGAT1, identifying the QTL affecting the trait and understanding the genetic 

architecture may be useful for investigating new models and increasing accuracy. 

 

Multi-locus models offer advantages over the traditional single locus models as they 

overcome the problem of multiple testing and estimation of the total variance 

explained by the QTL. Nevertheless, the problem of establishing significance is still 

important for multi-locus models. A permutation approach is presented in Chapter 7 

that demonstrates that permutation testing can be used to enable the declaration of 

significant QTL for (Bayesian) multi-locus models. The approach is compared to 

other methods to establish significance. Bayes Factors and permutation testing 

produced useable thresholds while the posterior expected FDR was shown to be 

unviable for use with similar data sets.  

 

The approach is demonstrated to identify QTL when using a multi-locus model and 

provide a valuable technique to establish significance for minor and moderate QTL 

with or without the presence of a major QTL by stratifying within genotype classes, 

where a known major gene exists. In addition, the problem of exchangeability when 

there is an additional linked independent second variable such as a structured pedigree 

was explored. Two approaches allowing the inclusion of the polygenic effect were 

presented and compared. Both approaches produced similar results and more research 

is required to establish the effect of stratifying within pedigree structure versus 

permuting across all data but potentially violating the condition of exchangeability 

where exchangeability means that under the null hypothesis (no association) that any 

order of observations is equally probable. 

 

The effect of the number of permutations performed was also examined. The use of 

50, 200, 500, 750 and 1000 permuted data sets to construct significance thresholds 

was investigated. Using only 50 permutation tests yielded a range of genome-wide 

thresholds (as a posterior probability) for a significance level of 0.05 from 0.360 to 1 

for the real data. This clearly shows it is possible with such a small number to get 

significance thresholds that are extreme and will cause incorrect interpretation of the 

results.  As the number of permutations increase the range of possible thresholds 

decreases. The use of 1000 permutations seems to be the minimum to enable 
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confident use of a significance threshold. This result agrees with the work of Doerge 

and Churchill (1996) who stated that 1000 permutations is the lowest number needed 

for a significance level of 0.05 which is generally the lowest level of significance 

required. 

 

9.8. FUTURE STUDIES  

  

An increase in SNP information, towards whole genome re-sequence data, may lead 

to some approaches such as Bayesian models becoming unviable in their current 

implementation. This is because these approaches will require excessive computation 

and time to reach convergence. Due to the nature of MCMC sampling methods, 

multiple iterations are required for the chain to converge. If the parameters needed to 

be sampled increase 10 fold then the computational and memory demands are also 

going to increase 10 fold. The problem with this is that the computer processor speeds 

are no longer rapidly speeding up; instead companies are now choosing to just put 

more processors into a computer. Consequently, to take advantage of all available 

computer power, one approach would be to employ models that can utilise 

parallelisation or concurrency. One strategy that has been adopted is to employ 

blocking or local computation techniques for updating many parameters 

simultaneously (Boys et al., 2000, Goldstein and Wilkinson, 2000, Wilkinson and 

Yeung, 2002, 2004). Such techniques are very effective for improving the 

performance of MCMC schemes and could be used for Bayesian genomic prediction 

models.  

 

Alternative faster algorithms have already been suggested, such as a faster Bayes B 

(Meuwissen et al., 2009) which is a non-MCMC based estimator and consequently 

functions faster by analytically performing the required integrations. In this approach, 

they maintain the original assumption that a number of SNP have a zero effect 

assumed by Bayes B. However, an alternative hierarchical model is used where the 

the non-zero SNP effects are assumed to come from a reflected exponential 

distribution. They use a modification of the Iterative Conditional Mode algorithm 

(Besag, 1986) that they call the Iterative Conditional Expectation algorithm. This 

algorithm used the expectation instead of the mode of the posterior and iteratively 
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calculated ( )yi |E β for each SNP sequentially. Their modified fast approach produced 

accuracies only slightly lower than Bayes B, but not significantly. They demonstrated 

that their approach provided an efficient approach to modelling the same assumptions 

as Bayes B.  In addition, Shepherd et al. (2009a, 2009b) also developed an faster 

method analogous to Bayes B using the much quicker EM (expectation-

maximization) algorithm, emBayes B. This alternative formulation assumes the non-

zero SNP effects are sampled from a double exponential distribution. Using EM 

theory, they use a set of E and M steps to converge to the maximum a posteriori 

parameter estimates. However, both approaches need more testing in multiple data 

sets.  

 

The potential for genomic selection is currently restricted by the number of animals in 

the reference population. As these numbers grow, the accuracies that are achieved 

should increase. The increase in SNP density should lead to an increase in accuracy as 

more SNP located across the genome should capture more of the genetic variation by 

increasing the LD between markers (Hayes et al., 2009c). These increases may lead to 

more inequality across models, such that models that can utilise this additional 

information more successfully (such as model or variable selection approaches) may 

be able to produce more accurate DGV.  

 

Also of interest currently is the use and sharing of genomic information and GEBV 

internationally (VanRaden and Sullivan, 2010), in order to build the size of reference 

populations.  The diversity in prediction and construction of the GEBV, the difference 

in SNP, animals and traits means that there is significant care needed to use all the 

available information to provide reliable international GEBV.     

 

9.9. CONCLUSION 

 

Through a range of studies using both simulated and real data, the research reported in 

this thesis (and the associated publications) has investigated key aspects of genomic 

selection to enable a more comprehensive understanding of what makes a robust and 

accurate Bayesian prediction model and to explore the new possibilities introduced 

though genomic selection for selecting traits that could not be selected through 
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alternative techniques. The comparative analysis has shown that while in real data the 

different models achieve an equality of prediction accuracy, however there is an 

exception for traits with atypical genetic architectures.  

 

In the proceeding chapters, studies and outcomes are reported that contribute new 

knowledge and implications as well as an over-arching coherence to the current 

abundance of research on genomic selection. While many of results and trends 

reported here in the simulated and real data studies have been replicated in other 

studies, it is in this thesis that the results are drawn together into a comprehensive 

comparative analysis across models and methods. Additionally, novel variations and 

implementations have been introduced and analysed; much of the results from this 

innovative research have already been published.  

 

In this chapter an overview of the main findings from the previous chapters are 

presented, including the implications for the current and future implementation and 

use of genomic selection. The future could, and should, see genomic selection become 

increasing effective as a selection technique as the increase in complete sequence 

information will further amplify the potential of genomic selection to accurately select 

for novel traits and increase the genetic gain across all traits.  

 

 

 



  153 

CHAPTER 10  

References 

 

Agenas, S., E. Burstedt, and K. Holtenius. 2003. Effects of feeding intensity during 

the dry period. 1. Feed intake, body weight, and milk production. J. Dairy Sci. 

86(3):870-882. 

Aulchenko, Y. S., D.-J. de Koning, and C. Haley. 2007. Genomewide Rapid 

Association Using Mixed Model and Regression: A Fast and Simple Method 

For Genomewide Pedigree-Based Quantitative Trait Loci Association 

Analysis. Genetics 177(1):577-585. 

Baierl, A., M. Bogdan, F. Frommlet, and A. Futschik. 2006. On locating multiple 

interacting quantitative trait loci in intercross designs. Genetics 173(3):1693-

1703. 

Barendse, W., A. Reverter, R. J. Bunch, B. E. Harrison, W. Barris, and M. B. 

Thomas. 2007. A validated whole-genome association study of efficient food 

conversion in cattle. Genetics 176(3):1893-1905. 

Bauer, A. M., F. Hoti, f. M. von Korf, K. Pillen, J. Leon, and M. J. Sillanpaa. 2009. 

Advanced backcross-QTL analysis in spring barley (H. vulgare  ssp. 

spontaneum) comparing a REML versus a Bayesian model in multi-

environmental field trials. Theoretical and Applied Genetics 119:105-123. 

Beavis, W. D. 1994. The power and deceit of QTL experiments: lessons from 

comparitive QTL studies. Pages 250-266 in Proceedings of the Forty-Ninth 

Annual Corn & Sorghum Industry Research Conference. American Seed 

Trade Association, Washington, DC. 

Benson, D. A., I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, and D. L. Wheeler. 2007. 

GenBank. Nucl. Acids Res.:gkm929. 

Berry, D. and F. Kearney. 2009. Genomic selection in Ireland. Proceeding of the 

Interbull International Workshop, Uppsala, Sweden. Bulletin no.39. 

Besag, J. 1986. On the Statistical Analysis of Dirty Pictures. Journal of the Royal 

Statistical Society Series B-Methodological 48:259-302. 

Bogdan, M., J. K. Ghosh, and R. W. Doerge. 2004. Modifying the Schwarz Bayesian 

information criterion to locate multiple interacting quantitative trait loci. 

Genetics 167(2):989-999. 



  154 

Bost, B., D. de Vienne, F. Hospital, L. Moreau, and C. Dillmann. 2001. Genetic and 

nongenetic bases for the L-shaped distribution of quantitative trait loci effects. 

Genetics 157(4):1773-1787. 

Bost, B., C. Dillmann, and D. de Vienne. 1999. Fluxes and metabolic pools as model 

traits for quantitative genetics. I. The L-shaped distribution of gene effects. 

Genetics 153(4):2001-2012. 

Boys, R. J., D. A. Henderson, and D. J. Wilkinson. 2000. Detecting homogeneous 

segments in DNA sequences by using hidden Markov models. Journal of the 

Royal Statistical Society Series C-Applied Statistics 49:269-285. 

Brown, P. J., M. Vannucci, and T. Fearn. 1998. Multivariate Bayesian variable 

selection and prediction. Journal of the Royal Statistical Society Series B-

Statistical Methodology 60:627-641. 

Butler, W. R. and R. D. Smith. 1989. Interrelationships between energy-balance and 

postpartum reproduction function in dairy-cattle. J. Dairy Sci. 72(3):767-783. 

Calus, M. P. L., T. H. E. Meuwissen, A. P. W. de Roos, and R. F. Veerkamp. 2008. 

Accuracy of Genomic Selection Using Different Methods to Define 

Haplotypes. Genetics 178(1):553-561. 

Calus, M. P. L. and R. F. Veerkamp. 2007. Accuracy of breeding values when using 

and ignoring the polygenic effect in genomic breeding value estimation with a 

marker density of one SNP per cM. Journal of Animal Breeding and Genetics 

124(6):362-368. 

Carlborg, O., L. Andersson, and B. Kinghorn. 2000. The use of a genetic algorithm 

for simultaneous mapping of multiple interacting quantitative trait loci. 

Genetics 155(4):2003-2010. 

Chamberlain, A. J., H. C. McPartlan, and M. E. Goddard. 2007. The Number of Loci 

That Affect Milk Production Traits in Dairy Cattle. Genetics 177(2):1117-

1123. 

Churchill, G. A. and R. W. Doerge. 1994. Empirical Threshold Values for 

Quantitative Trait Mapping. Genetics 138(3):963-971. 

Coffey, M. P., G. Simm, J. D. Oldham, W. G. Hill, and S. Brotherstone. 2004. 

Genotype and diet effects on energy balance in the first three lactations of 

dairy cows. J. Dairy Sci. 87(12):4318-4326. 



  155 

Conlon, E. M., J. J. Song, and J. S. Liu. 2006. Bayesian models for pooling 

microarray studies with multiple sources of replications. BMC Bioinformatics 

7:247. 

Coster, A., J. Bastiaansen, M. Calus, C. Maliepaard, and M. Bink. 2010. QTLMAS 

2009: simulated dataset. BMC Proceedings 4(Suppl 1):S3. 

Crump, R., B. Tier, G. Moser, J. S¨olkner, R. J. Kerr, A. F. Woolaston, K. R. Zenger, 

M. S. Khatkar, J. A. L. Cavanagh, and H. W. Raadsma. 2007. Genome-wide 

selection in dairy cattle: use of genetic algorithms in the estimation of 

molecular breeding values. in 17th Conference of the Association for the 

Advancement of Animal Breeding and Genetics, Armidale, NSW, Australia. 

Daetwyler, H. D., B. Villanueva, and J. A. Woolliams. 2008. Accuracy of Predicting 

the Genetic Risk of Disease Using a Genome-Wide Approach. PLoS ONE 

3(10):e3395. 

Darwash, A. O., G. E. Lamming, and J. A. Woolliams. 1999. The potential for 

identifying heritable endocrine parameters associated with fertility in post-

partum dairy cows. Anim. Sci. 68:333-347. 

de los Campos, G., H. Naya, D. Gianola, J. Crossa, A. Legarra, E. Manfredi, K. 

Weigel, and J. M. Cotes. 2009. Predicting Quantitative Traits With Regression 

Models for Dense Molecular Markers and Pedigree. Genetics 182(1):375-385. 

de Roos, A. P. W., B. J. Hayes, R. J. Spelman, and M. E. Goddard. 2008. Linkage 

Disequilibrium and Persistence of Phase in Holstein-Friesian, Jersey and 

Angus Cattle. Genetics 179(3):1503-1512. 

de Roos, A. P. W., C. Schrooten, E. Mullaart, S. van der Beek, G. de Jong, and W. 

Voskamp. 2009. Genomic selection at CRV. Proceeding of the Interbull 

International Workshop, Uppsala, Sweden. Bulletin no.39. 

Dekkers, J. C. M. 2004. Commercial application of marker- and gene-assisted 

selection in livestock: Strategies and lessons. J. Anim Sci. 82(13_suppl):E313-

328. 

Dewhurst, R. J., J. M. Moorby, M. S. Dhanoa, R. T. Evans, and W. J. Fisher. 2000. 

Effects of altering energy and protein supply to dairy cows during the dry 

period. 1. Intake, body condition, and milk production. J. Dairy Sci. 

83(8):1782-1794. 



  156 

Do, K. A., P. Muller, and F. Tang. 2005. A Bayesian mixture model for differential 

gene expression. Journal of the Royal Statistical Society Series C-Applied 

Statistics 54:627-644. 

Doerge, R. W. and G. A. Churchill. 1996. Permutation tests for multiple loci affecting 

a quantitative character. Genetics 142(1):285-294. 

Donoho, D. L. and V. Stodden. 2006. Breakdown point of model selection when the 

number of variables exceeds the number of observations. in International Joint 

Conference on Neural Networks. 

Draper, N. R. and H. Smith. 1998. Applied regression analysis. 3rd ed. ed. John Wiley 

& Sons, New York. 

Druet, T., S. Fritz, D. Boichard, and J. J. Colleau. 2006. Estimation of genetic 

parameters for quantitative trait loci for dairy traits in the French Holstein 

population. J. Dairy Sci. 89(10):4070-4076. 

Ducrocq, V. and Z. Lui. 2009. Combining genomic and classical information in 

national BLUP evaluations. Proceeding of the Interbull Meeting 2009, 

Barcelona, Spain. Bulletin no.40. 

Edwards, M. D., C. W. Stuber, and J. F. Wendel. 1987. Molecular-Marker-Facilitated 

Investigations of Quantitative-Trait Loci in Maize .1. Numbers, Genomic 

Distribution and Types of Gene-Action. Genetics 116(1):113-125. 

Efron, B., T. Hastie, I. Johnstone, and R. Tibshirani. 2004. Least Angle Regression. 

The Annals of Statistics 32(2):407-451. 

Falconer, D. S. and T. F. C. Mackay. 1996. Introduction to Quantitative Genetics. 4th 

ed. Longmans Green Harlow, Essex, UK. 

Fernando, R. 2009. A Mixture Model for Genomic Selection. in Statistical Genetics of 

Livestock for the Post-Genomic Era, Madison, WI, USA. 

Fernando, R. L., D. Habier, C. Stricker, J. C. Dekkers, and L. R. Totir. 2008. Genomic 

selection. Acta Agriculturae Scandinavica, Section A - Animal Science 

57:192–195. 

Fernando, R. L., D. Habier, C. Stricker, J. C. M. Dekkers, and L. R. Totir. 2007. 

Genomic selection. Acta Agriculturae Scandinavica Section a-Animal Science 

57(4):192-195. 

Fisher, R. A. 1935. The Design of Experiments. Oliver and Boyd Ltd., London. 



  157 

Foster, S. D., Verbyla A.P., and W. D. Pitchford. 2007a. Incorporating LASSO effects 

into a Mixed Model for Quantitative Trait Loci analysis Journal of 

Agriculture, Biological, and Environmental Statistics 12(2):300-314 

 

Foster, S. D., A. P. Verbyla, and W. S. Pitchford. 2007b. A random model approach 

for the LASSO . Computational Statistics 23(2):217-233. 

Friggens, N. C., P. Berg, P. Theilgaard, I. R. Korsgaard, K. L. Ingvartsen, P. 

Lovendahl, and J. Jensen. 2007. Breed and parity effects on energy balance 

profiles through lactation: Evidence of genetically driven body energy change. 

J. Dairy Sci. 90(11):5291-5305. 

Garnsworthy, P. C., A. Lock, G. E. Mann, K. D. Sinclair, and R. Webb. 2008a. 

Nutrition, metabolism, and fertility in dairy cows: 1. Dietary energy source 

and ovarian function. J. Dairy Sci. 91(10):3814-3823. 

Garnsworthy, P. C., A. Lock, G. E. Mann, K. D. Sinclair, and R. Webb. 2008b. 

Nutrition, metabolism, and fertility in dairy cows: 2. Dietary fatty acids and 

ovarian function. J. Dairy Sci. 91(10):3824-3833. 

Gautier, M., R. R. Barcelona, S. Fritz, C. Grohs, T. Druet, D. Boichard, A. Eggen, and 

T. H. E. Meuwissen. 2006. Fine mapping and physical characterization of two 

linked quantitative trait loci affecting milk fat yield in dairy cattle on BTA26. 

Genetics 172(1):425-436. 

Geladi, P. and B. R. Kowalski. 1986. Partial least-squares regression: a tutorial. 

Analytica Chimica Acta 185:1-17. 

Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin. 2003. Bayesian data analysis 

2nd Ed ed. Chapman & Hall/CRC. 

Geman, S. and D. Geman. 1984. Stochastic Relaxation, Gibbs Distributions, and the 

Bayesian Restoration of Images. Ieee Transactions on Pattern Analysis and 

Machine Intelligence 6(6):721-741. 

Genovese, C. and L. Wasserman. 2002. Operating Characteristics and Extensions of 

the False Discovery Rate Procedure. Journal of the Royal Statistical Society. 

Series B (Statistical Methodology) 64(3):499-517. 

George, E. I. and R. E. McCulloch. 1993. Variable Selection Via Gibbs Sampling. J. 

Am. Stat .Assoc. 88(423):881-889. 

George, E. I. and R. E. McCulloch. 1997. Approaches for Bayesian variable selection. 

Statistica Sinica 7(2):339-373. 



  158 

Gianola, D., G. de los Campos, W. G. Hill, E. Manfredi, and R. Fernando. 2009. 

Additive Genetic Variability and the Bayesian Alphabet. Genetics 183(1):347-

363. 

Gianola, D., R. L. Fernando, and A. Stella. 2006. Genomic-assisted prediction of 

genetic value with semiparametric procedures. Genetics 173(3):1761-1776. 

Gianola, D., M. Perez-Enciso, and M. A. Toro. 2003. On marker-assisted prediction 

of genetic value: Beyond the ridge. Genetics 163(1):347-365. 

Gianola, D. and J. van Kaam. 2008. Reproducing kernel Hilbert spaces regression 

methods for genomic assisted prediction of quantitative traits. Genetics 

178(4):2289-2303. 

Gibbs, R., G. Weinstock, K. Steven., L. Skow, and J. Womack. 2002. Bovine 

Genomic Sequencing Initiative, Cattle-izing the Human Genome National 

Human Research Institute  

Gilks, W. R., S. Richardson, and D. J. Spiegelhalter. 1996. Markov chain Monte 

Carlo in practice  Chapman & Hall. 

Gilmour, A. R., B. J. Gogel, B. R. Cullis, and R. Thompson. 2006a. ASREML. 2 ed. 

VSN International Ltd., Hemel Hempstead, HP1 1ES, UK. 

Gilmour, A. R., B. J. Gogel, B. R. Cullis, and R. Thompson. 2006b. ASREML 

Program user manual. 2 ed. . VSN International Ltd., Hemel Hempstead, HP1 

1ES, UK. 

Goddard, M. 2009. Genomic selection: prediction of accuracy and maximisation of 

long term response. Genetica 136(2):245-257. 

Goddard, M. E. 2008. Genomic selection: prediction of accuracy and maximisation of 

long term response. Genetica 136(2):245-257. 

Goddard, M. E. and B. J. Hayes. 2009. Mapping genes for complex traits in domestic 

animals and their use in breeding programmes. Nat Rev Genet 10(6):381-391. 

Goldberger, A. S. 1962. Best Linear Unbiased Prediction in Generalized Linear-

Regression Model. Journal of the American Statistical Association 

57(298):369-&. 

Goldstein, M. and D. J. Wilkinson. 2000. Bayes linear analysis for graphical models: 

The geometric approach to local computation and interpretive graphics. 

Statistics and Computing 10(4):311-324. 

Gonzalez-Recio, O., D. Gianola, N. Long, K. A. Weigel, G. J. M. Rosa, and S. 

Avendano. 2008. Nonparametric methods for incorporating genomic 



  159 

information into genetic evaluations: An application to mortality in broilers. 

Genetics 178(4):2305-2313. 

Gredler, B., K. G. Nirea, T. R. Solberg, C. Egger-Danner, T. H. E. Meuwissen, and J. 

Sölkner. 2009. Genomic selection in Fleckvieh/Simmental – First results. 

Proceeding of the Interbull Meeting 2009, Barcelona, Spain. Bulletin no.40. 

Green, P. J. 1995. Reversible jump Markov chain Monte Carlo computation and 

Bayesian model determination. Biometrika 82(4):711-732. 

Griffin, J. E. and P. J. Brown. 2005. Alternative prior distributions for variable 

selection with very many more variables thans observations. Dept. of 

Statistics, University of Warwick. 

Grisart, B., W. Coppieters, F. Farnir, L. Karim, C. Ford, P. Berzi, N. Cambisano, M. 

Mni, S. Reid, P. Simon, R. Spelman, M. Georges, and R. Snell. 2002. 

Positional candidate cloning of a QTL in dairy cattle: Identification of a 

missense mutation in the bovine DGAT1 gene with major effect on milk yield 

and composition. Genome Res. 12(2):222-231. 

Habier, D., R. Fernando, K. Kizilkaya, and D. J. Garrick. 2010a. Extension of the 

Bayesian Alphabet for Genomic Selection. in 9th World Congress on Genetics 

Applied to Livestock Production. Lepzig, Germany. 

Habier, D., R. L. Fernando, and J. C. M. Dekkers. 2007. The impact of genetic 

relationship information on genome-assisted breeding values. Genetics 

177(4):2389-2397. 

Habier, D., R. L. Fernando, and J. C. M. Dekkers. 2009. Genomic Selection Using 

Low-Density Marker Panels. Genetics 182(1):343-353. 

Habier, D., J. Tetens, F.-R. Seefried, P. Lichtner, and G. Thaller. 2010b. The impact 

of genetic relationship information on genomic breeding values in German 

Holstein cattle. Genetics Selection Evolution 42(1):5. 

Hans, C. 2009. Bayesian lasso regression. Biometrika 96(4):835-845. 

Hardy, J. and A. Singleton. 2009. Genomewide Association Studies and Human 

Disease. N Engl J Med 360(17):1759-1768. 

Harris, B. L., D. L. Johnson, and R. J. Spelman. 2008. Genomic selection in New 

Zealand and the implications for national genetic evaluation. Proceeding of 

theInterbull Meeting, Niagara Falls, Canada Bulletin no.38. 



  160 

Harris, B. L. and W. A. Montgomerie. 2009. Current status of the use of genomic 

information in the national genetic evaluation in New Zealand. Proceeding of 

the Interbull International Workshop, Uppsala, Sweden. Bulletin no.39. 

Hastings, W. K. 1970. Monte-Carlo Sampling Methods Using Markov Chains and 

Their Applications. Biometrika 57(1):97-&. 

Hayes, B., P. J. Bowman, A. J. Chamberlain, Verbyla K.L., and M. Goddard. 2009a. 

Accuracy of genomic breeding values in multi-breed dairy cattle populations. 

Genetics Selection Evolution 41:51. 

Hayes, B. and M. E. Goddard. 2001. The distribution of the effects of genes affecting 

quantitative traits in livestock. Genetics Selection Evolution 33(3):209-229. 

Hayes, B. J., P. J. Bowman, A. J. Chamberlain, and M. E. Goddard. 2009b. Invited 

Review: Genomic Selection in dairy cattle: Progress and challenges. Journal 

of Dairy Science 92:433-443. 

Hayes, B. J., P. J. Bowman, A. J. Chamberlain, and M. E. Goddard. 2009c. Invited 

review: Genomic selection in dairy cattle: Progress and challenges. J. Dairy 

Sci. 92(2):433-443. 

Hayes, B. J. and M. E. Goddard. 2008a. Technical note: Prediction of breeding values 

using marker-derived relationship matrices. J. Anim Sci. 86(9):2089-2092. 

Hayes, B. J. and M. E. Goddard. 2008b. Technical note: Prediction of breeding values 

using marker-derived relationship matrices. Journal of Animal Science 

86(9):2089-2092. 

Hegarty, R. S., J. P. Goopy, R. M. Herd, and B. McCorkell. 2007. Cattle selected for 

lower residual feed intake have reduced daily methane production. J. Anim 

Sci. 85(6):1479-1486. 

Henderson, C. R. 1950. Estimation of Genetic Parameters. Annals of Mathematical 

Statistics 21(2):309-310. 

Henderson, C. R. 1973. Sire evaluation and genetic trends. . Proceedings of the 

Animal Breeding and Genetics Symposium in Honor of Dr. Jay L. Lush, 

American Society of Animal Science and American Dairy Science 

Association, Champaign, IL, :10-41. 

Henderson, C. R. 1975a. Best Linear Unbiased Estimation and Prediction under a 

Selection Model. Biometrics 31(2):423-447. 

Henderson, C. R. 1975b. Use of All Relatives in Intraherd Prediction of Breeding 

Values and Producing Abilities. Journal of Dairy Science 58(12):1910-1916. 



  161 

Henderson, C. R. 1976. Simple Method for Computing Inverse of a Numerator 

Relationship Matrix Used in Prediction of Breeding Values. Biometrics 

32(1):69-83. 

Henderson, C. R. 1977. Best Linear Unbiased Prediction of Breeding Values Not in 

Model for Records. Journal of Dairy Science 60(5):783-787. 

Henderson, C. R. 1978. Undesirable Properties of Regressed Least-Squares Prediction 

of Breeding Values. Journal of Dairy Science 61(1):114-120. 

Henderson, C. R., H. W. Carter, and J. T. Godfrey. 1954. Use of contemporary herd 

average in appraising progeny tests of dairy bulls. . Journal of Animal Science 

13( 949. ). 

Heuven, H. C. and L. L. Janss. 2010. Bayesian multi-QTL mapping for growth curve 

parameters. BMC Proceedings 4(Suppl 1):S12. 

Hoeschele, I. and P. M. Vanraden. 1993a. Bayesian-Analysis of Linkage between 

Genetic-Markers and Quantitative Trait Loci .1. Prior Knowledge. Theoretical 

and Applied Genetics 85(8):953-960. 

Hoeschele, I. and P. M. Vanraden. 1993b. Bayesian-Analysis of Linkage between 

Genetic-Markers and Quantitative Trait Loci .2. Combining Prior Knowledge 

with Experimental-Evidence. Theoretical and Applied Genetics 85(8):946-

952. 

Hoh, J., A. Wille, R. Zee, S. Cheng, R. Reynolds, K. Lindpaintner, and J. Ott. 2000. 

Selecting SNPs in two-stage analysis of disease association data: a model-free 

approach. Annals of Human Genetics 64:413-417. 

Huttmann, H., E. Stamer, W. Junge, G. Thaller, and E. Kalm. 2009. Analysis of feed 

intake and energy balance of high-yielding first lactating Holstein cows with 

fixed and random regression models. Animal 3(2):181-188. 

Jansen, R. C. 1993. Interval Mapping of Multiple Quantitative Trait Loci. Genetics 

135(1):205-211. 

Jorge, V., A. Dowkiw, P. Faivre-Rampant, and C. Bastien. 2005. Genetic architecture 

of qualitative and quantitative Melampsora larici-populina leaf rust resistance 

in hybrid poplar: genetic mapping and QTL detection. New Phytologist 

167(1):113-127. 

Jorritsma, R., T. Wensing, T. A. M. Kruip, P. Vos, and J. Noordhuizen. 2003. 

Metabolic changes in early lactation and impaired reproductive performance 

in dairy cows. Vet. Res. 34(1):11-26. 



  162 

Kao, C. H., Z. B. Zeng, and R. D. Teasdale. 1999. Multiple interval mapping for 

quantitative trait loci. Genetics 152(3):1203-1216. 

Kass, R. E. and A. E. Raftery. 1995. Bayes Factors. Journal of the American 

Statistical Association 90(430):773-795. 

Kennedy, B. W., M. Quinton, and J. A. van Arendonk. 1992. Estimation of effects of 

single genes on quantitative traits. J. Anim Sci. 70(7):2000-2012. 

Khatkar, M. S., P. C. Thomson, I. Tammen, and H. W. Raadsma. 2004. Quantitative 

trait loci mapping in dairy cattle: review and meta-analysis. Genet. Sel. Evol. 

36(2):163-190. 

Klinge, C. M., B. F. Silver, M. D. Driscoll, G. Sathya, R. A. Bambara, and R. Hilf. 

1997. Chicken ovalbumin upstream promoter transcription factor interacts 

with estrogen receptor, binds to estrogen response elements and half-sites, and 

inhibits estrogen-induced gene expression. J. Biol. Chem. 272(50):31465-

31474. 

Knijnenburg, T. A., L. F. A. Wessels, M. J. T. Reinders, and I. Shmulevich. 2009. 

Fewer permutations, more accurate P-values. Bioinformatics 25(12):I161-

I168. 

Knott, S. A. and C. S. Haley. 1992. Aspects of Maximum-Likelihood Method for the 

Mapping of Quantitative Trait Loci in Line Crosses. Genet. Res. 60(2):139-

151. 

Kurihara, I., D. K. Lee, F. G. Petit, J. Jeong, K. Lee, J. P. Lydon, F. J. DeMayo, M. J. 

Tsai, and S. Y. Tsai. 2007. COUP-TFII mediates progesterone regulation of 

uterine implantation by controlling ER activity. PLoS Genet. 3(6):1053-1064. 

Kutner, M. H., C. J. Nachtsheim, J. Neter, and W. Li. 2005. Applied Linear Statistical 

Models. Vol. Ed. 5. McGraw-Hill, New York. 

Lander, E. S. and D. Botstein. 1989. Mapping Mendelian Factors Underlying 

Quantitative Traits Using RFLP Linkage Maps Genetics 121(1):185-199. 

Lehmann, E. C. 1986. Testing Statistical Hypotheses. John Wiley and Sons, London. 

Li, L. P., X. Xie, J. Qin, G. S. Jeha, P. K. Saha, J. Yan, C. M. Haueter, L. Chan, S. Y. 

Tsai, and M. J. Tsai. 2009. The Nuclear Orphan Receptor COUP-TFII Plays 

an Essential Role in Adipogenesis, Glucose Homeostasis, and Energy 

Metabolism. Cell Metab. 9(1):77-87. 

Liu, Y., X. Qin, X.-Z. Song, H. Jiang, Y. Shen, K. J. Durbin, S. Lien, M. Kent, M. 

Sodeland, Y. Ren, L. Zhang, E. Sodergren, P. Havlak, K. Worley, G. 



  163 

Weinstock, and R. Gibbs. 2009. Bos taurus genome assembly. BMC 

Genomics 10(1):180. 

Long, N., D. Gianola, G. J. M. Rosa, K. A. Weigel, and S. Avendano. 2007. Machine 

learning classification procedure for selecting SNPs in genomic selection: 

application to early mortality in broilers. Journal of Animal Breeding and 

Genetics 124(6):377-389. 

Lund, M. S. and G. Su. 2009. Genomic selection in the Nordic countries. Proceeding 

of the Interbull International Workshop, Uppsala, Sweden. Bulletin no.39. 

Luo, Z. W. and M. J. Kearsey. 1989. Maximum-Likelihood-Estimation of Linkage 

Between a Marker Gene and a Quantitative Locus. Heredity 63:401-408. 

Lush, J. L. 1931. The number of daughters necessary to prove a sire. Journal of Dairy 

Science (14):209-220. 

Lush, J. L. 1933. The bull index problem in the light of modern genetics. . Journal of 

Dairy Science (16):501-522. 

Macciotta, N., G. Gaspa, R. Steri, C. Pieramati, P. Carnier, and C. Dimauro. 2009. 

Pre-selection of most significant SNPS for the estimation of genomic breeding 

values. BMC Proceedings 3(Suppl 1):S14. 

Macciotta, N. P. P., M. Mele, G. Conte, A. Serra, M. Cassandro, R. Dal Zotto, A. C. 

Borlino, G. Pagnacco, and P. Secchiari. 2008. Association between a 

polymorphism at the stearoyl CoA desaturase locus and milk production traits 

in Italian Holsteins. J. Dairy Sci. 91(8):3184-3189. 

Mackay, T. F. C. 2001. The genetic architecture of quantitative traits. Annual Review 

of Genetics 35:303-339. 

Martinez, O. and R. N. Curnow. 1992. Estimating the Locations and the Sizes of the 

Effects of Quantitaive Trait Loci Using Flanking Markers. Theor. Appl. 

Genet. 85(4):480-488. 

McCarthy, M. I., G. R. Abecasis, L. R. Cardon, D. B. Goldstein, J. Little, J. P. A. 

Ioannidis, and J. N. Hirschhorn. 2008. Genome-wide association studies for 

complex traits: consensus, uncertainty and challenges. Nat Rev Genet 

9(5):356-369. 

McNamara, S., J. J. Murphy, F. P. O'Mara, M. Rath, and J. F. Mee. 2008. Effect of 

milking frequency in early lactation on energy metabolism, milk production 

and reproductive performance of dairy cows. Livest. Sci. 117(1):70-78. 



  164 

McNamara, S., J. J. Murphy, M. Rath, and F. P. O'Mara. 2003. Effects of different 

transition diets on energy balance, blood metabolites and reproductive 

performance in dairy cows. Livest. Prod. Sci. 84(3):195-206. 

McVean, G. 2009. A Genealogical Interpretation of Principal Components Analysis. 

PLoS Genet 5(10):e1000686. 

Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. 

1953. Equation of State Calculations by Fast Computing Machines. Journal of 

Chemical Physics 21(6):1087-1092. 

Meuwissen, T. H. E. and M. E. Goddard. 2001. Prediction of identity by descent 

probabilities from marker-haplotypes. Genetics Selection Evolution 

33(6):605-634. 

Meuwissen, T. H. E. and M. E. Goddard. 2004. Mapping multiple QTL using linkage 

disequilibrium and linkage analysis information and multitrait data. Genet. 

Sel. Evol. 36 261–279. 

Meuwissen, T. H. E., B. J. Hayes, and M. E. Goddard. 2001. Prediction of total 

genetic value using genome-wide dense marker maps. Genetics 157(4):1819-

1829. 

Meuwissen, T. H. E., T. R. Solberg, R. Shepherd, and J. A. Woolliams. 2009. A fast 

algorithm for BayesB type of prediction of genome-wide estimates of genetic 

value. Genetics Selection Evolution 41:2. 

Miglior, F., B. L. Muir, and B. J. Van Doormaal. 2005. Selection indices in Holstein 

cattle of various countries. J. Dairy Sci. 88(3):1255-1263. 

Moser, G., B. Tier, R. Crump, M. Khatkar, and H. Raadsma. 2009a. A comparison of 

five methods to predict genomic breeding values of dairy bulls from genome-

wide SNP markers. Genetic Selection Evolution 41(1):56. 

Moser, G., B. Tier, R. Crump, M. Khatkar, and H. Raadsma. 2009b. A comparison of 

five methods to predict genomic breeding values of dairy bulls from genome-

wide SNP markers. Genetics Selection Evolution 41(1):56. 

Muir, W. M. 2007. Comparison of genomic and traditional BLUP-estimated breeding 

value accuracy and selection response under alternative trait and genomic 

parameters. Journal of Animal Breeding & Genetics 124(6):342-355. 

Mulder, H. A., T. H. E. Meuwissen, M. P. L. Calus, and R. F. Veerkamp. 2009. The 

effect of missing marker genotypes on the accuracy of gene-assisted breeding 

value estimation: a comparison of methods. Animal Forthcoming(-1):1-11. 



  165 

Nakshatri, H., M. S. Mendonca, P. Bhat-Nakshatri, N. M. Patel, R. J. Goulet, and K. 

Cornetta. 2000. The orphan receptor COUP-TFII regulates G2/M progression 

of breast cancer cells by modulating the expression/activity of 

p21(WAF1/CIP1), cyclin D1, and cdk2. Biochem. Biophys. Res. Commun. 

270(3):1144-1153. 

Narita, A. and Y. Sasaki. 2004. Detection of multiple QTL with epistatic effects under 

a mixed inheritance model in an outbred population. Genetics Selection 

Evolution 36(4):415-433. 

Nielsen, H. M., A. K. Sonesson, H. Yazdi, and T. H. E. Meuwissen. 2009. 

Comparison of accuracy of genome-wide and BLUP breeding value estimates 

in sib based aquaculture breeding schemes. Aquaculture 289(3-4):259-264. 

Park, T. and G. Casella. 2008. The Bayesian Lasso. Journal of the American 

Statistical Association 103(482):681-686. 

Petersson, K. J., B. Berglund, E. Strandberg, H. Gustafsson, A. P. F. Flint, J. A. 

Woolliams, and M. D. Royal. 2007. Genetic analysis of postpartum measures 

of luteal activity in dairy cows. J. Dairy Sci. 90(1):427-434. 

Petit, F. G., S. P. Jamin, I. Kurihara, R. R. Behringer, F. J. DeMayo, M. J. Tsai, and S. 

Y. Tsai. 2007. Deletion of the orphan nuclear receptor COUP-THII in uterus 

leads to placental deficiency. Proc. Natl. Acad. Sci. USA 104(15):6293-6298. 

Plummer, M., N. Best, K. Cowles, and K. Vines. 2007 -a. coda: Output analysis and 

diagnostics for MCMC. R package version 0.13-1. 

Plummer, M., N. Best, K. Cowles, and K. Vines. 2007 -b. coda: Output analysis and 

diagnostics for MCMC. . R package version 0.13-1. 

Price, A. L., N. J. Patterson, R. M. Plenge, M. E. Weinblatt, N. A. Shadick, and D. 

Reich. 2006. Principal components analysis corrects for stratification in 

genome-wide association studies. Nature Genet. 38(8):904-909. 

Pryce, J. E., M. D. Royal, P. C. Garnsworthy, and I. L. Mao. 2004. Fertility in the 

high-producing dairy cow. Livest. Prod. Sci. 86(1-3):125-135. 

Reinhardt, F., Z. Lui, F. Seefried, and G. Thaller. 2009. Implementation of genomic 

evaluation in German Holsteins. Proceeding of the Interbull Meeting 2009, 

Barcelona, Spain. Bulletin no.40. 

Royal, M. D., A. O. Darwash, A. P. E. Flint, R. Webb, J. A. Woolliams, and G. E. 

Lamming. 2000. Declining fertility in dairy cattle: changes in traditional and 

endocrine parameters of fertility. Anim. Sci. 70:487-501. 



  166 

Sahara, G., B. Guldbrandsen, L. Janss, and M. S. Lund. 2010. Comparison of 

Association Mapping Methods in a Complex Pedigree Population. Genetic 

Epidemiology 34:455-462. 

Satagopan, J. M., Y. S. Yandell, M. A. Newton, and T. C. Osborn. 1996. A Bayesian 

approach to detect quantitative trait loci using Markov chain Monte Carlo. 

Genetics 144(2):805-816. 

Schaeffer, L. R. 2006. Strategy for applying genome-wide selection in dairy cattle. 

Journal of Animal Breeding and Genetics 123(4):218-223. 

Schenkel, F. S., M. Sargolzaei, G. Kistemaker, G. B. Jansen, P. Sullivan, B. J. Van 

Doormaal, P. M. VanRaden, and G. R. Wiggans. 2009. Reliability of genomic 

evaluation of Holstein cattle in Canada. Proceeding of the Interbull 

International Workshop, Uppsala, Sweden. Bulletin no.39. 

Seaton, G., C. S. Haley, S. A. Knott, M. Kearsey, and P. M. Visscher. 2002. QTL 

Express: mapping quantitative trait loci in simple and complex pedigrees. 

Bioinformatics 18(2):339-340. 

Sen, S. and G. A. Churchill. 2001. A statistical framework for quantitative trait 

mapping. Genetics 159(1):371-387. 

Shepherd, R. K., T. H. E. Meuwissen, and J. A. Woolliams. 2009a. Genomic 

Selection using a Fast EM Algorithm  1. Understanding the Methodology 

Pages 80-83 in Association for the Advancement of Animal Breeding and 

Genetics, Barossa Valley, South Australia. 

Shepherd, R. K., T. H. E. Meuwissen, and J. A. Woolliams. 2009b. Genomic 

Selection using a Fast EM Algorithm  2.Analysis of Simulated Data Pages 84-

87 in Association for the Advancement of Animal Breeding and Genetics, 

Barossa Valley, South Australia. 

Sherman, E. L., J. D. Nkrumah, C. Li, R. Bartusiak, B. Murdoch, and S. S. Moore. 

2009. Fine mapping quantitative trait loci for feed intake and feed efficiency 

in beef cattle. J. Anim. Sci. 87(1):37-45. 

Shriner, D. 2009. Mapping multiple quantitative trait loci under Bayes error control. 

Genetic Research 91:147-159. 

Sillanpaa, M. J. and E. Arjas. 1998. Bayesian mapping of multiple quantitative trait 

loci from incomplete inbred line cross data. Genetics 148(3):1373-1388. 



  167 

Simm, G., R. F. Veerkamp, and P. Persaud. 1994. The Economic-Performance of 

Dairy-Cows of Different Predicted Genetic Merit for Milk Solids Production. 

Anim. Prod. 58:313-320. 

Smith, L. I. 2002. A tutorial on Principal Components Analysis. 

Smola, A. J. and B. Schölkopf. 2004. A tutorial on support vector regression. 

Statistics and Computing 14:199-222. . 

Solberg, T. R., A. K. Sonesson, J. A. Woolliams, and T. H. E. Meuwissen. 2009. 

Reducing dimensionality for prediction of genome-wide breeding values. 

Genetics Selection Evolution 41. 

Soller, M., T. Brody, and A. Genizi. 1976. Power for Experimental Design for 

Detection of Linkage Between Marker Loci and Quantitative Loci in Crosses 

Between Inbred Lines. Theor. Appl. Genet. 47(1):35-39. 

Stephens, D. A. 1998. Bayesian analysis of quantitative trait locus data using 

reversible jump Markov chain Monte Carlo. Biometrics 54(4):1334-1347. 

Stoop, W. M., A. Schennink, M. Visker, E. Mullaart, J. A. M. van Arendonk, and H. 

Bovenhuis. 2009. Genome-wide scan for bovine milk-fat composition. I. 

Quantitative trait loci for short- and medium-chain fatty acids. J. Dairy Sci. 

92(9):4664-4675. 

Storey, J. D. 2003. The Positive False Discovery Rate: A Bayesian Interpretation and 

the q-Value. The Annals of Statistics 31(6):2013-2035. 

Storey, J. D., J. M. Akey, and L. Kruglyak. 2005. Multiple locus linkage analysis of 

genomewide expression in yeast. Plos Biology 3(8):1380-1390. 

Swartz, M. D., M. Kimmel, P. Mueller, and C. I. Amos. 2006. Stochastic search gene 

suggestion: A Bayesian hierarchical model for gene mapping. Biometrics 

62(2):495-503. 

Takamoto, N., I. Kurihara, K. Lee, F. J. DeMayo, M. J. Tsai, and S. Y. Tsai. 2005. 

Haploinsufficiency of chicken ovalbumin upstream promoter transcription 

factor II in female reproduction. Mol. Endocrinol. 19(9):2299-2308. 

Taniguchi, M., T. Utsugi, K. Oyama, H. Mannen, M. Kobayashi, Y. Tanabe, A. 

Ogino, and S. Tsuji. 2004. Genotype of stearoyl-CoA desaturase is associated 

with fatty acid composition in Japanese Black cattle. Mamm. Genome 

15(2):142-148. 



  168 

ter Braak, C. J. F. 2006. Bayesian sigmoid shrinkage with improper variance priors 

and an application to wavelet denoising. Computational Statistics & Data 

Analysis 51(2):1232-1242. 

ter Braak, C. J. F., M. P. Boer, and M. Bink. 2005. Extending Xu's Bayesian model 

for estimating polygenic effects using markers of the entire genome. Genetics 

170(3):1435-1438. 

Thaller, G. and I. Hoeschele. 1996a. A Monte Carlo method for Bayesian analysis of 

linkage between single markers and quantitative trait loci .1. Methodology. 

Theoretical and Applied Genetics 93(7):1161-1166. 

Thaller, G. and I. Hoeschele. 1996b. A Monte Carlo method for Bayesian analysis of 

linkage between single markers and quantitative trait loci .2. A simulation 

study. Theoretical and Applied Genetics 93(7):1167-1174. 

The Bovine HapMap Consortium. 2009. Genome-Wide Survey of SNP Variation 

Uncovers the Genetic Structure of Cattle Breeds. Science 324(5926):528-532. 

Tibshirani, R. 1996. Regression Shrinkage and Selection via the Lasso. Journal of the 

Royal Statistical Society. Series B (Methodological) 58(1):267-288. 

Usai, M. G., M. E. Goddard, and B. J. Hayes. 2009. LASSO with cross-validation for 

genomic selection. Genetics Research 91(06):427-436. 

Vach, K., W. Sauerbrei, and M. Schumacher. 2001. Variable selection and shrinkage: 

comparison of some approaches. Statistica Neerlandica 55(1):53-75. 

van der Lende, T., L. Kaal, R. M. G. Roelofs, R. F. Veerkamp, C. Schrooten, and H. 

Bovenhuis. 2004. Infrequent milk progesterone measurements in daughters 

enable bull selection for cow fertility. J. Dairy Sci. 87(11):3953-3957. 

VanRaden, P. and P. Sullivan. 2010. International genomic evaluation methods for 

dairy cattle. Genetics Selection Evolution 42(1):7. 

VanRaden, P. M. 2008. Efficient Methods to Compute Genomic Predictions. J. Dairy 

Sci. 91(11):4414-4423. 

VanRaden, P. M., C. P. Van Tassell, G. R. Wiggans, T. S. Sonstegard, R. D. 

Schnabel, J. F. Taylor, and F. S. Schenkel. 2009. Invited Review: Reliability 

of genomic predictions for North American Holstein bulls. Journal of Dairy 

Science 92(1):16-24. 

Vapnik, V. N. 1998. Statistical Learning Theory. New York: John Wiley & Sons. 



  169 

Veerkamp, R. F. 1998. Selection for economic efficiency of dairy cattle using 

information on live weight and feed intake: A review. J. Dairy Sci. 

81(4):1109-1119. 

Veerkamp, R. F., B. Beerda, and T. van der Lende. 2003. Effects of genetic selection 

for milk yield on energy balance, levels of hormones, and metabolites in 

lactating cattle, and possible links to reduced fertility's. Livest. Prod. Sci. 

83(2-3):257-275. 

Veerkamp, R. F., J. K. Oldenbroek, H. J. Van Der Gaast, and J. H. J. Van Der Werf. 

2000. Genetic correlation between days until start of luteal activity and milk 

yield, energy balance, and live weights. J. Dairy Sci. 83(3):577-583. 

Verbyla, K., P. Bowman, B. Hayes, and M. Goddard. 2010a. Sensitivity of genomic 

selection to using different prior distributions. BMC Proceedings 4(Suppl 

1):S5. 

Verbyla, K. L., M. P. Calus, H. A. Mulder, Y. de Haas, and R. F. Veerkamp. 2010b. 

Predicting energy balance for dairy cows using high-density single nucleotide 

polymorphism information. Journal of Dairy Science 93:2757-2764  

Verbyla, K. L., B. J. Hayes, P. J. Bowman, and M. E. Goddard. 2009. Short Note: 

Accuracy of Genomic Selection using Stochastic Search Variable Selection in 

Australian Holstein Friesian dairy cattle. Genetic Research 91:307–311. 

Wang, H., Y. M. Zhang, X. M. Li, G. L. Masinde, S. Mohan, D. J. Baylink, and S. Z. 

Xu. 2005. Bayesian shrinkage estimation of quantitative trait loci parameters. 

Genetics 170(1):465-480. 

Watters, R. D., M. C. Wiltbank, J. N. Guenther, A. E. Brickner, R. R. Rastani, P. M. 

Fricke, and R. R. Grummer. 2009. Effect of dry period length on reproduction 

during the subsequent lactation. J. Dairy Sci. 92(7):3081-3090. 

Weigel, K. A., G. de los Campos, O. Gonzalez-Recio, H. Naya, X. L. Wu, N. Long, 

G. J. M. Rosa, and D. Gianola. 2009. Predictive ability of direct genomic 

values for lifetime net merit of Holstein sires using selected subsets of single 

nucleotide polymorphism markers. Journal of Dairy Science 92(10):5248-

5257. 

Weller, J. I. 1986. Maximum-Likelihodd Techniques for the Mapping and Analysis of 

Quantitative Trait Loci with the Aid of Genetic Markers Biometrics 

42(3):627-640. 



  170 

Weller, J. I., M. Shlezinger, and M. Ron. 2005. Correcting for bias in estimation of 

quantitative trait loci effects. Genetics Selection Evolution 37(5):501-522. 

Whittaker, J. C., R. Thompson, and M. C. Denham. 2000. Marker-assisted selection 

using ridge regression. Genetical Research 75(2):249-252. 

Wiggans, G. R., T. S. Sonstegard, P. M. VanRaden, L. K. Matukumalli, R. D. 

Schnabel, J. F. Taylor, F. S. Schenkel, and C. P. Van Tassell. 2009. Selection 

of single-nucleotide polymorphisms and quality of genotypes used in genomic 

evaluation of dairy cattle in the United States and Canada. J. Dairy Sci. 

92:3431–3436. 

Wilkinson, D. J. and S. K. H. Yeung. 2002. Conditional simulation from highly 

structured Gaussian systems, with application to blocking-MCMC for the 

Bayesian analysis of very large linear models. Statistics and Computing 

12(3):287-300. 

Wilkinson, D. J. and S. K. H. Yeung. 2004. A sparse matrix approach to Bayesian 

computation in large linear models. Computational Statistics & Data Analysis 

44(3):493-516. 

Wu, R. L. and B. L. Li. 2000. A quantitative genetic model for analyzing species 

differences in outcrossing species. Biometrics 56(4):1098-1104. 

Xu, Q., N. Walther, and H. Jiang. 2004. Chicken ovalbumin upstream promoter 

transcription factor II (COUP-TFII) and hepatocyte nuclear factor 4 gamma 

(HNF-4 gamma) and HNF-4 alpha regulate the bovine growth hormone 

receptor 1A promoter through a common DNA element. J. Mol. Endocrinol. 

32(3):947-961. 

Xu, S. Z. 2003. Estimating polygenic effects using markers of the entire genome. 

Genetics 163(2):789-801. 

Xu, Z., S. Yu, C. H. Hsu, J. Eguchi, and E. D. Rosen. 2008. The orphan nuclear 

receptor chicken ovalbumin upstream promoter-transcription factor II is a 

critical regulator of adipogenesis. Proc. Natl. Acad. Sci. USA 105(7):2421-

2426. 

Yandell, B. S., T. Mehta, S. Banerjee, D. Shriner, R. Venkataraman, J. Y. Moon, W. 

W. Neely, H. Wu, R. von Smith, and N. J. Yi. 2007. R/qtlbim: QTL with 

Bayesian interval mapping in experimental crosses. Bioinformatics 23(5):641-

643. 



  171 

Yi, N. and D. Shriner. 2008. Advances in Bayesian multiple quantitative trait loci 

mapping in experimental crosses. Heredity 100(3):240-252. 

Yi, N. and S. Xu. 2008. Bayesian LASSO for Quantitative Trait Loci Mapping. 

Genetics 179(2):1045-1055. 

Yi, N. J. 2004. A unified Markov chain Monte Carlo framework for mapping multiple 

quantitative trait loci. Genetics 167(2):967-975. 

Yi, N. J., V. George, and D. B. Allison. 2003. Stochastic search variable selection for 

identifying multiple quantitative trait loci. Genetics 164(3):1129-1138. 

Yi, N. J., D. Shriner, S. Banerjee, T. Mehta, D. Pomp, and B. S. Yandell. 2007. An 

efficient bayesian model selection approach for interacting QTL models with 

many effects Genetics:ahead of print. 

Yi, N. J. and S. Z. Xu. 2000. Bayesian mapping of quantitative trait loci for complex 

binary traits. Genetics 155(3):1391-1403. 

Yi, N. J. and S. Z. Xu. 2002. Mapping quantitative trait loci with epistatic effects. 

Genetical Research 79(2):185-198. 

Yi, N. J., B. S. Yandell, G. A. Churchill, D. B. Allison, E. J. Eisen, and D. Pomp. 

2005. Bayesian model selection for genome-wide epistatic quantitative trait 

loci analysis. Genetics 170(3):1333-1344. 

Zeng, Z. B. 1993. Theoretical Basis for Separation of Multiple Linked Gene Effects in 

Mapping Quantitative Trait Loci. Proc. Natl. Acad. Sci. USA 90(23):10972-

10976. 

Zeng, Z. B. 1994. Precision Mapping of Quantitative Trait Loci. Genetics 

136(4):1457-1468. 

Zhang, M., K. L. Montooth, M. T. Wells, A. G. Clark, and D. B. Zhang. 2005. 

Mapping multiple quantitative trait loci by Bayesian classification. Genetics 

169(4):2305-2318. 

Zou, W. and Z. B. Zeng. 2009. Multiple interval mapping for gene expression QTL 

analysis. Genetica 137(2):125-134. 

 



  172 

 

 

 



  173 

CHAPTER 11  

Appendices 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  174 

Appendix A- Publications from thesis 
 
 
A1 - Verbyla, K. L., B. J. Hayes, P. J. Bowman, and M. E. Goddard. 2009. Short 
Note: Accuracy of Genomic Selection using Stochastic Search Variable Selection in 
Australian Holstein Friesian dairy cattle. Genetic Research 91:307–311 
 
A2 - Verbyla, K., P. Bowman, B. Hayes, and M. Goddard. 2010a. Sensitivity of 
genomic selection to using different prior distributions. BMC Proceedings 4:S5 
 
A3 - Verbyla, K. L., M. P. Calus, H. A. Mulder, Y. de Haas, and R. F. Veerkamp. 
2010b. Predicting energy balance for dairy cows using high-density single nucleotide 
polymorphism information. Journal of Dairy Science 93:2757-2764  
 
 



SHORT NOTE
Accuracy of genomic selection using stochastic search variable
selection in Australian Holstein Friesian dairy cattle

KLARA L. VERBYLA 1,2,3*, BEN J. HAYES 1 , PHILIP J. BOWMAN1
AND

MICHAEL E. GODDARD 1,2,3

1Biosciences Research Division, Department of Primary Industries Victoria, 1 Park Drive, Bundoora 3083, Australia
2Melbourne School of Land and Environment, The University of Melbourne, Parkville 3010, Australia
3The Cooperative Research Centre for Beef Genetic Technologies, University of New England, Armidale, NSW 2351, Australia

(Received 21 July 2009 and in revised form 10 September 2009)

Summary

Genomic selection describes a selection strategy based on genomic breeding values predicted from
dense single nucleotide polymorphism (SNP) data. Multiple methods have been proposed but the
critical issue is how to decide whether an SNP should be included in the predictive set to estimate
breeding values. One major disadvantage of the traditional Bayes B approach is its high
computational demands caused by the changing dimensionality of the models. The use of stochastic
search variable selection (SSVS) retains the same assumptions about the distribution of SNP effects
as Bayes B, while maintaining constant dimensionality. When Bayesian SSVS was used to predict
genomic breeding values for real dairy data over a range of traits it produced accuracies higher or
equivalent to other genomic selection methods with significantly decreased computational and time
demands than Bayes B.

1. Introduction

Traditionally selection to improve profitability of
livestock production has been based on phenotypic
and pedigree information. However, the availability
of dense single nucleotide polymorphisms (SNPs) and
dramatic reduction in the cost of acquiring this in-
formation has allowed the inclusion of genome wide
marker information in the prediction of animals’
breeding values.

Meuwissen et al. (2001) introduced genomic selec-
tion as a selection strategy based on genomic breeding
values predicted from dense marker data. The method
implicitly recognized the fact that quantitative traits
such as those affecting profit of livestock production
are controlled by the segregation of large numbers of
multiple quantitative trait loci (QTLs), and therefore
predicts an animal’s breeding value by simultaneously
evaluating and summing large numbers of marker
effects across the entire genome. The method makes
the assumption that the markers are in linkage
disequilibrium (LD) with the QTL. The higher the

density of the markers is, the greater the level of LD
between the markers and the QTL and thus the
greater proportion of genetic variance that can be
explained by the markers.

In the reference population, where the SNP effects
are predicted, the number of marker effects (p) to
simultaneously estimate will typically be substantially
larger than the number of animals genotyped (n),
which leads to the difficulty of an over-saturated
model (i.e. p>n). Thus, a model for genomic selection
must be able to overcome this problem. The other
necessity is a sparse model because of the large number
of SNP effects that are zero or close to zero. Subse-
quently, a crucial question is how to decide whether
an SNP is in, or out of the set of SNPs chosen to give
the most accurate prediction of breeding values in
independent data sets. One potential approach is to
use shrinkage methods such as the least absolute
shrinkage and selection operator (LASSO), where all
SNPs are included in the predictive set but the smaller
effects are shrunk back towards zero (Tibshirani,
1996). Another approach is to use the reversible jump
Markov chain Monte Carlo (MCMC) algorithm* Corresponding author. e-mail : klara.verbyla@dpi.vic.gov.au
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(Green, 1995), which uses a variable dimension model
space approach that allows the SNPs in the predictive
set to change. Stochastic search variable selection
(SSVS) (George & McCulloch, 1993) provides a
method to maintain a constant dimensionality across
all models but allows the SNPs in the predictive set
to change. It allows this by instead of removing all
non-significant parameters (those that would be ex-
cluded from the predictive set using the reversible
jump algorithm) from the model, their effects are
limited to values very close to zero.

The major advantage of this method is that the pos-
terior distribution of all parameters can be sampled
directly using theGibbs sampler, instead of usingmore
computationally demanding algorithms such as the
reversible jump algorithm. SSVS has been previously
used for identifying multiple QTLs (Yi et al., 2003),
multivariate regression models (Brown et al., 1998),
gene mapping (Swartz et al., 2006) and generalized
linear models (George & McCulloch, 1997). It has
also been utilized for analysing multi-trait QTL map-
ping data (Meuwissen & Goddard, 2004), and subse-
quently to investigate the effect that different methods
for defining haplotypes and the effect of the inclusion
of the polygenic effect had on the accuracy of genomic
selection in simulated data (Calus et al., 2008; Calus
& Veerkamp, 2007).

In this paper, we demonstrate that a Bayesian SSVS
can be used effectively when compared with other
methods for genomic selection using real SNP data.
It also provides an viable alternative to more com-
putationally demanding approaches such as Bayes B
(Meuwissen et al., 2001).

2. Materials and methods

(i) SNP data

The data set contained 1498 Australian Holstein-
Friesian bulls genotyped for the Illumina Bovine50K
array. After quality control, 39 048 SNPs remained in
the predictive set. The quality control applied to the
SNP data is described by Hayes et al. (2009). The
reference data set where the SNP effects were pre-
dicted contained 1098 bulls born between 1940 and
2000. The phenotypes for these bulls were Australian
breeding values (ABV) for protein kg, fat kg, protein
percentage, fat percentage and daughter fertility, all
deregressed to remove any contribution from relatives
(Hayes et al., 2009). Daughter fertility here is defined
as the difference between bulls for the percentage of
their daughters pregnant 6 weeks after mating start
date or 100 days after calving in year-round herds.
The validation set contained 400 genotyped bulls
proven from the years 2005, 2006 and 2007 with ABV
which included information from at least 100 milking
daughters to enable comparison with predicted mar-
ker estimated breeding value (MEBVs).

(ii) Model

At each locus (total number of loci, p) there are three
possible combinations of two alleles (e.g. A or B), the
homozygote of one allele (AA), the heterozygote (AB)
and the homozygote of the other allele (BB). These
are then quantitatively represented by 0, 1 and 2, re-
spectively. The model fitted to the above data was
then

y=m1n+
Xq

j=1

Xjbj+Zu+e,

where y is the vector of phenotypes of the trait being
analysed for all n individuals, m is the mean, 1n is a
vector of ones of length n, Xj is a vector of indicator
variables representing the genotypes of the jth marker
for all individuals (xij=0, 1, 2), bj is the size of the
QTL effect associated with marker j, u is the vector of
random polygenic effects of length n (Z is the as-
sociated design matrix) and is assumed to be normally
distributed, uyN(0, su

2A) and e is the residual error
also assumed to be normally distributed, eyN(0, Ise

2).
The polygenic effect was included to remove the effect
of population structure to enable more accurate esti-
mation of the SNP effects. Its inclusion has been
shown to produce slightly better accuracies of pre-
diction while reducing the bias of the variance com-
ponents (Calus & Veerkamp, 2007).

(iii) SSVS

The key feature of SSVS compared with Bayes A or B
(Meuwissen et al., 2001) is the introduction of a latent
or indicator variable, c, into the hierarchical model.
This enables the extraction of information relevant to
variable selection. The latent variable can take either
1 or 0, representing whether the SNP is included as a
significant effect in the model or not. As such, the
prior distribution for each SNP effect is a normal
mixture conditional on the corresponding c and the
variance that is sampled from an inverse scaled chi-
square distribution:

bijci, s
2
i ! (1xci)N(0, s2

i =100)+ciN(0, s2
i ),

s2
i ! xx2(r,S):

At the SNP effect level, this hierarchical prior distri-
bution specification means the SNP effects are
sampled from amixture of two-student t distributions.
The values of r and S were calculated as in Meuwissen
et al. (2001). The prior distribution of the indicator
variable is chosen to reflect the belief of whether
an SNP is linked to a QTL. The probability of an
SNP being sampled from the smaller or larger dis-
tribution is

1xp(ci=0)=p(ci=1)=pi:
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Subsequently, the prior distribution for the indicator
variable is a Bernoulli distribution:

ci ! bernoulli (pi):

The prior probability pi is chosen to reflect the infor-
mation available on how many QTLs affect the trait
of interest. It can be quantified as the number of SNPs
expected to be linked to a QTL divided by the total
number of SNPs. In genome-wide association studies
or genomic selection applications, the expected pro-
portion of QTLs can be reasonably estimated based
on knowledge about the trait of interest and previous
QTL studies results.

The posterior distribution of the indicator variable
can be sampled directly using

p(ci=1jbj, s
2
i , cxi, u, y) ! bernoulli

p(bjjcxi, ci=1)pi
p(bjjcxi, ci=1)pi+p(bjjcxi, ci=0)(1xpi)

 !

,

where cxi is all terms of c except ci.
The frequency that each SNP appears in the model

is shown by the posterior distribution of the indicator
variable. SNPs that are included in the model fre-
quently have a high posterior probability and will
most likely be linked to a QTL.

(iv) Additional methods

Bayes A, Bayes B and BLUP were also run on
the data. Bayes A and Bayes B were as specified in
Meuwissen et al. (2001) with the addition of a poly-
genic effect. A Bayesian BLUP method was also im-
plemented. It is identical to the specification of Bayes
A with the exception that all SNPs had a constant
equal variance that was sampled once each iteration
from an inverse-scaled chi-square distribution.

In order to have Bayes B results for comparison
with Bayes SSVS, we also used a modified version of
Bayes B approach. The modified version consisted of
running Bayes B cycles with the Metropolis Hastings
(MH) algorithm every 100 iterations of Bayes A.
(Note the Jacobian in the acceptance ratio of the re-
versible jump algorithm was equal to one thus ident-
ical to the MH algorithm). If an SNP effect was found
to be zero during these MH iterations then it was set
to zero during the subsequent Bayes A cycles. This
effectively maintained the same assumptions as Bayes
B, while significantly reducing the time required to
reach convergence.

(v) Breeding values

MEBVs for bulls in the validation data set were cal-
culated as the sum of the mean, the effects of the
SNP genotypes it carried and the polygenic effect,

MEBV=m̂m+Xb̂b+ûu. The accuracy of the methods
were evaluated on the correlation, the mean square
error (MSE) and the regression coefficient of the ABV
(assumed to be the true breeding value) on the pre-
dicted MEBV. Genomic selection aims to produce
breeding values as close as possible to the true breed-
ing value. The ABV was used for comparison as it is a
most accurate predictor of the true breeding value and
it is regressed according to the amount of information
available.

3. Results and discussion

(i) Time to convergence

All methods were run for 10 000 iterations to ensure
convergence. This number of iterations was shown to
be sufficient for convergence with formal diagnostic
methods provided in the package R, coda (Plummer
et al., 2007). The use of the SSVS method is analogous
to Bayes B in the assumption that the majority of the
SNP effects are thought to be very small and insig-
nificant. However, as illustrated in Table 1, the fixed
dimensions of the model used in SSVS allow the use of
the Gibbs Sampler that is significantly computation-
ally less demanding and consequently quicker than
the reversible jump MCMC algorithm or the MH al-
gorithm used in traditional Bayes B. Given the very
high computational demand of Bayes B, it was not
possible to run this algorithm to convergence. The
time to convergence was extrapolated from running
Bayes B for 1000 iterations. The Bayes A and Bayes
BLUP methods reached convergence in comparable
times to Bayes SSVS.

(ii) Comparison of Bayes B and Bayes SSVS results

The correlations between the ABVs and the MEBV
predicted for the animals in the validation set by the
modified Bayes B and Bayes SSVS for fertility and
protein kg traits are shown in Table 2. This shows that
the two methods produce almost identical corre-
lations with the ABVs as expected. The MEBV for the

Table 1. Computational time for genomic selection
methods

Method
Computational
timea

Bayes BLUP 6
Bayes A 6
Bayes B y2440b

Bayes B Modified 240
Bayes SSVS 6

a Processor clock hours.
b Estimated time to convergence.
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two methods are 99.9 and 98.0% correlated for pro-
tein and fertility, respectively. This equivalence in
results demonstrates that the Bayes SSVS method
does maintain the SNP effect assumptions of the
original Bayes B and produce near to identical results.
The slightly lower result for fertility is probably due to
the non-normality of the trait making it harder to
estimate and by the modification of the original Bayes
B. The modified Bayes B produced not significantly
different but slightly larger MSEs and regression
coefficients (results not shown). This is most likely due
to the modification to reduce the computational time
to convergence. The time taken for the modified ver-
sion of Bayes B was still 40-fold larger than for the
Bayes SSVS that produced identical accuracies (see
Table 1).

(iii) Comparison of BLUP, Bayes A,
Bayes SSVS results

The logarithm of the MSE, regression and correlation
coefficients for the predicted MEBV and ABV for the
traits fertility protein kg, fat kg, protein percentage
and fat percentage are shown in Table 3. The values
shown are the average values for the proven bulls in
the years 2005, 2006 and 2007 from the validation
data set. BLUP has the highest overall correlation
and the lowest MSE between the three methods for
protein kg. For the traits, fat kg and protein percent-
age, Bayes SSVS produces the highest correlations
and has the lowest bias ; however, there are no sig-
nificant differences between methods. However, there
are significant differences between the methods for fat
percentage. These difference in the method accuracies
across traits or the apparent ‘trait by method’ inter-
actions can be explained by the distribution of QTLs
for the different traits. For example, protein kg has no
known genes of large effect and thus BLUP, which

uses equal variances across all SNPs, can be used
successfully to accurately predict breeding values. In
contrast, fat percentage has a known mutation,
DGAT1, that is common and acts additively and is
known to be responsible for explaining a large per-
centage of genetic variation for the trait (Grisart et al.,
2002). The individual SNP variances that Bayes A

Table 2. Correlation between predicted MEBV and
ABV for proven bulls (years 2005, 2006, 2007 and
overall) for the modified Bayes B and Bayes SSVS

Bayes B
(modified)

Bayes
SSVS

Protein kg
2005 0.620 0.627
2006 0.638 0.646
2007 0.502 0.490

Protein kg
Overall 0.575 0.583

Fertility
2005 0.576 0.577
2006 0.430 0.429
2007 0.628 0.628

Fertility
Overall 0.540 0.540

Table 3. MSE, correlation and regression coefficient
between predicted MEBV and ABV in the validation
data set

Method Measure
Bayes
SSVSa Bayes Aa

Bayes
BLUPa

Protein kg tEBV,ABV 0.583 0.567 0.602
log(MSE) 4.03 4.06 3.96
bEBV,ABV 0.987 0.997 1.055

Fat kg tEBV,ABV 0.563 0.532 0.563
log(MSE) 5.18 5.22 5.23
bEBV,ABV 0.9 0.856 0.988

Protein % tEBV,ABV 0.668 0.641 0.655
log(MSE) x4.94 x4.88 x4.84
bEBV,ABV 0.972 0.995 0.887

Fat % tEBV,ABV 0.740 0.716 0.646
log(MSE) x3.07 x3.24 x3.32
bEBV,ABV 0.874 0.864 0.925

Fertility tEBV,ABV 0.540 0.539 0.538
log(MSE) 1.51 1.51 1.52
bEBV,ABV 0.933 0.942 0.905

a Average accuracies reported over validation sets from
years 2005, 2006 and 2007.
tEBV,ABV, correlation coefficient between the ABV and the
predicted MEBV.
log(MSE) is the logarithm of the MSE between the ABV
and the predicted MEBV.
bEBV,ABV, regression coefficient of the ABV on predicted
MEBV.
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and Bayes SSVS uses, allows effects of a large size not
to be penalized (shrunk) as severely as in BLUP. This
is clearly shown in Fig. 1, where the percentage each
SNP contributes to the total SNP effects are plotted
for the three methods for the centromeric end of the
bovine chromosome 14. Bayes A and Bayes C have
an SNP with an effect significantly greater than zero,
while the Bayes BLUP effects for SNP near DGAT1
and surrounding the mutation are close to zero. Bayes
SSVS does perform slightly better than Bayes A for
fat percentage. The advantage of the Bayes SSVS over
Bayes A may be the prior structure consisting of two
distributions : a distribution of larger significant ef-
fects and a smaller distribution close to zero. This
allows the SNP with larger effects to have values in
their posterior sampled from the larger distribution,
while those SNPs without significance have their ef-
fects sampled from the smaller posterior distribution
of values very close to zero. Traits with large effects
will be more accurately predicted using SSVS than
Bayes A as the prior structure allows more variance to
be attributed to the larger effects.

4. Conclusion

Bayesian SSVS produced more accurate MEBV for
most of the dairy traits in our data set than other
methods. The comparison with a modified version of
Bayes B showed that it is equivalent and produces the
same results with dramatically less computational
time required. For traits with a mutation of known
large effect such as fat percentage, Bayes SSVS gave
significantly higher accuracy of MEBV than the
BLUPmethod as expected given that its prior is closer
to the real distribution of effects than that of BLUP.
The use of an indicator variable in Bayes SSVS would
also allow the premeditated inclusion of SNPs in a
model that are known to be linked to QTL of bio-
logical importance. Instead of using a single value to
set the prior probability for all SNPs a vector of
probabilities could be used as prior probabilities to
allow more prior information to be included should
it be available. Overall, this study has shown that
the Bayes SSVS method provides reduced compu-
tational time and accurate results when using real dairy
data to predict genomic breeding values and provides
a viable alternative to other Bayesian methods for
genomic selection.

The authors would like to thank Mehar Khatkar and
Herman Raadsma for provision of part of the data used in
this paper.
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Abstract
Genomic selection describes a selection strategy based on genomic estimated breeding values (GEBV) predicted
from dense genetic markers such as single nucleotide polymorphism (SNP) data. Different Bayesian models have
been suggested to derive the prediction equation, with the main difference centred around the specification of
the prior distributions.

Methods: The simulated dataset of the 13th QTL-MAS workshop was analysed using four Bayesian approaches to
predict GEBV for animals without phenotypic information. Different prior distributions were assumed to assess their
affect on the accuracy of the predicted GEBV.

Conclusion: All methods produced GEBV that were highly correlated with the true breeding values. The models
appear relatively insensitive to the choice of prior distributions for QTL-MAS data set and this is consistent with
uniformity of performance of different methods found in real data.

Background
Genomic selection describes a technique for evaluating
an animal’s breeding value by simultaneously evaluating
and summing marker effects across the genome. It uses
panels of SNPs covering the whole genome so that ide-
ally all QTL are in linkage disequilibrium with at least
one marker, thereby maximizing the proportion of
genetic variance explained by the SNPs.
Meuwissen et al (2001) [1] presented three models to

produce GEBV. The first invoked the infinitesimal
model assumption such that all SNPs had effects derived
from the same normal distribution. The other
approaches used a Bayesian framework to apply hier-
archical models with different prior distributions assum-
ing unequal variances across the SNP, resulting in a t
distribution for prior distribution for the QTL effects.
The specification of the prior distributions of the QTL
effects has been reported to be important to the accu-
rate prediction of breeding values and when mapping
multiple QTL across the entire genome [2].

The aim of this study was to assess the effect that dif-
ferent prior distributions and subsequently the models
using these priors, had on the accuracy of estimated
GEBV using the 13th QTL-MAS simulated data set
where we had no prior knowledge of the trait’s distribu-
tion of QTL effects.

Methods
Model
At each loci (total number of locus, p) there are three
possible combinations of two alleles (e.g. A or B), the
homozygote of one allele (AA), the heterozygote (AB)
and the homozygote of the other allele (BB). These are
then quantitatively represented by 0, 1 and 2 respec-
tively. Subsequently, phenotypic records at each time
point were modelled as:

y X Zu ej j
j

q

1
1

n

where y is the vector of phenotypes of the trait being
analysed for all n individuals, μ is the mean, 1n is a vec-
tor of ones of length n, Xj is a vector of indicator
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variables representing the genotypes of the jth marker
for all individuals (xij=0,1,2), bj is the size of the QTL
effect associated with marker j, u is the vector of ran-
dom polygenic effects of length n (Z is the associated
design matrix) and is assumed to be normally distribu-
ted, u ~ N (0, u

2 A) where A is the pedigree derived
additive genetic relationship matrix and e is the residual
error also assumed to be normally distributed, e ~ N(0,
I e

2 ) where I is the nxn identity matrix. The prior distri-
butions for the variances of the random polygenic
effects and the residual were uninformative flat priors of
the form Χ-2(- 2,0). The GEBV at each time point were
calculated asGEBV ˆ ˆ ˆ.X u

Prior distributions for SNP effects and algorithms
Four differing sets of prior distributions were assessed
and the specifications are shown in Table 1. The Bayes
BLUP model assumed the same variance for the nor-
mal distribution from which the SNP effects were
assumed to be derived (maintaining the infinitesimal
assumptions for traditional BLUP). The variance of the
normal distribution was sampled once every MCMC
iteration using a Gibbs Sampler. The SNP effects were
subsequently sampled from this normal distribution.
The model termed Bayes A [1] assumes that the SNP
effects come from a t-distribution. This is because an
efficient Gibbs sampling scheme to sample the SNP
effects from their posterior distributions is to a sample
SNP specific variance from an inverse chi-square dis-
tribution, then use this variance to define the normal
distribution from which the SNP effect is sampled [1].
The values for the inverse scaled chi square hyper
parameters( r and S) were calculated as in Meuwissen
et al (2001) [1].
The other two models assumed mixture distributions

for the SNP effects reflecting the assumption that there
is a large number of SNPs with zero or near zero effects
and a second smaller set of SNPs with larger significant
effects. A Bayes A/B “hybrid” method was used. This
approximation to Bayes B [1] was used to keep compu-
tational and time demands reasonable. In this algorithm,
after every k Bayes A iterations, Bayes B via the reverse
jump algorithm is employed. The Reverse Jump algo-
rithm [3] is run multiple times per SNP and then any
SNP with a final state of zero in the current Bayes B
iterations is set to zero for the subsequent k iterations
of the Bayes A. This maintains the correct transitions
between models of differing dimensionality. The prior
distributions are identical to that of the original Bayes B
using a mixture prior distribution for the SNP variance
allowing a proportion, 1-π, to be set to zero. The other
proportion π is sampled from the same mixture distri-
bution as Bayes A. See Meuwissen et al (2001) for more
details of priors and conditional distributions used.

A faster alternative to both the Bayes A/B hybrid and
Bayes B is to use Stochastic Search Variable Selection
(SSVS) [4] (Bayes C [5,6]). This avoids the problem of
the changing dimensionally of the models by providing
a technique to maintain constant dimensionality across
all models while still allowing the SNP in the predictive
set to change. Instead of removing all non-significant
parameters, their posterior distributions are limited to
values close to zero. The major advantage of this
method is that it can be implemented using the Gibbs
sampler instead of the more computationally demanding
algorithms such as the reverse jump algorithm. The
indicator variable (gi) determines whether the ith SNP
effect is sampled from the larger distribution (i.e. signifi-
cant effect) or from the small distribution with near
zero effects (see Table 1). The prior values of π (the
proportion sampled from the non-zero distribution or
the larger distribution respectively) for both Bayes A\B
and Bayes C was set to 0.05, reflecting the fact that with
435 SNP, it appeared reasonable to expect at least 21
SNP would be associated with a QTL.
The algorithms associated with each model were run

for 30,000 iterations with the first 10,000 discarded as
burn-in.

Results and Discussion
Prediction of breeding values at time point 600
The problem of how to model the time series data and
estimate GEBV at time point 600 was explored. How-
ever, there was little information available to estimate
any inflection points or asymptotic values. The GEBV
estimated at time points 265, 397 and 530 were found
to have a linear relationship (eg. appeared to form the
linear part of the growth curve). Consequently, as there
was no other information available after time point 530
to predict asymptotes etc., the GEBV at time point 600
were estimated by fitting a linear regression through the
breeding values at the three linear time points (265, 397
and 530).

Table 1 Prior Distribution Specifications
Method Prior Distribution

Bayes BLUP i N

r s

| ,

,

2 2

2 2

0

Bayes A i ii N| ,2 0 2

i r s2 2 ,

Bayes A/B (Hybrid) i ii N| ,2 0 2

i
2 0 with probability 1- π
i r s2 2 , with probability π

Bayes C i i i i i ii N N| , ( ) , / ( , )2 1 0 100 02 2

i r s2 2 ,

gi ~bernoulli(π)
1 - p(gi = 0) = p(gi = 1) = π

bi is the effect for the ith SNP and gi is the indicator variable for the ith SNP.

Verbyla et al. BMC Proceedings 2010, 4(Suppl 1):S5
http://www.biomedcentral.com/1753-6561/4/S1/S5

Page 2 of 4

Klara Verbyla
181



Breeding values
The correlations between the GEBV (t=600) predicted
by the alternative methods for the validation population
containing the 50 full sib families without phenotypes
are shown in Table 2. Correlations were extremely high
between all methods other than BLUP and consequently
GEBV appeared relatively insensitive to the model used
when assuming unequal variances. Correlations, mean
square errors, the accuracy of predicting the first 100
animals (rank) and the bias (regression coefficient)
between the predicted and true breeding values are
shown in Table 3. While there is no significant differ-
ence between the methods, Bayes A/B performed the
best of the methods producing the lowest MSE, highest
correlation and rank but was slightly more biased than
Bayes C and Bayes BLUP, but not significantly. Interest-
ingly while Bayes C has very similar hierarchical prior
distributions it does worse than Bayes A/B. Further opti-
misation of the prior probability of π for Bayes C
increased the accuracy (results not shown). The optimal
value for π was 0.3 (values tested were 0.05, 0.1, 0.2, 0.3,
0.4, 0.6 and 1). This produced results more similar to
the results seen for Bayes A\B. This does highlight the
importance of the correct assumption of the proportion
assigned to the smaller and larger distributions in a mix-
ture model. This difference between these two methods
may demonstrate that Bayes C is more sensitive to an
incorrect assumption about this proportion.
The inclusion of the polygenic effect in the model (not

simulated in the data) only slightly reduced the accuracy
of prediction (.01) but not significantly (results not
shown). It was included in the model as its inclusion
has been shown to produce slightly better accuracies of
prediction while reducing the bias of the variance com-
ponents[7].

Bayes BLUP produced a significantly different set of
GEBV. This is evident by the much lower correlations
with the other methods and difference in regression
coefficients between BLUP and the other methods.
Despite these differences Bayes BLUP produces good
accuracy and a low MSE (Table 3). Hayes et al (2009)
[8] reports that New Zealand, Australian, the Nether-
lands and United States studies all found that BLUP
gave lower accuracy of GEBV than Bayesian Methods
for traits where there is a single QTL that explains a
large proportion of the genetic variance e.g. DGAT1 for
Fat Percentage. In the current dataset a finite number of
QTL were simulated where the largest amount of
genetic variance explained by a single QTL was 10.5%.
Despite this, Bayes BLUP is still able to produce very
accurate GEBV compared to the other methods. One
reason this occurs may be that a number of SNPs are
required to pick up the effect of a single QTL, resulting
in large numbers of SNPs with small effects, which
matches the prior distribution of BLUP. However if the
percentage of genetic variance explained by a single
QTL was to be larger, Bayes BLUP could be expected to
produce worse results. Thus this caveat to using Bayes
BLUP should be considered when using this method.

Conclusion
All methods produced GEBV that were highly correlated
(greater than 0.85) with the true breeding values despite
diverse assumptions and prior distributions. This indi-
cates that the hierarchical model is relatively insensitive
to the choice of prior distributions for this data set.
Thus all models perform well and this is consistent with
the general uniformity of performance found across
methods in real data. [8]. Despite the general equality in
the performance of the different methods, it is still
recommended that any information about a trait’s QTL
effect distribution and phenotypic data should be used
to determine the choice of model, prior distributions
and setting of the hyper parameters. This will maximise
the likelihood of calculating the most accurate GEBV
possible.
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  ABSTRACT 

  The objective of this study was to investigate the 
genetic basis of energy balance (EB) and the potential 
use of genomic selection to enable EB to be incorporat-
ed into selection programs. Energy balance provides an 
essential link between production and nonproduction 
traits because both depend on a common source of en-
ergy. A small number (527) of Dutch Holstein-Friesian 
heifers with phenotypes for EB were genotyped. Direct 
genomic values were predicted for these heifers using 
a model that included the genotypic information. A 
polygenic model was also applied to predict estimated 
breeding values using only pedigree information. A 10-
fold cross-validation approach was employed to assess 
the accuracies of the 2 sets of predicted breeding values 
by correlating them with phenotypes. Because of the 
small number of phenotypes, accuracies were relatively 
low (0.29 for the direct genomic values and 0.21 for the 
estimated breeding values), where the maximum pos-
sible accuracy was the square root of heritability (0.57). 
Despite this, the genomic model produced breeding 
values with reliability double that of the breeding val-
ues produced by the polygenic model. To increase the 
accuracy of the genomic breeding values and make it 
possible to select for EB, measurement and recording of 
EB would need to improve. The study suggests that it 
may be possible to select for minimally recorded traits; 
for instance, those measured on experimental farms, us-
ing genomic selection. Overall, the study demonstrated 
that genomic selection could be used to select for EB, 
confirming its genetic background. 
  Key words:    energy balance ,  genomic selection ,  dairy 
cow ,  genetic variation 

  INTRODUCTION 

  Due to declining calving performance and conception 
rates at first service (Royal et al., 2000) many coun-
tries have introduced measures of fertility into national 
selection indices to address declining fertility rates in 
dairy cattle (Miglior et al., 2005). One explanation for 
these declining rates is the difference between energy 
intake and energy usage that occurs during early lacta-
tion. This difference is defined as energy balance (EB). 
Energy balance provides an essential link between pro-
duction and nonproduction traits because both depend 
on a common source of energy. This energy must be 
partitioned efficiently to maintain production levels 
as well as the animal’s ability to remain healthy and 
fertile. Severe negative energy balance (NEB) during 
early lactation has been cited as an underlying cause 
of the negative relationship of health and fertility with 
production (Butler and Smith, 1989; Jorritsma et al., 
2003; Pryce et al., 2004). 

  Recently, the major focus had been on trying to 
overcome the NEB problem by modifying the diet dur-
ing the dry period (Dewhurst et al., 2000; Agenäs et 
al., 2003; McNamara et al., 2003; Garnsworthy et al., 
2008a,b). Other suggested approaches to overcome NEB 
include varying the length of the dry period (Watters 
et al., 2009) and the frequency of milking (McNamara 
et al., 2008). However, estimates of genetic parameters 
suggest that EB is not only a consequence of a poor 
match between nutrition and production, but is also 
genetically induced (Veerkamp, 1998; Veerkamp et 
al., 2003; Coffey et al., 2004; Friggens et al., 2007). 
Veerkamp (1998) reviewed the results of different stud-
ies that reported genetic correlations for a variety of 
energy measures and milk yield, with values ranging 
from −0.05 to −0.91 and heritabilities for energy traits 
that ranged from 0.19 to 0.69. Coffey et al. (2004) 
demonstrated that distinct genetic lines responded dif-
ferently to a range of diets and differed in the time 
taken to return to positive EB. Similarly, Friggens et 
al. (2007) concluded that variability among animals on 
a stable nutritional diet could not be accounted for by 
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environmental factors and indicated a genetic basis for 
EB. Thus, an alternative to management approaches 
may be to select animals that are genetically predis-
posed to maintain a better EB.

Accounting for EB in selection programs is compli-
cated, because measuring feed intake in progeny testing 
schemes is not practical. Currently, much attention has 
been placed on the implementation of genomic selection. 
Genomic selection uses genomic information to predict 
and select animals based on their direct genomic val-
ues (DGV), predicted directly from SNP information, 
or their genomically enhanced breeding values, which 
are calculated by blending the DGV with conventional 
proofs. Genomic prediction simultaneously estimates 
the marker effects and creates an equation to predict 
DGV for genotyped selection candidates, including 
(young) animals that do not have phenotypic records. 
The recent implementation of genomic selection has 
been shown to increase both selection accuracy and 
genetic gain over traditional selection methods (Hayes 
et al., 2009).

In this study, we examined whether genomic predic-
tion could be used to estimate DGV for EB using a 
small Dutch experimental farm data set. Our objective 
was to demonstrate the genetic basis of EB and the 
potential use of genomic selection to facilitate inclusion 
of EB in selection programs.

MATERIALS AND METHODS

Data

Data on 613 Holstein-Friesian heifers born between 
1990 and 1997 were collected during the first 15 wk 
of lactation; 450 cows participated in the breeding 
program of CRV (Arnhem, the Netherlands) and 163 
cows originated from the experimental farm (t’Gen, 
the Netherlands). All animals were housed together 
on a single farm under the same environmental and 
management influences. All cows were fed ad libitum. 
Live weight, feed intake, and milk yield were measured 
on 565 of the animals. Milk samples were taken on a 
fixed day of the week for measurement of fat, protein, 
and lactose yields. Feed intake was recorded daily using 
automated feed intake units. Live weight was recorded 
once a week. Energy balance (MJ/d) was calculated us-
ing the method described in Veerkamp et al. (2000) as 
the difference between energy intake and the calculated 
energy requirements for milk, fat, and protein yields, 
and maintenance costs as a function of live weight. 
Energy balance values across wk 2 to 15 were aver-
aged, where possible, to give an overall EB phenotype. 
Comprehensive details on the data used can be found 

in Veerkamp et al. (2000). Raw EB phenotypes were 
preadjusted for year-season of calving and age at calv-
ing (linear, quadratic) using ASReml (Gilmour et al., 
2006), because their inclusion was not feasible in the 
final model because of software limitations. The residu-
als from this analysis were used as the EB phenotypes 
for the prediction of breeding values.

In total, 588 of the 613 heifers had known pedigrees 
and these were genotyped using the Illumina 50K SNP 
panel (54,001 SNP in total; Illumina, San Diego, CA). 
The quality control criteria for selecting the final set 
of SNP were a call rate of >90%, a GenCall score 
>0.2, and a GenTrain score >0.55 (Illumina descrip-
tive statistics relating to genotype quality), a minor 
allele frequency of >2.5%, and a lack of deviation from 
Hardy-Weinberg equilibrium, χ2 <600 (Wiggans et 
al., 2009). Animals with greater than 5% missing SNP 
genotypes were removed. Non-Mendelian error checks 
identified genotypes of daughters that were inconsis-
tent with their dams. A further, more comprehensive 
pedigree check was performed by comparing the coef-
ficients of the additive genetic relationship matrix and 
the genomic relationship matrix (G matrix) calculated 
via the first method described in VanRaden (2008). 
This enabled inconsistencies between recorded half and 
full siblings to be examined. Animals with many in-
consistencies between the pedigree and G matrix were 
removed. After all editing steps, 43,011 SNP and 548 
animals were retained. Of these 548 animals, 527 had 
phenotypes for EB.

Statistical Analysis

Models. Two models using Gibbs sampling were ap-
plied to estimate additive breeding values. One model 
included the available SNP information. This model 
used stochastic search variable selection (SSVS; George 
and McCulloch, 1993), which introduces an indicator 
variable Ij that determines whether SNP j has a large 
significant effect or whether the effect is insignificant 
and is therefore scaled back toward zero. The indicator 
variable for each locus j has a Bernoulli prior distribu-
tion:

Ij ~ Bernoulli (p).

The prior probability p is chosen to reflect the in-
formation available on how many QTL affect the trait 
of interest. It can be quantified as the number of SNP 
expected to be linked to a QTL divided by the total 
number of SNP. For a complex trait such as EB, it was 
assumed that about 1% of the SNP were linked to a 
QTL (p = 0.01).
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The SNP model can be expressed as follows:

 y 1 X q Zu en j j j
j

m

v
1

,  

where y is the vector of phenotypes of the trait being 
analyzed for all n individuals, 1n is a vector of ones of 
length n, µ is the mean, m is the number of SNP mark-
ers, Xj is the (n × k) design matrix containing the in-
formation on the possible k alleles at the jth marker for 
all individuals (where xjk = 0, 1, 2, having 0, 1, or 2 
copies of the kth allele, respectively), qj is the vector (k 
× 1) containing the effects of all k possible alleles at 
locus j where qjk are drawn from a standard normal 
distribution N(0,1), vj is the standard deviation of the 
allelic effects at locus j and is dependent on whether the 
locus effect is considered significant using the indicator 
variable, u is the vector of random additive polygenic 
effects of length n (Z is the associated design matrix) 
and is assumed to be normally distributed, 
u AN u0

2, ,  where A is the pedigree-derived addi-

tive genetic relationship matrix, and e is the residual 
error also assumed to be normally distributed, 
e N e0 2, ,I  where I is the n × n identity matrix. 

Note that the allele substitution effect of a locus j can 
be calculated from the estimated effects as aj = (qj1 – 
qj2)vj, where qj1 (qj2) is the effect of allele 1 (2) at locus 
j. For the full specification of the priors used and an 
alternative formulation of the model, see Calus et al. 
(2008) and Meuwissen and Goddard (2004). The DGV 
were calculated as the sum of estimated SNP effects 
and the polygenic effect:

 DGV q v uij j j i
j

p

X ˆ ˆ .
1

 

The second model used was a simple additive poly-
genic model: y 1 Zu en ,  where the EBV calcu-
lated by this model were the estimated polygenic effects 
for each animal  EBV ˆ .ui  Both models were run for 
10,000 iterations to ensure convergence, with the first 
1,000 iterations used as burn in.

Validation. Because of the small size of the data 
set, a 10-fold cross validation approach was carried out 
to assess the accuracy of predicted breeding values. The 
data set was randomly partitioned into 10 subsets each 
containing 10% of the data. Each subset was retained 
once as the validation data set and the remaining 9 be-
came the reference sets. Results from the reference sets 

were then used to predict breeding values of animals in 
the validation set. Accordingly, each animal appeared 
only once in a validation set and had only one predicted 
DGV.

The DGV and EBV were assessed using accuracy, 
ryĝ ,  defined as the Pearson correlation of the predicted 
breeding values (DGV or EBV) ( ĝ ) and the pheno-
types (y). The maximum achievable accuracy due to 
the correlation being between phenotypes and predicted 
breeding values was equal to the square root of the 
heritability of the phenotypes. The observed heritability 
for EB was estimated by fitting a model with year-
season and age at calving (linear and quadratic regres-
sion) as the fixed effects and a random animal effect 
(a). The random animal effect was assumed normally 
distributed, a N a0

2, ,G  where a
2  was the additive 

genetic variance and G was the genomic relationship 
matrix calculated via the first method described in 
VanRaden (2008). Deriving the heritability this way 
has been shown to produce estimates much closer to 
the true value than using the pedigree-based relation-
ship matrix (Hayes and Goddard, 2008).

Because no daughter yield deviations (DYD) or reli-
able breeding values were available, the predicted 
breeding values (DGV and EBV) were compared with 
phenotypes. Most studies estimating accuracies of DGV 
use DYD or reliable EBV predicted for proven bulls 
and consequently report accuracies of selection rgĝ  

and reliabilities rgĝ
2  that compare DGV and the clos-

est estimate of the true breeding values (g). Thus, for 
these studies the accuracy of selection was calculated 
(Daetwyler et al., 2008; Goddard, 2009) as

 rgg
h

h
ˆ ,

2

2 1
 

 and 
n

n
p

G

,  [1]

where h2 is the observed heritability, np is the number 
of phenotypic records, and nG is the number of effective 
QTL or chromosome segments. This function can be 
used when the accuracy is calculated using the correla-
tion between the predicted DGV and phenotypes ryĝ .  

Falconer and Mackay (1996) state that rgg g gˆ ˆ / .  
The accuracy between DGV and phenotypes can be 
similarly expressed as ryg g yˆ ˆ / .  And ryĝ  can be 
denoted as:
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 ryg
g

g

g

y
ˆ

ˆ ,  

which can be rewritten as r ryg gg hˆ ˆ ,2  and when 
combined with [1] gives

 ryg
h

h
ˆ .

4

2 1
 [2]

Hence, ryĝ  can also be transformed into rgĝ .  The ac-

curacy, ryĝ ,  was used to calculate the number of QTL 
affecting EB and the number of records needed to im-
prove the accuracy of the predicted DGV.

RESULTS

The pedigree check step for data quality control 
proved a very effective additional measure to identify 
any animal that had an incorrectly recorded pedigree 
or where an animal may have been misidentified. It 
allowed checking of half-sibling and full-sibling rela-
tionships, which is not possible using non-Mendelian 
checking. Figure 1 effectively illustrates the additional 
information contained in the SNP data about the relat-
edness of the animals. This is most obviously shown by 
the monozygotic twins that have a marker relationship 

of 1 (because of identical DNA) but are recorded as full 
sibs in the pedigree. The negative marker relationships 
are due to the method used to calculate the G matrix, 
which ideally uses the allele frequencies that were pres-
ent in the base population (VanRaden, 2008). However, 
because the frequencies in the base population were 
unknown, the G matrix was calculated using the allele 
frequencies in the available highly selected population 
resulting in negative marker relationships.

The accuracies ( ryĝ ) of predicting phenotypes for the 

2 models and the ryĝ
2  are shown in Table 1. Transformed 

values, using [1] to give the accuracies of selection  
( rgĝ ) and reliabilities ( rgĝ

2 ), are also shown. The model 
that included the SNP information yielded an overall 
accuracy of 0.29, which was higher than the overall 
accuracy of 0.21 produced by the polygenic model.

The calculated reliability ( rgĝ
2 ) of the DGV is double 

that of the EBV produced by the polygenic model. This 
implies that the DGV explained twice as much varia-
tion as the EBV, which is also illustrated by the range 
of breeding values (see Figure 2). The predicted DGV 
and EBV were positively correlated with a value of 
0.70.

The heritability for EB was estimated separately, as 
described earlier, with a moderate value of 0.325 (SE = 
0.12). This value was then used with the accuracy ryĝ  
and number of phenotypic records to predict the num-
ber of effective QTL for EB. A total of 472 effective 
QTL were predicted. Figure 3 shows a plot of ryĝ

2  ( rgĝ
2  

is provided for comparison on the second y-axis) against 
the number of effective QTL for differing heritabilities 
where the number of records was kept constant at the 
available number of 527. This shows the effect that the 
number of effective QTL would have on the expected 
accuracies and reliabilities of the DGV. It demonstrated 
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Figure 1. Comparison of the coefficients of the additive relation-
ship matrix (pedigree relationship) and the coefficients of the genomic 
relationship matrix (markers relationship).

Table 1. Accuracies and reliabilities1 of direct genomic values (DGV) 
and EBV 

Model2 ryĝ rgĝ ryĝ
2 rgĝ

2

DGV 0.294 0.516 0.086 0.265
EBV 0.211 0.370 0.044 0.135

1 ryĝ  = Pearson correlation between the predicted breeding values ( ĝ ) 

and the phenotypes (y); rgĝ  = accuracy of selection [comparing the 

predicted breeding values ( ĝ ) and the true breeding values (g)]; ryĝ
2  = 

reliability of the predicted phenotypes; and rgĝ
2  = reliability of the 

predicted breeding values.
2DGV was predicted using the model that included both the SNP 
and polygenic effects, and EBV was predicted using the model that 
included only the polygenic effect.
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that the greater the number of QTL affecting the trait, 
the lower the expected accuracy and reliability. This is 
because of a lack of information available in the limited 
number of phenotypes to be able to accurately estimate 
large numbers of QTL effects. Figure 3 also illustrates 
that this reduction in reliability, as the number of effec-

tive QTL increases, is more gradual for higher herita-
bilities.

The number of total records needed to improve the 
accuracy was also investigated and results are shown in 
Figure 4. The heritability was set at the observed value 
for EB (0.325). It is evident from Figure 4 that the 
number of effective QTL has a significant effect on the 
number of records needed to improve the accuracy. The 
greater the number of effective QTL, the larger the 
number of phenotypic records required to reach higher 
accuracies and reliabilities. We predicted that 5,818 
records with phenotype and genotype information 
would be needed for an ryĝ

2  of 0.24 ( rgĝ
2  of 0.80) for EB 

with the predicted 472 effective QTL.

DISCUSSION

The objective of this study was to demonstrate the 
genetic basis of EB and show that it could be incorpo-
rated into selection programs using genomic selection 
based on a limited reference population. Energy bal-
ance is a minimally recorded trait and consequently 
only a small number of phenotypic records was avail-
able. Despite the limitation on available data, genomic 
prediction was able to produce accuracies greater 
than a traditional polygenic model. Thus, the results 
indicated that EB could be estimated using genomic 
prediction. The low accuracy gained can be explained 
as a direct result of the small number of phenotypic 
records and the moderate heritability found for this 
trait. The heritability calculated with this data set 
was consistent with results of other studies (Veerkamp, 
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Figure 2. Histogram of direct genomic value (DGV) and EBV; 
black bars represent the EBV predicted by the polygenic model, and 
gray bars represent the DGV predicted by the model including the 
SNP information.

Figure 3. Accuracy of prediction versus the number of effective 
QTL, where the number of records is fixed to the number used in this 
study (527); r y g2 , ˆ  is the squared correlation between the pheno-
types and the predicted direct genomic values (DGV, characterized in 
the text as ryĝ

2 ); r g g2 , ˆ  is the estimated reliability between the true 
breeding value and the predicted DGV (characterized in the text as 
rgĝ
2 ).

Figure 4. Accuracy of prediction versus the number of records for 
a fixed heritability of 0.325; r y g2 , ˆ  is the squared correlation be-
tween the phenotypes and the predicted direct genomic values (DGV, 
characterized in the text as ryĝ

2 ); r g g2 , ˆ  is the estimated reliability 
between the true breeding value and the predicted DGV (character-
ized in the text as rgĝ

2 ).
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1998; Huttmann et al., 2009). To consider including EB 
in breeding schemes, higher accuracies than found here 
would be necessary. This increase in accuracy could 
be facilitated through an increase in the heritability 
of the trait or an increase in the number of phenotypic 
records. One way to increase the heritability would be 
to standardize the environmental conditions to reduce 
nongenetic differences between animals, but this may 
be difficult to do in practice. An alternative approach 
to increase the heritability of phenotypes would be to 
use deregressed breeding values or DYD of proven bulls 
as phenotypes, based on EB records of many daughters. 
This allows for an increase in the accuracy while keep-
ing the number of genotyped animals constant. This 
scenario would not lead to any additional genotyping 
costs because most bulls may already be genotyped as 
part of reference populations for other breeding goal 
traits. Note, however, that this approach may still be 
more costly because of the (much) higher number of 
recorded EB phenotypes that would be needed. An 
increase in the number of available records would also 
allow for an increase in the accuracy of predicted DGV 
as indicated in other studies (Hayes and Goddard, 2008; 
Goddard, 2009). The required increase could occur only 
if the measurement and recording of EB improved.

Because of infrequent recording of EB, a seemingly 
obvious solution would be to immediately select for a 
widely recorded trait such as BCS to reduce NEB in-
directly. The problem with using BCS is that after the 
first 60 DIM, the genetic correlations between EB and 
BCS decrease markedly (Huttmann et al., 2009). How-
ever, until the recording of EB increases to useful levels, 
BCS does provide a viable option to attempt to select 
animals with a better EB. In the future having both EB 
and BCS phenotypes available should allow for the best 
prediction of energy partitioning and utilization.

The model used to predict the DGV could also be 
used for whole-genome association studies. Thus, the 
produced posterior probabilities of SNP were examined 
to see if there were any significant associations with 
EB. Because of the small number of records and large 
number of SNP, the power of the association study to 
identify QTL was very low and this was evident. There 
was no SNP with a high enough posterior probability to 
be confident that it was linked to a QTL. The prior for 
the expected number of QTL affecting EB varied but 
results were consistently low (results not presented). 
Although the posterior probabilities were low, one SNP 
had 10-fold higher posterior probabilities than all the 
other SNP in all analyses regardless of the prior prob-
ability used. This SNP is located on BTA21 and is in 
extremely close proximity to, and appears in association 
with, the nuclear receptor subfamily 2, group F, member 
2 (NR2F2), otherwise known as chicken ovalbumin up-

stream promoter transcription factor II (COUP-TFII); 
COUP-TFII has been previously reported as playing 
an essential role in regulating adipogenesis, glucose 
homeostasis and energy metabolism (Xu et al., 2008; 
Li et al., 2009). It has also been reported as regulating 
growth hormone receptor 1A promoter activity (Xu et 
al., 2004), mediating progesterone, and controlling es-
trogen levels and thus involved in reproduction (Klinge 
et al., 1997; Nakshatri et al., 2000; Takamoto et al., 
2005; Kurihara et al., 2007; Petit et al., 2007). Although 
the results of this association study are not conclusive 
and further validation is required, COUP-TFII appears 
to be a good candidate gene for EB.

Despite being unable to establish QTL conclusively 
associated with EB, results of the study allowed an esti-
mation of the number of effective QTL influencing EB. 
Given the nature and complexity of EB, the number 
of predicted effective QTL (472) was plausible. The 
relationships with both production and nonproduction 
traits mean that numerous genes and pathways could 
be involved in the variation observed in EB. Previous 
whole-genome association studies of residual feed intake 
and other traits related to EB in beef cattle identify 
between 4 and 120 QTL affecting the traits studied 
(Barendse et al., 2007; Sherman et al., 2009). These 
values are significantly lower than the predicted 472, 
but reflect the power of the studies to detect significant 
QTL and the number of SNP (which were 2,194 and 
8,786 respectively), rather than the true number of ef-
fective QTL. An increase in the number of phenotypic 
records would also allow genome-wide association stud-
ies for EB in dairy cattle to identify possible candidate 
genes affecting the trait and would provide a better 
idea of the effective number of QTL.

The ability to select and include EB in selection indi-
ces may indirectly increase the genetic gain for fertility 
traits. The interval between calving and start of luteal 
activity (C-LA) has been demonstrated to be an in-
dicator of fertility during later lactation (Darwash et 
al., 1999; van der Lende et al., 2004; Petersson et al., 
2007). Veerkamp et al. (2000) reported genetic correla-
tions between EB and C-LA of −0.60 (and −0.49 for 
C-LA adjusted for milk, fat, and protein). A moderate 
to high genetic correlation similar to what was previ-
ously reported would mean that genetic gain for EB 
should also result in improved fertility. For example, if 
a bull had 25 daughters, the accuracy of selection for 
the bull’s EBV would be 0.40 for fertility (assuming a 
heritability of 0.03), whereas the accuracy of selection 
for the bull’s EBV would be 0.83 for EB. Thus, given 
a genetic correlation of −0.5, the accuracy of selection 
for fertility using EB would be 0.41. Consequently, for 
bulls with this number of daughters or fewer, selection 
using EB would result in greater genetic gain for fertil-
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ity compared with selecting for fertility itself. However, 
as the number of offspring per bull increases beyond 
25, the benefit of using EB rather than fertility is lost, 
such that selection for fertility itself will produce better 
genetic gains. Thus, the use of EB in selection indices, 
in addition to fertility, may prove beneficial and result 
in increased genetic gain for fertility.

In addition to the possible benefits of improved 
fertility, EB could be used with feed intake data to 
select animals for feed efficiency (Veerkamp, 1998) or 
to reduce methane emission (Hegarty et al., 2007). Im-
proving feed efficiency could be economically desirable 
because feed costs contribute the greatest proportion 
to production costs (Simm et al., 1994). However, feed 
efficiency data alone cannot distinguish whether the 
energy is used for production or maintenance. This 
may result in selection of animals with low intake and 
high yield that, consequently, have problems related to 
high NEB. Thus, NEB and improved feed efficiency 
(or intake) data should be considered simultaneously 
to effectively reduce the feeding costs while not having 
detrimental effects on the animals’ health and fertility.

Many other traits including several fertility and re-
production traits such as milk progesterone profiles and 
milk quality traits are difficult to record. Accounting for 
these traits, like EB, in selection has been complicated, 
because measuring them in progeny testing schemes is 
not practical. This study demonstrates that it is possible 
for such traits with similar heritabilities and expected 
number of QTL to produce DGV with accuracies >0.8 
when there are more than approximately 2,600 (2,581 
predicted for EB) phenotypic records available for use 
as the reference population. This demonstrates that it 
is possible to select for these traits using genomic selec-
tion by combining data from experimental and nucleus 
herds, where individually there are a limited numbers 
of raw phenotypic records.

The statistical approaches used in this study are gen-
erally accepted as appropriate for genomic prediction. 
Genomic prediction is often performed using a 2-step 
procedure in which the input phenotypes are precor-
rected so that the model predicting the DGV includes 
only the mean, polygenic, and SNP effects. Because 
precorrection will always introduce a new source of er-
ror, our preference would be to include all fixed effects 
in the models used to predict the breeding values. There 
is ongoing development of the genomic prediction pro-
gram used, to allow the inclusion of multiple discrete 
and continuous fixed effects in a single model.

CONCLUSIONS

The use of SNP information to predict DGV is 
shown to explain variation among the EB of animals, 

confirming the genetic background of EB. The use of 
SNP information showed an increase in the accuracy of 
selection for EB over the simple polygenic model. How-
ever, the extent of recording would need to be improved 
to increase the accuracy. In the future, selection for 
EB could be performed using genomic selection, which 
could provide a valuable tool in finding a balance be-
tween production and nonproduction traits.
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