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Force Attractor in Confined Comminution of Granular Materials
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We reveal a novel attractor in the space of contact forces that bounds the behavior of granular materials
during confined comminution. The attractor is reached asymptotically as the porosity reduces and the
grain size distribution attains an ultimate power law scaling. The ultimate distribution of the contact forces
follows a clear log-normal distribution, distinctively different from previous observations in uncrushable
systems. Supporting evidence comes both from comprehensive discrete element simulations and a

theoretical Apollonian model.
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Systems with complex dynamics often have an attractor
to which they evolve after long enough time [1]. Of par-
ticular relevance to this Letter are those systems that
present transient dynamics (or ‘‘transient chaos” [2])
with a fixed-point attractor. Many of these attractors relate
to the forces that drive the dynamics. Specifically, during
the confinement of granular systems a fascinating set of
force chains travels through the media [3]. The contact
force distribution (CFD) is pivotal to understanding such
matter [4-7], although these were for a limited degree of
polydispersity and in the absence of grain crushing. Here,
we investigate the evolution of the CFD in idealized 2D
crushable granular materials. In this case the evolution of
the CFD is inseparable from the evolution of grain sizes
because crushing occurs in grains that are subjected to a
critical combination of contact forces. Fragments rear-
range to better fit in the available pores; subsequently,
the local forces reorganize. We show that, in the space of
the force chains [8], these interesting dynamics decay
towards an ultimate condition. In particular, it is shown
that the problem is highly sensitive to initial conditions.
However, unlike trivial random systems, the current system
is also shown to have an attractor with multiple fixed
points, characterized by a unique CFD at the ultimate state.

The exact form of the CFD in jammed configurations of
static granular assemblies was investigated by many, with
Radjai et al. [4] proposing that the number of normal forces
with a magnitude higher than the mean value decays as an
exponential ““tail.” This tail was later found to have a
steeper decay than initially thought [5,6], particularly in
sheared systems [7]. Back to our specific interest, the grain
size distribution (GSD) evolves towards the smaller units: a
process known as ‘“‘confined comminution.” Therefore,
this problem presents a dynamical evolution in terms of
the local forces, grain sizes, and the spatial configuration.
A new way forward is to study the micromechanics of
confined comminution via a dynamical systems approach.
We take the first steps in this direction by examining the
evolution of the force chains and the CFD in the context of
attractors.

0031-9007/10/104(10)/108001(4)

108001-1

PACS numbers: 81.05.Rm, 89.75.Da, 89.75.Fb

Model of confined comminution.—We employ a model
of grain crushing based on the discrete element method
(DEM) [9], which develops an ultimate power law GSD
with a fractal self-similar pattern, in agreement with pre-
vious observations in granular physics and geosciences
(soil, rock, and ice mechanics) [10]. This model employs
the grain fracture criterion of [11] and the well established
strategy of replacing a precrushed particle by postfracture
fragments [12]. We calculate the major and minor principal
representative forces acting on a given particle as follows:

512 = [+ 5,)/21 % [0 = 5,)/2F + 55,0 (1)
where s;; = Z]Cv;l ng")Fﬁ-c) (i, j=1,2), N, is the grain’s
total number of contacts, the superscript (c¢) stands for
the cth contact, and 7' and FEC) are the components of
the normalized branch vector and contact force vector,
respectively [8]. The representative measures of the shear
and the normal forces per particle are computed via @ =
(s; — s2)/2and " = (s; + s,)/2. A particle of diameter x
crushes if a modified “Brazilian” criterion [11,13] of
20 — I' = xo is met; o, denotes the particle’s strength
through oy = 0 /(P) = oy In(1/P)""(x/x,,)~2". Fol-
lowing Jaeger [14], o), is the critical tensile stress for
the failure of the biggest particle with a size x,,, the factor
In(1/P)Y/* captures Weibull’s statistics of strengths [15],
while P € [0, 1] is a uniformly distributed variable and w
is Weibull’s modulus.

The process of confined comminution is exemplified in
Fig. 1. When a grain exceeds the failure criterion it is
replaced by a set of three identical smaller fragments,
inscribed within the circumference of the parent particle.
This is achieved without introducing overlaps, and without
limiting the number of fragment generations or their size.
Mass is conserved by a rapid linear expansion of the frag-
ments, while carefully avoiding excessive crushing from
artificial overlaps [9]. More than 300 particles with normal
and shear stiffness of 10> MPa (MN/m per 1 m thickness
unit) are introduced into a rectangular loading chamber,
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Results from the two-dimensional DEM model.

FIG. 1 (color).
Images (left to right, top to bottom) show the particles as they
crush, from the first crushing event and at strain increments of
Ae = 0.03 thereafter. Grain colors represent various fragment
generations.

with normal and shear stiffness of 10° MPa. The system
consolidates to the jamming transition between the fluid
and solid phases [16]. Motivated by experiments on brittle
sand, particle density is set to 2000 kg/m3, w = 4, Oy =
18 MPa, and the largest grain is taken x); = 6 mm. We set
an initial uniform distribution of grain sizes by number,
where the smallest initial grain size x,, is set to give
Xp/ X, = 2 or 10. The intergranular friction coefficient u
is chosen to be 0.6 while keeping the sidewalls fixed. The
simulations follow for initial porosities of 1, = 7. OF
Nmin (the maximum or minimum porosities for the jam-
ming transition of the associated x,,/x,,). The axial load is
increased gradually by bringing the upper and lower walls
closer at a relative inwards velocity that grows slowly to
0.003 m/ sec . The simulation is continued until an asymp-
totic limit is observed in each of the evolving GSD and
CFD, with more than 11 000 particles.

Figure 2(a) presents the porosity-pressure response
curves as they develop in three simulations with varying
index properties [9]. All curves evolve towards a single
asymptotic line as the pressure increases. This is in agree-
ment with many experimental observations [17]. This in
fact may be seen as a motivation for attractors in such
systems.

As the microscopic volume decreases, particles fracture
and the GSD evolves. Specifically, the number of particles
N with a diameter y greater than x approaches asymptoti-
cally an ultimate power law set, i.e., N(y > x) o x~ %, with
a = 1.3 [see Fig. 2(b)], where particles are so confined
that the relative displacements become affine. As the num-
ber of interactions goes to infinity, the system is expected
to develop a complete fractal set. The corresponding evo-
lution of the CFD is shown in Figs. 2(c) and 2(d). Before
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FIG. 2 (color online). (a) Porosity-pressure curves for various
initial porosities 7, and initial GSD by changing x,/x,,;
(b) typical evolution of GSD from initially uniform to an
ultimate power law, plotted at every pressure increment of
5 MPa (xy,/x,, =2 and 1, = Ny); (¢),(d) typical evolutions
of the CFD. Note that the final CFDs are shown again in Fig. 5,
with prediction.

crushing, the CFD has an exponential tail, but with a
steeper decay than that proposed in [4], in agreement
with [5,6]. However, the CFD changes markedly during
the confined comminution, in a clear deviation from either
propositions of [4] or [5,6]. In particular, as the CFD
evolves, another asymptote is revealed: an ultimate CFD
that is independent of the initial porosity and GSD (as
amplified later in Fig. 5).

Force chains dynamics.—To resist external loads granu-
lar materials transmit forces through the contact force
network. However, only a part of this network carries the
majority of the load. We adopt the algorithm in [8] and
show only force chain particles. To belong to a force chain,
a particle must satisfy two requirements. First, the magni-
tude of its representative major principal force, s; [Eq. (1)],
has to be greater than the overall average of the sample
(s1). Second, the direction of s; must be quasilinear with
the direction of the s, of a neighboring particle, which must
also satisfy the first magnitude criterion. ‘““Quasilinear”
refers to a change in directions of less than 45°. Here,
the magnitude criterion is slightly different than that origi-
nally proposed by [8]: instead of an average s; by number,
we use a mass average (s;) = (M) ' ¥V | s¥'m®, which
is more useful for visualizing the bulk picture. N is the total
number of particles in the sample, that varies during load-
ing, and s(lk) and m™ are the magnitude of the representa-
tive major principal force and mass of particle k%,
respectively.

Figure 3 presents the force chains during the simulation
of two nearly identical samples, with an initial x,,/x,, = 2
and 717, = M. The sole difference is made simply by
deleting a single particle (the strength parameters are
deterministically similar). The first images of the force
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FIG. 3 (color online).

Sensitivity of force chain evolution to minor changes in initial conditions. Images from left, top and bottom:

initial samples at the jamming transition (strain € = 0.0) in two nearly identical simulations, differing only by a single omitted particle
(marked by the dotted circle in the bottom left image); force chains in the two samples, first at every strain increment of Ae = 0.02
from £ = 0.0 to ¢ = 0.08, and then at ¢ = (0.2 and 0.3. Note the increasing disparity in the two force chain networks—to the extent
that traces of similarities in the force chain topologies at ¢ = 0.0 become undetectable: see last two states in which markedly different

ultimate topologies develop.

chains are almost identical for the two samples, and cor-
respond to the respective jamming transition. In the early
stages after the jamming transition (e.g., ¢ = 0.02, 0.04),
small disparities in the force chain network of the two
samples emerge whenever a particle crushes. Thus, one
may conceive that the two systems originate from a nearly
identical force chain network at the jamming transition.
However, as the simulations proceed (e.g., ¢ = 0.06, 0.08),
the force chain topologies deviate considerably. Finally, as
the GSD evolves towards the ultimate power law [Fig. 2(b)
] the transient dynamics of the force chains, driven by grain
crushing, decay asymptotically towards a fixed point (e.g.,
last two states € = 0.2, 0.3). On the one hand, we have
smooth macroscopic porosity-pressure curves [Fig. 2(b)]
that merge towards a unique energy state; on the other
hand, we have a complex transient dynamics that eventu-
ally freezes in a deterministic force chain configuration,
but that is highly sensitive to minute changes in initial
conditions. However, as we shall see in the following,
this does not affect the contact force distribution, which
is unique and can be predicted using the following simple
model. Therefore, the current system has multiple fixed-
point attractors in the space of the force chains.

Simple Apollonian model.—Recall that, in the crushable
DEM simulations, the number N of particles with a diame-
ter y greater than x develops towards an ultimate power law
set N(y > x) o« x~%, @ = 1.3. This coefficient is strikingly
similar to the fractal dimension of an Apollonian gasket
with 25 generations, @ = 1.305 684 [18], where the poros-
ity is essentially zero. These similarities in fractal dimen-
sions and in porosities motivate our next analysis using a
simple Apollonian model. We consider an Apollonian
packing with a friction coefficient © = 0 and 0.6; Fig. 4.
The entire gasket is then subjected to a slow but minimal
isotropic compaction from the exterior, which is damped
towards the static state. We then extract the contact forces.
The CFDs at the end of these simple simulations are
plotted in Fig. 5(b); compare these with the final CFDs
of the comprehensive crushable DEM simulations in Fig. 5
(a). Strikingly, all of the probabilities can be described by a

single unique log-normal distribution (see continuous lines
in Fig. 5):

1 L fa)?

Plfa) fro2m exp[ 207 (lnﬂ) il’ @
where f; = f,/{f,), o is the standard deviation of the
variable’s natural logarithm, and () is a scale parameter
that is found to be equal to 0.5. We highlight the distinct
contrast of this result with previous observations of CFD.
Those dealt with uncrushable granular media, where the
prescribed grain sizes were limited in the degree of poly-
dispersity [4—-6]. In particular, the insets in Fig. 5 focus on
the tail of the ultimate distribution using a triple-log plot
proposed by [6]: previous works show distributions with a
slope between 1 and 2 [6]; here the slope is about 0.5. Also
note that the Apollonian model was constructed using 10
generations, giving a fractal dimension a = 1.24 over two
decades, which can explain the deviation from the log-
normal fit.

FIG. 4. Radial compression of an Apollonian gasket. Upper
plot shows the particles as they are subjected to a minimal radial
compression. Left-hand and right-hand images show the contact
force network for u = 0.0 and p = 0.6, respectively.
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FIG. 5 (color online). The ultimate CFD. (a) From the com-
prehensive  crushable  discrete  element  simulations:
A dM/dm =2 and Mo = Mmin> ® dM/dm =10 and Mo =
Nmax> M and \diamondsuit dy;/d,, =2 and 1, = My, corre-
sponding to Figs. 3(a) and 3(b). (b) Predicted by the simple
Apollonian model: A p = 0.6 and B p = 0.0. Insets show the
triple-log plot. The solid lines show the theoretical log-normal
distribution with () = 0.5.

In summary, we have investigated the evolution of the
CFD and of force chains based on a crushable DEM model
and an Apollonian model. We reveal the presence of at-
tractors. The system presents complex transient dynamics
that are characterized by the high sensitivity of the evolu-
tion of the force chain topology to small changes in initial
conditions. Unlike the sensitivity of the ultimate topology,
the ultimate force distribution is insensitive to those small
changes (Fig. 5). This suggests that our crushable granular
material has multiple fixed-point attractors in the space of
the contact forces, with each ultimate topology related to a
single fixed point.

Without comminution, during confinement the normal-
ized CFD in granular systems does not vastly change after
the jamming transition. This is well known, and was docu-
mented in previous studies [5]. For confined comminution,
the ultimate fractal GSD to which the DEM model evolves
in the long term, a property shared by the Apollonian
gasket, leads to an ultimate CFD that is described by a
unique log-normal distribution. Clearly, it is the particular
choice of (nominally zero) porosity and the (power law)
GSD that determines the shape of the CFD. Thus, confined
comminution is simply the mechanical route to reduce
porosity by shifting the GSD towards a desirable ultimate
power law, with which the force attractor could be reached.
Future studies will map out the full dynamics of CFD and
GSD from phase portraits of the confined comminution
system for experimentally relevant parameters.
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